Free electrons density of states

Given the band structure of a solid, $\varepsilon_v(\mathbf{k})$, the electron density of states per unit volume is given by:

$$g(\varepsilon) = 2\sum_{v} \int \frac{d^3k}{(2\pi)^3} \delta(\varepsilon - \varepsilon_v(\mathbf{k})),$$

where the integral is over the first Brillouin zone and the factor 2 accounts for spin degeneracy. In this exercise, we calculate numerically $g(\varepsilon)$ for free electrons discretizing the integral with a uniform mesh of **k** points and approximating $\delta(x)$ with a Gaussian function that depends on a parameter σ : $\tilde{\delta}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$.

1. Modify the program that calculates the free electron energy bands to read in input three integer numbers N_1 , N_2 and N_3 and compute all the points \mathbf{k} in a uniform mesh of $N = N_1 \times N_2 \times N_3$ points:

$$\mathbf{k}_{n_1,n_2,n_3} = \frac{(n_1 - 1)}{N_1} \mathbf{b}_1 + \frac{(n_2 - 1)}{N_2} \mathbf{b}_2 + \frac{(n_3 - 1)}{N_3} \mathbf{b}_3,$$

where \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 are the primitive vectors of the reciprocal lattice, and n_i are integers with $1 \leq n_i \leq N_i$.

- 2. Compute the free electron energy bands in each point \mathbf{k}_{n_1,n_2,n_3} of the mesh given at point 1. Use a simple cubic Bravais lattice.
- 3. After computing the bands for a k point, accumulate in the sum

$$\tilde{g}(\varepsilon,\sigma) = \frac{2}{N} \sum_{n_1,n_2,n_3} \sum_{v} \tilde{\delta}(\varepsilon - \varepsilon_v(\mathbf{k}_{n_1,n_2,n_3}))$$
 (1)

the contribution of this **k** point to the function $\tilde{g}(\varepsilon, \sigma)$. The function $\tilde{g}(\varepsilon, \sigma)$ has to be calculated in a uniform mesh of energy values. Consider only the energies in the interval [0:3] Ry/ $(2\pi/a)^2$. The number of energy points and the parameter σ are two input parameters. Note that σ must be given in the same units of the energy.

4. After the loop over the **k** points, write in a file the energy values and the values of the function $\tilde{g}(\varepsilon, \sigma)$. Plot the function $\tilde{g}(\varepsilon, \sigma)$ and study its dependence on σ and on the mesh size N. Consider only the case $N_1 = N_2 = N_3$.

- 5. Show that $\lim_{\substack{\sigma \to 0 \\ N \to \infty}} \tilde{g}(\varepsilon, \sigma) = \Omega g(\varepsilon)$ where Ω is the volume of a primitive cell of the Bravais lattice.
- 6. Compare the curve obtained at point 4 with the theoretical free electron density of states per unit volume that in states/(Hartree×(a.u.)³) is equal to $g(\varepsilon) = \frac{1}{\pi^2} \sqrt{2\varepsilon}$ for $\varepsilon > 0$ (In this expression ε is in Hartree unit).
- 7. Repeat the exercise using the fcc and bcc Bravais lattices and compare with the result obtained for the simple cubic lattice.