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We consider the parabolic system

ut + A(t, u)ux = εuxx, t, x > 0, u ∈ R
n, (1)

with Dirichlet boundary conditions ub(t) and initial data u0(t).
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We consider the parabolic system

ut + A(t, u)ux = εuxx, t, x > 0, u ∈ R
n, (1)

with Dirichlet boundary conditions ub(t) and initial data u0(t).

Assumptions:

(1) the matrix A(t,0) is smooth and strictly hyperbolic,

inf
t,u,v

{

λi+1(t, u) − λi(t, v)
}

≥ c > 0 i = 1, . . . , n − 1; (2)

(2) the map t 7→ A(t, u) is of uniform bounded variation,

|||A|||
.
= sup

|u|≤δ

∫ +∞

0
|At(s, u)|ds ≤ C < +∞. (3)
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Theorem. If

|ub(t)|, |u0(x)|,Tot.Var.(ub),Tot.Var.(u0) < min
{

K−1, e−K|||A|||
}

,
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|ub(t)|, |u0(x)|,Tot.Var.(ub),Tot.Var.(u0) < min
{

K−1, e−K|||A|||
}

,

the solution uε(t, x) of (1) exists for all t ≥ 0 and has total

variation uniformly bounded, independently of ε.
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Theorem. If

|ub(t)|, |u0(x)|,Tot.Var.(ub),Tot.Var.(u0) < min
{

K−1, e−K|||A|||
}

,

the solution uε(t, x) of (1) exists for all t ≥ 0 and has total

variation uniformly bounded, independently of ε.

If u1, u2 are two different solution with matrices A, B, for t ≥ s

‖u1(t) − u2(s)‖L1 ≤ L

(

|t − s| + ‖u1,0 − u2,0‖L1 + ‖u1,b − u2,b‖L1(0,s)

+Tot.Var.(u) sup
u

|A(u, ·) − B(u, ·)|L1(0,s)

)

,(4)
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Theorem. If

|ub(t)|, |u0(x)|,Tot.Var.(ub),Tot.Var.(u0) < min
{

K−1, e−K|||A|||
}

,

the solution uε(t, x) of (1) exists for all t ≥ 0 and has total

variation uniformly bounded, independently of ε.

If u1, u2 are two different solution with matrices A, B, for t ≥ s

‖u1(t) − u2(s)‖L1 ≤ L

(

|t − s| + ‖u1,0 − u2,0‖L1 + ‖u1,b − u2,b‖L1(0,s)

+Tot.Var.(u) sup
u

|A(u, ·) − B(u, ·)|L1(0,s)

)

,(4)

As ε → 0, uε(t) converges in L1 to a unique BV function u(t, x),

”vanishing viscosity solution” to

ut + A(t, u)ux = 0, u(0, x) = u0(x), u(t,0) = ub(t), (5)

and satisfying again (4).
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Example. Consider the system

ut + A(u)ux − εuxx = 0, x ≥ xb(t),

which can be rewritten in form (1) by setting

y = x − xb(t), A(t, u) = A(u) −
dxb

dt
I.

4



Example. Consider the system

ut + A(u)ux − εuxx = 0, x ≥ xb(t),

which can be rewritten in form (1) by setting

y = x − xb(t), A(t, u) = A(u) −
dxb

dt
I.

λ1

bx  (t)

τ1

σ  (τ)b

x

λn

λ
1κ(τ )

t

4



Example. Consider the system

ut + A(u)ux − εuxx = 0, x ≥ xb(t),

which can be rewritten in form (1) by setting

y = x − xb(t), A(t, u) = A(u) −
dxb

dt
I.

λ1

bx  (t)

τ1

τ2
σ  (τ)b

x

λn

λ
1κ(τ )

t

5



Example. Consider the system

ut + A(u)ux − εuxx = 0, x ≥ xb(t),

which can be rewritten in form (1) by setting

y = x − xb(t), A(t, u) = A(u) −
dxb

dt
I.

λ1

λ1

bx  (t)

τ1

τ3

τ2
σ  (τ)b

λ
3κ(τ )

x

λn

λn

λ
1κ(τ )

t
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Remarks. For ε > 0, technical difficulties arise because:
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Remarks. For ε > 0, technical difficulties arise because:

• no assumptions on the eigenvalues λi of A: it may happen that

∃ k̄ such that λk̄(t,0) ' 0 (boundary characteristic);

• the boundary characteristic eigenvalue λk̄(t,0) changes with

time, i.e. k̄ = k̄(t);

• one has to study the interaction of travelling waves of (1) with

the (non characteristic part of) boundary profiles;
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It is essential a careful decomposition of ux,
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non char. part boun. profile
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For simplicity we consider only |||A||| � 1 (small boundary oscilla-

tions): only the k-th eigenvalue (k fixed) is boundary character-

istic, and the decomposition can be simplified as

ux = vbR̃b(t, u, vb, vk) non char. boun. profile

+vkr̂k(t, u, vb, vk)
(7)
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Decomposition of the boundary profile

The equation for the boundary profile are






ux = p
px = A(κ, u)p
κx = 0

(8)

and we assume that the k-th eigenvalue of A(0,0) is 0.
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The parameter κ is added to the equation to keep into account

that A depends on time.
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Decomposition of the boundary profile

The equation for the boundary profile are






ux = p
px = A(κ, u)p
κx = 0

(8)

and we assume that the k-th eigenvalue of A(0,0) is 0.

The parameter κ is added to the equation to keep into account

that A depends on time.

Since λk(0,0) is characteristic, system (8) has

• k − 1 strictly negative eigenvalues;

• n + 2 zero eigenvalues;

• n − k strictly positive eigenvalues.
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Theorem. (Hadamar-Perron theorem simplified version)

10



Theorem. (Hadamar-Perron theorem simplified version)

Let f : Rn 7→ Rn be Cr diffeomorphism, with r ≥ 1, such that

Df(0) = (Ax, By), ‖A‖ ≤ λ, ‖B−1‖ ≤ 1/µ,

for λ < min{1, µ}, (x, y) ∈ Rk × Rn−k.
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Theorem. (Hadamar-Perron theorem simplified version)

Let f : R
n 7→ R

n be Cr diffeomorphism, with r ≥ 1, such that

Df(0) = (Ax, By), ‖A‖ ≤ λ, ‖B−1‖ ≤ 1/µ,

for λ < min{1, µ}, (x, y) ∈ Rk × Rn−k.

Then there exists a Cr locally invariant manifold W−, smoothly

dependent on f in the Cr norm,

W− =

{

(x, φ−(x)), x ∈ R
k, |x| � 1

}

.
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Theorem. (Hadamar-Perron theorem simplified version)

Let f : Rn 7→ Rn be Cr diffeomorphism, with r ≥ 1, such that

Df(0) = (Ax, By), ‖A‖ ≤ λ, ‖B−1‖ ≤ 1/µ,

for λ < min{1, µ}, (x, y) ∈ Rk × Rn−k.

Then there exists a Cr locally invariant manifold W−, smoothly

dependent on f in the Cr norm,

W− =

{

(x, φ−(x)), x ∈ R
k, |x| � 1

}

.

This manifold W− is identified uniquely by trajectories converg-

ing to 0 with speed ' λ.
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Center manifold and stable manifold near (u, p) = (0,0):

1 k−1(p  ,...,p    )

pk

(0,0)

(u,k)
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Applying the Hadamar-Perron theorem to the point (u,0)

1 k−1(p  ,...,p    )

pk

(0,0)

(u,0)

(u,k)
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Manifold of all trajectories converging as e−(λk−1−ε)t to (u,0)

1 k−1(p  ,...,p    )

pk

(0,0)

(u,0)

C

(u,k)
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Write the center stable manifold of (7) as

p = Rcs(κ, u, vcs)vcs, Rcs ∈ R
n×k;
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on this manifold, the center manifold and the manifold C as

vcs = rk(κ, u, vk)vk, vcs = Rs(κ, u, vs)vs,
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k×(k−1).

Then the vectors r̂k ∈ Rn, R̃ ∈ Rn×(k−1) are given by

r̂k(κ, u, vb, vk) = Rcs(κ, u, Rsvb + rkvk)rk(κ, u, vk) (9)

R̃b(κ, u, vb, vk) = Rcs(κ, u, Rsvb + rkvk)Rs(κ, u, vs) (10)

The dependence on σ can be added to r̂k by replacing A(κ, u)

with A(κ, u) − σI, with σx = 0.

Moreover the center manifold of (8) is {p = vkr̂k(κ, u,0, vk)},

and the stable manifold is {p = Rb(κ, u, vb,0)vb}.
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Âb(0,0,0) = diag(λ1, . . . , λk−1), λ̂k(0,0,0) = λk.

Then:

15



Diagonalization of system (8)

By writing

ux = R̃b(κ, u, ux)vb + r̂k(κ, u, ux)vk,

the equation (8) becomes






ux = R̃b(κ, u, ux)vb + r̂k(κ, u, ux)vk
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By writing

ux = R̃b(κ, u, ux)vb + r̂k(κ, u, ux)vk,

the equation (8) becomes






ux = R̃b(κ, u, ux)vb + r̂k(κ, u, ux)vk
vb,x = Âb(κ, u, ux)vb
vk,x = λ̂k(κ, u, ux)vk
κx = 0

(11)

Âb(0,0,0) = diag(λ1, . . . , λk−1), λ̂k(0,0,0) = λk.

Then:

• vb is exponentially decreasing (non characteristic part);

• the eigenvalue λ̂k determines the structure of boundary profile;

• r̂k is ok for k-th travelling profiles or bdry profile (σk = 0).
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Equation for the components vb, vi

By substituting into ut + A(t, x)ux − uxx = 0
{

ux = vbR̃b + vkr̂k +
∑

i6=k vir̃i

ut = wbR̃b + wkr̂k +
∑

i6=k wir̃i
σi = θi(wi/vi), (12)
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after some computation one obtains (similarly for ut)

(R̂b + (R̂b,vb
·)vb + r̂k,vb

vk)
[

vb,t + (Âbvb)x − vb,xx

]

+ (R̂b,vk
vb + r̂k + r̂k,vk

vk + vkσk,vr̂k,σ)
[

vk,t + (λ̂kvk)x − vk,xx

]

+
∑

i 6=k

(r̃i + vir̃i,v + viσi,vr̃i,σ)
[

vi,t + (λ̃ivi)x − vi,xx

]

= φ(κ, u, v, vx, w, wx) + O(1)

(

|vb| +
n∑

i=1

|vi|

)

sup
u

‖At‖. (13)
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= φ(κ, u, v, vx, w, wx) + O(1)

(

|vb| +
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i=1
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)

sup
u

‖At‖. (13)

There are n + k − 1 variables in n equations.
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Ideas to recover one k × k system for vb and n scalar equation

with source for vi:
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Ideas to recover one k × k system for vb and n scalar equation

with source for vi:

bInitial data =0 for v

k−1Boundary data =0 for h ,...,h1

No source for vb

x

t

vb, vi determined by solving (13), not by the decomposition (12).
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To understand the condition vi = 0, i = 1, . . . , vk−1, consider the

scalar equation

Ut − Ux = Uxx, u(0, x) = u0(x), u(t,0) = 0
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To understand the condition vi = 0, i = 1, . . . , vk−1, consider the

scalar equation

Ut − Ux = Uxx, u(0, x) = u0(x), u(t,0) = 0
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∫ t
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b−

u(t  ,x)3

u  (t  ,x)3

U(t  ,x)3
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With the k − 1 conditions on the initial-boundary data data and

source terms, one arrives to the system






vb,t + (Âbvb)x − vb,xx = 0

vk,t + (λ̂kvk)x − vk,xx = sk(t, x)

vi,t + (λ̃ivi)x − vi,xx = si(t, x)

(14)
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Since Âb is strictly negative definite, one obtains that

|vb(t, x)| ≤ Tot.Var.(u)e−cx, c strict hyperbolicity.

Since λi 6= 0, i 6= k, then the following terms can be estimated

∑

i 6=k

|vivb|,
∑

i6=k

|vi,xvb|,

waves with speed 6= 0 cross an integrable function of x.
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• Interaction of k-th trav. waves and bdry profile

Since for σk = 0 we have an exact boundary profile (11),

the basic interaction term is

vbvk(σb − σk) = vbwk,

with wk is k-th component of ut.

Due to λ̂k ' 0 and the presence of boundary, it follows
∫

R+
|e−dywk(t, y)|dt ≤ C · Tot.Var.(u), d ' ‖λ̂k‖L∞,

Hence
∫ ∫

R+×R+
|vbwk|dxdt ≤ C

∫

R+
e(d−c)x

∫

R+
|e−dywk(t, y)|dtdx ≤ C.
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To characterize the unique limit of uε as ε → 0, one has to study

ut + A(κ, u)ux = 0,

{

u(0, x) = u0
u(t,0) = ub

(15)

The solution u = u(x/t) will have the structure

• waves of the i > k families entering the domain;

• waves of the k-th family entering the domain;

• waves of the k-th family with speed 0;

• a characteristic boundary profile.

In u(x/t) one sees only the first two points, the last two are in

the jump at x = 0.

27



Starting from u0, we construct the map Φ: (s1, . . . , sn) 7→ Rn
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Starting from u0, we construct the map Φ: (s1, . . . , sn) 7→ Rn

u0

ub

u
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From u0 to u1, waves of the i > k family,

u0

u1

ub

si

waves of the k+1,...,n−th families

u
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From u1 to u2, waves of the k-th family with σk ≥ 0,

u0

u1

u−

u2

ub

si

sk

waves of the k+1,...,n−th families

waves of the k−th family

u

<=

30



From u2 to ub there is a char. bdry profile,

u0

u1

u−

u2

ub

si

sk

waves of the k+1,...,n−th families

waves of the k−th family

u

boundary profile

<=
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By means of system (11), we decompose the bdry profile as

sk

u0

u1

u−

u2

ub

u3

1 k−1(s  ,...,s     )

si

waves of the k+1,...,n−th families

waves of the k−th family

manifold of the uniformly stable fields

u
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Exponentially decaying part of bdry profile
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Exponentially decaying part of bdry profile

This solves
{

ub,x = R̃b(ub + uk(x), pb, pk(x))pb
pb,x = Âb(ub + ub(x), pb, pk(x))pb

(16)
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Since Âb strictly negative, then

33



Exponentially decaying part of bdry profile

This solves
{

ub,x = R̃b(ub + uk(x), pb, pk(x))pb
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pb,x = Âb(ub + ub(x), pb, pk(x))pb

(16)

Since Âb strictly negative, then

pb(x) = O(1)pb(0)e
−cx,

us(x) = us(0) +

∫ x

0
R̃b(y;uk, pk)pb(y;uk, pk)dy.

By contraction principle (small data), we can verify that

the manifold of solutions converging to 0 as x → ∞ is k − 1

dimensional parameterized by (u1(0), . . . , uk−1(0)), smoothly de-

pendent on uk, pk.
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The characteristic part of bdry profile

The system for uk, pk and σk is






uk(s) = u1 +
∫ s
0 r̂k(ub + uk, pb, pk, σk)dτ

pk(s) = b-conc[0,sk]

(∫ s
0 λ̂k(ub + uk, pb, pk, σk)dτ

)

(s)

σk = d
dsb-conc[0,sk]

(∫ s
0 λ̂k(ub + uk, pb, pk, σk)dτ

)

(s)
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^
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The characteristic part of bdry profile
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With the exponentially decaying (in space) perturbation ub, pb

the structure of f̂k remains essentially the same,

because the uniform exponentially decaying estimate on uk, pk

yields
∣
∣
∣
∣f̂k(s;uk = 0, pk = 0) − f̂k(s;uk, pk)

∣
∣
∣
∣ ≤

1

2

(

b-concf̂k − f̂k

)

(s;uk = 0, pk = 0).
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Final Remark. By studying the unperturbed k-th field we recover

the structure of the boundary profile, hence the bdry RP.
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