BV solutions of the Jin-Xin model

Stefano Bianchini, IAC(CNR) Roma

http://www.iac.cnr.it/

September 17, 2004

We consider the (special) Jin-Xin relaxation model [Jin-Xin '95]

$$
\left\{\begin{array}{ccc}
u_{t}+v_{x} & = & 0 \tag{1}\\
v_{t}+\wedge^{2} u_{x} & = & \frac{1}{\epsilon}(\mathcal{F}(u)-v)
\end{array} \quad u, v \in \mathbb{R}^{n}, \Lambda \in \mathbb{R}\right.
$$

$\mathcal{F}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ smooth.

We consider the (special) Jin-Xin relaxation model [Jin-Xin '95]

$$
\left\{\begin{array}{ccc}
u_{t}+v_{x} & = & 0 \tag{1}\\
v_{t}+\wedge^{2} u_{x} & = & \frac{1}{\epsilon}(\mathcal{F}(u)-v)
\end{array} \quad u, v \in \mathbb{R}^{n}, \Lambda \in \mathbb{R}\right.
$$

$\mathcal{F}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ smooth.
Scaling:

$$
x \mapsto x / \wedge, v \mapsto \wedge v \quad \Longrightarrow \quad \wedge=1
$$

We consider the (special) Jin-Xin relaxation model [Jin-Xin '95]

$$
\left\{\begin{array}{ccc}
u_{t}+v_{x} & = & 0 \tag{1}\\
v_{t}+\wedge^{2} u_{x} & = & \frac{1}{\epsilon}(\mathcal{F}(u)-v)
\end{array} \quad u, v \in \mathbb{R}^{n}, \Lambda \in \mathbb{R}\right.
$$

$\mathcal{F}: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ smooth.
Scaling:

$$
x \mapsto x / \wedge, v \mapsto \wedge v \quad \Longrightarrow \quad \wedge=1
$$

Diagonalizing $2 F^{-}=u-v, 2 F^{+}=u+v$, we obtain the BGK model

$$
\left\{\begin{array}{c}
F_{t}^{-}-F_{x}^{-}=\frac{1}{\epsilon}\left(M^{-}(u)-F^{-}\right) \tag{2}\\
F_{t}^{+}+F_{x}^{+}=\frac{1}{\epsilon}\left(M^{+}(u)-F^{+}\right)
\end{array} \quad F^{-}, F^{+} \in \mathbb{R}^{n}\right.
$$

where $u=F^{-}+F^{+}, M^{-}(u)=\frac{u-\mathcal{F}(u)}{2}, M^{+}(u)=\frac{u+\mathcal{F}(u)}{2}$.

General settings

Equation (1) can be written as

$$
\begin{equation*}
u_{t}+A(u) u_{x}=\epsilon\left(u_{x x}-u_{t t}\right), \quad u \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

with $A(u)=D \mathcal{F}(u)$.

General settings

Equation (1) can be written as

$$
\begin{equation*}
u_{t}+A(u) u_{x}=\epsilon\left(u_{x x}-u_{t t}\right), \quad u \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

with $A(u)=D \mathcal{F}(u)$.
The above equation is meaningful even if $A(u)$ is not a Jacobian matrix.

General settings

Equation (1) can be written as

$$
\begin{equation*}
u_{t}+A(u) u_{x}=\epsilon\left(u_{x x}-u_{t t}\right), \quad u \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

with $A(u)=D \mathcal{F}(u)$.
The above equation is meaningful even if $A(u)$ is not a Jacobian matrix.
Assumptions:

General settings

Equation (1) can be written as

$$
\begin{equation*}
u_{t}+A(u) u_{x}=\epsilon\left(u_{x x}-u_{t t}\right), \quad u \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

with $A(u)=D \mathcal{F}(u)$.
The above equation is meaningful even if $A(u)$ is not a Jacobian matrix.
Assumptions:

1) $A(u)$ strictly hyperbolic and

$$
-1+c \leq \lambda_{i}(u) \leq 1-c, \quad c>0
$$

General settings

Equation (1) can be written as

$$
\begin{equation*}
u_{t}+A(u) u_{x}=\epsilon\left(u_{x x}-u_{t t}\right), \quad u \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

with $A(u)=D \mathcal{F}(u)$.
The above equation is meaningful even if $A(u)$ is not a Jacobian matrix.
Assumptions:

1) $A(u)$ strictly hyperbolic and

$$
-1+c \leq \lambda_{i}(u) \leq 1-c, \quad c>0
$$

2) the initial data ($u_{0}, \epsilon u_{0, t}$) are sufficiently smooth and with total variation less than $\delta_{0} \ll 1$:

$$
\left\|u_{0}\right\|_{L^{\infty}},\left\|\epsilon u_{0, t}\right\|_{L^{\infty}} \leq \delta_{0}, \quad\left\|u_{0, x}\right\|_{L^{1}},\left\|\epsilon u_{0, t x}\right\|_{L^{1}} \leq \delta_{0}
$$

Existence and stability theorem. Under the above assumptions, there exists a global solution (u, u_{t}) of (3), defined for all $t \geq 0$, such that

$$
\begin{equation*}
\|u(t)\|_{L^{\infty}},\|\epsilon u(t)\|_{L^{\infty}} \leq C \delta_{0}, \quad\left\|u_{x}(t)\right\|_{L^{1}},\left\|\epsilon u_{t x}(t)\right\|_{L^{1}} \leq C \delta_{0} \tag{4}
\end{equation*}
$$

Existence and stability theorem. Under the above assumptions, there exists a global solution (u, u_{t}) of (3), defined for all $t \geq 0$, such that

$$
\begin{equation*}
\|u(t)\|_{L^{\infty},},\|\epsilon u(t)\|_{L^{\infty}} \leq C \delta_{0}, \quad\left\|u_{x}(t)\right\|_{L^{1}},\left\|\epsilon u_{t x}(t)\right\|_{L^{1}} \leq C \delta_{0} \tag{4}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
& \|u(t)-\widehat{u}(s)\|_{L^{1}}+\epsilon\left\|u_{t}(t)-\widehat{u}_{t}(s)\right\|_{L^{1}} \\
& \quad \leq L\left(|t-s|+\left\|\left(u_{0}+\epsilon u_{0, t}\right)-\left(\widehat{u}_{0}+\epsilon \widehat{u}_{0, t}\right)\right\|_{L^{1}}\right) \\
& \quad \quad+L e^{-t / \epsilon} \epsilon\left\|u_{0, t}-\widehat{u}_{0, t}\right\|_{L^{1}} \\
& \quad+L\left(\epsilon^{2}\left\|u_{0, t x}-\widehat{u}_{0, t x}\right\|_{L^{1}}+\epsilon^{3}\left\|u_{0, t x x}-\widehat{u}_{0, t x x}\right\|_{L^{1}}\right) . \tag{5}
\end{align*}
$$

Convergence theorem. As $\epsilon \rightarrow 0$, the solution $u^{\epsilon}(t)$ with initial data ($u_{0}, \epsilon u_{0, t}$) converges to a unique limit $u(t)$ in $L_{\text {loc }}^{1}$.

Convergence theorem. As $\epsilon \rightarrow 0$, the solution $u^{\epsilon}(t)$ with initial data ($u_{0}, \epsilon u_{0, t}$) converges to a unique limit $u(t)$ in $L_{\text {loc }}^{1}$.
The function $u(t)$ has uniformly bounded total variation and generates a Lipschitz continuous semigroup $u(t)=\mathcal{S}_{t-s} u(s)$,

$$
\begin{equation*}
\|u(t)-\widehat{u}(s)\|_{L^{1}} \leq L\left(|t-s|+\|u(\tau)-\widehat{u}(\tau)\|_{L^{1}}\right), t, s \geq \tau>0 \tag{6}
\end{equation*}
$$

Convergence theorem. As $\epsilon \rightarrow 0$, the solution $u^{\epsilon}(t)$ with initial data $\left(u_{0}, \epsilon u_{0, t}\right)$ converges to a unique limit $u(t)$ in $L_{\text {loc }}^{1}$.
The function $u(t)$ has uniformly bounded total variation and generates a Lipschitz continuous semigroup $u(t)=\mathcal{S}_{t-s} u(s)$,

$$
\begin{equation*}
\|u(t)-\widehat{u}(s)\|_{L^{1}} \leq L\left(|t-s|+\|u(\tau)-\widehat{u}(\tau)\|_{L^{1}}\right), t, s \geq \tau>0 \tag{6}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left\|u(t)-\left(u_{0}+u_{0, t}\right)\right\|_{L^{1}} \leq L t \tag{7}
\end{equation*}
$$

Convergence theorem. As $\epsilon \rightarrow 0$, the solution $u^{\epsilon}(t)$ with initial data ($u_{0}, \epsilon u_{0, t}$) converges to a unique limit $u(t)$ in $L_{\text {loc }}^{1}$.
The function $u(t)$ has uniformly bounded total variation and generates a Lipschitz continuous semigroup $u(t)=\mathcal{S}_{t-s} u(s)$,

$$
\begin{equation*}
\|u(t)-\widehat{u}(s)\|_{L^{1}} \leq L\left(|t-s|+\|u(\tau)-\widehat{u}(\tau)\|_{L^{1}}\right), t, s \geq \tau>0 \tag{6}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left\|u(t)-\left(u_{0}+u_{0, t}\right)\right\|_{L^{1}} \leq L t \tag{7}
\end{equation*}
$$

This semigroup is defined on a domain \mathcal{D} containing all the function with sufficiently small total variation, and can be uniquely identified by a relaxation limiting Riemann Solver, i.e. the unique Riemann solver compatible with (3).

Remarks.

Remarks.

- $u_{0, t} \notin L^{1}$, so that the variable $v_{x}=-u_{t}$ is not well defined (even if $A(u)=D \mathcal{F}(u)$).

Remarks.

- $u_{0, t} \notin L^{1}$, so that the variable $v_{x}=-u_{t}$ is not well defined (even if $A(u)=D \mathcal{F}(u))$.
However, set

$$
\tilde{u}(t, x)=u(t, x)+\epsilon e^{-t / \epsilon} u_{0, t}(x)
$$

Remarks.

- $u_{0, t} \notin L^{1}$, so that the variable $v_{x}=-u_{t}$ is not well defined (even if $A(u)=D \mathcal{F}(u))$.
However, set

$$
\tilde{u}(t, x)=u(t, x)+\epsilon e^{-t / \epsilon} u_{0, t}(x)
$$

which satisfies

Remarks.

- $u_{0, t} \notin L^{1}$, so that the variable $v_{x}=-u_{t}$ is not well defined (even if $A(u)=D \mathcal{F}(u))$.
However, set

$$
\tilde{u}(t, x)=u(t, x)+\epsilon e^{-t / \epsilon} u_{0, t}(x)
$$

which satisfies

$$
\underbrace{\left.\tilde{u}_{t}+A(u) \tilde{u}_{x x}-\tilde{u}_{t t}\right)}_{\tilde{u}_{x}, \tilde{u}_{t} \in L^{1}}
$$

Remarks.

- $u_{0, t} \notin L^{1}$, so that the variable $v_{x}=-u_{t}$ is not well defined (even if $A(u)=D \mathcal{F}(u)$).
However, set

$$
\tilde{u}(t, x)=u(t, x)+\epsilon e^{-t / \epsilon} u_{0, t}(x)
$$

which satisfies

$$
\underbrace{\tilde{u}_{t}+A(u) \tilde{u}_{x}=\epsilon\left(\tilde{u}_{x x}-\tilde{u}_{t t}\right)}_{\tilde{u}_{x}, \tilde{u}_{t} \in L^{1}}+\underbrace{\epsilon e^{-t / \epsilon}\left(A(u) u_{0, t x}-\epsilon u_{0, t x x}\right)}_{\text {exponential decay of initial data }}
$$

Remarks.

- $u_{0, t} \notin L^{1}$, so that the variable $v_{x}=-u_{t}$ is not well defined (even if $A(u)=D \mathcal{F}(u))$.
However, set

$$
\tilde{u}(t, x)=u(t, x)+\epsilon e^{-t / \epsilon} u_{0, t}(x)
$$

which satisfies

$$
\underbrace{\tilde{u}_{t}+A(u) \tilde{u}_{x x}-\epsilon\left(\tilde{u}_{t t}\right)}_{\tilde{u}_{x}, \tilde{u}_{t} \in L^{1}}+\underbrace{\epsilon e^{-t / \epsilon}\left(A(u) u_{0, t x}-\epsilon u_{0, t x x}\right)}_{\text {exponential decay of initial data }} .
$$

The initial data for \tilde{u} are $\left(u_{0}+\epsilon u_{0, t}, 0\right)$:

Remarks.

- $u_{0, t} \notin L^{1}$, so that the variable $v_{x}=-u_{t}$ is not well defined (even if $A(u)=D \mathcal{F}(u))$.
However, set

$$
\tilde{u}(t, x)=u(t, x)+\epsilon e^{-t / \epsilon} u_{0, t}(x)
$$

which satisfies

$$
\underbrace{\left.\tilde{u}_{t}+A(u) \tilde{u}_{x x}-\tilde{u}_{t t}\right)}_{\tilde{u}_{x}, \tilde{u}_{t} \in L^{1}}+\underbrace{\epsilon e^{-t / \epsilon}\left(A(u) u_{0, t x}-\epsilon u_{0, t x x}\right)}_{\text {exponential decay of initial data }} .
$$

The initial data for \tilde{u} are $\left(u_{0}+\epsilon u_{0, t}, 0\right)$:
in $B V$ estimates it is important not $u_{t} \in L^{1}$ but $u_{t x} \in L^{1}$.

- Green kernel for relaxation. [Zeng '99, Hanouzet-NataliniSB '04]
- Green kernel for relaxation. [Zeng '99, Hanouzet-NataliniSB '04]
Consider the 2×2 system

$$
\left\{\begin{array}{l}
u_{t}+v_{x}=0 \\
v_{t}+u_{x}=\lambda u-v
\end{array}\right.
$$

- Green kernel for relaxation. [Zeng '99, Hanouzet-NataliniSB '04]
Consider the 2×2 system

$$
\left\{\begin{array}{l}
u_{t}+v_{x}=0 \\
v_{t}+u_{x}=\lambda u-v
\end{array}\right.
$$

Then for the Green kernel $\Gamma(t, x)=\left[\begin{array}{ll}\Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22}\end{array}\right]$,

- Green kernel for relaxation. [Zeng '99, Hanouzet-NataliniSB '04]
Consider the 2×2 system

$$
\left\{\begin{array}{l}
u_{t}+v_{x}=c \\
v_{t}+u_{x}=\lambda u-v
\end{array}\right.
$$

Then for the Green kernel $\Gamma(t, x)=\left[\begin{array}{ll}\Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22}\end{array}\right]$,

$$
\Gamma_{11}(t, x)=\frac{e^{-\left(x^{2}-\lambda t\right)^{2} /\left(4\left(1-\lambda^{2}\right)(1+t)\right)}}{2 \sqrt{\left(1-\lambda^{2}\right)(1+t)}}+\text { exp.dec., h.o. terms, }
$$

- Green kernel for relaxation. [Zeng '99, Hanouzet-NataliniSB '04]
Consider the 2×2 system

$$
\left\{\begin{array}{l}
u_{t}+v_{x}=c \\
v_{t}+u_{x}=\lambda u-v
\end{array}\right.
$$

Then for the Green kernel $\Gamma(t, x)=\left[\begin{array}{ll}\Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22}\end{array}\right]$,

$$
\begin{aligned}
\Gamma_{11}(t, x) & =\frac{e^{-\left(x^{2}-\lambda t\right)^{2} /\left(4\left(1-\lambda^{2}\right)(1+t)\right)}}{2 \sqrt{\left(1-\lambda^{2}\right)(1+t)}}+\text { exp.dec., h.o. terms, } \\
\Gamma_{21}(t, x) & =\frac{\partial}{\partial x} \frac{e^{-\left(x^{2}-\lambda t\right)^{2} /\left(4\left(1-\lambda^{2}\right)(1+t)\right)}}{2 \sqrt{\left(1-\lambda^{2}\right)(1+t)}}+\text { exp.dec., h.o. terms, }
\end{aligned}
$$

The kernels Γ_{12}, Γ_{22} show that only v_{x} influences u :

The kernels Γ_{12}, Γ_{22} show that only v_{x} influences u :

$$
\Gamma_{12}(t, x)=\frac{\partial}{\partial x}\left(\frac{e^{-\left(x^{2}-\lambda t\right)^{2} /\left(4\left(1-\lambda^{2}\right)(1+t)\right)}}{2 \sqrt{\left(1-\lambda^{2}\right)(1+t)}}+\text { exp.dec, h.o. terms }\right)
$$

The kernels Γ_{12}, Γ_{22} show that only v_{x} influences u :

$$
\begin{aligned}
\Gamma_{12}(t, x) & =\frac{\partial}{\partial x}\left(\frac{e^{-\left(x^{2}-\lambda t\right)^{2} /\left(4\left(1-\lambda^{2}\right)(1+t)\right)}}{2 \sqrt{\left(1-\lambda^{2}\right)(1+t)}}+\text { exp.dec, h.o. terms }\right) \\
\Gamma_{22}(t, x) & =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x} \frac{e^{-\left(x^{2}-\lambda t\right)^{2} /\left(4\left(1-\lambda^{2}\right)(1+t)\right)}}{2 \sqrt{\left(1-\lambda^{2}\right)(1+t)}}+{ }^{\prime \prime}, \prime \prime\right)+\text { exp.dec. }
\end{aligned}
$$

The kernels Γ_{12}, Γ_{22} show that only v_{x} influences u :

$$
\begin{aligned}
\Gamma_{12}(t, x) & =\frac{\partial}{\partial x}\left(\frac{e^{-\left(x^{2}-\lambda t\right)^{2} /\left(4\left(1-\lambda^{2}\right)(1+t)\right)}}{2 \sqrt{\left(1-\lambda^{2}\right)(1+t)}}+\text { exp.dec, h.o. terms }\right) \\
\Gamma_{22}(t, x) & =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x} \frac{e^{-\left(x^{2}-\lambda t\right)^{2} /\left(4\left(1-\lambda^{2}\right)(1+t)\right)}}{2 \sqrt{\left(1-\lambda^{2}\right)(1+t)}}+{ }^{\prime \prime}, \prime \prime\right)+\text { exp.dec. }
\end{aligned}
$$

This result is important when studying decay to an equilibrium state $(\bar{u}, \bar{v})=(0, \mathcal{F}(0)=0)$, because by Duhamel formula

The kernels Γ_{12}, Γ_{22} show that only v_{x} influences u :

$$
\begin{aligned}
\Gamma_{12}(t, x) & =\frac{\partial}{\partial x}\left(\frac{e^{-\left(x^{2}-\lambda t\right)^{2} /\left(4\left(1-\lambda^{2}\right)(1+t)\right)}}{2 \sqrt{\left(1-\lambda^{2}\right)(1+t)}}+\text { exp.dec, h.o. terms }\right) \\
\Gamma_{22}(t, x) & =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x} \frac{e^{-\left(x^{2}-\lambda t\right)^{2} /\left(4\left(1-\lambda^{2}\right)(1+t)\right)}}{2 \sqrt{\left(1-\lambda^{2}\right)(1+t)}}+',, \prime\right)+\text { exp.dec. }
\end{aligned}
$$

This result is important when studying decay to an equilibrium state $(\bar{u}, \bar{v})=(0, \mathcal{F}(0)=0)$, because by Duhamel formula

$$
\binom{u(t)}{v(t)}=\Gamma(t) *\binom{u(0)}{v(0)}+\int_{0}^{t} \underbrace{\Gamma(t-s) *\binom{0}{\mathcal{F}(u(s))-A(0) u(s)}}_{\approx G_{x}(t-s) * u(s)^{2}} d s
$$

- The dependence w.r.t. $u_{0}+\epsilon u_{0, t}$ can be easily seen with the example

$$
u_{t}=\epsilon\left(u_{x x}-u_{t t}\right)
$$

with initial data $u(0)=0, u_{t}(0)=\epsilon^{-1}$.

- The dependence w.r.t. $u_{0}+\epsilon u_{0, t}$ can be easily seen with the example

$$
u_{t}=\epsilon\left(u_{x x}-u_{t t}\right)
$$

with initial data $u(0)=0, u_{t}(0)=\epsilon^{-1}$. The solution is $1-e^{-t / \epsilon}$, which converges to $u(t) \equiv 1, t>0$.

- The dependence w.r.t. $u_{0}+\epsilon u_{0, t}$ can be easily seen with the example

$$
u_{t}=\epsilon\left(u_{x x}-u_{t t}\right)
$$

with initial data $u(0)=0, u_{t}(0)=\epsilon^{-1}$.
The solution is $1-e^{-t / \epsilon}$, which converges to $u(t) \equiv 1, t>0$.
The hyperbolic limit $\epsilon \rightarrow 0$ has the "initial data"

$$
\lim _{t \rightarrow 0+} u(t)=1=\lim _{\epsilon \rightarrow 0} u_{0}+\epsilon u_{t, 0}
$$

BV estimates in the conservative case

BV estimates in the conservative case

We assume $A(u)=D \mathcal{F}(u), \epsilon=1$ and $u_{0, t} \in L^{1}$.

BV estimates in the conservative case

We assume $A(u)=D \mathcal{F}(u), \epsilon=1$ and $u_{0, t} \in L^{1}$. Differentiating w.r.t. x the BGK scheme (2)

BV estimates in the conservative case

We assume $A(u)=D \mathcal{F}(u), \epsilon=1$ and $u_{0, t} \in L^{1}$. Differentiating w.r.t. x the BGK scheme (2)

$$
\left\{\begin{array}{rll}
f_{t}^{-}-f_{x}^{-} & =-\frac{I+A(u)}{2} f^{-}+\frac{I-A(u)}{2} f^{+} \tag{8}\\
f_{t}^{+}+f_{x}^{+} & = & \frac{I+A^{(u)}}{2} f^{-}-\frac{I-A^{2}(u)}{2} f^{+}
\end{array} \quad f^{ \pm}=F_{x}^{ \pm} .\right.
$$

BV estimates in the conservative case

We assume $A(u)=D \mathcal{F}(u), \epsilon=1$ and $u_{0, t} \in L^{1}$.
Differentiating w.r.t. x the BGK scheme (2)

$$
\left\{\begin{array}{rl}
f_{t}^{-}-f_{x}^{-} & =-\frac{I+A(u)}{2} f^{-}+\frac{I-A(u)}{2} f^{+} \tag{8}\\
f_{t}^{+}+f_{x}^{+} & =\frac{I+A^{(u)}}{2} f^{-}-\frac{I-A(u)}{2} f^{+}
\end{array} \quad f^{ \pm}=F_{x}^{ \pm}\right.
$$

Differentiating (2) w.r.t. t we obtain

BV estimates in the conservative case

We assume $A(u)=D \mathcal{F}(u), \epsilon=1$ and $u_{0, t} \in L^{1}$. Differentiating w.r.t. x the BGK scheme (2)

$$
\left\{\begin{array}{rl}
f_{t}^{-}-f_{x}^{-} & =-\frac{I+A(u)}{2} f^{-}+\frac{I-A(u)}{2} f^{+} \tag{8}\\
f_{t}^{+}+f_{x}^{+} & =\frac{I+A^{(u)}}{2} f^{-}-\frac{I-A(u)}{2} f^{+}
\end{array} \quad f^{ \pm}=F_{x}^{ \pm}\right.
$$

Differentiating (2) w.r.t. t we obtain

$$
\left\{\begin{array}{rl}
g_{t}^{-}-g_{x}^{-} & =-\frac{I+A(u)}{2} g^{-}+\frac{I-A(u)}{2} g^{+} \tag{9}\\
g_{t}^{+}+g_{x}^{+} & =\frac{I+A^{+}(u)}{2} g^{-}-\frac{I-A(u)}{2} g^{+}
\end{array} \quad g^{ \pm}=F_{t}^{ \pm}\right.
$$

BV estimates in the conservative case

We assume $A(u)=D \mathcal{F}(u), \epsilon=1$ and $u_{0, t} \in L^{1}$.
Differentiating w.r.t. x the BGK scheme (2)

$$
\left\{\begin{array}{rl}
f_{t}^{-}-f_{x}^{-} & =-\frac{I+A(u)}{2} f^{-}+\frac{I-A(u)}{2} f^{+} \tag{8}\\
f_{t}^{+}+f_{x}^{+} & =\frac{I+A^{(u)}}{2} f^{-}-\frac{I-A^{(u)}}{2} f^{+}
\end{array} \quad f^{ \pm}=F_{x}^{ \pm}\right.
$$

Differentiating (2) w.r.t. t we obtain

$$
\left\{\begin{array}{rl}
g_{t}^{-}-g_{x}^{-} & =-\frac{I+A(u)}{2} g^{-}+\frac{I-A(u)}{2} g^{+} \tag{9}\\
g_{t}^{+}+g_{x}^{+} & =\frac{I+A^{2}(u)}{2} g^{-}-\frac{I-A(u)}{2} g^{+}
\end{array} \quad g^{ \pm}=F_{t}^{ \pm}\right.
$$

Our aim:

$$
\left\|f^{ \pm}(0)\right\|_{L^{1}},\left\|g^{ \pm}(0)\right\|_{L^{1}} \leq \delta_{0} \quad \Longrightarrow \quad f^{ \pm}(t), g^{ \pm}(t) \in L^{1}(\mathbb{R})
$$

Center manifold of travelling profiles

Center manifold of travelling profiles

We study the ODE

$$
-\sigma u_{x}+A(u) u_{x}=\left(1-\sigma^{2}\right) u_{x x}
$$

Center manifold of travelling profiles

We study the ODE

$$
-\sigma u_{x}+A(u) u_{x}=\left(1-\sigma^{2}\right) u_{x x}
$$

which can be written as the first order system

$$
\left\{\begin{array}{ccc}
u_{x} & = & p \tag{10}\\
\left(1-\sigma^{2}\right) p_{x} & = & (A(u)-\sigma I) p \\
\sigma_{x} & = & 0
\end{array}\right.
$$

Center manifold of travelling profiles

We study the ODE

$$
-\sigma u_{x}+A(u) u_{x}=\left(1-\sigma^{2}\right) u_{x x}
$$

which can be written as the first order system

$$
\left\{\begin{array}{ccc}
u_{x} & = & p \tag{10}\\
\left(1-\sigma^{2}\right) p_{x} & = & (A(u)-\sigma I) p \\
\sigma_{x} & = & 0
\end{array}\right.
$$

Close to any equilibrium ($0,0, \lambda_{i}(0)$), one can find a center manifold of travelling profiles:

Center manifold of travelling profiles

We study the ODE

$$
-\sigma u_{x}+A(u) u_{x}=\left(1-\sigma^{2}\right) u_{x x}
$$

which can be written as the first order system

$$
\left\{\begin{array}{ccc}
u_{x} & = & p \tag{10}\\
\left(1-\sigma^{2}\right) p_{x} & = & (A(u)-\sigma I) p \\
\sigma_{x} & = & 0
\end{array}\right.
$$

Close to any equilibrium ($0,0, \lambda_{i}(0)$), one can find a center manifold of travelling profiles:

$$
\begin{equation*}
p=v_{i} \tilde{r}_{i}\left(u, v_{i}, \sigma\right), \quad \tilde{\lambda}_{i}=\left\langle\tilde{r}_{i}, A(u) \tilde{r}_{i}\right\rangle, \quad\left|\tilde{r}_{i}(u)\right|=1 \tag{11}
\end{equation*}
$$

We can parameterize by the the kinetic component f_{i} :

We can parameterize by the the kinetic component f_{i} :

$$
u_{t}=f^{-}-f^{+}=-\sigma u_{x}=f^{-}+f^{+}
$$

We can parameterize by the the kinetic component f_{i} :

$$
\begin{gathered}
u_{t}=f^{-}-f^{+}=-\sigma u_{x}=f^{-}+f^{+} \\
u_{x}=\frac{1}{1-\sigma} f^{-}=\frac{1}{1+\sigma} f^{+} .
\end{gathered}
$$

We can parameterize by the the kinetic component f_{i} :

$$
\begin{gathered}
u_{t}=f^{-}-f^{+}=-\sigma u_{x}=f^{-}+f^{+} \\
u_{x}=\frac{1}{1-\sigma} f^{-}=\frac{1}{1+\sigma} f^{+}
\end{gathered}
$$

The center manifold for the kinetic components f^{-}, f^{+}is

We can parameterize by the the kinetic component f_{i} :

$$
\begin{gathered}
u_{t}=f^{-}-f^{+}=-\sigma u_{x}=f^{-}+f^{+} \\
u_{x}=\frac{1}{1-\sigma} f^{-}=\frac{1}{1+\sigma} f^{+} .
\end{gathered}
$$

The center manifold for the kinetic components f^{-}, f^{+}is

$$
\begin{equation*}
f^{-}= \tag{12}
\end{equation*}
$$

We can parameterize by the the kinetic component f_{i} :

$$
\begin{gathered}
u_{t}=f^{-}-f^{+}=-\sigma u_{x}=f^{-}+f^{+} \\
u_{x}=\frac{1}{1-\sigma} f^{-}=\frac{1}{1+\sigma} f^{+} .
\end{gathered}
$$

The center manifold for the kinetic components f^{-}, f^{+}is

$$
\begin{equation*}
f^{-}=(1-\sigma) v_{i} \tilde{r}_{i}\left(u, v_{i}, \sigma\right) \tag{12}
\end{equation*}
$$

We can parameterize by the the kinetic component f_{i} :

$$
\begin{gathered}
u_{t}=f^{-}-f^{+}=-\sigma u_{x}=f^{-}+f^{+} \\
u_{x}=\frac{1}{1-\sigma} f^{-}=\frac{1}{1+\sigma} f^{+} .
\end{gathered}
$$

The center manifold for the kinetic components f^{-}, f^{+}is

$$
\begin{equation*}
f^{-}=(1-\sigma) v_{i} \tilde{r}_{i}\left(u, v_{i}, \sigma\right)=f_{i}^{-} \tilde{r}_{i}\left(u, \frac{f_{i}^{-}}{1-\sigma}, \sigma\right) \tag{12}
\end{equation*}
$$

We can parameterize by the the kinetic component f_{i} :

$$
\begin{gathered}
u_{t}=f^{-}-f^{+}=-\sigma u_{x}=f^{-}+f^{+} \\
u_{x}=\frac{1}{1-\sigma} f^{-}=\frac{1}{1+\sigma} f^{+}
\end{gathered}
$$

The center manifold for the kinetic components f^{-}, f^{+}is

$$
\begin{equation*}
f^{-}=(1-\sigma) v_{i} \tilde{r}_{i}\left(u, v_{i}, \sigma\right)=f_{i}^{-} \tilde{r}_{i}\left(u, \frac{f_{i}^{-}}{1-\sigma}, \sigma\right)=f_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma\right) \tag{12}
\end{equation*}
$$

We can parameterize by the the kinetic component f_{i} :

$$
\begin{gathered}
u_{t}=f^{-}-f^{+}=-\sigma u_{x}=f^{-}+f^{+} \\
u_{x}=\frac{1}{1-\sigma} f^{-}=\frac{1}{1+\sigma} f^{+}
\end{gathered}
$$

The center manifold for the kinetic components f^{-}, f^{+}is

$$
\begin{gather*}
f^{-}=(1-\sigma) v_{i} \tilde{r}_{i}\left(u, v_{i}, \sigma\right)=f_{i}^{-} \tilde{r}_{i}\left(u, \frac{f_{i}^{-}}{1-\sigma}, \sigma\right)=f_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma\right) \tag{12}\\
f^{+}=(1+\sigma) \tilde{r}_{i}\left(u, \frac{(1+\sigma) v_{i}}{1+\sigma}, \sigma\right) \tag{13}
\end{gather*}
$$

We can parameterize by the the kinetic component f_{i} :

$$
\begin{gathered}
u_{t}=f^{-}-f^{+}=-\sigma u_{x}=f^{-}+f^{+} \\
u_{x}=\frac{1}{1-\sigma} f^{-}=\frac{1}{1+\sigma} f^{+}
\end{gathered}
$$

The center manifold for the kinetic components f^{-}, f^{+}is

$$
\begin{array}{r}
f^{-}=(1-\sigma) v_{i} \tilde{r}_{i}\left(u, v_{i}, \sigma\right)=f_{i}^{-} \tilde{r}_{i}\left(u, \frac{f_{i}^{-}}{1-\sigma}, \sigma\right)=f_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma\right) \\
f^{+}=(1+\sigma) \tilde{r}_{i}\left(u, \frac{(1+\sigma) v_{i}}{1+\sigma}, \sigma\right)=f_{i}^{+} \tilde{r}_{i}^{+}\left(u, f_{i}^{+}, \sigma\right) \tag{13}
\end{array}
$$

Identification of a travelling profile: $u(\bar{x}), \sigma$ and $v_{i}(\bar{x})$,

Identification of a travelling profile: $u(\bar{x}), \sigma$ and $v_{i}(\bar{x})$,

Identification of a travelling profile: $u(\bar{x}), \sigma$ and $f_{i}^{-}(\bar{x})$,

Identification of a travelling profile: $u(\bar{x}), \sigma$ and $f_{i}^{+}(\bar{x})$,

Decomposition in travelling profiles

Decomposition in travelling profiles

We decompose $\left(f^{-}, g^{-}\right)$and (f^{+}, g^{+}) separately:

Decomposition in travelling profiles

We decompose $\left(f^{-}, g^{-}\right)$and (f^{+}, g^{+}) separately:

Decomposition in travelling profiles

We decompose $\left(f^{-}, g^{-}\right)$and $\left(f^{+}, g^{+}\right)$separately:

$$
\left\{\begin{array}{l}
f^{-}=\sum_{i} f_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma_{i}^{-}\right) \tag{14}\\
g^{-}=\sum_{i} g_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma_{i}^{-}\right)
\end{array}\right.
$$

Decomposition in travelling profiles

We decompose $\left(f^{-}, g^{-}\right)$and (f^{+}, g^{+}) separately:

$$
\left\{\begin{array}{l}
f^{-}=\sum_{i} f_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma_{i}^{-}\right) \tag{14}\\
g^{-}=\sum_{i} g_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma_{i}^{-}\right)
\end{array} \quad \sigma_{i}^{-}=\theta_{i}\left(-\frac{g_{i}^{-}}{f_{i}^{-}}\right)\right.
$$

Decomposition in travelling profiles

We decompose $\left(f^{-}, g^{-}\right)$and (f^{+}, g^{+}) separately:

$$
\left\{\begin{array}{l}
f^{-}=\sum_{i} f_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma_{i}^{-}\right) \tag{14}\\
g^{-}=\sum_{i} g_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma_{i}^{-}\right)
\end{array} \quad \sigma_{i}^{-}=\theta_{i}\left(-\frac{g_{i}^{-}}{f_{i}^{-}}\right)\right.
$$

where θ_{i} is the cutoff function

Decomposition in travelling profiles

We decompose $\left(f^{-}, g^{-}\right)$and (f^{+}, g^{+}) separately:

$$
\left\{\begin{array}{l}
f^{-}=\sum_{i} f_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma_{i}^{-}\right) \tag{14}\\
g^{-}=\sum_{i} g_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma_{i}^{-}\right)
\end{array} \quad \sigma_{i}^{-}=\theta_{i}\left(-\frac{g_{i}^{-}}{f_{i}^{-}}\right)\right.
$$

where θ_{i} is the cutoff function
 Similarly for $\left(f^{+}, g^{+}\right)$:

Decomposition in travelling profiles

We decompose (f^{-}, g^{-}) and (f^{+}, g^{+}) separately:

$$
\left\{\begin{array}{l}
f^{-}=\sum_{i} f_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma_{i}^{-}\right) \tag{14}\\
g^{-}=\sum_{i} g_{i}^{-} \tilde{r}_{i}^{-}\left(u, f_{i}^{-}, \sigma_{i}^{-}\right)
\end{array} \quad \sigma_{i}^{-}=\theta_{i}\left(-\frac{g_{i}^{-}}{f_{i}^{-}}\right)\right.
$$

where θ_{i} is the cutoff function
 Similarly for (f^{+}, g^{+}):

$$
\left\{\begin{array}{l}
f^{+}=\sum_{i} f_{i}^{+} \tilde{r}_{i}^{+}\left(u, f_{i}^{+}, \sigma_{i}^{+}\right) \tag{15}\\
g^{+}=\sum_{i} g_{i}^{+} \tilde{r}_{i}^{+}\left(u, f_{i}^{+}, \sigma_{i}^{+}\right)
\end{array} \quad \sigma_{i}^{+}=\theta_{i}\left(-\frac{g_{i}^{+}}{f_{i}^{+}}\right)\right.
$$

To find travelling profiles, we look separately to the t, x derivatives of F^{-}, F^{+}, and try to fit n travelling profiles into F^{-}and n into F^{+}.

To find travelling profiles, we look separately to the t, x derivatives of F^{-}, F^{+}, and try to fit n travelling profiles into F^{-}and n into F^{+}.

To find travelling profiles, we look separately to the t, x derivatives of F^{-}, F^{+}, and try to fit n travelling profiles into F^{-}and n into F^{+}.

To find travelling profiles, we look separately to the t, x derivatives of F^{-}, F^{+}, and try to fit n travelling profiles into F^{-}and n into F^{+}.

To find travelling profiles, we look separately to the t, x derivatives of F^{-}, F^{+}, and try to fit n travelling profiles into F^{-}and n into F^{+}.

We obtain thus $2 n$ travelling waves: n for F^{-}and n for F^{+}.

Equation for the components $f_{i}^{ \pm}, g_{i}^{ \pm}$are of the form:

Equation for the components $f_{i}^{ \pm}, g_{i}^{ \pm}$are of the form:

$$
\left\{\begin{array}{l}
f_{j, t}^{-}-f_{j, x}^{-}=-\frac{1+\tilde{\lambda}_{j}^{-}}{2} f_{j}^{-}+\frac{1-\tilde{\lambda}_{j}^{+}}{2} f_{j}^{+}+\varsigma_{f, j}^{-}(t, x) \tag{16}\\
f_{j, t}^{+}+f_{j, x}^{+}=\frac{1+\tilde{\lambda}_{j}^{-}}{2} f_{j}^{-}-\frac{1-\tilde{\lambda}_{j}^{+}}{2} f_{j}^{+}+\varsigma_{f, j}^{+}(t, x)
\end{array}\right.
$$

Equation for the components $f_{i}^{ \pm}, g_{i}^{ \pm}$are of the form:

$$
\begin{align*}
& \left\{\begin{array}{l}
f_{j, t}^{-}-f_{j, x}^{-}=-\frac{1+\tilde{\lambda}_{j}^{-}}{2} f_{j}^{-}+\frac{1-\tilde{\lambda}_{j}^{+}}{2} f_{j}^{+}+\varsigma_{f, j}^{-}(t, x) \\
f_{j, t}^{+}+f_{j, x}^{+}=\frac{1+\tilde{\lambda}_{j}^{-}}{2} f_{j}^{-}-\frac{1-\tilde{\lambda}_{j}^{+}}{2} f_{j}^{+}+\varsigma_{f, j}^{+}(t, x)
\end{array}\right. \tag{16}\\
& \left\{\begin{array}{l}
g_{i, t}^{-}-g_{i, x}^{-}=-\frac{1+\tilde{\lambda}_{i}^{-}}{2} g_{i}^{-}+\frac{1-\tilde{\lambda}_{i}^{+}}{2} g_{i}^{+}+\varsigma_{g, i}^{-}(t, x) \\
g_{i, t}^{+}+g_{i, x}^{+}=\frac{1+\tilde{\lambda}_{i}^{-}}{2} g_{i}^{-}-\frac{1-\tilde{\lambda}_{i}^{+}}{2} g_{i}^{+}+\varsigma_{g, i}^{+}(t, x)
\end{array}\right. \tag{17}
\end{align*}
$$

Equation for the components $f_{i}^{ \pm}, g_{i}^{ \pm}$are of the form:

$$
\begin{align*}
& \left\{\begin{array}{l}
f_{j, t}^{-}-f_{j, x}^{-}=-\frac{1+\tilde{\lambda}_{j}^{-}}{2} f_{j}^{-}+\frac{1-\tilde{\lambda}_{j}^{+}}{2} f_{j}^{+}+\varsigma_{f, j}^{-}(t, x) \\
f_{j, t}^{+}+f_{j, x}^{+}=\frac{1+\tilde{\lambda}_{j}^{-}}{2} f_{j}^{-}-\frac{1-\tilde{\lambda}_{j}^{+}}{2} f_{j}^{+}+\varsigma_{f, j}^{+}(t, x)
\end{array}\right. \tag{16}\\
& \left\{\begin{array}{l}
g_{i, t}^{-}-g_{i, x}^{-}=-\frac{1+\tilde{\lambda}_{i}^{-}}{2} g_{i}^{-}+\frac{1-\tilde{\lambda}_{i}^{+}}{2} g_{i}^{+}+\varsigma_{g, i}^{-}(t, x) \\
g_{i, t}^{+}+g_{i, x}^{+}=\frac{1+\tilde{\lambda}_{i}^{-}}{2} g_{i}^{-}-\frac{1-\tilde{\lambda}_{i}^{+}}{2} g_{i}^{+}+\varsigma_{g, i}^{+}(t, x)
\end{array}\right. \tag{17}
\end{align*}
$$

with $\varsigma_{f}^{ \pm}, \varsigma_{g}^{ \pm}$sources of total variation for $F_{x}^{ \pm}, F_{g}^{ \pm}$and

Equation for the components $f_{i}^{ \pm}, g_{i}^{ \pm}$are of the form:

$$
\begin{align*}
& \left\{\begin{array}{l}
f_{j, t}^{-}-f_{j, x}^{-}=-\frac{1+\tilde{\lambda}_{j}^{-}}{2} f_{j}^{-}+\frac{1-\tilde{\lambda}_{j}^{+}}{2} f_{j}^{+}+\varsigma_{f, j}^{-}(t, x) \\
f_{j, t}^{+}+f_{j, x}^{+}=\frac{1+\tilde{\lambda}_{j}^{-}}{2} f_{j}^{-}-\frac{1-\tilde{\lambda}_{j}^{+}}{2} f_{j}^{+}+\varsigma_{f, j}^{+}(t, x)
\end{array}\right. \tag{16}\\
& \left\{\begin{array}{l}
g_{i, t}^{-}-g_{i, x}^{-}=-\frac{1+\tilde{\lambda}_{i}^{-}}{2} g_{i}^{-}+\frac{1-\tilde{\lambda}_{i}^{+}}{2} g_{i}^{+}+\varsigma_{g, i}^{-}(t, x) \\
g_{i, t}^{+}+g_{i, x}^{+}=\frac{1+\tilde{\lambda}_{i}^{-}}{2} g_{i}^{-}-\frac{1-\tilde{\lambda}_{i}^{+}}{2} g_{i}^{+}+\varsigma_{g, i}^{+}(t, x)
\end{array}\right. \tag{17}
\end{align*}
$$

with $\varsigma_{f}^{ \pm}, \varsigma_{g}^{ \pm}$sources of total variation for $F_{x}^{ \pm}, F_{g}^{ \pm}$and

$$
\tilde{\lambda}_{i}^{-}=\tilde{\lambda}_{i}\left(u, \frac{f_{i}^{-}}{1-\sigma_{i}^{-}}, \sigma_{i}^{-}\right), \quad \tilde{\lambda}_{i}^{+}=\tilde{\lambda}_{i}\left(u, \frac{f_{i}^{+}}{1+\sigma_{i}^{-}}, \sigma_{i}^{+}\right)
$$

After some computations, one obtains the source terms of the form

After some computations, one obtains the source terms of the form

$$
\begin{align*}
\left|\varsigma_{f, i}^{ \pm}\right|,\left|\varsigma_{g, i}^{ \pm}\right| \leq & C \sum_{j \neq k}\left(\left|f_{j}^{-}\right|+\left|g_{j}^{-}\right|\right)\left(\left|f_{k}^{+}\right|+\left|g_{k}^{+}\right|\right)+C \sum_{j}\left|g_{j}^{-} f_{j}^{+}-f_{j}^{-} g_{j}^{+}\right| \\
& +C \sum_{j}\left(\left|f_{j}^{-}+f_{j}^{+}\right|^{2}+\left|g_{j}^{-}+g_{j}^{+}\right|^{2}\right) \chi\left\{\frac{f_{j}^{+}}{f_{j}^{-}} \not \equiv 1\right\} \\
& +C \sum_{j}\left(\left\|f_{j}^{-}\right\|_{L^{1}}^{2}+\left\|f_{j}^{+}\right\|_{L^{1}}^{2}\right)\left|f_{j}^{-}-f_{j}^{+}\right| \chi\left\{f_{j}^{-} \cdot f_{j}^{+}<0\right\} \\
& +C \sum_{j}\left(\left\|f_{j}^{-}\right\|_{L^{1}}^{2}+\left\|f_{j}^{+}\right\|_{L^{1}}^{2}\right)\left|g_{j}^{-}-g_{j}^{+}\right| \chi\left\{g_{j}^{-} \cdot g_{j}^{+}<0\right\} \tag{18}
\end{align*}
$$

After some computations, one obtains the source terms of the form

$$
\begin{align*}
\left|s_{f, i}^{ \pm}\right|,\left|\varsigma_{g, i}^{ \pm}\right| \leq & C \sum_{j \neq k}\left(\left|f_{j}^{-}\right|+\left|g_{j}^{-}\right|\right)\left(\left|f_{k}^{+}\right|+\left|g_{k}^{+}\right|\right)+C \sum_{j}\left|g_{j}^{-} f_{j}^{+}-f_{j}^{-} g_{j}^{+}\right| \\
& +C \sum_{j}\left(\left|f_{j}^{-}+f_{j}^{+}\right|^{2}+\left|g_{j}^{-}+g_{j}^{+}\right|^{2}\right) \chi\left\{\frac{f_{j}^{+}}{f_{j}^{-}} \not \neq 1\right\} \\
& +C \sum_{j}\left(\left\|f_{j}^{-}\right\|_{L^{1}}^{2}+\left\|f_{j}^{+}\right\|_{L^{1}}^{2}\right)\left|f_{j}^{-}-f_{j}^{+}\right| \chi\left\{f_{j}^{-} \cdot f_{j}^{+}<0\right\} \\
& +C \sum_{j}\left(\left\|f_{j}^{-}\right\|_{L^{1}}^{2}+\left\|f_{j}^{+}\right\|_{L^{1}}^{2}\right)\left|g_{j}^{-}-g_{j}^{+}\right| \chi\left\{g_{j}^{-} \cdot g_{j}^{+}<0\right\} . \tag{18}
\end{align*}
$$

Prove that the source terms are quadratic w.r.t. $\left\|f^{ \pm}\right\|_{L^{1}},\left\|g^{ \pm}\right\|_{L^{1}}$.

Different types of source terms:

Different types of source terms:

- interaction of different families:

$$
\sum_{j \neq k}\left(\left|f_{j}^{-}\right|+\left|g_{j}^{-}\right|\right)\left(\left|f_{k}^{+}\right|+\left|g_{k}^{+}\right|\right)
$$

Different types of source terms:

- interaction of different families:

$$
\sum_{j \neq k}\left(\left|f_{j}^{-}\right|+\left|g_{j}^{-}\right|\right)\left(\left|f_{k}^{+}\right|+\left|g_{k}^{+}\right|\right)
$$

- interaction of the same family:

$$
C \sum_{j}\left|g_{j}^{-} f_{j}^{+}-f_{j}^{-} g_{j}^{+}\right| ;
$$

Different types of source terms:

- interaction of different families:

$$
\sum_{j \neq k}\left(\left|f_{j}^{-}\right|+\left|g_{j}^{-}\right|\right)\left(\left|f_{k}^{+}\right|+\left|g_{k}^{+}\right|\right)
$$

- interaction of the same family:

$$
C \sum_{j}\left|g_{j}^{-} f_{j}^{+}-f_{j}^{-} g_{j}^{+}\right|
$$

- energy type terms:

$$
\sum_{j}\left(\left|f_{j}^{-}+f_{j}^{+}\right|^{2}+\left|g_{j}^{-}+g_{j}^{+}\right|^{2}\right) \chi\left\{f_{j}^{+} / f_{j}^{-} \not \not 二 1\right\}
$$

Different types of source terms:

- interaction of different families:

$$
\sum_{j \neq k}\left(\left|f_{j}^{-}\right|+\left|g_{j}^{-}\right|\right)\left(\left|f_{k}^{+}\right|+\left|g_{k}^{+}\right|\right)
$$

- interaction of the same family:

$$
C \sum_{j}\left|g_{j}^{-} f_{j}^{+}-f_{j}^{-} g_{j}^{+}\right|
$$

- energy type terms:

$$
\sum_{j}\left(\left|f_{j}^{-}+f_{j}^{+}\right|^{2}+\left|g_{j}^{-}+g_{j}^{+}\right|^{2}\right) \chi\left\{f_{j}^{+} / f_{j}^{-} \nexists 1\right\}
$$

- L^{1} decay terms:

$$
\sum_{j}\left|f_{j}^{-}-f_{j}^{+}\right| \chi\left\{f_{j}^{-} \cdot f_{j}^{+}<0\right\}+\sum_{j}\left|g_{j}^{-}-g_{j}^{+}\right| \chi\left\{g_{j}^{-} \cdot g_{j}^{+}<0\right\}
$$

Interaction of the same family

Interaction of the same family

Consider the 2×2 system

$$
\left\{\begin{array}{l}
F_{t}^{-}-F_{x}^{-}=\frac{1-\mathcal{F}(u)}{2}-F^{-} \tag{19}\\
F_{t}^{+}-F_{x}^{+}=\frac{1+\mathcal{F}(u)}{2}-F^{+}
\end{array} \quad u=F^{-}+F^{+},\left|\mathcal{F}^{\prime}(u)\right| \leq 1-c\right.
$$

Interaction of the same family

Consider the 2×2 system

$$
\left\{\begin{array}{l}
F_{t}^{-}-F_{x}^{-}=\frac{1-\mathcal{F}(u)}{2}-F^{-} \tag{19}\\
F_{t}^{+}-F_{x}^{+}=\frac{1+\mathcal{F}(u)}{2}-F^{+}
\end{array} \quad u=F^{-}+F^{+},\left|\mathcal{F}^{\prime}(u)\right| \leq 1-c\right.
$$

Let $F_{x}^{ \pm}=f^{ \pm}, F_{t}^{ \pm}=g^{ \pm}$, so that (same for $g^{ \pm}$)

$$
\left\{\begin{array}{cc}
f_{t}^{-}-f_{x}^{-} & =-\frac{1+\lambda}{2} f^{-}+\frac{1-\lambda}{2} f^{+} \tag{20}\\
f_{t}^{+}+f_{x}^{+} & = \\
\frac{1+\lambda}{2} f^{-}-\frac{1-\lambda}{2} f^{+}
\end{array} \quad \lambda(u)=\mathcal{F}^{\prime}(u)\right.
$$

Interaction of the same family

Consider the 2×2 system

$$
\left\{\begin{array}{l}
F_{t}^{-}-F_{x}^{-}=\frac{1-\mathcal{F}(u)}{2}-F^{-} \tag{19}\\
F_{t}^{+}-F_{x}^{+}=\frac{1+\mathcal{F}(u)}{2}-F^{+}
\end{array} \quad u=F^{-}+F^{+},\left|\mathcal{F}^{\prime}(u)\right| \leq 1-c\right.
$$

Let $F_{x}^{ \pm}=f^{ \pm}, F_{t}^{ \pm}=g^{ \pm}$, so that (same for $g^{ \pm}$)

$$
\left\{\begin{array}{rl}
f_{t}^{-}-f_{x}^{-} & = \tag{20}\\
f_{t}^{+}+f_{x}^{+} & =\frac{1+\lambda}{2} f^{-}+\frac{1-\lambda}{2} f^{+} \\
f^{-}-\frac{1-\lambda}{2} f^{+}
\end{array} \quad \lambda(u)=\mathcal{F}^{\prime}(u)\right.
$$

Construct a functional which bounds

$$
\int_{0}^{+\infty} \int_{\mathbb{R}}\left|f^{-}(t, x) g^{+}(t, x)-g^{-}(t, x) f^{+}(t, x)\right| d x d t
$$

We can rewrite the integrand as

We can rewrite the integrand as

$$
f^{-} g^{+}-g^{-} f^{+}=
$$

We can rewrite the integrand as

$$
f^{-} g^{+}-g^{-} f^{+}=f^{-} f^{+}\left(-\frac{g^{-}}{f^{-}}+\frac{g^{+}}{f^{+}}\right)
$$

We can rewrite the integrand as

$$
f^{-} g^{+}-g^{-} f^{+}=f^{-} f^{+}\left(-\frac{g^{-}}{f^{-}}+\frac{g^{+}}{f^{+}}\right)=F_{x}^{-} F_{x}^{+}\left(-\frac{F_{t}^{-}}{F_{x}^{-}}+\frac{F_{t}^{+}}{F_{x}^{+}}\right)
$$

We can rewrite the integrand as

$$
\begin{gathered}
f^{-} g^{+}-g^{-} f^{+}=f^{-} f^{+}\left(-\frac{g^{-}}{f^{-}}+\frac{g^{+}}{f^{+}}\right)=F_{x}^{-} F_{x}^{+}\left(-\frac{F_{t}^{-}}{F_{x}^{-}}+\frac{F_{t}^{+}}{F_{x}^{+}}\right) \\
=\text {strengths of waves } \times \text { difference in speed. }
\end{gathered}
$$

We can rewrite the integrand as

$$
\begin{gathered}
f^{-} g^{+}-g^{-} f^{+}=f^{-} f^{+}\left(-\frac{g^{-}}{f^{-}}+\frac{g^{+}}{f^{+}}\right)=F_{x}^{-} F_{x}^{+}\left(-\frac{F_{t}^{-}}{F_{x}^{-}}+\frac{F_{t}^{+}}{F_{x}^{+}}\right) \\
=\text {strengths of waves } \times \text { difference in speed. }
\end{gathered}
$$

Remark. This is not a Glimm functional, it is the interaction term.

We can rewrite the integrand as

$$
\begin{gathered}
f^{-} g^{+}-g^{-} f^{+}=f^{-} f^{+}\left(-\frac{g^{-}}{f^{-}}+\frac{g^{+}}{f^{+}}\right)=F_{x}^{-} F_{x}^{+}\left(-\frac{F_{t}^{-}}{F_{x}^{-}}+\frac{F_{t}^{+}}{F_{x}^{+}}\right) \\
=\text {strengths of waves } \times \text { difference in speed. }
\end{gathered}
$$

Remark. This is not a Glimm functional, it is the interaction term.
Since it holds $g^{-}+g^{+}=f^{-}-f^{+}$, the condition $g^{-} / f^{-}=g^{+} / f^{+}$ implies that the solution is a travelling profile, replacing $\sigma_{x}=0$.

We can rewrite the integrand as

$$
\begin{gathered}
f^{-} g^{+}-g^{-} f^{+}=f^{-} f^{+}\left(-\frac{g^{-}}{f^{-}}+\frac{g^{+}}{f^{+}}\right)=F_{x}^{-} F_{x}^{+}\left(-\frac{F_{t}^{-}}{F_{x}^{-}}+\frac{F_{t}^{+}}{F_{x}^{+}}\right) \\
=\text {strengths of waves } \times \text { difference in speed. }
\end{gathered}
$$

Remark. This is not a Glimm functional, it is the interaction term.
Since it holds $g^{-}+g^{+}=f^{-}-f^{+}$, the condition $g^{-} / f^{-}=g^{+} / f^{+}$ implies that the solution is a travelling profile, replacing $\sigma_{x}=0$.

For simplicity we assume in the following $\lambda=0$.

Consider the system (20), and construct the scalar variables

$$
\begin{aligned}
& P^{--}(t, x, y)=f^{-}(t, x) g^{-}(t, y)-f^{-}(t, y) g^{-}(t, x) \\
& P^{-+}(t, x, y)=f^{+}(t, x) g^{-}(t, y)-f^{-}(t, y) g^{+}(t, x) \\
& P^{+-}(t, x, y)=f^{-}(t, x) g^{+}(t, y)-f^{+}(t, y) g^{-}(t, x) \\
& P^{++}(t, x, y)=f^{+}(t, x) g^{+}(t, y)-f^{+}(t, y) g^{+}(t, x)
\end{aligned}
$$

Consider the system (20), and construct the scalar variables

$$
\begin{aligned}
& P^{--}(t, x, y)=f^{-}(t, x) g^{-}(t, y)-f^{-}(t, y) g^{-}(t, x) \\
& P^{-+}(t, x, y)=f^{+}(t, x) g^{-}(t, y)-f^{-}(t, y) g^{+}(t, x) \\
& P^{+-}(t, x, y)=f^{-}(t, x) g^{+}(t, y)-f^{+}(t, y) g^{-}(t, x) \\
& P^{++}(t, x, y)=f^{+}(t, x) g^{+}(t, y)-f^{+}(t, y) g^{+}(t, x)
\end{aligned}
$$

which satisfy the system
for $x \geq y$ and the boundary conditions

$$
P^{-+}(t, x, x)+P^{+-}(t, x, x)=0, \quad P^{++}(t, x, x)=P^{--}(t, x, x)=0
$$

We may read the boundary conditions as follows: a particle P^{-+} hits the boundary and bounce back as P^{+-}but with opposite sign.

We may read the boundary conditions as follows: a particle P^{-+} hits the boundary and bounce back as P^{+-}but with opposite sign.
We are interested in an estimate of the flux of P^{-+}through the boundary $\{x=y\}$, which is given by

$$
\int_{0}^{+\infty} \int_{\mathbb{R}}\left|P^{-+}(t, x, x)\right| d x d t=\int_{0}^{+\infty} \int_{\mathbb{R}}\left|f^{-} g^{+}-g^{-} f^{+}\right| d x d t
$$

Flux through the boundary

Flux through the boundary

A very simple situation is the 2×2 system

$$
\left\{\begin{array}{rl}
f_{t}^{-}-f_{x}^{-} & =\frac{f^{+}-f^{-}}{2} \\
f_{t}^{+}+f_{x}^{+} & =\frac{f^{-}-f^{+}}{2}
\end{array} \quad x \geq 0\right.
$$

with boundary condition $f^{+}(x=0)+f^{-}(x=0)=0$.

Flux through the boundary

A very simple situation is the 2×2 system

$$
\left\{\begin{array}{rl}
f_{t}^{-}-f_{x}^{-} & =\frac{f^{+}-f^{-}}{2} \\
f_{t}^{+}+f_{x}^{+} & =\frac{f^{-}-f^{+}}{2}
\end{array} \quad x \geq 0\right.
$$

with boundary condition $f^{+}(x=0)+f^{-}(x=0)=0$.
We want to estimate

$$
\begin{equation*}
\int_{0}^{\infty}\left|f^{-}(t, 0)\right| d t \tag{22}
\end{equation*}
$$

i.e. the total amount of particles which hit the boundary and bounce back with the opposite sign.

We can rewrite the integral (22) as particles with speed -1 - particles with speed 1.

We can rewrite the integral (22) as particles with speed -1 - particles with speed 1.

After some time we expect that the solution has almost forgotten the initial data so that
particles with speed $-1 \simeq$ particles with speed 1.

We consider the solution $\left(f^{-}, f^{+}\right)$with initial data $(0, \delta(x))$ as

$$
\binom{f^{-}(t, x)}{f^{+}(t, x)}=\binom{f^{-, 0}(t, x)}{f^{+, 0}(t, x)}+\binom{f^{-, 1}(t, x)}{f^{+, 1}(t, x)}+\binom{f^{-, 2}(t, x)}{f^{+, 2}(t, x)}
$$

We consider the solution $\left(f^{-}, f^{+}\right)$with initial data $(0, \delta(x))$ as

$$
\binom{f^{-}(t, x)}{f^{+}(t, x)}=\binom{f^{-, 0}(t, x)}{f^{+, 0}(t, x)}+\binom{f^{-, 1}(t, x)}{f^{+, 1}(t, x)}+\binom{f^{-, 2}(t, x)}{f^{+, 2}(t, x)}
$$

where

$$
\left\{\begin{aligned}
f_{t}^{-, 0}-f_{x}^{-, 0} & =-f^{-, 0} \\
f_{t}^{+, 0}+f_{x}^{+, 0} & =-f^{+, 0}
\end{aligned} \quad(0, \delta(x))\right.
$$

We consider the solution $\left(f^{-}, f^{+}\right)$with initial data $(0, \delta(x))$ as

$$
\binom{f^{-}(t, x)}{f^{+}(t, x)}=\binom{f^{-, 0}(t, x)}{f^{+, 0}(t, x)}+\binom{f^{-, 1}(t, x)}{f^{+, 1}(t, x)}+\binom{f^{-, 2}(t, x)}{f^{+, 2}(t, x)},
$$

where

$$
\begin{gather*}
\left\{\begin{array}{c}
f_{t}^{-, 0}-f_{x}^{-,, 0}=-f^{-, 0} \\
f_{t}^{+, 0}+f_{x}^{+, 0}
\end{array}=-f^{+, 0} \quad(0, \delta(x)),\right. \\
\left\{\begin{array}{c}
f_{t}^{-, 1}-f_{x}^{-, 1}=\frac{f^{-, 0}+f^{+, 0}}{f^{+,}}-f^{-, 1} \\
f_{t}^{+, 1}+f_{x}^{+, 1}
\end{array}=\frac{f^{-, 0}+f^{+, 0}}{2}-f^{+, 1} \quad(0,\right. \tag{0,0}
\end{gather*}
$$

We consider the solution $\left(f^{-}, f^{+}\right)$with initial data $(0, \delta(x))$ as

$$
\binom{f^{-}(t, x)}{f^{+}(t, x)}=\binom{f^{-, 0}(t, x)}{f^{+, 0}(t, x)}+\binom{f^{-, 1}(t, x)}{f^{+, 1}(t, x)}+\binom{f^{-, 2}(t, x)}{f^{+, 2}(t, x)}
$$

where

$$
\begin{gather*}
\left\{\begin{array}{rl}
f_{t}^{-, 0}-f_{x}^{-, 0} & =-f^{-, 0} \\
f_{t}^{+, 0}+f_{x}^{+,, 0} & =-f^{+, 0}
\end{array} \quad(0, \delta(x)),\right. \\
\left\{\begin{array}{c}
f_{t}^{-, 1}-f_{x}^{-, 1} \\
=\frac{f^{-, 0}+f^{+, 0}}{2}-f^{-, 1} \\
f_{t}^{+, 1}+f_{x}^{+, 1}
\end{array}=\frac{f^{-, 0}+f^{+, 0}}{2}-f^{+, 1}\right.
\end{gather*} \quad\left(0, ~ \begin{array}{l}
f_{t}^{-, 2}-f_{x}^{-, 2}=\frac{f^{-, 1}+f^{+, 1}}{2}+\frac{f^{+, 2}-f^{-, 2}}{2} \tag{0,0}\\
f_{t}^{+, 2}+f_{x}^{+, 2}=\frac{f^{-, 1}+f^{+, 1}}{2}-\frac{f^{-, f^{+,, 2}}}{2} \tag{0,0}
\end{array}\right.
$$

Explicitly

$$
f^{-, 0}(t, x)=0, \quad f^{+, 0}(t, x)=e^{-t} \delta(x-t),
$$

Explicitly

$$
\begin{aligned}
f^{-, 0}(t, x) & =0, \quad f^{+, 0}(t, x)=e^{-t} \delta(x-t) \\
f^{-, 1}(t, x) & =\frac{e^{-t}}{2} \chi\{0 \leq x \leq t\} \\
f^{+, 1}(t, x) & =-\frac{e^{-t}}{2} \chi\{0 \leq x \leq t\}+\frac{t}{2} e^{-t} \delta(x-t)
\end{aligned}
$$

The flux of $f^{ \pm, 0}, f^{ \pm, 1}$ at $x=0$ is $1+1 / 2$, the source term for $f^{ \pm, 2}$ has total mass of $1 / 2$.

The flux of $f^{ \pm, 0}, f^{ \pm, 1}$ at $x=0$ is $1+1 / 2$, the source term for $f^{ \pm, 2}$ has total mass of $1 / 2$.
We thus proved that after $1+1 / 2$ boundary flux, the L^{1} norm has become $1 / 2$ of the initial L^{1} norm.

The flux of $f^{ \pm, 0}, f^{ \pm, 1}$ at $x=0$ is $1+1 / 2$, the source term for $f^{ \pm, 2}$ has total mass of $1 / 2$.
We thus proved that after $1+1 / 2$ boundary flux, the L^{1} norm has become $1 / 2$ of the initial L^{1} norm.
We thus can estimate the flux as

$$
\frac{\text { flux of } f^{ \pm, 0}+f^{ \pm, 1}}{\text { loss of } L^{1} \text { norm }}=\frac{1+1 / 2}{1-1 / 2}=3 .
$$

The flux of $f^{ \pm, 0}, f^{ \pm, 1}$ at $x=0$ is $1+1 / 2$, the source term for $f^{ \pm, 2}$ has total mass of $1 / 2$.
We thus proved that after $1+1 / 2$ boundary flux, the L^{1} norm has become $1 / 2$ of the initial L^{1} norm.
We thus can estimate the flux as

$$
\frac{\text { flux of } f^{ \pm, 0}+f^{ \pm, 1}}{\text { loss of } L^{1} \text { norm }}=\frac{1+1 / 2}{1-1 / 2}=3
$$

We conclude that

$$
\begin{equation*}
\int_{0}^{\infty}\left|f^{-}(t, 0)\right| d t \leq 3\left(\left\|f^{-}(t=0)\right\|_{L^{1}}+\left\|f^{+}(t=0)\right\|_{L^{1}}\right) \tag{23}
\end{equation*}
$$

The flux of $f^{ \pm, 0}, f^{ \pm, 1}$ at $x=0$ is $1+1 / 2$, the source term for $f^{ \pm, 2}$ has total mass of $1 / 2$.
We thus proved that after $1+1 / 2$ boundary flux, the L^{1} norm has become $1 / 2$ of the initial L^{1} norm.
We thus can estimate the flux as

$$
\frac{\text { flux of } f^{ \pm, 0}+f^{ \pm, 1}}{\text { loss of } L^{1} \text { norm }}=\frac{1+1 / 2}{1-1 / 2}=3
$$

We conclude that

$$
\begin{equation*}
\int_{0}^{\infty}\left|f^{-}(t, 0)\right| d t \leq 3\left(\left\|f^{-}(t=0)\right\|_{L^{1}}+\left\|f^{+}(t=0)\right\|_{L^{1}}\right) \tag{23}
\end{equation*}
$$

Similarly we can estimate

$$
\int_{0}^{+\infty} \int_{\mathbb{R}}\left|f^{-} g^{+}-g^{-} f^{+}\right| d x d t \leq 3 \sum_{\alpha, \beta=+-}\left\|P^{\alpha \beta}(t=0)\right\|_{L^{1}(\{x>y\})}
$$

