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Beyond	the	Grid,	There	Is	Not	Much	Space

The discovery of grid cells in the medial entorhinal cortex (MEC) of the rat (Fyhn et al. 
2004) and of the precise triangular pattern of their firing fields (Hafting et al. 2005) requires 
a substantial reformulation of the questions relating to spatial cognition. It now appears, 
more clearly than before, that spatial computations per se are largely performed by the rat 
brain before the hippocampus is ever accessed, and culminate in a sort of universal map 
of allocentric space, in MEC layer II. Only a portion of the EC participates in such a map, 
which is applied and used irrespective of context, but in combination with context-specific 
signals that determine the activity of other parts of entorhinal cortex. The hippocampus 
operates on the universal map and on context-specific signals to create context-specific 
metric representations of space, which are stored in memory. The capacity of the hippo-
campus to rapidly switch between the representations of different contexts is illustrated 
by hippocampal global “remapping,” i.e., the transition to new, unrelated arrangements of 
place fields by the same population of recorded cells, after suitable behavioral manipula-
tions, and without concurrent MEC remapping (Fyhn et al. 2007). Consequently, under-
standing the circuitry of the hippocampus crucially involves understanding this capacity 
for decorrelating spatial representations, at least in rodents. It could well be that in other 
species complex memories of a less spatial nature take a more prominent role, in which 
case it would be even more appropriate to approach hippocampal decorrelation and 
memory processes at an abstract level, and independent of the possibly species-specific 
spatial processes so finely investigated with the rat model (see also chapter 2 of this 
volume, by Lucia F. Jacobs).

Which approaches can take us beyond a mere functional description of the role of dif-
ferent networks in the brain, and lead us to understand, in evolutionary terms, their design 
principles? In recent years I have studied three apparently disparate topics from a compu-
tational viewpoint: the lamination of the sensory cortex, the differentiation into subfields 
of the mammalian hippocampus, and the neuronal dynamics that might underlie the faculty 
for language in the human frontal lobes. These studies share a common perspective: they 
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all discuss the evolution of cortical networks in terms of their computations, quantified by 
simulating simplified formal models. They all dwell on the interrelationship between 
qualitative and quantitative change. Finally, they all include, as a necessary ingredient of 
the relevant computational mechanisms, a simple feature of pyramidal cell biophysics: 
firing-rate adaptation. In this chapter I formulate this general viewpoint, which does not 
usually find space in individual papers, and then I focus on the computational approach 
to hippocampal network design, seen in the context of the other two problems.

Looking	at	the	Past	Through	a	Spin	Glass

To approach each of the three problems, I have used the simulation of drastically simpli-
fied network models as the primary tool for analysis. Although the details of the models 
used were specific and were adapted to the problem being considered, the underlying 
approach has been similar across studies, and this is what I want to briefly discuss first.

An assumption motivating my approach is that the most important steps in the evolution 
of the nervous system are those that address computational demands, demands that are 
part of the “job specification” of the brain as an information-processing system, rather 
than steps that address, say, physiological or anatomical constraints. Among genuine 
information-processing problems, one that has been quantified through the use of formal 
models is the limit on the storage of memories that is imposed by the connectivity of a 
system of neuron-like units. Considering this limit is partly motivated by the observation 
that most gray-matter volume appears to be devoted to synaptic contacts (Braitenberg and 
Schüz 1991), as if the cortex had evolved to maximize connectivity and ultimately memory 
storage. The mathematical procedures that have been used to obtain a proper quantification 
of the relation between connectivity and memory were originally developed to analyze the 
physics of a class of materials known as spin glasses (see, e.g., Amit 1989). Spin glasses 
are endowed with interactions that can be characterized as disordered and hence as inter-
fering with each other, somewhat as, in a neural network, distinct memory representations 
interfere with each other at retrieval. Although spin glasses have nothing deeper in 
common with memory systems than this analogy and the mathematical procedures useful 
in analyzing them, the effectiveness and generality of these procedures have led some of 
us to approach many information- processing problems by relying on the analysis of spin 
glasses as a basic paradigm. Unwrapped from its technicalities, the spin-glass approach 
reduces essentially to the idea that cortical systems face a crucial connectivity constraint 
on extensive memory storage, that the constraint results from interference among memo-
ries, and that to analyze such interference we can borrow techniques from statistical 
physics.

The three problems I have considered are all, to some extent, spin-glass problems in 
disguise.
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The	Phase	Transition	That	Made	Us	Mammals

Mammals originate from the therapsids, one order among the first amniotes, or early 
reptiles, as they are commonly referred to. They are estimated to have radiated away 
from other early reptilian lineages, including the anapsids (the progenitors of modern 
turtles) and diapsids (out of which other modern reptilians, as well as birds, derive)  
some 300 million years ago (Carroll 1988). Perhaps mammals emerged as a fully dif-
ferentiated but still rather homogeneous class out of the third-to-last of the great extinc-
tions, in the Triassic period, with their explosive diversification occurring much  
later (Bininda-Emonds et al. 2007). The changes in the organization of the nervous 
system that mark the transition from proto-reptilian ancestors to early mammals can be 
reconstructed only indirectly. Along with supporting arguments from the examination of 
endocasts (the inside of fossil skulls; Jerison 1990) and of presumed behavioral patterns 
(Wilson 1975), the main line of evidence is the comparative anatomy of present-day 
species (Diamond and Hall 1969). Among a variety of quantitative changes in the  
relative development of different structures—changes that, by tuning the expression of 
specific genes (Mallamaci and Stoykova 2006) have been extended, accelerated,  
and diversified during the entire course of mammalian evolution (Finlay and Darlington 
1995; Barton 2007)—two major qualitative changes in the forebrain stand out: two new 
features that, once established, characterize the cortex of mammals as distinct from that 
of reptilians and birds. Both these changes involve the introduction of a new “input” 
layer of granule cells.

In the first change, it is the medial pallium (the medial part of the upper surface of each 
cerebral hemisphere, as it bulges out of the forebrain) that reorganizes into the modern-day 
mammalian hippocampus. The crucial step is the detachment of the most medial portion, 
which loses both its continuity with the rest of the cortex at the hippocampal sulcus and 
its projections to the dorsolateral cortex (Ulinski 1990). The rest of the medial cortex 
becomes Ammon’s horn and retains the distinctly cortical pyramidal cells, while the 
detached cortex becomes the dentate gyrus, with its population of granule cells, which 
now project, as a sort of preprocessing stage, to the pyramidal cells of field CA3 (Amaral, 
Ishizuka, and Claiborne 1990). In the second change it is the dorsal pallium (the central 
part of the upper surface) that reorganizes internally, in areas that process topographic 
modalities, to become the cerebral neocortex. Aside from special cases, most mammalian 
neocortices display the characteristic isocortical pattern of lamination, or organization into 
distinct layers of cells (traditionally classified as 6, in some cases with specialized sublay-
ers; see Yamamori and Rockland 2006). A prominent step in lamination is granulation, 
whereby the formerly unique principal layer of pyramidal cells is split by the insertion of 
a new layer of excitatory, but intrinsic, granule cells, in between the pyramidal cells of 
the infragranular and supragranular layers. This is layer IV, where the main ascending 
inputs to cortex terminate (Diamond et al. 1985).
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Lamination	May	Reconcile	Memory	with	Topography

I have formulated a hypothesis (Treves 2003) that accounts for granulation, and for the 
differentiation between supra- and infragranular pyramidal layers, as advantageous to 
support fine topography in the sensory maps that mammals have evolved, over and beyond 
the gross topography that limits the usefulness of sensory maps in reptiles. Fine topography 
implies a generic distinction between “where” information, explicitly mapped on the corti-
cal sheet, and “what” information, represented in a distributed fashion as a distinct firing 
pattern across neurons. Memory patterns can be stored on recurrent collaterals in the 
cortex, and such memory can help substantially in the analysis of current sensory input. 
The effective use of recurrent collaterals, because of the “spin-glass” limit on memory 
storage load, requires afferent projections to the cortex that are spread over a large patch; 
whereas the precise localization of a stimulus on the sensory map requires narrowly 
focused afferents (see Treves 2003 for the complete argument; Roudi and Treves 2006 for 
the analytical treatment of a single-layer model). The simulation of a simplified network 
model demonstrates that a nonlaminated patch of cortex with a single characteristic spread 
of afferent connections must compromise between transmitting “where” information or 
retrieving “what” information. The differentiation of a granular layer affords a quantitative 
advantage by allowing focused afferents to the granular units together with widespread 
afferents to pyramidal units. For this purely anatomical differentiation to be effective, 
however, it must be accompanied by a physiological differentiation: pyramidal units must 
adapt their firing—that is, decrease their response to steady inputs—much more than 
granular units. With this further difference, the pyramidal layers can select the correct 
attractor for memory retrieval before the granular layer, which adapts less, partially takes 
over the dynamics, and focuses activity on the cortical spot that most accurately reflects 
the position of the sensory input.

Adaptation thus effectively separates out in time, albeit only partially, two information-
processing operations that occur in different spaces: the retrieval of memories in the 
abstract space of attractors and the accurate relay of stimulus position in the physical space 
of the cortical surface. The advantage of the differentiation is quantitatively minor (see 
figure 3.1). My hypothesis is that a major qualitative step, the transition from a simpler 
paleocortex to a more elaborate isocortex, came about just in order to gain a few percent 
more bits in the average combined value of “what” and “where” information.

The	Phase	Transition	That	Made	Us	Human

Our lineage is estimated to have radiated away genetically from those of other great apes 
perhaps 5 million to 6 million years ago. Functionally, a number of lines of evidence point 
at a stage of accelerated change and complexification in human behavior, a so-called 
cognitive revolution, taking place much later, perhaps 50,000 years ago. In terms of the 
organization of the nervous system, no salient qualitative trait distinguishes us from our 
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closest cognates, such as chimps or gorillas. The only clear structural pattern is one of 
quantitative change: with respect to other primates—but not necessarily with respect to 
all other mammals (Goffinet 2006)—an increase is observed in some key parameters of 
cortical extension, arealization (Krubitzer and Huffman 2000), and connectivity (Elston 
2000). It seems unlikely, therefore, that a new gene may have triggered the development 
of uniquely human capacities without apparently inducing any detectable change of design 
in the brain. Yet the scientific community has been reluctant to abandon the expectation, 
naively raised by popular media, of a quick and ready-to-use solution to the question of 
what makes us human. Many respectable scientists have continued to harbor the hope 
that—if not a gene, if not a magic molecule—at least a dedicated piece of neural circuitry 
may be found that could explain, for example, the human faculty of language.

Understanding the neural basis of higher cognitive functions such as those involved in 
language requires in fact a shift from a localization approach to an analysis of network 
operation. Localization approaches have run their course, and they have highlighted a 
substantial continuity between the cortical areas most directly implicated in language 
functions in the human brain and homologue areas in other primates. Finding out where 
language “is” has not provided a shred of a clue as to how it came about. Hauser and col-
leagues, in a recent proposal (2002), point instead to infinite recursion as the core process 
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model. Simulation details in Treves (2003).
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involved in several higher functions, including language, forcefully arguing for the hypoth-
esis that the roots of language may be in a new process rather than in a new structure. The 
proposal offers a way out of the reductionist cul-de-sac and it challenges cortical-network 
theorists to describe network behavior that could subserve infinite recursion.

Building on a variant of the notion that language may have evolved out of the semantic 
and procedural memory systems (Ullman 2001) I have been exploring the hypothesis that 
a capacity for infinite recursion may be associated with the natural adaptive dynamics of 
large semantic associative networks (Treves 2005). I have used a network of Potts (mul-
tistate) units to simulate a semantic memory system distributed over many cortical modules, 
and I have tested its joint ability to both retrieve a semantic memory based on a partial 
cue and, subsequently, when deprived of further inputs, also to follow a latching dynamics 
in attractor space, jumping from one memory to the next with structured transition proba-
bilities. While the retrieval ability is limited by an appropriate variant of the spin-glass 
constraint (first considered by Kanter 1988), the latching ability requires a sufficient 
density of attractors. Since the spin-glass constraint limits the number of attractors pro-
portionally to the connectivity (Kropff and Treves 2005), the joint ability for retrieval and 
latching can be realized only once the connectivity of the modular system becomes, in 
evolution, sufficiently extensive. At that point, after a kind of percolation-phase transition, 
the system is both able to retrieve and to support structured transition probabilities between 
global network states. The crucial development endowing a semantic system with a non-
random dynamics would thus be an increase in connectivity, perhaps to be identified with 
the dramatic increase in spine numbers recently observed in the basal dendrites of pyra-
midal cells in human and Old World monkey frontal cortex (Elston 2000). Once again the 
crucial step in the argument is a quantitative analysis based on network simulations, which 
spin-glass mathematical methods promise to consolidate, to describe a phase transition 
that could not be accessed with mere qualitative reasoning.

The	Differentiation	of	the	Hippocampus

Focusing now on the hippocampus, one may ask, what is the evolutionary advantage, for 
mammals, brought about by the changes mentioned above, in its internal organization? 
Since the seminal paper by David Marr (1971), and well before awareness developed 
among modelers of the evolutionary specificity of hippocampal organization (Treves  
et al. 2008), attempts to account for its remarkable differentiation into three main subfields 
have been mostly based on the computational analysis of the role of the hippocampus in 
memory. With the simultaneous discovery of place cells (O’Keefe and Dostrovsky 1971), 
the rodent model seemed to point at a special hippocampal role for spatial representation 
and spatial memory. Although an accumulating body of evidence has suggested that hip-
pocampal activity may not be exclusively related to space (Eichenbaum 2000), the preva-
lence of spatial correlates in the rat has encouraged speculations on the evolution of the 
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hippocampus based on spatial function. The hippocampus, however, is important for 
spatial memory also in birds (Bingman and Jones 1994; Clayton and Krebs 1995; Clayton 
et al. 2003; Bingman and Sharp 2006). The avian and mammalian hippocampi are struc-
turally very different, with birds perhaps having stayed close to their reptilian progenitors 
in this respect, and mammals having detached the dentate gyrus from Ammon’s Horn, as 
mentioned above and further discussed by Treves and colleagues (2008). A reasonable 
hypothesis may then be that the new mammalian design somehow enhances the capability 
of the hippocampus to serve as a memory store, perhaps with the nuance of a prevailingly 
spatial memory store.

It is plausible that the primitive cortical tissue in early reptile-like ancestors of both 
mammals and birds was rich in recurrent collaterals, much like region CA3 in the modern 
mammalian hippocampus. Simplified models show how a recurrent network can naturally 
retrieve distributions of activity from partial cues as an autoassociative memory (Hopfield 
1982), provided the synapses on the recurrent connections among its pyramidal cells are 
endowed, as likely was the case for primitive cortex, with associative, “Hebbian,” plastic-
ity, such as that based on NMDA receptors (Collingridge and Bliss 1995). That cortex can 
then be conceptualized as having operated, at least, as a content-addressable memory for 
distributed activity patterns—provided it had an effective way of distinguishing its operat-
ing modes. A generic problem with associative memories based on recurrent connections 
is to distinguish a storage mode from a retrieval mode. To be effective, recurrent connec-
tions should dominate the dynamics of the system when it is operating in retrieval mode. 
While storing new information, instead, the dynamics should be primarily determined by 
afferent inputs, with limited interference from the memories already stored in the recurrent 
connections, which should, however, modify their weights to store the new information 
(Treves and Rolls 1992).

Distinguishing	Storage	from	Retrieval

The most phylogenetically primitive solution to effect the dual operating mode is to use 
a modulator that acts differentially on the afferent inputs (originally, those arriving at the 
apical dendrites) and on the recurrent connections (predominantly lower on the dendritic 
tree). Acetylcholine (ACh) can achieve this effect, exploiting the orderly arrangement of 
pyramidal cell dendrites in the cortex (Hasselmo and Schnell 1994). Acetylcholine is one 
of several very ancient neuromodulating systems, well conserved across vertebrates, and 
it is likely that it operated in this way already in the early reptilian cortex, throughout its 
subdivisions. Mike Hasselmo has emphasized this role of ACh in memory with a combina-
tion of slice work and neural network modeling (Hasselmo et al. 1995, 1996). This work 
has been focused on the hippocampus, originally the medial wall, and on piriform cortex, 
originally the lateral wall. The proposed mechanism, however, has no reason to be cir-
cumscribed to these regions, and it could well operate across cortical systems involved in 
memory storage.
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One flaw of an ACh-based mechanism is that it requires an active process that distin-
guishes storage from retrieval periods, and regulates Ach release accordingly. In the hip-
pocampus, however, it appears that mammals have devised a more refined expedient to 
separate storage from retrieval, which can efficiently perform both functions also in a 
passive mode: inserting a preprocessor before the CA3 memory network. The preprocessor 
should instruct which units in CA3 should fire in a new distribution of activity to be stored 
as the memory trace of a new item to be remembered. As a simplest model, one can think 
of a preprocessing network without recurrent connections, which simply forms new arbi-
trarily determined representations on the fly, and through a system of one-to-one connec-
tions (“detonator” synapses) imposes these new representations onto CA3 (McNaughton 
and Morris 1987). In fact, the one-to-one correspondence is not needed: what enriches the 
representation to be stored of meaningful content, against the interference of recurrent 
connections, is just a system of sparse and strong connections from a sparsely coded 
feedforward network. Developing the preprocessor notion, we have proposed a quantita-
tive estimate of the amount of new information that could be encoded in CA3 representa-
tions with different input systems (Treves and Rolls 1992; see figure 3.2).
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The argument is based on the “quasi-theorem,” which has never been satisfactorily 
proved but empirically holds true, that an associative memory can hold up to I/(NC) ≈ 
0.2–0.3 bits of information per synapse, where N is the number of units and C the average 
number of connections, or synapses, per unit. Since the storage capacity, or maximum 
number of discrete patterns of activity that can be individually retrieved, is estimated as 
pc ≈ 0.2–0.3 C/[a ln(1/a)], where a is the sparsity of the stored representation (see Treves 
and Rolls 1991), information-theoretical efficiency requires that each such representation 
should contain at least roughly i ≈ N a ln(1/a) bits of new information. Per unit, this is 
the amount of information of a noiseless binary variable (in the sparse a << 1 regime and 
apart from the ln(2) factor). Thus, efficient storage requires that CA3 pyramidal units be 
as informative about new contents as, roughly, binary units can be. The challenge for 
afferent inputs is to prevail over the recurrent connections, which do not impart new con-
tents to a pattern of activity to be stored. Figure 3.2 shows that this challenge can be met 
by afferent inputs with the characteristics of the mossy fibers, but not by those with the 
characteristics of the perforant path to CA3 (Treves and Rolls 1992).

Mapping	Continuous	Attractors	onto	Discrete	Memories

The argument above has been worked out for the case of discrete memory items, which 
can be taken as a model of episodic memory. Initially, in fact, the neural network 
approach, aiming at quantifying the capacity of associative memories, has been formu-
lated in terms of fully connected recurrent architectures and discrete memory states, 
conceived—in the limit of no fluctuations—as points in the multidimensional space in 
which each component corresponds to the firing rate or in general to the activity of one 
unit (Hopfield 1982). This formulation, which was the starting point for physicists inter-
ested in applying powerful mathematical analysis techniques, had been preceded by the 
more rudimentary analysis of David Marr. Marr also thought in terms of discrete memory 
states, and had guessed the importance of recurrent collaterals, a prominent feature of 
the CA3 subfield (Amaral et al. 1990), even though his own model was not really 
affected by the presence of such collaterals, as shown later (Willshaw and Buckingham 
1990). Although the paper by Marr was nearly simultaneous with two of the most excit-
ing experimental discoveries related to the hippocampus, that of place cells (O’Keefe 
and Dostrowski 1971) and that of long-term synaptic potentiation (Bliss and Lømo 1973), 
for a long time it did not seem to inspire further theoretical analyses, with the exception 
of an interesting discussion of the collateral effect in a neural network model (Gardner-
Medwin 1976). One factor was probably the mathematical “technology” available to 
Marr, inadequate to really investigate his models quantitatively. Marr himself become 
disillusioned with his youthful enthusiasm for unraveling brain circuits, and in his mature 
years took a much more sedate, and less neural, interest in vision. From the 1987 paper 
by McNaughton and Morris, however, an increasing number of other investigators redis-
covered the young Marr, and tried to elaborate those ideas in order to understand the 
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operation of hippocampal circuits. Edmund Rolls (1989) and others again emphasized 
the crucial role probably played by the CA3 recurrent collaterals and made explicit the 
relation to the auto-associative memory networks studied quantitatively by the physicists 
(Amit et al. 1987). In establishing the relation, the salient spatial character of hippocam-
pal memory correlates was provisionally neglected, to take advantage of the formal 
models based on discrete attractor states.

As a matter of fact, an autoassociator may subserve both the storage of discrete memo-
ries as point-like attractor states or of more complex memories—for example, synfire 
chains (Abeles 1991), which can be individually distinct and discrete or organized in 
arbitrary branching patterns—or continuous attractors, when network dynamics converges 
to fixed points that are continuously arranged on some manifold in the high–dimensional 
activity space. Simple examples of continuous attractors are present in models of orienta-
tion selectivity by horizontal interaction in visual cortex (Sompolinsky and Shapley 1987) 
or of the head direction system (Skaggs et al. 1995). These models do not store informa-
tion in long-term memory, and in the continuum limit their fixed points comprise a single 
(in these particular cases, 1D) manifold. Samsonovich and McNaughton’s multiple-chart 
model (1997) demonstrated instead, in the context of a model for path integration, how 
one could conceive of fixed points organized in multiple 2D continuous manifolds, each 
of which maps the animal position in a distinct environment. Exploration of a new envi-
ronment leads to the formation of a new chart (ab initio, or using some prewired connec-
tivity; it may be difficult to distinguish the two possibilities). The question then arises of 
how many charts a given recurrent network can hold in long-term memory.

The storage capacity of a multichart recurrent autoassociator was analyzed by Battaglia 
and Treves (1998), who extracted a simple rule of thumb for assessing the memory load 
of a chart. A chart that maps a finite environment onto the activity of place-cell-like units 
is equivalent, capacitywise, to as many discrete attractor states as there are locations, in 
the environment, for which the activity vectors are pairwise decorrelated. If the 2D envi-
ronment is represented by place-cell-like units, which are quiescent outside their place 
field, the decorrelation radius is roughly the radius of the typical place field, which is itself 
proportional to the linear size of the environment times the square root of the sparsity of 
the neural representation. Thus, if, say, some dozen typical CA3 fields “fit”, once properly 
juxtaposed, in a typical rat recording box, the memory load of the chart corresponding to 
that box is roughly equivalent to a dozen discrete memories of equal sparsity. The number 
of such charts, or distinct environments that can be held simultaneously in the network, 
is limited by the critical value pcharts ≈ 0.1 C / ln(1/a) (see figures 1 and 2 in Battaglia and 
Treves 1998). The apparent paradox that fewer charts can be stored if they are sparser (a 
lower a parameter makes the denominator larger) can be understood by considering that 
sparser activity, in a large net, leads to better spatial resolution, and hence requires more 
discrete fixed-point attractors to cover, as effectively smaller tiles, the whole environment. 
This chart capacity again respects the unproven associative memory theorem mentioned 
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earlier, in that the maximum amount of information that can be retrieved per synapse is 
about 0.15 bits, as shown in figure 5 of Battaglia and Treves (1998).

The	Dentate	Gyrus	as	a	Chart	Preprocessor

This mapping quantifies the retrieval capacity for charts and opens the way for once more 
investigating the issue of whether enough new information can be stored in each repre-
sentation to fully exploit the network capacity for information retrieval. In other words, a 
quantitative analysis of information storage in a model CA3 network, operating with and 
without dentate gyrus, would be needed to assess again any information-theoretical advan-
tage in forming new representations. Unfortunately, the very 2D nature of charts makes a 
simplified mathematical analysis of information storage like the one in Treves and Rolls 
(1992) not applicable, because neighboring locations on one new chart generate correlated 
activity that cannot be easily dissected from the interfering correlations with other, unre-
lated, charts. Mathematical tools based on the newly revealed spatial representation in the 
dentate are being developed (Treves, Cerasti, and Papp 2008); meanwhile I have reported 
simplified simulations (Treves 2004). Within their limits, the simulations confirm the 
essential role of the inputs from the dentate gyrus to CA3 in guiding the learning of a new 
chart (see figure 3.3).
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Localization accuracy as a function of training session in hippocampal network models with and without the 
differentiation between CA3 and CA1, and with and without mossy fiber inputs. In the differentiated model,  
the position of the virtual rat is decoded from the CA1 representation. With reference to figure 3.4, cue size is 
Q = 0.2. Other details in Treves (2004).
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It is worth noting that the beneficial forcing effect of mossy fiber inputs to CA3 is even 
more salient when assessed indirectly in the information content or localization accuracy 
afforded by representations in CA1, whose units are only indirectly influenced by dentate 
gyrus activity.

These simple simulations, while supportive of a specific role of the dentate gyrus in 
information storage, did not take into consideration two major recent findings. One con-
cerns the differences emerging between CA3 and CA1 in the representation of similar, 
correlated environments; these will be discussed further. The other is the novel observation 
that the activity of dentate units, previously deemed to be very sparse, seems to be con-
centrated on a relatively small fraction of newly generated granule cells (Ramirez-Amaya 
et al. 2006), which are biophysically indistinguishable from older neurons (Laplagne  
et al. 2006) but appear to “take care” of representing new information more than older, 
and perhaps already committed, neurons. New recording experiments (Leutgeb et al.  
2007) may help clarify how space is coded by dentate granule cells.

At any rate, the crucial prediction of the argument based on the analysis of discrete 
memories, if applied to charts, is that the inactivation of the mossy fiber synapses should 
impair the formation of new charts, but not the retrieval of previously stored ones. This 
prediction has recently been supported at the behavioral level (Lassalle et al. 2000): mice 
with a temporary inactivation supposedly selective for the mossy synapses were impaired 
in finding the hidden platform in a Morris water maze, but not if they had learned its 
location the previous week. A consistent result was more recently obtained in rats with a 
different, irreversible procedure of selective lesions, and using indicators that only very 
approximately dissociate storage from retrieval (Lee and Kesner 2004): the strong double 
dissociation found between perforant path and dentate lesions is remarkable, given the 
overlapping nature of the behavioral measures. While waiting for neurophysiological 
experiments to test the prediction at the neural level, the tentative conclusion from behav-
ioral tests in rodents is that indeed the dentate gyrus may have evolved in order to facilitate 
the storage of new information in the recurrent CA3 network. If validated, this hypothesis 
suggests that a quantitative information-theoretical advantage may have favored a qualita-
tive change, such as the insertion of the dentate gyrus in the hippocampal circuitry.

CA1	as	a	Cleanup	Device?

The DG argument does not itself address the CA3-CA1 differentiation, which is equally 
prominent in the mammalian hippocampus. If DG can be understood as a CA3 preproces-
sor, perhaps CA1 should be understood as a CA3 postprocessor. In reptiles, CA3 and CA1 
are structurally homogeneous contiguous portions of the dorsomedial cortex. As this is 
reorganized into the mammalian hippocampus, CA3 and CA1 differentiate in two impor-
tant ways. First, only CA3 receives the projections from the dentate gyrus, the mossy 
fibers. Second, only CA3 is dominated by recurrent collaterals, whereas most of the inputs 
to CA1 cells are the projections from CA3, the Schaffer collaterals (Amaral et al. 1990). 
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The simplest version of the postprocessor notion is that it may be useful to add a further 
feedforward associative network, to clean up memory representations already retrieved, 
but in incomplete form, by the CA3 network. The extra stage of recoding, if based on 
more neurons (there are more pyramidal cells in CA1 than in CA3 across all species where 
numbers have been estimated) could also add robustness to the retrieved representation. 
Yet a mathematical network analysis of the cleanup notion—in the framework of discrete 
“episodic memory” fixed-point attractors and neglecting the separate entorhinal cortex 
inputs directly to CA1—failed to illustrate impressive advantages to adding such a post-
processing stage (Treves 1995). Information content grows from CA3 to CA1, but by a 
minor amount.

A more interesting suggestion comes from a review of neuropsychological studies in 
rats (Kesner et al. 2002) that indicate a more salient role for CA1 along the temporal 
dimension. CA3 may specialize in associating information that was experienced strictly 
at the same time, whereas CA1 may more than CA3 link together information across 
adjacent times. This may lead to the storage of sequences of instantaneous events, that 
together build up an episode, or, if the events are not parsed, to effectively continuous 
attractors along the temporal dimension. A way to formulate a qualitative implication of 
such a putative functional differentiation is to state that CA1 is important for prediction, 
i.e., for producing an output representation of what happened just after whatever is repre-
sented by the pattern of activity retrieved at the CA3 stage. Note, however, that reading 
the review by Kesner and colleagues (2002) in full indicates that the table at the end is a 
well-meaning simplification. Their figure 31.2 suggests that CA3 may be involved in 
temporal pattern separation just as much as CA1. Moreover, the role of either DG or CA3 
in temporal pattern association has not been satisfactorily assessed. Further, available 
studies on the role of CA1 fail to make a clear distinction between tasks in which massive 
hippocampal outputs to the cortex are crucial and tasks in which a more limited hippo-
campal influence on the cortex may be sufficient. In the first case, lesioning CA1 should 
have an effect independent of what CA1 specifically contributes to information processing, 
simply because one is severing the main hippocampo-cortical output pathway. In  
the second, CA3 outputs through the fimbria/fornix could enable hippocampus-mediated 
influences to be felt, even if the specific CA1 contribution is absent.

Testing	the	Prediction	of	Predictive	Coding

I have explored the hypothesis that the differentiation between CA3 and CA1 may help 
solve precisely the computational conflict between pattern completion, or integrating 
current sensory information on the basis of memory, and prediction, or moving from one 
pattern to the next in a stored continuous sequence. To obtain results comparable with 
typical rat experiments, I have used the same neural network simulations of a virtual rat 
exploring a small toroidal environment as the ones analyzing the role of dentate inputs to 
CA3 (Treves 2004). The network model was thus trained to acquire a chart representation 
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of the explored environment as a spatially continuous attractor. Temporal continuity along 
each trajectory was used to assess the extent to which CA3 would take care of (spatial) 
pattern completion, while CA1 would concentrate on prediction (i.e., temporal pattern 
completion). With the simulations one can, at the price of some necessary simplification, 
compare the performance of the differentiated circuit with a “uniform,” nondifferentiated 
circuit of equal number and type of components (one in which CA3 and CA1 have identi-
cal properties, e.g., both receive mossy fibers and are interconnected with recurrent col-
laterals). Lesion studies, by contrast, can only compare the normal circuit with others with 
missing components, making it difficult to assess the significance of a differentiation.

The functional differentiation hypothesis was not really convincingly supported by 
neural network simulations. The conflict between spatial pattern completion, as quantified 
by localization accuracy, and temporal prediction indeed exists, but two mechanisms that 
would more directly relate to a functional CA3-CA1 differentiation were found unable to 
produce genuine prediction. Instead, a simple mechanism based on firing-frequency adap-
tation in pyramidal cells was found to be sufficient for prediction, with the degree of 
adaptation as the crucial parameter balancing retrieval with prediction. This is evident 
from the simulations of the nondifferentiated model. The differentiation between the con-
nectivity of CA3 and CA1 does not really influence the predictiveness, or degree of 
anticipation, of hippocampal activity. The differentiation has a significant positive effect, 
however, and, in particular for a given anticipatory interval, it significantly increases, in 
the model, the information content of hippocampal outputs, making the CA1 representa-
tion more informative than the CA3 one (or the nondifferentiated one) when used to 
decode the position of the virtual rat. Different degrees of adaptation in CA3 and CA1 
cells were not, however, found to lead to better performance, further undermining the 
notion of a full qualitative functional dissociation. There may, therefore, be just a plain 
quantitative advantage in differentiating the connectivity of the two fields, just as the 
hypothesis about isocortical lamination holds that there may be just a plain quantitative 
advantage in differentiating connectivity across layers. In a sense, the outcome of the 
simulations supports a revised version of the postprocessing cleanup notion. As figure 3.4 
shows, the information content in CA1 in the differentiated model is higher than in CA3, 
with the nondifferentiated model midway between the two.

Correlated	Environments	Stimulate	Orthogonal	Ideas

As for the lamination study, the analysis of this hypothesis about the differentiation of 
hippocampal subfields was based on the simulation of two simplified models, uniform and 
differentiated, tested on the same task, in this case acquiring a memory chart for a single 
spatial environment. The accuracy of spatial memory retrieval is subject to the general 
“spin-glass” limit, and it is further modulated by connectivity details. Recent results 
obtained recording the activity of multiple hippocampal cells in the labs of Edvard and 
May-Britt Moser (Leutgeb et al. 2004) and of James Knierim (Lee et al. 2004) indicate a 
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potentially much more dramatic differentiation between CA3 and CA1 units, which has 
to do with their ability to distinguish among several spatial environments. Activity in CA3 
and CA1 was found to differ remarkably when rats were asked to explore environments 
that some cues suggested were the same, and others, that they were different. CA3 appears 
to take an all-or-none decision, usually allocating nearly orthogonal neural representations 
to even very similar environments and switching to essentially identical representations 
only above a high threshold of physical similarity. Activity in CA1, on the other hand, 
varies smoothly to reflect the degree of similarity. This functional differentiation and the 
finding that new representations in CA3 emerge slowly, presumably through iterative 
processing, are entirely consistent with the recurrent character of the CA3 network and 
the prevailing feedforward character of the CA1 network. Further surprises have come 
from applying a “morphing” paradigm, to test spatial representations in environments 
quasi-continuously changed between two well-learned extremes (Willis et al. 2005; 
Leutgeb et al. 2005).

In their original form (Treves 2004), the connectivity differentiation models addressed 
the mechanism linking firing-rate adaptation to the prediction of spatial position within a 
single environment but could not capture any advantage brought about by the connectivity 
differentiation having to do with multiple maps. The experimental results have stimulated 
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Localization accuracy as a function of cue size, after extensive training, in hippocampal network models with 
and without the differentiation between CA3 and CA1 (and with mossy fiber inputs). In the differentiated model, 
the position of the virtual rat is better decoded from the CA1 than from the CA3 representation. Simulation 
details in Treves (2004).
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the development of more elaborate computational models, which however still have to 
satisfactorily find their way around the spin-glass limit on memory retrieval (see Papp  
et al. 2007). In fact, training virtual rats on several virtual environments, correlated or not, 
requires them to be endowed with large virtual brains. Simulations with networks of a 
thousand units or so, which were adequate for the single-environment case, have to be 
extended to networks larger by one or two orders of magnitude, which have become time-
consuming to simulate extensively. Even then, because of the heavy memory load for 
multiple environments (Battaglia and Treves 1998), the representations tend to collapse 
on each other, making the comparison with real rat data more problematic (Papp and 
Treves 2008). One observation that emerges from this study, already at this stage, is that 
CA3 representations tend to be more fragmented, in the sense that neural activity in pairs 
of separate locations can be identical, or quite different, in violation of the metric nature 
of the environment. CA1 representations tend to be relatively smoother, with a higher 
match between the distance among locations and the difference among their neural activity 
vectors. This smoothing function for CA1 strongly resembles the cleanup notion originally 
investigated for discrete memories, which was relevant also to the notion of prediction, 
that implies continuity in time but which now finds a more interesting role in reproducing 
the continuity of physical space. Thanks to the experimental findings with correlated 
environments, we may be beginning to finally “understand” CA1 and to make some 
(spatial) sense of the events that drastically altered the structure of our medial pallium 
hundreds of millions of years ago.

Quality	vs.	Quantity	and	the	Need	to	Adapt

All three studies reviewed here require firing-rate adaptation as a crucial ingredient in 
producing, respectively, a separation between the processing of “what” and “where” 
information, transitions to different semantic attractor states, and the prediction of future 
locations in a spatial environment. In all three, memory retrieval is limited by the “spin-
glass” constraint. A fundamental dissimilarity is in the relation between qualitative and 
quantitative changes. In the two “mammalian” studies, the hypothesis is that a major 
qualitative structural change may have served to produce a solely quantitative functional 
advantage. Although the first such hypothesis seems a posteriori more convincing than the 
second, both are methodologically valid a priori, and in fact it has been noted (Carroll 
1988) that often in evolution major steps may subserve only “small” improvements in 
survival ability. In the “human” study, the hypothesis considered has the opposite flavor: 
a quantitative change in connectivity (admittedly, a major change) would be enough to 
produce a phase transition to an entirely novel computational faculty—namely, infinite 
recursion—with its collateral effects including the emergence of language in humans. 
Although all these hypotheses require much further testing, they serve to underscore the 
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often subtle relations between structure and function that can apply to cortical networks, 
mediated by the collective emergent dynamics of large populations of neurons.
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