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Phenomenological theory - I

The dielectric properties of an insulator are described with the
help of three fields: D the electric displacement, E the electric
field inside the solid, and P the polarization. The three are
linked by the equation

D = E + 4πP (1)

(in atomic units). We assume that there is no free charge in the
solid, so the fields obey the equations:

curl E = 0,

div D = 0.
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Phenomenological theory - II

In the phenomenological theory of the response of a polar
insulator to an electric field one introduces two quantities: the
dielectric constant ϵαβ and the Born effective charges Z ∗

sα,β.
Atoms move in the same way in all unit cells (as in a q=0
phonon). The electric enthalpy per cell is a quadratic function:

F ({us},E) = F ({0},0) + 1
2

∑
sα,s′β

∂2F ({us},E)
∂usα∂us′β

usαus′β

+ q
∑
sαβ

usαZ ∗
sα,βEβ − Ω

8π

∑
α,β

ϵαβEαEβ,

where q is the electron charge (a negative number), Ω is the
volume of a unit cell, and s is a sub-lattice index.
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Phenomenological theory - III
Derivation of this function with respect to Eβ gives:

∂F ({us},E)
∂Eβ

= q
∑
sα

usαZ ∗
sα,β − Ω

4π

∑
α,β

ϵαβEα,

that shows that

−4π
Ω

∂F ({us},E)
∂Eβ

= −4πq
Ω

∑
sα

usαZ ∗
sα,β +

∑
α,β

ϵαβEα = Dβ.

Comparison with Eq. 1 gives the polarization:

Pβ = − q
Ω

∑
sα

usαZ ∗
sα,β +

∑
α,β

ϵαβ − δαβ
4π

Eα. (2)
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Phenomenological theory - IV

This equation allows to write the dielectric constant and the
Born effective charges as derivatives of the polarization:

ϵαβ = δαβ + 4π
dPβ

dEα

and
Z ∗

sα,β = −Ω

q
dPβ

dusα
.

Note that in the first case the derivative of the polarization has
to be done at fixed ions, while in the second in zero electric
field. The resulting dielectric constant (sometimes indicated
with ϵ∞αβ) is the one measured at frequencies sufficiently high
that the ions cannot follow and sufficiently small that electrons
cannot be excited.
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Phenomenological theory - IV

We can use F as the potential energy for the ions and obtain
the Hamilton equations of motion:

dusα

dt
=

psα

Ms

dpsα

dt
= −

∑
s′β

∂2F ({us},E)
∂usα∂us′β

us′β − q
∑
β

Z ∗
sα,βEβ.

These equations can be solved for a slowly varying electric field
described by plane wave with a wave-vector q. We will consider
the limit for q → 0.
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Phenomenological theory - V
When q → 0, D and E are almost uniform and we can write
them as: [1]

E(r) = E(q)eiqr,

D(r) = D(q)eiqr.

So the Maxwell equations tell us that:

q × E = 0,

q · D = 0.

Using the versor of q, q̂, we have

E = q̂(q̂ · E).
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Phenomenological theory - VI
q̂ · E is obtained from the equation q̂ · D = 0 that becomes:

−4πq
Ω

∑
sα

usαZ ∗
sα,βq̂β +

∑
α,β

q̂αϵαβq̂β(q̂ · E) = 0.

This gives

E = q̂
4πq
Ω

∑
s′β

∑
γ Z ∗

s′β,γq̂γ∑
α,β q̂αϵαβq̂β

us′β.

Inserting this equation in the equations of motion gives:

Ms
d2usα

dt2 = −
∑
s′β

∂2F ({us},E)
∂usα∂us′β

us′β

− 4πq2

Ω

∑
s′β

∑
δ Z ∗

sα,δq̂δ
∑

γ Z ∗
s′β,γq̂γ∑

α,β q̂αϵαβq̂β
us′β.
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Phenomenological theory - VII

The phenomenological theory therefore predicts that a
non-analytic term, non vanishing only for q = 0, appears in the
dynamical matrix of a polar insulator. This term is non analytic
since it depends on the direction along which q → 0. The non
analytic term is not computed in this form, but having the Born
effective charges and the dielectric constant one can set up the
dynamical matrices of a model system which has the same
behavior. These dynamical matrices are subtracted to the
ab-initio dynamical matrices and only the difference is Fourier
interpolated.
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Electric field in density functional theory - I
In density functional theory, we can simulate an electric field by
adding the potential energy of an electron in an electric field to
the local potential:

Vloc(r) → Vloc(r)− qr · E.

This term inserted in the total energy, together with a term that
accounts for the potential energy of the ions, gives:

EDFT (E) = ẼDFT (E)− q
∫

V
r · En(r)d3r −

∑
I

Zs(RI + uI) · E,

where Zs is ion charge and ẼDFT (E) is the part of the total
energy that does not contain the electric field, but depends
upon it through the wavefunctions and the charge density.
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Electric field in density functional theory - II

In a finite system we could define the polarization of the system
as the total dipole divided by the volume:

P =
q
V

∫
V

rn(r)d3r +
1
V

∑
I

Zs(RI + uI)

and we could write:

EDFT (E) = ẼDFT (E)− VP · E.

In a periodic solid this definition has several problems because
it cannot be calculated as written but requires a more
sophisticated approach based on the Berry phase. Moreover
the electric field potential breaks the translation symmetry of
the solid.
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Electric field in density functional perturbation
theory - I

However we need the derivatives of the polarization and using
this expression for P the dielectric constants and of the Born
effective charges become:

ϵαβ = δαβ +
4πq
V

∫
V

rβ
dn(r)
dEα

d3r

and
Z ∗

sα,β = − 1
Nc

∫
V

rβ
dn(r)
dusα

d3r − Zs

q
δαβ.

We now show that both expressions can be calculated within
one unit cell of the crystal using lattice periodic quantities.
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Electric field in density functional perturbation
theory - II

For small enough electric fields, we can use DFPT to calculate
the response of a solid to the field:[

−1
2
∇2 + VKS(r)− ϵkv

]
Pc
∂ψkv (r)
∂Eα

= −Pc
∂VKS(r)
∂Eα

ψkv (r),

where
∂VKS(r)
∂Eα

= −qrα +
∂VH

∂Eα
+
∂Vxc

∂Eα
.

First we show that:

Pcrαψkv (r) = eikrϕαkv (r),

where ϕαkv (r) is a lattice periodic function.
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Electric field in density functional perturbation
theory - III

Then we write the linear system as:

[Hk − ϵkv ]Pk
c

˜∂ukv (r)
∂Eα

= qϕαkv (r)− Pk
c
∂VHxc(r)
∂Eα

ukv (r),

where

Hk = e−ikr
[
−1

2
∇2 + VKS(r)

]
eikr

and
Pk

c = e−ikrPceikr.

This linear system contains only lattice periodic functions.
Indeed, we have

ϕαkv (r) = e−ikrPcrαψkv (r) =
∑

c

ukc(r)
⟨ψkc | [H, rα] |ψkv ⟩

ϵkc − ϵkv
.
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Electric field in density functional perturbation
theory - IV

Since

⟨ψkc | [H, rα] |ψkv ⟩ = −i⟨ψkc |pα|ψkv ⟩ = −i⟨ukc |(kα + pα)|ukv ⟩,

ϕαkv (r) is the solution of the linear system:

[Hk − ϵkv ]ϕ
α
kv (r) = −iPk

c (kα + pα)ukv (r),

that contains lattice periodic functions only.
With the solution of the linear system Pk

c
˜∂ukv (r)
∂Eα

we can write the
(lattice periodic) charge density induced by an electric field as:

dn(r)
dEα

= 4
∑
kv

u∗
kv (r)P

k
c

˜∂ukv (r)
∂Eα

.
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Electric field in density functional perturbation
theory - V

The dielectric constant becomes:

ϵαβ = δαβ +
16πq

V

∑
kv

∫
V
ψ∗

kv (r)rβPc
∂ψkv (r)
∂Eα

d3r ,

or

ϵαβ = δαβ +
16πq
Ω

∑
kv

∫
Ω
ϕ∗βkv (r)P

k
c

˜∂ukv (r)
∂Eα

d3r ,

while the effective charges are:

Z ∗
sα,β = −4

∑
kv

∫
Ω
ϕ∗βkv (r)P

k
c

˜∂ukv (r)
∂usα

d3r − Zs

q
δαβ.

Andrea Dal Corso Density functional perturbation theory for electric fields



Phenomenological theory
Electric field in density functional theory

Electric field in density functional perturbation theory

Effective changes: alternative expression

The evaluation of the effective charges requires the response to
3 × Nat phonon perturbations at q = 0. We can obtain an
alternative expression by observing that the Hellmann-
Feynman theorem gives:

dEDFT

dEβ
= −VPβ.

Deriving with respect to usα we obtain:

qZ ∗
sα,β = −Ω

dPβ

dusα
=

1
Nc

d2EDFT (E)
dusαdEβ

.

Since the second derivative is symmetric we can first derive
with respect to usα and then with respect to Eβ.
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Effective charges: alternative expression - II
The first derivative of the energy gives:

1
Nc

dEDFT (E)
dusα

=
1

Nc

∫
V

dVloc(r)
dusα

n(r)d3r − ZsEα +
1

Nc

dUII

dusα
,

and taking the derivative with respect to the electric field we
have:

qZ ∗
sα,β =

1
Nc

∫
V

dVloc(r)
dusα

dn(r)
dEβ

d3r − Zsδαβ,

or

qZ ∗
sα,β = 4

∑
kv

∫
Ω

u∗
kv (r)

dVloc(r)
dusα

Pk
c

˜∂ukv (r)
∂Eβ

d3r − Zsδαβ,

that can be evaluated from the responses to the 3 components
of the electric field.
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Relationship with the phenomenological theory

We notice that EDFT (E) does not coincide with the electric
enthalpy F (E) of the phenomenological theory. In addition to
the fact that the first refers to the volume V while the latter is
the energy per cell, the two differ for the free energy of the free
electric field. By defining:

F DFT (E) =
1

Nc
EDFT (E)− Ω

8π
E2,

we have

−4π
Ω

dF DFT (E)
dEβ

= 4πPβ + Eβ = Dβ.

Andrea Dal Corso Density functional perturbation theory for electric fields



Phenomenological theory
Electric field in density functional theory

Electric field in density functional perturbation theory

Relationship with the phenomenological theory -
II

From the Taylor expansion of the free energy we have:

ϵα,β = −4π
Ω

d2F DFT (E)
dEαdEβ

= δαβ − 4π
V

d2EDFT (E)
dEαdEβ

.

Similarly for the effective charges we have:

qZ ∗
sα,β =

d2F DFT (E)
dusαdEβ

=
1

Nc

d2EDFT (E)
dusαdEβ

.

Note: in the literature the quantity ϕαkv (r) is sometimes called
iukα

kv (r) or i ∂ukv (r)
∂kα .

Andrea Dal Corso Density functional perturbation theory for electric fields



Phenomenological theory
Electric field in density functional theory

Electric field in density functional perturbation theory

Bibliography

1 M. Born and K. Huang, Dynamical theory of crystal
lattices, Oxford University Press (1954).

2 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,
Rev. Mod. Phys. 73, 515 (2001).

3 X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).

Andrea Dal Corso Density functional perturbation theory for electric fields


	Phenomenological theory
	Electric field in density functional theory
	Electric field in density functional perturbation theory

