An introduction to Hamilton-Jacobi equations

Stefano Bianchini

February 2, 2011

Stefano Bianchini An introduction to Hamilton-Jacobi equations

イロン 不同と 不同と 不同と

æ

Outline

Introduction Basic existence theory Regularity End of first part

Introduction

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation Basic existence theory

Existence in the Lipschitz class

Viscosity solutions

Lagrangian formulation

Regularity

Some simple computations

A regularity result

Regularity for hyperbolic conservation laws

End of first part

Outline of the second part

Bibliography

伺下 イヨト イヨト

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Outline

Introduction

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Basic existence theory

Regularity

End of first part

イロン イヨン イヨン イヨン

æ

 Outline
 Hamilton's principal function

 Introduction
 Classical limit of Schrödinger

 Basic existence theory
 A study case in calculus of variations

 Regularity
 Control theory

 End of first part
 Optimal mass transportation

The Hamilton-Jacobi equation (HJ equation) is a special fully nonlinear scalar first order PDE. It arises in many different context:

- 1. Hamiltonian dynamics
- 2. Classical limits of Schrödinger equation
- 3. Calculus of variation
- 4. Control theory
- 5. Optimal mass transportation problems
- 6. Conservation laws in one space dimension
- 7. etc...

イロト イポト イヨト イヨト

 Outline
 Hamilton's principal function

 Introduction
 Classical limit of Schrödinger

 Basic existence theory
 A study case in calculus of variations

 Regularity
 Control theory

 End of first part
 Optimal mass transportation

The Hamilton-Jacobi equation (HJ equation) is a special fully nonlinear scalar first order PDE. It arises in many different context:

- 1 Hamiltanian dumancian
 - 1. Hamiltonian dynamics
 - 2. Classical limits of Schrödinger equation
 - 3. Calculus of variation
- 4. Control theory
- 5. Optimal mass transportation problems
- 6. Conservation laws in one space dimension
- 7. etc...

Even if it is fully nonlinear, there is a satisfactory theory of existence and regularity of solutions.

イロト イポト イヨト イヨト

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Hamilton's principal function

The function S = S(q, P, t) defining a canonical transformation of coordinates $(p, q) \mapsto (Q, P)$

$$p = \nabla_q S, \quad Q = \nabla_P S,$$

yields a canonical transformation with the new Hamiltonian H'=0 if

$$\partial_t S + H(t,q,\nabla_q S) = 0.$$

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Hamilton's principal function

The function S = S(q, P, t) defining a canonical transformation of coordinates $(p, q) \mapsto (Q, P)$

$$p = \nabla_q S, \quad Q = \nabla_P S,$$

yields a canonical transformation with the new Hamiltonian H' = 0 if

$$\partial_t S + H(t,q,\nabla_q S) = 0.$$

The above equation is the **Hamilton-Jacobi equation**: the function *H* is called the *Hamiltonian*, and depending on the context the solution can be called *minimizer*, *value function*, *potential*, or in this case *Hamilton principal function*.

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Schrödinger equation

The Schrödinger equation for a single particle in a potential U can be written as

$$i\hbar\partial_t\psi=-rac{\hbar^2}{2m}
abla\psi^2+U\psi.$$

・ロン ・回と ・ヨン・

æ

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Schrödinger equation

The Schrödinger equation for a single particle in a potential U can be written as

$$i\hbar\partial_t\psi = -rac{\hbar^2}{2m}\nabla\psi^2 + U\psi.$$

If we look for a solution of the form $\psi = \psi_0 e^{iS/\hbar}$, where S is the *phase* and we let $\hbar \to 0$ (classical limit), then (formally) we obtain

$$-\partial_t S = \frac{1}{2m} |\nabla S|^2 + U,$$

イロン イヨン イヨン イヨン

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Schrödinger equation

The Schrödinger equation for a single particle in a potential U can be written as

$$i\hbar\partial_t\psi = -rac{\hbar^2}{2m}\nabla\psi^2 + U\psi.$$

If we look for a solution of the form $\psi = \psi_0 e^{iS/\hbar}$, where S is the phase and we let $\hbar \to 0$ (classical limit), then (formally) we obtain

$$-\partial_t S = \frac{1}{2m} |\nabla S|^2 + U,$$

which is the Hamilton-Jacobi equation for the Hamiltonian

$$H=\frac{p^2}{2m}+U.$$

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Calculus of variation

Consider the minimization problem in $\Omega \subset \mathbb{R}^d$

$$\min\bigg\{\int \big(\mathbf{1}_{|p|\leq 1}(\nabla u(x))+u(x)\big)dx:u|_{\partial\Omega}=u_0\bigg\}.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Calculus of variation

Consider the minimization problem in $\Omega \subset \mathbb{R}^d$

$$\min\bigg\{\int \big(\mathbb{1}_{|p|\leq 1}(\nabla u(x))+u(x)\big)dx:u|_{\partial\Omega}=u_0\bigg\}.$$

The solution satisfies the time independent Hamilton-Jacobi equation

$$1-|\nabla u|=0,$$

with the Hamiltonian |p| and boundary data u_0 .

・ロン ・回と ・ヨン・

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Calculus of variation

Consider the minimization problem in $\Omega \subset \mathbb{R}^d$

$$\min\bigg\{\int \big(\mathbb{1}_{|p|\leq 1}(\nabla u(x))+u(x)\big)dx:u|_{\partial\Omega}=u_0\bigg\}.$$

The solution satisfies the time independent Hamilton-Jacobi equation

 $1-|\nabla u|=0,$

with the Hamiltonian |p| and boundary data u_0 . The Euler-Lagrange equation reads as

$$\operatorname{div}(\rho d) = 1,$$

with d the direction of the optimal ray (see later).

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations **Control theory** Optimal mass transportation

Control theory

Consider the ODE

$$\dot{x} = f(x, u), \quad u \text{ control},$$

and the problem is to minimize the functional

$$A(t) = \min_{u} \left\{ \int_{t}^{T} L(x, u) dt + F(x(T)) \right\}$$

・ロン ・回と ・ヨン ・ヨン

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations **Control theory** Optimal mass transportation

Control theory

Consider the ODE

$$\dot{x} = f(x, u), \quad u \text{ control},$$

and the problem is to minimize the functional

$$A(t) = \min_{u} \bigg\{ \int_{t}^{T} L(x, u) dt + F(x(T)) \bigg\}.$$

Defining

$$H(t,x,p) := \min_{u} \big\{ p \cdot f(x,u) + L(x,u) \big\},\$$

the function A(t) satisfies the Hamilton-Jacobi-Bellman equation

$$\partial_t A + H(t, x, \nabla A) = 0, \quad A(T) = F(x).$$

・ロン ・回と ・ヨン ・ヨン

æ

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Optimal mass transportation

Let
$$\|\cdot\|: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$
 be a norm, $\mu, \nu \in \mathcal{P}([0,1])$ and
 $\Pi(\mu, \nu) := \left\{ \pi \in \mathcal{P}([0,1]^2) : (P_1)_{\sharp} \pi = \mu, (P_2)_{\sharp} \pi = \nu \right\}.$

The problem is to minimize

$$\int \|x-y\|\pi(dxdy), \quad \pi\in\Pi(\mu,\nu).$$

・ロン ・回と ・ヨン・

æ

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Optimal mass transportation

Let
$$\|\cdot\|: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$
 be a norm, $\mu, \nu \in \mathcal{P}([0,1])$ and
 $\Pi(\mu, \nu) := \left\{ \pi \in \mathcal{P}([0,1]^2) : (P_1)_{\sharp} \pi = \mu, (P_2)_{\sharp} \pi = \nu \right\}$

The problem is to minimize

$$\int \|x-y\|\pi(dxdy), \quad \pi\in\Pi(\mu,
u).$$

By duality, this is equivalent to maximize

$$\int \phi(x)(\mu-
u)(dx), \quad ig|\phi(x)-\phi(y)ig|\leq \|x-y\|,$$

and one can show that ϕ is the solution to the Hamilton-Jacoby equation

$$1 - \|\nabla \phi\| = 0.$$

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Conservation laws

Consider the scalar conservation laws

$$u_t + f(u)_x = 0, \quad u: \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}.$$

Hamilton's principal function Classical limit of Schrödinger A study case in calculus of variations Control theory Optimal mass transportation

Conservation laws

Consider the scalar conservation laws

$$u_t + f(u)_x = 0, \quad u: \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}.$$

By the change of variable

$$U(x)=\int^x u(y)dy,$$

we can transform the PDE into

$$U_t + f(U_x) = 0,$$

which is a Hamilton-Jacobi equation with Hamiltonian H(p) = f(p).

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

Outline

Introduction

Basic existence theory Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

Regularity

End of first part

イロン 不同と 不同と 不同と

æ

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

What we can expect

The natural space of functions where the solutions lives is Lipschitz.

・ロン ・回と ・ヨン ・ヨン

æ

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

What we can expect

The natural space of functions where the solutions lives is Lipschitz.

Example. The model Hamiltonian is $\frac{p^2}{2}$, and the function

$$u(t,x) = -\int_0^x \min\left\{1, -\frac{y}{t}\right\} dy$$

is a regular solution for t < 1 to

$$u_t + \frac{|u_x|^2}{2} = 0.$$

At t = 1 the solution becomes only 1-Lipschitz.

イロト イポト イヨト イヨト

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

A solution to Hamilton-Jacobi can be defined as a Lipschitz function $u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ such that

 $u_t + H(t, x, \nabla u) = 0$

is satisfied at every differentiable point of u, i.e. \mathcal{L}^{d+1} -a.e..

・ロン ・回と ・ヨン ・ヨン

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

A solution to Hamilton-Jacobi can be defined as a Lipschitz function $u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ such that

 $u_t + H(t, x, \nabla u) = 0$

is satisfied at every differentiable point of u, i.e. \mathcal{L}^{d+1} -a.e.. A solution in the above "a.e.-sense" is not unique.

・ロン ・回と ・ヨン・

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

A solution to Hamilton-Jacobi can be defined as a Lipschitz function $u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ such that

$$u_t + H(t, x, \nabla u) = 0$$

is satisfied at every differentiable point of u, i.e. \mathcal{L}^{d+1} -a.e.. A solution in the above "a.e.-sense" is not unique. **Example.** The function

$$u(t,x)=\min\left\{|x|-\frac{t}{2},0\right\},\,$$

satisfies

$$u_t + \frac{|u_x|^2}{2} = 0, \quad u(0,x) = 0.$$

Clearly the expected solution is u(t, x) = 0.

イロト イポト イヨト イヨト

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

Maximum principle

For scalar equation, a natural requirement is

$$u(0,x) \leq v(0,x) \quad \Rightarrow \quad u(t,x) \leq v(t,x).$$

We can restrict the possible solutions to the ones generating a semigroup satisfying the maximum principle.

イロト イポト イヨト イヨト

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

Maximum principle

For scalar equation, a natural requirement is

$$u(0,x) \leq v(0,x) \quad \Rightarrow \quad u(t,x) \leq v(t,x).$$

We can restrict the possible solutions to the ones generating a semigroup satisfying the maximum principle.

If ϕ is a regular function such that $u^{\epsilon} - \phi$ has a local minimum in (\bar{t}, \bar{x}) , then it follows

$$\Delta(u^{\epsilon}-\phi)\geq 0,$$

Since $\nabla u^{\epsilon} = \nabla \phi$, $u^{\epsilon}_t = \phi_t$, we recover

$$\phi_t + H(\bar{t}, \bar{x}, \nabla \phi) - \epsilon \Delta \phi \ge 0,$$

and in the limit

$$\phi_t + H(\bar{t}, \bar{x}, \nabla \phi) \geq 0.$$

・ロン ・回と ・ヨン ・ヨン

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

Definition

A function u is a viscosity solution to the HJ equation if for all ϕ smooth such that

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

Definition

A function u is a viscosity solution to the HJ equation if for all ϕ smooth such that

1. $u - \phi$ has a local maximum in (\bar{t}, \bar{x}) , then

 $\partial_t \phi(\overline{t}, \overline{x}) + H(\overline{t}, \overline{x}, \nabla \phi(\overline{t}, \overline{x})) \leq 0,$

・ロン ・回 と ・ ヨ と ・ ヨ と

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

Definition

A function u is a viscosity solution to the HJ equation if for all ϕ smooth such that

1. $u - \phi$ has a local maximum in (\bar{t}, \bar{x}) , then

$$\partial_t \phi(\overline{t}, \overline{x}) + H(\overline{t}, \overline{x}, \nabla \phi(\overline{t}, \overline{x})) \leq 0,$$

2. $u - \phi$ has a local minimum in (\bar{t}, \bar{x}) , then

$$\partial_t \phi(\overline{t}, \overline{x}) + H(\overline{t}, \overline{x}, \nabla \phi(\overline{t}, \overline{x})) \geq 0,$$

・ロト ・回ト ・ヨト ・ヨト

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

Definition

A function u is a viscosity solution to the HJ equation if for all ϕ smooth such that

1. $u-\phi$ has a local maximum in (\bar{t},\bar{x}) , then

$$\partial_t \phi(\bar{t}, \bar{x}) + H(\bar{t}, \bar{x}, \nabla \phi(\bar{t}, \bar{x})) \leq 0,$$

2. $u-\phi$ has a local minimum in (\bar{t},\bar{x}) , then

$$\partial_t \phi(\bar{t}, \bar{x}) + H(\bar{t}, \bar{x}, \nabla \phi(\bar{t}, \bar{x})) \geq 0,$$

Under mild assumptions on H and u_0 ,

Theorem (Crandall-Lions)

The viscosity solution exists and is unique.

э

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

Lax formula

If u is a viscosity solution and H convex in p, then it can be obtained by the formula

$$u(t,x) = \min \left\{ u(0,y) + \int_0^t L(s,\gamma(s),\dot{\gamma}(s)) ds, \\ \gamma: [0,t] \to \mathbb{R}^d, \gamma(0) = y, \gamma(t) = x \right\},$$

・ロト ・回ト ・ヨト ・ヨト

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

Lax formula

If u is a viscosity solution and H convex in p, then it can be obtained by the formula

$$u(t,x) = \min \left\{ u(0,y) + \int_0^t L(s,\gamma(s),\dot{\gamma}(s)) ds, \\ \gamma: [0,t] \to \mathbb{R}^d, \gamma(0) = y, \gamma(t) = x \right\},$$

where the Lagrangian L is given by the Legendre transform of H

$$L(t, x, a) = \sup_{p} \left\{ a \cdot p - H(t, x, p) \right\}.$$

・ロン ・回と ・ヨン ・ヨン

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

The curve γ for which the minimum

$$u(t,x) = u(0,y) + \int_0^t L(s,\gamma(s),\dot{\gamma}(s)) ds$$

is called *characteristic* or *optimal ray*.

・ロト ・回ト ・ヨト ・ヨト

Outline Introduction Existence i Basic existence theory Viscosity so Regularity Lagrangian End of first part

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

The curve γ for which the minimum

$$u(t,x) = u(0,y) + \int_0^t L(s,\gamma(s),\dot{\gamma}(s)) ds$$

is called *characteristic* or *optimal ray*.

By Euler-Lagrange equation, it is a solution to the ODE system

$$\begin{cases} \dot{x} = \nabla_{p} H(t, x, p) \\ \dot{p} = -\nabla_{x} H(t, x, p) \end{cases}$$

Existence in the Lipschitz class Viscosity solutions Lagrangian formulation

The curve γ for which the minimum

$$u(t,x) = u(0,y) + \int_0^t L(s,\gamma(s),\dot{\gamma}(s)) ds$$

is called *characteristic* or *optimal ray*.

By Euler-Lagrange equation, it is a solution to the ODE system

$$\begin{cases} \dot{x} = \nabla_{p} H(t, x, p) \\ \dot{p} = -\nabla_{x} H(t, x, p) \end{cases}$$

In the special case where H = H(p), this curve is a straight line, and the min-formula reads as

$$u(t,x) = \inf_{y} \left\{ u(0,y) + tL\left(\frac{x-y}{t}\right) \right\}.$$

イロト イポト イヨト イヨト

Outline

Introduction

Basic existence theory

Regularity

Some simple computations A regularity result Regularity for hyperbolic conservation laws

End of first part

Some simple computations A regularity result Regularity for hyperbolic conservation laws

イロン イヨン イヨン イヨン

æ

Some simple computations A regularity result Regularity for hyperbolic conservation laws

If H is convex in p, then the solution u is not only Lipschitz, but enjoys more regularity.

・ロト ・回ト ・ヨト ・ヨト

Э

If H is convex in p, then the solution u is not only Lipschitz, but enjoys more regularity.

Example. Let $H = p^2/2$, so that $L = a^2/2$ and the function

$$x \mapsto tL\left(\frac{x-y}{t}\right) = \frac{|x-y|^2}{2t}$$

is semiconcave of parameter 1/t.

э

If H is convex in p, then the solution u is not only Lipschitz, but enjoys more regularity.

Example. Let $H = p^2/2$, so that $L = a^2/2$ and the function

$$x \mapsto tL\left(\frac{x-y}{t}\right) = \frac{|x-y|^2}{2t}$$

is semiconcave of parameter 1/t.

Since the minimum of semiconcave functions is semiconcave, it follows that the solution u to the HJ equation

$$\partial_t u + \frac{|\nabla_x u|^2}{2} = 0$$

is semiconcave.

イロン イヨン イヨン イヨン

Some simple computations A regularity result Regularity for hyperbolic conservation laws

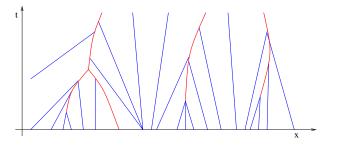
A regularity result

The following result can be proved: if the Hamiltonian is uniformly convex in p and the initial data is sufficiently regular then there exists piecewise smooth hypersurfaces $\{S_k\}_k$ of codimension 1 such that ∇u is regular outside $\bigcup_k S_k$ (Cannarsa-Sinestrari).

Some simple computations A regularity result Regularity for hyperbolic conservation laws

A regularity result

The following result can be proved: if the Hamiltonian is uniformly convex in p and the initial data is sufficiently regular then there exists piecewise smooth hypersurfaces $\{S_k\}_k$ of codimension 1 such that ∇u is regular outside $\bigcup_k S_k$ (Cannarsa-Sinestrari).



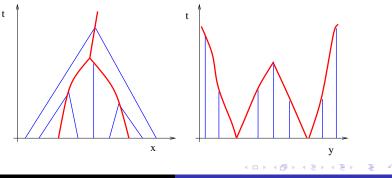
- 4 同 2 4 日 2 4 日 2

Outline
Introduction Some simple computations
Basic existence theory
Regularity
Regularity
Regularity for hyperbolic conservation laws
End of first part

Due to the regularity outside the jumps of $\nabla_x u$, it is clear that the change of variable

$$\begin{cases} t = \tau, \\ x = \gamma(t, y), \end{cases} y \text{ initial point of the characteristic } \gamma, \end{cases}$$

is regular.



Stefano Bianchini An introduction to Hamilton-Jacobi equations

Some simple computations A regularity result Regularity for hyperbolic conservation laws

Solutions to hyperbolic conservation laws

For strictly hyperbolic system of conservation laws in one space dimension

$$u_t + f(u)_x = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}, \ u \in \mathbb{R}^m,$$

one expects a similar structure: countably many shock curves and regularity of the solution in the remaining set.

イロト イポト イヨト イヨト

Some simple computations A regularity result Regularity for hyperbolic conservation laws

Solutions to hyperbolic conservation laws

For strictly hyperbolic system of conservation laws in one space dimension

$$u_t + f(u)_x = 0, \quad (t, x) \in \mathbb{R}^+ \times \mathbb{R}, \ u \in \mathbb{R}^m,$$

one expects a similar structure: countably many shock curves and regularity of the solution in the remaining set.

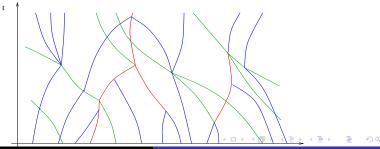
Some simple computations A regularity result Regularity for hyperbolic conservation laws

Solutions to hyperbolic conservation laws

For strictly hyperbolic system of conservation laws in one space dimension

$$u_t + f(u)_x = 0, \quad (t, x) \in \mathbb{R}^+ imes \mathbb{R}, \ u \in \mathbb{R}^m,$$

one expects a similar structure. However the presence of the other characteritic families generates a complicated structure.



Outline of the second part Bibliography

Introduction

Basic existence theory

Regularity

End of first part

Outline of the second part Bibliography

イロン 不同と 不同と 不同と

Э

Outline of the second part Bibliography

In the second part of the talk we will be concerned with:

イロト イロト イヨト イヨト 二日

Outline of the second part Bibliography

In the second part of the talk we will be concerned with:

1. the structure of solutions if the initial data is only Lipschitz and H convex

・ロン ・回と ・ヨン ・ヨン

Outline of the second part Bibliography

In the second part of the talk we will be concerned with:

- 1. the structure of solutions if the initial data is only Lipschitz and H convex
- 2. the regularity of the decomposition of $\mathbb{R}^+\times\mathbb{R}^d$ given by the characteristics

Outline of the second part Bibliography

In the second part of the talk we will be concerned with:

- 1. the structure of solutions if the initial data is only Lipschitz and *H* convex
- 2. the regularity of the decomposition of $\mathbb{R}^+\times\mathbb{R}^d$ given by the characteristics
- 3. the applications/extension of these results to conservation laws and optimal transport on manifolds