On the extremality, uniqueness and optimality of transference plans

L. Caravenna, S.B.

November 28, 2011

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans

Outline

Introduction Necessary conditions Some tools from measure theory Sufficient conditions Bibliography

Introduction

Transference plans

3 basic problems

Necessary conditions

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

Some tools from measure theory

Disintegration Theorem Linear preorders and uniqueness

Sufficient conditions

A natural preorder relation

A sufficient condition

Bibliography

< 🗇 > < 🖃 >

Transference plans 3 basic problems

Transference plans

Let $\mu, \nu \in \mathcal{P}([0,1])$.

Definition (Transference plans)

The set of transference plans between μ and ν is

$$\Pi(\mu,\nu):=\Big\{\pi\in\mathcal{P}([0,1]^2):(P_1)_{\sharp}\pi=\mu\ \wedge\ (P_2)_{\sharp}\pi=\nu\Big\}.$$

It is easy to see that $\Pi(\mu, \nu)$ is a convex subset of $\mathcal{P}([0, 1])$.

・ロト ・日本 ・モート ・モート

Transference plans 3 basic problems

Transference plans

Let $\mu, \nu \in \mathcal{P}([0,1])$.

Definition (Transference plans)

The set of transference plans between μ and ν is

$$\Pi(\mu,\nu):=\Big\{\pi\in\mathcal{P}([0,1]^2):(P_1)_{\sharp}\pi=\mu\ \wedge\ (P_2)_{\sharp}\pi=\nu\Big\}.$$

It is easy to see that $\Pi(\mu, \nu)$ is a convex subset of $\mathcal{P}([0, 1])$.

We will denote the *measurable sets* of a Borel measure ξ as Θ_{ξ} , and the $\Pi(\mu, \nu)$ -universally measurable sets as

$$\Theta(\mu,\nu) := \cap \{\Theta_{\pi} : \pi \in \Pi(\mu,\nu)\}.$$

・ロト ・日本 ・モート ・モート

Transference plans 3 basic problems

3 basic problems

We consider the following natural problems.

Transference plans 3 basic problems

3 basic problems

We consider the following natural problems.

Extremality $\pi \in \Pi(\mu, \nu)$ is extremal in $\Pi(\mu, \nu)$

・ロト ・日本 ・モート ・モート

Transference plans 3 basic problems

3 basic problems

We consider the following natural problems.

Extremality $\pi \in \Pi(\mu, \nu)$ is extremal in $\Pi(\mu, \nu)$ Uniqueness for fixed $A \in \Theta(\mu, \nu)$,

$$\sharp\big\{\pi\in\Pi(\mu,\nu):\pi(A)=1\big\}=1$$

・ロト ・日本 ・モート ・モート

Transference plans 3 basic problems

3 basic problems

We consider the following natural problems.

Extremality $\pi \in \Pi(\mu, \nu)$ is extremal in $\Pi(\mu, \nu)$ Uniqueness for fixed $A \in \Theta(\mu, \nu)$,

$$\sharp\big\{\pi\in\Pi(\mu,\nu):\pi(A)=1\big\}=1$$

Optimality for a fixed $\Theta(\mu, \nu)$ -measurable cost $c : [0,1]^2 \rightarrow [0,\infty]$, find sufficient conditions on a transference plan π such that

$$\int c\pi = \inf\left\{\int c\pi: \pi\in\Pi(\mu,\nu)
ight\}$$

Transference plans 3 basic problems

By noticing that

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans

<ロ> (四) (四) (三) (三) (三) (三)

Transference plans 3 basic problems

By noticing that

1. optimality is meaningful only if

$${\sf \Pi}^f(\mu,
u):=\left\{\pi\in{\sf \Pi}(\mu,
u):\int c\pi<+\infty
ight\}
eq\emptyset$$

・ロト ・回ト ・ヨト ・ヨト

æ

Transference plans 3 basic problems

By noticing that

1. optimality is meaningful only if

$${\sf \Pi}^f(\mu,
u):=\left\{\pi\in{\sf \Pi}(\mu,
u):\int c\pi<+\infty
ight\}
eq\emptyset$$

2. for
$$A \in \Theta(\mu,
u)$$

 $\pi(A) = 1 \quad \Leftrightarrow \quad \int \mathbf{1}_A \pi < +\infty$

・ロト ・回ト ・ヨト ・ヨト

æ

Transference plans 3 basic problems

By noticing that

1. optimality is meaningful only if

$$\Pi^f(\mu,
u) := \left\{\pi\in\Pi(\mu,
u):\int c\pi<+\infty
ight\}
eq\emptyset$$

2. for
$$A\in \Theta(\mu,
u)$$
 $\pi(A)=1 \quad \Leftrightarrow \quad \int \mathbf{I}_A \pi < +\infty$

3. $\exists \Gamma (\pi(\Gamma) = 1 \land \Gamma \text{ of uniqueness}) \Rightarrow \pi \text{ extremal}$

・ロン ・回 と ・ ヨン ・ モン

3

Transference plans 3 basic problems

By noticing that

1. optimality is meaningful only if

$$\Pi^f(\mu,
u) := \left\{\pi\in\Pi(\mu,
u):\int c\pi<+\infty
ight\}
eq\emptyset$$

2. for
$$A \in \Theta(\mu,
u)$$

 $\pi(A) = 1 \quad \Leftrightarrow \quad \int \mathbf{1}_A \pi < +\infty$

3. $\exists \Gamma (\pi(\Gamma) = 1 \land \Gamma \text{ of uniqueness}) \Rightarrow \pi \text{ extremal}$ one sees a similar structure in the above problems: there is a set A, a measure π with $\pi(A) = 1$ and its carriage $\Gamma \subset A$.

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

Admissible perturbations

The constraints

$$\mu = (P_1)_{\sharp}\pi \quad \nu = (P_2)_{\sharp}\pi$$

imply that the admissible perturbations are in the set

$$\Lambda := \Big\{ \lambda \in \mathcal{M}([0,1]) : (P_1)_{\sharp} \lambda = (P_2)_{\sharp} \lambda = 0 \Big\}.$$

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

Admissible perturbations

The constraints

$$\mu = (P_1)_{\sharp}\pi$$
 $\nu = (P_2)_{\sharp}\pi$

imply that the admissible perturbations are in the set

$$\Lambda := \Big\{ \lambda \in \mathcal{M}([0,1]) : (P_1)_{\sharp} \lambda = (P_2)_{\sharp} \lambda = 0 \Big\}.$$

The constraint $\pi \in \mathcal{P}([0,1])$ implies that

$$\pi + \lambda \ge 0.$$

・ロト ・日本 ・モート ・モート

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

Admissible perturbations

The constraints

$$\mu = (P_1)_{\sharp}\pi \quad \nu = (P_2)_{\sharp}\pi$$

imply that the admissible perturbations are in the set

$$\Lambda := \Big\{ \lambda \in \mathcal{M}([0,1]) : (P_1)_{\sharp} \lambda = (P_2)_{\sharp} \lambda = 0 \Big\}.$$

The constraint $\pi \in \mathcal{P}([0,1])$ implies that

$$\pi + \lambda \ge 0.$$

Finally we have to require that

$$\pi + \lambda$$
 is concentrated on A .

・ロト ・日本 ・モート ・モート

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

Cyclical perturbations

A particular family of perturbations are the *n*-cyclical perturbations: for $n \in \mathbb{N}$ and $m \in \mathcal{M}^+([0,1]^{2n})$, then

$$\lambda = \int_{[0,1]^{2n}} \frac{1}{n} \sum_{i=1}^n \left(\delta_{(x_{i+1} \mod n, y_i)} - \delta_{(x_i, y_i)} \right) m(dx_1 dy_1 \dots dx_n dy_n).$$

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

Cyclical perturbations

A particular family of perturbations are the *n*-cyclical perturbations: for $n \in \mathbb{N}$ and $m \in \mathcal{M}^+([0,1]^{2n})$, then

$$\lambda = \int_{[0,1]^{2n}} \frac{1}{n} \sum_{i=1}^{n} \left(\delta_{(x_{i+1} \mod n, y_i)} - \delta_{(x_i, y_i)} \right) m(dx_1 dy_1 \dots dx_n dy_n).$$

In order to have λ concentrated on A, one requires

$$m\Big(\Big\{(x_1, y_1, \ldots, x_n, y_n) : (x_i, y_i), (x_{i+1 \mod n}, y_i) \in A\Big\}\Big) = 1.$$

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

Cyclical perturbations

A particular family of perturbations are the *n*-cyclical perturbations: for $n \in \mathbb{N}$ and $m \in \mathcal{M}^+([0,1]^{2n})$, then

$$\lambda = \int_{[0,1]^{2n}} \frac{1}{n} \sum_{i=1}^{n} \left(\delta_{(x_{i+1} \mod n, y_i)} - \delta_{(x_i, y_i)} \right) m(dx_1 dy_1 \dots dx_n dy_n).$$

In order to have λ concentrated on A, one requires

$$m\Big(\Big\{(x_1, y_1, \ldots, x_n, y_n) : (x_i, y_i), (x_{i+1 \mod n}, y_i) \in A\Big\}\Big) = 1.$$

In order to have $\pi+\lambda\geq$ 0, one requires

$$\frac{1}{n}\sum_{i=1}^n (P_{(x_i,y_i)})_{\sharp}m \leq \pi.$$

・ロト ・日本 ・モート ・モート

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

Acyclicity and cyclical monotonicity

The analysis if a set Γ can carry perturbations of the above types leads naturally to the following definition for sets.

Definition (Acyclicity and cyclical monotonicity) $\label{eq:Gamma} \Gamma \subset [0,1]^2 \text{ is}$

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

Acyclicity and cyclical monotonicity

The analysis if a set Γ can carry perturbations of the above types leads naturally to the following definition for sets.

Definition (Acyclicity and cyclical monotonicity) $\label{eq:Gamma} \Gamma \subset [0,1]^2 \text{ is}$

acyclic $\forall n \in \mathbb{N}, \{(x_i, y_i)\}_{i=1}^n \subset \Gamma \left(\{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \nsubseteq \Gamma\right)$

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

Acyclicity and cyclical monotonicity

The analysis if a set Γ can carry perturbations of the above types leads naturally to the following definition for sets.

Definition (Acyclicity and cyclical monotonicity) $\label{eq:Gamma} \Gamma \subset [0,1]^2 \text{ is}$

acyclic $\forall n \in \mathbb{N}, \{(x_i, y_i)\}_{i=1}^n \subset \Gamma \left(\{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \nsubseteq \Gamma\right)$ *A*-acyclic $\forall n \in \mathbb{N}, \{(x_i, y_i)\}_{i=1}^n \subset \Gamma \left(\{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \nsubseteq A\right)$

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

Acyclicity and cyclical monotonicity

The analysis if a set Γ can carry perturbations of the above types leads naturally to the following definition for sets.

Definition (Acyclicity and cyclical monotonicity) $\label{eq:Gamma} \Gamma \subset [0,1]^2 \text{ is}$

acyclic $\forall n \in \mathbb{N}, \{(x_i, y_i)\}_{i=1}^n \subset \Gamma (\{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \nsubseteq \Gamma)$ *A*-acyclic $\forall n \in \mathbb{N}, \{(x_i, y_i)\}_{i=1}^n \subset \Gamma (\{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \nsubseteq A)$ *c*-cyclically monotone $\forall n \in \mathbb{N}, \{(x_i, y_i)\}_{i=1}^n \subset \Gamma$

$$\sum_{i=1}^n \left(c(x_{i+1 \mod n}, y_i) - c(x_i, y_i) \right) \ge 0$$

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

In [5] it is proved that if A is analytic, then

$$\sup\left\{\xi(A), (P_i)_{\sharp}\xi = \eta_i, i = 1, \dots, n\right\} = \inf\left\{\sum_{i=1}^n \int h_i \eta_i, \sum_{i=1}^n h_i \ge \chi_A\right\},\$$

・ロト ・回ト ・ヨト ・ヨト

æ

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

In [5] it is proved that if A is analytic, then

$$\sup\left\{\xi(A), (P_i)_{\sharp}\xi = \eta_i, i = 1, \dots, n\right\} = \inf\left\{\sum_{i=1}^n \int h_i \eta_i, \sum_{i=1}^n h_i \ge \chi_A\right\},\$$

and as a consequence one obtains Theorem (Necessary conditions) The following holds:

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

In [5] it is proved that if A is analytic, then

$$\sup\left\{\xi(A), (P_i)_{\sharp}\xi = \eta_i, i = 1, \dots, n\right\} = \inf\left\{\sum_{i=1}^n \int h_i \eta_i, \sum_{i=1}^n h_i \ge \chi_A\right\},\$$

and as a consequence one obtains

Theorem (Necessary conditions)

The following holds:

Extremality π extremal $\Rightarrow \exists \Gamma \subset [0,1]^2 \sigma$ -compact acyclic carriage

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

In [5] it is proved that if A is analytic, then

$$\sup\left\{\xi(A), (P_i)_{\sharp}\xi = \eta_i, i = 1, \dots, n\right\} = \inf\left\{\sum_{i=1}^n \int h_i \eta_i, \sum_{i=1}^n h_i \ge \chi_A\right\},\$$

and as a consequence one obtains

Theorem (Necessary conditions)

The following holds:

Extremality π extremal $\Rightarrow \exists \Gamma \subset [0,1]^2 \sigma$ -compact acyclic carriage Uniqueness A analytic, π extremal $\Rightarrow \exists \Gamma \subset [0,1]^2 \sigma$ -compact A-acyclic carriage

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

In [5] it is proved that if A is analytic, then

$$\sup\left\{\xi(A), (P_i)_{\sharp}\xi = \eta_i, i = 1, \dots, n\right\} = \inf\left\{\sum_{i=1}^n \int h_i \eta_i, \sum_{i=1}^n h_i \ge \chi_A\right\},\$$

and as a consequence one obtains

Theorem (Necessary conditions)

The following holds:

Extremality π extremal $\Rightarrow \exists \Gamma \subset [0,1]^2 \sigma$ -compact acyclic carriage

Uniqueness A analytic, π extremal $\Rightarrow \exists \Gamma \subset [0,1]^2 \sigma$ -compact A-acyclic carriage

Optimality -c Souslin, π optimal $\Rightarrow \exists \Gamma \subset [0,1]^2$ σ -compact *c*-cyclically monotone carriage

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

A counterexample

The above conditions are in general not sufficient [1]:

イロン イヨン イヨン イヨン

3

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

A counterexample

The above conditions are in general not sufficient [1]: as an example, for $\alpha \in [0, 1] \setminus \mathbb{Q}$ define the sets

$$A = \{(x, y) : y = x \lor y = x + \alpha \mod 1\}$$
$$\Gamma = \{(x, y) : y = x + \alpha \mod 1\}.$$

・ 同・ ・ ヨ・

< E

Admissible perturbations Cyclical perturbations Acyclicity and cyclical monotonicity A counterexample

A counterexample

The above conditions are in general not sufficient [1]: as an example, for $\alpha \in [0,1] \setminus \mathbb{Q}$ define the sets

$$A = \{(x, y) : y = x \lor y = x + \alpha \mod 1\}$$
$$\Gamma = \{(x, y) : y = x + \alpha \mod 1\}.$$

 Γ is acyclic in A, but the measure

 $(x, x + lpha \mod 1)_{\sharp} \mathcal{L}^1$

is nor unique in $\Pi^f(\mathcal{L}^1,\mathcal{L}^1)$ nor optimal for

$$c(x,y) = \begin{cases} 1 & y = x \\ 2 & y = x + \alpha \mod 1 \\ +\infty & \text{otherwise} \end{cases}$$

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans

Disintegration Theorem Linear preorders and uniqueness

Disintegration Theorem [3]

Let $\{X_{\alpha}\}_{\alpha \in \mathbb{A}}$ be a partition of [0, 1] and $\mu \in \mathcal{P}([0, 1])$. Let $h: X \to \mathbb{A}$ be the quotient map and

$$m = h_{\sharp}\mu$$
, meaning that $h^{-1}(B) \in \Theta_{\mu}$ $(m(B) = \mu(h^{-1}(B))$.

Disintegration Theorem Linear preorders and uniqueness

Disintegration Theorem [3]

Let $\{X_{\alpha}\}_{\alpha \in \mathbb{A}}$ be a partition of [0, 1] and $\mu \in \mathcal{P}([0, 1])$. Let $h: X \to \mathbb{A}$ be the quotient map and

$$m = h_{\sharp}\mu$$
, meaning that $h^{-1}(B) \in \Theta_{\mu}$ $(m(B) = \mu(h^{-1}(B))$.

Definition (Disintegration)

The disintegration of μ consistent with $\{X_{\alpha}\}_{\alpha \in \mathbb{A}}$ is a map $\alpha \mapsto \mu_{\alpha}$

- 1. for all $B \in \mathcal{B}$, $\mu_{\alpha}(B)$ is *m*-measurable;
- 2. for all $B \in \mathcal{B}$, $A \in \Theta_m$,

$$\mu(B \cap h^{-1}(A)) = \int_A \mu_\alpha(B) m(d\alpha).$$

Disintegration Theorem Linear preorders and uniqueness

Disintegration Theorem [3]

Let $\{X_{\alpha}\}_{\alpha \in \mathbb{A}}$ be a partition of [0, 1] and $\mu \in \mathcal{P}([0, 1])$. Let $h: X \to \mathbb{A}$ be the quotient map and

$$m = h_{\sharp}\mu$$
, meaning that $h^{-1}(B) \in \Theta_{\mu}$ $(m(B) = \mu(h^{-1}(B))$.

Definition (Disintegration)

The disintegration of μ consistent with $\{X_{\alpha}\}_{\alpha \in \mathbb{A}}$ is a map $\alpha \mapsto \mu_{\alpha}$

- 1. for all $B \in \mathcal{B}$, $\mu_{\alpha}(B)$ is *m*-measurable;
- 2. for all $B \in \mathcal{B}$, $A \in \Theta_m$,

$$\mu(B \cap h^{-1}(A)) = \int_A \mu_\alpha(B) m(d\alpha).$$

We say that the disintegration is strongly consistent if $\mu_{\alpha}(X_{\alpha}) = 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Disintegration Theorem Linear preorders and uniqueness

A theorem on linear preorders

Definition (Preorder) $R \subset [0, 1]^2$ is a *preorder* if

$$(x,y),(y,z)\in R \;\Rightarrow\; (x,z)\in R.$$

R is a linear preorder if $R \cup R^{-1} = [0, 1]^2$.

Disintegration Theorem Linear preorders and uniqueness

A theorem on linear preorders

Definition (Preorder) $R \subset [0,1]^2$ is a *preorder* if

$$(x,y),(y,z)\in R \Rightarrow (x,z)\in R.$$

R is a *linear preorder* if $R \cup R^{-1} = [0, 1]^2$. Let $E := R \cap R^{-1}$: it is an equivalence relation.

• • • • • • • • • • • • •

Disintegration Theorem Linear preorders and uniqueness

A theorem on linear preorders

Definition (Preorder) $R \subset [0, 1]^2$ is a *preorder* if

$$(x,y),(y,z)\in R \Rightarrow (x,z)\in R.$$

R is a linear preorder if $R \cup R^{-1} = [0, 1]^2$.

Let $E := R \cap R^{-1}$: it is an equivalence relation.

Theorem

If $R \in \Theta(\mu, \mu)$ is a linear preorder \preccurlyeq on [0, 1], then the disintegration w.r.t. E is strongly consistent, and the image set B' in the quotient space is a set of uniqueness of $\Pi(m, m)$.

A natural preorder relation A sufficient condition

A natural preorder relation

Definition (Axial preorder)

We say that $x \preccurlyeq x'$, $x, x' \in \Gamma$, if $\exists n \in \mathbb{N}, \{(x_i, y_i)\}_{i=1}^n \subset \Gamma$ s.t.

$$\{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \subset A \land (x_1 = x, x_{n+1} = x').$$

・ロト ・日本 ・モート ・モート

A natural preorder relation A sufficient condition

A natural preorder relation

Definition (Axial preorder)

We say that $x \preccurlyeq x'$, $x, x' \in \Gamma$, if $\exists n \in \mathbb{N}, \{(x_i, y_i)\}_{i=1}^n \subset \Gamma$ s.t.

$$\{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \subset A \land (x_1 = x, x_{n+1} = x').$$

The equivalence relation *E* is the closed cycles relation: $(x, x') \in E$ iff $\exists \{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \subset \Gamma$

$$\{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \subset A \land \exists j, j'(x_j = x, x_{j'} = x').$$
(1)

A natural preorder relation A sufficient condition

A natural preorder relation

Definition (Axial preorder)

We say that $x \preccurlyeq x'$, $x, x' \in \Gamma$, if $\exists n \in \mathbb{N}, \{(x_i, y_i)\}_{i=1}^n \subset \Gamma$ s.t.

$$\{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \subset A \land (x_1 = x, x_{n+1} = x').$$

The equivalence relation *E* is the closed cycles relation: $(x, x') \in E$ iff $\exists \{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \subset \Gamma$

$$\{(x_{i+1 \mod n}, y_i)\}_{i=1}^n \subset A \land \exists j, j' (x_j = x, x_{j'} = x').$$
(1)

The relation E and the set Γ satisfy a *crosswise relation*: if $Y_{\alpha} := P_2(\Gamma \cap X_{\alpha} \times [0, 1])$ then

$$\Gamma \cap X_{\alpha} \times [0,1] = \Gamma \cap [0,1] \times Y_{\alpha} = \Gamma \cup X_{\alpha} \times Y_{\alpha} = \Gamma_{\alpha}.$$
(2)

A natural preorder relation A sufficient condition

A sufficient condition

Theorem (Sufficient condition)

Assume that Γ is acyclic/A-acyclic/c-cyclically monotone and the axial preorder \preccurlyeq can be extended into a $\Theta(\mu, \mu)$ -measurable linear preorder. Then the transference plan π concentrated on Γ is extremal/unique/optimal.

- 4 同 6 4 日 6 4 日 6

A natural preorder relation A sufficient condition

A sufficient condition

Theorem (Sufficient condition)

Assume that Γ is acyclic/A-acyclic/c-cyclically monotone and the axial preorder \preccurlyeq can be extended into a $\Theta(\mu, \mu)$ -measurable linear preorder. Then the transference plan π concentrated on Γ is extremal/unique/optimal.

Sketch of the proof

Step 1. Theorem 6 implies that the disintegration $\mu = \int \mu_{\alpha} m(d\alpha)$ is strongly supported. The crosswise structure (2) of Γ yields that the same happens for ν and π :

$$u = \int
u_{lpha} m(dlpha), \quad \pi = \int \pi_{lpha} m(dlpha), \quad \pi_{lpha} \in \Pi(\mu_{lpha},
u_{lpha}).$$

A natural preorder relation A sufficient condition

Step 2. If h_X , h_Y are the quotient maps, then by assumption

$$A':=(h_X\otimes h_Y)(A)\in \Theta(m,m)$$

can be extended to a linear order of class $\Theta(m, m)$,

A natural preorder relation A sufficient condition

Step 2. If h_X , h_Y are the quotient maps, then by assumption

$$A' := (h_X \otimes h_Y)(A) \in \Theta(m,m)$$

can be extended to a linear order of class $\Theta(m, m)$, and then from the uniqueness part of Theorem 6 it follows

$$n \in \Pi(m,m) (n(\{\alpha = \beta\} = 1)).$$

A natural preorder relation A sufficient condition

Step 2. If h_X , h_Y are the quotient maps, then by assumption

$$A' := (h_X \otimes h_Y)(A) \in \Theta(m,m)$$

can be extended to a linear order of class $\Theta(m, m)$, and then from the uniqueness part of Theorem 6 it follows

$$n \in \Pi(m,m) (n(\{\alpha = \beta\} = 1)).$$

In the original space this means that the disintegration of any $\pi' \in \Pi^f(\mu, \nu)$ w.r.t. $h_X \otimes h_y$ is given by

$$\pi' = \int \pi'_{lphaeta} n(dlpha deta) = \int \pi'_{lpha} m(dlpha), \quad \pi'_{lpha} = \pi'_{lpha lpha}.$$

A natural preorder relation A sufficient condition

Step 3. By the definition (1) of *E*, in each class the set Γ_{α}

イロン イヨン イヨン イヨン

3

A natural preorder relation A sufficient condition

Step 3. By the definition (1) of *E*, in each class the set Γ_{α} acyclicity has a Borel countable limb structure [4]: $\exists \{C_k\}_{k \in \mathbb{N}}, \{D_k\}_{k \in \mathbb{N}_0}$ Borel and Borel functions $f_k : C_k \to D_{k-1}, g_k : D_k \to C_k$, such that π is concentrated on the union of the following graphs

$$F_k = \operatorname{graph}(f_k), \quad G_k = \operatorname{graph}(g_k)$$

・ロト ・回ト ・ヨト ・ヨト

A natural preorder relation A sufficient condition

Step 3. By the definition (1) of *E*, in each class the set Γ_{α} acyclicity has a Borel countable limb structure [4]: $\exists \{C_k\}_{k \in \mathbb{N}}, \{D_k\}_{k \in \mathbb{N}_0}$ Borel and Borel functions $f_k : C_k \to D_{k-1}, g_k : D_k \to C_k$, such that π is concentrated on the union of the following graphs

$$F_k = \operatorname{graph}(f_k), \quad G_k = \operatorname{graph}(g_k)$$

optimality has two Borel optimal potentials ϕ_{α} , ψ_{α} :

$$egin{aligned} c(x,y) - \phi_lpha(x) - \psi_lpha(y) & iggl\{ = 0 & (x,y) \in \Gamma \ \geq 0 & ext{otherwise} \end{aligned}$$

A natural preorder relation A sufficient condition

Step 3. By the definition (1) of *E*, in each class the set Γ_{α} acyclicity has a Borel countable limb structure [4]: $\exists \{C_k\}_{k \in \mathbb{N}}, \{D_k\}_{k \in \mathbb{N}_0}$ Borel and Borel functions $f_k : C_k \to D_{k-1}, g_k : D_k \to C_k$, such that π is concentrated on the union of the following graphs

$$F_k = \operatorname{graph}(f_k), \quad G_k = \operatorname{graph}(g_k)$$

optimality has two Borel optimal potentials ϕ_{α} , ψ_{α} :

$$c(x,y) - \phi_{lpha}(x) - \psi_{lpha}(y) egin{cases} = 0 & (x,y) \in \Gamma \ \geq 0 & ext{otherwise} \end{cases}$$

It follows that π_{α} is extremal/unique/optimal in $\Pi(\mu_{\alpha}, \nu_{\alpha})$.

A natural preorder relation A sufficient condition

Step 3. By the definition (1) of *E*, in each class the set Γ_{α} acyclicity has a Borel countable limb structure [4]: $\exists \{C_k\}_{k \in \mathbb{N}}, \{D_k\}_{k \in \mathbb{N}_0}$ Borel and Borel functions $f_k : C_k \to D_{k-1}, g_k : D_k \to C_k$, such that π is concentrated on the union of the following graphs

$$F_k = \operatorname{graph}(f_k), \quad G_k = \operatorname{graph}(g_k)$$

optimality has two Borel optimal potentials ϕ_{α} , ψ_{α} :

$$egin{aligned} c(x,y) - \phi_lpha(x) - \psi_lpha(y) & iggl\{ = 0 & (x,y) \in \Gamma \ \geq 0 & ext{otherwise} \end{aligned}$$

It follows that π_{α} is extremal/unique/optimal in $\Pi(\mu_{\alpha}, \nu_{\alpha})$. *Step 4.* Finally, Step 2 implies that all perturbations occurs only in the equivalence classes $\{\Gamma_{\alpha}\}_{\alpha \in \mathbf{A}}$, and Step 3 implies that our measure is extremal/unique/optimal in each class. $\square \to \square \to \square$

L. Ambrosio and A. Pratelli.

Existence and stability results in the L^1 theory of optimal transportation.

M. Beiglböck, M. Goldstern, G. Maresch, and W. Schachermayer.

Optimal and better transport plans.

J. Funct. Anal., 256(6):1907–1927, 2009.

D. H. Fremlin.

Measure theory, volume 4.

📕 K. Hestir and S. C. Williams.

Supports of doubly stochastic measures.

📔 H. G. Kellerer.

Duality theorems for marginals problems.