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Abstract. We consider a special 2 x 2 viscous hyperbolic system of conservation laws of the form
us + A(u)uy = gy, where A(u) = D f(u) is the Jacobian of some flux function f. For initial data
with small total variation, we prove that the solutions satisfy a uniform BV bound, independent
of €. Letting ¢ — 0, we show that solutions of the viscous system converge to the unique entropy
weak solutions of the hyperbolic system wu; + f(u), = 0. Within the proof, we introduce two
new Lyapunov functional which control the interaction of viscous waves of the same family. This
provides a first example where uniform BV bounds and convergence of vanishing viscosity solutions
are obtained, for a system with a genuinely nonlinear field where shock and rarefaction curves do
not coincide.

1 - Introduction

This paper is a contribution toward the understanding of the stability and convergence of
vanishing viscosity approximations to hyperbolic systems of conservation laws. Given the n X n
strictly hyperbolic system

ut + f(u), = 0. (1.1)

a long standing open question is whether the solutions of the viscous approximation
ug + A(u)uy = gy (1.2)

with A(u) = D f(u) are uniformly stable and converge to entropy weak solutions of (1.1) as ¢ — 0.

We recall that, by the results in [4, 5, 9, 10], the entropy weak solutions of the hyperbolic
system (1.1) form a uniformly Lipschitz continuous semigroup S : D X [0,00[+— D defined on a
closed domain D C L' containing all functions with suitably small total variation. A comprehensive
description of the recent uniqueness and stability theory can be found in the monograph [3]. In
earlier literature, vanishing viscosity limits have been studied, with partial success, by techniques
of compensated compactness [6] and singular perturbations [8].
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The eventual goal of our research is to prove that, for each ¢ > 0, the system (1.2) also
generates a continuous semigroup S°, and that the convergence S°* — S holds as ¢ — 0. In
particular, if the total variation of a solution is initially small, then it remains small for all times
t > 0, uniformly w.r.t. €.

The first step of this program was accomplished in [1], where the authors proved that the
above result indeed holds for n x n systems where all characteristic curves are straight lines. For
such systems, new oscillations can only be produced by the interaction of viscous waves of distinct
families. The result in [1] was indeed obtained by carefully controlling this type of interactions.

In the present paper, we concentrate on interactions of viscous waves of the same family.
Namely, we study in detail one particular 2 x 2 system, which provides the most elementary
case where viscous waves of the same family can interact and produce oscillations in another
family. We establish uniform BV bounds, and hence the (strong) convergence of vanishing viscosity
approximations.

The heart of the matter is the derivation of a priori BV bounds, which we obtain by introducing
two new Lyapunov functionals. These are related to the length and to the area swept by a planar
curve whose components are the conserved quantity and the flux, for a scalar viscous conservation
law.

The present paper thus achieves the second step in our research program, by understanding
the interaction of viscous waves of the same family. The third and final step, extending all results
to general n x n viscous hyperbolic systems, is the the subject of current research.

2 - Evolution of gradient components

Our main concern is to provide uniform BV estimates for solutions to the viscous system
(1.2). We always assume that the n x n matrix A(u) is strictly hyperbolic, i.e. it has real distinct
eigenvalues A\j (u) < --- < A, (u) and dual bases of left and right eigenvectors ly,...,l,, 71,...,7y,
such that

ww o ={g 57 (2.1)

The directional derivative of a function ¢ = ¢(u) in the direction of the eigenvector r; is written

while
[rj, Tk =T 0T — TR @71

denotes the usual Lie bracket. Moreover, we write u’, = [; - u, for the i-th component of u,. From
(1.2) and (2.1) respectively it follows

Ut + Z Niulr; = ¢ Z(u;rz)x =€ z:(ufb)ggrZ +e Zu;u;(rj o), (2.2)
3 7 ? %]

Uy = Zu;m (2.3)
i
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Differentiating (2.2) w.r.t. z and (2.3) w.r.t. ¢ and equating the results we find

Uzt:Z )eri — Zu ul \j(rj or;)

-l-EE ul(ul)y(rjer; —I—eg ubulul (rjery) er;,
0,5,k

um—l—z (Asul) wm—i—Z)\u Tj®T;)
—ez mm—i—sz ;T —i—sz )oul(r; o 7;)

+€E ul (ul)y(rj or; +€§ wlululry e (rjer;),

i,5,k
Z tm—i-z )\u wm—i—Z)\ Ty 750

J#k

(2.4)
=¢ Z mrz+22 e +Zuwwzrk, rj ® 1]
i,5,k

Let now a smooth initial condition

u(0,z) = u(x) (2.5)

be assigned. The rescaling s = t/e, y = x/e transforms the Cauchy problem (1.2), (2.5) into

g + A(u)uy = tyy, u(0,y) = u"(y) = u(ey)

Observe that, as € — 0, the initial data @ has constant total variation, all its derivatives approach
zero, but its L' norm approaches infinity. To study a priori BV bounds on solutions of (1.2), one
can equivalently consider the system

u + Au)ug = Ugg, (2.6)

and derive uniform estimates on the total variation of u(¢,-), for initial data which have small BV
norm but whose L! norm is arbitrarily large.

Taking the inner product of (2.4) with /;(u) and assuming € = 1, we obtain
(Ug:)t + (Alu?n)w - (U?n)ww

l; - { Njlrj, rruluf + 2 Z(rk o ;) (ul)ul + Z[rg, ) rj]uiu:’zuf;}
J#k J.k Jkt

k i k¢
= E Gijk(u uju + E Hijp(u $u$+ E Kijpe(u)uluguy,.
J#k Jrk,L

(2.7)



Setting v* = u’, we thus need to estimate the L! norm of solutions to

+ (A\v") Z kavjv + Z Hwkvjv + Z K”kgvj (2.8)

J#k J:k,e
We regard (2.8) as a parabolic system of n scalar equatlons, coupled through the terms G, H, K
defined by (2.7). These coupling terms can be split in two groups:

k k

— Transversal terms involving at least two distinct components, such as v/v¥, viv¥, viv*v? with

J#k,

— Non-transversal terms involving one single component, such as v/v’, v/v/v/.

In [1] we performed a careful study of transversal terms: if these are the only terms present
in the equations, we showed that their total contribution is of quadratic order. Our present goal is
to study the contribution of a non-transversal term. For this purpose, we focus our attention on a
simple 2 x 2 system where Hy1; = 1 and all other terms G, H;jk, K;j, vanish identically.

3 - A special system

The system we want to study is
(wn)e + (uf/2)e = (w1) e,
{ (uo)e + (u}/3 —ui/2+ “2)95 = (u2) gz
This corresponds to (2.6), where the matrix A is defined by

) = <u§u_1u1 2) : (3.2)

(3.1)
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As u = (uy,up) varies in a neighborhood of the origin in IR?, the matrix A(u) is strictly
hyperbolic. Its eigenvalues are

)\]_(’u) = Uiy, )\z(u) =1.

Dual bases of right and left eigenvectors (fig. 1) are computed as

(@) ()

Iy =(1,0), lo = (—uy,1).
Observe that
To®ry = T18Ty = ro0T] = [r1,T3] = 0,
rLery = T2,
[rj, rkere = 0 for all j,k,¢ € {1,2}.

In this case, the coefficients in (2.8) become
Gijk(u) =0, Kijke =0
for all 4, 7, k, £, while
Hj1(u) =1, Hiji(u) =0 if (i,5,k) # (2,1,1).

This motivates our interest in the particular system (3.1). Our main result provides the uniform
BV bounds for solutions of the viscous system (2.6).

Theorem 1. Consider the system (2.6), with the matriz A(u) defined at (3.2). Then there exist
constants 8, > 0o > 0 and L such that the following holds. For every initial data @ € L' with
Tot. Var{u} < 0g, the Cauchy problem (2.5)-(2.6) has a unique solution, defined for all times
t > 0, such that

Tot.Var.{u(t,)} < for all £ > 0. (3.3)

The next result provides the convergence of vanishing viscosity approximations.

Theorem 2. Consider the system (1.2), with the matriz A(u) defined at (3.2). Then there exists
8o > 0 such that, for every initial data @ € L' with Tot.Var.{u} < dy, the corresponding solution
u® = uf(t,z) of (1.2) converges in Li . to the unique entropy solution of (3.1), as e — 0.

The key step in the proof of the above theorems is the derivation of a priori BV bounds on
the solutions of (2.6). Introducing the Riemann coordinates

. . u?
21 = U1, Zzzuz—ga

the system (3.1) can be rewritten as
21,t + (z%/2)m — Zl,xx = 07
Zot + 220 — 22,00 = (Zl,x)2-
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Since z; satisfies a scalar viscous Burgers’ equation, its total variation cannot increase in time. We
thus need to provide bounds on the total variation of z5. The main ideas toward this estimate are
outlined in the next two sections. Here we make one preliminary observation. If the total variation
of the initial data 4 = (@, 2) € L is sufficienlty small, then the solution of (3.1) certainly exists
within the time interval ¢ € [0, 1]. Moreover, by parabolic regularization, the norms of v and all of

its derivatives will be small at time £ = 1. In particular, for « = 0,1,...,4 we can assume
0%*u 0%*u
Sl;p‘ax—a(l,x) <1, /‘(’h;—a(l’x) dr < 1.

By shifting the origin of time, it is thus not restrictive to assume that the first Riemann component
z1 in (3.4) satisfies

8a Z1
ox®

(tv )

H 0"z <1, (3.5)

Oz (¢)

fora =0,1,...,4and all £ > 0.

S

Ll

4 - BV estimates for the linear non-homogeneous heat equation

Aim of this section is to derive an estimate on the total variation of the solution to the linear
heat equation, in the presence of a source and with unit drift:

U+ Uy — Uy = V(t, 1) U(0,z) =0. (4.1)

We only consider the Cauchy problem with zero initial data, since the general case follows by
linearity. We are mainly interested in the case where V is not integrable in the t-x plane, but it
admits a front tracing representation, as specified below.

Definition. We say that a scalar function V' = V (¢, z) defined on IRy x IR admits a front tracing
representation if there exists some velocity function n = n(t,z) such that the following integral is
bounded:

E:// {‘W+(77V)$‘+|V|'|77t+7777w|}dmdt<oo (4.2)
0 —00

Interpreting V' as the density of particles and 7 as their velocity, the above quantity can be
interpreted as
E = [total amount of particles created or destroyed]

+ [mass] x [change in speed]
Lemma 1. Assume that the source term V in (4.1) admits a front tracing representation, with
n(t,z) <n* <1 forall t,x (4.3)

and moreover HV(O,-)HL1 < 00. Then the total variation of the solution U of (4.1) remains
uniformly bounded. Indeed, for every t > 0 there holds

2|[V(0,)||..  2E E
< + :
S L—n* (1—n*)?
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Proof. Call 6(P) the Dirac measure consisting of a unit mass at the point P. Consider first the

equation

Ui+ Uy — Uy = 6(nt)

assuming 7 < 1. A solution of (4.5) can be found in the form of a travelling wave:

U(t,z) = ¢(n,z — nt).
Substituting into (4.5) one finds that the function ¢ = ¢(n, ) must satisfy
—npe + ¢ — pee = 0(0),
hence ( =
. 1-— n)— if 5 > 07
$(n,¢) = { (1 — ) ~tel-mE it ¢<0.
Observe that
_f-p? it 20,
Pn(n,8) = { [(1—7)2 — £(1 — )1 et-mE it ¢<o.
Therefore

Tot.Var.{¢(n,)} = (1 —n)~",  Tot.Var.{¢,(n,")} = (1 —n)~2

Next, we try to construct a solution of (4.1) in the form

Ult,z) = /V(t,y)sb(n(t,y), z—y)dy —v(t, ).

By successive differentiations we obtain
U= [ (Vg Vo) dy v,
V.= [ Véedy .

Ux:z: = /VQSEE dy — VUgg-
Here and in the sequel, it is understood that

V=V(y), n=n(ty), ¢ =d(nt.y), = —y).
Substituting (4.10) into (4.1) yields

/ (Vtgb + V¢nnt + ngg — nggg) dy — VUt — Uy + Vppr = V.

(4.5)

(4.8)

(4.9)

(4.10)

(4.11)

Performing an integration by parts and using the property (4.6) of the kernel function ¢, we obtain

the useful identity

J (= V)0~ Voum, +Voe = Voee)dy = [ (1o, — 60) = Vi, + Ve  Vee )y

= /V[(l — ) e — bee]dy
V(t,x).

(4.12)



By (4.11) and (4.12), if U in (4.10) provides a solution to the Cauchy problem (4.1), then v must
satisfy

vt s = vaa = [ (Vi (V))6+ Vo + 1)) (413)

o(0,2) = / V(0,56 (1(0.9), = —y) dy. (4.14)

Recalling (4.3) and (4.9), from (4.13)-(4.14) we obtain

Tot.Var.{v(t,-)} < (HV(O,-)HL1 + // Vi + (nV)y] dydt) - Tot.Var.{¢(n*,-) }

+ (/ V| |ne + nmy | dydt) - Tot.Var.{¢,(n*,")} (4.15)
Hi (0")HL1 E E
< + + :
= 1 1L—n*  (1—n%)2

Furthermore, by (4.2) it follows that the quantity V approximately satisfies a conservation law
with flux V. Hence

/\V(t,y)\ dy < ||V (0,9)||.. + E. (4.16)

From (4.10), using (4.16), (4.9) and (4.15) we recover (4.4).

5 - Front-tracing representations for the viscous Burgers’ equation

Let u = u(t,z) be a solution of the scalar viscous conservation law
u + f(U)g = Ugg. (5.1)

Toward the study of (3.1) it suffices to take f(u) = u?/2, but at this stage we shall consider any
smooth function f. In view of Lemma 1, in order to show that the total variation of z9(t,-) in
(3.5) remains bounded, we need to prove that, for any solution u of (5.1) with suitably small
total variation, the quantity V (¢,z) = u2(¢, ) admits a front tracing representation, with a speed
n=n(tz) <1

More generally, given any BV solution u = u(t, z) of (5.1), assuming that

f'(u(t,a;))‘ <n* for all t,z, (5.2)

we shall prove that the quantity V = u2 admits a front tracing representation, determined by the

velocity function
Ut li Ug
77 - 7‘—[_"*, n*] —_ — 71—[_7]*, 7]*] f (’U,) - . (5-3)

Ug

A it Ael[-n* n*,
W[_n*, n*](}\) = —’f]* if )\ < _7]*,
7* i A >,



Introduce the variables (fig. 2)

. . T =1,
W= fW) -ty 0Ew— f(4) = —ty, {yiu@,x). (5.4)

Observe that y and w represent the conserved quantity and the flux, respectively. In regions where
u is monotone, we can write w as a function of the independent variables 7, y. Since

thla TxZO, Yt = ug, Yz = Ug,
for every function ¢ one has

Yr = Q7T + Pyly = —VPy,
Yt = PrTe + Py = Pr + VWyPy.

From (5.4)-(5.5) it follows

wy + f'(u)wx = Wgy,
Wy — WyWg + flwe = [wy(f - w)]w’

Wr — wi(f —w) + f'wy(f —w) = wyy(f - w)2 + wy(f - w)y(f —w).
The flux function w = w(7,y) thus satisfies
wy = (w — f) wy,. (5.6)
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Equivalently,
v, = v’ ('Uyy + f”(y))- (5.7)

Consider the quantity

Ei/o / {‘Vt“"v)x‘ + V- |17t+7777x|} dzdt

-1

We are mainly interested in the case where V = 92, so that

1
Vi+w [Vywy — (nV)y] ‘ +|V]- ‘777 + vy (wy — 77)‘} . m |dy|dT.

_ _ 9.3
Vi = 2vv, = 207wy,

It is interesting to compute the value of E for various choices of 7. In the following, the
integrals w.r.t. y range over all branches of the (possibly multivalued) function w.

1. Taking n = n* constant, we obtain

o0 . 1
E:/O /\v7+vyv(wy—n - o byl

0

N

0 (5.9)
:/ /2 ’U7—+’U’Uy(wy—’l’]*)‘|dy|d7'.
0
2. Taking n = f'(y) we obtain
o 1
E= / /{ Ve +oVywy, — o(f - V)y‘ + V| ‘vf"vy‘} Tl |dy|dT.
0
= / / { 202wy, + 2vvyw, — V2" = 2vv, f'| + ‘vzvyf"‘} |dy|dT.
0 (5.10)
— / /{ 20%wy, + 200, — v f"| + ‘vzvyf"‘} |dy|dT

o0
_/ 2lv| + ‘2vv§—v2f”‘ + ‘vzvyf"‘}|dy|dr.
0

3. Taking n = w, = f’ 4+ v, we obtain

b 1
E:/ /{\VT—quyy\+|V| [oyel} - - ldylat
0

[l

& 1
L[ {20y aae (5.11)

| [{toel+ i1} tautae.
0
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figure 3

Observe that in this last case we have = w, = —u¢/u,. In other words (fig. 3), 7 is the speed of
the intersection of the graph of u(¢,-) with a horizontal line v = const.

6 - A viscous Glimm interaction functional

We summarize here the main results in [2]. Consider any polygonal line v in IR?, with vertices
A= Py, Py,...,P, =B. Set v; = P; — P;_1 and consider the functional

Q0 = 5 Sl A (61)

1<j

Let 7' be obtained from - by replacing the two segments P;_; P; and P;P;11 by one single segment
P;_1P;4, as in fig. 4. The area of the triangle P;_1 P;P; 1 is

1
area (P;_1P;P;y1) = §|Ui+1 Avg] < Q(y) — Q(Y).

figure 4

A continuous version of the above estimate is the following. Let v = 7(¢,0) be a parametrized
curve moving in the plane, with fixed endpoints A, B. Call v = 9v/00 the tangent vector and

11



v(B) ,

figure 5

define the functional (fig. 5)

b b
QR(v(t) = %/ / [v(t,0) Av(t,0')| dode'.

Assume that the motion of the curve is directed along the curvature. In other words, calling
n the interior unit normal, assume that the inner product n - 0y/0t is always non-negative. In
this case, the evolution of v can be uniformly approximated by a sequence of polygonals, each
obtained from the previous one by replacing two consecutive edges by a single segment, as in fig. 4.
Therefore, as proved in [2], for any ¢ < t’, the area of the region (fig. 6) bounded by the curves
v = v(t) and 7' = y(¢') is bounded by Q(v) — Q(v'). In particular, the total area swept by the
curve during its motion is < Q(v(0)).

y(1)

(1)

figure 6

As a special case, let w = w(7,y) satisty
wr = (1, y)wyy, w(0,y) =w(y)
with ¢ > 0. Applying the previous argument to the graph of w,
¥t y) = (v, wit,y))
we obtain

o0 1
/ /MM%MWWMSQ@@»ZQ/AQWAw—%@HMM& (62

If w = w(7,y) is a solution of (5.6) and u = wu(t,z) is the corresponding solution of (5.1), the
functional @) in (6.2) takes the form

Q) =3 [ fuele)ua@)] - n(@)  nia)| deas', (63
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where

o) = 7' (u(e) - 22

(6.4)

is the speed of the intersection of the graph of a solution of (5.1) with a horizontal line (fig. 3).
Observe that, for a BV solution of (5.1), the corresponding functional Q(u) is finite at all times

t > 0. Indeed,
Q(u) = O(1) - (Tot.Var.{u} + Tot.Var.{uy}).

7 - Bounds on higher derivatives

In connection with the variable transformation (5.4), for any function ¢ one has

dp 1 0y
oy  uy Oz
Using the uniform bounds on uy, Uz, Ugzs - - - » Dy successive differentiations we obtain
Ug 1
v = —— = O 1 PR—
Yy Uy ( ) |'U| )
1 Uggpe U2, 1 U;
T ( Ug u @ v? |v] ’
v _ i _ Uzzzx AU prrUsy _ 3Ugw
YTy, u2 ul ur
1 lo,|  |v3
“ <|v3| o2 2
42 1 |v3 4
— vy om-| -+ 4+ 4
v (1) (’U4 vt 3

Differentiating (5.6) we find
w, = vy,

_ 2
Wyr = 200y Wyy + V" Wyyy ,
_ 2 2
Wyyr = vawyy + 4vvyWyyy + 200Vyy Wyy + UV Wyyyy -

On regions where v, remains uniformly bounded, from (7.1)—(7.3) it thus follows

13
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In the case where the flux is convex, it is interesting to derive a time dependent lower bound on
wyy which resembles an Oleinik-type estimate for the gradient w,. Assume f” > 0 and consider a
solution with v > 0. Define

Z=w S
vy + 2Tv
With successive differentiations we find
Uy
Zy = Wyyy — 2702’
2
_ Vyy 2vy
Zyy = Wyyyy — 2702 | 9re3
1 w
_ 2 2 vy
Zr = [2”ywyy + dvvywyyy + 200y wyy + v wyyyy] T 92y o
A lengthy but straightforward computation now yields
2 1 2 f"
Z, — v Zy, — dvv, Z, + (— — 2v, — 2vvyy> Z==>0. (7.9)
T T

This allows us to use the maximum principle: if Z > 0 on the parabolic boundary 9~ €2 of a domain
Q in the 7-y plane, then Z > 0 on the whole set Q. As an application, assume that

g (0,2) = Gz (z) <0 for all = € IR.
By the strong maximum principle this implies
ug(t,z) <0 forall ¢t >0, z € IR,

so that the solution is strictly monotone decreasing as a function of z, for all ¢ > 0. From (7.9) it

now follows the inequality
1

Wepy < ——
Y9 = oy

(7.10)

for all y, 7 with 7 > 0.

8 - Estimates related to graph length

Let ¢ = ¢(&) be a smooth, convex scalar function which admits asymptotes as £ — +oo. More
precisely, assume that there exists constants , 8 such that

Jim p(€) —rE—B] =0= Jim |0(€) + K€+ B (8.1)

For example, the function p(£) = /1 + (£ — 3)? satisfies the above conditions with k = 1. Consider
a BV solution v = u(t,z) of (5.1) and let w,v be the corresponding solutions of (5.6), (5.7)
respectively, so that the bounds (7.1)—(7.4) hold. Introduce the functional

B(w) = / o (wy) |dyl, (8.2)
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where the integral ranges over all branches of the (possibly multivalued) function w. Observe that,
by (8.1), the function ¢ has sublinear growth, hence ®(w) can be bounded in terms of the length
of the graph of w. We now compute the time derivative of ®(w), and show that it is non-positive.
Let a < b be the locations of two consecutive zeroes of v, so that

v(r, a(r)) = v(r, b(1)) =0, v(r,y) #0  forall ye€ |a(r), b()[.

We claim that

FRe b(r) .
i emdi= [ et ay = (3 np @ik (B as O] 69

where the minus sign is taken if v > 0 and the plus sign if v < 0 for ¢ < y < b. Observe that (8.3)
cannot be obtained from (7.5) by a straightforward integration by parts, because one may have
Wy, Wyy — F00 as y —+ a,b. The boundary terms must therefore be handled with care. To fix the
ideas, assume v > 0 for ¢ < y < b. Fix € > 0 and consider the points ¢* > a, b* < b such that

v(a® (1)) = e = v(b°(7)).

The time derivatives of these points are easily computed as

o = ——L(a), b* = ——Z(b°). (8.4)
Uy Uy
This yields the relations
wr(a®) = vr(a®) = —a“vy(a) = —a (wy(a®) — f'(a)), 8.5)
w, (b°) = v, (b°) = —bw, (b°) = —b° (w, (°) — f'(b%)).
Using (8.5) we now compute
d o d
— dy = lim — d
i et =tm [ty
bE
= ggr%) [/ o' (wy) (vVwyy)y dy + b° - o (w, (%)) — a° - @(wy(a‘g))]
: ” / e\\ ;e 13 1(1E (86)
:—811_% o' (wy)vw dy—i—llm[—@(wy(b ) b° (wy (6°) — f(b%))

! (wy(a)) & (1w, (0%) = f'(°)) + b (w, (b)) = @ - p(uwy ()
b
:_/ o (wy)v?w?, dy — (B + wf'(@)a+ (B + nf ()]

Indeed, if a(7) is the height of a local minimum for u(7,-), we then have w,(a®) — oo as a® — a+,
hence

lim [ (1w, (o)) (wy(aw — 1'(0)) = o (wy(a))]
= lim [¢'(6) (€~ f(@)) ~ @(©)] (8.7)
=~ nf'(a).
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Similarly, if b(7) is the height of a local maximum of u(7, -), we then have w, (b°) — —o0 as b°* — b—,
hence

lim [~ (1, (1)) (1, (B) = £ (59)) + o (w, ()) |

= dim [~ ¢/(©) (€= 7'®) + ()] (5.8)
=6 5f'(a)

In the case where v < 0, one has wy(a®) = —o0, wy(b°) = oo as a® = a+, b° — b—, hence the
signs in the limits (8.7)-(8.8) are reversed. This yields (8.3).
To complete the proof we observe that, in cases where

a(t) = xgrfoo u(T, x) or b(r) = xlirfoo u(T, x),

the limits w, — £oo may fail. However, in these cases one trivially has @ = 0 or b= 0, and the
formula (8.3) again holds.

Summing (8.3) over all branches of the multivalued function w, and observing that boundary
terms cancel each other, we now obtain

i<I>(w(7')) = di;/w(wy(T)) |dy| = —/cp (wy)v w ydy <0. (8.9)

In terms of the original solution v = u(t, z) of (5.1), this yields

d o0 , uww
— e < 0. .
g el =S e <o (5.10)

In the special case p(§) = /1 + &2, from (8.9) it follows

/ /1+w 329202 |dyldr < @ (w /@/1—!—11)2 ) |dyl| . (8.11)

The left hand side of (8.11) describes the shortening of the graph of w. For any fixed &, restricted
to regions where |w,| < &, the first factor in the integrand is uniformly bounded. Hence

* 2 2
/0 /|w v, lgldr = 00 (8.12)

By an approximation argument, the smoothness assumption on ¢ can be dropped. If ¢ is any
convex function satisfying (8.1), then the map

t— /w(wy(ﬂ y)) |dy|

is non-increasing. For example, taking ¢(&) = || we see that the total variation of the map w(r,-)
is non increasing in time.

We conclude this section observing that, by similar techniques, one can easily obtain new
Lyapunov functionals described by multiple integrals. For example, consider a symmetric, convex
function ¢ satisfying (8.1). Let us define

- i//ﬁo(wy(y) —wy(y") |dy| |dy'|. (8.13)
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Notice that the function (- — ¢) still satisfies (8.1) for every value of the constant c. For a solution
w = w(7,y) of (5.6) we can thus compute the time derivative of ¥ as in (8.3)-(8.9):

() == [ [ w0 - w,0) ), ) 1yl | (8:14)

In the special case where

pe(€) = (e +€)717, Wl (&) =e(e+£7)72,
the corresponding functional ¥, satisfies
d 2\ 732 5 2 !
W (w(n) = =5 [ [ e(e+ (w,0) —w, ")) T @) wd, ) laylldy'l.  (8.15)

We are particularly interested in the limit ¥, — ¥ as ¢ — 0. To study the time derivative

d¥ (w(r))/dr, let y be a point where wy,(y) # 0. Using the mean value theorem and the change

of variable z = wy, (y)e~ /2y’

—3/2
yt+e —-3/2 y+p 2 * 02
lim/ 5<6 + (wy () - wy(y))2) dy’ = lim e 1 4+ wyy (7)Y~ y) dy'
y y—p €

e—0 —p e—0

oWV 2 () D\
= lim — (1 + wyj(y )z2> dz
20y, /v [y ()] wyy (Y)

, for p > 0 suitably small we compute the limit

1 o0
:7-/ (1+z2)_3/2dz
‘wyy(y)‘ —00
_ 2
|wyy (y)]
(8.16)
Recalling (5.6), from (8.15) and (8.16) one obtains the estimate
d
Lw(wn) = 2 [ [y - wy ] layl /1 < = [ Jurrap| ol 1)

This provides an alternative derivation of the basic formula (6.2).

9 - Viscous rarefaction waves

In this section we make the additional assumption that f is convex, so that f” > 0. We will
show that, on regions where v < 0 (i. e. u, > 0), the alternative choice n = f’(u) also yields a
bounded value for F in (5.10). In other words, one can trace viscous rarefaction waves by choosing
7 equal to their characteristic speed. This result is not needed toward the proof of the main
theorem, but we believe it has some interest by itself.

Let [a(T), b(7)] be an interval where v < 0, with v — 0 for y — a+ and for y — b—. Recalling
(5.7), we compute

d b(T)| | b(T) 2 "
— v|dy = —/ v (vyy + ) dy
dr a(r)

. b(7) ) ~ b(7) .
= o 2|v|vy, dy " v” f(y) dy.
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Observe that in the above integration by parts the boundary terms vanish because of (7.1). Since

both terms on the right hand side of (9.1) are < 0, we conclude

oo b(T) 0o pb(T) b(0)
/ / 2|’U|’U§ dydT-I—/ / v " dydr < / ‘v(O,y)‘dy.
0 a(r) 0 a(r) a(0)

Observing that
[olvy | [v*]

=0(1
2 2 |U| O( )’

v? oy < —+

9.2)

this provides an a-priori estimate of the right hand side of (5.8), on regions where v < 0. This

corresponds to rarefaction waves, with u, > 0.

10 - Regions with large gradient

Assume f'(u) € [-n*, n*] for all u € [a(t), b(t)], and let w be a solution of (5.
) =

€ [a,b], with w(a (a), w(b) = f(b).

al ‘bl &E b2 83 b3
figure 7

Consider the region where the gradient of w is large (fig. 7).
14
J = {y €fa,b]; v#£0, |wy(y)|> 17*} = las, b5
=0
Consider the speed
Observe that the above choice implies

vy (wy —n) = (wy — f)(wy —m) >0 for all y € J.

18
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Recalling (5.9) we now compute
E; = 2/ "UT + vv, (wy, — 77)‘ |dy|
J

bj
g2/J|wT||dy|+22/ o,y = )| dy
=2/ ol a1+ 3| |
=2 [ oy + Z/ o2 (w, — ), | dy

i Jai

3 / o, | |dy]
J

We observe that, in the integration by parts over each interval [a;, b;] the boundary terms play
no role. As y — a; or y — b; either w, — £n*, or else v — 0 and hence by (7.1) we have
v?(wy £n*) — 0. Thanks to (6.2), the quantity E; in in (10.2) is thus uniformly bounded.

2vvy ) dy (10.2)

11 - Parabolic estimates

Define the rectangles (fig.8)

R=1[-3/4, 3/4] x [1, 10],
= 34, 3/4) (1,10 -
R =1[-1/2, 1/2] x [5, 6].
[ =[-1, 1] x [, 10],
M =[-1/4, 1/4] x [5, 6], (11.2)
I = [-2, 2] x [L, 10].
Consider the equation
Wt = a(Y, W)Wyy . (11.3)
We assume that (11.3) is uniformly parabolic with smooth coefficients:
a, <a(Y,W)<a* for all (Y,W) e, (11.4)
||a||cs(ru) <K (115)

for some constants a* > a, > 0 and £ > 0. The next lemma, based on the Schauder interior
estimates for parabolic equations [7], provides bounds for the mixed second derivative Wy, in
terms of the total variation of the boundary data.

Lemma 2. Let W = W(t,Y) be a smooth solution of (11.3) defined for t € [ty, T], ¥ €
[—3/4, 3/4], taking values inside the interval [1, 10], so that (11.4)-(11.5) apply.
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figure 8

a) For every ¢y > 0 there exists a constant C' depending only on a.,a*, k,c1 such that

T 1/2 T
/ / (Wy(t,Y)|dYdt < C - (1 +/ (\Wt(t, =3/4)| + |[Wi(t, 3/4)\) dt) . (11.6)
to+ci to

—1/2

b) If in addition
Wy (to,Y)] <2 forall 'Y € [-3/4, 3/4], (11.7)

then there exists a constant C depending only on a.,a*, k such that, for every t; € |tg, to+ 1],
one has

T ,1/2 T
/ // \Wyt(t,Y)\detgo.<1+\1n(t1—to)\+/ (IWitt, ~3/9)] + Wi, 3/4)\)dt>.
(11.8)

Applying Lemma 2 to the rectangles

Rg=1[0—3/4, 0+3/4] x [1, 10],
R =[0—1/2, 60+1/2] x [5, 6],

integrating over 6 € [—1/4, 1/4] and observing that

I' = U Rg, FI - ﬂ R(’Q?

|6]<1/4 |6]<1/4
we obtain

Lemma 3. Let W = W(t,Y) be a smooth solution of (11.3) defined fort € [to, T], Y € [-1, 1],
taking values inside the interval [1, 10], so that (11.4)-(11.5) apply.

a) For every ¢y > 0 there exists a constant C' depending only on a.,a*, k,c1 such that

T 1/4 T ,l
/ / (Wy(t,Y)|[dYdt <C- [ 1 +/ / (We(t,Y)| dydt | . (11.9)
to+1J/-1/4 to /-1
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b) If in addition

Wy (to,Y)] <2 forall Y €[-1, 1], (11.10)
then there exists a constant C' depending only on a.,a*,k such that, for every ti € |tg, to+ 1],
one has
T (1/2 1
/ / (Wy(t,Y)|dYdt < C- (1 + |In(ty — to)| +/ (W (t,Y)] dydt) : (11.11)
t, J-1/2 -1

The constant C depends only on a.,a”, K.

12 - Regions with small gradient

It now remains to estimate the integral (5.11) restricted to regions where the gradient w, =

' (u) = (ugy/ug) is small:
Bos [ jouelidylar
lwy [<n*

— // ‘Ugwyyy +2U2Uywl/y‘ |dy|d7' (121)
|wy [<n*

An a priori bound for (12.1) should be provided in terms of the “area” functional @) in (6.3) and the
“oraph length” functional ® in (8.11). By the assumption of small total variation, is not restrictive
to assume

(12.2)

N

|f'(y)] <n* <
for every y in the range of our solution u.

We start by constructing countably many rectangles which are rescaled copies of the rectangles
in (11.2):
Iy = (yaa f(ya)) + vl

F:x = (yaa f(ya)) + vV,

Flc: = (yom f(yoc)) + v, I,

such that, for some integer NV, the following property holds (fig. 9):

(P) Every point P in the open region where w # f(y) is contained in some I/, and in no more
than N distinct rectangles I/

Observe that, by (12.2) and the definition of the rectangles I'” | every point (y, w) € I'" satisfies

w— f(y) € Bva, %va] : (12.3)
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lq y
figure 9
We now define the intervals and the sets
Io = [Yo = Va, Ya + val, Qai{(ﬂy); (y, w(r,y)) EFa},
I [Ya = va /4, Yo+ va/4), 2 ={(ry; (5 winy) e},
I = [Ya = 200, Yo + 2va], Qg = {(T,y); (y, w(r,y)) € F’ci}-
Clearly, we have the inclusions
r, cr,cry, QL cQ,cQl, Il c1,cIl.

Observe that by (12.3) the equation (5.6) is uniformly parabolic restricted to each domain /. For
each «, it is convenient to rescale the variables v, w,y by setting

vl oSy Y Ye (12.4)

)
Vo, Vo Vo,

When the point (y,w) falls inside I', the corresponding point (Y, W) falls inside the rectangle I'"'.
In particular, we have

1 21
Y €[-2, 2], W e [1, 10], Ve [5, 7] . (12.5)

Direct computations yield

Wy == wy, Wyy = Vq wyy, Wyyy = inyyy, (12.6)

V, =W, = V>Wyy, Viy = Wey = 2V Wyy + VWyyy, (12.7)
1

wrldy =12 [ Wrlay. (12.8)
I, -1

22



1/2
/ oy, | dy = / V Wy dY,

/ v2w§y dy = vy / VEiWEy dY.
u -2

Thanks to the bounds (7.2)-(7.4), on regions where
Wy | = | <2

we have o
ma’x{|WYY|7 Wyvyyl|, Wz, |WYT|} < ==

«

for some constant C;. For each «, define the set of times

To = {T; there exist 4, such that (y', w(r,y)) € Iy,

(v, wiry") €T [w, ()] <v' Jw,(ry")| 21},

The double integral in (12.1) can now be estimated as

/ / fouwy||dy| dr
wy|<77

< Z// [vwy. | |dy| dr
(1Y) EQY, |wy|<n*, T€T

«
+ // ‘vaT‘ |dy| dT
za: (r) €, lwyl<n*, T¢Ta
= E' 4+ B
IW(r)
r!!

2 y yr 2
figure 10
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We begin with an estimate of E*. Observe that (fig. 10), for 7 € Ty, the derivative Wy (7, )
changes from a small value < 7* to some value > 1 within the interval [—2, 2]. Moreover, by (12.5)
the factor V2 remains bounded away from zero. Therefore, for 7 € T, we have

2
/ VEWEy- dY > ¢ (12.13)
2

for some constant ¢y > 0. On the other hand, by (12.5) and (12.11) it follows

[VWy.(,Y)]dY < G (12.14)

/|Y|§1/2, [Wy |<n* Va

with Cy = 21C4/2. Using (12.13)-(12.14), the rescaling properties (12.9)-(12.10) and finally (6.4)

we obtain
Ef = // VWyr | dydT

za: (T,y)EQ;, TeTa ‘ Y ‘

= Zvi/ / |VWYT| dYdr
a o J|Y|<1/2, [Wy |<n*

< Zvi/ @ dr

Vo
a o JY<2, [Wy|<1
& / / 2. 2

< — viw, dydt

za: o o JYEL], |lwy|<1 v

N
C: // vzwzy dydt
c
0 lwy <1
(1).

O

<

Next, we provide an estimate on E”. For each a we consider the open set of times
ﬁi{r>0; 1<W(r,Y)<10  for auYe[—1,1]}. (12.16)
We write 7, as a disjoint union of open intervals

To =J o Joj =lta il
J

For a given interval J, ;, call

toy = inf{t € Joji [Wyv(t,Y) <1 for all Y € [1, 1]}, (12.17)
£, = inf{t €Juy; Wy(t,Y)|<n*  forall Y e[-2, 2]}, (12.18)

tq,; = inf {t € Jay; |Wy(tY)] <n* for all 'Y € [-2, 2]
(12.19)

and W (t,Y*) € [5,6] for some Y* € [~1/4, 1/4]},
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Recalling that n* < 1/4, it is clear that ¢, ;- < ta; <t ; <ty ;. We shall only consider pairs of
indices («, j) for which the set of times in (12.19) is nonempty In the other case there is nothing to
prove. The set A of all relevant pairs of indices will be split into four subsets: A = A;UAsUA3UAy,
according to the following cases.

CASE 1: t; =0, . > 1.

) Yo ,7

In this case, Lemma 3a yields the estimate

1/4 th, ol
/ / Wy, |dYdr < C. 1+/ /|WT|deT .
1/4 0 —1

After a rescaling we obtain

th th
/ ’/|va7|dyd7gc/ (Ug+/ ’/|wT|dydT>. (12.19)
1 I, 0 Io

Observe that, by the property (P) of the covering,

N
Z Vo < 5 [total variation of u(0,-)] = O(1).
(a,j)€AL

Together with (6.2), this yields

/ / lvwy | dydr = O(1). (12.20)
(,j)€A; V1€ ai JYELL, Jwy|<1
W(ty, )
//
4/_////_;

-1 1 Y
figure 11
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CASE 2: ta,j — t;J > 0.
The assumption implies

wi(t, V)| <1 for all Y € [-1,1].

aj’

Moreover, by continuity we must have (fig. 11)

Wty Y*) =10 or W(t;,Y*) =1

for some Y* € [—1,1]. The bound on |Wy | implies that, for all Y € [—1, 1], we have

W (o

ah],

Y)>8 or W(t,

ah],

Y)<3
respectively. A simple comparison argument now shows that there exists a constant ¢; > 0 such

that

n —
ta,j - ta,j > C]_.

ta,; [l

/ / W |dYdr > 2,
t . —1
«@,]

an application of Lemma 3a yields the estimate

1/4
/ / Wy, |dYdr =0 <1+/ / |W|deT>
Ste 1/4

Observing that

(12.21)
1)'/%]/ W, |dYdr .
t, . -1
o)
After a rescaling, this yields
/ / lvwy- | dydr
(a,5)EA2 t€Ja,; JYEIL, |wy|<1
tt
= Z / | / |Uwy7—|dyd7'
(a,j)EAs U ta,; TYELL (1222)
Z / / |w7'| dydT
(a,j)EAs Vtay; VY€l

= 0(1).

CASE 3: 1, ;> 0,1, ; —t, ;> 1.

' Ya,g

As in the previous case, Lemma 3a yields

1/4
/ / Wy, |dYdr =0 <1+/ /|W|deT>. (12.23)
1/4
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/ w(t;)
: \\
?Z W)

*

Y
figure 12
If
th, 2
/ /|WT|deTz1 (12.24)
t- . J-2
«@,]

we can argue as in Case 2, and we are done. To handle the opposite case, assume that

Wt ., Y*) =10 (12.25)

’j,

for some Y* € [—1, 1], the other case being similar. Consider the two squares

Ql = [_Qa _1] X [77 8]’ Q2 [1 2] [77 8]

Figure 12 shows a case where (12.24) holds. On the other hand, if (12.24) fails (fig. 13), there exist
points
Py = (Y1,W1) € Q, Py = (Y5, W3) € Q2

which never lie on the graph of W, as t € [t t:’j]. Hence

a,)?

W(t, Y1) < Wy <8, W(t,Ys) < Wy <8 for all t€ [t t;j].

Ctj’

Recalling (12.25), this implies that the height of a local max in W decreases from 10 down to 8,
hence the total variation of W decreases by at least 4 units. After a rescaling, we obtain

/ / |vwyr | dydT
EJaJ ye[a’ |wy|<1

(a,j)EAs

(aj)€As * tay TVEla (12.26)
Y / s Y 00)-
(a,j)€As " tayy TYELD (cr,)EA,

=0(1)
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Here A} denotes the set of indices (e, j) for which the rescaled function W does not satisfy (12.24).
The last estimate in (12.26) follows from (6.2) and the fact that, by the previous arguments, to
each (o, j) € A} there corresponds a decrease of at least 4v, in the total variation of w. Since this
total variation is non-increasing and initially bounded, there holds

> e =0(1).

(e,5)€A;

W(t, )

TP | e
~—— W(tcl;,j)

Y, Y Y,
figure 13

CASE 4: to; >ty >0, 10, —t5 <1

P T Yayg
We first observe that the bounds (12.11) imply

tll

a,j

— t:x,j > C1Uq (12.27)

for some constant ¢; > 0. Indeed, the derivative Wy must change from +1 to a value inside
[—n*,n*] within the above time interval. We now consider two subcases. Assume first that

t’;,j 2 tg,j 2
/ / |W,|dY dr :/ / V2 Wyy|dYdr > 1, (12.28)
t . -2 t . -2

In this case, since V is uniformly bounded above and below, by the Cauchy inequality we obtain
the a priori bound

ta; 2
/ ’ / VEW2, dYdt > c (12.29)
t;,j —2

for some constant ¢ > 0. On the other hand, if (12.28) fails, then arguing as in Case 3 we conclude
that the total variation of W decreases at least by 4 units within the time interval [t ;, t;, ;]. After
a rescaling we see that, for some constant c¢3 > 0, to each («, j) € Ay there corresponds a decrease
of at least csv, either in the length of the graph of w, or in the total variation of w. Hence

> v =0(1). (12.30)

(a,j)eA4
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Using Lemma 3b we now obtain

Ty th, ol
/ / Wy, |dYdr = O(1) - (1 + | In(ty ; — £, ;)| +/ / W, | deT>
ty s 1/4 th; J-1

oo (12.31)
=0(1)- 1+|lnva|+/ / \W,|dYdr |.
tn, J-1
After a rescaling one finds
/ / |vwy-| dydT
(a,j)€ A V1€ o JYEL,, Jwy|<1
S Z /w/ lvwy, | dydT
(e Tos e (12.32)
S / [ el Y 00)- 020+ v
(@.g)€As vela () €A

= 0(1).

The four cases discussed above cover all possibilities. Together, the estimates (12.20), (12.22),
(12.26) and (12.32) provide an a priori bound on the second integral E* in (12.12).

In view of Lemma 1, the existence of a front-tracing representation for the quantity zfz in
(3.4) implies a uniform bound on the total variation of the second Riemann coordinate zp. This
completes the proof of Theorem 1.

13 - The vanishing viscosity limit

Consider again the system (1.2), where A is the matrix defined at (3.2). Let an initial data
u(0,z) = @ € L! be given, with small total variation. By the previous analysis, the total variation
of the corresponding solutions u° remain uniformly bounded in time, as € — 0. By Helly’s com-
pactness theorem we can thus extract a subsequence, converging to some function v = u(t¢,z) in
L; .. Since the convergence is strong, this limit function u provides an entropy admissible solution
to the system of conservation laws (3.1). By the uniqueness theorem in [3, p.188], valid for BV
solutions, we conclude that u coincides with the unique entropy weak solution with the given initial

data.

Remark. The previous analysis has established global BV bounds for solutions of the viscous
system (3.1). It remains an open problem to prove their L! stability. Toward this goal, consider
any solution u = wu(t,z), with suitably small total variation. Assume that we could show that
every solution h of the linear variational system

he + [A(u)h] = hye (13.1)
satisfies an estimate of the form

[2@®)||,: < L-[|RO)|L: (13.2)

e
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for some constant L independent of ¢t and w. As in [1], by a standard homotopy argument we could
then conclude

lu(®) =’ @2 < - [|u(0) = ' ()|,

for every couple of solutions u,u’ of (3.1). Observe that A = u, provides one particular solution of
(13.1), for which the estimate (13.2) is known. We conjecture that the bound (13.2) can be proved
by suitably extending the techniques used to estimate the total variation.
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