The Monge problem in Metric Spaces

F. Cavalletti - S. B.

September 28, 2011

F. Cavalletti - S. B. The Monge problem in Metric Spaces

- - 4 回 ト - 4 回 ト

Setting

The Monge problem Construction of the transport set Disintegration on $\ensuremath{\mathcal{T}}$ and ray map

Regularity of the disintegration

Evolution of Borel sets and disintegration MCP and Ricci curvature Uniqueness and representation of optimal trasnference plans Current formulation

Bibliography

The Monge problem Construction of the transport set Disintegration on ${\mathcal T}$ and ray map

Outline

Setting

The Monge problem Construction of the transport set Disintegration on ${\cal T}$ and ray map

Regularity of the disintegration

Bibliography

イロン イヨン イヨン イヨン

æ

The Monge problem Construction of the transport set Disintegration on ${\mathcal T}$ and ray map

The Monge problem

Let (X, d) be a Polish space, $d_L : X \times X \rightarrow [0, +\infty]$ a Borel distance on X such that (X, d_L) is a geodesic space:

$$d_L(x,y) = \min_{\operatorname{Lip}_{d_L}([0,1],X)} \left\{ \operatorname{Lenght}(\gamma), \gamma(0) = x, \gamma(1) = y \right\}.$$

Given $\mu, \nu \in \mathcal{P}(X)$, find $T : X \to X$ Borel map such that $T_{\sharp}\mu = \nu$ and

$$\int d_L(x, T(x))\mu(dx) = \min\left\{\int d_L\pi, \pi \in \Pi(\mu, \nu)\right\},\$$

where

$$\Pi(\mu,\nu) := \left\{ \pi \in \mathcal{P}(X \times X), (P_1)_{\sharp} \pi = \mu, (P_2)_{\sharp} \pi = \nu \right\}.$$

 $\begin{array}{c} & \text{Outline} \\ & \text{Setting} \\ \text{Regularity of the disintegration} \\ & \text{Bibliography} \end{array} \qquad \begin{array}{c} \text{The Monge problem} \\ \text{Construction of the transport set} \\ & \text{Disintegration on } \mathcal{T} \text{ and ray map} \end{array}$

The fact that d_L is degenerate along geodesics (it is equivalent to the usual norm in \mathbb{R}) implies that optimal transference plans are not unique.

To avoid further degeneracies, we assume that (X, d_L) is not branching, i.e.

$$\forall r > 0 \bigg(d_L(x,y) = \frac{r}{2} \Rightarrow \sharp \big\{ B_{d_L}(x,r) \cap B_{d_L}(y,r/2) \big\} = 1 \bigg).$$

To have a strong consistent disintegration of the transport problem along the geodesics, it is further assumed that if γ is a geodesic the $\gamma \in C(\mathbb{R}, (X, d))$ and

$$\forall t \exists r \Big(\gamma(\mathbb{R}) \cap \overline{B}_d(\gamma(t), r) \in \mathcal{K}(X) \Big),$$

where $\mathcal{K}(X)$ is the family of compact sets of X.

イロト イポト イヨト イヨト

The Monge problem Construction of the transport set Disintegration on ${\mathcal T}$ and ray map

The Wiener space

A prototype of these spaces is

$$X = \ell^2$$
, $d(x, y) = ||x - y||_{\ell^2}$, $d_L(x, y) = ||x - y||_{h^1}$.

The fact that $d \le d_L$ and that geodesics of infinite length are straight lines implies that the conditions on the geodesics are automatically satisfied.

Note that the disintegration ℓ^2/h^1 is not strongly consistent: otherwise from the fact $d_L < +\infty$ one obtains the existence of a potential ϕ .

Remarks. The space (X, d) plays a support role, in order to use the standard measure theory.

The construction works for d_L -cyclically monotone sets, not necessarily optimal.

イロン イヨン イヨン イヨン

The Monge problem Construction of the transport set Disintegration on ${\mathcal T}$ and ray map

Transport rays

Let $\Gamma \subset X \times X$ be a d_L -cyclically monotone set, and define

$$\Gamma' := \left\{ (x, y) : \exists I \in \mathbb{N}_0, (w_i, z_i) \in \Gamma \text{ for } i = 0, \dots, I, \ z_I = y \\ w_{I+1} = w_0 = x, \ \sum_{i=0}^{I} d_L(w_{i+1}, z_i) - d_L(w_i, z_i) = 0 \right\},$$

$$G := \Big\{ (x, y) : \exists (w, z) \in \Gamma', d_L(w, x) + d_L(x, y) + d_L(y, z) = d_L(w, z) \Big\}.$$

Both sets are d_L -cyclically monotone (by the triangle inequality) and of Souslin class: Γ' concatenate points in Γ which belongs to the same geodesic and G takes all the points of each geodesic. The set G replaces the set $\{\phi(x) - \phi(y) = d_L(x, y)\}$ in the case a potential ϕ exists: clearly we cannot say that every optimal transport satisfies $\pi(G) = 1$.

The Monge problem Construction of the transport set Disintegration on ${\mathcal T}$ and ray map

For each $x \in X$, the set G(x) is the set of geodesics used by the transference plan exiting from x, while $G^{-1}(x)$ are the geodesics arriving in x.

Define the Souslin sets

$$\mathcal{T}_e := P_1(G^{-1} \setminus \{x = y\}) \cup P_1(G \setminus \{x = y\}),$$

$$\mathcal{T} := P_1(G^{-1} \setminus \{x = y\}) \cap P_1(G \setminus \{x = y\}).$$

The first set is made of points $z \in X$ such that there exists $(x, y) \in G$ and z belongs to a geodesic connecting x to y. The second set instead requires also that $z \neq x, y$. The assumption that d_L is not branching implies **Lemma.** If $x \in T$, then $R(x) := G(x) \cup G^{-1}(x)$ is a single geodesic.

In particular R is an equivalence relation on \mathcal{T} , while G is a partial order relation on \mathcal{T}_e .

イロト イポト イヨト イヨト

 $\begin{array}{c} & \text{Outline} \\ & \text{Setting} \\ \text{Regularity of the disintegration} \\ & \text{Bibliography} \end{array} \quad \text{The Monge problem} \\ \hline \text{Construction of the transport set} \\ & \text{Disintegration on } \mathcal{T} \text{ and ray map} \end{array}$

Define the multivalued *endpoint graphs* by:

$$a := \{(x, y) \in G^{-1} : G^{-1}(y) \setminus \{y\} = \emptyset\},\$$

$$b := \{(x, y) \in G : G(y) \setminus \{y\} = \emptyset\}.$$

We call $P_2(a)$ the set of *initial points* and $P_2(b)$ the set of *final points*.

The following holds:

1.
$$a \cap b \cap \mathcal{T}_e \times X = \emptyset;$$

2. a(x), b(x) are singleton or empty when $x \in \mathcal{T}$;

3.
$$a(\mathcal{T}) = a(\mathcal{T}_e), \ b(\mathcal{T}) = b(\mathcal{T}_e);$$

4.
$$\mathcal{T}_{e} = \mathcal{T} \cup a(\mathcal{T}) \cup b(\mathcal{T}), \ \mathcal{T} \cap (a(\mathcal{T}) \cup b(\mathcal{T})) = \emptyset.$$

In particular we can assume

$$\mu(b(\mathcal{T})) = \nu(a(\mathcal{T})) = 0.$$

イロト イヨト イヨト イヨト

 $\begin{array}{c} & \text{Outline} \\ & \text{Setting} \\ \text{Regularity of the disintegration} \\ & \text{Bibliography} \end{array} \quad \begin{array}{c} \text{The Monge problem} \\ & \text{Construction of the transport set} \\ & \text{Disintegration on } \mathcal{T} \text{ and ray map} \end{array}$

By a countable partition, we reduce the disintegration problem to the following case: for x_i dense, $j, k \in \mathbb{N}$

$$\mathcal{T}' := igg\{ x \in \mathcal{T} \cap ar{B}(x_i, 2^{-j}) : L(G(x)), L(G^{-1}(x)) \geq 2^{2-k}, \ Lig(R(x) \cap ar{B}(x_i, 2^{1-j})ig) \leq 2^{-k} \ ar{B}(x_i, 2^{-j}) \cap R(x) ext{ is compact} igg\}$$

The map

$$\mathcal{T}' \ni x \mapsto R(x) \cap B(x_i, 2^{-j})$$

is thus universally measurable and with compact sections: by Kuratowski-Ryll-Nardzewski selection principle, there exists a universally measurable selection $f : \mathcal{T}' \to B(x_i, 2^{-j})$. In particular, the disintegration

$$\mu \llcorner_{\mathcal{T}} = \int \mu_y m(dy), \quad m := f_{\sharp} \mu \llcorner_{\mathcal{T}}$$

satisfies $\mu_y(f^{-1}(y)) = 1$. i.e. it is strongly consistent.

The Monge problem Construction of the transport set Disintegration on ${\mathcal T}$ and ray map

Let S := f(T) be the corresponding cross section. Define the *ray map g* by the formula

$$egin{aligned} g &:= \left\{(y,t,x): y \in \mathcal{S}, t \in [0,+\infty), x \in G(y) \cap \{d_L(x,y)=t\}
ight\} \ &\cup \left\{(y,t,x): y \in \mathcal{S}, t \in (-\infty,0), x \in G^{-1}(y) \cap \{d_L(x,y)=-t\}
ight\} \ &= g^+ \cup g^-. \end{aligned}$$

Proposition. The following holds.

- 1. The set g is the graph of a map with range T_e .
- 2. $t \mapsto g(y, t)$ is d_L 1-Lipschitz G-order preserving.
- 3. $(t, y) \mapsto g(y, t)$ is bijective on \mathcal{T} , and its inverse is

$$x\mapsto g^{-1}(x)=\big(f(y),\pm d_L(x,f(y))\big).$$

イロト イポト イヨト イヨト

Evolution of Borel sets and disintegration MCP and Ricci curvature Uniqueness and representation of optimal trasnference plans Current formulation

イロン 不同と 不同と 不同と

æ

Outline

Setting

Regularity of the disintegration

Evolution of Borel sets and disintegration MCP and Ricci curvature Uniqueness and representation of optimal trasnference plans Current formulation

Bibliography

Outline	Evolution of Borel sets and disintegration
Setting	MCP and Ricci curvature
Regularity of the disintegration	Uniqueness and representation of optimal trasnference plans
Bibliography	Current formulation

For $A \subset \mathcal{T}_e$, $t \in \mathbb{R}$ define the *t*-evolution A_t of A by

$$A_t := g(g^{-1}(A) + (0, t)).$$

If A is Souslin, then A_t is Souslin, and $t \mapsto \mu(A_t)$ is Souslin. **Theorem.** Assume that for all Borel sets A such that $\mu(A) > 0$ the set $\{t \in \mathbb{R}^+ : \mu(A_t) > 0\}$ has cardinality $> \aleph_0$. Then μ is concentrated on \mathcal{T} and the conditional probabilities of the disintegration

$$\mu = \int \mu_y m(dy), \quad m := f_{\sharp}m$$

are continuous.

The key argument is that one can reduce the problem to a single δ along each geodesic.

向下 イヨト イヨト

Outline	Evolution of Borel sets and disintegration
Setting	MCP and Ricci curvature
Regularity of the disintegration	Uniqueness and representation of optimal trasnference plans
Bibliography	Current formulation

Under a stronger assumption we obtain the absolute continuity of the conditional probabilities.

Theorem. Assume that for every Borel set $A \subset \mathcal{T}_e$

$$\mu(A) > 0 \implies \int_0^{+\infty} \mu(A_t) dt > 0.$$

Then for m-a.e. $y \in S$ the conditional probabilities μ_y are absolutely continuous w.r.t. $\mathcal{H}^1_{\mathcal{R}(y)}$.

The Hausdorff measure is constructed by using the metric d_L . *Proof.* The argument follows from the following contradiction: if C, $\mu(C) > 0$ and $\mathcal{L}^1(C) = 0$, then

$$0 < \int \mu(\mathcal{C}_t) dt = \mu imes \mathcal{L}^1(\{x - t \in \mathcal{C}\}) = \int \mathcal{L}^1(x - \mathcal{C}) \mu(dx) = 0.$$

 Outline Setting
 Evolution of Borel sets and disintegration

 MCP and Ricci curvature
 Uniqueness and representation of optimal trassference plans

 Bibliography
 Current formulation

If $d_L = d$ and (X, d, η) satisfies MCP(K, N), then we have **Proposition.** The η -measure of the end points $a(\mathcal{T}) \cup b(\mathcal{T})$ is 0 and the disintegration

$$\eta = \int \eta_{\mathcal{Y}} m(d\mathcal{Y}), \quad m := f_{\sharp} \eta_{\vdash \mathcal{T}}$$

satisfies

where

$$s_{\mathcal{K}}(t) := \begin{cases} (1/\sqrt{K})\sin(\sqrt{K}t) & \text{if } K > 0, \\ t & \text{if } K = 0, \\ (1/\sqrt{-K})\sinh(\sqrt{-K}t) & \text{if } K < 0. \end{cases}$$

イロン イヨン イヨン イヨン

Outline	Evolution of Borel sets and disintegration
Setting	MCP and Ricci curvature
Regularity of the disintegration	Uniqueness and representation of optimal trasnference plans
Bibliography	Current formulation

If (X, d_L, η) has Ricci curvature $\geq R$, then we have **Theorem.** If the disintegration

$$\eta = \int \eta_{\mathcal{Y}} m(d\mathcal{Y}), \quad m := f_{\sharp} \eta_{\vdash \mathcal{T}}$$

satisfies $\eta_y = q(y)\mathcal{H}^1_{{}{}{}_{}{}{}_{}{}_{}R(y)}$, then

$$\frac{d^2}{dt^2}\log q(y,t)\leq -R.$$

The absolute continuity of the disintegration of η are invariant under Measure Gromov-Hausdorff convergence, if the Ricci curvature is bounded from below.

向下 イヨト イヨト

Outline	Evolution of Borel sets and disintegration
Setting	MCP and Ricci curvature
Regularity of the disintegration	Uniqueness and representation of optimal trasnference plans
Bibliography	Current formulation

Using the fact that the space is non-branching, one can prove uniqueness of the transport set for the optimal transference plan. **Proposition.** If μ , ν are concentrated on \mathcal{T} and μ_y , ν_y are continuous, then G is a carriage for all optimal transference plans. More precisely, if

$$\mu = \int \mu_y m(dy), \quad \nu = \int \nu_y m(dy), \quad m := f_{\sharp} \mu = f_{\sharp} \nu,$$

then every optimal transference plan π can be represented as

$$\pi = \int \pi_y m(dy), \quad \pi_y \in \Pi(\mu_y, \nu_y).$$

In particular it is easy to solve the Monge problem, just piecing together the 1-d monotone rearrangements along each geodesic.

Outline	Evolution of Borel sets and disintegration
Setting	MCP and Ricci curvature
Regularity of the disintegration	Uniqueness and representation of optimal trasnference plans
Bibliography	Current formulation

If $d \leq d_L$, $\mu \leq \eta$ and η has absolutely continuous disintegration, we can solve the equation

$$\partial U = \mu - \nu$$

in the sense of currents. Define the *flow* \dot{g} as

$$\langle \dot{g}, (h, \omega) \rangle = \int_{S imes \mathbb{R}} h(g(y, t)) \partial_t \omega(g(y, t)) q(y, t) dt m(dy)$$

where h, ω are Lipschitz functions of (X, d) with h bounded, and

$$\eta = \int q \mathcal{H}^1_{R(y)} m(dy).$$

If $t \mapsto q(y, t)$ is BV with *m*-integrable total variation, then \dot{g} is a normal current: this is the case of MCP and Ricci curvature bounds far from the end points.

Outline	Evolution of Borel sets and disintegration MCP and Ricci curvature
Regularity of the disintegration	Uniqueness and representation of optimal trasnference plans
Bibliography	Current formulation

Under the continuity of the disintegration of η , a solution to $\partial U = \mu - \nu$ is given by the current U defined as

$$\langle U,(h,\omega)\rangle = \int_{\mathcal{S}} \left(\int_{\mathbb{R}} (F(y,t)-H(y,t))h(g(y,t))\partial_t \omega(g(y,t))dt\right) m(dy),$$

where

$$H(y,t) := \mu_y \big(g(y,(-\infty,t)) \big),$$

$$F(y,t) := \nu_y \big(g(y,(-\infty,t)) \big).$$

白 と く ヨ と く ヨ と …

æ

Outline

Setting

Regularity of the disintegration

Bibliography

F. Cavalletti - S. B. The Monge problem in Metric Spaces

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

S. Bianchini and F. Cavalletti.

The Monge problem for distance cost in geodesic spaces.

S. Bianchini and F. Cavalletti.

The Monge problem in metric spaces with curvature bounds.

F. Cavalletti

A strategy for non-strictly convex distance transport cost and the obstacle problem.

📕 F. Cavalletti

The Monge problem in Wiener space.

(4月) イヨト イヨト