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The spike count distribution observed when recording from a variety of
neurons in many different conditions has a fairly stereotypical shape,
with a single mode at zero or close to a low average count, and a long,
quasi-exponential tail to high counts. Such a distribution has been sug-
gested to be the direct result of three simple facts: the �ring frequency
of a typical cortical neuron is close to linear in the summed input cur-
rent entering the soma, above a threshold; the input current varies on
several timescales, both faster and slower than the window used to count
spikes; and the input distribution at any timescale can be taken to be
approximately normal. The third assumption is violated by associative
learning, which generates correlations between the synaptic weight vec-
tor on the dendritic tree of a neuron, and the input activity vectors it
is repeatedly subject to. We show analytically that for a simple feed-
forward model, the normal distribution of the slow components of the
input current becomes the sum of two quasi-normal terms. The term im-
portant below threshold shifts with learning, while the term important
above threshold does not shift but grows in width. These deviations from
the standard distribution may be observable in appropriate recording
experiments.

1 Spike Counts and the S C F model

The variability in the emission of action potentials by nerve cells may
be characterized by several measures, one of which is the distribution of
spike counts in a time window of �xed length. While other measures,
such as the distribution of consecutive interspike intervals, are more di-
rect descriptions of the irregularity in the �ring, spike count distributions
provide estimates of the entropy of neural codes, inasmuch as the code
used by a particular neuron is thought to be expressed simply by its �r-
ing frequency. Because of this interpretation, the observation that spike
count distributions often have quasi-exponential tails (Abeles, Vaadia, &
Bergman, 1990; Barnes, McNaughton, Mizumori, Leonald, & Lin, 1990) has
been linked to an optimal coding principle (Levy & Baxter, 1996). If the
spike count is taken to be the symbol coding for the message represented
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by the input arriving at the cell at any given time, and the mean count
is constrained by a �xed metabolic budget, then optimal usage of sym-
bols occurs, in the noiseless case, when their probabilities are exponentially
distributed—that is, have maximal entropy under the constraint (Shannon,
1948). It is not clear, however, how this coding principle could apply to the
more meaningful situation of noisy coding and, more important, how it
could be compatible with deviations from the pure exponential shape of-
ten prominent at the low-count end of the distribution, that is, the nonzero
mode.

An alternative suggestion (Panzeri, Booth, Wakeman, Rolls, & Treves,
1996; Treves, Panzeri, Rolls, Booth, & Wakeman, 1999) is that the stereo-
typical shape does not re�ect any design or optimization, but rather re-
�ects precisely the lack of any principle capable of imparting signi�cant
structure to the distribution; that is, it represents a sort of null hypothe-
sis against which any organizing principle could be tested. The sugges-
tion is embodied in a crude model of the variability of the input current
into the soma of a typical neuron, which assumes that (1) the input cur-
rent translates linearly into a spike count—of course, above a �ring thresh-
old; (2) its variability has frequency components at several different time
scales, both slower and faster (hence the name S C F model) than the time
window used to count spikes; and (3) each component is normally dis-
tributed. The S C F model generates a formula for the spike count distri-
bution with three free parameters: the position of the mean current rela-
tive to �ring threshold and the standard deviations of slow and fast com-
ponents of its variability. The formula was found to �t adequately spike
counts recorded from monkey inferior temporal cortex neurons respond-
ing to quasi-ecological stimulation with a video of natural images, counts
that could not instead be �tted by the exponential or other simple models
(Treves et al., 1999).

The SC F model was then found to provide satisfactory �ts in other exper-
iments, such as with primate hippocampal neurons responding to continu-
ously changing views of the monkey’s environment (Panzeri, Rolls, Treves,
Robertson, & Georges-François, 1997) or with a class of rat somatosen-
sory neurons spontaneously active under anesthesia (Irina Erchova, pers.
comm.). This raises the issue of whether it is at all possible to identify situa-
tions in which a well-de�ned principleor process does affect �ring statistics,
and its effects can be quantitatively demonstrated in the spike count dis-
tributions, as deviations from the null hypothesis expectation. We consider
here a model of associative learning of discrete input vectors by a (feedfor-
ward) network comprising a single output neuron. While the S C F model
neglects correlations between afferent input patterns and synaptic weights,
the learning process considered here produces precisely such correlations,
and we have calculated analytically the resulting changes in spike count
distributions. The possibility of observing these changes in experiments is
discussed brie�y at the end.
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2 An S C F Model Re�ned by Learning

The correlations induced by associative learning could affect any frequency
component in the variability of the input current. To stick to a simple model,
we consider only the case in which they affect solely the low-frequency com-
ponents. This corresponds to the simpli�ed scenario in which the slow vari-
ability in the input (and output) of our neuron codes for meaningful, slow-
varying, stimuli, while fast �uctuations, re�ect only noise. We thus take fast
�uctuations to be normally distributed, as in the standard S C F model, and
in fact do not include them, leaving them to be added up at the end, after
deriving the distribution of the slow components. This should not be taken
to imply that fast variability is negligible (it is not; see Treves et al., 1999),
but the analytical convenience of concentrating on slow variability warrants
the minor imprecision in the transparent expression obtained at the end.

The single output unit in the model receives N inputs, through synaptic
weights J that modify with a learning rule that models associative plasticity.
Learning is one shot, in that the weights are taken to have been modi�ed by
a single presentation of each of p input patterns. The learning rule includes
balanced potentiation and depression components, so that the net average
change of each weight is zero. The variance in the value of each weight is
also taken to remain constant. The input patterns are uncorrelated among
themselves and with the preexisting synaptic weight vector. Under these
conditions, the distribution of the summed input current over all novel input
pattern vectors remains the same (normal in the N ! 1 limit) after learning.
What changes, and what we are going to compute, is the distribution of
the input current over the p familiar input vectors—those that have been
learned.

The output distribution is calculated with the mean-�eld analysis de-
tailed in the appendix. For the sake of clarity, we try to keep the notation
consistent with Treves (1995), where a similar calculation was reported.
Storage and retrieval (S and R) here refer to the �rst presentation of one of
the p input patterns, and to the subsequent presentation that generates the
output distribution we aim for.

g is the input vector during storage. It represents �ring rates computed
over a time window of, say, a few hundred milliseconds, and may be mea-
sured in Hz. We take each of its N components to be distributed indepen-
dently,

P(g) D
Y

i
Pg(gi), (2.1)

according to some distribution Pg, which for consistency should itself be of
the stereotypical form mentioned above. One result we �nd, though, is that
the precise form of Pg is not critical.

V is the input vector during retrieval. The stimulus that has been previ-
ously learned is taken to have been reproduced with some added gaussian
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noise d (with zero mean and variance s2
d ), followed by recti�cation:1

Vi D [gi C di]
C . (2.2)

Therefore

P(V |g) D
Y

i

"
d(Vi)W (¡gi /sd) C

H (Vi)p
2p sd

exp ¡
(Vi ¡gi)2

2s2
d

#
, (2.3)

where d (x) is the Dirac delta function, H (x) is the Heaviside function, and
W(x) is the normalized probability integral, that is, the integral of the normal
distribution of unit variance: W(x) D

R x
¡1(dx /

p
2p ) exp ¡x2 /2. The �rst term

in each factor of the product represents the probability that the input unit
i be below threshold, and the second term that it be above threshold. The
noise level sd parameterizes the variability in the �ring frequency of input
units, measured over a trial of, say, a few hundred milliseconds, among
trials with the same stimulus. It is thus a measure of slow components
in the noise, which could again be taken to be similar, like the frequency
distribution, between input and output units, and it could in principle be
evaluated experimentally. Note that the distributions P(g) and P(V) need
not be assumed to be identical, even if both take the general stereotypical
form; the addition of the noise term d, which induces a difference between
the two, could be thought to re�ect the altered attentional state, for example,
of successive with respect to the �rst presentation of a novel stimulus.

Z is the output during storage resulting from the product between input
and synaptic vectors followed by thresholding and recti�cation. Gaussian
noise 2 S with zero mean and variance s2

2 is also added to the output,

Z D
h
JS ¢ g C Z± C 2 S

iC
. (2.4)

The threshold (¡Z±) may lump together a bona-�de current threshold, in-
hibitory terms due to nonselective effects of interneurons and competition
among output cells, and the baseline mean value of the product JL ¢g, taken
to be constant. The gain of the threshold-linear transfer function has been
set to 1 by rescaling synaptic weights to pure numbers of order 1 /N, so that
Z, 2 S, and Z0, likeg, may be measured in Hz. The output distribution during
storage is

P(Z |g) D d (Z)W
¡

¡
JS ¢ g C Z±

s2

¢

C
H (Z)

p
2p s2

exp ¡
(Z ¡ JS ¢ g ¡ Z±)2

2s2
2

, (2.5)

1 [x]C D x for x > 0 and 0 otherwise.



Spike Count Distributions After Learning 1777

where the recti�cation has been applied directly, without �rst adding fast
�uctuations. This omission, which is carried over in the synaptic modi�ca-
tion terms below, is deliberate; it simpli�es analytically what was already a
rather crude model.

u is the steady component of the summed input current to the neuron
during retrieval. It is convenient to calculate its distribution before adding
fastnoise and recti�cation, after which operations one would have the actual
output during retrieval, U. If we take u to include slow noise with the same
variance s2

2 , it will follow the conditional probability density,

P(u|Z, V, g) D
1

p
2p s2

exp ¡
(u ¡ JR ¢ V ¡ U±)2

2s2
2

, (2.6)

which we have to average appropriately in order to �nd the target distri-
bution.

JS and JR are the weight vectors during storage and retrieval. With re-
spect to the pattern being considered, they are assumed to have random
components, except for a term, present in JR but absent in JS, that re�ects
the storage of the pattern and produces the effect on the spike count distri-
bution, during retrieval, which is the aim of the calculation. Each component
JS
i is then taken to have zero mean (any baseline value can be incorporated

into the constant threshold ¡Z±) and �xed variance s2
J D 1 /N (so that the

scalar product JS ¢ g is of order 1). Apart from the relevant pattern, the
components of the new vector JR

i re�ect also the storage of many other pat-
terns, intervened between storage and retrieval. A stable regime, in which
storing new patterns and gradually forgetting old ones does not alter the
mean strength and variance of the vector, can be described (after Treves,
1995) by a pseudo-rotation from the random direction JS into a new random
direction JN,

JR
i D cos(h ) JS

i C
p

c
hp
N

(gi ¡ Ng)(Z ¡ Z±) C sin(h ) JN
i , (2.7)

where:

� JS
i is multiplied by a factor cos(h ), that reduces its relative importance

with time, parameterized by h . JN
i , again of zero mean and variance

s2
J D 1 /N, is multiplied by sin(h ), which grows with the successive

learning of new patterns. The relation of h to real time need not be
detailed, except that obviously h D 0 implies that no other pattern has
modi�ed the weights between the storage and retrieval of the onebeing
considered, while h D p /2 implies complete oblivion of the original
weights.

� The associative modi�cation term is multiplied by a normalizing factor
h /

p
N, designed to ensure that the variance of the modi�cation term
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is set to c s2
J . Since s2

J D 1 /N, one needs to adjust 1 / h2 to the value
of the variance of the g and Z factors. In this way the plasticity c can
be taken to be the average proportion of the synaptic weight variance
accounted for by a single learned pattern2 if all that JR encodes are p
patterns, with equal strength, c D 1 /p.

The quantity calculated, in the large-N limit, is the distribution hP(u)i of
the static or low-frequency component of the current into the output neu-
ron. The brackets indicate averaging over all possible values of the weight
vectors. To convert u into an output spike count, one would need to consider
additional high-frequency components of the noise (as explained by Treves
et al., 1999), to multiply by a gain (which, if different among patterns, cannot
be taken to equal 1) and discretize the resulting output frequency U into a
number of spikes emitted. These steps are needed when analyzing experi-
mental results, but since they could be handled in a number of alternative
ways, they are beyond the scope of this article, which focuses on how hP(u)i
differs from a normal distribution.

3 Result and Parameters

The calculation reported in the appendix yields the expression

hP(u)i D
1

p
2p det T

»
W

µ
¡b1(u ¡ U± C Z±g) C b0Z±p

b0

¶

£
1

p
b0

exp
µ

¡
(u ¡ U± C Z±g)2

2b0 det T

¶

C W

"
(b1 C b2g)(u ¡ U±) C (b0 C 2b1g C b2g2)Z±p

b0 C 2b1g C b2g2

#

£
1p

b0 C 2b1g C b2g2

£ exp
µ

¡
(u ¡ U±)2

2(b0 C 2b1g C b2g2) det T

¶¼
, (3.1)

where the matrix T and the matrix elements b0,1,2 are

T D
¡

s2
2 C z± cos(h )w±

cos(h )w± s2
2 C y±

¢
(3.2)

T¡1 D
¡

b0 ¡b1

¡b1 b2

¢
, (3.3)

2 For consistency, a decay factor cos(h ) should express the gradual forgetting of this
learned pattern, along with the others. We assume such factor to be incorporated into thep

c factor, purely to simplify the resulting formulas.
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and the averages x±, y±, w±, and z± are de�ned in the appendix. Learning is
now parameterized by g D hx±

p
Nc , which, apart from the number hx± of

order unity, can be seen to measure roughly the inverse square root of the
storage load, that is, of the effective number of learned patterns 1 /c divided
by the number of inputs N.

The expression is a sum of two terms: the �rst originating from cases
in which the original unthresholded response f was below threshold and
the second from those with f > 0.3 Each term is a gaussian modulated by
a W (x) factor, which suppresses the gaussian for values of u not matching
the corresponding f . Thus, the �rst term is more important for u values
below threshold, and once the current is converted into a spike count, its
detailed form will be largely unin�uential. The second term is more impor-
tant above threshold and is more directly observable. The partition in two
term therefore stems from the thresholding (recti�cation) of the response
f , which is the crucial assumption, while the detailed form of each term
re�ects all other ingredients of the model.

In the limit of zero plasticity,c ! 0 so that also g ! 0, both terms reduce
to normal distributions of mean U± and variance b0 det T ´ s2

2 C y±, with
the two prefactors adding up to unity. The model then reduces to a normal
distribution of slow �uctuations, as in the standard S C F model, with their
variance given by the sum of that of “slow noise”, s2

2 , and “signal” (y± can
be seen as the product of the variance of synaptic weights and that of the
activity of input units).

The two terms depend on learning (i.e., on plasticity) in two simple but
different ways. One should �rst realize what range of values is accessible for
the parameter g. The parameterc in principlecan range from 0 (noplasticity)
to 1 (the entire synaptic variance is due to the storage of the single memory
pattern being examined); a meaningful set of values, though, is around 1 /N,
since p ’ O(N) is the memory capacity of associative nets (Rolls & Treves,
1998). Given that, besides

p
c N, the other factors that determine g reduce

to a number of order unity, g itself is nonnegative, and can be considered to
range from 0 to values of order 1.

As g increases from 0, the �rst gaussian has its mean shifted by an amount
¡Z±g, that is, toward negative values if the mean output during the learning
phase, Z±, is positive, and to positive values in the (also common) case in
which the distribution of responses to novel stimuli—ideally derived from
the hP(Z)i distribution—corresponds to a negative mean of the slow com-
ponent of the S C F current. The width of this �rst gaussian does not change.
The modulating factor W contributes to make the former effect dif�cult to
detect, as it suppresses further, for Z± > 0, the gaussian peak.

3 Integrating hP(f , u)i �rst over u and then over f , one can check that the normalization
of equation 3.1 is correct.
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The second gaussian has the mean unaffected by learning, while its width
grows, roughly doubling in value when g reaches values of order 1 (if the
b factors, which are all positive, are also of similar magnitude). The mod-
ulating prefactor has a complex dependence on g, but is in any case larger
for Z± > 0.

The distribution depends on two additional parameters: the noise on
input variables, sd, and the input distribution Pg(g), which theoretically has
in�nite degrees of freedom. However, it depends on both in a rather mild
way, only through the averages x±, y±, w±, and z±. In fact, it can be seen that
for sd ! 0, that is, negligible input noise, the speci�c form of Pg becomes
irrelevant, and only its �rst two momenta matter. For the sake of simplicity,
we use a binary Pg in the graphs, but any other choice gives similar results.
The binary Pg reduces to a probability 1 ¡ a for the input activity to be 0,
and a probability a to be at the arbitrary level of 50 Hz; a parameterizes the
sparseness of the activity (Treves & Rolls, 1991) in that it gives, for such a
binary distribution, the fraction of active units.

The graphs show the effect of increasing values of the learning param-
eter g for three cases that correspond to negative, zero, and positive mean
levels of the output current, and thus reproduce three typical regimes of
�ring statistics. In each case, we set Z± D U± and equal, and very low, noise
levels in the input and output s2 D sd D 0.5 Hz. Three values of the learn-
ing parameter are included, which correspond to

p
Nc D 0.0,

p
Nc D 1.45,

and
p

Nc D 5.8. The resulting g values differ in each �gure as they de-
pend on the value of the hx0 factor and are reported in the legend. In any
case the three values correspond to no plasticity, intense plasticity, and very
strong plasticity (

p
Nc D 5.8 implies that even taking N ’ 104, a single

pattern accounts for about 1 /300 of the variance of synaptic weights, on

Figure 1: Facing page. The effects of learning on spike count distributions that
fall largely (a) below threshold, (b) around threshold, or (c) above threshold.
Each graph shows as solid curves the normal distribution P(u) for g D 0, and
the distributions obtained with two different values of the learning parameter,
while the dashed lines indicate the gaussian curves that best�t each distribution.
(a) The mean value of the original distribution is U± D Z± D ¡20 Hz and the two
nonzero values of the plasticity correspond to g D 1.21 and g D 4.86. (b) The
mean value is U± D Z± D 0 Hz, while the same plasticity values result in g D 1.44
and g D 5.77. (c) U± D Z± D 20 Hz, g D 1.30 and g D 5.21. The g values used
in each of the three panels are somewhat different because of the different h
factor, resulting from a different h(Z ¡ Z± )2i average. Other parameters: a D 0.5,
h D 0, sd D s2 D 0.5 Hz. Since differences in the portion of the distribution
below threshold are dif�cult to detect in practice, the most favorable situation
to experimentally observing learning effects is that exempli�ed in panel a, with
the original distribution largely below threshold, and the modi�ed distribution
substantially shifted to higher spike counts.
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average). The sparseness is set in each case at a D 0.5; different sparseness
values change the distributions quantitatively but not the qualitative effects
of learning. In the �rst case, Figure 1a, the original output distribution is
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above threshold only with its upper tail, Z± D ¡20 Hz. The main effect is a
shift of the bulk of the distribution to higher values, with its width remaing
constant, while the upper tail is broadened. This situation (mode of the
original distribution below threshold, that is quasi-exponential spike count)
corresponds to a fraction of cortical recordings and may be more typical of
hippocampal cells (Panzeri et al., 1997). In the second case, Figure 1b, the
mean output in the absence of learning is exactly at threshold, Z± D 0
Hz. The half distribution below threshold then stays unchanged, while the
half distribution above is broadened by learning. The latter effect is the
dominant one in the third case, Figure 1c, in which the original output
spike count has been taken to have a peak above threshold, Z± D 20 Hz. In
this case, only the lower tail of the distribution shifts, and in the opposite
direction, to lower values below threshold (an effect dif�cult to detect in
practice).

The effects on the distribution are somewhat more complex if U± 6D Z±,
and it would take several �gures to describe the detailed dependence on
h , sd , s2 , and so on. However, Figure 1 provides a useful indication of the
main effects—those that could be hoped to be observed in experiments—
and the low noise levels used make such effects particularly salient.

4 Can Deviations from Normality Be Observed?

Figure 1 also shows, with dashed lines, the normal distributions in u that
most closely match (in the least mean square sense) the actual distribution
for the two nonzero values of the learning parameter. Visual inspection of
the �gure clari�es the relative likelihood of observing the effects of learning
in experiments. In experiments in which the only data are the �ring statis-
tics to presumably well-learned visual stimuli, the effects of learning have
to be demonstrated as mismatches between the observed spike count and
the closest underlying normal distribution of (slow) �uctuations. Figure 1
indicates that such a mismatch will be substantial only below threshold, and
then more so for distributions concentrated below threshold (as the one in
the example of Figure 1a). The shape of the distribution of slow �uctuations
below threshold is dif�cult to extract, particularly with the limited data
available in practice, from the observed spike count. It is therefore likely
that deviations from normality, if they indeed occur as an effect of learn-
ing, will be observable only in experiments designed for that purpose, in
particular, involving extensive sampling (recording sessions). A thorough
analysis will be needed to disentangle among deviations from normality, if
observed, those due to learning from those due to any of the many simpli-
fying assumptions of our model.

The situation is different if the effects of learning can also be gauged by
the deviations of the observed spike count from a “control” spike count
obtained in equivalent conditions, but with the cell stimulated with novel
(nonlearned) stimuli. In that case the parameters of the normal distribution
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assumed by the S C F model for g D c D 0 can in principle be extracted
from the data and used to try to �t the spike count obtained with the familiar
(presumably learned) stimuli. Therefore, not only the shape of the distribu-
tion of slow �uctuations but also its estimated mean and variance will offer
indications about the effects of learning, whether they are consistent with
those predicted by the analysis and, if so, yield estimates of the learning
parameters g and c . Now deviations from normality due to other effects
can hopefully be subtracted out.

Experiments that in principle allow for such a comparison have been
carried out in the laboratory of James Ringo (Ringo & Nowicka, 1996). The
idea is to train a monkey to discriminate among a set of 12 to 40 visual im-
ages, which are generated as simple combinations of elementary shapes and
colors, with a given algorithm. These images are used throughout training
and become familiar to the monkey. During testing, the statistics of single
cell responses to such images are contrasted with the statistics of responses
to a much larger set of images, each of which is novel but generated by the
same algorithm. Under such conditions, any difference in the statistics can
be used, in particular the mean and variance of the spike count (Ringo &
Nowicka, 1996) and, after analysis with the S C F model, the estimated mean
and variance of the distribution of slow �uctuations. An analysis along these
lines is in progress (facing subtleties posed, as usual, by limited sampling)
and will be reported elsewhere.

In addition to limited sampling, the analysis of experimental recording
has to confront effects inherent in the behavior of real neurons, which have
not been considered in this simple model. For example, for experiments
in which steady stimuli are presented in successive trials, each for a �xed
time, in principle one has to take into account the variability in the latency
of the response, adaptation in the �ring, across-trials trends in the response
to the same stimulus, and so on. The quanti�cation of these effects requires
a study of its own, beyond the scope of this article, but their presence should
clearly be borne in mind.

In conclusion, a simple (threshold-linear) model predicts simple effects
of learning on the statistics of trial-to-trial �uctuations in the input current
to a neuron. These effects can be summarized by the next-order-cumulant
rule: below threshold, where the output, fast noise aside, is zero (i.e., con-
stant with respect to the input current), the effect of learning is a linear
increase in the �rst-order cumulant of the input distribution (i.e., its mean
value); above threshold, where the output is roughly linear in the input,
the effect is on the second-order cumulant (i.e., the variance). Experimen-
tal constraints make the validation of these model predictions not quite
straightforward; but if the effects turn out to be observable, they will allow
an estimate, at least as an order of magnitude, of the plasticity parameter,
that is, a measure of the amount of learning stored in the synapses to a
neuron.
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Appendix

The quantity we have evaluated, hP(u)i, is the average across all possible
values of the synaptic weight vector of the distribution P(u), which is itself
already integrated over all values of g, V, and Z. It can thus be written

hP(u)i D
Z Y

i

0

B@
dJS

ip
2p sJ

e
¡ ( JSi )2

2s2
J

1

CA
Y

i

0

B@
dJN

ip
2p sJ

e
¡ (JNi )2

2s2
J

1

CA

£
Z

dV dZ dgP(u|Z, V, g)P(V |g)P(Z |g)P(g). (A.1)

To proceed, one has just to insert the conditional probabilities from equa-
tions 2.3, 2.5, and 2.6 and carry out a succession of integrals. It is convenient
to write P(V |g) and P(Z|g) as pure gaussian integrals over the dummy
variables vi and f , of which Vi and Z are the real parts (e.g., Z D fH (f )).
Moreover, the normal distributions of the variables f and u around their
mean values can be written as gaussian integrals in the noise terms 2 S and
2 R. One can then integrate over the synaptic weights, obtaining

hP(u)i D
Z C1

¡1

d2 R

2p s2
2

exp
µ

i2 R(u ¡ U±)
s2

2
¡

(2 R)2

2s2
2

¶

£
Z C1

¡1

d2 Sdf

2p s2
2

exp
µ

i2 S(f ¡ Z±)
s2

2
¡

(2 S)2

2s2
2

¶ Z Y

i

ddidvi

2p s2
d

dgiPg(gi)

£exp i
X

i

(
2 Rh
s2

2

r
c

N
(gi ¡ Ng)[fH (f ) ¡ Z±]viH (vi) C

di (vi ¡gi)

s2
d

)

£ exp ¡
X

i

(
d2

i

2s2
d

C
s2

J

2
[gi2 S C cos(h )viH (vi )2 R]2

s4
2

C
s2

J

2
[sin(h )viH (vi )2 R]2

s4
2

)
. (A.2)

One may then introduce, in order to separate integration variables, the
average input parameters,

x D
1
N

X

i

(gi ¡ Ng)Vi (A.3)

y D
1
N

X

i
V2

i (A.4)
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w D
1
N

X

i
giVi (A.5)

z D
1
N

X

i
g2

i , (A.6)

which are also integrated over, and constrained to take the above values by
delta functions de�ned in terms of the conjugated parameters Qx, Qy, Qw, and
Qz. The intermediate formula becomes

hP(u)i D
Z

Ndxd Qx
2p

Z
Ndyd Qy

2p

Z
Ndwd Qw

2p

Z
NdzdQz

2p

£
Z C1

¡1

d2 R

2p s2
2

Z C1

¡1

d2 Sdf

2p s2
2

exp NF

£exp ¡
»

(2 R)2 C (2 S)2

2s2
2

C
s2

J N

2s4
2

[z(2 S)2 C 2w cos(h )2 S2 R C y(2 R)2]

)

£exp i
»

2 R(u ¡ U±)
s2

2
C

2 Rh
s2

2

p
c N[fH (f ) ¡ Z±]x

C
2 S(f ¡ Z±)

s2
2

¼
, (A.7)

where

exp F D
Z

dddv
2p s2

d

dgPg(g) exp

"
¡

d2

2s2
d

C i(x Qx C y Qy C w Qw C zQz)

#

£exp i

"
d(v ¡ g)

s2
d

¡ Qx(g ¡ Ng)vH (v)

¡Qyv2H (v) ¡ QwgvH (v) ¡ Qzg2

#
. (A.8)

Having set in the model s2
J N D 1, it is possible to calculate the integrals

in the N ! 1 limit with the saddle point method, which amounts to using
the formula,

lim
N!1

R
dnxg(x) exp(NF(x)) ¼

¼ g(xmax) exp[NF(xmax )]

s¡
2p

N

¢n
s

1
¡ det H[F(xmax)]

, (A.9)
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where x is a shorthand for the n D 8-dimensional vector (x, y, w, z, Qx, Qy, Qw, Qz),
which maximizes the exponent F in xmax, and H[F(xmax)] is the Hessian of
F at the maximum. One �nds the maximum of F at

Qx± D Qy± D Qw± D Qz± D 0 (A.10)

x± D
Z

dgPg(g)(g ¡ Ng)

"
gW

¡
g

sd

¢
C

sdp
2p

exp ( ¡ g2

2s2
d

!#
(A.11)

y± D
Z

dgPg(g)

"
(g2 C s2

d )W
¡

g

sd

¢
C

gsdp
2p

exp ( ¡
g2

2s2
d

!#
(A.12)

w± D
Z

dgPg(g)g

"
gW

¡
g

sd

¢
C

sdp
2p

exp ( ¡
g2

2s2
d

!#
(A.13)

z± D
Z

dgPg(g)g2, (A.14)

in which W is, as above, the normal distribution function. At the maximum,

F (x±, y±, w±, z±, Qx±, Qy±, Qw±, Qz±) D 0 (A.15)

det H [F(x±, y±, w±, w±, Qx±, Qy±, Qw±, Qz±) D ¡1, (A.16)

so we are left with

hP(u)i ¼ g(x±, y±, w±, z±, Qx± D 0, Qy± D 0, Qw± D 0, Qz± D 0)

D
Z C1

¡1

d2 R

2p s2
2

Z C1

¡1

d2 Sdf

2p s2
2

£exp i
»

2 R(u ¡ U±)
s2

2
C

2 Rh
s2

2

p
c N[fH (f ) ¡ Z±]x± C

2 S(f ¡ Z±)
s2

2

¼

£exp ¡
(

(2 R)2 C (2 S)2

2s2
2

C
s2

J N

2s4
2

[z±(2 S)2 C 2w± cos(h )2 S2 R C y±(2 R)2]

)
. (A.17)

The above expression is but a gaussian integral in R2 in the variables 2 S and
2 R; one has to carry out the �nal integral in df to obtain the expression in
the text.
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