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Alice and Bob have two independent devices which prepare the state ,0<A) and pU.B)

ndependent measurements in terms of p = p(A) 024 p(B )

charlie calls f;LLce and Eob bg phowne, and ask Alice and Bob to create
the states ,0%) and p% ) rcspecti,\/eLg, with probabiu',’cg PK .

This creates corvelations between the results of measurements obtained
by Alice and Bob. The state of this process is classically corvelated by LOCC.

How a classically correlated (separable) state looks like ?
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LOCC: Local Operations and Classical Communication
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Entanglement is: p#E Y b i ® b

- Bell: ... a correlation stronger than any classieal corvelation
P. Shor: ... a global structure that allows for faster algorithms

C. Bennett: ... a resource that enables gquantum teleportation
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- Bell: ... a correlation stronger than any classieal corvelation
P. Shor: ... a global structure that allows for faster algorithms

C. Bennett: ... a resource that enables quantum teLeportatiow
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cawn we distinguish two quantum states?
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e A,Lwe ano Bob PL“H é{)} -
with the state P g

the witeh steals and shifts the state by a secret amount 6 .
Thew she gives the state back to Alice ano Bob.

,6((9) _ e—iI:IQ ,6 eiI:IQ

has the state
been changed ?

Entangled states can be more distinguishable thaw classically correlated states.




1) Statististical distinguishability
of quantum states

How much different are |1g) and [ihr) = e_iﬁew()} ?‘




How much different are |1g) and |1)f) = e_”;m]wo} ?

The stmplest example: two Gaussian states

the states are distinguishable if their “distance” is larger thaw thelr “noise”
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0> Aby + Ab;

Wooters (1981)

A ~
m

O

> \\\
The “notse” Af decreases with the number of preasurements m
and tncreases with quantum fluctuations &




the states are distinguishable if their “distance” Ls larger thaw their “nolse”

R
0> Ay + Abdy
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In general, the “notse” Ls givew by the Cramer-Rao Lower bound:

1 1 _» Fisher wvformatww
Al > the larger is the Fisher the more

/M A/ F | the states are distinguishable

, , 2 T
e.9., with pure states and optumaL measurements: F p— 4 A H

distance and scalar proouct: ‘<¢0W50>‘2 — 1 — g 592




2) Multi particle Entanglement

N particles tn two modes (N qbits) are entangled
Lf thelr state cannot be writtem as a

convex combination of product states




N
Consider an Hermitian operator: H = Z G;

k=1
sum of Paull matrices along arbitrary directions rotating locally each qbit

TIPS ~(1) ~(2) ~(N) oLasswaLLg s FIH N
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The upper bound is F < N?

if F[H]>N — p#Zpk o @ pd © ..oy



Ph HslaaL Mmeantng ?

remember the original gquestion:

How much different are |1o) and |¢s) = e_"ﬁew@) ?

along a pa the HLbert space thawn
cLass'LcaLng correlated states




what this entanglement can be useful for ?

~Interferometry

Z.eno o Yyna MLLCS




what Ls Lwterferometrg ?




Mach-Z.ehwnder

el e gt E
L. Zefinder, Zeits. f. Instr. 11, 275 (1891)

L. Mach, Zeits. f. Instr.12, 89 (1892)

Highest sensitivity allowed by uantum Mechanics



Putting together

entanglement and distinguisha biLitg:

separa ble states

entangled states




Examples: a few Lnput states for
Helsenberg Limit with Mach-Zehnder

Yurke, McCall, Klauder, PRA 1987| |Holland & Burnett, PRL 1993| |Wineland et al.
w > N N _1> N N> v > N N> Spin - Squeezing, PRL 1994
w/ =yt 272 "2 W) =|N,0)+|0,N), PRA 1995
Pezze' & Smerzi, PRA 2006 Pezze' & Smerzi, PRL 2007
w > _1 N 1> Squeezed vacuum ® coherent state
'"” Number squeezed ® coherent state (to be sub.)

Suggest your own state !!l

Spin-squeezed states

2 ’ ’ ’ ’ ’ ’
f L NA Sz <1 SpLn squeezing Ls also a suffictent condition to

< g >2 recognize useful multi-particle entanglement
T Sorensen, Duan, Cirac, Zoller (2001)

Wineland et al. 1994, Kitagawa & Ueda, 1993

Expertments tn Munich, Heldelberg, Florence, (atoms), Munich (photons)

Recent related theory bgj Glovanwnettl, Maccone, Lloy, Dowling, Paris, ...




Spln squeezing vs. Flsher

useful entanglement (F > N)

no squeezing)(  squeezing
§>1 £ <1




Mach-Zehnder interferometry with Bose-Binstein condensates
trapped tn a double well potential (or tn two hgperﬁwe Levels):

s H = E.(t) 82 - K(t) 8, + AE(t) 8.

input

beam splitter ':V"tem’w E’WLO
interaction

w1 " | PP
S% = Z(aﬁ& — L) = Z(Na — N\y)?

phase shift :
E ' i 2 ' g{ lime

: beam splitter
measurement
RYVAYAR.

Two-modes Hamtltonian of a BEC tunneling

trough the barrier of a double well potential



a protocol for creating entanglement with BEC:

1) Splitting  H = E% —K(t) S,

N
| ey o) ~ (11a,05) + [0a; 1s))
V = W SPLw—cohereWc state

. (PoLssow distribution)

2) Nowlinear d yna mics of the two decouwpled condensates
H=E.(t) S? - KOS,
Philipp Treutlein et al., Nature 2010
_ _—iE.S%t o ler et al., Nat
me> — e . WO> Markus Oberthaler et al., Nature 2010

2) Use the entangled state for sub shot-noise phase
estimation with the BEC Mach-Zehnoer Lnterferometer

H=FEMNG%—K(t) S, +AE®1) S, Oberthaler cjc al., Natwre 2010
sub shot-notse RAmseY
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t (E.VN) Particle entanglement
, , NA2S, persists longer than
SPLW sqUeeZLng § = W <1 spiw—squeeziwg
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Kitagawa & Ueda, 1993
Sorensen, Duan, Cirac, Zoller (2001)




s entanglement due to symmetrization physical?

Example: 2 Loentical bosons in different harmonic traps: twin-Fock states
A

—>

L R v
2nd quantization 1st gquantization
1)L [1)r <— |Ry, L) + |L1, Ro)
separable entangled

It Ls sometime clatmed that entanglement which
arises from sywmmetrization alone ts unphysical




s entanglement due to symmetrization physical?

Example: 2 Loentical bosons in different harmonic traps: twin-Fock states

)
L R o
2nd quantization 1st gquantization
1)z [1)r «— |Ry, Lo) + |L1, Ro)
separable entangled

Why ? Because entanglement s often related to Local addressability
(required for gquantum computation, violation of Bell inequalities, ete.

Indistinguishable particles are wot locally addressable !




s entanglement due to symmetrization physieal?

Example: 2 Loentical bosons in different harmonic traps: twin-Fock states
A

T
L R
2nd quantization 1st gquantization

L)L [1)r «<— |Ry, La) + |L1, R2)
separable entangled

entanglement (e.9. twin-Fock states) which can be created with BEC
L double wells ts due to sy mmeetrizatlon.

Notice that the spin-squeezing § Fisher entanglement conditions
require collective operations (not Local operations)




s entanglement due to symmetrization physieal?

Example: 2 Loentical bosons in different harmonic traps: twin-Fock states
A

PM'LLLPP Hyllus, AS, uwpulol,isheol

L R v
2nd quantization 1st gquantization
1)L [1)r <— |Ry, L) + |L1, Ro)
separable entangled

Particle entanglement due to symmetrization is -useful-
for distinguishing quantum states

(e.9.: necessary for sub shot-noise Lw’cevferometrg)

where only collective operations are required




what this entanglement can be useful for ?

~Interferometry

Z.eno o Yyna MLLCS




Ruantum Zewno d a WAWMLLES

A flying arrow is at rest. At any given moment the arrow is tn a space equal to its
owwn length, and therefore Ls at rest at that moment. So, it Ls at rest at all moments.




g

Example: spin
Consider a spin i) = | 1), rotated by U = e v = H o0y T
[(t)) = e e T e VT i) = e v eho)
(total timee : t = m7 )

Peres, Am. J. Phys. 48, 931 (1980)




el ol

Cownstloer the proj ective measurement:
The projective measurement has

R eigenvalue “yes”, corresponding
‘ Il = ’¢0> <¢0 ’ to the state projectcd back to |1)g)

with probability |(1o|i(7))|?

P(yes|t) = [($ol(7))[*™ ~ 1 —m A%G, 7°

m — 00, T — 0 so that t = m7T = const = P(y68|t)—>1

Z,eno ”Pamolox”: the arrow does wot rotate 'Lf watched 111




Consider a system Living tn H with dynamices U = e 1Mt
and a projector I owto the subspace Hr

The initial state po = oIl is in Hn

Effective Zeno Hamiltonian

H = X — I[IHII

A

P(yes|t) = Tr[(1IU(r) )™ po (MU (1)I)™] ~ 1 —m A®H 72
Quite generally,

The eﬁ‘eotive Z,eno Hamtltonlan Ls the Flsher iwformatiow
P(yes|T) 1

k() = ( o7 ) Plyes)[l — Plyesr)] — & O

A. Smerzl, arXiv:1002.2F60




Ruantum Z.eno d Yyna MLCS

I 2
P(yes|t) ~ 1 — yy t?=1— (i)

whewn T/qu << 1 (nterval among measurements: 7 = t/m )
The small parameter of Zeno depends 9
on the Cramer-Rao Lower bownd Tgz = 2 ATerpp =
mv F

The uantum Zeno dynamdies is strictly related
with indistinguishability and entanglement
N N

3 3

physteal interpretation entanglement affects Zewo




A ph 3s'waL Lwterpretatiow of Zewno:

I 2
P(yes|t) ~ 1 — yy t?=1— <i>

when T/qu <<1 (Interval among measurements: T = t/m)

The projective measurements bring the state back to
Ltts tntttal value (the d Yywa mics s frozew)

whewn the two states are statistically
indistinguishable with -m- measurements




Zewo for separable and entangled states:

Cownstoler a state of N gbtts

Separable states have a Fisher information bounded by FF =N
2

, T t> N

Zeno dynamties when | —— - — — << 1

Tqz 4 m

Bntangled states have a Fisher information bounded by F' = N 2

T 2 2 N?2
Z.eno dgwamios whewn — = — — << 1
Tqz 4 m

The number of measurements -m- needed to
create the Zeno dynamics can be quite larger
for entangled states that for separable states




This prediatiow can be tested with ND measurements

L a three Levels atomele system

[

Ramsey osctllations

e—z‘Sye
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e,
N
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AVAV

tnduced
fluorescence

[¥)a

Pa rthLe—sepa rable state:

|¢O> — |O>a‘N>b

P(yes|t) = [{shole™ "3/ |go) P 1 — — 67

Itano, Heinzen, Bollinger, and Wineland 1990

Z,eno 0[5 namics with a number of measurements
of the order of the number of particles




This prediatiow can be tested with ND measurements
L a three Levels atomle system

~
N
oy o AVAY 2
’ Ny, tnduced
RamseyY oscillations fluorescence

e—z‘Sye
particle-entangled state ) !
(twitn-Foch):

N. N
|¢O> - |?>a|§>b
CA N2

P(yes|t) = [(wole 0/ ™ o)™ =~ 1 — — 92

Z,eno 0[3 namics with a number of measurements
of the order of the -square- of number of particles




a few wore references. ..
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Friedman 1972

Misra and Sudarshan, 1977
Kofman and Kurizki, 2000
Facchi and Pascazio, 2002
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(Cook 1988)
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Wunderlich, Balzer, and Toschek, 2001
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and Raizen, 1997.

Fischer, B. Gutierrez-Medina, and Raizen, 2001

experiments
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1) Particle entanglement <--> distinguishability of states

2) How to recognize useful entanglement: Flsher information

Applications in tnterferometry: shot notse versus Heisenberg Limit

3) blstingutshabilit
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1) Particle entanglement <--> distinguishability of states

2) How to recognize useful entanglement: Flsher information

Applications in tnterferometry: shot notse versus Heisenberg Limit

3) Dlstingu

There are different technologies which are based on efficiently distinguish quantum
states. For instance:

In quantum control theories, when searching the optimal path to generate a target
quantum state

Setting the conditions for adiabatic approximations

Adiabatic quantum computation

In the estimation of the speed limits of quantum computation




