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Outline

The usual notion of separability has to be reconsidered when applied
to states describing identical particles

A definition of separability not related to any a priori Hilbert space
tensor product structure is needed: it can be given in terms of
commuting algebras of observables

This generalized notion of entanglement, based on a dual description
in terms of operators rather than states, will be applied to the case
of a ultracold gas confined in a double-well trap

The theoretical results concerning the use of the notion of quantum
Fisher information in getting sub-shot-noise accuracies in quantum
metrological phase estimation need to be generalized and physically
reinterpreted
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N-particle entanglement

The usual notion of entanglement for states of a system of N
distinguishable particles makes use of the natural tensor product
structure of the N-body system:

H = H1 ⊗H2 ⊗ . . .⊗HN

A state for the N-body system, represented by a density matrix ρ acting
on H, is said to be separable if it can be written as a convex combination
of single-particle states

ρ =
∑
k

pk ρ
(1)
k ⊗ ρ

(2)
k ⊗ . . .⊗ ρ

(N)
k , pk ≥ 0 ,

∑
k

pk = 1

In the case of identical particles, these are not allowed quantum states for
the system!
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Identical particles entanglement

According to the standard rules of quantum mechanics:

A pure state |ψ〉 of N identical particles must be a symmetric or
antisymmetric combination of tensor products of N-single particle
vector states

A mixed state, i.e. a density matrix, must be a linear convex
combination of projections |ψ〉〈ψ| onto such symmetrized or
antisymmetrized vectors

Not even the so-called symmetric states of the form

ρ =
∑
k

pk ρk ⊗ ρk ⊗ . . .⊗ ρk

are in general admissible states for a system of identical particles
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Example: two qubits

The Hilbert space of two distinguishable qubits is four-dimensional,
C2 ⊗ C2 ≡ C4, spanned by the basis vectors:

|+,+〉 |+,−〉 |−,+〉 |−,−〉

Instead, the Hilbert space for two identical qubits is a symmetric
three-dimensional subspace of C4 in the case of bosons, spanned by

|+,+〉 |−,−〉 |+,−〉+ |−,+〉√
2

or an antisymmetric one-dimensional subspace for fermions, spanned by

|+,−〉 − |−,+〉√
2

States of the type ρ =
∑

k pk ρ
(1)
k ⊗ ρ

(2)
k or even ρ =

∑
k pk ρk ⊗ ρk , can

not be written in general as a convex combination of solely projections
onto symmetric states or the antisymmetric one!
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Separability for identical particles

An algebraic bipartition of the algebra of observables O is any pair
(O1,O2) of commuting subalgebras of O

An element (operator) of O is said to be local with respect to the
bipartition (O1,O2) if it is the product O1O2 of an element O1 of
O1 and another O2 of O2

A state ω on the algebra O will be called separable with respect to
the bipartition (O1,O2) if the expectation ω(O1O2)

(
≡ Tr[ωO1O2]

)
of any local operator O1O2 can be decomposed into a linear convex
combination of products of expectations:

ω(O1O2) =
∑
k

λk ω
(1)
k (O1)ω

(2)
k (O2) λk ≥ 0 ,

∑
k

λk = 1

where ω
(1)
k and ω

(2)
k are states on O; otherwise the state ω is said to

be entangled with respect the bipartition (O1,O2)
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Example: two qubits

In the case of distinguishible particles, this definition reduces to the usual
notion of separability!

For the two qubit system:

choose the subalgebras O1 and O2 to coincide with the 2× 2 matrix
algebras of the single-qubits:

O1 = {O1 ⊗ 1} O2 = {1⊗ O2}
take as operation of expectation the usual trace operator over the
corresponding density matrix:

ωρ(O1O2) = Tr[ρO1 ⊗ O2]

This mean value can be written as a sum of products of expectations if

ρ =
∑
k

pk ρ
(1)
k ⊗ ρ

(2)
k
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Identical bosons in a double-well trap

In a suitable approximation, the dynamics of cold atoms in an double-well
potential can be described by a two-mode Bose-Hubbard hamiltonian:

H = E [a†1a1 + a†2a2] + U
[
(a†1a1)2 + (a†2a2)2

]
− J [a†1a2 + a†2a1]

Trapping potential term ∝ E ;

On-site boson-boson repulsive interaction term ∝ U

Hopping term ∝ J;

The total number N of particles is conserved: the Hilbert space is thus
(N + 1)-dimensional.
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The many-body model

Introduce a complete set of single-particle atom states

{|wi 〉}∞i=1 , |wi 〉 = a†i |0〉

The bosonic creation operator can then be decomposed as

ψ†(x) =
∑
i

w∗i (x) a†i
[a†i , aj ] = 〈wi |wj〉 = δij

[ψ†(x), ψ(y)] = δ(x − y)

where wi (x) = 〈x |wi 〉 are the corresponding wavefunctions

The Bose-Hubbard Hamiltonian results from a tight binding
approximation, where only the first two of the basis vector are relevant;
in this case w1,2(x) are orthogonal functions, w1 localized within the first
well, w2 within the second one.
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Number states

The N + 1-dimensional Hilbert space can be spanned by Fock states

|k , N − k〉 =
(a†1)k(a†2)N−k√
k!(N − k)!

|0〉

with k particles in the first well and N − k in the second.

In this (second-quantized) formalism, symmetrization of the elements of
the Hilbert space, as required by the identity of the particles filling the
two wells, is automatically guaranteed by the commutativity of the two
creation operators
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Commuting subalgebras of observables

All polynomials in a1, a†1 and similarly all polynomials in a2, a†2 (together
with their respective norm closures) form two commuting subalgebras of
the algebra A of all operators on the Fock space, A1, A2 ⊂ A:

[A1, A2] = 0 for any A1(a1, a
†
1) ∈ A1, A2(a2, a

†
2) ∈ A2

They define a bipartition (A1, A2) of A and therefore can be used to
provide the notion of separability for the states describing the identical
atoms in the trap

R. Floreanini Quantum Metrology with Identical Particles



Separable states

With respect to this natural mode bipartition, (A1,A2), the Fock states
turn out to be separable

〈k ,N − k|A1A2|k ,N − k〉 = 〈k |A1|k〉 〈N − k |A2|N − k〉

in terms of single-mode Fock states

|k〉 :=
(a†1)k√

k!
|0〉 |N − k〉 :=

(a†2)N−k√
(N − k)!

|0〉

All states separable with respect to the bipartition (A1,A2) must be in
diagonal form with respect to the Fock basis:

ρ =
N∑

k=0

pk |k,N − k〉〈k ,N − k | , pk ≥ 0 ,
N∑

k=0

pk = 1
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Local and non-local observables

Most observables of physical interest are non-local with respect to the
bipartition (A1,A2).

Take the following collective bilinear su(2) operators:

Jx =
1

2

(
a†1a2 +a1a

†
2

)
Jy =

1

2i

(
a†1a2−a1a

†
2

)
Jz =

1

2

(
a†1a1−a†2a2

)
whose exponentials measure phase accumulation inside the interferometer

While e iθJx and e iθJy , θ ∈ [0, 2π], are non-local, the exponential of Jz
turns out to be local:

e iθJz = e iθa
†
1 a1/2 · e−iθa

†
2 a2/2 , e iθa

†
1 a1/2 ∈ A1 , e−iθa

†
2 a2/2 ∈ A2 .
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Changing the bipartition

Introduce a new set of creation and annihilation operators b†i , bi , i = 1, 2:

b1 =
a1 + a2√

2
b2 =

a1 − a2√
2

so that

Jx =
1

2

(
b†1b1−b

†
2b2
)

Jy =
1

2i

(
b1b
†
2−b

†
1b2
)

Jz =
1

2

(
b1b
†
2+b†1b2

)
Using the operators b†i , bi , one can define a new bipartition (B1,B2) of
the full algebra A, so that it is now the exponential of Jx that turns out
to be local:

e iθJx = e iθb
†
1 b1 · e−iθb

†
2 b2 , e iθb

†
1 b1 ∈ B1 , e−iθb

†
2 b2 ∈ B2 .

Therefore, an operator which is local with respect to a given bipartition,
can result non-local in different one
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Changing the basis states

The above Bogolubov transformation corresponds to a change of basis in
the Hilbert space; for instance

b†1|0〉 =

[
a†1|0〉+ a†2|0〉

]
√

2
b†2|0〉 =

[
a†1|0〉 − a†2|0〉

]
√

2

which are energy eigenstates of the Bose-Hubbard Hamiltonian in the
limit of a highly penetrable barrier.

As a consequence, the Fock states result entangled with respect to this
new bipartition (B1,B2)

|k,N − k〉 ∼
k∑

r=0

N−k∑
s=0

(
k

r

)(
N − k

s

)
(−1)N−k−s

(
b†1
)r+s (

b†2
)N−r−s |0〉

so that |k,N − k〉 is a combination of (B1,B2)-separable states.
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Quantum metrology

The state transformation ρin 7→ ρθ inside the interferometer results as a
pseudo-spin rotation along a given unit vector ~n = (nx , ny , nz)

ρin 7→ ρθ = Uθ ρin U
†
θ , Uθ = e iθ Jn , Jn = ~J · ~n

The accuracy ∆θ with which the phase θ can be obtained in a
measurement involving the operator Jn and the initial state ρin is limited
by

∆θ ≥ 1√
F [ρin, Jn]

Given the interferometer, i.e. Jn, ∆θ can be minimized by choosing an
initial state that maximizes the quantum Fisher information F [ρin, Jn]
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Distinguishable particles

In this case, for any separable state ρsep the quantum Fisher information
is bounded by N:

F
[
ρsep, Jn

]
≤ N

thus, the best achievable precision is bounded by the shot-noise-limit

∆θ ≥ 1√
N

But in general,

F
[
ρ, Jn

]
≤ N2

so that using entangled initial states:

∆θ ≥ 1/N

eventually reaching the Heisenberg limit
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Identical particles

The notion of separability requires the choice of an algebraic bipartition

Select the spatial bipartition (A1,A2)

In the case of the separable pure state ρk = |k ,N − k〉〈k,N − k|:

F
[
ρk , Jn

]
= (n2x + n2y )

[
N + 2k(N − k)

]
and can always be made greater than N with a suitable choice of k, thus
beating the shot-noise-limit

Actually, for ρN/2 = |N/2,N/2〉〈N/2,N/2|, one can even get close to
the Heisenberg limit:

F
[
ρN/2, Jn

]
' N2/2
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Identical particles

This result suggests a different experiment and the use of a different
bipartition

Take ~n along the x direction; in the energy bipartition (B1,B2)

Jn =
1

2

(
b†1b1 − b†2b2

)
and the rotation around ~n is local

e iθJn = e iθb
†
1 b1/2 e−iθb

†
2 b2/2 e iθb

†
1 b1/2 ∈ B1 e−iθb

†
2 b2/2 ∈ B2

but |N/2,N/2〉 is no longer separable

|N/2,N/2〉 ∼
N/2∑
k,r=0

(
N/2

k

)(
N/2

r

)
(−1)N/2−r

(
b†1
)k+r (

b†2
)N−k−r |0〉

R. Floreanini Quantum Metrology with Identical Particles



Outlook

The standard notion of separability becomes meaningless when
applied to systems of identical particles; it can be replaced by a
generalized one, that makes use of a “dual” language, focusing on
the algebra O of operators of the system instead of the set of its
quantum states

Sub-shot-noise phase estimation accuracy in quantum metrology can
be achieved either by acting with a non-local operation on separable
states, or by devising a local measuring procedure on an entangled
initial state

There is always a limit in accuracy due to decohering effects induced
by the environment:

ΓFock

Γsemiclassical
' N
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