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BF Theory in ( d+1)-dimensions

STM =

∫

Md+1

k

2π
Ap ∧ dBd−p (SBF )

−1

2e2
dAp ∧ ∗dAp +

(−1)d−1

2g2
dBd−p ∧ ∗dBd−p

where k is a dimensionless parameter.

Topological mass m = keg
2π .
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(2+1) dimensions

STM =

∫

M2+1

k

2π
A1 ∧ dB1

−1

2e2
dA1 ∧ ∗dA1 +

−1

2g2
dB1 ∧ ∗dB1

SBF ≡ SCS with a mixed CS term.
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JJA on a square lattice can be exactly mapped in the
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Phases of BF model in (2+1) dimensions

Analysis based on:
free energy arguments;
expectation value of Wilson and ’t Hooft loops.
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confinement of vortices , Meissner effect −→
superconducting phase.

Dual phase: magnetic condensation, confinement of
charges −→ insulating phase.

Metallic, no condensation phase.

No phase in which both topological defects are dense.

Phase transition a T = 0 between the superconducting
and insulating phase.

Perfect agreement with the phase diagram of JJA.
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Ground State Degeneracy (Torus)

Electric condensation:

ZEC =

∫

DADBDQ exp−S(A1, B1, Q1) −→

−→

∫

DADBc exp−S(A1, B
c
1)

.
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Ground State Degeneracy (Torus)

Electric condensation:

ZEC =

∫

DADBDQ exp−S(A1, B1, Q1) −→

−→

∫

DADBc exp−S(A1, B
c
1)

.

Define:
AR

i = (Ai + Bc
i ) ;AL

i = (Ai − Bc
i )

.
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gauge transformations:

AR
i → AR

i + diλ ;AL
i → AL

i + diχ

λ(xi + Pi) = λ(xi) + 2πni;

χ(xi + Pi) = χ(xi) − 2πni

Pi(i = 1, 2) periods of the torus.
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gauge transformations:

AR
i → AR

i + diλ ;AL
i → AL

i + diχ

λ(xi + Pi) = λ(xi) + 2πni;

χ(xi + Pi) = χ(xi) − 2πni

Pi(i = 1, 2) periods of the torus.

There is only one generators of large gauge
transformations per homology cycle.
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The action of the generators of large gauge
transformations on physical states gives (semi)periodic
conditions solved by:

(k1k2)
2 theta functions if both topological defects are

dense (not allowed dynamically);
(k1k2) for electric or magnetic condensation phase;
no degeneracy in the metallic phase.
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BF versus conventional superconductors

BF: gap arises from topological mechanism.
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effective BF theory with k = N ;
k = 2 for Cooper pairs and ground state degeneracy
k2 = 4 on the torus (Hansson et al.).
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Incompressibility

Once the gap is opened the ground state has universal
properties of an incompressible quantum fluids:
symmetry under area preserving diffeomorphisms
W1+∞, Fairlie, Fletcher, Zachos trigonometric algebra
on the torus .
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Incompressibility

Once the gap is opened the ground state has universal
properties of an incompressible quantum fluids:
symmetry under area preserving diffeomorphisms
W1+∞, Fairlie, Fletcher, Zachos trigonometric algebra
on the torus .

Incompressible fluids must fall into representation of
this algebra =⇒ this determines the ground state
degeneracy.

1 ↔ 1 correspondences between generators of large
gauge transformation of BF model and generators of
FFZ algebra.

Gapless excitations on manifold with boundaries
described by a (R)CFT .
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BF and BCS superconductors have different ground
state degeneracy =⇒ different topological
entanglement entropy

Topological field theory on a simply connected region A
of liner size L:

SA = αL−γ

( Kiatev and Preskill, Levin and Wen);

γ is universal and characterizes the topological state:

γ = ln D = ln

√

∑

i

d2
i

D is the total quantum dimensions and di is the
quantum dimensions of the i quasiparticles.
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For Abelian theories di = 1 for all quasipartcles types.
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This result can be obtained computing the modular S
matrix by expressing

D =
1

S0
0

with S0
0 the largest eigenvalue of the modular matrix

(Gukov et al. ; Fendley et al ; Dong et al.).
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Conclusions

BF theories are fundamental theories that describes
topological phases of matter.

Condensation (or lack of) of topological defects drives
topological phase transitions between phases with
different topological order.

BF superconductors can be distiguished from
conventional (BCS) superconductors by their respective
topological entanglement entropy.
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