Two-Impurity Kondo Model with Spin-Orbit Interactions

in collaboration with
David Mross

Outline

Basics on two-impurity Kondo physics

Outline

Basics on two-impurity Kondo physics

Adding spin-orbit (SO) interactions

Outline

Basics on two-impurity Kondo physics

Adding spin-orbit (SO) interactions

SO effects in the "RKKY limit"

Outline

Basics on two-impurity Kondo physics

Adding spin-orbit (SO) interactions

SO effects in the "RKKY limit"

SO effects at quantum criticality

Outline

Basics on two-impurity Kondo physics

Adding spin-orbit (SO) interactions

SO effects in the "RKKY limit"
SO effects at quantum criticality

Summary

Outline

Basics on two-impurity Kondo physics
Adding spin-orbit (SO) interactions SO effects in the "RKKY limit" SO effects at quantum criticality Summary

$$
H=H_{\mathrm{kin}}+J \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}+J \boldsymbol{S}_{2} \cdot \boldsymbol{\sigma}+K(R) \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}
$$

Two-Impurity Kondo Problem

C. Jayaprakash

Nordisk Institut for Teoretisk Atomfsyik, DK-2100 Copenhagen \emptyset, Denmark, and Department of Physics Cornell University, Ithaca, New York 14853
and
H. R. Krishna-murthy

Nordisk Institut for Teoretisk Atomfsyik, DK-2100 Copenhagen \emptyset, Denmark, and Department of Physics Indian Institute of Science, Bangalore, India

and

J. W. Wilkins

Nordisk Institut for Teoretisk Atomfsyik, DK-2100 Copenhagen Ø, Denmark, and Department of Physics, Cornell University, Ithaca, New York 14853

The two-impurity Kondo problem is studied by use of perturbative scaling techniques The physics is determined by the interplay between the Ruderman-Kittel-KasuyaYosida (RKKY) interaction between the two impurity spins and the Kondo effect. In phrice structures as the femperature is lowered, corresponding to the ferromagnetic ocking together of the two impurity spins followed by a two-stage freezing out of their local moments by the conduction electrons due to the Kondo effect.

$H=H_{\mathrm{kin}}+J \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}+J \boldsymbol{S}_{2} \cdot \boldsymbol{\sigma}+K(R) \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}$

Two-Impurity Kondo Problem

C. Jayaprakash

Nordisk Institut for Teoretisk Atomfsyik, DK-2100 Copenhagen \emptyset, Denmark, and Department of Physics, Cornell University, Ithaca, New York 14853
and

H. R. Krishna-murthy

Nordisk Institut for Teoretisk Atomfsyik, DK-2100 Copenhagen \emptyset, Denmark, and Department of Physics Indian Institute of Science, Bangalore, India
and

J. W. Wilkins

Nordisk Institut for Teoretisk Atomfsyik, DK-2100 Copenhagen Ø, Denmark, and Department of Physics, Cornell University, Ithaca, New York 14853 (Received 28 May 1981)
The two-impurity Kondo problem is studied by use of perturbative scaling techniques The physics is determined by the interplay between the Ruderman-Kittel-KasuyaYosida (RKKY) interaction between the two impurity spins and the Kondo effect. In particular, for a strong ferromagnetic RKKY interaction the susceptibility exhibits locking together of the two impurity spins followed by a two-stage freezing out of their local moments by the conduction electrons due to the Kondo effect.
competition between RKKYinteraction and Kondo screening!

RKKY-coupled spin-singlet, no Kondo screening

$H=H_{\mathrm{kin}}+J \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}+J \boldsymbol{S}_{2} \cdot \boldsymbol{\sigma}+K(R) \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}$

Two-Impurity Kondo Problem

C. Jayaprakash

Nordisk Institut for Teoretisk Atomfsyik, DK-2100 Copenhagen \emptyset, Denmark, and Department of Physics, Cornell University, Ithaca, New York 14853
and
H. R. Krishna-murthy

Nordisk Institut for Teoretisk Atomfsyik, DK-2100 Copenhagen \emptyset, Denmark, and Department of Physics, Indian Institute of Science, Bangalore, India
and

J. W. Wilkins

Nordisk Institut for Teoretisk Atomfsyik, DK-2100 Copenhagen \emptyset, Denmark, and Department of Physics, Cornell University, Ithaca, New York 14853
(Received 28 May 1981)
The two-impurity Kondo problem is studied by use of perturbative scaling techniques. The physics is determined by the interplay between the Ruderman-Kittel-KasuyaYosida (RKKY) interaction between the two impurity spins and the Kondo effect. In particular, for a strong ferromagnetic RKKY interaction the susceptibility exhibits locking together of the two impurity spins followed by a two-stage freezing out of their local moments by the conduction electrons due to the Kondo effect.

RKKY-coupled spin-triplet, Kondo screened by conduction electrons
competition between RKKYinteraction and Kondo screening!

$$
K(R) \rightarrow-\infty
$$

$$
K(R) \rightarrow \infty
$$

$$
\delta=\pi / 2 \quad \begin{aligned}
& \text { P. Nozières and A. Blandin, } \\
& \text { J. Phys. (Paris) 4I, 193 (1980) }
\end{aligned}
$$

RKKY-coupled spin-triplet, Kondo screened by conduction electrons

$\delta=0$

RKKY-coupled spin-singlet, no Kondo screening

$$
K(R) \rightarrow-\infty \quad K(R) \rightarrow \infty
$$

$$
\text { particle-hole symmetry } \rightarrow \delta=0 \text { or } \delta=\pi / 2
$$

A. Millis et al.

Field Theories in Condensed Matter Physics
ed. Z.Tesanovic, I990

$$
\delta=\pi / 2
$$

$$
\delta=0
$$

RKKY-coupled spin-singlet, no Kondo screening

$$
K(R) \rightarrow-\infty
$$

$$
K(R) \rightarrow \infty
$$

proof by I.Affleck et al., PRB 52, 9528 (1995)
assuming a special type of particle-hole symmetry

$$
\delta=\pi / 2
$$

Kondo screening

Realization in double quantum-dot systems

spin exchange $J \propto V^{2} / U$

Realization in double quantum-dot systems

Realization in double quantum-dot systems

RKKY coupling $\quad K(R) \propto\left(J^{2} / R^{2}\right) \cos \left(k_{F} R\right)$

Realization in double quantum-dot systems

RKKY coupling $K(R) \propto\left(J^{2} / R^{2}\right) \cos \left(k_{F} R\right)$

Kondo temperature $\quad T_{K} \propto D \exp (-1 / \pi \rho J)$

Realization in double quantum-dot systems

Realization in double quantum-dot systems

$$
H_{\mathrm{int}}=J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2} \cdot \boldsymbol{\sigma}_{2}+K(R) \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}
$$

Realization in double quantum-dot systems

$$
H_{\mathrm{int}}=J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2} \cdot \boldsymbol{\sigma}_{2}+K(R) \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}
$$

No transfer of electrons between 1 and 2: quantum critical point $K_{c} \approx 2.2 T_{K}$ is stable against electron-hole symmetry breaking and breaking of parity

Realization in double quantum-dot systems

N. J. Craig et al., Science 304, 565 (2004)

Realization in double quantum-dot systems

N. J. Craig et al., Science 304, 565 (2004)

Nota Bene:
The central dot supports both RKKY and Kondo screening. The experiment does not probe quantum criticality.

An aside: quantum dots, two-qubit gates, and all that...

Loss-DiVincenzo proposal for spin-based quantum computing

$$
\begin{aligned}
& H_{s}(t)=J(t) \vec{S}_{1} \cdot \vec{S}_{2} \\
& U_{s}(t)=T \exp \left\{-i \int_{0}^{t} H_{s}\left(t^{\prime}\right) d t^{\prime}\right\} \\
& U_{s}\left(\tau_{s}=\pi \hbar / J_{0}\right)=U_{s w} \\
& U_{s w}|i j\rangle=|j i\rangle, \quad i, j=\uparrow, \downarrow
\end{aligned}
$$

from D. Loss and D.P. DiVincenzo, PRA 57, 120 (I998)

An aside: quantum dots, two-qubit gates, and all that...

Loss-DiVincenzo proposal for spin-based quantum computing

$$
\begin{aligned}
& H_{s}(t)=J(t) \vec{S}_{1} \cdot \vec{S}_{2} \\
& U_{s}(t)=T \exp \left\{-i \int_{0}^{t} H_{s}\left(t^{\prime}\right) d t^{\prime}\right\} \\
& U_{s}\left(\tau_{s}=\pi \hbar / J_{0}\right)=U_{s w} \\
& U_{s w}|i j\rangle=|j i\rangle, \quad i, j=\uparrow, \downarrow
\end{aligned}
$$

from D. Loss and D.P. DiVincenzo, PRA 57, 120 (I998)

$$
\begin{aligned}
& U_{\mathrm{CNOT}}=e^{i \frac{\pi}{2} S_{1}^{z}} e^{-i \frac{\pi}{2} S_{2}^{2}} U_{s w}^{\frac{1}{2}} \theta^{i \pi S_{1}^{z}} U_{s w}^{\frac{1}{2}} \\
& '^{\prime}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
&|x\rangle \longrightarrow|x\rangle
\end{aligned}
$$

$U_{\mathrm{CNOT}}+$ "single-qubit gates" (single-spin rotations)
\rightarrow "universal" quantum computer

An aside: quantum dots, two-qubit gates, and all that...

Using RKKY for nonlocal control of two-qubit gates...?

N. J. Craig et al., Science 304, 565 (2004)
M.G.Vavilov and L.I. Glazman, PRL 94, 086805 (2005)

Using RKKY for nonlocal control of two-qubit gates...?

N. J. Craig et al., Science 304, 565 (2004)
M.G.Vavilov and L.I. Glazman, PRL 94, 086805 (2005)

What about spin decoherence caused by the conduction electrons via RKKY?

```
GaAs/AlGaAs
    \(T \approx 10 \mathrm{mK}\)
    \(R \approx 10 \mathrm{~nm}\)
\(K_{0}(R) \approx 5 \mu \mathrm{eV}\)
    \(\tau_{\mathrm{dec}} \approx 60 \mathrm{~ns}\)
    \(\tau_{\text {swap }} \approx 0.3 \mathrm{~ns}\)
        \(\downarrow\)
\(\sim 200\) coherent \(\sqrt{\text { SWAP }}\) operations
```


Adding spin-orbit interactions...

Adding spin-orbit interactions...

relativistic correction in vacuum
$H_{\mathrm{SO}}=\lambda_{\mathrm{vac}}(\nabla V \times \boldsymbol{k}) \cdot \boldsymbol{\sigma}$
$\lambda_{\text {vac }}=\hbar^{2} / 4 m_{0}^{2} c^{2} \approx 3.7 \times 10^{-6} \AA^{2}$

Adding spin-orbit interactions...

relativistic correction in vacuum
$H_{\mathrm{SO}}=\lambda_{\mathrm{vac}}(\nabla V \times \boldsymbol{k}) \cdot \boldsymbol{\sigma}$
$\lambda_{\text {vac }}=\hbar^{2} / 4 m_{0}^{2} c^{2} \approx 3.7 \times 10^{-6} \AA^{2}$
relativistic correction in a semiconductor

$$
\begin{aligned}
& H_{\mathrm{SO}}=\lambda_{\text {crystal }}(\nabla V \times \boldsymbol{k}) \cdot \boldsymbol{\sigma} \\
& \lambda_{\text {crystal }} \approx \hbar^{2} / 4 m^{*} E_{g} \approx 10^{6} \lambda_{\mathrm{vac}}
\end{aligned}
$$

bandgap
effective mass from periodic crystal potential

Adding spin-orbit interactions...

relativistic correction in vacuum
$H_{\mathrm{SO}}=\lambda_{\mathrm{vac}}(\nabla V \times \boldsymbol{k}) \cdot \boldsymbol{\sigma}$ relativistic correction in a semiconductor

$$
\begin{aligned}
& H_{\mathrm{SO}}=\lambda_{\text {crystal }}(\nabla V \times \boldsymbol{k}) \cdot \boldsymbol{\sigma} \\
& \lambda_{\text {crystal }} \approx \hbar^{2} / 4 m^{*} E_{g} \approx 10^{6} \lambda_{\mathrm{vac}}
\end{aligned}
$$

aperiodic part of the total potential: confinement, impurities, boundaries, external electric fields,...

Adding spin-orbit interactions...

relativistic correction in a semiconductor

$$
\begin{aligned}
& H_{\mathrm{SO}}=\lambda_{\text {crystal }}(\nabla V \times \boldsymbol{k}) \cdot \boldsymbol{\sigma} \\
& \lambda_{\text {crystal }} \approx \hbar^{2} / 4 m^{*} E_{g} \approx 10^{6} \lambda_{\mathrm{vac}}
\end{aligned}
$$

aperiodic part of the total potential: confinement, impurities, boundaries, external electric fields,...

semiconductor heterostructure

Adding spin-orbit interactions...

relativistic correction in a semiconductor

$$
\begin{aligned}
& H_{\mathrm{SO}}=\lambda_{\text {crystal }}(\nabla V \times \boldsymbol{k}) \cdot \boldsymbol{\sigma} \\
& \lambda_{\text {crystal }} \approx \hbar^{2} / 4 m^{*} E_{g} \approx 10^{6} \lambda_{\text {vac }} \\
& \text { aperiodic part of the total potential: } \\
& \text { confinement, impurities, boundaries, } \\
& \text { external electric fields,... }
\end{aligned}
$$

Rashba interaction
E. I. Rashba, Sov. Phys. Solid State 2, I I 09 (1960)
$H_{R}=\alpha\left(k_{x} \sigma^{y}-k_{y} \sigma^{x}\right)$

Spatial asymmetry of band edges mimics an E-field in the z-direction

Another type of spin-orbit interaction in 2D semiconductor heterostructures...

zincblende structures: GaAs, InAs, HgTe,...

	$\beta k_{F} / \mathrm{meV}$	$\alpha k_{F}^{\text {gate controllable }} / \mathrm{meV}$

Dresselhaus interaction
$H_{D}=\beta\left(k_{x} \sigma^{x}-k_{y} \sigma^{y}\right)$

Rashba interaction
$H_{R}=\alpha\left(k_{x} \sigma^{y}-k_{y} \sigma^{x}\right)$

How do Rashba and Dresselhaus spin-orbit interactions influence two-impurity Kondo physics?
D. F. Mross and H. J., PRB 80, 15530 (2009)

Spin-orbit effects on the RKKY interaction

from simple extension of standard perturbative approach to RKKY
Blackman and Elliot, 1970

$$
\begin{aligned}
& H=\frac{\boldsymbol{k}^{2}}{2 m}+\left[\left(\begin{array}{cc}
\beta & -\alpha \\
\alpha & -\beta
\end{array}\right)\binom{k_{x}}{k_{y}}\right] \cdot \boldsymbol{\sigma} \\
& G(\boldsymbol{k}, \omega) \equiv(\omega-H(\boldsymbol{k}))^{-1} \\
& H_{\mathrm{RKKY}}=-\frac{J_{1} J_{2}}{\pi} \operatorname{Im} \int_{-\infty}^{\omega_{F}} d \omega \operatorname{Tr}\left[\left(\boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}\right) G\left(R, \omega+i 0_{+}\right) \times\left(\boldsymbol{S}_{2} \cdot \boldsymbol{\sigma}\right) G\left(-R, \omega+i 0_{+}\right)\right] \\
& H_{\mathrm{RKKY}}^{\mathrm{SO}}=H_{\text {Heis. }}+H_{\text {Rashba }}+H_{\text {Dress. }}+H_{\text {interf. }}
\end{aligned}
$$

$$
\begin{aligned}
H_{\text {Heis. }} & =F_{0} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2} \\
H_{\text {Rashba }} & =\alpha F_{1}\left(\boldsymbol{S}_{1} \times \boldsymbol{S}_{2}\right)^{y}+\alpha^{2} F_{2} S_{1}^{y} S_{2}^{y} \\
H_{\text {Dress. }} & =\beta F_{1}\left(\boldsymbol{S}_{1} \times \boldsymbol{S}_{2}\right)^{x}+\beta^{2} F_{2} S_{1}^{x} S_{2}^{x} \\
H_{\text {interf. }} & =\alpha \beta F_{2}\left(S_{1}^{x} S_{2}^{y}+S_{1}^{y} S_{2}^{x}\right) .
\end{aligned}
$$

$$
H_{\mathrm{RKKY}}^{\mathrm{SO}}=H_{\text {Heis. }}+H_{\text {Rashba }}+H_{\text {Dress. }}+H_{\text {interf.: }}
$$

$$
\begin{aligned}
H_{\text {Heis. }} & =F_{0} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2} \\
H_{\text {Rashba }} & =\alpha F_{1}\left(\boldsymbol{S}_{1} \times \boldsymbol{S}_{2}\right)^{y}+\alpha^{2} F_{2} S_{1}^{y} S_{2}^{y} \\
H_{\text {Dress. }} & =\beta F_{1}\left(\boldsymbol{S}_{1} \times \boldsymbol{S}_{2}\right)^{x}+\beta^{2} F_{2} S_{1}^{x} S_{2}^{x} \\
H_{\text {interf. }} & =\alpha \beta F_{2}\left(S_{1}^{x} S_{2}^{y}+S_{1}^{y} S_{2}^{x}\right) .
\end{aligned}
$$

$F_{i}=F_{i}(\alpha, \beta, R)$ are given by rather complicated integrals (work in progress). Analytical expressions in the limit of large distances and a weak pure Rashba coupling have been obtained by H. Imamura et al., PRB 69, 121303(R) (2004).

$$
\begin{aligned}
& k_{F} R \gg 1 \\
& \alpha \ll \frac{\hbar^{2}}{m} k_{F}
\end{aligned}
$$

$$
F_{0}(\alpha, 0, R)=-\frac{J^{2}}{2 \pi^{2} R^{2}} \frac{m}{\hbar^{2}} \sin 2 R \sqrt{k_{F}^{2}+\frac{m^{2} \alpha^{2}}{\hbar^{4}}}
$$

$$
\begin{aligned}
& F_{1}(\alpha, 0, R)=\frac{F_{0}(\alpha, 0, R)}{\alpha} \sin \frac{2 m R \alpha}{\hbar^{2}} \\
& F_{2}(\alpha, 0, R)=\frac{F_{0}(\alpha, 0, R)}{\alpha^{2}}\left(1-\cos \frac{2 m R \alpha}{\hbar^{2}}\right)
\end{aligned}
$$

$$
H_{\mathrm{RKKY}}^{\mathrm{SO}}=H_{\text {Heis. }}+H_{\text {Rashba }}+H_{\text {Dress. }}+H_{\text {interf.: }}
$$

$$
H_{\text {Heis. }} \quad=F_{0} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}
$$

$$
H_{\text {Rashba }}=\alpha F_{1}\left(\boldsymbol{S}_{1} \times \boldsymbol{S}_{2}\right)^{y}+\alpha^{2} F_{2} S_{1}^{y} S_{2}^{y}
$$

$$
H_{\text {Dress. }}=\beta F_{1}\left(\boldsymbol{S}_{1} \times \boldsymbol{S}_{2}\right)^{x}+\beta^{2} F_{2} S_{1}^{x} S_{2}^{x}
$$

$$
H_{\text {interf. }}=\alpha \beta F_{2}\left(S_{1}^{x} S_{2}^{y}+S_{1}^{y} S_{2}^{x}\right)
$$

$F_{i}=F_{i}(\alpha, \beta, R)$ are given by rather complicated integrals (work in progress). Analytical expressions in the limit of large distances and a weak pure Rashba coupling have been obtained by H. Imamura et al., PRB 69, 121303(R) (2004).

$$
F_{0}(\alpha, 0, R)=-\frac{J^{2}}{2 \pi^{2} R^{2}} \frac{m}{\hbar^{2}} \sin 2 R \sqrt{k_{F}^{2}+\frac{m^{2} \alpha^{2}}{\hbar^{4}}}
$$

$H_{\mathrm{RKKY}}^{\mathrm{SO}}=K_{\mathrm{H}} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}+K_{\mathrm{Ising}} S_{1}^{y} S_{2}^{y}+K_{\mathrm{DM}}\left(\boldsymbol{S}_{1} \times \boldsymbol{S}_{2}\right)^{y}$

$$
H_{\mathrm{RKKY}}^{\mathrm{SO}}=K_{\mathrm{H}} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}+K_{\mathrm{Ising}} S_{1}^{y} S_{2}^{y}+K_{\mathrm{DM}}\left(\boldsymbol{S}_{1} \times \boldsymbol{S}_{2}\right)^{y}
$$

Anisotropies unwanted
for the CNOT gate

Bad for RKKY-control of two-qubit gating

More useful choice of coordinate system: rotate $\boldsymbol{x}, \boldsymbol{y}$ by $\pi / 2-\arctan (\alpha / \beta)$ around the \boldsymbol{z}-axis

$\operatorname{SU}(2)$ symmetry recovered when $|\alpha|=|\beta|$!

More useful choice of coordinate system: rotate $\boldsymbol{x}, \boldsymbol{y}$ by $\pi / 2-\arctan (\alpha / \beta)$ around the \boldsymbol{z}-axis

$\operatorname{SU}(2)$ symmetry recovered when $|\alpha|=|\beta|$!
Also predicted and observed in a 2DEG: conservation of phase and amplitude of a helical spin structure ("persistent spin helix")
B.A. Bernevig et al., PRL 97, 23660I (2006)
J. D. Koralek et al., Nature 458, 610 (2009)

from J. D. Koralek et al., Nature XX,YYY (200Z)

$H_{\mathrm{RKKY}}^{\mathrm{SO}}=K_{\mathrm{H}} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}+K_{\mathrm{Ising}} S_{1}^{y} S_{2}^{y}+K_{\mathrm{DM}}\left(\boldsymbol{S}_{1} \times \boldsymbol{S}_{2}\right)^{y}$

More useful choice of coordinate system: rotate $\boldsymbol{x}, \boldsymbol{y}$ by $\pi / 2-\arctan (\alpha / \beta)$ around the \boldsymbol{z}-axis

$H_{\mathrm{RKKY}}^{\mathrm{SO}}=K_{\mathrm{H}} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}+K_{\text {Ising }} S_{1}^{y} S_{2}^{y}+K_{\mathrm{DM}}\left(\boldsymbol{S}_{1} \times \boldsymbol{S}_{2}\right)^{y}$

$$
\begin{gathered}
K^{y}=K_{\mathrm{H}}+K_{\text {Ising }} \\
e^{i \theta} K^{\perp}=K_{\mathrm{H}}+i K_{\mathrm{DM}} \\
\boldsymbol{S}_{2}^{\prime}=e^{\mathrm{i} \theta S_{2}^{y}} \boldsymbol{S}_{2} e^{-\mathrm{i} \theta S_{2}^{y}}
\end{gathered}
$$

$H_{\mathrm{RKKY}}^{\mathrm{SO}}=K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}$.
effect of spin-orbit interactions: twist and anisotropy
$K^{y} \neq K^{\perp}$ when Rashba and Dresselhaus are both present

By increasing the Kondo scale T_{K}, the twisted and anisotropic RKKY interaction gets competition from the Kondo effect...
...what happens at the TIKM critical point?

Effect from spin-orbit interactions on single-impurity Kondo effect?

Effect from spin-orbit interactions on single-impurity Kondo effect?

Effect from spin-orbit interactions on single-impurity Kondo effect?

Effect from spin-orbit interactions on single-impurity Kondo effect?

Effect from spin-orbit interactions on single-impurity Kondo effect?

But,... experiments show that the Kondo effect is insensitive to spin-orbit scattering...
G. Bergmann, PRL 57, 1460 (1986)

Effect from spin-orbit interactions on single-impurity Kondo effect?

But,... experiments show that the Kondo effect is insensitive to spin-orbit scattering...
G. Bergmann, PRL 57, 1460 (1986)
...protected by time-reversal invariance
$=0$

Analysis of 2D single-impurity Kondo + Rashba model

J. Malecki, J. Stat. Phys. 129, 741 (2007)

Pseudospin basis (mixing spin and angular momentum)

$$
\begin{aligned}
& a_{k \pm \uparrow}=\frac{1}{\sqrt{2}}\left(\psi_{k 0 \uparrow} \mp i \psi_{k+1 \downarrow}\right) \\
& a_{k \pm \downarrow}=\frac{1}{\sqrt{2}}\left(\psi_{k 0 \downarrow} \mp i \psi_{k-1 \uparrow}\right)
\end{aligned}
$$

two-channel anisotropic Kondo model; the weakly coupled channel drops out at low temperatures

$$
\begin{aligned}
H & =v_{F} \int d k k\left(a_{k \mu}^{\dagger} a_{k \mu}+\tilde{a}_{k \mu}^{\dagger} \tilde{a}_{k \mu}\right) \\
& +J^{\mathrm{eff}} \frac{V k_{F}^{0}}{2 \pi} \int d k d k^{\prime} \boldsymbol{S} \cdot a_{k \mu}^{\dagger} \boldsymbol{\sigma}_{\mu \nu} a_{k^{\prime} \nu}
\end{aligned}
$$

usual 1D low-energy Kondo model with
$\psi_{-1, \uparrow}{ }^{2}$ rescaled coupling $J^{\mathrm{eff}}=J \sqrt{1+m \alpha^{2} / 2 \epsilon_{F}}$

Extension to Kondo + Dresselhaus (only) is straightforward...

Pseudospin basis (mixing spin and angular momentum)

$$
\begin{aligned}
& a_{k \pm \uparrow}=\frac{1}{\sqrt{2}}\left(\psi_{k 0 \uparrow} \mp i \psi_{k-1 \downarrow}\right) \\
& a_{k \pm \downarrow}=\frac{1}{\sqrt{2}}\left(\psi_{k 0 \downarrow} \mp i \psi_{k+1 \uparrow}\right)
\end{aligned}
$$

two-channel anisotropic Kondo model; the weakly coupled channel drops out at low temperatures

$$
\begin{aligned}
H & =v_{F} \int d k k\left(a_{k \mu}^{\dagger} a_{k \mu}+\tilde{a}_{k \mu}^{\dagger} \tilde{a}_{k \mu}\right) \\
& +J^{\mathrm{eff}} \frac{V k_{F}^{0}}{2 \pi} \int d k d k^{\prime} \boldsymbol{S} \cdot a_{k \mu}^{\dagger} \boldsymbol{\sigma}_{\mu \nu} a_{k^{\prime} \nu}
\end{aligned}
$$

usual 1D low-energy Kondo model with

rescaled coupling $J^{\text {eff }}=J \sqrt{1+m \beta^{2} / 2 \epsilon_{F}}$

Rashba + Dresselhaus couple an infinite number of orbital angular modes to the impurity
work in progress...

Summarizing spin-orbit effects:

Kondo exchange: $H_{\text {el-imp }}^{\mathrm{SO}}=J \boldsymbol{S} \cdot \boldsymbol{\sigma}$
RKKY: $\left.\quad H_{\mathrm{RKKY}}^{\mathrm{SO}}=K^{\perp} \underset{\text { twist }}{\boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}}+\underset{\text { anisotropy }}{\left(K^{y}-K^{\perp}\right.}\right) S_{1}^{y} S_{2}^{\prime y}$.

TIKM with spin-orbit interactions

$H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}$

Spin-orbit effects:

rescaled coupling

Kondo exchange: $H_{\mathrm{el}-\mathrm{imp}}^{\mathrm{SO}}=J \boldsymbol{S} \cdot \boldsymbol{\sigma}$
RKKY: $\left.H_{\mathrm{RKKY}}^{\mathrm{SO}}=K^{\perp} \underset{\text { twist }}{\boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}}+\underset{\text { anisotropy }}{\left(K^{y}-K^{\perp}\right.}\right) S_{1}^{y} S_{2}^{\prime y}$.

TIKM with spin-orbit interactions

$$
H_{\text {TIKM }}^{\text {SO }}=\underbrace{H_{\text {kin }}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}}_{\text {with Rashba or Dresselhaus }}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}
$$

Spin-orbit effects:

rescaled coupling

Kondo exchange: $H_{\mathrm{el}-\mathrm{imp}}^{\mathrm{SO}}=J \boldsymbol{S} \cdot \boldsymbol{\sigma}$
RKKY: $\left.H_{\mathrm{RKKY}}^{\mathrm{SO}}=K^{\perp} \underset{\text { twist }}{\boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}}+\underset{\text { anisotropy }}{\left(K^{y}-K^{\perp}\right.}\right) S_{1}^{y} S_{2}^{\prime y}$.

TIKM with spin-orbit interactions

with Rashba and Dresselhaus in the central reservoir /
Rashba or Dresselhaus in the external leads
$H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}$
Critical behavior?

$$
H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\text {kin }}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}
$$

Critical behavior?

$$
\left.\begin{array}{l}
K^{\perp}=K^{y}, \theta \text { arbitrary } \\
\psi_{2} \rightarrow \psi_{2}^{\prime}=e^{-i \theta \tau^{y} / 2} \psi_{2} \\
\text { rotate also the spins of the } \\
\text { electrons which couple to } \boldsymbol{S}_{2}^{\prime}
\end{array}\right\}
$$

The model represented in a twisted spin basis = the ordinary TIKM
\Rightarrow same critical behavior for all θ
$H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{y}$

Critical behavior?

$K^{\perp} \neq K^{y}, \theta=0$
$S U(2) \rightarrow U(1)$
Kondo exchange anisotropies do not produce any RG-relevant or new correction-to-scaling operator
I. Affleck et al., PRB 52, 9528 (1995)
same critical behavior for all $K^{\perp} \neq K^{y}$
$H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{y}$

Critical behavior?

$K^{\perp} \neq K^{y}, \theta=0$

$$
S U(2) \rightarrow U(1)
$$

Kondo exchange anisotropies do not produce any RG-relevant or new correction-to-scaling operator

$$
H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}
$$

Critical behavior?

```
K
```

With fine-tuned K^{y}, K^{\perp} the critical behavior is the same as for the ordinary TIKM. Else one flows towards one of the stable fixed points.

$$
H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}
$$

Global RG flow?

$$
H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}
$$

Global RG flow?

$$
H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}
$$

Global RG flow?

Ising-coupled impurities, quantum phase transition at $K^{y} \approx T_{K}$ with different behavior.
N. Andrei et al., PRB 60, 5125(R) (1999)

$$
H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}
$$

Global RG flow?

$$
H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}
$$

Global RG flow?

$$
H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}
$$

Global RG flow?

$$
H_{\mathrm{TIKM}}^{\mathrm{SO}}=H_{\mathrm{kin}}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}
$$

Global RG flow?

Summary

2D two-impurity Kondo model with spin-orbit interactions
$H_{\text {TIKM }}^{\mathrm{SO}}=H_{\text {kin }}+J_{1} \boldsymbol{S}_{1} \cdot \boldsymbol{\sigma}_{1}+J_{2} \boldsymbol{S}_{2}^{\prime} \cdot \boldsymbol{\sigma}_{2}+K^{\perp} \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}^{\prime}+\left(K^{y}-K^{\perp}\right) S_{1}^{y} S_{2}^{\prime y}$

- the RKKY interaction gets "twisted", with an Ising anisotropy
- SU(2) invariance recovered when |Rashba| = |Dresselhaus| good for RKKY-controlled two-qubit gates
- "fine-tuning" of $K^{y}, K^{\perp} \rightarrow$ same quantum critical behavior as with no spin-orbit interactions
- possible new unstable fixed point for $\left(K^{y}, K^{\perp}\right) \rightarrow\left(K_{0}^{y}, \infty\right)$

Numerics on amplitudes, crossover effects from higher-order tunneling, Rashba and Dresselhaus in the leads, global RG flow,... work in progress
...spin-orbit interactions in the Kondo dots (multi-channel two-impurity Kondo model...?)

