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The Monge problem

Let (X , d) be a Polish space, dL : X × X → [0,+∞] a Borel
distance on X such that (X , dL) is a geodesic space:

dL(x , y) = min
LipdL

([0,1],X )

{
Lenght(γ), γ(0) = x , γ(1) = y

}
.

Given µ, ν ∈ P(X ), find T : X → X Borel map such that T]µ = ν
and ∫

dL(x ,T (x))µ(dx) = min

{∫
dLπ, π ∈ Π(µ, ν)

}
,

where

Π(µ, ν) :=

{
π ∈ P(X × X ), (P1)]π = µ, (P2)]π = ν

}
.
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The fact that dL is degenerate along geodesics (it is equivalent to
the usual norm in R) implies that optimal transference plans are
not unique.
To avoid further degeneracies, we assume that (X , dL) is not
branching, i.e.

∀r > 0

(
dL(x , y) =

r

2
⇒ ]

{
BdL(x , r) ∩ BdL(y , r/2)

}
= 1

)
.

To have a strong consistent disintegration of the transport problem
along the geodesics, it is further assumed that if γ is a geodesic
the γ ∈ C (R, (X , d)) and

∀t∃r
(
γ(R) ∩ B̄d(γ(t), r) ∈ K(X )

)
,

where K(X ) is the family of compact sets of X .
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The Wiener space

A prototype of these spaces is

X = `2, d(x , y) = ‖x − y‖`2 , dL(x , y) = ‖x − y‖h1 .

The fact that d ≤ dL and that geodesics of infinite length are
straight lines implies that the conditions on the geodesics are
automatically satisfied.
Note that the disintegration `2/h1 is not strongly consistent:
otherwise from the fact dL < +∞ one obtains the existence of a
potential φ.
Remarks. The space (X , d) plays a support role, in order to use
the standard measure theory.
The construction works for dL-cyclically monotone sets, not
necessarily optimal.
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Transport rays

Let Γ ⊂ X × X be a dL-cyclically monotone set, and define

Γ′ :=

{
(x , y) : ∃I ∈ N0, (wi , zi ) ∈ Γ for i = 0, . . . , I , zI = y

wI+1 = w0 = x ,
I∑

i=0

dL(wi+1, zi )− dL(wi , zi ) = 0

}
,

G :=
{

(x , y) : ∃(w , z) ∈ Γ′, dL(w , x) + dL(x , y) + dL(y , z) = dL(w , z)
}
.

Both sets are dL-cyclically monotone (by the triangle inequality)
and of Souslin class: Γ′ concatenate points in Γ which belongs to
the same geodesic and G takes all the points of each geodesic.
The set G replaces the set {φ(x)− φ(y) = dL(x , y)} in the case a
potential φ exists: clearly we cannot say that every optimal
transport satisfies π(G ) = 1.
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For each x ∈ X , the set G (x) is the set of geodesics used by the
transference plan exiting from x , while G−1(x) are the geodesics
arriving in x .
Define the Souslin sets

Te := P1

(
G−1 \ {x = y}

)
∪ P1

(
G \ {x = y}

)
,

T := P1

(
G−1 \ {x = y}

)
∩ P1

(
G \ {x = y}

)
.

The first set is made of points z ∈ X such that there exists
(x , y) ∈ G and z belongs to a geodesic connecting x to y .
The second set instead requires also that z 6= x , y .
The assumption that dL is not branching implies
Lemma. If x ∈ T , then R(x) := G (x) ∪ G−1(x) is a single
geodesic.
In particular R is an equivalence relation on T , while G is a partial
order relation on Te .
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Define the multivalued endpoint graphs by:

a :=
{

(x , y) ∈ G−1 : G−1(y) \ {y} = ∅
}
,

b :=
{

(x , y) ∈ G : G (y) \ {y} = ∅
}
.

We call P2(a) the set of initial points and P2(b) the set of final
points.
The following holds:

1. a ∩ b ∩ Te × X = ∅;
2. a(x), b(x) are singleton or empty when x ∈ T ;

3. a(T ) = a(Te), b(T ) = b(Te);

4. Te = T ∪ a(T ) ∪ b(T ), T ∩ (a(T ) ∪ b(T )) = ∅.
In particular we can assume

µ(b(T )) = ν(a(T )) = 0.
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By a countable partition, we reduce the disintegration problem to
the following case: for xi dense, j , k ∈ N

T ′ :=
{

x ∈ T ∩ B̄(xi , 2
−j) : L(G (x)), L(G−1(x)) ≥ 22−k ,

L
(
R(x) ∩ B̄(xi , 2

1−j)
)
≤ 2−k

B̄(xi , 2
−j) ∩ R(x) is compact

}
The map

T ′ 3 x 7→ R(x) ∩ B(xi , 2
−j)

is thus universally measurable and with compact sections: by
Kuratowski-Ryll-Nardzewski selection principle, there exists a
universally measurable selection f : T ′ → B(xi , 2

−j).
In particular, the disintegration

µxT =

∫
µym(dy), m := f]µxT

satisfies µy (f −1(y)) = 1. i.e. it is strongly consistent.
F. Cavalletti - S. B. The Monge problem in Metric Spaces
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Let S := f (T ) be the corresponding cross section.
Define the ray map g by the formula

g :=
{

(y , t, x) : y ∈ S, t ∈ [0,+∞), x ∈ G (y) ∩ {dL(x , y) = t}
}

∪
{

(y , t, x) : y ∈ S, t ∈ (−∞, 0), x ∈ G−1(y) ∩ {dL(x , y) = −t}
}

= g+ ∪ g−.

Proposition. The following holds.

1. The set g is the graph of a map with range Te .

2. t 7→ g(y , t) is dL 1-Lipschitz G -order preserving.

3. (t, y) 7→ g(y , t) is bijective on T , and its inverse is

x 7→ g−1(x) =
(
f (y),±dL(x , f (y))

)
.
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For A ⊂ Te , t ∈ R define the t-evolution At of A by

At := g
(
g−1(A) + (0, t)

)
.

If A is Souslin, then At is Souslin, and t 7→ µ(At) is Souslin.
Theorem. Assume that for all Borel sets A such that µ(A) > 0
the set {t ∈ R+ : µ(At) > 0} has cardinality > ℵ0. Then µ is
concentrated on T and the conditional probabilities of the
disintegration

µ =

∫
µym(dy), m := f]m

are continuous.
The key argument is that one can reduce the problem to a single δ
along each geodesic.
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Under a stronger assumption we obtain the absolute continuity of
the conditional probabilities.
Theorem. Assume that for every Borel set A ⊂ Te

µ(A) > 0 =⇒
∫ +∞

0
µ(At)dt > 0.

Then for m-a.e. y ∈ S the conditional probabilities µy are
absolutely continuous w.r.t. H1

R(y).
The Hausdorff measure is constructed by using the metric dL.
Proof. The argument follows from the following contradiction: if
C , µ(C ) > 0 and L1(C ) = 0, then

0 <

∫
µ(Ct)dt = µ×L1({x − t ∈ C}) =

∫
L1(x − C )µ(dx) = 0.
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If dL = d and (X , d , η) satisfies MCP(K ,N), then we have
Proposition. The η-measure of the end points a(T ) ∪ b(T ) is 0
and the disintegration

η =

∫
ηym(dy), m := f]ηxT

satisfies

ηy = q(y)H1xR(y), q(y , t) ≥
{

sK (d(g(y , t), x̄))

sK (d(g(y , s), x̄))

}N−1
q(y , s),

where

sK (t) :=


(1/
√

K ) sin(
√

K t) if K > 0,

t if K = 0,

(1/
√
−K ) sinh(

√
−K t) if K < 0.
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If (X , dL, η) has Ricci curvature ≥ R, then we have
Theorem. If the disintegration

η =

∫
ηym(dy), m := f]ηxT

satisfies ηy = q(y)H1xR(y), then

d2

dt2
log q(y , t) ≤ −R.

The absolute continuity of the disintegration of η are invariant
under Measure Gromov-Hausdorff convergence, if the Ricci
curvature is bounded from below.
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Using the fact that the space is non-branching, one can prove
uniqueness of the transport set for the optimal transference plan.
Proposition. If µ, ν are concentrated on T and µy , νy are
continuous, then G is a carriage for all optimal transference plans.
More precisely, if

µ =

∫
µym(dy), ν =

∫
νym(dy), m := f]µ = f]ν,

then every optimal transference plan π can be represented as

π =

∫
πym(dy), πy ∈ Π(µy , νy ).

In particular it is easy to solve the Monge problem, just piecing
together the 1-d monotone rearrangements along each geodesic.
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If d ≤ dL, µ ≤ η and η has absolutely continuous disintegration,
we can solve the equation

∂U = µ− ν

in the sense of currents.
Define the flow ġ as

〈ġ , (h, ω)〉 =

∫
S×R

h(g(y , t))∂tω(g(y , t))q(y , t)dtm(dy)

where h, ω are Lipschitz functions of (X , d) with h bounded, and

η =

∫
qH1

R(y)m(dy).

If t 7→ q(y , t) is BV with m-integrable total variation, then ġ is a
normal current: this is the case of MCP and Ricci curvature
bounds far from the end points.
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Under the continuity of the disintegration of η, a solution to
∂U = µ− ν is given by the current U defined as

〈U, (h, ω)〉 =

∫
S

(∫
R

(F (y , t)−H(y , t))h(g(y , t))∂tω(g(y , t))dt

)
m(dy),

where
H(y , t) := µy

(
g(y , (−∞, t))

)
,

F (y , t) := νy
(
g(y , (−∞, t))

)
.
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