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Abstract It has been shown that it is possible to reaelxponentially as the number of cells in the sample in-
from the firing rates of just a small population of newreases (in that the log of the number of stimuli increases
rons, the code that is used in the macaque temporal lalmeost linearly). This is in contrast to a local encoding
visual cortex to distinguish between different faces beiagheme (of “grandmother” cells), in which the number of
looked at. To analyse the information provided by popstimuli encoded increases linearly with the number of
lations of single neurons in the primate temporal cortigalls in the sample. Thus one of the potentially important
visual areas, the responses of a population of 14 neunproperties of distributed representations, an exponential
to 20 visual stimuli were analysed in a macaque pérerease in the number of stimuli that can be represented,
forming a visual fixation task. The population of neurorf®s been demonstrated in the brain with this population
analysed responded primarily to faces, and the stimafli neurons. When the algorithm used for estimating
utilised were all human and monkey faces. Each neustimulus likelihood was as simple as could be easily im-
had its own response profile to the different membersgémented by neurons receiving the population’s output
the stimulus set. The mean response of each neuroffbsed on just the dot product between the population re-
each stimulus in the set was calculated from a fractionspionse vector and each mean response vector), it was
the ten trials of data available for every stimulus. Frostill found that the 14-neuron population produced 66%
the remaining data, it was possible to calculate, for aggrrect guesses and conveyed 2.30 bits of information, or
population response vector, the relative likelihoods thaBB% of the information that could be extracted with the
had been elicited by each of the stimuli in the set. Bgarly optimal procedure. It was also shown that, al-
comparison with the stimuli actually shown, the medhough there was some redundancy in the representation
percentage correct identification was computed and afgdath each neuron contributing to the information carried
the mean information about the stimuli, in bits, that they the whole population 60% of the information it car-
population of neurons carried on a single trial. When thied alone, rather than 100%), this is due to the fact that
decoding algorithm used for this calculation approximate number of stimuli in the set was limited (it was 20).
ed an optimal, Bayesian estimate of the relative likelithe data are consistent with minimal redundancy for suf-
hoods, the percentage correct increased from 14% dimiently large and diverse sets of stimuli. The implica-
rect (chance was 5% correct) with one neuron to 6Ban for brain connectivity of the distributed encoding
with 14 neurons. The information conveyed by the popssheme, which was demonstrated here in the case of fac-
lation of neurons increased approximately linearly frogs, is that a neuron can receive a great deal of informa-
0.33 bits with one neuron to 2.77 bits with 14 neurortson about what is encoded by a large population of neu-
This leads to the important conclusion that the numberrofis if it is able to receive its inputs from a random sub-
stimuli that can be encoded by a population of neurcset of these neurons, even of limited numbers (e.g. hun-
in this part of the visual system increases approximateigds)
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The visual pathways project by a number of cortico-cor-

fresent addresses: _ o tical stages from the primary visual cortex until they
I_gi-l%gsﬁe‘st‘éoﬁgiyve Neuroscience, via Beirut 24, reach the temporal lobe visual cortical areas (Seltzer and
2 Department of Psychology, University of Newcastle, Pandya 1978; Maunsell and Newsome 1987; Baizer et al.
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of sensitivity to visual stimuli tend to be found in differstimulus), but is a sparse distributed representation, then
ent parts of these temporal cortical areas (Baylis et this allows large numbers of representations to be stored
1987). In some areas neurons respond to stimulus prapd retrieved in associative neural networks (Rolls and
erties such as shape, orientation, texture and coldweves 1990; Treves and Rolls 1991). Another potential
(Baylis et al. 1987; Tanaka et al. 1991), and in other advantage of distributed representations is that large
eas, especially areas in the cortex in the superior tempombers of different stimuli or events can be encoded.
ral sulcus, up to 20% of the neurons with visual respoi@nsider the number of stimuli that can be encoded by a
es have selectivity for faces (Desimone and Gross 19@0pulation ofC neurons without noise. If local encoding
Bruce et al. 1981; Rolls 1981a, b, 1984, 19924, b; Periettised and the representation is binary (e.g. the neuron is
et al. 1982; Desimone et al. 1984; Gross et al. 19&%8her active or not), the@ different representations can
Desimone 1991). Some of the temporal cortical ardaes encoded (one different neuron is “on” for each stimu-
provide a representation of objects and faces that is réla). If (fully) distributed encoding is used, thef @f-
tively invariant with respect to retinal position, size, rotderent representations can be encodédigzhe number
tion and even view (Rolls 1994, 1995), and such invaat different combinations ofC binary variables). The
ant representations form appropriate inputs to associafivedamental question addressed in this paper is the ex-
neuronal networks in structures to which the tempotaht to which the brain can utilise the potential advantage
cortical areas project such as the hippocampus arfdlistributed representations to encode a very large (ex-
amygdala (see, e.g. Rolls 1992a—c; Treves and R@itmentially large) number of different stimuli in a popu-
1994). Consistent with this, lesions of the inferior tenation of neurons. The potential advantage will only be
poral visual cortex impair the ability of monkeys to rassefully realised to the extent that: each member of the
spond to objects irrespective of changes in size, lightipgpulation of neurons has different responses to each
and viewing angle (Weiskrantz and Saunders 1984). stimulus in a set of stimuli (with, e.g. different combina-
A fundamental issue then arises of how the inform@ens of neurons firing to each stimulus); and the re-
tion about objects and faces is represented by the actigjppnses of a neuron on a given trial are not too noisy, that
of temporal cortical neurons. Important questions ais; the standard deviation of the responses of a neuron to
how selective and “information-bearing” (Suga 1989) thike same stimulus on different trials must not be too
neurons are for different classes of stimulus such as fgoeat, and the responses to different stimuli must be reli-
compared with non-face; how selective or informatiomably different to each other. Evidence on this issue can
bearing the neurons are for individual items within thus only be obtained by examining the response proper-
class; whether the neurons use “local” or “grandmothdi&s of real neurons in the brain, and this is what is de-
cell encoding, with strong or even great selectivity ofsgribed in this paper. We analysed the responses of face
single neuron for a particular object in the environmesglective neurons to 20 different faces, obtaining at least
(Barlow 1972), or fully distributed representations iten trials of data to each stimulus (presented in random
which all the neurons participate (Hinton et al. 1986rder). We were able to repeat this experiment for 14 dif-
Churchland and Sejnowski 1992), or sparse represefiéaent face-selective neurons and then analyse the infor-
tions in which the distributed encoding is not fully disnation about which of the 20 stimuli had been presented.
tributed (Rolls and Treves 1990; Treves and Rolls 1991).The crucial feature of distributed representations ex-
In a series of previous investigations, we have shown thatined here is that they have the potential, if different
single neurons in the temporal lobe visual cortex tunexpresentations are provided by different cells, for a very
to faces do not respond to only one face in a set of fadasje representational capacity over a cell population.
but instead typically respond to several members of fhikeis large-capacity situation is attained when the infor-
set, with each cell having its own characteristic firingation coded by a population of cells increases linearly,
rate response profile to the different members of the setclose to linearly, with the size of the population, in
(see Rolls 1984, 1992a; Baylis et al. 1985; Rolls and Which case the number of stimuli coded grows exponen-
vee 1995). The representation provided by these fatialy with population size. This is in contrast to local
may be described as sparsely distributed, and not as loeptesentations, in which each stimulus is allocated one
(Rolls and Tovee 1995). or a set of neurons to represent it; and thus the number of
Distributed representations, in which many of the nestimuli coded grows only linearly with the size of the
rons that participate in the representation of each stinppulation or, in terms of information, the information
lus or event (see, e.g. Hinton et al. 1986) have a numbanveyed by the response of a population grows, on av-
of advantages over local or grandmother cell encodimgage, only logarithmically with population size. We em-
for which there is strong or even great selectivity of tiphasize that the potential advantage of distributed repre-
neuron for a particular environmental stimulus (Barlogentations is realised only if different neurons code for
1972). The advantages of distributed representationsdifferent things: if the representations provided by sever-
clude generalisation as the nature of the input changé<ells in a population were strongly correlated (i.e.
and graceful degradation or fault tolerance if the netwdetgely the same), there would be no strong increase in
in which the representation is present is incomplete representational capacity with population size, no matter
damaged. If the distributed representation is not fully disew distributed the representations. Large populations
tributed (with, e.g. half the neurons active for any omeould just provide more redundancy.
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It is therefore very important to extend previous quatite same brain region. The neurophysiological protocol was de-
titative analyses based on the responses of single c¥igaed to provide data for the investigations described here and for

; . ; asurement of the sparseness of the representation (see Rolls and
(or pairs of cells; Gawne and Richmond 1993) and to es!Qﬁlee 1995, where the neurophysiological methods are described

dress directly the question of how much information s more detail). The recordings were made in two rhesus ma-
conveyed by the responses of populations of cells. Thagues Kacaca mulatty but the 14 neurons described in this pa-
is the goal of the present analysis, which considers Péf were all recorded from the first macaque, partly because we

; ed to ensure that whatever information was shown to be en-
the population level, the responses of 14 face-selec ed by the set of neurons included in the study was present in an

temporal cortical cells that had been previously analysgglvidual animal. The sites at which the neurons were recorded
at the single-cell level (Rolls et al. 1995). In carrying odte shown by Rolls and Tovee (1995), and the majority were in the
the information-theoretic analysis, great care was deveartex in the anterior part of the superior temporal sulcus.

ed to extracting information measures, to monitoring the

values obtained as they vary as a function of cell popula- sis and decoding algorith
tion size, and to taking ceiling effects into proper a ata analysis and decoding algorithms
count. It is to these three factors that we ascribe the #igsponse quantification

ference between our results and those of a previous study

in inferior temporal cortex with similar goals (Gochin €trom the response of each neuron c to each stimulus in the set, we

al. 1994). We note from the outset two potential limit xtracted a single mean firing ratg, (n spikes per second), calcu-

. . ted from the number of spikes recorded between 100 and 600 ms
tions of the data used here, to be discussed later. FHﬁZr the presentation of the stimulus. Because most of the infor-

the cells were not recorded simultaneously, which preation about which stimulus is shown is made evident by measur-
vented our analysis from detecting potential effects steifg the firing rate of the neuron, and temporal encoding adds rela-
ming from correlations between neurons in their trial_tﬁely little additional information for this population of neurons

. L - . ovee et al. 1993; Tovee and Rolls 1995), the analyses described
trial variability (see Gawne and Richmond 1993; Gochiare were based on the information available from the firing rate,

et al. 1994). Second, the number of trials per stimulasd the period in which this was measured was the post-stimulus
available for each cell was low (ten), which again magderiod 100-600 ms with respect to the onset of the visual stimu-
it vital to use novel techniques, developed in order to s, as most of the information about which stimulus was seen is

. . . : vailable in this period (Tovee et al. 1994; Tovee and Rolls 1995).
low correction for limited sampling, when extracting a':la—'lor comparison, we repeated all the analyses for the much shorter

curate information measures (see Optican et al. 198dalysis period of 100-150 ms post-stimulus.
Treves and Panzeri 1995; Panzeri and Treves 1996).

This investigation is one of a series (Rolls 19923,
1994, 1995; Rolls et al. 1994; Hornak et al. 1996) detoss-validation

signed to _|nvest|gat_e the normal functions of the temqﬂ' eneral, the analyses we then performed involved constructing
ral lobe visual cortical areas and how damage to th%’%éudosimultaneous population response vectpro¢eurring in
brain regions may underlie the perceptual and relaigeght were labelled as “test” trials is a vector with one element,
deficits found in patients with disruption of function ofr component, for each of ti@cells considered). Each response
these and connected regions. The neurons descri r was compared with the mean population response vector to

. . . stimulus, as derived from a different set of “training” data, in
here with responses that occur mainly in faces, but tﬁ%fer to estimate, by means of one of several decoding algorithms

within that class convey information about which facgscribed below, the relative probabilitieB(d|r)] that the re-
has been seen (see Tovee et al. 1993, 1994; Rolls spwise had been elicited by any one stimukisn the set. Sum-
Tovee 1995; Tovee and Rolls 1995), form a useful pogQing over different test trial responses to the same stinsJle

; e L : ot ould extract the probability that by presenting stimusltise neu-
lation of neurons for this kind of investigation, for ne ‘onal response would be interpreted as having been elicited by

rons of this type can frequently be found in the tempokginulus s, and from that the resulting measures of percentage
cortical areas, so that sufficient data can be obtainectanmect identification and of the information decoded from the re-

repeated tracks for analyses such as those descritRegses. Separating the test from the training data is called cross-
validation, the details of which follow.

here. In part of the analyses the conventional cross-validation proce-
dure was used of allocating a proportionxjlef the ten trials
available for each cell for each stimulus as training data, to com-
Materials and methods pute the mean response by that cell to that stimulus. Thete40
trial population responses to each stimulus were constructed by
Neurophysiology randomly selecting, cell by cell, one from the remaining number

of trials. No trial was used twice. In this procedure, each trial was
The responses of single neurons in the temporal cortical visualwsed either for training or for testing. Different values Xavere
eas were measured to a set of 68 visual stimuli in macaques péd, but the most reliable results were obtained by using a differ-
forming a visual fixation task. The stimuli included 20 monkegnt procedure, which allows effective use of all available data both
and human facesS¢20). The neurons were selected to meet tlier training and as test trials. In this second procedure, only one of
previously used criteria of face selectivity by responding motiee ten trials was used for testing, the remaining nine for training,
than twice as much to the optimal face as to the optimal non-fadlewing better decoding, as shown under Results. The resulting
stimulus in the set (Rolls 1984, 1992a-c). The responses of epafbability thats is decoded as' is, however, averaged over all
neuron to the same set of 20 faces provided the set of neuronatheices of test trials, thus alleviating finite sampling problems
sponses for the analyses described here. Ten trials for each stimare effectively than with the first procedure. Finally, we also
lus were available. The set of stimuli were shown once in randeompared the results with those obtained in the absence of cross-
order, then a second time in a new random sequence, etc. The validation, i.e. when all trials were used both as test and as train-
rons were not recorded simultaneously, but were recorded frimg trials.
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Algorithms for likelihood estimation stimuli, to generate a tabRR\(s,s) describing the relative proba-
bility of each pair of actual stimulusand posited stimulus. We

Several different decoding algorithms were used for estimating #iso generated a second (frequency) t&bh}gs,s") from the frac-

likelihood of each stimulus from the recorded response. In thetfen of times an actuatimulus s elicited a response that led to a

nal analysis reported here, two are selected. The first algorittpredicted (most likely) stimulus®. The difference between the ta-

the “probability estimator” (PE), tries to reconstruct the correbte PRy and the tabld>Fy can be appreciated by noting that each

Bayesian probabilities from the data, extracting from the datavtctor comprising a pseudosimultaneous trial contributé®ca

self as much information as is possible by any decoding proset of numbers (one for each possi#)evhose sum is 1, while to

dure. The second algorithm, based on a simple “dot produPF it contributes a single 1 foPsnd zeroes for all other stimuli.

(DP), tries to emulate the processing that could be performed®iyviously each contribution was normalized by dividing, in both

neurons receiving the output of the neuronal population recordedses, by the total numbhirof (test) trials availableN=10xxx20

thus extracting that portion of the information theoretically avaifer the conventional cross-validation procedure, Bird0x20 for

able that could be extracted with simple neurophysiologicalije more efficient procedure with one test trial and the remaining

plausible operations by receiving neurons. trials used for training).

The PE algorithm extrac®(s|r) from an estimate of the prob-

ability P(r,s) of a stimulus-response pair, by normalizing so that

>, P(s|r)=1 (see Foldiak 1993). The probabilfyr,s) is estimat- Information measures

ed for this purpose a&(s)MP(r.|s), wherer.s the firing rate of

cell c. Finally,P(r |s) is derived from the responses of cell ¢ in thErom any probability tablé>(s,r) embodying a relationship be-

training trials. Those are fitted with a Gaussian distribution, whoseeen the variabls (here, the stimulus) and(here, the response

amplitude atr. gives P(r |s), except wherr =0, in which case rate vector), one can extract the mutual information

P(r.|s) is the best estimate of the fraction of training trials yield- p(s 1)

ing zero firing. = S

gThe DP glgorithm computes the normalized DPs between t'r%’r) Z:2P(s 1) log, P(S AN

current firing vector on a test trial and each of the mean firing\,hen the probability table has to be estimated as the frequency ta-

rate response vectors in the training trials for each stimsilus | L . :
> ] - e of a limited data sample, however, it becomes crucial to evalu-
(The normalized DP is the dot or inner product of two vectors te the effects of limited sampling on the information estimate.

vided by the product of the length of each vector. The length henr is a multidimensional 4 : ©

: quantity (a vecto}, as it necessar
each vector is the squrf]ire root of tfheh sum IOf th? ﬁquares.) T Is if it represents the firing rate of several cells, the minimum
what is compl)qut.ed are; € cosrl]ne.s 0 It N e;]ng es of the test vect ber of trials required to sample sufficiently the response space
cell rates with, in turn for each stimulus, the mean response ve ws exponentially with the dimensionality of that space, i.e. the
to that stimulus. The highest DP indicates the most likely stimul ber of cells considered (Treves and Panzeri 1995). This rules
that was presented, and this is taken as the best guess for the pers, our case, any attempt to evaluate directly the qud(ﬁjty

centage correct measures. For the information measures, it is de: - h i
: oo . R tandard procedure is then to derive from the original frequency
sirable to have a graded set of probabilities for which of the diff e of stimuli and responses an auxiliary table, of stimuli and ad-

ent stimuli was shown, and these were obtained from the DPSGI ional variables, spanning a limited set, which are derived from

follows. TheS DP values were cut at a threshold equal to th ; : s .
- > ' responses by any arbitrary algorithm. These additional vari-
own mean plus 1 SD, and the remaining non-zero ones were es can be chosen, in particular, to coincide with the stimuli

malized to sum to 1. It is clear that in this case each opera h . ! ; ;
- - mselves, which comprise the minimum set with the potential
could be performed by an elementary neuronal circuit (the DP | for full correlation,p or maximal information. In gepneral,

a weighted sum of excitatory inputs, the thresholding by activi jough, the information content of the auxiliary table will be less

dependent inhibitory subtraction, and the normalization by diy|- P
sive inhibition). The resulting relative probabilities are cruder es %rg?yagpzhtgiﬁgﬂ?riﬂgtitgr?Ig'erggrrerl]negmrwomt;gs; g?gizﬁ%&nti]e

eleS han tose obtaned i he PE Fiaorihm, and Bl were derived hre, calld, andPr,
g P P g P n deriving PFy, each response is used to predict its stimulus.

neurophysiologically plausible algorithm can be derived from hile & s ;
h . - . pans onl\Svalues compared with the very large number
comparison of the amounts of information extracted in both cas ‘possible (multidimensional) rate responses, the auxiliary table

Note that no attempt was made to optimize the DP algorith ‘otherwise unregularized, in that each trial of a limited total

The PE algorithm had a rather fixed structure, too, in which t 8mber produces a relatively large “bump’FR(ssP). The result

only “free” choice was that of a convenient distribution withyc . " ; ;
: 4 . this is that a raw estimate bfs,s”) [which can be denoted as
which to fit P(r.|s). The truncated Gaussian was then chosen o e(s'sp) to point out that it is ob?gsine)d[from a totaldftrials] can

a Poisson distribution (with an additional weight &0), because N-” b : : : ; 7
¢ > - e very inaccurate, in particular, overestimated. Sophisticated
it produced higher values for both percentage correct and infor 3thods h)gve been devisgd (Panzeri and Treves 199(?) to correct
tion (this does not necessarily hold for other cell populations; information estimates for limited sampling, by subtracting out
_unpubllshed observations). In contrast, the neu_ral ne_tV\_/ork decnQ- mean of the error. These methods are sa{fely applicable when
ing procedure developed by Hertz et al. (1992) is optimized exten= subtracted term,[(s.&)]—I(s&°) is smaller than approximately
sively, albeit only across the parameters describing a fixed clas @fit. With the present data (and only a handful of trials per stimu-
neural network decoders. lus) the subtracted term turns out to be large when few cells are
considered and to become sufficiently small only when more than
about ten cells are included (the reason for this is just that more

Procedures for extracting information measures cells produce more accurate predictions and therefore more con-
centrated tables). The conclusion is that the (corrected) estimate of
Probability and frequency tables I(s,s") is reliable only when most of the 14 cells in the total popu-

lation are considered, which makes it impossible to discuss effec-
Having estimated the relative probabilities that the test trial tévely howl(s,sP) depends o, the number of cells.
sponse had been elicited by any one stimulus, the stimulus thaPRy, on the other hand, can be conceived of as being regre
turned out to be most likely, i.e. that which had the highest (estlarized than PF, because each trial contributes not a relatively
mated) probability, was defined to be the predicted stimwus, large bump to just one birsf, but smaller additions to several
The fraction of times that the predicted stimutisvas the same bins §). The consequence is that the distortion in the information
as the actual stimulusis directly a measure of the percentage coestimate due to limited sampling (smél)l is smaller, and the sub-
rect for a given data set. In parallel, the estimated relative probraction of a suitable correction term(.,s)l-I(s,s) is enough to
bilities (normalized to 1) were averaged over all test trials for @toduce accurate corrected estimates of information. The correc-
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tion term to be used differs from that appropriate to coifesf); each trial, about which of a set of 20 face stimuli have
it takes the form: been shown, are displayed in Fig. 1a. The PE algorithm
- =1 QRn(s 8) _ PRn(s s) was used for estimating the relative probability of posit-
In(s,8)) - I(s 8)= I P(9)Z 1sed : pprot y orp
{In(:9) 2Nlog;) ~* S[ PRu(ss)  P(9 ed stimulis, and different cross-validation procedures
__ 1 Zg[QEN(S) _pRN(s)] were used. The same data produced the percentage cor-
2Nlog) PRu(s) rect predictions reported in Fig. 1b. It can be seen that,
whereQR\(s,s) is the table obtained analogouslyRBy(ss), but Whatever the procedure, both the information and the
averaging over all test triaR(s|r) instead ofP(s]r), and where percentage correct rise initially linearly with population
care has to be taken in performing the sums evep avoid in- size from their baseline level (which is zero for the infor-
cluding stimuli posited to have zero probability. For a derlvatlonﬁ;:_tion and 1$=0.05 for the percentage correct) and then
e

this and other correction terms and for a fuller discussion of . .
difference between various information estimates. we refer to P4nad to slow down as the population gets close to includ-

zeri and Treves (1996), where the advantages of this correctio@ all 14 cells. This essentially linear rise in information
procedure over the earlier regularization procedure of Kjaer etas the number of cells in the sample is increased is the

(1994) are also described (see also the explicit comparison in @&t maior result described in this paper. In addition
lomb et al. 1996). Here it is sufficient to note this) (as best ﬁ J bap '

estimated with the present correction procedure) will in any c Qt.h graphs show a small depender)ce on the cross-vali-
tend to a “true” value that, being based on a regularized probaii@tion procedure adopted, the details of which are con-
ty distribution, is less than the value (unmeasurable except wailered in the next paragraph.

few cells) attained by(sr). The same applies #¢ss"). I(s;s) is In the absence of cross-validation, the percentage cor-

the quantity that can be measured more accurately for any nurrllég ; ; ; ; ke
of cells with the present data, and comparisons across data s é and information rise to higher levels, which is just a

should only be performed using the same quantities. spurious effect due to the use of the same data for both
training and testing, or in other words to trials being
compared with themselves in the extraction of relative
) ) probabilities (“overfitting”). The results with the cross-
o o o el 8 e pass qEdation procedure USIT=L test tial and the reman-
means were taken over ten different partitions between tepstpand tggi _(9) trials as training trials, repeated n turn using a
ing trials for any set of cells, and over a large number of different $&iéerent test trial from the dataset each time and averag-
of C cells randomly selected from the total population of 14 cells. ing the results (crosses in Fig. 1a), were more efficient
than the conventional cross-validation procedure (in
Fig. la: diamonds fox=3/10, and triangles fax=5/10)
Results in that it resulted in a higher percentage correct. This is
Comparison between measures obtained expected, because the mean percentage correct depends
with different procedures on the quality of the decoding, which is better if based
on 9 training trials (for the efficient procedure) than if
The values for the mean informatidis,s), available in based on, respectively, 10x§=7 or 5 training trials.
the responses of different numbers of these neurondTire information obtained with the one test trial proce-

Averaging
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T 1 Tt T T 1 procedure gives a result which is biased upwards a little
4l 4 (see Panzeri and Treves 1996 for full analysis). The un-
dercorrection applies particularly to the conventional
procedure, for which there are three or five test trials and
does not occur when there are as many as ten test trials,
a as there effectively are with the efficient procedure (one
3r Lt 7 test trial repeated for ten different test trial choices).
N 5 ¥ Conventional cross-validation is thus suboptimal with
25 | L2 S g the relatively few trials (ten) available, because, with this
a 3 ¢ number of trials, separating out a fixed subset to be used
.l . ] for training leaves so few trials for the testing set that the
. ¢ information estimates are slightly overestimated. The ef-
ficient cross-validation procedure in which one trial at a
time is used as a test trial and the remaining (nine) trials
¢ are used for the training set appears, on the other hand,
1+ 2 . to afford both the best decoding and the least limited
sampling bias and is therefore the one used from now on.
05 L i Measures of the informatiol(s,s?) were also taken,
3 as mentioned under Materials and methods, in order to
o compare the effect of using the tabR% and PF. Fig-
00 5 4 6 8 10 12 14 ure 2 shows, for the efficient cross-validation procedure,
Cells in the population bothI(s,s”) andl(s,s) and their corresponding raw mea-
Fig. 2 For the efficient cross-validation procedure and probabili@)\;res' before the correction term has b‘?e” subtracted out.
estimation decoding|(s,s?) after correction X) and its corre- Vhile the corrected measures do not differ by much, the
sponding raw, uncorrected, meastutréaggles is contrasted with raw measures for the informatitfs,s°) based on the fre-
I(s;s) after correction<) and its corresponding raw, uncorrectedquency tablePF are very high, resulting in a correction
measurediamonds term so large (1.16 bits for single cells) as to be really at
the border of the region where subtracting it is enough to
dure is a little lower than that from the conventionaémove finite sampling biases (Panzeri and Treves 1996).
cross-validation procedure, but this is just due to und@hereforel(s,s?) is somewhat less reliable a measure
correction with effectively three or five test trials withthanl(s,s), at least for small populations, which is also
the conventional procedure, so that this latter procedwieere they differ proportionally the most.
actually is a slight overestimate of the information. The Having analysed the small dependence of the results
undercorrection is due to the fact that with very limitezh the cross-validation procedure and on the exact infor-
numbers of trials, such as three or five, the correctiovation quantity being measured, we focus for simplicity
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onl(s,s) and on the more efficient cross-validation prahe population is fairly close to what would be predicted
cedure, although all of the following points can easily ly a simple model (Gawne and Richmond 1993) of the
seen to be valid in general. relation between the information provided by different

cells. In this model, each cell provides a fraction of the

information required to discriminate the 20 stimuli per-
Ceiling effects and redundancy fectly [1-®=l,/log,(20)], and the information provided

by any one cell has a random overlap with that provided
As shown in Figs. 1 and 2, both the information and thg any other cell. Then, if a fractioh of the informa-
percentage correct show what amounts to a ceiling effégh is missing when looking at just one cell, a fraction
as the number of cells is increased towards 14. For pb#-is missing, on average, when looking at two cells, and
centage correct the ceiling is of course at 100%, and $oron. The mean fraction of information provided®y
information it is at log(S§)=20 (i.e.=4.3 bits) for our stim- cells is 1-PC, and this is the curve plotted with the data
ulus set. These ceilings correspond to the top of the irefFig. 3a, whered has been chosen as a fit parameter.
spective figures. The deviation from a linear rise, in botthe curve is seen to be a reasonable match to the trend in
measures, as more cells are included in the populatibre, data, except perhaps at the higher numbers of cells.
appears to be entirely due to the measures approachinhe degree to which the rise of information with the
their ceilings. This is shown in Fig. 3 by repeating theumber of cells considered is below linearity has been
analysis with fewer stimuli than included in the full selinked in the literature to the notion of redundancy. For
The multiplication signs correspond to informatioexample, Gawne and Richmond (1993) took as a mea-
(Fig. 3a) and percentage correct (Fig. 3b) calculated foswre of redundancy the overlap between the information
subset (randomly chosen) of nine stimuli, and the starevided by pairs of nearby cells, an overlap that, when
for one of just four stimuli. The ceiling for informatiorusing the model above to fit results for single cells and
must be correspondingly lowered to J(8=3.17 and for pairs, turns out to be just ®@-For our three sets of
log,(4)=2 bits, and the baseline for percentage corratimuli this mean overlap (as extracted by fitting the
raised to 1$=11.11% and 25%. Note that the initial slopsodel to the three data sets) would be roughly 8% for 20
in the rise of both measures depends on the particgtmuli, 9% for nine and 19% for four, but widely differ-
subset of stimuli, not on its size alone. For example, et values are obtained by selecting different subsets of
mean information per cell with four face stimuli wastimuli. In fact, to the extent that the model provides a
found to range from 0.04 to 0.57 bits with these cells agdod fit, the value of the mean overlap is the same as the
choosing an assortment of different random subsets offitaetion of information provided by single cells, out of
20 stimuli available. Sooner or later, depending on ttlee maximum at the ceiling, and this fraction depends
initial slope, the increase with population size must sloxery strongly, as stated above, on both the size and the
down and saturate to stay below the ceiling value. composition of the stimulus set. The implications of

As for the rate of slowing down, it is intriguing thathese results for the notion of redundancy is considered

the way information depends on the number of cellsimthe Discussion.
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Biologically plausible decoding ta produced the percentage correct predictions reported

in Fig. 5b. It can be seen that both the information and
The results of analyses to compare DP decoding andtRé& percentage correct rise more linearly with population
decoding are shown in Fig. 4. The percentage corrsie from their baseline level than those measured over
achieved with the DP algorithm comes progressivédp0 ms. The more linear increase with the short analysis
closer to that obtained with the PE algorithm (used in pkriod of 50 ms is because the information provided by
previous analyses), as the number of cells increases ftbe 14 cells, although quite high at 1.49 bits, has not ap-
2 to 14 (Fig. 4b). Thus, the DP decoding algorithm funproached the ceiling of 4.32 bits required to encode the
tions about as well, in indicating the actual stimulus, ast of 20 stimuli. The population of 14 cells provides, in
the PE algorithm, and possibly would have functiongke 50-ms period, 54% of the information it provides in
even better if larger numbers of cells had been includbé 500-ms period (1.49 vs 2.77 bits). Part of the reason
in the sample. The information extracted by the DP algbis proportion is so high is that the information ceiling
rithm, instead, only comes to approximately 80-85% given the stimulus set size is being approached with the
that extracted by the PE algorithm. The informatidd00-ms period. For this reason, and because in principle
measure reflects the full range of estimated probabilitigsart from such a ceiling effect the information increases
for all stimuli, and one should bear in mind that the DR proportion to the number of neurons in the ensembile,
algorithm does not really attempt to perform this estimae report also that single cells on average provide
tion correctly. The reason that the measures are, resfet3 bits, or 40%, in 50-ms time periods, of what they
tively, zero and chance with one cell for DP decoding {@ovide over the 500-ms window, which is 10 times lon-
obviously, that then the DP of the test trial vector of cegjér.
responses with any of the mean response vectors to the
stimuli is essentially meaningless.

Relationship between information and percentage correct

Information encoded by an ensemble of neurons One can see from Fig. 1 that the rise of information with
in a short time window population size parallels very closely that of percentage
correct. This is made explicit in Fig. 6, where the infor-
It is interesting to analyse whether considerable informmaation values are plotted against percentage correct. The
tion is available from the population of neurons in shartformation axis (ordinate) is normalized so that it reach-
post-stimulus time periods, as has been found for singke full scale when full information about the stimulus
neurons (Tovee et al. 1993; Tovee and Rolls 1995). e, i.e. log(20)=4.3 bits is obtained from the population
values for the mean informatiom(§,s), extracted with responses. The percentage-correct axis (abscissa) ex-
the PE algorithm] available in a 50-ms period startingnds from chance level (which in our case is at
100 ms post-stimulus, are displayed in Fig. 5a, togetlig20=0.05) to 1. The fact that the data points are very
with those for the longer 500-ms windows. The same ddese to the 45° line has some implication for the struc-
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ture of the stimulus set as coded by these cells (Treited number of trials available in this experiment (and in
1997; Treves et al. 1996). This is because, while percangny similar experiments with mammals), we have
age correct is a measure that is not affected by how gebdwn that it is important to select with great care the
the estimated probabilities were, apart from the highes@act type of information quantity and the procedure to
one, information is affected and thus reflects the struoeasure it from the data. We showed that failure to
ture of perceived similarities and differences betweernss-validate, failure to apply a correction for limited
different stimuli. To understand this point, the two linesampling (i.e. the limited number of trials available) and
shown with the data points illustrate the dependencecafculation of the information contained in the frequency
I(s,8) on P(sP=s) in two simple, idealized cases. In ondable ofPFy could all result in unreliable estimates of the
which vyields the upper curve, stimuli are supposed itdormation encoded by the ensemble of neurons. Over-
group naturally, as perceived by this population, intmming these difficulties has been responsible for the
classes of equal siz& different classes are perfectly disslower development of information-theoretic analyses of
criminated by the cells, whereas in each class theranammalian neuronal recordings, relative to their use
such similarity that individual stimuli are not at all diswith invertebrate recordings, in which very many trials
criminated one from the other. Obviouddyis taken to of data can be obtained (Bialek et al. 1991). In the next
vary to give the required percentage correct, which four paragraphs we discuss the central aspects of this
this case is just Z{ the information is log20/Z). In the quasi-linear relationship before returning to the more
second case, which yields the lower curve, no clagneral issues.
structure exists, and stimuli are either discriminated indi- Most of the deviation from a simple linear increase
vidually (with probabilityq) or confused with all the oth-was shown, utilising subsets of the complete stimulus
ers (with probability 1¢). The parameteq is taken to set, to be due to a simple ceiling effect. The ceiling effect
give the required percentage correct, which @curs because with the total information in the stimulus
g+(1-)/20; the information results in:set being limited (to 4.32 bits, that required to code the
(g+(1-g)/20)log,(20q+1-g)+(19/20)(1-g)log,(1-q). The 20 stimuli in the set), larger numbers of cells in the pop-
fact that the experimental relationship turns out to be iation considered are forced to be more redundant, that
termediate between these two extremes indicates thatisheto have greater overlaps. When the Ilimit on the
stimuli are coded by these cells as having a structureanfount of information is lowered by including fewer
similarity to each other that is slightly more complestimuli, obviously the information tends to saturate at
than in the two trivial situations mentioned. Not mudower values. Conversely, if single cells carry, on aver-
more can be inferred, as an infinite number of differeage, a smaller proportion of the maximal information,
structures would generate identical intermediate relatidhen values close to saturation are approached only for
ships; for example, one still very simple situation ilarger populations, and the increase in information is
which the fraction of information available equals th@uch more linear as cells are added to the sample. This
fraction of percentage correct above chance (closeid@xactly what is shown in Fig. 5, in which the analysis
what the data show) is when classes exist but also epetiod for the neuronal response was 50 ms, the informa-
stimulus can be discriminated, with a certain probabilitypn available from one cell was 0.13 bits (and 9.4% cor-
within its class. It would be interesting to find out whethrect for the 20 stimuli) and the information increased
er the extensive averaging that underlies our numerigadre linearly to 1.49 bits (and 41% correct) as the num-
results in itself might tend to produce data very closelier of cells in the population was increased to 14. This
the 45° line, because for example that is where the highpports the explanation for the ceiling effect and sug-
est density of similarity structures may be packed. Pgests that, were the stimulus set much larger (so that
liminary results, however, (unpublished observations) imuch more information could be extracted from it), and
dicate a very different relationship between percentaf¢he absolute amount provided by individual cells were
correct and information when analysing the responsedmfstay roughly the same (this being dependent on the
cells in different brain areas and to different external cahoice of stimuli), then the information would continue
relates. to increase almost linearly over a wider range of popula-
tion sizes. This issue is also addressed in a separate pa-
per based on computer simulations (Abbott et al. 1996),
Discussion and the results of those simulations support the hypothe-
sis based on the neurophysiological results described
The analyses described here elucidate a quantitative tsgre: that the number of stimuli that can be encoded by a
proach to analysing the representation provided byp@apulation of neurons in this part of the visual system in-
population of neurons. First, the mean information abatreases approximately exponentially as the number of
a set of 20 equiprobable stimuli, available on any trie¢lls in the sample increases. That is, the log of the num-
[I(sS)], was found to increase approximately linearlger of stimuli increases approximately linearly as the
with the number of cells from which the best estimateimber of cells in the sample is increased. This is in
was made: from 0.33 bits, with one neuron, up tmntrast to a local encoding scheme (of grandmother
2.77 bits, available from all 14 neurons. To be able to arells), in which it is the number of stimuli encoded that
alyse in detail this quasi-linear dependence with the lilnereases linearly with the number of cells in the sample.
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The conclusion based on the neurophysiological data (E394) had a rather low ceiling on the amount of infor-
scribed here is subject to the limits of the actual stimulenation required to encode the set, and the failure to take
set (20 stimuli) and cell population (14 neurons) avathis into account, together with the very few population
able from real experiments; and the study by Abbott ®zes considered, makes their conclusions subject to arte-
al. (1996) extends the conclusions to much larger stinfiaet.
lus sets by simulation. To conclude with the implications of the present data
The hypothesis that the deviation from linearity is dder exponential encoding and redundancy in the brain,
entirely to the ceiling effect is supported by the reasomwe stress again some of the important limitations in our
able fit to the data provided by the simple model intréindings. First, the responses of only 14 cells to only 20
duced by Gawne and Richmond (1993), which requirese stimuli formed the basis of the analysis. More face
as a fitting parameter only the mean information frooells were recorded, in part also with larger sets of face
single cells (the initial slope in the rise). The model &imuli, and qualitatively the data looked similar, but
that in which each cell provides a mean fractidhese additional cells either were in a second monkey or
1-d=1,/log,(S of the total information required to diswere not recorded for enough trials per stimulus to be
criminateS stimuli perfectly, any element of informationpart of the present quantitative analysis. Coding for a few
has therefore a “chance®j to be missed by a cell, andthousand faces (of the order of the number that humans
being what is coded by one cell in a random relationrway feel confident at discriminating) presumably in-
what is coded by other cells, it has a cha#éeto be volves an order of magnitude more face cells. The appli-
missed byC cells. | -=(1-®C)log,(S) is therefore the in- cability of our conclusions to face encoding remains thus
formation provided byC cells. The crucial aspect of thean extrapolation, although it is an extrapolation support-
model (which appears to have been overlooked ég by very plausible simulation results, as shown by Ab-
Gawne and Richmond 1993, in their discussion of thett et al. (1996). Second, the cells recorded were all lo-
correlations between cell pairs) is that it predicts zero mated in a restricted portion of cortex and were all face
dundancy in the limit of very largg provided the infor- cells responding to face stimuli. It is thus in principle
mation provided by single cells does not grow propgessible that face encoding may display rather different
tionally to the ceiling. This is because the overlap, or deatures in other parts of cortex, and it is quite likely and
gree of redundancy, is, again, justhl@d—®d=y in the no- entirely natural that the encoding of very different cate-
tation of Gawne and Richmond 1993), which would tembries of visual stimuli may proceed along different prin-
to zero for very large sets of stimuli. The model mayples. Seemingly different types of population encod-
well not be exact, but it remains true that the obseniads have, for example, been discussed for arm move-
redundancy should in no way be taken to characterize thents in three-dimensional (3D) space (by motor cortex
absolute information processing capabilities of singteurons; Georgopoulos et al. 1988) and for the prevail-
temporal lobe visual cortex cells or of groups of cellsig (1D) direction of motion of random dots (by visual
but only their performance given the stimulus set. tells of the middle temporal area; Zohary et al. 1994).
quasi-real-life conditions, it may be that the absolut®e regard our face cell data as more indicative of popu-
amount of information provided by one cell could be afation encoding of classes of stimuli spanning a high-di-
proximately constant, as the stimulus set is greatly enensional space, as, e.g. discussed by Tanaka (1993).
larged to include a naturalistic set of stimuli. This woulthird, the cells were not recorded simultaneously, and
happen if, when stimuli are added, the overall statistitmis trial-to-trial correlations in their responses were not
of the responses remained relatively constant, as in ifhduded in the analysis. Including such correlations
simulations of Abbott et al. (1996). However, in that caseight result in either higher or lower information values,
the fraction of the maximum (and with it, presumablgepending on the type of correlations found. It is easy to
the redundancy overlap, which in the model is humecienstruct response structures that would lead to either re-
cally identical) will not be a constant, but rather will desult. Significant correlations in the firing of small groups
crease as the inverse log of the size of the stimulus sebf cells have been found, e.g. in the early visual cortex
Another point to note in relation to previous worktimulated with moving bars (Gray et al. 1989) or in the
with similar goals (Gochin et al. 1994) is that failure tivontal cortex in relation to behavioural state (Abeles et
take ceiling effects into account, to select the appropriate 1995). We are aware of no positive evidence for such
information quantities and to measure them by correctrrelations, however, directly relevant to stimulus en-
ing for limited sampling easily results in artifactual findeoding in higher visual cortices. The findings of Gawne
ings, such as the postulated tendency of novel infornaad Richmond (1993) and Gochin et al. (1994) indicate
tion to decrease with the inverse square root of the popieak correlation effects, and similarly shuffling the si-
lation size (Gochin et al. 1994; the novel information multaneously recorded responses of rat hippocampal
the information provided by a population Gfcells di- place cells to control for such effects made little differ-
vided byC times the mean information provided by sirence (our unpublished observations on data kindly pro-
gle cells). In the simple model used above, the novel inded by the McNaughton laboratory). It remains very
formation is (1-9C)/[C(1-P)]=(1/C)Z,_,C1PK; that is, it important, as noted below, to supplement the present an-
scales in a different way from an inverse square root. Algses with analyses performed on simultaneously re-
note that, with only five stimuli in their set, Gochin et atorded responses from a similar population of face cells
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responding to a similar set of face stimuli. Finally, w® make these implications explicit, because averaging
note the possibility that the details of the experimenta/ itself could produce a behaviour intermediate between
paradigm used here (the level of attention required, #adremes.
degree of familiarity with the stimuli used, etc.) might Third, alternative algorithms were used to estimate
have had an influence on the results obtained. which of the mean response vectors (one for each stimu-
The second general issue arising from the presentlus) most closely matched the vector of cell responses
vestigation is that it was found that the percentage cbeing produced by a test stimulus. The PE algorithm,
rect behaved fairly similarly to the information in thevhich approximates a theoretically correct estimate of
way it increased as the number of neurons from whitdte relevant probabilities (that a given response had been
the best estimate was made increased from 1 to 14 @ésted by any one stimulus), may not be the way the
Fig. 6). Performance with one neuron was approximaté¢hext population of neurons in the) brain would decode
14% correct (chance was 5% correct) and with 14 nelie neuronal responses. It was found that, with a neurally
rons was 67% correct. The nearly identical behaviour é&usible algorithm (the DP algorithm) that calculates
information and percentage correct indicates that tiwbich mean response vector the neuronal response vec-
stimulus set is coded by these neurons as having a sttoc-was closest to by performing a normalized DP
ture of mutual similarities (an intrinsic metric) in whicl{equivalent to measuring the angle between the test and
at least two cluster sizes are present. More generallghi# mean response vector), the same generic results were
suggests the use of specific choices of stimulus sets tiathined, with similar percentage correct and only a
might generate results at variance with the present orlés-20% reduction in information compared with the
The point here is that the percentage correct measmare efficient (PE) algorithm. This is an indication that
takes into account only the best estimate of which stimbe brain could utilise the exponentially increasing ca-
lus was presented; it is unaffected by how good the spaeity for encoding stimuli as the number of neurons in
ond best, third best, etc. guesses might have been. Iftheepopulation increases. For example, by using the rep-
best guess was wrong and the second best guess wasddntation provided by the neurons described here as the
have been right, then the percentage correct measnopeit to an associative or autoassociative memory, which
does not reflect this. On the other hand, the informaticomputes effectively the DP on each neuron between the
measure does reflect structure of this type. The fact thdut vector and the synaptic weight vector, most of the
the percentage correct and information measures iafermation available would in fact be extracted (see
above the lower line in Fig. 6, and below the upper lingplls and Treves 1990; Treves and Rolls 1991). One of
thus has interesting implications for the way in whidhe important points made here is that, because the repre-
these neurons categorise stimuli: for example it could Bentational capacity of a set of neurons increases expo-
dicate that second-best guesses are better than chareially, neurons in the next brain region would each
More detailed analysis (Treves 1996) is required, thougleed to sample the activity of only a reasonable number
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(e.g. a few hundred) of what might be a much larger célita had been recorded simultaneously, then, if anything,
population and yet still obtain information about whicmore information would have been available in the neu-
of many thousands of stimuli had been shown. In particnal responses of the population, because any general
ular, the characteristics of the actual cells described hshét in excitability of the cell population from trial to tri-
indicate that the activity of: 15 neurons would be able &b — a particularly simple and common type of correla-
encode 192 face stimuli (at 50% accuracy); 20 neurotisn — would be compensated for by a neurophysiologi-
768 stimuli; 25 neurons, 3072 stimuli; 30 neuronsally plausible decoding procedure such as computing
12288 stimuli; and 35 neurons, 49152 stimuli (Abbott #te DP, whereas the same shift would increase the noise
al. 1996. The values are for the optimal decoding cdeeel when pseudosimultaneous trials are constructed. It
and are derived using somewhat different methods frevould only be in more unlikely situations of small sets
the present ones; they are given here for the purposefafells having rather idiosyncratic variability in their ac-
illustration.) tivity that the current procedure might overestimate the
Fourth, the results shown in Fig. 5 with 50-ms decouiformation available from a simultaneously recorded
ing highlight the value of having large numbers of nepepulation of neurons. Further, we have been able to ap-
rons of the type described here, for they make it clgdy the same kind of analyses to data recorded simulta-
that part of the value is that information can be madeously in the rat and kindly provided by the laboratories
available very rapidly about which stimulus is presentof Bruce McNaughton and Gabriele Biella (unpublished
the responses of a population of neurons, rather than plstervations). With simultaneously recorded data, it is
a single neuron, are considered. Moreover, the fact thassible to control for the effects of generating pseudosi-
the representation provided by each neuron is apparentlyitaneous trials by simply shuffling trials independent-
in a random relation to that provided by other neurolsfor each cell. Such a control procedure resulted in
means that the information is available very rapidly frowery small differences, if any, thus indirectly supporting
whichever subset of neurons is taken. This rapid avdile assumption that also with our data the effect of gen-
ability of information from apopulationof neurons is erating pseudosimultaneous trials is minimal. A further
one factor that contributes to the very rapid processingpoint is that simultaneous recordings from the thalamus
information from stage to stage in the visual cortical grrovide a counterexample of a case in which there ap-
eas (see Rolls 1994; Rolls and Tovee 1994), for it megesrs to be no linear increase of information with popu-
that the information from one cortical area can be dgtion size (Panzeri et al. 1995; this is true both before
tracted very rapidly (in, e.g. 20 ms) by the next. and after shuffling), therefore removing the doubt that
Fifth, it is of great interest that the information aboulhe near-linear increase found for the visual cortex cells
which stimulus is present can now be read off from tdescribed here might have been an almost automatic
end of the visual system to identifyhatis being seen, consequence of either the decoding procedure or the gen-
and that this read-out of information can be performedation of pseudosimultaneous trials.
excellently if only the firing rates of the neurons are tak- The results described here thus provide evidence that
en into account. The results in this paper thus providéen real neuronal responses in the brain are considered,
good evidence that the temporal relationships betwesnthat the trial to trial variability of individual neuronal
the spike times of different neurons are not at all a necessponses is taken into account, and also the degree to
sary part of the neural code used at the end of the visuhich each stimulus produces a somewhat different set
system (cf. Engel et al. 1992). It is of course possil@éresponses in a population of neurons from other stim-
that if the temporal relationships between the spike fuh, then the essentially exponential increase in coding
ings of the neurons in the ensemble were taken into eapacity that is potentially a property of distributed rep-
count more information would be available about whiglesentations can be realised.
stimulus was shown. However, the results described inlt has been argued elsewhere (Rolls and Tovee 1995)
this paper show that a very great deal of information cdmat the rather widely distributed encoding found in this
be read out from the responses of an ensemble of n@apulation of neurons allows a relatively large amount of
rons about which stimulus was shown without taking imformation about a set of stimuli to be provided by such
to account the relative timing of the spikes in the diffea- population, provided of course that they do not have
ent neurons. The results described here show that usheysame profile of responsiveness to the set of stimuli.
just the firing rates would be sufficient for the good opeBuch a representation would be ideal d@crimination
ation of at least this part of the temporal visual cortex. for the maximum information suitable for comparing
However, a point that certainly merits further investfine differences between different stimuli would be made
gation is the effect of generating pseudosimultaneous &vailable across the population. However, a representa-
als, rather than recording simultaneously from large pdpn as distributed as this would not be appropriate for a
ulations of cells (Wilson and McNaughton 1993). Partimemory system, in which the aim is to store a large
ularly in exploring fine points such as the presence of tnumber of memories. In an associative memory contain-
al-to-trial correlations in the responses, it is importaimg neurons with continuously variable firing rates, such
that the present studies be integrated with new ones cag¢he autoassociative memory believed to be implement-
simultaneously recorded data become available for thegein the hippocampus (Rolls 1989; Treves and Rolls
cells. However, we believe it likely that, if the preseri994), the maximum number of firing patterns that can
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be retrieved increases approximately with the inverseGswne TJ, Richmond BJ (1993) How independent are the messag-

the sparsenes i es carried by adjacent inferior temporal cortical neurons? J
p a)(of the neuronal representation (Treves Naurose 13:5758 2771

1990; Treves and Rolls 19.91)' It is there_fore prOposégorgopolous AP, Kettner RE, Schwartz AB (1988) Primate mo-
that these fundamentally different constraints, represen-or cortex and free arm movements to visual targets in three-
tational capacity versus storage capacity, account for thedimensional space. Il. Coding of the direction of movement by
different sparsenesses of representations found in the2 neuronal population. J Neurosci 8:2928-2937

. ; hin PM, Colombo M, Dorfman GA, Gerstein GL, Gross CG
high-order sensory cortices such as the temporal corticdy 994) Neural ensemble encoding in inferior temporal cortex.

areas described here and by Rolls and Tovee (1995), and Neurophysiol 71:2325-2337

in memory systems such as the hippocampus (Treves @aoidmb D, Hertz JA, Panzeri S, Richmond BJ, Treves A (1996)
Rolls 1994), amygdala, and orbitofrontal cortex (Rolls How well can we estimate the information carried in neuronal
1989, 19923, c). In the sensory cortex, a relatively dis- rezggnses from limited samples? Neural Computation 8 (in

tributed representation may be used in order to optimg%y CM, Konig P, Engel AK, Singer W (1989) Oscillatory re-
discriminative ability. In memory systems, much more sponses in cat visual cortex exhibit intercolumnar synchroni-
sparse representations may be used in order to maximizeation which reflects global stimulus properties. Nature

the number of memories that can be stored. We note thag38:334-337

. 5[Qss CG, Desimone R, Albright TD, Schwartz EL (1985) Inferi-
many of the cells _descnbed here have_ other propert égor temporal cortex and pattern recognition. Exp Brain Res
that make them suitable for discrimination between fac- [Suppl] 11:179-201
es, including invariance with respect to size, spatial figinton GE, McClelland JL, Rumelhart DE (1986) Distributed rep-
quency, translation and even view in some cases (Seéesentations. In: Rumelhart DE, McClelland JL, (eds) Parallel

Rolls 1992a, 1994, 1995; Rolls and Tovee 1995). distributed processing. MIT  Press, Cambridge, MA, pp
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