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Introduction: strongly driven qubits, why?

Recent experiments, e.g.

NV-center qubits (Fuchs et al., Science (2009), this talk)

superconducting qubits (Tuorila et al., ArXiv:1005.3446)

Goal in Quantum Information Processing:
the most coherent operations before decoherence

weak pulses: same pulse area = same operation

so increase coherence time

and operate faster with stronger pulses



Outline

experiment: NV-center spin qubits

theory: qubit under strong harmonic driving

theory: qubit state preparation with strong pulses

proposal: for new experiments with NVs



the qubit: Nitrogen-Vacancy center spin qubit in diamond (NV−)

Interesting for QIP:

single NV−s addressable

crystal splitting of ground state

coherent state control

coherence time ' 2 ms
(room temperature!)

state initialization and readout
by optical pumping

“Crystals are like people; it is only the defects that make them interesting”
(J.C. Franck)



experiment: setup and level diagrams for NV−
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G.D. Fuchs et al., Science 326, 1520 (2009)



experiment: dynamics

G.D. Fuchs et al., Science 326, 1520 (2009)



theory: qubit under strong harmonic driving

Time-dependent Hamiltonian with harmonic driving V (t) = Acos(ωt),

H(t) = hz(t)σz +hxσx =ħ
(
ω0/2+V (t)/2 ∆

∆ −ω0/2−V (t)/2

)

Interaction picture
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with interaction

∆(t) =∆eiω0t+i A
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sin(ωt) =∆
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Jn(A/ω)ei(ω0+nω)t



theory: resonant driving in the high-frequency limit

Assume:

1 resonant driving ω0 +nresω= 0

2 high-frequency driving: ωÀ∆

∆(t) =∆
∞∑

n=−∞
Jn(A/ω)ei(ω0+nω)t '∆Jnres (A/ω)
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theory: driving with strong pulses

pulse V (t) = A(t)sin(ωt),
assumptions: ωτp À 1 and A/ω¿ωτp ⇒ -50 50 100
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1 Effective interaction ∆eff(t) =∆ Jnres [A(t)/ω]

2 Equation of motion
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3 Solution

P1(t) = sin2[Φ(t)], Φ(t) =
∫ t

t0

dτ∆eff(τ)



Example: strong pulse with linear rise and fall
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M. Wubs, Chemical Physics in press (2010)



Comparison: exact and effective dynamics (I/II)

Exponential pulses, A(t) = Aexp(−|t|/τp)
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Comparison: exact and effective dynamics (II/II)

Gaussian pulses, A(t) = A exp(−t2/τ2
p)
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theory: qubit state preparation with strong pulses

Many pulse shapes A(t) may lead to same intended final state (e.g. |1〉 )

P1(∞) = sin2[Φ(∞)], Φ(∞) =
∫ ∞

t0

dτ∆eff(τ) =∆
∫ ∞

t0

dτ Jnres [A(τ)/ω]

Weak coupling, ω=ω0 ⇒Φ(∞) ∝ pulse area
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Conclusions/proposal: new experiments with NVs

1 Experiments by Fuchs et al.: strongly pulsed single NV qubits

2 Here: accurate effective dynamics in high-frequency regime

3 Coherent destruction of tunneling observable in NVs

4 Analytical tools for fast quantum state preparation in strong-driving
regime

THANKS TO: Danish Research Council; Nanophotonics Cluster &
Quantum Optics group @DTU ; Peter Hänggi (Augsburg)

SEE ALSO: ArXiv:1001.4048,
Coupling nitrogen vacancy centers in diamond to superconducting flux qubits,

D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D. Lukin, and A. S. Sørensen



shortest pulse: what conditions?

1 ∆/ω¿ 1 : high-frequency limit, RWA

2 ωτp À 1 : smooth pulse

3 A/ω¿ωτp : slowly-varying amplitude

4 Φ(∞) =∆τp
∫

dx J1( A
ω exp(−x2)) ≤ 1.40∆τp

5 Φ(∞) = 1.40∆τp for A/ω= 2.66

6 optimal amplitude A/ω= 2.66 gives shortest pulses to invert qubit
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