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Dynamical matrix

We want to write a small computer program that calculates the
dynamical matrix of a solid:

Dsαs′β(q) =

∫
Ω

d3r
∂2Vloc(r)

∂u∗
sα(q)∂us′β(q)

ρ(r)← I1

+

∫
Ω

d3r

(
˜∂Vloc(r)

∂usα(q)

)∗(
∂̃ρ(r)

∂us′β(q)

)
← I2

+ DEwald
sαs′β (q)← I3.

We need three routines: dynmat0, drhodv and d2ionq to
calculate I1, I2 and I3 respectively.
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dynmat0
I1 can be calculated using the charge density only. It is
calculated in reciprocal space. Writing:

Vloc(r) =
∑
µ,s

vs
loc(r− Rµ − ds − uµ,s)

=
∑
µ,s

∑
k

vs
loc(k)eik·re−ik·Rµe−ik·dse−ik·uµ,s ,

where vs
loc(k) = 1

V

∫
d3r vs

loc(r)e
−ik·r is the Fourier transform of

vs
loc(r), we have that:

∂2Vloc(r)
∂u∗

sα(q)∂us′β(q)
= −δs,s′

∑
G

ṽs
loc(G)e−iG·dsGαGβeiG·r,

where ṽs
loc(G) = 1

Ω

∫
d3r vs

loc(r)e
−iG·r.
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dynmat0 - I
Writing the charge density in Fourier series:

ρ(r) =
∑

G

ρ(G)eiG·r,

I1 is:
I1 = −δs,s′Ω

∑
G

ρ(G)ṽs
loc(G)∗eiG·dsGαGβ.

dynmat0 calculates this sum using the fact that ṽs
loc(G) is real

and this integral is also real. So

I1 = −δs,s′Ω
∑

G

ṽs
loc(G)GαGβ

[
<ρ(G)cos(G · ds)−=ρ(G)sin(G · ds)

]
.
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dynmat0 - II

Note that we will calculate the phonon frequencies of Si using
the Appelbaum and Hamann pseudo-potential so:

Ωṽs
loc(k) = e− k2

4α

{
−4πZv e2

|k|2
+
(π

α

) 3
2
[
v1 +

v2

α

(
3
2
− |k|

2

4α

)]}
where

Zv = 4
v1 = 3.042 Ha
v2 = −1.372 Ha
α = 0.6102 1/(a.u.)2
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The bare perturbation
To calculate I2 we need the periodic part of the bare
perturbation

˜∂Vloc(r)
∂usα(q) . We have:

∂Vloc(r)
∂usα(q)

=
∑

µ

eiq·Rµ
∂Vloc(r)
∂uµsα

= −i
∑

G

ṽs
loc(q + G)(q + G)αe−i(q+G)·dsei(q+G)·r.

Therefore the periodic part has Fourier components:

˜∂Vloc(q + G)

∂usα(q)
= −i ṽs

loc(q + G)(q + G)αe−i(q+G)·ds .

This expression is calculated by the routine compute_dvloc.
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Charge density response

Then we need the lattice-periodic part of the induced charge
density which is:

∂̃ρ(r)
∂us′β(q)

= 2
∑
kv

u∗
kv (r)Pk+q

c
∂̃ukv (r)
∂us′β(q)

.

The routine incdrhoscf calculates this expression after the
calculation of Pk+q

c
∂̃ukv (r)
∂us′β(q) . Note that if each band is occupied

by 2 electrons, in the nonmagnetic case, we need another
factor of 2 for spin degeneracy. The sum over k is done as in
the calculation of the charge density.
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The linear system

Pk+q
c

∂̃ukv (r)
∂us′β(q) is the solution of the linear system:

[
Hk+q + Q − εkv

]
Pk+q

c
∂̃ukv (r)
∂us′β(q)

= −Pk+q
c

∂̃V KS(r)
∂us′β(q)

ukv (r).

This linear system is solved by an iterative conjugate gradient
algorithm that requires a routine that applies the left hand side
to an arbitrary function and a routine that computes the right
hand side. The left hand side is applied by the routine
ch_psi_all, while the right hand side is calculated from the
induced Kohn and Sham potential.
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ch_psi_all - II

The operator Q =
∑

v α|uk+qv 〉〈uk+qv | vanishes when applied
to Pk+q

c so it will not change the solution. If α > max(εkv − εkv ′)
it makes the operator Hk+q + Q − εkv nonsingular and the linear
system well defined. We take α = 2(max(εkv )−min(εkv )) and
the same α is used for all k points.
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The induced potential

The induced potential is given by:

∂̃V KS(r)
∂us′β(q)

=
∂̃V loc(r)
∂us′β(q)

+

∫
d3r ′

1
|r− r′|

eiq(r′−r) ∂̃ρ(r′)
∂us′β(q)

+
∂Vxc(r)

∂ρ

∂̃ρ(r)
∂us′β(q)

.

The first term is calculated by compute_dvloc, while the other
two terms are calculated by dv_of_drho.
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dv_of_drho

The induced exchange and correlation potential is calculated in
real space. ∂Vxc(r)

∂ρ is calculated at the beginning of the run by
phq_init and dmxc by numerical differentiation:

∂Vxc(r)
∂ρ

=

[
Vxc(r, ρ + ∆)− Vxc(r, ρ−∆)

]
/2∆,

and the induced exchange and correlation potential is
calculated in real space:

∂Vxc(r)
∂ρ

∂̃ρ(r)
∂us′β(q)

.
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dv_of_drho - II
The induced Hartree potential is calculated in reciprocal space,
and a Fourier transform is later used to calculate it in real
space. We have:∫

d3r ′
1

|r− r′|
eiq(r′−r) ∂̃ρ(r′)

∂us′β(q)

= e−iq·r
∑

G

∂̃ρ(q + G)

∂us′β(q)

∫
d3r ′

1
|r− r′|

ei(q+G)·r′

=
∑

G

eiG·r ∂̃ρ(q + G)

∂us′β(q)
4π

1
|q + G|2

,

where ∂̃ρ(q+G)
∂us′β(q) is calculated by a Fourier transform of ∂̃ρ(r)

∂us′β(q) .
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Putting all together: solve_linter

We need a driver to solve the self-consistent linear system. The
driver is solve_linter. This routine allocates space for the
input and output induced potential, apply ∂̃V loc(r)

∂us′β(q) (using
dvqpsi) and the input induced potential to ukv (r), and apply
the projector Pk+q

c to prepare the right hand side of the linear
system. Then it calls cgsolve_all to solve the linear system
and incdrhoscf to calculate the contribution of the k point to
the induced charge density. These steps are repeated for all k
points and then dv_of_drho is used to calculate the output
induced potential. Finally a mixing routine checks if
self-consistency has been achieved. If not the mixing routine
provides the input induced potential for the next iteration.
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drhodv

After the self-consistent solution of the linear system we obtain
the self-consistent induced charge density ∂̃ρ(r)

∂us′β(q) . After a

Fourier transform of
˜∂Vloc(q+G)
∂usα(q) we get

˜∂Vloc(r)
∂usα(q) and

I2 =
Ω

N1 × N2 × N3

∑
i

(
˜∂Vloc(ri)

∂usα(q)

)∗(
∂̃ρ(ri)

∂us′β(q)

)
,

where the sum is over all the points of the real space mesh and
N1, N2 and N3 are the dimensions of the mesh.
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d2ionq

Rev. Mod. Phys. 73, 515 (2001).
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dyndia

Finally we need a driver for the diagonalization of the dynamical
matrix. The driver is dyndia. It divides the dynamical matrix by
the masses, it forces it to be exactly Hermitian, it calls the
routine cdiagh to diagonalize it and writes on output the
frequencies. Imaginary frequencies are written with a minus
sign.
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