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Abstract. The encoding of information by populations
of neurons in the macaque inferior temporal cortex was
analyzed using quantitative information-theoretic ap-
proaches. It was shown that almost all the information
about which of 20 stimuli had been shown in a visual
fixation task was present in the number of spikes emitted
by each neuron, with stimulus-dependent cross-correla-
tion effects adding for most sets of simultaneously
recorded neurons almost no additional information. It
was also found that the redundancy between the
simultaneously recorded neurons was low, approxi-
mately 4% to 10%. Consistent with this, a decoding
procedure applied to a population of neurons showed
that the information increases approximately linearly
with the number of cells in the population.

Introduction

A fundamental issue in understanding brain function is
how information is encoded by populations of neurons
(Gawne and Richmond 1993; Singer 1999, 2000; Shad-
len and Movshon 1999; Rolls and Deco 2002; Treves
2000; Franco et al. 2003). In this paper we apply recently
developed information-theoretic techniques to quantify
the encoding of information which is contributed by the
number of spikes from the different neurons in the
population and by the relative timing of spikes from
different cells (Panzeri et al. 1999; Rolls et al. 1997;
Rolls and Deco 2002). The information-theoretic
approaches used here enable these different contribu-
tions to be compared quantitatively. The approaches are
applied to the encoding of information in the macaque
inferior temporal visual cortex (IT), where neurons
respond to objects and faces (Tanaka 1996; Rolls 2000;
Rolls and Deco 2002).
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Simultaneously recorded neurons sometimes show
cross correlations in their firing. One example of this is
neuronal response synchronization. A significant peak
or trough in the cross-correlation function of the spike
trains of two neurons could reflect a synaptic connection
from one cell to the other, a common input to each of
the cells, or any of a considerable number of other
possibilities. If the synchronization occurred for only
some of the stimuli, then the presence of the significant
cross correlation for only those stimuli could provide
additional evidence separate from any information in
the firing rate (or equivalently the number of spikes in a
short time period) about which stimulus had been
shown. Information theory in principle provides a way
of quantitatively assessing the relative contributions
from these two types of encoding by expressing what can
be learned from each type of encoding in the same units,
bits of information. An information-theory-based ap-
proach to this has been developed by Panzeri et al.
(1999) and extended and evaluated by Rolls et al. (2003).

The purpose of the research described in this paper is
to describe new simultaneous recordings from several
rhesus macaque inferior temporal cortex neurons made
in order to examine the neural encoding of information
about visual stimuli and analyzed with an information-
theoretic method developed and evaluated recently
(Rolls et al. 2003). We measured the cross correlations
between the spike trains of simultaneously recorded
neurons and quantified the relative contributions to the
total information available of the numbers of spikes
emitted by each cell and the cross correlations between
the spike trains. The stimuli consisted of a set of 20
images of different objects and faces, as these are known
to be effective for inferior temporal cortex neurons be-
cause these neurons typically have differential neuronal
firing to the members of such a set of stimuli (Rolls et al.
1997; Booth and Rolls 1998; Rolls 2000; Rolls and Deco
2002). Each object can be thought to consist of a set of
features which might need to be bound together in the
correct spatial configuration, and neuronal synchroni-
zation might be used to implement the correct spatial
binding of different subsets of features (Singer 1999,
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2000; Shadlen and Movshon 1999). The aims of the
experiments described here were to measure the amount
of information which might be available on a single trial
from any cross-correlated firing about what stimulus
was shown compared to that obtainable from the
number of spikes, to measure the amount of redundancy
which simultaneously recorded cells may have, and to
determine how the information about the set of stimuli
scales with the number of neurons in the population in
this major output of the ventral (or “what™) visual
stream. The investigation thus addresses the encoding of
information when it is passed from the visual system to
other brain systems which utilize visual information for
functions such as long-term memory, short-term mem-
ory, and emotion (Rolls and Deco 2002).

Methods
Neurophysiological procedures

The responses of single neurons in the temporal cortical
visual areas were measured to a set of 20 visual stimuli in
a rhesus macaque performing a visual fixation task using
experimental procedures similar except as described
below to those described in detail previously (Rolls
et al. 1997). The stimuli included § =20 images of
objects (7), faces (8), natural scenes (3), and geometrical
stimuli (2) of the type which produce differential
responses from inferior temporal cortex neurons and
examples of which have been illustrated previously
(Rolls and Tovee 1995). The neurons were selected to
show responses which differed between the different
stimuli (as shown by a one-way ANOVA). Usually, 20
trials for each stimulus were available. The set of stimuli
were shown once in random order, then a second time in
a new random sequence, etc. Populations of 2-9 neurons
were recorded simultaneously using 2—4 independently
movable single neuron epoxy-insulated tungsten elec-
trodes with uninsulated tip diameters of less than 10um
(FHC Inc., USA) using an Alpha-Omega (Israel)
recording system. Typically we were able to move the
microelectrodes until 2—4 of the simultaneously recorded
neurons responded differentially to the set of stimuli
used. The recordings were made as part of the experi-
mental design in one rhesus macaque, Macaca mulatta,
so that in addition to the analysis of simultaneously
recorded neurons, another analysis could be performed
of nonsimultaneously recorded neurons in which the
information from all the recordings made from different
neurons in different sessions in the same animal could be
analyzed as described by Rolls et al. (1997). The
microelectrodes were stereotaxically guided, and the
location of the microelectrodes was reconstructed on
each track using X-rays and subsequent histological
reconstruction using microlesions made on selected
tracks as described by Feigenbaum and Rolls (1991).
The recording system (Neuralynx Inc. USA) filtered and
amplified the signal and stored spike waveforms which
were later sorted to ensure that the spike waveforms
from each neuron in the small number of cases when

there were more than two spikes on one microelectrode
were clearly separated into different waveform clusters
using the Datawave (USA) Discovery software. The
neurophysiological methods wused here have been
described in detail by Booth and Rolls (1998). All
procedures, including preparative and subsequent ones,
were carried out in accordance with the NIH Guide for
the Care and Use of Laboratory Animals, the guidelines
of The Society for Neuroscience, and licenced under the
UK Animals (Scientific Procedures) Act, 1986.

The sites of the tips of the microelectrodes during the
neuronal recordings included in this investigation are
shown in Fig. 6 and for the majority were in the cortex
in the anterior part of the ventral lip of the superior
temporal sulcus (areas TEa and TEm), in area TE, or in
the cortex deeper in the superior temporal sulcus (Seltzer
and Pandya 1978; Baylis, Rolls and Leonard 1987).

Measuring the information available from simultaneously
recorded cells in short time windows

An introduction to and overview of the information-
theoretic methods used here are provided by Rolls and
Deco (2002). The general approach used was developed
by Panzeri et al. (1999) and extended and validated with
simulated data by Rolls et al. (2003).

When applying information theory to the responses
of two or more simultaneously recorded neurons, the
number of possible combinations of the relative times of
the spikes of the different cells becomes very large. That
is, the dimensionality of the space which must be filled
adequately with real neurophysiological data to obtain
estimates of the information becomes so large that the
information estimates become unreliable and in fact are
biased upwards (i.e., are an overestimate) (Tovee et al.
1993; Rolls and Treves 1998; Rolls and Deco 2002;
Panzeri and Treves 1996).

The approach taken here limits the dimensionality
problem by taking short time epochs for the information
analysis in which low numbers of spikes are likely to
occur from each neuron. In this case, in which at most a
low number of spikes are emitted from the population,
the response probabilities can be calculated in terms of
pairwise correlations. These response probabilities are
inserted into the Shannon information formula shown in
Eq. 1 to obtain expressions quantifying the impact of
the pairwise correlations on the information I(¢) trans-
mitted in a short time ¢ by groups of spiking neurons:

10 = ¥ S Pl log oo m

where r is the firing rate response vector (comprised of
the number of spikes emitted by each of the simulta-
neously recorded cells in the population in the short time
t) and P(s,r) refers to the joint probability distribution
of stimuli with their respective neuronal response
vectors. The firing rate response vector r for a single
trial consists of the number of spikes n; emitted by each
cell 7 in a short time ¢.



The approach consists, then, in the short timescale
limit, of using the first (/;) and second (/;) information
derivatives (in a Taylor expansion) to describe the
information /(¢) available in the short time ¢

t2
[(t):tlt—‘_zln. (2)

(The zeroth order, time-independent term is zero, as no
information can be transmitted by the neurons in a time
window of zero length. Higher-order terms are also
excluded as they become negligible in a time window
with sufficiently few spikes.)

The instantaneous information rate I, is:

C

n=3 (ron ) ?

i=1

This term is just a simple sum across the C cells in the
population of the instantaneous information rate of
each single cell (Bialek et al. 1991; Skaggs et al. 1993),
and thus this term does not take into account any
interactions (arising from any of the correlations)
between the neurons. Nor does this term reflect the trial
by trial variability in the responses of each cell taken
individually (which is reflected in the terms containing
Vii)-

The second derivative term [, breaks into three
components that can be expanded in terms of two types
of correlation:

The correlations in the neuronal response variability
from the average to each stimulus, y;;(s).

'})(S) _ n[(s)n_/(s) 1= r[(S)I"_/‘(S) 1 (4)
Y (71:(s)7;(s)) (7i(s)7;(s))

where 7;(s) is the mean rate of response of cell 7 (7;(s) is
the mean number of spikes of cell i) (among C cells in
total) to stimulus s over all the trials in which that
stimulus was present.

This is called a “noise” correlation (Gawne and
Richmond 1993; Shadlen and Newsome 1994, 1998)
because it reflects the trial by trial co-variation in the
responses of the neurons, and is also called the ‘scaled
cross-correlation density’ (Aertsen et al. 1989; Panzeri
et al. 1999). It can vary from —1 to oco; negative values of
7;;(s) indicate anticorrelation, whereas positive values of
7;;(s) indicate correlation. y;,(s) can be thought of as the
amount of trial-by-trial covarying firing of the cells i and
J, compared to that expected in the uncorrelated case.
Although the 7;(s) measure utilizes the numbers of
spikes from the dlfferent neurons, and thus reflects rate
co-modulation, this will almost always with real neurons
(as contrasted with possible artificial scenarios) capture
any synchronization that is present. This is because in a
sufficiently short time window (and the information
measures are for this reason plotted in the Figures in
different time windows in the range 0 to 100 ms), in the
unlikely event that cell i fires, if cell j also fires, this is
likely to reflect synchronization (Rolls et al. 2003).

There is also an autocorrelation term 7;(s), which
reflects the variability of the number of spikes emitted by
a cell i to a given stimulus s from trial to trial

Vii(s) =

r[(S)_I",‘(S)__V'(S)_l ) (5)

7;;(s) is related to the probability of observing a spike
emission, given that the same cell has already fired in the
same time window. Its relationship with alternative
cross-correlation coefficients, like the Pearson correla-
tion, is discussed in Panzeri et al. (1999) and Rolls et al.
(2003).

The second type of correlation is the correlations in
the mean responses of the neurons across the set of
stimuli, v, and is defined by:

7= )Y,
OO A (6)

where 7;(s) is the mean rate of response of cell i (7;(s) is
the mean number of spikes of cell i) to stimulus s over all
the trials in which that stimulus was present. It can vary
from —1 to oco. ({...), indicates the ensemble average
over the s stimuli.) v;; can be thought of as the degree of
similarity in the mean response profiles (averaged across
trials) of the cells i and j to different stimuli. v; is
sometimes called the “‘signal” correlation (Gawne and
Richmond 1993; Shadlen and Newsome 1994, 1998).

If v;; is zero, the cells have different response profiles
to the stimuli, and there is no redundancy. If v; is
either positive or negative, it always reflects redun-
dancy between the cells, as both cases mean that the
two cells i and j are conveying the same information
about the stimuli. The autoterms, v;, reflect the degree
to which a single cell i responds differently to the dif-
ferent stimuli.

In terms of the correlations introduced above the
second derivative of the total information becomes:

=13 D0 S ()

X {v,j—&- +vij) ln(1 +Vu)]
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The first term of /,, is always equal to or less than zero
and expresses for the case i # j redundancy that could
arise from similar response profiles from the cells to
different stimuli. The second term quantifies the amount
of stimulus-independent information and depends on
both types of correlation v and y. The third term con-
tributes only if the correlations are stimulus-dependent
(Rolls et al. 2003).

To evaluate the significance of the stimulus-depen-
dent information that may be present in the correlations
of simultaneously recorded cells, a Monte Carlo proce-
dure was applied by randomly shuffling the recorded
trials and computing for these cases the value of the
stimulus-dependent information obtained. If the mea-
sured information was greater than 2 times the standard
deviation obtained from the different shuffled cases, the
stimulus dependent-information was taken to be signif-
icant. Rolls et al. (2003) provide a more detailed expla-
nation of the method, together with procedures for
ensuring that a longer time window with too many
spikes from each cell which would exceed the validity of
the Taylor expansion was not used. These procedures
were applied to all the analyses described in this paper,
and allowed 100 ms times for all experiments in Table 1
except for experiments bj240 and bj286, for which the
time windows were 60 ms. In practice, the useful heu-
ristics are that the Taylor expansion remains valid with
up to 4 simultaneously recorded cells if the time window
does not exceed 2 or 3 times the average interspike
interval of the fastest firing cell to its most effective
stimulus; and the power of the method with respect to
the accuracy of the cross-cell stimulus-dependent con-
tributions is sufficient if there are in the order of 15-20
trials per stimulus or more (Rolls et al. 2003).

We note that the ‘total information’ shown on the
graphs is the total information from the full expansion,
that is I, + 0.5¢°I,, and includes a stimulus-dependent
auto term. The “‘stimulus-dependent auto term”, is the

auto part of the third term of 7, in Eq. 7 for the case
when i = j in y;;(s). This term is subtracted out by the
Monte Carlo procedure, but it can be estimated by
subtracting the sum of the other components of the
information (rate, stimulus-independent, and stimulus-
dependent-cross) from the total information. This term
is normally close to zero, both in simulations and in real
data. There is a special case in which the stimulus-
dependent auto term could be positive. This would arise
for example if the trial by trial variability to a given
stimulus, y;(s), was different for different stimuli. If the
brain could measure this trial by trial variability, and
found that it was large, then this might give information
about which stimulus was shown. However, it is not
clear how such a measurement could be implemented in
the brain.

Measuring the information from many recorded
cells using a decoding procedure

We were also able to use these new recordings to provide
an estimate of how the information increases as a
function of the number of cells in a population of 21
neurons for which the same set of 20 images was used.
This analysis was performed using the decoding method
described by Rolls et al. (1997) to analyse the informa-
tion. This method does not analyse the information that
might be present in simultancously recorded neurons
due to stimulus-selective cross-correlations, and so could
be applied to the data accumulated from different cells
recorded in the same macaque over different days.
The method measures approximately what is included in
the rate and stimulus-independent terms of the infor-
mation expansion described in this paper. The method
can be used for very large numbers of cells, and when
there are many spikes in a time window. The method
uses a decoding procedure in which on each trial the

Table 1. The average contribu-

tions (in bits) of the different Exper. Total . _Rate . Stim. dep. Stim. indep. Stim. indep.
components (Egs. 3 and Eq. 7) information information (cross correl.) (cross correl.) (auto correl.)
of Eq. 2 to the information .
availc'cllble in a 100 ms time win- bJ.]85 0.22 0.29 0.08 0.00 —0.27
dow from 20 sets of simulta- bJ.207 0.24 0.24 —0.01 —0.01 —0.12
neously recorded inferior bJ;B 03411 Ogl —0.01 0.00 —0.03
temporal cortex neurons when 1;12;(5) 8']3 832 88? (0)32 8?;
fﬁgvg:llfo stimuli effective for bj229 0.22 0.16 0.05 0.05 ~0.09
bj240 0.00 0.17 —0.04 —0.16 -0.25
bj243 0.20 0.20 0.00 0.00 0.00
bj278 0.46 0.29 0.06 0.02 —0.07
bj280 0.43 0.40 0.01 —0.01 —0.01
bj283 0.23 0.25 0.08 —0.09 —0.11
bj285 0.125 0.125 0.00 —0.01 0.01
bj286 0.15 0.05 0.06 —0.03 —0.10
bj287 0.70 0.20 0.21 —0.10 —0.11
bj288 0.62 0.40 0.12 —0.04 0.01
bj290 0.28 0.28 —0.05 —0.06 —0.11
bj291 0.46 0.40 0.00 —0.01 0.09
bj292 0.20 0.20 —0.02 —0.02 —0.08
bj292b 0.34 0.42 -0.03 -0.22 -0.10
bj293 0.75 0.42 0.22 —0.01 0.11
Mean 0.31 0.26 0.04 —0.05 —0.07




probability that each stimulus (called s”) was shown is
estimated from the vector of neuronal responses. This
estimate is made by comparing the vector of neuronal
responses on that trial to the average response vectors to
each stimulus. Then, knowing the actual stimulus shown
on that trial, the mutual information (/,) between the
estimated stimulus s’ and the real stimulus s over the set
of stimuli S can be calculated as

) =3 S PGs, o) log, % | ®)

ses§ s'eS

The decoding procedure used for the results presented in
this work, is Bayesian probability estimate (PE) decod-
ing using a Gaussian fit, as described by Rolls et al.
(1997), Rolls and Treves (1998) and Rolls and Deco
(2002), and includes a cross-validation procedure.

Results

Measurement of the information available from small
numbers of simultaneously recorded neurons

The responses of 54 neurons obtained in 20 recording
sessions in which it was possible to measure the
responses of several simultaneously recorded inferior
temporal cortex neurons to the set of 20 visual stimuli
were analyzed using an information theoretic approach
(Panzeri et al. 1999; Rolls et al. 2003) that separates the
contribution of the firing rates and the correlations
between the firing of neurons (see Experimental Proce-
dures).

The majority of the sets of simultaneously recorded
cells analysed did not show significant cross-correlations
between the firing of pairs of cells. An example of these
typical cross-correlation results is shown for cells 11 and
31 of a set (bj280) of 3 simultaneously recorded cells in
Fig. 1a. (The first number of the cell designation indi-
cates the electrode number.) The firing rates of these two
cells (based on the number of spikes in a 100 ms window
starting 100 ms post-stimulus) to the set of stimuli are
shown in Fig. 1c and e respectively (with d showing the
responses of the third simultaneously recorded cell).
Figure 1b shows that most of that information available
was available in the rates, and that there was little
contribution to the information from the cross-cell
stimulus-dependent term (which would have shown a
positive value if for example there was stimulus-depen-
dent co-modulation of the neuronal responses); or from
cross-cell stimulus-independent terms, which might if
present have reflected common input to the different
neurons so that their responses tended to be correlated
independently of which stimulus was shown. For these
cells, the stimulus-independent auto term was approxi-
mately 0, indicating that the variability of the neuronal
spike counts from trial to trial was close to that expected
for a Poisson process.

In some other sets of simultaneously recorded inferior
temporal cortex neurons some statistically significant
cross-correlations were found between particular pairs

of IT neurons. One such case is shown in Fig. 2, where
the cross-correlogram in Fig. 2a shows a significant
correlation between cells 01 and 04 close to a lag of O ms,
and a smaller more broadly peaked region in addition.
From the cross-correlogram, it is not possible to quan-
tify the impact of the cross-correlation on the total
information available from the pair of cells, but appli-
cation of the information theoretic method described
here showed that the cross-correlation reflected redun-
dancy. The results of the information analysis are shown
in Fig. 2b—e. The ‘“‘rate” component was large and po-
sitive (as much as 0.33 bits in 100ms), but the total
information available from the cells was reduced to
approximately 0.13 bits because there was a relatively
large cross-cell stimulus independent contribution (esti-
mated at —0.24 bits). The cross-cell stimulus-indepen-
dent contribution was large and negative, because, as
shown in Fig. 2d—e, both the values of v;; and those from
the terms (7;(s)7;(s)y;;(s)), are large and have the same
sign (see the second term of Eq. 7). The positive values
for v;; reflect some correlation in the firing rate response
profiles of the cells to the set of stimuli; while the positive
values of (7;(s)i;(s)y;(s)), indicate that there is (on
average across stimuli) a trial-by-trial correlation
(reflecting e.g. synchronization or co-modulation). The
stimulus-dependent information is very low (Fig. 2b—c),
around 0, indicating that the cross-correlation that exists
is not stimulus-modulated, a fact also confirmed by fact
that the cross-correlations were similar for each stimulus
(not illustrated). We also note that the stimulus-inde-
pendent auto terms for all 3 cells are negative as shown
in Fig. 2b. This fact, also found in many of the experi-
ments (see Table 1, column Stim. indep. (auto correl.))
indicates that the variability of the number of spikes
from trial to trial (within a stimulus, then averaged
across stimuli) is greater than would be expected from
spike trains produced by a Poisson process.

We also found cases where the cross-correlations were
associated with a cross-cell stimulus-dependent contri-
bution to the information. A cross-correlogram from
such a case is shown in Fig. 3a. The cross-correlation
has a central peak, and is flanked by a region of positive
cross-correlations. Figure 3b (top right) shows that a
considerable proportion of the information available in
a 100ms time period was available in the rates. In
addition, there was a negative value for the cross-cell
stimulus-independent term, produced by a small positive
value for v;; (shown in Fig. 3d), together with a positive
value for (min;y;;(s)), (as shown in Fig. 3e). Figure 3b
shows that there is a small positive contribution to the
information from the stimulus-dependent -cross-cell
term, and Fig. 3c shows that this is more than two
standard deviations from what is produced by random
reassortment of the trials within those available for each
stimulus, and so is taken as significant (see further Rolls
et al. (2003)). Overall, because these cells had some
negative stimulus-independent cross-cell contribution to
the total information (reflecting redundancy), the total
information from the cells was close to that available in
the rates (Fig. 3 top left). We note that the cells were
recorded on two different electrodes, so that cells that
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Fig. 1. a—e Information analysis on experiment bj280. a Cross
correlogram (corrected by subtracting the shift predictor and with
the p < 0.01 confidence limits indicated) between the responses of two
simultaneously recorded neurons (11 and 31) from experiment bj280.
b Information analysis on the set of three simultaneously recorded
inferior temporal (IT) cortex neurons (in experiment 280) about which
of the 20 stimuli had been shown. The graphs show the contributions
to the information from the different terms in Eqs. 3 and 7, as a
function of the length of the time window, which started 100 ms after
stimulus onset, which is when IT neurons start to respond. The rate
information reflects the term in Eq. 3 and the first term of Eq. 7,
combined as in Eq. 2. The stimulus-independent contribution to the

are 1-3mm apart can show these stimulus-dependent
correlation effects.

The results for the 20 experiments completed with
groups of 2—4 simultaneously recorded inferior temporal
cortex neurons are shown in Table 1. The total infor-
mation is the total from Eq. 2 in a 100 ms time window,
and is not expected to be the sum of the contributions
shown in Table 1 because the stimulus-dependent auto
term is not shown in the Table. (This latter term includes
contributions that arise in the Monte-Carlo correction
algorithm.) The results show that the greatest contri-
bution to the information is that from the rates, that is
from the numbers of spikes from each neuron in the time
window of 100 ms. On average a value of —0.07 bits was

stimulus

information reflects the second term of Eq. 7 and is separated into
components arising from the correlations between cells (the cross
component, for i # j) and from the autocorrelation within a cell (the
auto component, for i = j). The stimulus-dependent contribution of
the noise correlation to the information reflects the third term of Eq. 7,
and only the cross term is shown (for i # j), as this is the term of
interest. The first vertical dashed line shows the average interspike
interval of the neuronal response to the most effective stimulus for any
cell. The second vertical dashed line indicates three times this value.
c—e The average firing rates and standard deviations of the neuronal
spike counts in the same 100-ms time window to each of the 20 stimuli
for the three cells of experiment bj280

obtained for the cross-cell term of the stimulus inde-
pendent ‘noise’ correlation, but it is worth noting that
this average value mainly arises from particular cases
with a large amount of redundancy (6 out of 20 exper-
iments), while in the remaining experiments the values
are closed to 0 (see the distribution in Fig. 4b). (No
significant difference was found between these stimulus-
independent cross-cell contributions computed for pairs
of cells from the same or different electrodes.) Figure 4a
shows the values of < nif1y;;(s) >s and v;; for all simul-
taneously recorded neuronal pairs. The graph is divided
into sectors which show the regions within which the two
factors plotted lead to redundancy or synergy for a pair



Fig. 2. a—e Information analysis
on experiment bj220. a Cross

r T
—-40 -20 o 20

= T T T
=100 -80 -60

Raw Cross Correlation mirmis Shift Predictor Lag (ms)

—— Stim. dep. corrected

correlogram (corrected by sub-
tracting the shift predictor, and
with the p < 0.01 confidence lim-
its indicated) between the
responses of two simultaneously
recorded neurons from experi-
ment bj220. b Results of the
information analysis on a set of
three simultaneously recorded
i inferior temporal cortex neurons
' in experiment bj220. The graph
shows the contributions to the
information from the different
terms in Egs. 3 and 7, as a
function of the length of the time
window, which started 100 ms
after stimulus onset. The con-
ventions are as in Fig. 1. ¢ Value

20 40 60 80 100

—— Auto covariance
---.Cross covariance

of the cross-cell term of the
stimulus-dependent information
and two standard deviations of
its variation as estimated by the
Monte Carlo method described
in Methods. d Values of v;;, signal
correlations, measured both
across cell pairs (cross correla-
tion, dashed lines) and within cells
(autocorrelation, i.e., i = J,
shown by a solid line for each
cell). e The time course of the
terms <ﬁi(s)ﬁj(s)yij(s)>s (with
separate “‘autocovariance” solid

Time window (ms)

lines for each of the individual
cells, and separate “‘cross covari-

b) 041 Fotal information C) 0.1
--- Rateonly | - — ted
0.31 22 Stim. indep! (cross) e 2 x Standard deviation
Stim. indep, (auto)
0.21 " Stim. dep. (cross)~" "~
£ o1 @ 005
b=t ~ ‘ s
g 0 o 5
£ RS T
S ] S £
g-0.1 ! - 5
= ! . g
0.2 ! mg
0.3 !
4 1
0 0 20 40 60 80 100 -0.05
Time window (ms) 0
U 1.4
d) . — Auto correlation C)
H --- Cross correlatio n 12
0.8
". 1
0.6
' A 0.8
\ =
S04 0.6
\ <
0.2f 0.4
\
0.2
O 1 -¢
e 0
-0.2 .:.', 0.2
0 20 40 60 80 100 o}

Time window (ms)

of cells. (The dividing lines were calculated analytically
from the first two terms of Eq. 7).

Table 1 also shows that the stimulus-dependent
cross-cell term of the information, expressing infor-
mation transmitted through stimulus-dependent
synchronization or co-modulation, has a small positive
value, averaged across experiments, of 0.04 bits.
However, in most experiments this contribution was
so small that it was less than that which can arise by
chance statistical fluctuations of the time of arrival of
the spikes, as shown by Monte-Carlo control rear-
rangements of the same data. (These chance fluctua-
tions account for some of the values for this term
being negative in Table 1.) Indeed, for only three of
the data sets (283, 288 and 293) of simultaneously
recorded neurons shown in Table 1 did the cross-cell
stimulus-dependent information exceed the statistical
criterion of p < 0.01. Thus there was rarely any sig-
nificant contribution to the information from stimulus-
dependent cross-correlation effects, and on average
their contribution was small (0.04 bits) compared to
the information available in the number of spikes
(0.26 bits).

ance” dashed lines for each pair
of cells i and )

20 40 60 80 100
Time window (ms)

Table 1 (last column) also shows the values of the
stimulus-independent within-cell term, which reflects the
variability of the number of spikes from trial to trial
(within a stimulus, then averaged across stimuli). If this is
negative, this indicates that this variability is greater than
would be expected from spike trains produced by a
Poisson process. On average this term was just less than 0.

Table 2 shows for each of the same sets of simulta-
neously recorded cells how the information available
from the number of spikes to each stimulus combines
across cells. The Table shows the information available
from each cell separately, the sum of these single cell rate
information values, and the rate information measured
with the Taylor expansion approach when the cells were
considered as simultaneously recorded (column labelled
‘simultaneous rate inf’). The ‘total information’ esti-
mated by the algorithm is also shown. (To ensure that
there was information from each cell that could add,
only cells in which the single cell rate information after
100ms was 0.03 bits or more were included in this
analysis.) The values obtained indicate that the infor-
mation in the 20 datasets from the simultaneously
measured rates (0.26 bits) was on average just a little
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lower (by 10%) than might be expected by the sum of
the single cell rate terms (0.29 bits). The redundancy
estimated in this way was thus approximately 10% for
these sets of 2—4 simultaneously recorded cells. We note
that the ‘simultaneous rate’ information shown in Ta-
ble 2 includes the first term of the second derivative of
the Taylor expansion (see Eq. 7). It incorporates the
redundancy that arises from the non-zero values of the v
term that reflect correlated or anticorrelated response
profiles of the cells to the set of stimuli. The ‘total
information’ was as shown for some datasets a little
higher or lower than that available from the ‘simulta-
neous rate’ contributions, reflecting the synergy in some
cases from stimulus-dependent contributions, and the
redundancy from generally stimulus-independent terms
as shown in Table 1. If we calculate the total informa-
tion for each single cell (which includes the stimulus-
dependent and stimulus-independent auto terms), and
take the sum of these for each dataset, we obtain an
average value across the 20 datasets of 0.278 bits. If we
compare this with the average value of the total infor-
mation estimated from each simultaneously recorded
dataset, which is 0.29 bits as shown in Table 1, then we
see by this alternative method that there is overall a little

20 40 60 80 100
Time window (ms)

ance” dashed line for the pair of
cells i and j)

redundancy between the cells in these small simulta-
neously recorded datasets of approximately 4%.

We also used a very different approach which en-
ables the information available from a population of
cells to be measured when the number of cells in the
population is larger than a few cells, and when there
may be many spikes present if a longer time window is
used. This procedure involves a decoding step in which
the stimulus that was presented on each trial is esti-
mated by the decoding procedure from a population of
cells, and then the mutual information between the
estimated stimulus, and that actually used, was mea-
sured (see Experimental Procedures and Rolls et al.
(1997)). This procedure enabled the information from a
set of 21 cells recorded in small simultaneously recorded
subsets on different days and recorded with the same set
of visual stimuli to be measured. The method does not
allow the possible effects of stimulus-dependent syn-
chronization of neuronal responses to be considered,
but does allow the information in the numbers of spikes
on each trial and of the correlations between the
average response vectors of the neurons which could
introduce redundancy, to be measured. Fig. 5 shows for
both 100ms and 500ms epochs how the information
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Fig. 4. a,b Synergy vs. redundancy for pairs of cells arising for
different combinations of signal and noise correlations. a Open circles
show actual values of <fzi(s)fzj(s)y4/(s)>s and v;; for simultaneously
recorded pairs of inferior temporal cortex cells included in this paper,
measured at the end of a 100-ms window using the short time
expansion method for measuring the information described in
Experimental Procedures. The /ines separate the space into different
regions in which the correlations between the firing of the cells could
contribute with synergy or redundancy to the total information.
b Distribution of the stimulus-independent cross-cell information for
the pairs of simultaneously recorded cells. (One pair is not shown in
the graph as it had a large value of —0.16 bits)

increases with the number of cells recorded. In both
cases there is a linear increase in the information with
the number of cells in the population. This indicates
that the cells provide information that is approximately
independent, that is that the redundancy is very low.
Because the information does not reach the ceiling
required to discriminate 20 stimuli (log, 20 = 4.32 bits),
there is no asymptotic approach to this ceiling (see
Rolls et al. (1997)). A similar linear increase in the
information was found with dot product decoding
which models how neurons may operate, though the
amount of information per cell was somewhat less, as
expected with this less efficient decoding procedure
(Rolls et al. 1997; Robertson et al. 1999). Although the
total amount of information measured with this method
was lower than that measured by the Taylor expansion
approach, and the decoding approach necessarily can-
not be optimal in the amount of information it extracts,
the decoding approach does allow demonstration that

the information does increase approximately linearly
with the number of cells.

Discussion

The experiments and analyses described in this paper
provide evidence for considerable information available
from the number of spikes that each cell produces to
different stimuli, and evidence for little impact of
common input leading to redundancy, or of stimulus-
dependent cross-correlation, on the amount of informa-
tion provided by sets of simultaneously recorded inferior
temporal cortex neurons. So far, we know of no analyses
which have shown with information theoretic methods
that considerable amounts of information are available
about the stimulus shown from the correlations between
the responses of neurons in the ventral visual system.
The use of such methods is needed to test quantitatively
the hypothesis that synchronization contributes to the
encoding of information by neurons. Moreover, the
results described here provide clear evidence that
the regions which receive outputs about objects and
faces from the ventral visual stream, in particular from
the inferior temporal visual cortex, could read almost all
the information that is available in the spike trains of
populations of neurons by utilizing the number of spikes
from each of the population of cells. The decoding could
thus be as simple as measuring the dot product between
the vector of neuronal spikes provided by each cell in a
short time period, and the synaptic weight vector of a
receiving neuron (see Rolls and Deco (2002) and Rolls
and Treves (1998)).

In this investigation we analysed how the information
from simultaneously recorded cells adds, to provide
quantitative evidence on independence vs redundancy in
the information conveyed by simultaneously recorded
neurons. The first method compared the information
available using the Taylor expansion approach in the
“rates” when added from single cells and when esti-
mated from simultaneous recordings. This yielded an
estimate of 10% for the redundancy for groups of 2—4
simultaneously recorded cells. This did not take into
account the trial-by-trial variability in the neuronal
responses to a given stimulus. The second method (also
using the Taylor expansion approach) provides a better
estimate by taking this variability into account, as well
as any stimulus-dependent cross-correlation effects, by
comparing the total information measure when added
from single cells and when estimated from simultaneous
recordings. This yielded an estimate of 4% for the
redundancy for groups of 2—4 simultaneously recorded
cells.

We note that the redundancy arising from non-zero
signal correlations can in principle be compensated for
by the “noise” correlations averaged across stimuli. As
described above, this compensation occurs when the
signs of the signal and noise correlations are opposite,
and is reflected in the second term of Eq. 7, the stimulus-
independent contribution to the total information which
depends on the noise correlations. We illustrate how the



Table 2. The information

available from 54 cells con- Exper. 1 cell ond cell 3rd cell 4th cell Sum of Total Rate  Total
sidered separately, and in small rate info. rate info. rate info. rate info. rate info. simultaneous simultaneous
groups of 2—4 simultaneously .
recorded cells. The information b_!185 0.10 0.20 - - 0.30 0.29 0.22
is that available in a 100 ms bj.207 0.12 0.13 - B 0.25 0.24 0.24
time window from 20 sets of bJ.213 0.125 0.09 N B 0.215 0.21 0.21
simultaneously recorded b].215 0.075 0.10 0.045 - 0.22 0.20 0.24
inferior temporal cortex neu- bj220 0.17 0.17 0.04 B 0.38 0.33 0.13
rons when shown 20 stimuli ef- 21227 0.10 0.06 N B 0.16 0.16 0.22
fective for the cells bj240 0.07 0.03 0.08 - 0.18 0.17 0.00
bj243 0.07 0.05 0.08 - 0.20 0.20 0.20
bj278 0.06 0.10 0.14 - 0.30 0.29 0.46
bj280 0.21 0.08 0.15 - 0.44 0.40 0.43
bj283 0.175 0.105 — - 0.28 0.25 0.23
bj285 0.09 0.04 — - 0.13 0.125 0.125
bj286 0.03 0.03 — - 0.06 0.05 0.15
bj287 0.07 0.125 0.03 - 0.225 0.20 0.70
bj288 0.18 0.05 0.16 - 0.39 0.40 0.62
bj290 0.06 0.06 0.09 0.09 0.30 0.28 0.28
bj291 0.41 0.05 — - 0.46 0.40 0.46
bj292 0.05 0.15 — - 0.20 0.20 0.20
bj292b 0.13 0.17 0.13 0.21 0.64 0.42 0.34
bj293 0.24 0.10 0.09 0.05 0.48 0.42 0.75
Mean 0.13 0.095 0.095 0.12 0.29 0.26 0.31
a) b) The analysis just described with the Taylor expansion
. 40 . method shows, when discussed in a different way, that
1r o ms T b B with simultaneously recorded data, the information adds
approximately linearly with the number of cells in the
ensemble. (This linear additivity is what occurs if the cells
0.8 1 . . . .
carry independent information, which could be because
- _ there is no redundancy or synergy, or these cancel.) This
S o6} . g finding of independence in the information encoded by
-[§u - simultaneously recorded neurons is an important exten-
£ ,ZX( 8 sion from an earlier investigation in which the cells were
£ 04f 20100 not simultaneously recorded (Rolls et al. 1997). The evi-
X dence for this finding is shown in Table 1. Although the
02 - X i low measured redundancy is an interesting result, it is not
e straightforward to extrapolate to larger numbers of cells
g with this approach, because the analysis depends on the
e 0 e —— Taylor expansion shown in Eq. 2 which is valid only with
0 5 10 15 20 0 5 10 15 20

Number of Cells Number of Cells

Fig. 5. a,b Information available from different numbers of inferior
temporal cortex neurons measured with the decoding procedure.
a Values for the average information available in the responses of 21
neurons about which of a set of 20 faces or objects had been shown.
Separate graphs are shown for 100-ms and 500-ms time windows
starting 100 ms after stimulus onset. The decoding method was
probability estimation. b Percent correct values for the data
corresponding to those shown in a

space divides by the lines shown in Fig. 4a. This fig-
ure shows that for the cell pairs analysed in the infe-
rior temporal visual cortex, the signal correlations v;;,
and the noise correlations averaged across stimuli
(minjy;;(s)),, tend to be clustered around zero but with a
bias towards positive values. As a result, most cell pairs
show a small negative value for the cross-cell stimulus-
independent term, which reflects a small amount of
redundancy. The distribution of these values for pairs of
cells is shown in Fig. 4b, and the average values for each
experiment are shown in Table 1.

limited numbers of spikes from each cell, and with limited
numbers of cells. Indeed, for two experiments described
(bj240 and bj286) the time window for the analysis had to
be limited to 60ms in order to prevent the signs of
breakdown of the Taylor expansion noted elsewhere in
this paper and by Rolls et al. (2003) becoming apparent.

In this context of how the information adds from
different cells, and whether there is significant redun-
dancy, the results of application of the decoding proce-
dure for measuring the information encoded by large
numbers of cells (Rolls et al. 1997; Franco et al. 2003)
are very helpful. The analysis shown in Fig. 5 indicates
that with the decoding procedure developed by Rolls
et al. (1997), it is confirmed that the information avail-
able from larger populations of neurons increases
approximately linearly with the number of neurons in
the sample. Because the information from the popula-
tion of cells did not reach near the ceiling of 4.32 bits
needed to specify which of the 20 stimuli had been seen,
there was no tendency of the information to asymptote at
4.32 bits (Rolls et al. 1997). As noted above, the method
was applied to 10 (non-simultaneous) experiments in
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which small groups of simultaneously recorded neurons
were analysed. The method does not allow the possible
effects of stimulus-dependent synchronization of neu-
ronal responses to be considered, but does allow the
information in the numbers of spikes on each trial and
of the correlations between the average response vectors
of the neurons which could introduce redundancy, to be
measured. Indeed, if all the cells had been recorded
simultaneously, the decoding procedure would have al-
lowed estimation of the ‘“‘stimulus-independent cross-
cell” information as described in this paper. The finding
in this paper that possible effects of stimulus-dependent
cross-correlation are quantitatively negligible in the re-
sponses of inferior temporal cortex neurons supports the
validity of using the decoding approach for this brain
area that was developed by Rolls et al. (1997).

The information values reached in this population were
not as high as in a previous study (Rolls et al. 1997). Part
of the reason for this may be that because in the study
described here we were moving up to 4 microelectrodes
during an experiment in order to try to find cells that
responded to the stimulus set on as many electrodes as
possible, there was less time in a recording session to
search for selectively responding neurons with high peak
firing rates to their most effective stimulus on every elec-
trode. Another factor may be that we altered the stimulus
set from the 20 faces used with face-selective neurons by
Rolls et al. (1997) to a set which included faces, objects,
and also natural scenes, which would results in less total
information if for example a neuron had differential re-
sponses to the faces within the set, but no responses to any
of the other stimuli.

The average redundancy we found for small groups of
simultaneously recorded cells, in the order of 4%, is a

little lower redundancy than that estimated by Gawne
and Richmond (1993) for pairs of inferior temporal
visual cortex neurons. Part of the difference may be that
they used a less varied stimulus set (of Walsh patterns),
which by spanning the space of the types of stimulus that
are effective for IT neurons less well than natural stimuli,
may have led to more correlated response tuning profiles
of IT neurons. They also were able to obtain data only
for cells recorded from the same microelectrode, which
were accordingly likely to be very close together in the
cortex. We were able to measure whether this factor af-
fects the redundancy because some of our simultaneously
recorded cells were on different electrodes. We found that
this was not a factor, with similar information encoding,
including similar redundancy, for cells recorded on the
same electrode (for which the cells might be within 50
microns), and on different electrodes (for which the cells
might be 1-3mm apart).(The redundancy, as estimated
by the stimulus-independent cross-cell term, was
—0.012 £0.05, sem, n = 9 for pairs of cells recorded on
the same microelectrode, —0.015 +0.05, » = 42, ns for
cell pairs that were recorded on different microelec-
trodes.) A further advance of the approach used here is
that it could be applied to more than just pairs of cells,
and that the approach could separate out different con-
tributions (including stimulus-independent and stimulus-
dependent cross-cell and auto terms), as described above.
We also note that Gawne and Richmond (1993) did not
use correction procedure to correct for the bias intro-
duced by having relatively small numbers of trials, and it
is known that information estimates using the direct
method without these correction procedures are unreli-
able (Tovee et al. 1993; Rolls and Treves 1998; Rolls and
Deco 2002; Panzeri and Treves 1996).

Little stimulus-dependent information from the cross-
correlations was available about which stimulus was
shown from the neurons recorded in the inferior tem-
poral visual cortex. Could this be because the code is so
sparse that it is difficult to detect, and might require
simultaneous recordings from very large numbers of
neurons to be detected? Although this is certainly pos-
sible, we would argue that considerable information was
available from the spike counts of the simultaneously
recorded neurons about which stimulus was shown, and
that this information could be easily decoded by
receiving neurons, which might be more difficult if the
code was very sparse. Moreover, in the population from
which we recorded, there were sufficient spikes from the
simultaneously recorded neurons for any stimulus-
dependent cross-correlations to be measured if present,
in that, as shown on the ordinate of Fig. 5, the values of
(mi(s)n;(s)y;(s)), were non-zero for many neuronal
pairs. This indicates that such pairs of neurons were
responding to the same stimulus, and had firing that was
cross-correlated, yet, as shown in Table 1, had only
small amounts of stimulus-dependent cross-correlation
information compared to the information available from
the spike counts. Further evidence that pairs of simul-
taneously recorded neurons were responding strongly to
the same stimulus was obtained by analysing the firing
rate responses of all the pairs of simultaneously recorded



neurons to all the stimuli. This provided 992 cases. Of
these 992 cases, 73 showed large and significant
responses to the same stimulus. (Large was defined for
the purposes of this comparison as a response that was
25% greater than the average rate across all stimuli for
each neuron. This corresponds to a p value of approxi-
mately 0.02.) This result means that each of our 20
simultaneous recording experiments would have on
average 3.65 cases where a pair of neurons respond
strongly to the same stimulus. (We further note that in
17 out of the 20 experiments, at least one pair of the
neurons responded to the same stimulus with this strong
response.) The underlying basis for this result is very
close to what would be predicted given that neurons, at
least in the inferior temporal visual cortex, have an
approximately exponential distribution of firing rates to
a large set of stimuli (Rolls and Tovee 1995; Rolls and
Deco 2002). Overall, the results described here thus
show that while it is possible to obtain information
from the spike counts of cells that adds usefully to
increase the total amount of information, the same sets
of cells do not provide much information by any stim-
ulus-dependent correlated firing that is present, which
would indeed have to be very large if it were to make a
significant contribution to the total information yet was
present in only very sparse form across the population of
neurons.

One issue is whether we would in these investigations
have detected information in the stimulus-dependent
cross-correlations between cells even if it were present in
the underlying spike-generation process. It is just pos-
sible that it could be missed, because of the variability in
the spike generation processes, which for some sets of
trials might not by chance have included significant
cross-correlation related information. Rolls et al. (2003)
tested this possibility, and showed that a Poisson-like
spike generation process does lead to information that
can be detected significantly (by e.g. this algorithm) in
75% of experiments when 20 trials of data for each
stimulus are available. (To ensure that these points apply
to the real neurophysiological data we analysed in this
paper, we performed new simulations in which we used
the actual firing rate distributions of some of the neu-
rons analysed in this paper. Part of the purpose of this
was to check that low rates to some stimuli by some
neurons in real datasets might have insufficient spikes
for any cross-corelation to be detectable, resulting in
some loss of power of the analysis. The new simulations
showed that with the actual firing rate distributions of
the real neurons analysed here, there were sufficient
spikes for the algorithm to detect information in the
cross-correlations between the neurons with the power
just described. For the new simulations, the cross-cor-
relations were present in only 4 of the 20 stimuli chosen,
and the minimum amount of information that could be
reliably detected was approximately 0.015 bits.) In the
investigations presented here we did have 20 trials of
data for each stimulus, and thus would have been able to
detect any stimulus-dependent cross-correlation infor-
mation that was available in 75% of the 20 experiments
if it was present in all 20 experiments. The fact that such

information was detected in the present series of 20
experiments in only three experiments (283, 288 and 293
in Table 1), and even in these experiments was quanti-
tatively small with respect to the total information,
provides evidence that such stimulus-dependent corre-
lation-related information is not an important feature of
encoding in the inferior temporal visual cortex. We also
note that 20 experiments are needed to provide an
accurate estimate of the stimulus-dependent correlation-
related information (as shown by Rolls et al. (2003)),
that we did have 20 experiments in the present data set,
and that the average contribution was low as described
above (see Table 1). In the neurophysiological experi-
ments described here, when stimulus-dependent cross-
correlation effects were found, they were found typically
in one of the typically 3 possible pairs of simultaneously
recorded neurons, and were detected satisfactorily by the
approach we describe. However, it is possible that if
stimulus-dependent cross-correlations between simulta-
neously recorded neurons were very infrequent, though
nevertheless were still making a significant contribution
to the total information, then further research with
much larger numbers of recordings might be needed.

The task used involved the presentation of complex
stimuli of the type known to activate inferior temporal
visual cortex neurons. It is therefore of considerable
interest that when this cortical area is responding to its
effective stimuli, there is little evidence for stimulus-
dependent cross-correlation of neurons, and for this to
add substantially to the information present in the
number of spikes received. Although only one stimulus
was presented at a time in the experiments described,
and not for example two with for example either cor-
related motion or not (Singer 1999, 2000), we note that
inferior temporal cortex cells do generally require the
stimuli to which they respond to have the features bound
together in the correct spatial configuration, for if the
features are jumbled, many of these cells do not respond
Rolls et al. (1994). In this sense, binding of features is
required for the perception of objects or faces composed
of different features. If stimulus-dependent cross-corre-
lations are not present to implement this, as the results
of this paper suggest, then one possibility is that binding
of features in another part of the visual system is
implemented by stimulus-dependent synchronization,
but is not evident in the inferior temporal visual cortex.
Another possibility is that stimulus-dependent cross-
correlations between neurons are not necessary for
normal visual object recognition, but are called into play
only when a new stimulus is being seen. A more likely
possibility is that the binding of features is instead
implemented by neurons that respond non-dynamically
to combinations of features in the correct spatial con-
figuration. Such a feature binding set of combination-
sensitive feature encoding neurons could be set up by a
self-organizing learning process, and can implement the
binding needed for invariant visual object recognition
(Elliffe et al. 2002; Rolls and Deco 2002; Riesenhuber
and Poggio 1999).

The approach to the encoding of information by
simultaneously recorded neurons used in this paper



utilizes a Taylor expansion of the basic Shannon Eq. 1.
We know of very few other approaches to measuring the
information that may be available in the stimulus-
dependent cross-correlation of neurons, though of
course many investigators have been interested in syn-
chronization (Singer 2000); and there are approaches to
how the noise correlations and the signal correlations
contribute to the information available without explic-
itly addressing that available from stimulus-dependent
synchronization (Reich et al. 2001; Sompolinsky et al.
2001; Abbott and Dayan 1999; Oram et al. 1998). Other
investigators have measured the information that may
be encoded within the spike train of individual neurons.
For example, Brenner, Strong, Koberle and Bialek
(2000), show that when moving stimuli are used, infor-
mation may be evident in the relative time of firing of
(single) neurons in the fly visual system. It may be that
with multiple cell simultaneously recorded data in pri-
mates, information from the relative time of firing of the
different neurons may be especially evident primarily
when moving stimuli are used, or when the analysis
depends on different arrival times for different stimuli
Panzeri et al. (2001), which is a relatively simple way in
which information can be reflected in the temporal
variations in spike trains, as shown by Tovee et al.
(1993). We also note that the investigation is an advance
on some earlier investigations, in that we measured
information and not just correlations (Erickson et al.
2000), in that we measured how stimulus-dependent
synchronization, as well as redundancy (Gochin et al.
1994), contribute to the total information.

The overall conclusion from the results described in
this paper is that inferior temporal visual cortex neurons,
the major output of the ventral visual stream, convey
information that is almost independent, with little
redundancy; and that there is considerable information in
the spike counts. In the context of finding that the spike
counts are important in the encoding, we found no evi-
dence that stimulus-dependent cross-correlations con-
tribute significantly to the code. The encoding is thusin an
appropriate form for readout by receiving areas in which
the neurons compute a dot product between the numbers
of spikes received from different neurons and their syn-
aptic weight vectors (Rolls and Treves 1998; Rolls and
Deco 2002). Finally, we note that to test hypotheses about
the functions of the numbers of spikes vs cross-correla-
tions between spike trains, it is appropriate to use infor-
mation theoretic approaches to quantify the different
contributions to neuronal encoding on the brain.
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The program used to perform the information theoretic anal-
ysis, corrinfo3, implemented the algorithm described by Panzeri
et al. (1999). The original program used by Panzeri et al. (1999)
was written in C, but was rewritten in Matlab by Drs. S.Panzeri
(University of Newcastle, U.K.) and R.S.Petersen (SISSA, Trieste,
Italy), used for research on the rat somatosensory cortex (Panzeri
et al. 2001; Petersen, Panzeri, Diamond 2001), and kindly made
available to us. We (Rolls et al. 2003) developed this Matlab code
to separate the auto- and cross-cell terms (in a different way to that

used by Panzeri et al. (2001) and Petersen et al. (2001)), and
incorporated the Monte Carlo procedure which allows the statis-
tical significance of the cross-cell stimulus-dependent term to be
evaluated.
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