Decomposition of vector fields in \mathbb{R}^{d}

S.B., Paolo Bonicatto

SISSA, Trieste

August 16, 2017

・ロト ・回ト ・ヨト

-∢ ≣ ≯

Continuity equation and ODEs

The smooth case Relation among ODE and PDE

Renormalization

Directional regularity and uniqueness Regular Lagrangian flows Conservation laws and transport equations

Estimate on the regularity

Regularity and mixing conjecture Regularity for Lagrangian representations

The smooth case Relation among ODE and PDE

Image: A matched block

A basic PDEs

In many systems of PDEs one of the equations is the *continuity* equation

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{b}) = \partial_t \rho + \sum_{i=1}^d \partial_{x_i}(\rho b_i) = 0.$$

This equation means that the quantity ρ is conserved: in every regular region Ω

$$\frac{d}{dt}\int_{\Omega}\rho=\int_{\partial\Omega}\rho\mathbf{b}\cdot\mathbf{n},$$

or equivalently in weak form

$$\int \rho \big(\partial_t \psi + \mathbf{b} \cdot \nabla \psi\big) d\mathbf{x} dt + \int \rho \psi(t=0) d\mathbf{x} = 0$$

for every smooth test function ψ .

The smooth case Relation among ODE and PDE

・ロト ・回ト ・ヨト

∃ >

There is a clear relation with the ODE

$$\frac{d}{dt}X(t,y) = \mathbf{b}(t,X(t,y)), \qquad X(0,y) = y.$$

Indeed the function given by

$$\int_{\Omega} \rho(t, x) = \int_{\mathbf{X}^{-1}(\Omega)} \rho_0(y) dy$$

is a solution to the continuity equation: just observe that if

$$\Omega(t) = \big\{ X(t,y), y \in \Omega(0) \big\}$$

then the lateral flow in 0.

The smooth case Relation among ODE and PDE

< 4 1 →

Classical PDEs

One is usually interested in solving the ODE

$$\frac{d}{dt}X(t,y) = \mathbf{b}(t,X(t,y)), \qquad X(0,y) = y.$$

for every initial point y.

If **b** is continuous, then Peano's theorem yields an existence result: there exists at least one solution for every initial datum. If we ask more regularity w.r.t. x, e.g.

$$\left|\mathbf{b}(t,x)-\mathbf{b}(t,x')\right|\leq C|x-x'|,$$

then one has also uniqueness.

The smooth case Relation among ODE and PDE

イロト イヨト イヨト イヨト

æ

For such sufficiently regular vector fields, one has thus existence and (in case) uniqueness for the solution of the continuity equation: indeed one can rewrite the PDE as

 $\partial_t (\rho(t, X(t, y)) \det \nabla_y X(t, y)) = 0.$

The smooth case Relation among ODE and PDE

For such sufficiently regular vector fields, one has thus existence and (in case) uniqueness for the solution of the continuity equation: indeed one can rewrite the PDE as

$$\partial_t (
ho(t, X(t, y)) \det
abla_y X(t, y)) = 0.$$

On the other hand, a weak solution to

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{b}) = \mathbf{0},$$

requires only $\rho,\rho\mathbf{b}$ to be locally integrable: for ψ smooth

$$\int
ho (\partial_t \psi + \mathbf{b} \cdot \nabla \psi) d\mathbf{x} dt + \int
ho \psi(t=0) d\mathbf{x} = 0.$$

The vector field **b** is determined by the solution to a system of PDEs, but in general it is not smooth; in the following we will unlink this dependence of **b** and look for an almost everywhere well posedness of the Cauchy problem for the ODE.

The smooth case Relation among ODE and PDE

<ロ> (日) (日) (日) (日) (日)

æ

Lagrangian representation

Consider the PDE for $\rho \geq 0$

 $\partial_t \rho + \operatorname{div}(\rho \mathbf{b}) = \mu^+ - \mu^-, \quad \mu^\pm$ locally bounded measures.

The smooth case Relation among ODE and PDE

イロン 不同と 不同と 不同と

Lagrangian representation

•

Consider the PDE for $\rho \geq 0$

 $\partial_t \rho + \operatorname{div}(\rho \mathbf{b}) = \mu^+ - \mu^-, \quad \mu^\pm$ locally bounded measures.

Theorem (Smirnov, Ambrosio)

There exists a measure η on the space $\Gamma = \{\gamma : [t_{\gamma}^{-}, t_{\gamma}^{+}] \to \mathbb{R}^{d}, \frac{d\gamma}{dt} = \mathbf{b}(t, \gamma)\}$ such that

$$\int \psi \rho(1, \mathbf{b}) dx dt = \int \bigg\{ \int_{t_{\gamma}^-}^{t_{\gamma}^+} \psi(t, \gamma(t)) \bigg(1, \frac{d\gamma}{dt} \bigg) dt \bigg\} \eta(d\gamma),$$

$$\int \phi \mu^{\pm}(dtdx) = \int \psi(t_{\gamma}^{\mp}, \gamma(t_{\gamma}^{\mp})) \eta(d\gamma).$$

Some remark:

- the existence of such a measure can be interpreted as the fact that if we have a solution to the PDE then there are enough solutions to the ODE to represent it;
- it holds also for $\rho, \rho \mathbf{b}$ measures;
- the uniqueness of η is lost for two reasons:
 - 1. the trajectories cross each other,
 - 2. one can exchange initial and final points between trajectories.

・ロト ・回ト ・ヨト

Some remark:

- the existence of such a measure can be interpreted as the fact that if we have a solution to the PDE then there are enough solutions to the ODE to represent it;
- it holds also for $\rho, \rho \mathbf{b}$ measures;
- the uniqueness of η is lost for two reasons:
 - 1. the trajectories cross each other,
 - 2. one can exchange initial and final points between trajectories.

The nonuniqueness is thus related to the first situation: we say that η is untangled if it is concentrated on a set of trajectories Υ such that

 $\gamma, \gamma' \in \Upsilon$ intersecting $\iff \gamma \cup \gamma'$ still a trajectory.

Directional regularity and uniqueness Regular Lagrangian flows Conservation laws and transport equations

イロト イヨト イヨト イヨト

A "classical" approach

 $(\mu^{\pm}=0$ for simplicity.) One can give a meaning to

$$\partial_t u + \mathbf{b} \cdot \nabla u = 0, \quad u(t=0) = u_0,$$
 (1)

by requiring that

$$\partial_t(\rho u) + \operatorname{div}(\rho u \mathbf{b}) = 0, \quad \rho u(t=0) = \rho_0 u_0.$$
 (2)

Directional regularity and uniqueness Regular Lagrangian flows Conservation laws and transport equations

A "classical" approach

 $(\mu^{\pm}=0$ for simplicity.) One can give a meaning to

$$\partial_t u + \mathbf{b} \cdot \nabla u = 0, \quad u(t=0) = u_0,$$
 (1)

by requiring that

$$\partial_t(\rho u) + \operatorname{div}(\rho u \mathbf{b}) = 0, \quad \rho u(t=0) = \rho_0 u_0.$$
 (2)

The chain rule in the classical sense given that if u is a solution then also $\beta(u)$ is a solution to (1) for β smooth: indeed $u(t, \gamma(t))$ is constant.

In the literature such a property

$$\forall u \in L^{\infty}(\rho) \Big(\rho u \text{ solution to } (2) \implies \rho \beta(u) \text{ is a solution to } (2) \Big)$$

is called renormalization property (of $\rho(1, \mathbf{b})$).

a

Directional regularity and uniqueness Regular Lagrangian flows Conservation laws and transport equations

<ロ> (日) (日) (日) (日) (日)

If every solution ρ enjoys the renormalization property, then uniqueness for every initial data:

▶ if for some initial point x_0 one has two solutions $\gamma_1 \neq \gamma_2$, $\gamma_1(0) = \gamma_2(0) = x_0$, then take

$$\begin{split} \rho(t) &= \frac{1}{2} \big(\delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} \big), \quad \rho u(t) = \frac{1}{2} \big(\delta_{\gamma_1(t)} - \delta_{\gamma_2(t)} \big) \\ \text{nd } \beta(u) &= u^2; \end{split}$$

Directional regularity and uniqueness Regular Lagrangian flows Conservation laws and transport equations

イロト イポト イラト イ

If every solution ρ enjoys the renormalization property, then uniqueness for every initial data:

▶ if for some initial point x_0 one has two solutions $\gamma_1 \neq \gamma_2$, $\gamma_1(0) = \gamma_2(0) = x_0$, then take

$$\rho(t) = \frac{1}{2} \big(\delta_{\gamma_1(t)} + \delta_{\gamma_2(t)} \big), \quad \rho u(t) = \frac{1}{2} \big(\delta_{\gamma_1(t)} - \delta_{\gamma_2(t)} \big)$$

and $\beta(u) = u^2$;

if uniqueness for every initial data, then

$$\rho(t) = \int \delta_{\gamma(t)} \rho_0(d\gamma(0)), \quad \rho u(t) = \int \delta_{\gamma(t)} \rho_0 u_0(d\gamma(0)),$$

so that u is constant along the trajectories used by ρ .

イロト イポト イヨト イヨト

In general one relaxes this condition requiring ρ to belong to some class, e.g.

 $0 \leq \rho \leq C$.

In this case one obtains that

renormalization property for all $\rho \leq {\it C}$

$\$

uniqueness among regular Lagrangian flows.

Regular Lagrangian flows X(t, x) are such that

$$rac{d}{dt} \mathtt{X} = \mathbf{b}(t, \mathtt{X}), \quad \mathtt{X}(t)^{-1}(\Omega) \leq \mathcal{CL}^d(\Omega).$$

In general one relaxes this condition requiring ρ to belong to some class, e.g.

 $0 \le \rho \le C.$

In this case one obtains that

renormalization property for all $\rho \leq {\it C}$

\uparrow

uniqueness among regular Lagrangian flows.

Regular Lagrangian flows X(t, x) are such that

$$rac{d}{dt} \mathtt{X} = \mathbf{b}(t, \mathtt{X}), \quad \mathtt{X}(t)^{-1}(\Omega) \leq \mathcal{CL}^d(\Omega).$$

Remark. We are not saying that for almost every initial data x_0 there exists a unique solution to the ODE (OPEN).

イロト イポト イヨト イヨト

Key computation [Diperna-Lions]: ($\rho = 1$ and div $\mathbf{b} = 0$) if $u^{\epsilon} = \phi^{\epsilon} * u$ is a smoothing of u, then one computes

$$\partial_t \beta(u^\epsilon) + \mathbf{b} \cdot \nabla \beta(u^\epsilon) = \beta'(u^\epsilon) (\mathbf{b} \cdot \nabla u^\epsilon - (\mathbf{b} \cdot \nabla u)^\epsilon),$$

and thus the problem reduces in showing that as $\epsilon \to 0$ the commutator

$$\mathbf{b}\cdot \nabla u^{\epsilon} - (\mathbf{b}\cdot \nabla u)^{\epsilon} = \int u(x+\epsilon y) \frac{\mathbf{b}(x) - \mathbf{b}(x+\epsilon y)}{\epsilon} \cdot \nabla \phi(y) dy \to 0.$$

Key computation [Diperna-Lions]: ($\rho = 1$ and div $\mathbf{b} = 0$) if $u^{\epsilon} = \phi^{\epsilon} * u$ is a smoothing of u, then one computes

$$\partial_t \beta(u^\epsilon) + \mathbf{b} \cdot \nabla \beta(u^\epsilon) = \beta'(u^\epsilon) (\mathbf{b} \cdot \nabla u^\epsilon - (\mathbf{b} \cdot \nabla u)^\epsilon),$$

and thus the problem reduces in showing that as $\epsilon \rightarrow 0$ the commutator

$$\mathbf{b}\cdot
abla u^{\epsilon} - (\mathbf{b}\cdot
abla u)^{\epsilon} = \int u(x+\epsilon y) rac{\mathbf{b}(x) - \mathbf{b}(x+\epsilon y)}{\epsilon} \cdot
abla \phi(y) dy o 0.$$

If $\nabla b \in L^1$ then this can be done, otherwise the convergence of the integrand is not strong enough to pass to the limit. **Remark.** It seems that **b** should have some sort of weak derivative...

Directional regularity and uniqueness Regular Lagrangian flows Conservation laws and transport equations

Keyfitz-Kranzer system

The system of conservation laws

$$\partial_t u + \sum_i \partial_{x_i} (f_i(|u|)u) = 0, \quad u \in \mathbb{R}^m,$$

can be written as

$$\partial_t |u| + \operatorname{div} (\mathbf{f}(|u|)|u|) = 0, \quad \partial_t \theta + \mathbf{f}(|u|) \cdot \nabla \theta = 0,$$

where $\theta = u/|u|$.

The theory of Kruzkhov yields for scalar conservation laws that $\nabla |u|$ is a bounded measure, and thus one reduces to a transport equation with vector fields whose derivative is a measure.

Bressan's conjecture: the regular Lagrangian flows generated by a vector field $\mathbf{b} \in L^{\infty} \cap L^1_t(BV_x)$ is compact in L^1 .

Bressan's conjecture: the regular Lagrangian flows generated by a vector field $\mathbf{b} \in L^{\infty} \cap L^1_t(\mathrm{BV}_x)$ is compact in L^1 . The main difficulties for an approach by chain rule and commutator are

 if div b is an L¹ function, one needs to change the convolution kernel φ: by adapting to the local structure of b (Rank-One Theorem), still the commutator converges to 0 (weakly,[Ambrosio])

Bressan's conjecture: the regular Lagrangian flows generated by a vector field $\mathbf{b} \in L^{\infty} \cap L^1_t(\mathrm{BV}_x)$ is compact in L^1 . The main difficulties for an approach by chain rule and commutator are

- if div b is an L¹ function, one needs to change the convolution kernel φ: by adapting to the local structure of b (Rank-One Theorem), still the commutator converges to 0 (weakly,[Ambrosio])
- in the jump part of ∇u: even if the commutator estimate cannot be passed to the limit, then one can use the traces [Ambrosio-DeLellis-Maly] to show that the chain rule holds

Bressan's conjecture: the regular Lagrangian flows generated by a vector field $\mathbf{b} \in L^{\infty} \cap L^1_t(\mathrm{BV}_x)$ is compact in L^1 . The main difficulties for an approach by chain rule and commutator are

- if div b is an L¹ function, one needs to change the convolution kernel φ: by adapting to the local structure of b (Rank-One Theorem), still the commutator converges to 0 (weakly,[Ambrosio])
- in the jump part of ∇u: even if the commutator estimate cannot be passed to the limit, then one can use the traces [Ambrosio-DeLellis-Maly] to show that the chain rule holds
- 3. in the so called Cantor part, no clear choice of ϕ and no trace theory.

Regularity and mixing conjecture Regularity for Lagrangian representations

イロト イヨト イヨト イヨト

æ

A regularity approach

In the smooth case one has

$$\frac{d}{dt}\nabla \mathtt{X} = \nabla \mathbf{b}(t, \mathtt{X}) \nabla \mathtt{X},$$

so that

$$\frac{d}{dt} \log \nabla X'' = \nabla \mathbf{b}, \quad "\nabla X = \exp\left\{\int \nabla b dt\right\}".$$

Regularity and mixing conjecture Regularity for Lagrangian representations

Image: A math a math

A regularity approach

In the smooth case one has

$$\frac{d}{dt}\nabla \mathtt{X} = \nabla \mathbf{b}(t, \mathtt{X}) \nabla \mathtt{X},$$

so that

$$\frac{d}{dt} \log \nabla X'' = \nabla \mathbf{b}, \quad \forall \nabla X = \exp\left\{\int \nabla b dt\right\}''.$$

Unfortunately log is sublinear, so that no compactness estimate can be obtained, but one can hope to have an estimate for

$$A_r(t,x) = \frac{1}{r^d} \int_{|y| < r} \log\left(1 + \frac{|\mathtt{X}(t,x+y) - \mathtt{X}(t,x)|}{r}\right) dy.$$

Regularity and mixing conjecture Regularity for Lagrangian representations

イロン イヨン イヨン イヨン

æ

[DeLellis-Crippa] Indeed

$$\begin{split} \frac{d}{dt} A_r &\leq \frac{1}{r^d} \int_{|y| < r} \frac{|\mathbf{b}(t, x + y) - \mathbf{b}(t, x)|}{|y|} dy \\ &\leq M_{\nabla \mathbf{b}}(x) + M_{\mathcal{M}_{\nabla \mathbf{b}}}(x), \end{split}$$

being the maximal function M

$$M_f(x) = \sup_r \frac{1}{r^d} \int_{|y| < r} |f|(x+y)dy.$$

Regularity and mixing conjecture Regularity for Lagrangian representations

イロト イヨト イヨト イヨト

æ

[DeLellis-Crippa] Indeed

$$\begin{split} \frac{d}{dt} A_r &\leq \frac{1}{r^d} \int_{|y| < r} \frac{|\mathbf{b}(t, x + y) - \mathbf{b}(t, x)|}{|y|} dy \\ &\leq M_{\nabla \mathbf{b}}(x) + M_{M_{\nabla \mathbf{b}}}(x), \end{split}$$

being the maximal function \boldsymbol{M}

$$M_f(x) = \sup_r \frac{1}{r^d} \int_{|y| < r} |f|(x+y)dy.$$

If $abla {f b} \in L^p$, p>1, then

$$\int \sup_r A_r(t,x) dx \leq C_0 + C_1 \int_0^t \|\nabla \mathbf{b}\|_{L^p} dt.$$

.

Regularity and mixing conjecture Regularity for Lagrangian representations

Image: A math a math

In particular, if at time T we have a mixing of order δ , i.e. it means that a constant fraction of trajectories starting from T at a distance $< \delta$ are then separated by 1, so that (inverting time)

$$\int \sup_r A_r(0,x) dx \simeq \log(1+1/\delta) \leq C_0 + C_1 \int_0^t \|
abla \mathbf{b}\|_{L^p} dt.$$

Regularity and mixing conjecture Regularity for Lagrangian representations

In particular, if at time T we have a mixing of order δ , i.e. it means that a constant fraction of trajectories starting from T at a distance $< \delta$ are then separated by 1, so that (inverting time)

$$\int \sup_r A_r(0,x) dx \simeq \log(1+1/\delta) \leq C_0 + C_1 \int_0^t \|
abla \mathbf{b}\|_{L^p} dt.$$

Bressan Mixing Conjecture: if the vector fields **b** mixes $\rho \in [1/C, C]$ to order δ at time T = 1, then

$$\int_0^1 |\nabla \mathbf{b}| dx dt \ge C \log \delta^{-1}.$$

This is an explicit estimate on compactness.

٠

Regularity and mixing conjecture Regularity for Lagrangian representations

Image: A mathematical states and a mathem

A way of restating uniqueness

The classical uniqueness/continuity can be written as

$$orall R > 0 \ \exists r \ \Big(|\gamma'(0) - \gamma(0)| < r \implies |\gamma'(t) - \gamma(t)| \leq R \Big).$$

Regularity and mixing conjecture Regularity for Lagrangian representations

A way of restating uniqueness

The classical uniqueness/continuity can be written as

$$orall R > 0 \ \exists r \ \Big(|\gamma'(0) - \gamma(0)| < r \implies |\gamma'(t) - \gamma(t)| \leq R \Big).$$

In the language of Lagrangian representations η we could write: for all $R, \varpi > 0$ there exists r such that

$$\int \frac{\eta(\left\{|\gamma'(0)-\gamma(0)|< r, \sup_t |\gamma'(t)-\gamma(t)|>R\right\})}{\eta(\left\{|\gamma'(0)-\gamma(0)|< r\right\})} \eta(d\gamma) < \varpi.$$

Regularity and mixing conjecture Regularity for Lagrangian representations

▲ □ ► ▲ □ ►

A way of restating uniqueness

The classical uniqueness/continuity can be written as

$$orall R > 0 \ \exists r \ \Big(|\gamma'(0) - \gamma(0)| < r \implies |\gamma'(t) - \gamma(t)| \leq R \Big).$$

In the language of Lagrangian representations η we could write: for all $R, \varpi > 0$ there exists r such that

$$\int \frac{\eta\big(\big\{|\gamma'(0)-\gamma(0)|< r, \sup_t |\gamma'(t)-\gamma(t)|>R\big\}\big)}{\eta(\{|\gamma'(0)-\gamma(0)|< r\})} \eta(d\gamma) < \varpi.$$

Theorem

The above condition implies untangling of trajectories, hence uniqueness.

Regularity and mixing conjecture Regularity for Lagrangian representations

イロン イヨン イヨン イヨン

æ

In Bressan's case, i.e. when $\nabla \boldsymbol{b}$ is a measure, one considers the PDE

$$\partial_t 1 + \operatorname{div}(1 \cdot \mathbf{b}) = \operatorname{div}\mathbf{b}.$$

In Bressan's case, i.e. when $\nabla \boldsymbol{b}$ is a measure, one considers the PDE

$$\partial_t \mathbf{1} + \operatorname{div}(\mathbf{1} \cdot \mathbf{b}) = \operatorname{div}\mathbf{b}.$$

One can prove an even stronger condition: there exists "sufficiently smooth" cylinders which approximate the cylinders of X, hence deducing the approximate differentiability of the flow.

Image: A math a math

In Bressan's case, i.e. when $\nabla \boldsymbol{b}$ is a measure, one considers the PDE

$$\partial_t \mathbf{1} + \operatorname{div}(\mathbf{1} \cdot \mathbf{b}) = \operatorname{div}\mathbf{b}.$$

One can prove an even stronger condition: there exists "sufficiently smooth" cylinders which approximate the cylinders of X, hence deducing the approximate differentiability of the flow.

A consequence of this fact that that the Lagrangian representation η of $(1, \mathbf{b})$ is unique up to the degeneracy of the initial/final points of the curves.

Regularity and mixing conjecture Regularity for Lagrangian representations

イロン イヨン イヨン イヨン

æ

Sorry for the people not cited here and

THANK YOU!

S.B., Paolo Bonicatto Vector fields in \mathbb{R}^d