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Transference plans

Let µ, ν ∈ P([0, 1]).

Definition (Transference plans)

The set of transference plans between µ and ν is

Π(µ, ν) :=
{
π ∈ P([0, 1]2) : (P1)]π = µ ∧ (P2)]π = ν

}
.

It is easy to see that Π(µ, ν) is a convex subset of P([0, 1]).

We will denote the measurable sets of a Borel measure ξ as Θξ,
and the Π(µ, ν)-universally measurable sets as

Θ(µ, ν) := ∩
{

Θπ : π ∈ Π(µ, ν)
}
.
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3 basic problems

We consider the following natural problems.

Extremality π ∈ Π(µ, ν) is extremal in Π(µ, ν)

Uniqueness for fixed A ∈ Θ(µ, ν),

]
{
π ∈ Π(µ, ν) : π(A) = 1

}
= 1

Optimality for a fixed Θ(µ, ν)-measurable cost
c : [0, 1]2 → [0,∞], find sufficient conditions on a
transference plan π such that∫

cπ = inf

{∫
cπ : π ∈ Π(µ, ν)

}
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By noticing that

1. optimality is meaningful only if

Πf (µ, ν) :=

{
π ∈ Π(µ, ν) :

∫
cπ < +∞

}
6= ∅

2. for A ∈ Θ(µ, ν)

π(A) = 1 ⇔
∫

1IAπ < +∞

3. ∃Γ
(
π(Γ) = 1 ∧ Γ of uniqueness

)
⇒ π extremal

one sees a similar structure in the above problems:

there is a set A, a measure π with π(A) = 1 and its carriage Γ ⊂ A.

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans



Outline
Introduction

Necessary conditions
Some tools from measure theory

Sufficient conditions
Bibliography

Transference plans
3 basic problems

By noticing that

1. optimality is meaningful only if

Πf (µ, ν) :=

{
π ∈ Π(µ, ν) :

∫
cπ < +∞

}
6= ∅

2. for A ∈ Θ(µ, ν)

π(A) = 1 ⇔
∫

1IAπ < +∞

3. ∃Γ
(
π(Γ) = 1 ∧ Γ of uniqueness

)
⇒ π extremal

one sees a similar structure in the above problems:

there is a set A, a measure π with π(A) = 1 and its carriage Γ ⊂ A.

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans



Outline
Introduction

Necessary conditions
Some tools from measure theory

Sufficient conditions
Bibliography

Transference plans
3 basic problems

By noticing that

1. optimality is meaningful only if

Πf (µ, ν) :=

{
π ∈ Π(µ, ν) :

∫
cπ < +∞

}
6= ∅

2. for A ∈ Θ(µ, ν)

π(A) = 1 ⇔
∫

1IAπ < +∞

3. ∃Γ
(
π(Γ) = 1 ∧ Γ of uniqueness

)
⇒ π extremal

one sees a similar structure in the above problems:

there is a set A, a measure π with π(A) = 1 and its carriage Γ ⊂ A.

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans



Outline
Introduction

Necessary conditions
Some tools from measure theory

Sufficient conditions
Bibliography

Transference plans
3 basic problems

By noticing that

1. optimality is meaningful only if

Πf (µ, ν) :=

{
π ∈ Π(µ, ν) :

∫
cπ < +∞

}
6= ∅

2. for A ∈ Θ(µ, ν)

π(A) = 1 ⇔
∫

1IAπ < +∞

3. ∃Γ
(
π(Γ) = 1 ∧ Γ of uniqueness

)
⇒ π extremal

one sees a similar structure in the above problems:

there is a set A, a measure π with π(A) = 1 and its carriage Γ ⊂ A.

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans



Outline
Introduction

Necessary conditions
Some tools from measure theory

Sufficient conditions
Bibliography

Transference plans
3 basic problems

By noticing that

1. optimality is meaningful only if

Πf (µ, ν) :=

{
π ∈ Π(µ, ν) :

∫
cπ < +∞

}
6= ∅

2. for A ∈ Θ(µ, ν)

π(A) = 1 ⇔
∫

1IAπ < +∞

3. ∃Γ
(
π(Γ) = 1 ∧ Γ of uniqueness

)
⇒ π extremal

one sees a similar structure in the above problems:

there is a set A, a measure π with π(A) = 1 and its carriage Γ ⊂ A.

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans



Outline
Introduction

Necessary conditions
Some tools from measure theory

Sufficient conditions
Bibliography

Admissible perturbations
Cyclical perturbations
Acyclicity and cyclical monotonicity
A counterexample

Admissible perturbations

The constraints
µ = (P1)]π ν = (P2)]π

imply that the admissible perturbations are in the set

Λ :=
{
λ ∈M([0, 1]) : (P1)]λ = (P2)]λ = 0

}
.

The constraint π ∈ P([0, 1]) implies that

π + λ ≥ 0.

Finally we have to require that

π + λ is concentrated on A.
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Cyclical perturbations

A particular family of perturbations are the n-cyclical
perturbations: for n ∈ N and m ∈M+([0, 1]2n), then

λ =

∫
[0,1]2n

1

n

n∑
i=1

(
δ(xi+1 mod n,yi ) − δ(xi ,yi )

)
m(dx1dy1 . . . dxndyn).

In order to have λ concentrated on A, one requires

m
({

(x1, y1, . . . , xn, yn) : (xi , yi ), (xi+1 mod n, yi ) ∈ A
})

= 1.

In order to have π + λ ≥ 0, one requires

1

n

n∑
i=1

(P(xi ,yi ))]m ≤ π.

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans
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Acyclicity and cyclical monotonicity

The analysis if a set Γ can carry perturbations of the above types
leads naturally to the following definition for sets.

Definition (Acyclicity and cyclical monotonicity)

Γ ⊂ [0, 1]2 is

acyclic ∀n ∈ N, {(xi , yi )}ni=1 ⊂ Γ
(
{(xi+1 mod n, yi )}ni=1 * Γ

)
A-acyclic ∀n ∈ N, {(xi , yi )}ni=1 ⊂ Γ

(
{(xi+1 mod n, yi )}ni=1 * A

)
c-cyclically monotone ∀n ∈ N, {(xi , yi )}ni=1 ⊂ Γ

n∑
i=1

(
c(xi+1 mod n, yi )− c(xi , yi )

)
≥ 0.

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans
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In [5] it is proved that if A is analytic, then

sup
{
ξ(A), (Pi )]ξ = ηi , i = 1, . . . , n

}
= inf

{ n∑
i=1

∫
hiηi ,

n∑
i=1

hi ≥ χA

}
,

and as a consequence one obtains

Theorem (Necessary conditions)

The following holds:

Extremality π extremal ⇒ ∃Γ ⊂ [0, 1]2 σ-compact acyclic carriage

Uniqueness A analytic, π extremal ⇒ ∃Γ ⊂ [0, 1]2 σ-compact
A-acyclic carriage

Optimality −c Souslin, π optimal ⇒ ∃Γ ⊂ [0, 1]2 σ-compact
c-cyclically monotone carriage

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans
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A counterexample

The above conditions are in general not sufficient [1]:

as an
example, for α ∈ [0, 1] \Q define the sets

A =
{

(x , y) : y = x ∨ y = x + α mod 1
}

Γ =
{

(x , y) : y = x + α mod 1
}
.

X

Y 1

2

α

Γ is acyclic in A, but the measure

(x , x + α mod 1)]L1

is nor unique in Πf (L1,L1) nor optimal for

c(x , y) =


1 y = x

2 y = x + α mod 1

+∞ otherwise

.
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Disintegration Theorem [3]

Let {Xα}α∈A be a partition of [0, 1] and µ ∈ P([0, 1]). Let
h : X → A be the quotient map and

m = h]µ, meaning that h−1(B) ∈ Θµ

(
m(B) = µ(h−1(B)

)
.

Definition (Disintegration)

The disintegration of µ consistent with {Xα}α∈A is a map α 7→ µα

1. for all B ∈ B, µα(B) is m-measurable;

2. for all B ∈ B, A ∈ Θm,

µ(B ∩ h−1(A)) =

∫
A
µα(B)m(dα).

We say that the disintegration is strongly consistent if µα(Xα) = 1.

L. Caravenna, S.B. Extremality, uniqueness and optimality of transference plans



Outline
Introduction

Necessary conditions
Some tools from measure theory

Sufficient conditions
Bibliography

Disintegration Theorem
Linear preorders and uniqueness

Disintegration Theorem [3]

Let {Xα}α∈A be a partition of [0, 1] and µ ∈ P([0, 1]). Let
h : X → A be the quotient map and

m = h]µ, meaning that h−1(B) ∈ Θµ

(
m(B) = µ(h−1(B)

)
.

Definition (Disintegration)

The disintegration of µ consistent with {Xα}α∈A is a map α 7→ µα

1. for all B ∈ B, µα(B) is m-measurable;

2. for all B ∈ B, A ∈ Θm,

µ(B ∩ h−1(A)) =

∫
A
µα(B)m(dα).

We say that the disintegration is strongly consistent if µα(Xα) = 1.
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A theorem on linear preorders

Definition (Preorder)

R ⊂ [0, 1]2 is a preorder if

(x , y), (y , z) ∈ R ⇒ (x , z) ∈ R.

R is a linear preorder if R ∪ R−1 = [0, 1]2.

Let E := R ∩ R−1: it is an equivalence relation.

Theorem
If R ∈ Θ(µ, µ) is a linear preorder 4 on [0, 1], then the
disintegration w.r.t. E is strongly consistent, and the image set B ′

in the quotient space is a set of uniqueness of Π(m,m).
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A natural preorder relation

Definition (Axial preorder)

We say that x 4 x ′, x , x ′ ∈ Γ, if ∃n ∈ N, {(xi , yi )}ni=1 ⊂ Γ s.t.

{(xi+1 mod n, yi )}ni=1 ⊂ A ∧
(
x1 = x , xn+1 = x ′

)
.

The equivalence relation E is the closed cycles relation: (x , x ′) ∈ E
iff ∃{(xi+1 mod n, yi )}ni=1 ⊂ Γ

{(xi+1 mod n, yi )}ni=1 ⊂ A ∧ ∃j , j ′
(
xj = x , xj ′ = x ′

)
. (1)

The relation E and the set Γ satisfy a crosswise relation: if
Yα := P2(Γ ∩ Xα × [0, 1]) then

Γ ∩ Xα × [0, 1] = Γ ∩ [0, 1]× Yα = Γ ∪ Xα × Yα = Γα. (2)
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A sufficient condition

Theorem (Sufficient condition)

Assume that Γ is acyclic/A-acyclic/c-cyclically monotone and the
axial preorder 4 can be extended into a Θ(µ, µ)-measurable linear
preorder. Then the transference plan π concentrated on Γ is
extremal/unique/optimal.

Sketch of the proof
Step 1. Theorem 6 implies that the disintegration µ =

∫
µαm(dα)

is strongly supported. The crosswise structure (2) of Γ yields that
the same happens for ν and π:

ν =

∫
ναm(dα), π =

∫
παm(dα), πα ∈ Π(µα, να).
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Step 2. If hX , hY are the quotient maps, then by assumption

A′ := (hX ⊗ hY )(A) ∈ Θ(m,m)

can be extended to a linear order of class Θ(m,m),

and then from
the uniqueness part of Theorem 6 it follows

n ∈ Π(m,m)
(
n({α = β} = 1

)
.

In the original space this means that the disintegration of any
π′ ∈ Πf (µ, ν) w.r.t. hX ⊗ hy is given by

π′ =

∫
π′αβn(dαdβ) =

∫
π′αm(dα), π′α = π′αα.
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A sufficient condition

Step 3. By the definition (1) of E , in each class the set Γα

acyclicity has a Borel countable limb structure [4]:
∃{Ck}k∈N, {Dk}k∈N0 Borel and Borel functions
fk : Ck → Dk−1, gk : Dk → Ck , such that π is
concentrated on the union of the following graphs

Fk = graph(fk), Gk = graph(gk)

optimality has two Borel optimal potentials φα, ψα:

c(x , y)− φα(x)− ψα(y)

{
= 0 (x , y) ∈ Γ

≥ 0 otherwise

It follows that πα is extremal/unique/optimal in Π(µα, να).
Step 4. Finally, Step 2 implies that all perturbations occurs only in
the equivalence classes {Γα}α∈A, and Step 3 implies that our
measure is extremal/unique/optimal in each class. �
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