Vanishing Viscosity Solutions of Hyperbolic Systems with Boundary

Fabio Ancona, CIRAM Bologna

Stefano Bianchini, IAC(CNR) Roma
http://www.iac.cnr.it/

April 13, 2004

We consider the parabolic system

$$
\begin{equation*}
u_{t}+A(t, u) u_{x}=\epsilon u_{x x}, \quad t, x>0, \quad u \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

with Dirichlet boundary conditions $u_{b}(t)$ and initial data $u_{0}(t)$.

We consider the parabolic system

$$
\begin{equation*}
u_{t}+A(t, u) u_{x}=\epsilon u_{x x}, \quad t, x>0, \quad u \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

with Dirichlet boundary conditions $u_{b}(t)$ and initial data $u_{0}(t)$.

Assumptions:

We consider the parabolic system

$$
\begin{equation*}
u_{t}+A(t, u) u_{x}=\epsilon u_{x x}, \quad t, x>0, \quad u \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

with Dirichlet boundary conditions $u_{b}(t)$ and initial data $u_{0}(t)$.

Assumptions:

(1) the matrix $A(t, 0)$ is smooth and strictly hyperbolic,

$$
\begin{equation*}
\inf _{t, u, v}\left\{\lambda_{i+1}(t, u)-\lambda_{i}(t, v)\right\} \geq c>0 \quad i=1, \ldots, n-1 \tag{2}
\end{equation*}
$$

We consider the parabolic system

$$
\begin{equation*}
u_{t}+A(t, u) u_{x}=\epsilon u_{x x}, \quad t, x>0, \quad u \in \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

with Dirichlet boundary conditions $u_{b}(t)$ and initial data $u_{0}(t)$.

Assumptions:

(1) the matrix $A(t, 0)$ is smooth and strictly hyperbolic,

$$
\begin{equation*}
\inf _{t, u, v}\left\{\lambda_{i+1}(t, u)-\lambda_{i}(t, v)\right\} \geq c>0 \quad i=1, \ldots, n-1 ; \tag{2}
\end{equation*}
$$

(2) the map $t \mapsto A(t, u)$ is of uniform bounded variation,

$$
\begin{equation*}
\|A\| \doteq \sup _{|u| \leq \delta} \int_{0}^{+\infty}\left|A_{t}(s, u)\right| d s \leq C<+\infty \tag{3}
\end{equation*}
$$

Theorem. If

$$
\left|u_{b}(t)\right|,\left|u_{0}(x)\right|, \text { Tot.Var. }\left(u_{b}\right), \text { Tot.Var. }\left(u_{0}\right)<\min \left\{K^{-1}, e^{-K\|A\|}\right\},
$$

Theorem. If
$\left|u_{b}(t)\right|,\left|u_{0}(x)\right|$, Tot.Var. $\left(u_{b}\right)$, Tot.Var. $\left(u_{0}\right)<\min \left\{K^{-1}, e^{-K\| \| A \|}\right\}$, the solution $u^{\epsilon}(t, x)$ of (1) exists for all $t \geq 0$ and has total variation uniformly bounded, independently of ϵ.

Theorem. If
$\left|u_{b}(t)\right|,\left|u_{0}(x)\right|$, Tot.Var. $\left(u_{b}\right)$, Tot.Var. $\left(u_{0}\right)<\min \left\{K^{-1}, e^{-K\| \| A \|}\right\}$, the solution $u^{\epsilon}(t, x)$ of (1) exists for all $t \geq 0$ and has total variation uniformly bounded, independently of ϵ. If u_{1}, u_{2} are two different solution with matrices A, B, for $t \geq s$
$\left\|u_{1}(t)-u_{2}(s)\right\|_{L^{1}} \leq L\left(|t-s|+\left\|u_{1,0}-u_{2,0}\right\|_{L^{1}}+\left\|u_{1, b}-u_{2, b}\right\|_{L^{1}(0, s)}\right.$

$$
\begin{equation*}
\left.+ \text { Tot. Var. }(u) \sup _{u}|A(u, \cdot)-B(u, \cdot)|_{L^{1}(0, s)}\right), \tag{4}
\end{equation*}
$$

Theorem. If

$$
\left|u_{b}(t)\right|,\left|u_{0}(x)\right| \text {, Tot.Var. }\left(u_{b}\right), \text { Tot.Var. }\left(u_{0}\right)<\min \left\{K^{-1}, e^{-K\|A\| \|}\right\},
$$ the solution $u^{\epsilon}(t, x)$ of (1) exists for all $t \geq 0$ and has total variation uniformly bounded, independently of ϵ. If u_{1}, u_{2} are two different solution with matrices A, B, for $t \geq s$

$$
\begin{align*}
&\left\|u_{1}(t)-u_{2}(s)\right\|_{L^{1}} \leq L\left(|t-s|+\left\|u_{1,0}-u_{2,0}\right\|_{L^{1}}+\left\|u_{1, b}-u_{2, b}\right\|_{L^{1}(0, s)}\right. \\
&\left.+ \text { Tot.Var. }(u) \sup _{u}|A(u, \cdot)-B(u, \cdot)|_{L^{1}(0, s)}\right), \tag{4}
\end{align*}
$$

As $\epsilon \rightarrow 0, u^{\epsilon}(t)$ converges in L^{1} to a unique $B V$ function $u(t, x)$, "vanishing viscosity solution" to

$$
\begin{equation*}
u_{t}+A(t, u) u_{x}=0, \quad u(0, x)=u_{0}(x), u(t, 0)=u_{b}(t) \tag{5}
\end{equation*}
$$

and satisfying again (4).

Example. Consider the system

$$
u_{t}+A(u) u_{x}-\epsilon u_{x x}=0, \quad x \geq x_{b}(t),
$$

which can be rewritten in form (1) by setting

$$
y=x-x_{b}(t), \quad A(t, u)=A(u)-\frac{d x_{b}}{d t} I .
$$

Example. Consider the system

$$
u_{t}+A(u) u_{x}-\epsilon u_{x x}=0, \quad x \geq x_{b}(t)
$$

which can be rewritten in form (1) by setting

$$
y=x-x_{b}(t), \quad A(t, u)=A(u)-\frac{d x_{b}}{d t} I
$$

Example. Consider the system

$$
u_{t}+A(u) u_{x}-\epsilon u_{x x}=0, \quad x \geq x_{b}(t)
$$

which can be rewritten in form (1) by setting

$$
y=x-x_{b}(t), \quad A(t, u)=A(u)-\frac{d x_{b}}{d t} I
$$

Example. Consider the system

$$
u_{t}+A(u) u_{x}-\epsilon u_{x x}=0, \quad x \geq x_{b}(t)
$$

which can be rewritten in form (1) by setting

$$
y=x-x_{b}(t), \quad A(t, u)=A(u)-\frac{d x_{b}}{d t} I
$$

Remarks. For $\epsilon>0$, technical difficulties arise because:

Remarks. For $\epsilon>0$, technical difficulties arise because:

- no assumptions on the eigenvalues λ_{i} of A : it may happen that $\exists \bar{k}$ such that $\lambda_{\bar{k}}(t, 0) \simeq 0$ (boundary characteristic);

Remarks. For $\epsilon>0$, technical difficulties arise because:

- no assumptions on the eigenvalues λ_{i} of A : it may happen that $\exists \bar{k}$ such that $\lambda_{\bar{k}}(t, 0) \simeq 0$ (boundary characteristic);
- the boundary characteristic eigenvalue $\lambda_{\bar{k}}(t, 0)$ changes with time, i.e. $\bar{k}=\bar{k}(t)$;

Remarks. For $\epsilon>0$, technical difficulties arise because:

- no assumptions on the eigenvalues λ_{i} of A : it may happen that $\exists \bar{k}$ such that $\lambda_{\bar{k}}(t, 0) \simeq 0$ (boundary characteristic);
- the boundary characteristic eigenvalue $\lambda_{\bar{k}}(t, 0)$ changes with time, i.e. $\bar{k}=\bar{k}(t)$;
- one has to study the interaction of travelling waves of (1) with the (non characteristic part of) boundary profiles;

It is essential a careful decomposition of u_{x},

It is essential a careful decomposition of u_{x},

$$
\begin{equation*}
u_{x}= \tag{6}
\end{equation*}
$$

It is essential a careful decomposition of u_{x},

$$
\begin{equation*}
u_{x}=\underbrace{\sum_{i=1}^{n} v_{i, b} \vartheta_{i}(t) \widetilde{R}_{i}\left(t, u, v_{j, b}+v_{j}\right)}_{\text {non char. part boun. profile }} \tag{6}
\end{equation*}
$$

It is essential a careful decomposition of u_{x},

$$
\begin{equation*}
u_{x}=\underbrace{\sum_{i=1}^{n} v_{i, b} \vartheta_{i}(t) \widetilde{R}_{i}\left(t, u, v_{j, b}+v_{j}\right)}_{\text {non char. part boun. profile }}+\underbrace{\sum_{i=1}^{n} v_{i} \widehat{r}_{i}\left(t, u, v_{b, j}, v_{i}, \sigma_{i}\right)}_{\text {travelling profiles }} \tag{6}
\end{equation*}
$$

It is essential a careful decomposition of u_{x},

$$
\begin{equation*}
u_{x}=\underbrace{\sum_{i=1}^{n} v_{i, b} \vartheta_{i}(t) \widetilde{R}_{i}\left(t, u, v_{j, b}+v_{j}\right)}_{\text {non char. part boun. profile }}+\underbrace{\sum_{i=1}^{n} v_{i} \widehat{r}_{i}\left(t, u, v_{b, j}, v_{i}, \sigma_{i}\right)}_{\text {travelling profiles }} \tag{6}
\end{equation*}
$$

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations):

It is essential a careful decomposition of u_{x},

$$
\begin{equation*}
u_{x}=\underbrace{\sum_{i=1}^{n} v_{i, b} \vartheta_{i}(t) \widetilde{R}_{i}\left(t, u, v_{j, b}+v_{j}\right)}_{\text {non char. part boun. profile }}+\underbrace{\sum_{i=1}^{n} v_{i} \widehat{r}_{i}\left(t, u, v_{b, j}, v_{i}, \sigma_{i}\right)}_{\text {travelling profiles }} \tag{6}
\end{equation*}
$$

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as

It is essential a careful decomposition of u_{x},

$$
\begin{equation*}
u_{x}=\underbrace{\sum_{i=1}^{n} v_{i, b} \vartheta_{i}(t) \widetilde{R}_{i}\left(t, u, v_{j, b}+v_{j}\right)}_{\text {non char. part boun. profile }}+\underbrace{\sum_{i=1}^{n} v_{i} \widehat{r}_{i}\left(t, u, v_{b, j}, v_{i}, \sigma_{i}\right)}_{\text {travelling profiles }} \tag{6}
\end{equation*}
$$

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as

$$
\begin{equation*}
u_{x}=v_{b} \widetilde{R}_{b}\left(t, u, v_{b}, v_{k}\right) \tag{7}
\end{equation*}
$$

It is essential a careful decomposition of u_{x},

$$
\begin{equation*}
u_{x}=\underbrace{\sum_{i=1}^{n} v_{i, b} \vartheta_{i}(t) \widetilde{R}_{i}\left(t, u, v_{j, b}+v_{j}\right)}_{\text {non char. part boun. profile }}+\underbrace{\sum_{i=1}^{n} v_{i} \widehat{r}_{i}\left(t, u, v_{b, j}, v_{i}, \sigma_{i}\right)}_{\text {travelling profiles }} \tag{6}
\end{equation*}
$$

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as

$$
\begin{equation*}
u_{x}=v_{b} \widetilde{R}_{b}\left(t, u, v_{b}, v_{k}\right) \quad \text { non char. boun. profile } \tag{7}
\end{equation*}
$$

It is essential a careful decomposition of u_{x},

$$
\begin{equation*}
u_{x}=\underbrace{\sum_{i=1}^{n} v_{i, b} \vartheta_{i}(t) \widetilde{R}_{i}\left(t, u, v_{j, b}+v_{j}\right)}_{\text {non char. part boun. profile }}+\underbrace{\sum_{i=1}^{n} v_{i} \widehat{r}_{i}\left(t, u, v_{b, j}, v_{i}, \sigma_{i}\right)}_{\text {travelling profiles }} \tag{6}
\end{equation*}
$$

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as

$$
\begin{align*}
u_{x}= & v_{b} \widetilde{R}_{b}\left(t, u, v_{b}, v_{k}\right) \quad \text { non char. boun. profile } \\
& +v_{k} \widehat{r}_{k}\left(t, u, v_{b}, v_{k}\right) \tag{7}
\end{align*}
$$

It is essential a careful decomposition of u_{x},

$$
\begin{equation*}
u_{x}=\underbrace{\sum_{i=1}^{n} v_{i, b} \vartheta_{i}(t) \widetilde{R}_{i}\left(t, u, v_{j, b}+v_{j}\right)}_{\text {non char. part boun. profile }}+\underbrace{\sum_{i=1}^{n} v_{i} \widehat{r}_{i}\left(t, u, v_{b, j}, v_{i}, \sigma_{i}\right)}_{\text {travelling profiles }} \tag{6}
\end{equation*}
$$

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as

$$
\begin{array}{rrr}
u_{x}= & v_{b} \widetilde{R}_{b}\left(t, u, v_{b}, v_{k}\right) & \text { non char. boun. profile } \\
+v_{k} \widehat{r}_{k}\left(t, u, v_{b}, v_{k}\right) & \text { boun. char. field } \tag{7}
\end{array}
$$

It is essential a careful decomposition of u_{x},

$$
\begin{equation*}
u_{x}=\underbrace{\sum_{i=1}^{n} v_{i, b} \vartheta_{i}(t) \widetilde{R}_{i}\left(t, u, v_{j, b}+v_{j}\right)}_{\text {non char. part boun. profile }}+\underbrace{\sum_{i=1}^{n} v_{i} \widehat{r}_{i}\left(t, u, v_{b, j}, v_{i}, \sigma_{i}\right)}_{\text {travelling profiles }} \tag{6}
\end{equation*}
$$

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as

$$
\begin{array}{rlr}
u_{x}= & v_{b} \widetilde{R}_{b}\left(t, u, v_{b}, v_{k}\right) & \text { non char. boun. profile } \\
& +v_{k} \widehat{r}_{k}\left(t, u, v_{b}, v_{k}\right) & \text { boun. char. field } \tag{7}\\
+ & \sum_{i \neq k} v_{i} \widetilde{r}_{i}\left(t, u, v_{i}, \sigma_{i}\right) &
\end{array}
$$

It is essential a careful decomposition of u_{x},

$$
\begin{equation*}
u_{x}=\underbrace{\sum_{i=1}^{n} v_{i, b} \vartheta_{i}(t) \widetilde{R}_{i}\left(t, u, v_{j, b}+v_{j}\right)}_{\text {non char. part boun. profile }}+\underbrace{\sum_{i=1}^{n} v_{i} \widehat{r}_{i}\left(t, u, v_{b, j}, v_{i}, \sigma_{i}\right)}_{\text {travelling profiles }} \tag{6}
\end{equation*}
$$

For simplicity we consider only $\|A\| \ll 1$ (small boundary oscillations): only the k-th eigenvalue (k fixed) is boundary characteristic, and the decomposition can be simplified as

$$
\begin{array}{rlr}
u_{x}= & v_{b} \widetilde{R}_{b}\left(t, u, v_{b}, v_{k}\right) & \text { non char. boun. profile } \\
& +v_{k} \widehat{r}_{k}\left(t, u, v_{b}, v_{k}\right) & \text { boun. char. field } \tag{7}\\
+\sum_{i \neq k} v_{i} \widetilde{r}_{i}\left(t, u, v_{i}, \sigma_{i}\right) & \text { travelling profiles }
\end{array}
$$

Decomposition of the boundary profile

The equation for the boundary profile are

$$
\left\{\begin{array}{lcc}
u_{x} & = & p \tag{8}\\
p_{x} & = & A(\kappa, u) p \\
\kappa_{x} & = & 0
\end{array}\right.
$$

and we assume that the k-th eigenvalue of $A(0,0)$ is 0 .

Decomposition of the boundary profile

The equation for the boundary profile are

$$
\left\{\begin{array}{lcc}
u_{x}= & p \tag{8}\\
p_{x}= & A(\kappa, u) p \\
\kappa_{x}= & 0
\end{array}\right.
$$

and we assume that the k-th eigenvalue of $A(0,0)$ is 0 . The parameter κ is added to the equation to keep into account that A depends on time.

Decomposition of the boundary profile

The equation for the boundary profile are

$$
\left\{\begin{array}{lcc}
u_{x}= & p \tag{8}\\
p_{x}= & A(\kappa, u) p \\
\kappa_{x}= & 0
\end{array}\right.
$$

and we assume that the k-th eigenvalue of $A(0,0)$ is 0 .
The parameter κ is added to the equation to keep into account that A depends on time.
Since $\lambda_{k}(0,0)$ is characteristic, system (8) has

Decomposition of the boundary profile

The equation for the boundary profile are

$$
\left\{\begin{array}{lcc}
u_{x}= & p \tag{8}\\
p_{x}= & A(\kappa, u) p \\
\kappa_{x}= & 0
\end{array}\right.
$$

and we assume that the k-th eigenvalue of $A(0,0)$ is 0 .
The parameter κ is added to the equation to keep into account that A depends on time.
Since $\lambda_{k}(0,0)$ is characteristic, system (8) has

- $k-1$ strictly negative eigenvalues;

Decomposition of the boundary profile

The equation for the boundary profile are

$$
\left\{\begin{array}{lcc}
u_{x}= & p \tag{8}\\
p_{x}= & A(\kappa, u) p \\
\kappa_{x}= & 0
\end{array}\right.
$$

and we assume that the k-th eigenvalue of $A(0,0)$ is 0 .
The parameter κ is added to the equation to keep into account that A depends on time.
Since $\lambda_{k}(0,0)$ is characteristic, system (8) has

- $k-1$ strictly negative eigenvalues;
- $n+2$ zero eigenvalues;

Decomposition of the boundary profile

The equation for the boundary profile are

$$
\left\{\begin{array}{lcc}
u_{x}= & p \tag{8}\\
p_{x}= & A(\kappa, u) p \\
\kappa_{x}= & 0
\end{array}\right.
$$

and we assume that the k-th eigenvalue of $A(0,0)$ is 0 .
The parameter κ is added to the equation to keep into account that A depends on time.
Since $\lambda_{k}(0,0)$ is characteristic, system (8) has

- $k-1$ strictly negative eigenvalues;
- $n+2$ zero eigenvalues;
- $n-k$ strictly positive eigenvalues.

Theorem. (Hadamar-Perron theorem simplified version)

Theorem. (Hadamar-Perron theorem simplified version)

Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ be C^{r} diffeomorphism, with $r \geq 1$, such that

$$
D f(0)=(A x, B y), \quad\|A\| \leq \lambda, \quad\left\|B^{-1}\right\| \leq 1 / \mu
$$

for $\lambda<\min \{1, \mu\}, \quad(x, y) \in \mathbb{R}^{k} \times \mathbb{R}^{n-k}$.

Theorem. (Hadamar-Perron theorem simplified version)

Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ be C^{r} diffeomorphism, with $r \geq 1$, such that

$$
D f(0)=(A x, B y), \quad\|A\| \leq \lambda, \quad\left\|B^{-1}\right\| \leq 1 / \mu
$$

for $\lambda<\min \{1, \mu\}, \quad(x, y) \in \mathbb{R}^{k} \times \mathbb{R}^{n-k}$.
Then there exists a C^{r} locally invariant manifold W^{-}, smoothly dependent on f in the C^{r} norm,

Theorem. (Hadamar-Perron theorem simplified version)

Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ be C^{r} diffeomorphism, with $r \geq 1$, such that

$$
D f(0)=(A x, B y), \quad\|A\| \leq \lambda, \quad\left\|B^{-1}\right\| \leq 1 / \mu
$$

for $\lambda<\min \{1, \mu\}, \quad(x, y) \in \mathbb{R}^{k} \times \mathbb{R}^{n-k}$.
Then there exists a C^{r} locally invariant manifold W^{-}, smoothly dependent on f in the C^{r} norm,

$$
W^{-}=\left\{\left(x, \phi^{-}(x)\right), x \in \mathbb{R}^{k},|x| \ll 1\right\}
$$

Theorem. (Hadamar-Perron theorem simplified version)

Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ be C^{r} diffeomorphism, with $r \geq 1$, such that

$$
D f(0)=(A x, B y), \quad\|A\| \leq \lambda, \quad\left\|B^{-1}\right\| \leq 1 / \mu
$$

for $\lambda<\min \{1, \mu\},(x, y) \in \mathbb{R}^{k} \times \mathbb{R}^{n-k}$.
Then there exists a C^{r} locally invariant manifold W^{-}, smoothly dependent on f in the C^{r} norm,

$$
W^{-}=\left\{\left(x, \phi^{-}(x)\right), x \in \mathbb{R}^{k},|x| \ll 1\right\}
$$

This manifold W^{-}is identified uniquely by trajectories converging to 0 with speed $\simeq \lambda$.

Center manifold and stable manifold near $(u, p)=(0,0)$:

Applying the Hadamar-Perron theorem to the point $(u, 0)$

Manifold of all trajectories converging as $e^{-\left(\lambda_{k-1}-\epsilon\right) t}$ to $(u, 0)$

Write the center stable manifold of (7) as

$$
p=R_{c s}\left(\kappa, u, v_{c s}\right) v_{c s}, \quad R_{c s} \in \mathbb{R}^{n \times k}
$$

Write the center stable manifold of (7) as

$$
p=R_{c s}\left(\kappa, u, v_{c s}\right) v_{c s}, \quad R_{c s} \in \mathbb{R}^{n \times k}
$$

on this manifold, the center manifold and the manifold C as

$$
v_{c s}=r_{k}\left(\kappa, u, v_{k}\right) v_{k}, \quad v_{c s}=R_{s}\left(\kappa, u, v_{s}\right) v_{s}
$$

with $r_{k} \in \mathbb{R}^{k}, R_{s} \in \mathbb{R}^{k \times(k-1)}$.

Write the center stable manifold of (7) as

$$
p=R_{c s}\left(\kappa, u, v_{c s}\right) v_{c s}, \quad R_{c s} \in \mathbb{R}^{n \times k}
$$

on this manifold, the center manifold and the manifold C as

$$
v_{c s}=r_{k}\left(\kappa, u, v_{k}\right) v_{k}, \quad v_{c s}=R_{s}\left(\kappa, u, v_{s}\right) v_{s}
$$

with $r_{k} \in \mathbb{R}^{k}, R_{s} \in \mathbb{R}^{k \times(k-1)}$.
Then the vectors $\widehat{r}_{k} \in \mathbb{R}^{n}, \tilde{R} \in \mathbb{R}^{n \times(k-1)}$ are given by

$$
\begin{align*}
& \widehat{r}_{k}\left(\kappa, u, v_{b}, v_{k}\right)=R_{c s}\left(\kappa, u, R_{s} v_{b}+r_{k} v_{k}\right) r_{k}\left(\kappa, u, v_{k}\right) \\
& \widetilde{R}_{b}\left(\kappa, u, v_{b}, v_{k}\right)=R_{c s}\left(\kappa, u, R_{s} v_{b}+r_{k} v_{k}\right) R_{s}\left(\kappa, u, v_{s}\right) \tag{10}
\end{align*}
$$

Write the center stable manifold of (7) as

$$
p=R_{c s}\left(\kappa, u, v_{c s}\right) v_{c s}, \quad R_{c s} \in \mathbb{R}^{n \times k}
$$

on this manifold, the center manifold and the manifold C as

$$
v_{c s}=r_{k}\left(\kappa, u, v_{k}\right) v_{k}, \quad v_{c s}=R_{s}\left(\kappa, u, v_{s}\right) v_{s}
$$

with $r_{k} \in \mathbb{R}^{k}, R_{s} \in \mathbb{R}^{k \times(k-1)}$.
Then the vectors $\widehat{r}_{k} \in \mathbb{R}^{n}, \tilde{R} \in \mathbb{R}^{n \times(k-1)}$ are given by

$$
\begin{align*}
& \widehat{r}_{k}\left(\kappa, u, v_{b}, v_{k}\right)=R_{c s}\left(\kappa, u, R_{s} v_{b}+r_{k} v_{k}\right) r_{k}\left(\kappa, u, v_{k}\right) \\
& \widetilde{R}_{b}\left(\kappa, u, v_{b}, v_{k}\right)=R_{c s}\left(\kappa, u, R_{s} v_{b}+r_{k} v_{k}\right) R_{s}\left(\kappa, u, v_{s}\right) \tag{10}
\end{align*}
$$

The dependence on σ can be added to \widehat{r}_{k} by replacing $A(\kappa, u)$ with $A(\kappa, u)-\sigma I$, with $\sigma_{x}=0$.

Write the center stable manifold of (7) as

$$
p=R_{c s}\left(\kappa, u, v_{c s}\right) v_{c s}, \quad R_{c s} \in \mathbb{R}^{n \times k}
$$

on this manifold, the center manifold and the manifold C as

$$
v_{c s}=r_{k}\left(\kappa, u, v_{k}\right) v_{k}, \quad v_{c s}=R_{s}\left(\kappa, u, v_{s}\right) v_{s}
$$

with $r_{k} \in \mathbb{R}^{k}, R_{s} \in \mathbb{R}^{k \times(k-1)}$.
Then the vectors $\hat{r}_{k} \in \mathbb{R}^{n}, \tilde{R} \in \mathbb{R}^{n \times(k-1)}$ are given by

$$
\begin{align*}
& \widehat{r}_{k}\left(\kappa, u, v_{b}, v_{k}\right)=R_{c s}\left(\kappa, u, R_{s} v_{b}+r_{k} v_{k}\right) r_{k}\left(\kappa, u, v_{k}\right) \\
& \widetilde{R}_{b}\left(\kappa, u, v_{b}, v_{k}\right)=R_{c s}\left(\kappa, u, R_{s} v_{b}+r_{k} v_{k}\right) R_{s}\left(\kappa, u, v_{s}\right) \tag{10}
\end{align*}
$$

The dependence on σ can be added to \widehat{r}_{k} by replacing $A(\kappa, u)$ with $A(\kappa, u)-\sigma I$, with $\sigma_{x}=0$.
Moreover the center manifold of (8) is $\left\{p=v_{k} \widehat{r}_{k}\left(\kappa, u, 0, v_{k}\right)\right\}$,

Write the center stable manifold of (7) as

$$
p=R_{c s}\left(\kappa, u, v_{c s}\right) v_{c s}, \quad R_{c s} \in \mathbb{R}^{n \times k}
$$

on this manifold, the center manifold and the manifold C as

$$
v_{c s}=r_{k}\left(\kappa, u, v_{k}\right) v_{k}, \quad v_{c s}=R_{s}\left(\kappa, u, v_{s}\right) v_{s}
$$

with $r_{k} \in \mathbb{R}^{k}, R_{s} \in \mathbb{R}^{k \times(k-1)}$.
Then the vectors $\widehat{r}_{k} \in \mathbb{R}^{n}, \tilde{R} \in \mathbb{R}^{n \times(k-1)}$ are given by

$$
\begin{align*}
& \widehat{r}_{k}\left(\kappa, u, v_{b}, v_{k}\right)=R_{c s}\left(\kappa, u, R_{s} v_{b}+r_{k} v_{k}\right) r_{k}\left(\kappa, u, v_{k}\right) \\
& \widetilde{R}_{b}\left(\kappa, u, v_{b}, v_{k}\right)=R_{c s}\left(\kappa, u, R_{s} v_{b}+r_{k} v_{k}\right) R_{s}\left(\kappa, u, v_{s}\right) \tag{10}
\end{align*}
$$

The dependence on σ can be added to \hat{r}_{k} by replacing $A(\kappa, u)$ with $A(\kappa, u)-\sigma I$, with $\sigma_{x}=0$.
Moreover the center manifold of (8) is $\left\{p=v_{k} \widehat{r}_{k}\left(\kappa, u, 0, v_{k}\right)\right\}$, and the stable manifold is $\left\{p=R_{b}\left(\kappa, u, v_{b}, 0\right) v_{b}\right\}$.

Diagonalization of system (8)

Diagonalization of system (8)
By writing

$$
u_{x}=\widetilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k},
$$

Diagonalization of system (8)

By writing

$$
u_{x}=\tilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k},
$$

the equation (8) becomes

$$
\left\{\begin{array}{ccc}
u_{x} & = & \tilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k} \tag{11}\\
v_{b, x} & = & \widehat{A}_{b}\left(\kappa, u, u_{x}\right) v_{b} \\
v_{k, x} & = & \widehat{\lambda}_{k}\left(\kappa, u, u_{x}\right) v_{k} \\
\kappa_{x} & = & 0
\end{array}\right.
$$

Diagonalization of system (8)
By writing

$$
u_{x}=\widetilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k},
$$

the equation (8) becomes

$$
\begin{gather*}
\left\{\begin{array}{ccc}
u_{x} & = & \tilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k} \\
v_{b, x} & = & \widehat{A}_{b}\left(\kappa, u, u_{x}\right) v_{b} \\
v_{k, x} & = & \widehat{\lambda}_{k}\left(\kappa, u, u_{x}\right) v_{k} \\
\kappa_{x} & = & 0
\end{array}\right. \tag{11}\\
\widehat{A}_{b}(0,0,0)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k-1}\right), \quad \widehat{\lambda}_{k}(0,0,0)=\lambda_{k} .
\end{gather*}
$$

Diagonalization of system (8)
By writing

$$
u_{x}=\tilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k},
$$

the equation (8) becomes

$$
\begin{gather*}
\left\{\begin{array}{ccc}
u_{x} & = & \tilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k} \\
v_{b, x} & = & \widehat{A}_{b}\left(\kappa, u, u_{x}\right) v_{b} \\
v_{k, x} & = & \widehat{\lambda}_{k}\left(\kappa, u, u_{x}\right) v_{k} \\
\kappa_{x} & = & 0
\end{array}\right. \tag{11}\\
\widehat{A}_{b}(0,0,0)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k-1}\right), \quad \hat{\lambda}_{k}(0,0,0)=\lambda_{k} .
\end{gather*}
$$

Then:

Diagonalization of system (8)
By writing

$$
u_{x}=\widetilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k}
$$

the equation (8) becomes

$$
\begin{gather*}
\left\{\begin{array}{ccc}
u_{x} & = & \tilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\hat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k} \\
v_{b, x} & = & \widehat{A}_{b}\left(\kappa, u, u_{x}\right) v_{b} \\
v_{k, x} & = & \widehat{\lambda}_{k}\left(\kappa, u, u_{x}\right) v_{k} \\
\kappa_{x} & = & 0
\end{array}\right. \tag{11}\\
\widehat{A}_{b}(0,0,0)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k-1}\right),
\end{gather*} \hat{\lambda}_{k}(0,0,0)=\lambda_{k} . ~ l
$$

Then:

- v_{b} is exponentially decreasing (non characteristic part);

Diagonalization of system (8)
By writing

$$
u_{x}=\tilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k}
$$

the equation (8) becomes

$$
\begin{array}{ccc}
\left\{\begin{array}{ccc}
u_{x} & = & \tilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k} \\
v_{b, x} & = & \widehat{A}_{b}\left(\kappa, u, u_{x}\right) v_{b} \\
v_{k, x} & = & \widehat{\lambda}_{k}\left(\kappa, u, u_{x}\right) v_{k} \\
\kappa_{x} & = & 0
\end{array}\right. \tag{11}\\
\widehat{A}_{b}(0,0,0)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k-1}\right), & \hat{\lambda}_{k}(0,0,0)=\lambda_{k}
\end{array}
$$

Then:

- v_{b} is exponentially decreasing (non characteristic part);
- the eigenvalue $\hat{\lambda}_{k}$ determines the structure of boundary profile;

Diagonalization of system (8)
By writing

$$
u_{x}=\widetilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k}
$$

the equation (8) becomes

$$
\begin{align*}
& \left\{\begin{array}{ccc}
u_{x}= & \tilde{R}_{b}\left(\kappa, u, u_{x}\right) v_{b}+\widehat{r}_{k}\left(\kappa, u, u_{x}\right) v_{k} \\
v_{b, x}= & \hat{A}_{b}\left(\kappa, u, u_{x}\right) v_{b} \\
v_{k, x}= & \widehat{\lambda}_{k}\left(\kappa, u, u_{x}\right) v_{k} \\
\kappa_{x}= & 0
\end{array}\right. \tag{11}\\
& \widehat{A}_{b}(0,0,0)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k-1}\right), \quad \widehat{\lambda}_{k}(0,0,0)=\lambda_{k} .
\end{align*}
$$

Then:

- v_{b} is exponentially decreasing (non characteristic part);
- the eigenvalue $\hat{\lambda}_{k}$ determines the structure of boundary profile;
- \hat{r}_{k} is ok for k-th travelling profiles or bdry profile $\left(\sigma_{k}=0\right)$.

Equation for the components v_{b}, v_{i}
By substituting into $u_{t}+A(t, x) u_{x}-u_{x x}=0$

$$
\left\{\begin{array}{l}
u_{x}=v_{b} \widetilde{R}_{b}+v_{k} \widehat{r}_{k}+\sum_{i \neq k} v_{i} \tilde{r}_{i} \tag{12}\\
u_{t}=w_{b} \widetilde{R}_{b}+w_{k} \widehat{r}_{k}+\sum_{i \neq k} w_{i} \widetilde{r}_{i}
\end{array} \quad \sigma_{i}=\theta_{i}\left(w_{i} / v_{i}\right)\right.
$$

Equation for the components v_{b}, v_{i}
By substituting into $u_{t}+A(t, x) u_{x}-u_{x x}=0$

$$
\left\{\begin{array}{l}
u_{x}=v_{b} \widetilde{R}_{b}+v_{k} \widehat{r}_{k}+\sum_{i \neq k} v_{i} \tilde{r}_{i} \tag{12}\\
u_{t}=w_{b} \widetilde{R}_{b}+w_{k} \widehat{r}_{k}+\sum_{i \neq k} w_{i} \widetilde{r}_{i}
\end{array} \quad \sigma_{i}=\theta_{i}\left(w_{i} / v_{i}\right)\right.
$$

after some computation one obtains (similarly for u_{t})

$$
\begin{align*}
& \left(\widehat{R}_{b}+\left(\widehat{R}_{b, v_{b}} \cdot\right) v_{b}+\widehat{r}_{k, v_{b}} v_{k}\right)\left[v_{b, t}+\left(\widehat{A}_{b} v_{b}\right)_{x}-v_{b, x x}\right] \\
& \quad+\left(\widehat{R}_{b, v_{k}} v_{b}+\widehat{r}_{k}+\widehat{r}_{k, v_{k}} v_{k}+v_{k} \sigma_{k, v} \widehat{r}_{k, \sigma}\right)\left[v_{k, t}+\left(\widehat{\lambda}_{k} v_{k}\right)_{x}-v_{k, x x}\right] \\
& \quad+\sum_{i \neq k}\left(\tilde{r}_{i}+v_{i} \tilde{r}_{i, v}+v_{i} \sigma_{i, v} \tilde{r}_{i, \sigma}\right)\left[v_{i, t}+\left(\tilde{\lambda}_{i} v_{i}\right)_{x}-v_{i, x x}\right] \\
& \quad=\phi\left(\kappa, u, v, v_{x}, w, w_{x}\right)+\mathcal{O}(1)\left(\left|v_{b}\right|+\sum_{i=1}^{n}\left|v_{i}\right|\right) \sup _{u}\left\|A_{t}\right\| \tag{13}
\end{align*}
$$

Equation for the components v_{b}, v_{i}
By substituting into $u_{t}+A(t, x) u_{x}-u_{x x}=0$

$$
\left\{\begin{array}{l}
u_{x}=v_{b} \widetilde{R}_{b}+v_{k} \widehat{r}_{k}+\sum_{i \neq k} v_{i} \widetilde{r}_{i} \tag{12}\\
u_{t}=w_{b} \widetilde{R}_{b}+w_{k} \widetilde{r}_{k}+\sum_{i \neq k} w_{i} \widetilde{r}_{i}
\end{array} \quad \sigma_{i}=\theta_{i}\left(w_{i} / v_{i}\right)\right.
$$

after some computation one obtains (similarly for u_{t})

$$
\begin{align*}
& \left(\widehat{R}_{b}+\left(\widehat{R}_{b, v_{b}}\right) v_{b}+\widehat{r}_{k, v_{b}} v_{k}\right)\left[v_{b, t}+\left(\widehat{A}_{b} v_{b}\right)_{x}-v_{b, x x}\right] \\
& +\left(\widehat{R}_{b, v_{k}} v_{b}+\widehat{r}_{k}+\widehat{r}_{k, v_{k}} v_{k}+v_{k} \sigma_{k, v} \widehat{r}_{k, \sigma}\right)\left[v_{k, t}+\left(\widehat{\lambda}_{k} v_{k}\right)_{x}-v_{k, x x}\right] \\
& +\sum_{i \neq k}\left(\tilde{r}_{i}+v_{i} \tilde{r}_{i, v}+v_{i} \sigma_{i, v} \tilde{r}_{i, \sigma}\right)\left[v_{i, t}+\left(\widetilde{\lambda}_{i} v_{i}\right)_{x}-v_{i, x x}\right] \\
& =\phi\left(\kappa, u, v, v_{x}, w, w_{x}\right)+\mathcal{O}(1)\left(\left|v_{b}\right|+\sum_{i=1}^{n}\left|v_{i}\right|\right) \sup _{u}\left\|A_{t}\right\| . \tag{13}
\end{align*}
$$

There are $n+k-1$ variables in n equations.

Ideas to recover one $k \times k$ system for v_{b} and n scalar equation with source for v_{i} :

Ideas to recover one $k \times k$ system for v_{b} and n scalar equation with source for v_{i} :

Ideas to recover one $k \times k$ system for v_{b} and n scalar equation with source for v_{i} :

Ideas to recover one $k \times k$ system for v_{b} and n scalar equation with source for v_{i} :

Ideas to recover one $k \times k$ system for v_{b} and n scalar equation with source for v_{i} :

Ideas to recover one $k \times k$ system for v_{b} and n scalar equation with source for v_{i} :

v_{b}, v_{i} determined by solving (13), not by the decomposition (12).

To understand the condition $v_{i}=0, i=1, \ldots, v_{k-1}$, consider the scalar equation

$$
U_{t}-U_{x}=U_{x x}, \quad u(0, x)=u_{0}(x), u(t, 0)=0
$$

To understand the condition $v_{i}=0, i=1, \ldots, v_{k-1}$, consider the scalar equation

$$
U_{t}-U_{x}=U_{x x}, \quad u(0, x)=u_{0}(x), u(t, 0)=0
$$

which splits into $U=u+u_{b}$, with

$$
\left\{\begin{array} { c }
{ u _ { t } - u _ { x } = u _ { x x } } \\
{ u | _ { t = 0 } = u _ { 0 } (x) , } \\
{ u _ { x } | _ { x = 0 } = 0 }
\end{array} \quad \left\{\begin{array}{c}
u_{b, t}-u_{b, x}=u_{b, x x} \\
\left.u\right|_{x=0}=0, \\
\left.u\right|_{t=0}=-\int_{0}^{t} u_{x x}(s, 0) d s
\end{array}\right.\right.
$$

To understand the condition $v_{i}=0, i=1, \ldots, v_{k-1}$, consider the scalar equation

$$
U_{t}-U_{x}=U_{x x}, \quad u(0, x)=u_{0}(x), u(t, 0)=0
$$

which splits into $U=u+u_{b}$, with

$$
\left\{\begin{array} { c }
{ u _ { t } - u _ { x } = u _ { x x } } \\
{ u | _ { t = 0 } = u _ { 0 } (x) , } \\
{ u _ { x } | _ { x = 0 } = 0 }
\end{array} \quad \left\{\begin{array}{c}
u_{b, t}-u_{b, x}=u_{b, x x} \\
\left.u\right|_{x=0}=0, \\
\left.u\right|_{t=0}=-\int_{0}^{t} u_{x x}(s, 0) d s
\end{array}\right.\right.
$$

To understand the condition $v_{i}=0, i=1, \ldots, v_{k-1}$, consider the scalar equation

$$
U_{t}-U_{x}=U_{x x}, \quad u(0, x)=u_{0}(x), u(t, 0)=0
$$

which splits into $U=u+u_{b}$, with

$$
\left\{\begin{array} { c }
{ u _ { t } - u _ { x } = u _ { x x } } \\
{ u | _ { t = 0 } = u _ { 0 } (x) , } \\
{ u _ { x } | _ { x = 0 } = 0 }
\end{array} \quad \left\{\begin{array}{c}
u_{b, t}-u_{b, x}=u_{b, x x} \\
\left.u\right|_{x=0}=0, \\
\left.u\right|_{t=0}=-\int_{0}^{t} u_{x x}(s, 0) d s
\end{array}\right.\right.
$$

To understand the condition $v_{i}=0, i=1, \ldots, v_{k-1}$, consider the scalar equation

$$
U_{t}-U_{x}=U_{x x}, \quad u(0, x)=u_{0}(x), u(t, 0)=0
$$

which splits into $U=u+u_{b}$, with

$$
\left\{\begin{array} { c }
{ u _ { t } - u _ { x } = u _ { x x } } \\
{ u | _ { t = 0 } = u _ { 0 } (x) , } \\
{ u _ { x } | _ { x = 0 } = 0 }
\end{array} \quad \left\{\begin{array}{c}
u_{b, t}-u_{b, x}=u_{b, x x} \\
\left.u\right|_{x=0}=0, \\
\left.u\right|_{t=0}=-\int_{0}^{t} u_{x x}(s, 0) d s
\end{array}\right.\right.
$$

To understand the condition $v_{i}=0, i=1, \ldots, v_{k-1}$, consider the scalar equation

$$
U_{t}-U_{x}=U_{x x}, \quad u(0, x)=u_{0}(x), u(t, 0)=0
$$

which splits into $U=u+u_{b}$, with

$$
\left\{\begin{array} { c }
{ u _ { t } - u _ { x } = u _ { x x } } \\
{ u | _ { t = 0 } = u _ { 0 } (x) , } \\
{ u _ { x } | _ { x = 0 } = 0 }
\end{array} \quad \left\{\begin{array}{c}
u_{b, t}-u_{b, x}=u_{b, x x} \\
\left.u\right|_{x=0}=0, \\
\left.u\right|_{t=0}=-\int_{0}^{t} u_{x x}(s, 0) d s
\end{array}\right.\right.
$$

With the $k-1$ conditions on the initial-boundary data data and source terms, one arrives to the system

$$
\left\{\begin{array}{ccc}
v_{b, t}+\left(\hat{A}_{b} v_{b}\right)_{x}-v_{b, x x} & = & 0 \tag{14}\\
v_{k, t}+\left(\hat{\lambda}_{k} v_{k}\right)_{x}-v_{k, x x} & = & s_{k}(t, x) \\
v_{i, t}+\left(\tilde{\lambda}_{i} v_{i}\right)_{x}-v_{i, x x} & = & s_{i}(t, x)
\end{array}\right.
$$

With the $k-1$ conditions on the initial-boundary data data and source terms, one arrives to the system

$$
\left\{\begin{array}{ccc}
v_{b, t}+\left(\hat{A}_{b} v_{b}\right)_{x}-v_{b, x x} & = & 0 \tag{14}\\
v_{k, t}+\left(\hat{\lambda}_{k} v_{k}\right)_{x}-v_{k, x x} & = & s_{k}(t, x) \\
v_{i, t}+\left(\tilde{\lambda}_{i} v_{i}\right)_{x}-v_{i, x x} & = & s_{i}(t, x)
\end{array}\right.
$$

- Interaction among $i \neq k$ trav. waves and bdry profile

With the $k-1$ conditions on the initial-boundary data data and source terms, one arrives to the system

$$
\left\{\begin{array}{ccc}
v_{b, t}+\left(\hat{A}_{b} v_{b}\right)_{x}-v_{b, x x} & = & 0 \tag{14}\\
v_{k, t}+\left(\hat{\lambda}_{k} v_{k}\right)_{x}-v_{k, x x} & = & s_{k}(t, x) \\
v_{i, t}+\left(\tilde{\lambda}_{i} v_{i}\right)_{x}-v_{i, x x} & = & s_{i}(t, x)
\end{array}\right.
$$

- Interaction among $i \neq k$ trav. waves and bdry profile Since \widehat{A}_{b} is strictly negative definite, one obtains that

$$
\left|v_{b}(t, x)\right| \leq \text { Tot.Var. }(u) e^{-c x}, \quad c \text { strict hyperbolicity. }
$$

With the $k-1$ conditions on the initial-boundary data data and source terms, one arrives to the system

$$
\left\{\begin{array}{ccc}
v_{b, t}+\left(\hat{A}_{b} v_{b}\right)_{x}-v_{b, x x} & = & 0 \tag{14}\\
v_{k, t}+\left(\hat{\lambda}_{k} v_{k}\right)_{x}-v_{k, x x} & = & s_{k}(t, x) \\
v_{i, t}+\left(\tilde{\lambda}_{i} v_{i}\right)_{x}-v_{i, x x} & = & s_{i}(t, x)
\end{array}\right.
$$

- Interaction among $i \neq k$ trav. waves and bdry profile Since \widehat{A}_{b} is strictly negative definite, one obtains that

$$
\left|v_{b}(t, x)\right| \leq \text { Tot.Var. }(u) e^{-c x}, \quad c \text { strict hyperbolicity. }
$$

Since $\lambda_{i} \neq 0, i \neq k$, then the following terms can be estimated

$$
\sum_{i \neq k}\left|v_{i} v_{b}\right|, \quad \sum_{i \neq k}\left|v_{i, x} v_{b}\right|
$$

With the $k-1$ conditions on the initial-boundary data data and source terms, one arrives to the system

$$
\left\{\begin{array}{ccc}
v_{b, t}+\left(\widehat{A}_{b} v_{b}\right)_{x}-v_{b, x x} & = & 0 \tag{14}\\
v_{k, t}+\left(\hat{\lambda}_{k} v_{k}\right)_{x}-v_{k, x x} & = & s_{k}(t, x) \\
v_{i, t}+\left(\widetilde{\lambda}_{i} v_{i}\right)_{x}-v_{i, x x} & = & s_{i}(t, x)
\end{array}\right.
$$

- Interaction among $i \neq k$ trav. waves and bdry profile Since \widehat{A}_{b} is strictly negative definite, one obtains that

$$
\left|v_{b}(t, x)\right| \leq \text { Tot.Var. }(u) e^{-c x}, \quad c \text { strict hyperbolicity. }
$$

Since $\lambda_{i} \neq 0, i \neq k$, then the following terms can be estimated

$$
\sum_{i \neq k}\left|v_{i} v_{b}\right|, \quad \sum_{i \neq k}\left|v_{i, x} v_{b}\right|
$$

waves with speed $\neq 0$ cross an integrable function of x.

- Interaction of k-th trav. waves and bdry profile
- Interaction of k-th trav. waves and bdry profile Since for $\sigma_{k}=0$ we have an exact boundary profile (11),
- Interaction of k-th trav. waves and bdry profile Since for $\sigma_{k}=0$ we have an exact boundary profile (11), the basic interaction term is

$$
v_{b} v_{k}\left(\sigma_{b}-\sigma_{k}\right)=v_{b} w_{k}
$$

- Interaction of k-th trav. waves and bdry profile Since for $\sigma_{k}=0$ we have an exact boundary profile (11), the basic interaction term is

$$
v_{b} v_{k}\left(\sigma_{b}-\sigma_{k}\right)=v_{b} w_{k}
$$

with w_{k} is k-th component of u_{t}.

- Interaction of k-th trav. waves and bdry profile

Since for $\sigma_{k}=0$ we have an exact boundary profile (11), the basic interaction term is

$$
v_{b} v_{k}\left(\sigma_{b}-\sigma_{k}\right)=v_{b} w_{k},
$$

with w_{k} is k-th component of u_{t}.
Due to $\widehat{\lambda}_{k} \simeq 0$ and the presence of boundary, it follows

$$
\int_{\mathbb{R}^{+}}\left|e^{-d y} w_{k}(t, y)\right| d t \leq C \cdot \text { Tot.Var. }(u), \quad d \simeq\left\|\widehat{\lambda}_{k}\right\|_{L^{\infty}},
$$

- Interaction of k-th trav. waves and bdry profile

Since for $\sigma_{k}=0$ we have an exact boundary profile (11), the basic interaction term is

$$
v_{b} v_{k}\left(\sigma_{b}-\sigma_{k}\right)=v_{b} w_{k}
$$

with w_{k} is k-th component of u_{t}.
Due to $\hat{\lambda}_{k} \simeq 0$ and the presence of boundary, it follows

$$
\int_{\mathbb{R}^{+}}\left|e^{-d y} w_{k}(t, y)\right| d t \leq C \cdot \text { Tot.Var. }(u), \quad d \simeq\left\|\hat{\lambda}_{k}\right\|_{L^{\infty}}
$$

Hence

$$
\iint_{\mathbb{R}^{+} \times \mathbb{R}^{+}}\left|v_{b} w_{k}\right| d x d t \leq C \int_{\mathbb{R}^{+}} e^{(d-c) x} \int_{\mathbb{R}^{+}}\left|e^{-d y} w_{k}(t, y)\right| d t d x \leq C
$$

Solution of the Boundary Riemann problem

Solution of the Boundary Riemann problem

To characterize the unique limit of u^{ϵ} as $\epsilon \rightarrow 0$, one has to study

Solution of the Boundary Riemann problem

To characterize the unique limit of u^{ϵ} as $\epsilon \rightarrow 0$, one has to study

$$
u_{t}+A(\kappa, u) u_{x}=0, \quad\left\{\begin{array}{l}
u(0, x)=u_{0} \tag{15}\\
u(t, 0)=u_{b}
\end{array}\right.
$$

Solution of the Boundary Riemann problem

To characterize the unique limit of u^{ϵ} as $\epsilon \rightarrow 0$, one has to study

$$
u_{t}+A(\kappa, u) u_{x}=0, \quad\left\{\begin{array}{l}
u(0, x)=u_{0} \tag{15}\\
u(t, 0)=u_{b}
\end{array}\right.
$$

The solution $u=u(x / t)$ will have the structure

Solution of the Boundary Riemann problem

To characterize the unique limit of u^{ϵ} as $\epsilon \rightarrow 0$, one has to study

$$
u_{t}+A(\kappa, u) u_{x}=0, \quad\left\{\begin{array}{l}
u(0, x)=u_{0} \tag{15}\\
u(t, 0)=u_{b}
\end{array}\right.
$$

The solution $u=u(x / t)$ will have the structure

- waves of the $i>k$ families entering the domain;

Solution of the Boundary Riemann problem

To characterize the unique limit of u^{ϵ} as $\epsilon \rightarrow 0$, one has to study

$$
u_{t}+A(\kappa, u) u_{x}=0, \quad\left\{\begin{array}{l}
u(0, x)=u_{0} \tag{15}\\
u(t, 0)=u_{b}
\end{array}\right.
$$

The solution $u=u(x / t)$ will have the structure

- waves of the $i>k$ families entering the domain;
- waves of the k-th family entering the domain;

Solution of the Boundary Riemann problem

To characterize the unique limit of u^{ϵ} as $\epsilon \rightarrow 0$, one has to study

$$
u_{t}+A(\kappa, u) u_{x}=0, \quad\left\{\begin{array}{l}
u(0, x)=u_{0} \tag{15}\\
u(t, 0)=u_{b}
\end{array}\right.
$$

The solution $u=u(x / t)$ will have the structure

- waves of the $i>k$ families entering the domain;
- waves of the k-th family entering the domain;
- waves of the k-th family with speed 0 ;

Solution of the Boundary Riemann problem

To characterize the unique limit of u^{ϵ} as $\epsilon \rightarrow 0$, one has to study

$$
u_{t}+A(\kappa, u) u_{x}=0, \quad\left\{\begin{array}{l}
u(0, x)=u_{0} \tag{15}\\
u(t, 0)=u_{b}
\end{array}\right.
$$

The solution $u=u(x / t)$ will have the structure

- waves of the $i>k$ families entering the domain;
- waves of the k-th family entering the domain;
- waves of the k-th family with speed 0 ;
- a characteristic boundary profile.

Solution of the Boundary Riemann problem

To characterize the unique limit of u^{ϵ} as $\epsilon \rightarrow 0$, one has to study

$$
u_{t}+A(\kappa, u) u_{x}=0, \quad\left\{\begin{array}{l}
u(0, x)=u_{0} \tag{15}\\
u(t, 0)=u_{b}
\end{array}\right.
$$

The solution $u=u(x / t)$ will have the structure

- waves of the $i>k$ families entering the domain;
- waves of the k-th family entering the domain;
- waves of the k-th family with speed 0 ;
- a characteristic boundary profile.

In $u(x / t)$ one sees only the first two points, the last two are in the jump at $x=0$.

$$
\text { Starting from } u_{0} \text {, we construct the map } \Phi:\left(s_{1}, \ldots, s_{n}\right) \mapsto \mathbb{R}^{n}
$$

Starting from u_{0}, we construct the $\operatorname{map} \Phi:\left(s_{1}, \ldots, s_{n}\right) \mapsto \mathbb{R}^{n}$

From u_{0} to u_{1}, waves of the $i>k$ family,

From u_{1} to u_{2}, waves of the k-th family with $\sigma_{k} \geq 0$,

From u_{2} to u_{b} there is a char. bdry profile,

By means of system (11), we decompose the bdry profile as

Exponentially decaying part of bdry profile

Exponentially decaying part of bdry profile This solves

$$
\left\{\begin{array}{l}
u_{b, x}=\tilde{R}_{b}\left(u_{b}+u_{k}(x), p_{b}, p_{k}(x)\right) p_{b} \tag{16}\\
p_{b, x}=\widetilde{A}_{b}\left(u_{b}+u_{b}(x), p_{b}, p_{k}(x)\right) p_{b}
\end{array}\right.
$$

Exponentially decaying part of bdry profile This solves

$$
\left\{\begin{array}{l}
u_{b, x}=\tilde{R}_{b}\left(u_{b}+u_{k}(x), p_{b}, p_{k}(x)\right) p_{b} \tag{16}\\
p_{b, x}=\widehat{A}_{b}\left(u_{b}+u_{b}(x), p_{b}, p_{k}(x)\right) p_{b}
\end{array}\right.
$$

Since \widehat{A}_{b} strictly negative, then

Exponentially decaying part of bdry profile This solves

$$
\left\{\begin{array}{l}
u_{b, x}=\tilde{R}_{b}\left(u_{b}+u_{k}(x), p_{b}, p_{k}(x)\right) p_{b} \tag{16}\\
p_{b, x}=\widetilde{A}_{b}\left(u_{b}+u_{b}(x), p_{b}, p_{k}(x)\right) p_{b}
\end{array}\right.
$$

Since \widehat{A}_{b} strictly negative, then

$$
p_{b}(x)=\mathcal{O}(1) p_{b}(0) e^{-c x}
$$

Exponentially decaying part of bdry profile This solves

$$
\left\{\begin{array}{l}
u_{b, x}=\tilde{R}_{b}\left(u_{b}+u_{k}(x), p_{b}, p_{k}(x)\right) p_{b} \tag{16}\\
p_{b, x}=\widetilde{A}_{b}\left(u_{b}+u_{b}(x), p_{b}, p_{k}(x)\right) p_{b}
\end{array}\right.
$$

Since \widehat{A}_{b} strictly negative, then

$$
\begin{gathered}
p_{b}(x)=\mathcal{O}(1) p_{b}(0) e^{-c x} \\
u_{s}(x)=u_{s}(0)+\int_{0}^{x} \widetilde{R}_{b}\left(y ; u_{k}, p_{k}\right) p_{b}\left(y ; u_{k}, p_{k}\right) d y
\end{gathered}
$$

By contraction principle (small data), we can verify that

Exponentially decaying part of bdry profile This solves

$$
\left\{\begin{array}{l}
u_{b, x}=\tilde{R}_{b}\left(u_{b}+u_{k}(x), p_{b}, p_{k}(x)\right) p_{b} \tag{16}\\
p_{b, x}=\widehat{A}_{b}\left(u_{b}+u_{b}(x), p_{b}, p_{k}(x)\right) p_{b}
\end{array}\right.
$$

Since \widehat{A}_{b} strictly negative, then

$$
\begin{gathered}
p_{b}(x)=\mathcal{O}(1) p_{b}(0) e^{-c x} \\
u_{s}(x)=u_{s}(0)+\int_{0}^{x} \widetilde{R}_{b}\left(y ; u_{k}, p_{k}\right) p_{b}\left(y ; u_{k}, p_{k}\right) d y
\end{gathered}
$$

By contraction principle (small data), we can verify that
the manifold of solutions converging to 0 as $x \rightarrow \infty$ is $k-1$ dimensional parameterized by $\left(u_{1}(0), \ldots, u_{k-1}(0)\right)$, smoothly dependent on u_{k}, p_{k}.

The characteristic part of bdry profile

The characteristic part of bdry profile The system for u_{k}, p_{k} and σ_{k} is

$$
\left\{\begin{array}{ccc}
u_{k}(s) & = & u_{1}+\int_{0}^{s} \widehat{r}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau \\
p_{k}(s) & = & \mathrm{b}-\operatorname{conc}_{\left[0, s_{k}\right]}\left(\int_{0}^{s} \hat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s) \\
\sigma_{k} & = & \left.\frac{d}{d s} \mathrm{~b}-\operatorname{conc}{ }_{\left[0, s_{k}\right]}\right]\left(\int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s)
\end{array}\right.
$$

The characteristic part of bdry profile The system for u_{k}, p_{k} and σ_{k} is

$$
\left\{\begin{array}{ccc}
u_{k}(s) & = & u_{1}+\int_{0}^{s} \widehat{r}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau \\
p_{k}(s) & = & \left.\mathrm{b}-\operatorname{conc}_{\left[0, s_{k}\right]} \int_{0}^{s}{ }_{\lambda} \hat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s) \\
\sigma_{k} & = & \left.\frac{d}{d s} \mathrm{~b}-\operatorname{conc}_{\left[0, s_{k}\right]}\right]\left(\int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s)
\end{array}\right.
$$

The function $\widehat{f}_{k}=\int \widehat{\lambda}_{k} d \tau$ is

The characteristic part of bdry profile The system for u_{k}, p_{k} and σ_{k} is

$$
\left\{\begin{array}{ccc}
u_{k}(s) & = & u_{1}+\int_{0}^{s} \widehat{r}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau \\
p_{k}(s) & = & \mathrm{b}-\operatorname{conc}_{\left[0, s_{k}\right]}\left(\int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s) \\
\sigma_{k} & = & \frac{d}{d s} \mathrm{~b}-\operatorname{conc}_{\left[0, s_{k}\right]}\left(\int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s)
\end{array}\right.
$$

The function $\widehat{f}_{k}=\int \hat{\lambda}_{k} d \tau$ is

The characteristic part of bdry profile The system for u_{k}, p_{k} and σ_{k} is

$$
\left\{\begin{array}{ccc}
u_{k}(s) & = & u_{1}+\int_{0}^{s} \widehat{r}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau \\
p_{k}(s) & = & \mathrm{b}-\operatorname{conc}_{\left[0, s_{k}\right]}\left(\int_{0}^{s} \hat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s) \\
\sigma_{k} & = & \left.\frac{d}{d s} \mathrm{~b}-\operatorname{conc}_{\left[0, s_{k}\right]}\right]\left(\int_{0}^{s} \hat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s)
\end{array}\right.
$$

The concave hull for Riemann problem is

The characteristic part of bdry profile The system for u_{k}, p_{k} and σ_{k} is

$$
\left\{\begin{array}{ccc}
u_{k}(s) & = & u_{1}+\int_{0}^{s} \widehat{r}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau \\
p_{k}(s) & = & \mathrm{b}-\operatorname{conc}_{\left[0, s_{k}\right]}\left(\int_{0}^{s} \hat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s) \\
\sigma_{k} & = & \left.\frac{d}{d s} \mathrm{~b}-\operatorname{conc}_{\left[0, s_{k}\right]}\right]\left(\int_{0}^{s} \hat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s)
\end{array}\right.
$$

The boundary concave hull for Riemann problem is

The characteristic part of bdry profile The system for u_{k}, p_{k} and σ_{k} is

$$
\left\{\begin{array}{ccc}
u_{k}(s) & = & u_{1}+\int_{0}^{s} \widehat{r}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau \\
p_{k}(s) & = & \left.\mathrm{b}-\operatorname{conc}_{\left[0, s_{k}\right]} \int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s) \\
\sigma_{k} & = & \left.\left.\frac{d}{d s} \mathrm{~b}-\operatorname{conc}_{\left[0, s_{k}\right]}\right] \int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s)
\end{array}\right.
$$

With the exponentially decaying (in space) perturbation u_{b}, p_{b}

The characteristic part of bdry profile The system for u_{k}, p_{k} and σ_{k} is

$$
\left.\left\{\begin{array}{ccc}
u_{k}(s) & = & u_{1}+\int_{0}^{s} \widehat{r}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau \\
p_{k}(s) & = & \left.\mathrm{b}-\operatorname{conc}_{\left[0, s_{k}\right]} \int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s) \\
\sigma_{k} & = & \frac{d}{d s} \mathrm{~b}-\operatorname{conc} \\
{\left[0, s_{k}\right]}
\end{array}\right] \int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s)
$$

With the exponentially decaying (in space) perturbation u_{b}, p_{b} the structure of \widehat{f}_{k} remains essentially the same,

The characteristic part of bdry profile The system for u_{k}, p_{k} and σ_{k} is

$$
\left.\left\{\begin{array}{ccc}
u_{k}(s) & = & u_{1}+\int_{0}^{s} \widehat{r}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau \\
p_{k}(s) & = & \left.\mathrm{b}-\operatorname{conc}_{\left[0, s_{k}\right]} \int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s) \\
\sigma_{k} & = & \frac{d}{d s} \mathrm{~b}-\operatorname{conc} \\
{\left[0, s_{k}\right]}
\end{array}\right] \int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s)
$$

With the exponentially decaying (in space) perturbation u_{b}, p_{b} the structure of \hat{f}_{k} remains essentially the same, because the uniform exponentially decaying estimate on u_{k}, p_{k} yields

The characteristic part of bdry profile The system for u_{k}, p_{k} and σ_{k} is

$$
\left.\left\{\begin{array}{ccc}
u_{k}(s) & = & u_{1}+\int_{0}^{s} \widehat{r}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau \\
p_{k}(s) & = & \left.\mathrm{b}-\operatorname{conc}_{\left[0, s_{k}\right]} \int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s) \\
\sigma_{k} & = & \frac{d}{d s} \mathrm{~b}-\operatorname{conc} \\
{\left[0, s_{k}\right]}
\end{array}\right] \int_{0}^{s} \widehat{\lambda}_{k}\left(u_{b}+u_{k}, p_{b}, p_{k}, \sigma_{k}\right) d \tau\right)(s)
$$

With the exponentially decaying (in space) perturbation u_{b}, p_{b} the structure of \widehat{f}_{k} remains essentially the same, because the uniform exponentially decaying estimate on u_{k}, p_{k} yields

$$
\begin{aligned}
\mid \widehat{f}_{k}\left(s ; u_{k}=0, p_{k}=0\right)- & \widehat{f}_{k}\left(s ; u_{k}, p_{k}\right) \mid \leq \\
& \frac{1}{2}\left(b-\operatorname{conc} \widehat{f}_{k}-\widehat{f}_{k}\right)\left(s ; u_{k}=0, p_{k}=0\right) .
\end{aligned}
$$

Final Remark. By studying the unperturbed k-th field we recover the structure of the boundary profile, hence the bdry RP.

Final Remark. By studying the unperturbed k-th field we recover the structure of the boundary profile, hence the bdry RP.

