
Outline
Crash course on 1d hyperbolic systems of conservation laws

Our results

Quadratic interaction functional and regularity
results for conservation laws

S. Modena, S.B.

April 5, 2014

S. Modena, S.B. Quadratic interaction functional



Outline
Crash course on 1d hyperbolic systems of conservation laws

Our results

Crash course on 1d hyperbolic systems of conservation laws
Existence of entropy solutions
3 important problems: stability, convergence, fine structure
Quadratic potential in the literature

Our results
Wave representation and quadratic estimate
Regularity
Perspectives

S. Modena, S.B. Quadratic interaction functional



Outline
Crash course on 1d hyperbolic systems of conservation laws

Our results

Existence of entropy solutions
3 important problems: stability, convergence, fine structure
Quadratic potential in the literature

Crash course on 1d hyperbolic systems of conservation laws

Hyperbolic system of conservation laws in 1d{
ut + f (u)x = 0

u(0, x) = u0(x)
u ∈ RN , f : RN → RN (1)

with Df (u) having N distinct eigenvalues

λ1(u) < λ2(u) < · · · < λN(u).

The left/right eigenvectors `i (u), ri (u), i = 1, . . . ,N, allow to
define the characteristic families/wavefronts wi (t, x)

ux ≈
∑
i

wi ri (u), wi ≈ `i (u) · ux ,

traveling with speed ≈ λi (u).
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Theorem (Existence of entropy solutions)

If Tot.Var.(u0)� 1, then there exists a unique ”entropy” solution
u(t) = Stu0 to (1) and St defines a Lipschitz semigroup in L1

loc.

Sketch of the proof.
Main problem: Tot.Var.(u(t)) may increase in time due to the
nonlinear interaction among wavefronts wi , wj .

wi wiwj w ′i

O(1)|wi ||wj | O(1)|wi ||w ′i ||σi − σ′i |

wi wi + w ′iwj
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Theorem (Existence of entropy solutions)

If Tot.Var.(u0)� 1, then there exists a unique ”entropy” solution
u(t) = Stu0 to (1) and St defines a Lipschitz semigroup in L1

loc.

Sketch of the proof.
Main problem: Tot.Var.(u(t)) may increase in time due to the
nonlinear interaction among wavefronts wi , wj .

Two types of interaction:

Transversal if i 6= j , i.e. the wavefronts belong to two different
families;

Non Transversal if i = j , i.e. the wavefronts belong to the same
family.
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Transversal interactions. This is a linear phenomenon: wavefronts
with different speed cross each other, and never cross again.

wi wj

O(1)|wi ||wj |

wiwj
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Transversal interactions. This is a linear phenomenon: wavefronts
with different speed cross each other, and never cross again.
Hence the quadratic functional (approaching wavefronts)

QTr(t) =
∑
i<j

∫
x<y
|wi (t, y)||wj(t, x)|dxdy

decreases of

d

dt
QTr(t) =

∫
|wi (t, x)||wj(t, x)|dx . (2)

The new wavefronts generated by the nonlinearity are at most

Tot.Var.(u(t))− Tot.Var.(u(t−)) ≤ O(1)

∫
|wi (t, x)||wj(t, x)|dx .

(3)
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Non-transversal interactions. This term is purely nonlinear.

wi w ′i

O(1)|wi ||w ′i ||σi − σ′i |

wi + w ′i
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Non-transversal interactions. This term is purely nonlinear.

The wavefronts generated by this kind of interaction are

Tot.Var.(u(t))− Tot.Var.(u(t−))

/ O(1)
∑
i

∫
|vi (t, x)||v ′i (t, x)|

∣∣σi (t, x)− σ′i (t, x)
∣∣dx ,

(4)

where σi (t, x) is the speed of the wavefront wi (t, x) (and ′ the
wavefront coming from right).
The cubic functional

QNTr(t) =
∑
i

∫
x<y
|wi (t, y)||wi (t, x)|

∣∣σi (t, x)− σi (t, y)
∣∣dxdy

decreases of

d

dt
QTr(t) =

∫
|wi (t, x)||w ′i (t, x)|

∣∣σi (t, x)− σ′i (t, x)
∣∣dxdx . (5)
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Hence one introduces the Glimm functional

Γ(t) := Tot.Var.(u(t)) + C
(
QTr + QNTr

)
and deduce from (2-5) that for C � 1

dΓ

dt
≤ 0.

In particular

Tot.Var.(u(t)) ≤ Tot.Var.(u0)
(
1 + CTot.Var.(u0)

)
,

and by compactness one concludes.
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The validity of the Lipschitz stability in L1 can be understood by
considering the equation for the perturbation u + εh, ε↘ 0,

ht + (Df (u)f )x = 0,

which is the same as the equation of ux , and thus obtaining

‖h(t)‖L1 ≤ ‖h(0)‖L1
(
1 + CTot.Var.(u0)

)
.

Remark. If f is genuinely nonlinear, i.e. Dλi ri 6= 0 (if N = 1 this
means that f is convex/concave) then the quadratic functional

QGl(t) =
∑
i

∫
x<y
|wi (t, x)||wi (t, y)|dxdy

is decreasing and controls the non-transversal interactions:
i-wavefronts which interact never split.
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Stability

The only proof of stability using hyperbolic technique is based on
the quadratic QGl:

w ′

w ′

Measure area with weight

W(z) = 1 + |w ′|χs∈w

d(u, u′) =
∫ ( ∫ u′

u W(s)ds
)
dx

By differentiating in time

d
dtd(u, u′) = |w ||w ′||σ − σ′|

For the general case the use of the cubic QNTr would give a forth
order decreasing term, not sufficient for stability.
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Convergence of approximate solutions

The main perturbation when constructing approximate solutions is
that we change the speed of the wavefronts:

artificial wave

wi wj

The error in L1(R) at time t can be thus estimated as∑
i

∫
|wi (t, x)|

∣∣σi (t, x)− σ̃i (t, x)
∣∣dx ≈ Tot.Var.(u(t))2.
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Structure

The control of the change in speed which is given by QGl yields
that u enjoys more regularity that just being BVloc(R+ × R):

Θ countable

Jump point

u continuous
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Quadratic potential

There are several papers addressing this issue: the main idea is to
study the quadratic functional

QAM(u(t)) :=
∑
i

∫
x<y

|σi (t, x)− σi (t, y)

Tot.Var.(u(t), [x , y ])︸ ︷︷ ︸
O(1)

|wi (t, x)||wi (t, y)|dxdy .

The fact that QAM(u(t)) is not decreasing in t forces to study the
solution from (t,+∞), and add a term

G(t) =

∫ +∞

t

{
unwanted oscillations of QAM

}
ds.

(However some gaps in the literature...)
Remark. From now on only the scalar case N = 1.
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Wave representation

There exists three functions T(s), X(t, s), u(s)

x

u

u(s)

t
X(t, s)

u0

u(T)T(s)

S. Modena, S.B. Quadratic interaction functional



Outline
Crash course on 1d hyperbolic systems of conservation laws

Our results

Wave representation and quadratic estimate
Regularity
Perspectives

Wave representation

There exists three functions

Time T : (0,Tot.Var.(u0)]→ R+ Borel

Position X :
{

x ∈ (0,Tot.Var.(u0)], 0 ≤ t < T(s)
}
→ R

Lipschitz in t and increasing in y

Value u : (0,Tot.Var.(u0)]→ R 1-Lipschitz

such that

Dxu(t) = X]
(
Dsu T

−1({t ≤ T(s)})L1
)

Dtu(t) = X]
(
− σ(t) Dsu T

−1({t ≤ T(s)})L1
)

where

Speed σ(t, s) := d
dt X(t, s) is the speed of the wave s.
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Quadratic estimate

Theorem (Modena-B.)

If u(t) is the entropic solution, then∫
Tot.Var.

(
σ(s), [0, T(s))

)
ds ≤ O(‖D2f ‖∞)Tot.Var.(u0)2.

The proof is based on the fact that we can distinguish between

1. waves which have already interacted

I(t) =
{

s < s ′ : ∃τ ≤ t
(
X(τ, s) = X(τ, s ′)

)}
,

2. waves which have never interacted

N (t) =
{

s < s ′ : ∀τ ≤ t
(
X(τ, s) < X(τ, s ′)

)}
.
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Proof.
One can prove that the original Glimm functional

Q(t) := L2
(
N (t)

)
is sufficient, because if two waves split, in order to make them
interact again one needs to use waves which have never
interacted.

w w’

z z’

|σz − σz ′ ||z ||z ′|
|z |+ |z ′|

≤ O(1)|w + v ′||w ′ + v |v’v
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Regularity

The results on the regularity are very similar to the genuinely
nonlinear case:

1. the countable set is determined by the set where

µa :=

[
X]

(∫
|Dtσ(t)|dt

)]atomic

is concentrated, i.e. where a positive set of waves s has a
jump in the speed,

2. on the jump set is only 1-rectifiable, because it can open and
close on a Cantor like set in t (there is not a strong stability
as in the genuinely nonlinear case).
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Perspectives

Extend to systems. In preparation....

Lagrangian (wave) representation. The map (X, T, u) are
”compact” even when Tot.Var.(u0)→∞.
Is this a Lagrangian representation of L∞ solutions? Ok for
continuous...
For scalar multi-d?

Quadratic estimate for singular approximations. Is it possible to
prove some quadratic interaction for viscous conservation laws?
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