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Outline

Ultracold atoms on atom chips
• basic principles
• experimental setup

Chip-based atomic clocks and interferometers
• BEC interferometer with internal-state labeling

Spin-squeezing and multi-particle entanglement
• control of collisions in state-dependent potential 
• spin-squeezing on the clock transition
• Wigner function reconstruction
• experimental test of multi-particle entanglement
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Figure 5 | Periodic recurrences of Ramsey interference contrast in the BEC interferometer. The contrast of the Ramsey fringes on the |0� ↔ |1� transition
is modulated owing to the periodic splitting and recombination of the motional wavefunctions. a, As a measure of the wavefunction overlap, we show

σ (N1)/N̄1 as a function of TR, where σ (N1) is the standard deviation and N̄1 is the mean of N1 obtained from a running average over a time interval

[TR−75 µs,TR+75 µs], corresponding to one period of the Ramsey fringes. The width of the recurrence is influenced by nonlinear wavefunction dynamics

due to mean-field interactions. b, Corresponding Ramsey fringe data for selected values of TR. Each data point is determined from two consecutive runs of

the experiment, in which either N1 or N0 is detected. The surplus of atoms in state |1� at times when the contrast has vanished (second and fourth graph) is

probably due to small intensity gradients of the microwave used to drive the two-photon transition, caused by near-field effects due to the microstructured

surface. c, In situ images of the atomic density distribution of |0� and |1�, for TR corresponding to the centre of the windows in b.

whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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observed dependence of s on Pmw/∆m can be reproduced even
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arise owing to asymmetries of the tapers andwire bonds.
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and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
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arise owing to asymmetries of the tapers andwire bonds.
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In the second experiment, we demonstrate fully coherent control
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|0� ↔ |1� transition in combination with state-dependent splitting
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motivated by the sequence required for the atom-chip quantum
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interference fringes, see Fig. 5. The interference contrast is
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shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
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is visible only for TR beyond several hundredmilliseconds.We have
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that they can account for only about 30% of the observed noise
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Atom chips

Basic principle: the wire trap Zeeman interaction
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State of the art: multi-layer atom chips
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Compact glass cell vacuum chamber
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Production of Bose-Einstein condensates
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Portable atom-chip setups

A Compact, Transportable, Microchip-Based System for High Repetition

Rate Production of Bose-Einstein Condensates

Daniel M. Farkas,
a)

Kai M. Hudek, Evan A. Salim, Stephen R. Segal, Matthew B. Squires,
b)

and Dana Z.

Anderson

JILA and Department of Physics, University of Colorado, Boulder, CO 80309

(Dated: 3 December 2009)

We present a compact, transportable system that produces Bose-Einstein condensates (BECs) near the surface
of an integrated atom microchip. The system occupies a volume of 0.4 m3 and operates at a repetition rate
as high as 0.3 Hz. Evaporative cooling in a chip trap with trap frequencies of several kHz leads to nearly pure
condensates containing 1.9×104 87Rb atoms. Partial condensates are observed at a temperature of 1.58(8)µK,
close to the theoretical transition temperature of 1.1µK.

Since the first experimental demonstrations of Bose-
Einstein condensation (BEC) in a gas of neutral
atoms,1–3 studies of BEC and related forms of ultracold
matter have been largely motivated by purely scientific
interests. The complexity and size of the required appa-
ratus necessitate that these experiments remain confined
to research laboratories. However it has become increas-
ingly evident that ultracold matter can play a utilitarian
role in applications such as atomic clocks, inertial sen-
sors, and electric and magnetic field sensing.4–9 Indeed,
much of the work on ultracold atom chip technology is
predicated on the need for compact systems that can find
their way out of the laboratory and into the field.

We present here a compact, movable, microchip-based
BEC production system that occupies a volume of 0.4 m3,
operates at a repetition rate as high as 0.3 Hz, and
produces BECs containing 1.9×104 atoms in the |F =
2, mF = 2� ground state of 87Rb (see Fig. 1). The system
contains all of the components needed to produce and
image BECs, including an ultra-high vacuum (UHV) sys-
tem, lasers, data acquisition hardware, electronics, and
imaging equipment. The system can be easily reconfig-
ured for use with atom chips having unique wire patterns
designed for different applications. As such, it can serve
as a standardized platform for a variety of portable ex-
periments that utilize ultracold matter.

Significant reductions in power consumption and vol-
ume are achieved by trapping atoms with a microchip
rather than “traditional,” macroscopic-sized magnetic
coils.10–13 Patterned using standard fabrication tech-
niques by Teledyne Scientific and Imaging, LLC, the
26 mm×26 mm atom chip used here is formed by deposit-
ing 100µm-wide, 10 µm-thick copper conductors onto a
450 µm-thick silicon substrate (see Fig. 2). A segment in
a “Z” configuration (called the Z-wire) is used with exter-
nal bias fields to create a Ioffe-Pritchard trap.14 Higher
trap frequencies are obtained with a dimple trap that is

a)
Author to whom correspondence should be addressed. Electronic

mail: daniel.farkas@colorado.edu.

b)
Current affiliation: Air Force Research Laboratory, Hanscom

AFB, Massachusetts 01731, USA.

FIG. 1. (color online) Picture of a compact, transportable
system that produces and images BECs.

created by running an additional current perpendicular
to the center of the Z-wire. The chip is anodically bonded
to the UHV cell, where it functions as a structural wall of
the vacuum system.13 Atoms are trapped at distances less
than 200µm from the room-temperature surface of the
chip and less than 1mm away from the ambient environ-
ment. Current is passed into the vacuum system through
hermetic, UHV-compatible, through-chip vias that serve
as electrical feedthroughs. Each via can sustain 2.5 A
of current for several hundred milliseconds without de-
structively overheating. The chip conductors are driven
by current servos that are powered by floating, switched-
mode power supplies.

To achieve high repetition rates, atoms must be quickly
loaded into a trap from a high-pressure background va-
por. However, to minimize the loss of trapped atoms from
background collisions, a low pressure is also required.
A standard solution to meeting these disparate require-
ments is a two-chamber system: one chamber contains
a high-pressure background vapor of the atomic species
of interest while a second chamber is pumped to main-
tain a low background pressure. Our implementation
uses chambers formed from glass fluorimeter cells (see
Fig. 3). In the bottom chamber, a getter source creates
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commercially available:

QUANTUS project
A. Vogel et al., 
Appl. Phys. B 84, 663 (2006).
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66 Kapitel 3. Experimenteller Aufbau

a)

b)

c)

d)

e)

f)

Abbildung 3.23: Aufbau des gesamten Experiments. Wie im Text beschrieben, befinden a) die

Lasermodule, b) der Messrechner und DCDC-Wandler, c) die (abgeschirmte) Ionengetterpumpe

und der Controller d) der Hauptteil der Vakuumkammer, hier von der Abschirmung verdeckt,

e) die Stromtreiber und Batterien für die Magnetfelder und f) infrastrukturelle Bauelemente des

Fallturms

den oberen Teil der Vakuumkammer füllen. Unterhalb hiervon (d) ist dann die Haupt-

kammer (Kap. 3.3) mit allen optischen Zugängen, der CCD-Kamera sowie der magne-

tischen Abschirmung (Kap. 3.5.3), direkt über der vorletzten Plattform, auf welcher die

Stromtreiber sowie die Akkus für die Spulen der Magnetfelder und den Chip befestigt

sind (e). Diese Akkus sind bei weitem das schwerste Element in der ganzen Apparatur

für welche der unterste Platz sinnvoll ist. So wird ein leichtes Kippen der Fallkapsel um

eine horizontale Achse während des Fallens minimiert.
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Outline

Ultracold atoms on atom chips
• basic principles
• experimental setup

Chip-based atomic clocks and interferometers
• state-dependent coherent splitting of a BEC

Spin-squeezing and multi-particle entanglement
• control of collisions in state-dependent potential 
• spin-squeezing on the clock transition
• Wigner function reconstruction
• experimental test of multi-particle entanglement
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Figure 5 | Periodic recurrences of Ramsey interference contrast in the BEC interferometer. The contrast of the Ramsey fringes on the |0� ↔ |1� transition
is modulated owing to the periodic splitting and recombination of the motional wavefunctions. a, As a measure of the wavefunction overlap, we show

σ (N1)/N̄1 as a function of TR, where σ (N1) is the standard deviation and N̄1 is the mean of N1 obtained from a running average over a time interval

[TR−75 µs,TR+75 µs], corresponding to one period of the Ramsey fringes. The width of the recurrence is influenced by nonlinear wavefunction dynamics

due to mean-field interactions. b, Corresponding Ramsey fringe data for selected values of TR. Each data point is determined from two consecutive runs of

the experiment, in which either N1 or N0 is detected. The surplus of atoms in state |1� at times when the contrast has vanished (second and fourth graph) is

probably due to small intensity gradients of the microwave used to drive the two-photon transition, caused by near-field effects due to the microstructured

surface. c, In situ images of the atomic density distribution of |0� and |1�, for TR corresponding to the centre of the windows in b.

whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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the experiment, in which either N1 or N0 is detected. The surplus of atoms in state |1� at times when the contrast has vanished (second and fourth graph) is

probably due to small intensity gradients of the microwave used to drive the two-photon transition, caused by near-field effects due to the microstructured

surface. c, In situ images of the atomic density distribution of |0� and |1�, for TR corresponding to the centre of the windows in b.

whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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Figure 5 | Periodic recurrences of Ramsey interference contrast in the BEC interferometer. The contrast of the Ramsey fringes on the |0� ↔ |1� transition
is modulated owing to the periodic splitting and recombination of the motional wavefunctions. a, As a measure of the wavefunction overlap, we show

σ (N1)/N̄1 as a function of TR, where σ (N1) is the standard deviation and N̄1 is the mean of N1 obtained from a running average over a time interval
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the experiment, in which either N1 or N0 is detected. The surplus of atoms in state |1� at times when the contrast has vanished (second and fourth graph) is

probably due to small intensity gradients of the microwave used to drive the two-photon transition, caused by near-field effects due to the microstructured

surface. c, In situ images of the atomic density distribution of |0� and |1�, for TR corresponding to the centre of the windows in b.

whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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Figure 5 | Periodic recurrences of Ramsey interference contrast in the BEC interferometer. The contrast of the Ramsey fringes on the |0� ↔ |1� transition
is modulated owing to the periodic splitting and recombination of the motional wavefunctions. a, As a measure of the wavefunction overlap, we show
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due to mean-field interactions. b, Corresponding Ramsey fringe data for selected values of TR. Each data point is determined from two consecutive runs of

the experiment, in which either N1 or N0 is detected. The surplus of atoms in state |1� at times when the contrast has vanished (second and fourth graph) is

probably due to small intensity gradients of the microwave used to drive the two-photon transition, caused by near-field effects due to the microstructured

surface. c, In situ images of the atomic density distribution of |0� and |1�, for TR corresponding to the centre of the windows in b.

whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.

NATURE PHYSICS | VOL 5 | AUGUST 2009 | www.nature.com/naturephysics 595

Ramsey fringes in-situ images

NATURE PHYSICS DOI: 10.1038/NPHYS1329 ARTICLES
a

b

c

Time between π/2-pulses, TR (ms)

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

0.2

0.4

0.6

σ 
(N

1)

N
1

σ

1.0

0.5

0

¬0.5

¬1.0

N
0
¬N

1

N
0
+N

1

0.1 0.2 0.3 0.4 0.5 4.0 4.1 4.2 4.3 4.4 8.2 8.3 8.4 8.5 8.6 12.4 12.5 12.6 12.7 12.8 16.5 16.6 16.7 16.8 16.9

Figure 5 | Periodic recurrences of Ramsey interference contrast in the BEC interferometer. The contrast of the Ramsey fringes on the |0� ↔ |1� transition
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probably due to small intensity gradients of the microwave used to drive the two-photon transition, caused by near-field effects due to the microstructured
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whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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Figure 5 | Periodic recurrences of Ramsey interference contrast in the BEC interferometer. The contrast of the Ramsey fringes on the |0� ↔ |1� transition
is modulated owing to the periodic splitting and recombination of the motional wavefunctions. a, As a measure of the wavefunction overlap, we show

σ (N1)/N̄1 as a function of TR, where σ (N1) is the standard deviation and N̄1 is the mean of N1 obtained from a running average over a time interval

[TR−75 µs,TR+75 µs], corresponding to one period of the Ramsey fringes. The width of the recurrence is influenced by nonlinear wavefunction dynamics

due to mean-field interactions. b, Corresponding Ramsey fringe data for selected values of TR. Each data point is determined from two consecutive runs of

the experiment, in which either N1 or N0 is detected. The surplus of atoms in state |1� at times when the contrast has vanished (second and fourth graph) is

probably due to small intensity gradients of the microwave used to drive the two-photon transition, caused by near-field effects due to the microstructured

surface. c, In situ images of the atomic density distribution of |0� and |1�, for TR corresponding to the centre of the windows in b.

whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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Figure 5 | Periodic recurrences of Ramsey interference contrast in the BEC interferometer. The contrast of the Ramsey fringes on the |0� ↔ |1� transition
is modulated owing to the periodic splitting and recombination of the motional wavefunctions. a, As a measure of the wavefunction overlap, we show

σ (N1)/N̄1 as a function of TR, where σ (N1) is the standard deviation and N̄1 is the mean of N1 obtained from a running average over a time interval

[TR−75 µs,TR+75 µs], corresponding to one period of the Ramsey fringes. The width of the recurrence is influenced by nonlinear wavefunction dynamics

due to mean-field interactions. b, Corresponding Ramsey fringe data for selected values of TR. Each data point is determined from two consecutive runs of

the experiment, in which either N1 or N0 is detected. The surplus of atoms in state |1� at times when the contrast has vanished (second and fourth graph) is

probably due to small intensity gradients of the microwave used to drive the two-photon transition, caused by near-field effects due to the microstructured

surface. c, In situ images of the atomic density distribution of |0� and |1�, for TR corresponding to the centre of the windows in b.

whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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Figure 5 | Periodic recurrences of Ramsey interference contrast in the BEC interferometer. The contrast of the Ramsey fringes on the |0� ↔ |1� transition
is modulated owing to the periodic splitting and recombination of the motional wavefunctions. a, As a measure of the wavefunction overlap, we show
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the experiment, in which either N1 or N0 is detected. The surplus of atoms in state |1� at times when the contrast has vanished (second and fourth graph) is

probably due to small intensity gradients of the microwave used to drive the two-photon transition, caused by near-field effects due to the microstructured

surface. c, In situ images of the atomic density distribution of |0� and |1�, for TR corresponding to the centre of the windows in b.

whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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Figure 5 | Periodic recurrences of Ramsey interference contrast in the BEC interferometer. The contrast of the Ramsey fringes on the |0� ↔ |1� transition
is modulated owing to the periodic splitting and recombination of the motional wavefunctions. a, As a measure of the wavefunction overlap, we show

σ (N1)/N̄1 as a function of TR, where σ (N1) is the standard deviation and N̄1 is the mean of N1 obtained from a running average over a time interval

[TR−75 µs,TR+75 µs], corresponding to one period of the Ramsey fringes. The width of the recurrence is influenced by nonlinear wavefunction dynamics

due to mean-field interactions. b, Corresponding Ramsey fringe data for selected values of TR. Each data point is determined from two consecutive runs of

the experiment, in which either N1 or N0 is detected. The surplus of atoms in state |1� at times when the contrast has vanished (second and fourth graph) is

probably due to small intensity gradients of the microwave used to drive the two-photon transition, caused by near-field effects due to the microstructured

surface. c, In situ images of the atomic density distribution of |0� and |1�, for TR corresponding to the centre of the windows in b.

whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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the experiment, in which either N1 or N0 is detected. The surplus of atoms in state |1� at times when the contrast has vanished (second and fourth graph) is

probably due to small intensity gradients of the microwave used to drive the two-photon transition, caused by near-field effects due to the microstructured

surface. c, In situ images of the atomic density distribution of |0� and |1�, for TR corresponding to the centre of the windows in b.

whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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whereas state |̄1� is nearly unaffected. Figure 3b shows that the
observed dependence of s on Pmw/∆m can be reproduced even
better by assuming a slightly asymmetric CPW mode, which can
arise owing to asymmetries of the tapers andwire bonds.

Demonstration of fully coherent operation
In the second experiment, we demonstrate fully coherent control
of the atoms by carrying out trapped-BEC interferometry with
internal-state labelling of the interferometer arms. Our inter-
ferometer consists of a Ramsey (π/2)–(π/2) sequence on the
|0� ↔ |1� transition in combination with state-dependent splitting
and recombination of the motional wavefunctions. We use a non-
adiabatic splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom-chip quantum
gate proposed in ref. 19. By choosing∆m =2π×600 kHz, we ensure
that the admixture of state |2� is small enough so that decoherence
due to magnetic field noise is not a problem on the timescale
of our experiment. After the first π/2-pulse, the microwave on
the CPW is switched on within 50 µs to Pmw = 120mW, which
corresponds to a sudden displacement of the potential minimum
for state |̄0� by 4.3 µm. After a variable delay, we switch off the
microwave within 50 µs, followed by the second π/2-pulse and
state-selective detection to determine the number of atoms N0
(N1) in state |0� (|1�). The time between the π/2-pulses, TR,
corresponds to the overall time the microwave was turned on. In
this scheme, the switching of Vmw is adiabatic with respect to the
internal-state dynamics, but fast compared with the trap oscillation
periods. The wavefunction of state |̄0� is thus set into oscillation
in the shifted potential V|̄0�. We can record these oscillations by
varying TR and imaging the atoms without applying the second
π/2-pulse, see Fig. 4b. The wavefunction of |̄0� oscillates with a
peak-to-peak amplitude of 8.5 µm and a frequency of f̄ x = 116Hz,
which is the trap frequency of V|̄0� along x . Periodically, it comes
back to its initial position, approximately when TR is an integer
multiple of f̄ −1

x = 8.6 ms. At these times, it overlaps with the

wavefunction of state |1�. Note that owing to collisions, state |1�
starts to oscillate as well.

If we apply both π/2-pulses and vary TR, we observe Ramsey
interference fringes, see Fig. 5. The interference contrast is
modulated by the wavefunction overlap of the two states and thus
periodically vanishes and reappears again owing to the oscillation
of state |̄0�. As a measure of the wavefunction overlap, we plot
σ (N1)/N̄ 1 as a function of TR, where σ (N1) is the standard
deviation and N̄ 1 is themean ofN1 obtained from a running average
over one period of the Ramsey fringes, see Fig. 5a. This measure of
the overlap has the advantage that it is largely insensitive to noise on
the Ramsey fringes. Corresponding fringe data and in situ images
of the atoms at specific times TR are shown in Fig. 5b,c. Precisely
at the time when state |̄0� has carried out a full oscillation in V|̄0�,
a sharp recurrence of the contrast is observed. The recurrence of
the interference proves that the combined evolution of internal and
motional state is coherent. The high contrast of the first recurrence
shows that the collisional interactions between the atoms observable
in Fig. 4b lead only to a small distortion of the wavefunctions.
Wavefunction distortion can be reduced to negligible levels by
optimal control of the splitting process as discussed in ref. 20.

For the second (and subsequent) recurrences, we observe sub-
stantial noise on the Ramsey fringe data. In contrast, when we
take Ramsey fringes without splitting the BEC, comparable noise
is visible only for TR beyond several hundredmilliseconds.We have
analysed technical fluctuations of the potentials; however, we find
that they can account for only about 30% of the observed noise
level (see theMethods section). The extra noise could be due to spin
squeezing in the BEC, as suggested in ref. 21, which in the present
(π/2)–(π/2) sequencewould showup as increased phase noise. This
effect will be studied in future experiments. It suggests that our
system can be used to tune interactions in a state-dependent way
for atoms such as 87Rb that do not have convenient Feshbach reso-
nances. This could lead to the realization ofmany-particle entangled
states such as spin-squeezed states21 or Schrödinger cat states39,40.
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Two-component BEC as a collective spin
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Spin squeezing and entanglement generation

H = χ Sz2

time 
evolution

z

y

ΔSθ ,min

θ
Sx

z

y

ΔSz

Sx

“one-axis twisting”

Kitagawa, Ueda (1993)

Sørensen, Duan, Cirac, 
Zoller (2001)

Sinatra, Castin (2000, 
2008, 2009)

...

Spin squeezing/
entanglement through 
nonlinear dynamics

ξ2 ≡
2S ΔSθ ,min( )2

Sx
22

Squeezing/entanglement parameter (Wineland, 1994):

•useful resource for interferometry 
beyond standard quantum limit

•atoms entangled

to determine ξ, measure: •minimum fluctuations

•mean spin (Ramsey contrast)

ΔSθ ,min
Sx

ξ2 = 1 ξ2 <1

if  ξ2 < 1  ⇒

Oberthaler (BEC, double well 2008, int. state 2010)
Polzik, Vuletic (thermal atoms, int. state 2008/09/10), ...

recent experiments:
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Control nonlinearity by wave-function engineering

φ0 φ1

but for 87Rb:  a00 ~ a11 ~ a01  ⇒  χ ≈ 0

no convenient Feshbach resonance in magnetic trap

χ ≈ 0
(simplification: BEC mode functions φ0, φ1 independent of N0, N1)

 χ  a00 φ0
4 dr3∫ + a11 φ1

4 dr3∫ − 2a01 φ0
2 φ1

2 dr3∫

Y. Li, P. Treutlein, J. Reichel, A. Sinatra, Eur. Phys. J. B 68, 365 (2009).

φ0 φ1

use state-dependent potential to control 
interactions via wave function overlap

χ > 0

related idea for BEC in TOF: U. Poulsen and K. Mølmer, PRA 65, 033613 (2002). 
related ideas for QIP with single atoms: T. Calarco et al., PRA 61, 022304 (2002).

(turn nonlinearity on for well-defined time, avoid oversqueezing)

H = δ Sz +ΩRSϕ + χ Sz2Hamiltonian:
(two-mode model)

nonlinearity due to collisions
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Experimental sequence for spin squeezing

χ > 0 χ = 0χ = 0

time

π/2

power of microwave near-field

ΩRτ = θ, phase ϕ
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Experimental sequence for spin squeezing

χ > 0 χ = 0χ = 0

time

π/2

power of microwave near-field

measure Sx

ΩRτ = θ, phase ϕ

(Ramsey contrast) 
ξ2 ≡

2S ΔSθ ,min( )2
Sx

22
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Experimental sequence for spin squeezing

χ > 0 χ = 0χ = 0

time

π/2

power of microwave near-field

ΩRτ = θ, phase ϕ

measure Sx
(Ramsey contrast) 

ξ2 ≡
2S ΔSθ ,min( )2

Sx
22
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Experimental sequence for spin squeezing

χ > 0 χ = 0χ = 0

time

π/2

power of microwave near-field

ΩRτ = θ, phase ϕ

measure Sx
(Ramsey contrast) 

ξ2 ≡
2S ΔSθ ,min( )2

Sx
22
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Experimental sequence for spin squeezing

χ > 0 χ = 0χ = 0

time
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power of microwave near-field
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measure Sx
(Ramsey contrast) 
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Contrast of Ramsey fringes

with splitting (χ>0, squeezing)

• Ramsey contrast C = 0.88 ± 0.03

without splitting (χ=0, reference)

• Ramsey contrast C = 0.96 ± 0.01

• |1,-1> trap lifetime ~ 4 s

• |2,1> trap lifetime ~ 200 ms

• superposition ~ 250 ms
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Experimental sequence for spin squeezing

χ > 0 χ = 0χ = 0

time

π/2

power of microwave near-field

State tomography:
measure ΔSθ 
(projection noise) 
after turning for 
several angles θ

ΩRτ = θ, phase ϕ

ξ2 ≡
2S ΔSθ ,min( )2

Sx
22
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22
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Spin squeezing: data

N = 1250

standard quantum limit

z

y

ΔSθ ,min

θ
Sx

statistics:
370 shots per 
datapoint
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Spin squeezing: data

N = 1250

standard quantum limit

squeezing

reference

Var(Sz) reduced 
by -3.7 ± 0.4 dB

ξ2 = -2.5 ± 0.6 dB 
⇒ entanglement

z

y

ΔSθ ,min

θ
Sx

statistics:
370 shots per 
datapoint
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Marginals of the Wigner function

θ [degrees]

z

y

ΔSθ ,min

θ
Sx

Quantum state tomography

Tuesday, June 8, 2010



Quantum state reconstruction

 Sy  α r

 Sz  α i

Wigner function - obtained by inverse Radon transform

z

y

local approximation of Bloch sphere by plane

limited resolution due to

• finite angular resolution

• finite resolution in atom number (imaging noise)

• limited amount of data for histograms 
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Simulation: Li Yun and A. Sinatra, ENS Paris

Spatial evolution 
of the two states   
(ϕ0, ϕ1 for N0=N1=N/2)

Ramsey contrast 
(theory vs. experiment)

Yun Li et al., 
EPJB 68, 365 (2009).
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Spin squeezing: data + theory
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Theory includes 
dynamics + losses 
+ technical noise
   (Δφ = 8° r.m.s.,
   fluct. detuning)

Ref: Δφ = 3° r.m.s.

N = 1250
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Depth of entanglement in the squeezed BEC

How large are the clusters of 
entangled atoms in the BEC at least?

depth of entanglement

5

5 ms 0.49 mA
4.5 mG

T

end of
experiment

start of
TOF

FIG. 6: Fluctuations of By. Oscilloscope trace showing the modulation of the current producing By. The time T during
which the squeezing is performed is indicated. The modulation has a peak-to-peak amplitude of 8mG with spikes that are
repeated at a frequency of 50 Hz.

in [10]. According to this method, one has to measure
the length of the collective spin as well as its minimal ob-
tainable variance, which we both do in our experiment.
Thus, n-particle entanglement is experimentally proven
if the obtained data point

�
�Sx�/(N/2),∆S2

θ,min/(N/2)
�

lies in the corresponding region in figure 1 of [10]. This
figure is reproduced in figure 7 of this supplement to-
gether with the data point representing our results.

The length of the collective spin is the Ramsey contrast
�Sx�/(N/2) = C = (88±3)% and the minimal obtainable
variance in our experiment is ∆S2

θ,min/(N/2) = 0.21 ±
0.02. Note the factor 2 difference between what is plotted
in figure 2 of the main text and the definition used in
[10] and thus figure 7 of this supplement. Our data falls
below the dash-dotted curve which implies entanglement
in clusters of at least 4± 1 particles.

Wigner Function reconstruction

We reconstruct the Wigner function of the spin-
squeezed condensate in the following way: For each mea-
sured θ ∈ [−90◦, 90◦] we create a histogram of Sθ and
fit it with a cubic spline to obtain a smooth curve. We
then use a filtered back-projection algorithm [11] to per-
form an inverse Radon transform [12]. The inverse Radon
transform is derived for classical image reconstruction in
a plane. In [13], it has been used to reconstruct the
Wigner function of squeezed states of the electromagnetic
field. However, it is generally not suited to reconstruct
an arbitrary spin state on the curved Bloch sphere. In
our case the spin-squeezed state does not ‘wrap around’
the Bloch sphere so that we can locally approximate the
Bloch sphere by a plane and use the inverse Radon trans-
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FIG. 7: Experimental determination of the depth of
entanglement. The curves represent the minimal obtainable
variance as a function of the mean spin for different depths of
entanglement: data points lying in the region labeled by n in
the figure prove at least n-particle entanglement. Our data
falls below the dash-dotted curve which implies at least 4± 1
particle entanglement. Figure adapted with permission from
[10]. Copyrighted by the American Physical Society.

form. We furthermore make a continuum approxima-
tion to the measured values of Sz, which is reasonable as
our imaging system does not have single atom resolution.
With the experimental method presented here but with
a more sophisticated analysis [14], the density matrix of
arbitrary spin states that spread over the whole Bloch
sphere can be reconstructed. Quantum state tomogra-

A. Sørensen and 
K. Mølmer, PRL 
86, 4431 (2001).
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ξ2 ≥1 A. Sørensen et al., 
Nature 409, 63 (2001).

⇒ clusters of ≥ 4 
entangled particles
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Outlook

•improve squeezing (decrease technical noise)

•study scaling with atom number and temperature

•use squeezed states in atomic clock on a chip
(relax magnetic trap after squeezing to turn off 
nonlinearity: squeezing survives for ~ 0.6 s in presence 
of loss and residual phase diffusion)

•characterize multi-particle entanglement 
(quantum Fisher information...)

•entanglement of several BECs through collisions

•QIP with single atoms on atom chips

P. Rosenbusch/J. Reichel, 
Observatoire, Paris

T. Calarco et al., 
PRA 61, 022304 (2002).

P. Treutlein et al., 
PRA 94, 022312 (2006).

P. Treutlein et al., 
Fortschr. Phys. 54, 702 (2006).

|0〉|0〉 ⇒    |0〉|0〉
|0〉|1〉 ⇒    |0〉|1〉
|1〉|0〉 ⇒    |1〉|0〉
|1〉|1〉 ⇒ eiφ|1〉|1〉

A. Smerzi et al., Trento
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Munich atom chip team   -   P. Treutlein / T. W. Hänsch

Collaborations: L. Yun, A. Sinatra, and J. Reichel (ENS Paris), M. Lukin (Harvard),
D. König and J. Kotthaus (LMU Munich), M. Ludwig and F. Marquardt (LMU), 
K. Hammerer, K. Stannigel, C. Genes, M. Wallquist, and P. Zoller (Innsbruck)
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