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Description of a solid

Let’s consider a periodic solid. We indicate with

RI = Rµ + ds

the equilibrium positions of the atoms. Rµ indicate the Bravais
lattice vectors and ds the positions of the atoms in one unit cell
(s = 1, . . . ,Nat ).
We take N unit cells with Born-von Karman periodic boundary
conditions. Ω is the volume of one cell and V = NΩ the volume
of the solid.
At time t , each atom is displaced from its equilibrium position.
uI(t) is the displacement of the atom I.
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Within the Born-Oppenheimer adiabatic approximation the
nuclei move in a potential energy given by the total energy of
the electron system calculated (for instance within DFT) at fixed
nuclei. We call

Etot (RI + uI)

this energy. The electrons are assumed to be in the ground
state for each nuclear configuration.
If |uI | is small, we can expand Etot in a Taylor series with
respect to uI . Within the harmonic approximation:

Etot (RI+uI) = Etot (RI)+
∑
Iα

∂Etot

∂uIα
uIα+

1
2

∑
Iα,Jβ

∂2Etot

∂uIα∂uJβ
uIαuJβ+...

where the derivatives are calculated at uI = 0 and α and β
indicate the three Cartesian coordinates.
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Equations of motion
At equilibrium ∂Etot

∂uIα
= 0, so the Hamiltonian of the ions

becomes:

H =
∑
Iα

P2
Iα

2MI
+

1
2

∑
Iα,Jβ

∂2Etot

∂uIα∂uJβ
uIαuJβ

where PI are the momenta of the nuclei and MI their masses.
The classical motion of the nuclei is given by the N × 3× Nat
functions uIα(t). These functions are the solutions of the
Hamilton equations:

u̇Iα =
∂H
∂PIα

ṖIα = − ∂H
∂uIα
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Equations of motion-II

With our Hamiltonian:

u̇Iα =
PIα

MI

ṖIα = −
∑
Jβ

∂2Etot

∂uIα∂uJβ
uJβ

or:

MIüIα = −
∑
Jβ

∂2Etot

∂uIα∂uJβ
uJβ
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The phonon solution

We can search the solution in the form of a phonon. Let’s
introduce a vector q in the first Brillouin zone. For each q we
can write:

uµsα(t) =
1√
Ms

Re
[
usα(q)ei(qRµ−ωqt)

]
where the time dependence is given by simple phase factors
e±iωqt and the displacement of the atoms in each cell identified
by the Bravais lattice Rµ can be obtained from the
displacements of the atoms in one unit cell, for instance the one
that corresponds to Rµ = 0: 1√

Ms
usα(q).
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Characteristic of a phonon - I
A Γ-point phonon has the same displacements in all unit cells
(q = 0):

A zone border phonon with qZB = G/2, where G is a reciprocal
lattice vector, has displacements which repeat periodically
every two unit cells:
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Characteristic of a phonon - II
A phonon with q = qZB/2 has displacements which repeat
every four unit cells:

A phonon at a general wavevector q could be incommensurate
with the underlying lattice:
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The phonon solution-II

Inserting this solution in the equations of motion and writing
I = (µ, s), J = (ν, s′) we obtain an eigenvalue problem for the
3× Nat variables usα(q):

ω2
qusα(q) =

∑
s′β

Dsαs′β(q)us′β(q)

where:

Dsαs′β(q) =
1√

MsMs′

∑
ν

∂2Etot

∂uµsα∂uνs′β
eiq(Rν−Rµ)

is the dynamical matrix of the solid.
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Within DFT the ground state total energy of the solid, calculated
at fixed nuclei, is:

Etot =
∑

i

〈ψi |−
1
2
∇2|ψi〉+

∫
Vloc(r)ρ(r)d3r +EH [ρ]+Exc[ρ]+UII

where ρ(r) is the density of the electron gas (2 sums over
spins):

ρ(r) = 2
∑

i

|ψi(r)|2

and |ψi〉 are the solutions of the Kohn and Sham equations. EH
is the Hartree energy, Exc is the exchange and correlation
energy and UII is the ion-ion interaction. According to the
Hellmann-Feynman theorem, the first order derivative of the
ground state energy with respect to an external parameter is:

∂Etot

∂λ
=

∫
∂Vloc(r)

∂λ
ρ(r)d3r +

∂UII

∂λ

Andrea Dal Corso Density functional perturbation theory



Crystal lattice dynamics: phonons
Density functional perturbation theory

Dynamical matrix at finite q

Deriving with respect to a second parameter µ:

∂2Etot

∂µ∂λ
=

∫
∂2Vloc(r)

∂µ∂λ
ρ(r)d3r +

∂2UII

∂µ∂λ

+

∫
∂Vloc(r)

∂λ

∂ρ(r)

∂µ
d3r

So the new quantity that we need to calculate is the charge
density induced, at first order, by the perturbation:

∂ρ(r)

∂µ
= 2

∑
i

[
∂ψ∗i (r)

∂µ
ψi(r) + ψ∗i (r)

∂ψi(r)

∂µ

]
To fix the ideas we can think that λ = uµsα and µ = uνs′β
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The wavefunctions obey the following equation:[
−1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r)

where VKS = Vloc(r) + VH(r) + Vxc(r). VKS(r, µ) depends on µ
so that also ψi(r, µ), and εi(µ) depend on µ. We can expand
these quantities in a Taylor series:

VKS(r, µ) = VKS(r, µ = 0) +
∂VKS(r)

∂µ
µ+ . . .

ψi(r, µ) = ψi(r, µ = 0) +
∂ψi(r)

∂µ
µ+ . . .

εi(µ) = εi(µ = 0) +
∂εi

∂µ
µ+ . . .
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Inserting these equations and keeping only the first order in µ
we obtain:[

−1
2
∇2 + VKS(r)− εi

]
∂ψi(r)

∂µ
= −∂VKS

∂µ
ψi(r) +

∂εi

∂µ
ψi(r)

where: ∂VKS
∂µ = ∂Vloc

∂µ + ∂VH
∂µ + ∂Vxc

∂µ and

∂VH

∂µ
=

∫
1

|r− r′|
∂ρ(r′)
∂µ

d3r ′

∂Vxc

∂µ
=

dVxc

dρ
∂ρ(r)

∂µ

depend self-consistently on the charge density induced by the
perturbation.
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The induced charge density depends only on Pc
∂ψi
∂µ where

Pc = 1− Pv is the projector on the conduction bands and
Pv =

∑
i |ψi〉〈ψi | is the projector on the valence bands. In fact:

∂ρ(r)

∂µ
= 2

∑
i

[(
Pc
∂ψi(r)

∂µ

)∗
ψi(r) + ψ∗i (r)Pc

∂ψi(r)

∂µ

]
+ 2

∑
i

[(
Pv
∂ψi(r)

∂µ

)∗
ψi(r) + ψ∗i (r)Pv

∂ψi(r)

∂µ

]

∂ρ(r)

∂µ
= 2

∑
i

[(
Pc
∂ψi(r)

∂µ

)∗
ψi(r) + ψ∗i (r)Pc

∂ψi(r)

∂µ

]
+ 2

∑
ij

ψ∗j (r)ψi(r)

(
〈∂ψi

∂µ
|ψj〉+ 〈ψi |

∂ψj

∂µ
〉
)
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DFPT

Therefore we can solve the self-consistent linear system:[
−1

2
∇2 + VKS(r)− εi

]
Pc
∂ψi(r)

∂µ
= −Pc

∂VKS

∂µ
ψi(r)

where
∂VKS

∂µ
=
∂Vloc

∂µ
+
∂VH

∂µ
+
∂Vxc

∂µ

and

∂ρ(r)

∂µ
= 2

∑
i

[(
Pc
∂ψi(r)

∂µ

)∗
ψi(r) + ψ∗i (r)Pc

∂ψi(r)

∂µ

]
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Dynamical matrix at finite q - I

The dynamical matrix is:

Dsαs′β(q) =
1√

MsMs′

∑
ν

e−iqRµ
∂2Etot

∂uµsα∂uνs′β
eiqRν .

Inserting the expression of the second derivative of the total
energy we have (neglecting the ion-ion term):

Dsαs′β(q) =
1√

MsMs′

[
1
N

∫
V

d3r
∑
µν

(
e−iqRµ

∂2Vloc(r)

∂uµsα∂uνs′β
eiqRν

)
ρ(r)

+
1
N

∫
V

d3r

(∑
µ

e−iqRµ
∂Vloc(r)

∂uµsα

)(∑
ν

∂ρ(r)

∂uνs′β
eiqRν

)]
+ DI,I

sαs′β(q).

We now show that these integrals can be done over Ω.
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Dynamical matrix at finite q - II

Defining:

∂2Vloc(r)

∂u∗sα(q)∂us′β(q)
=
∑
µν

e−iqRµ
∂2Vloc(r)

∂uµsα∂uνs′β
eiqRν

we can show (see below) that ∂2Vloc(r)
∂u∗sα(q)∂us′β(q) is a lattice-periodic

function. Then we can define

∂ρ(r)

∂us′β(q)
=
∑
ν

∂ρ(r)

∂uνs′β
eiqRν

and show that ∂ρ(r)
∂us′β(q) = eiqr ∂̃ρ(r)

∂us′β(q) , where ∂̃ρ(r)
∂us′β(q) is a

lattice-periodic function.
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Dynamical matrix at finite q - III
In the same manner, by defining

∂Vloc(r)

∂usα(q)
=
∑
µ

∂Vloc(r)

∂uµsα
eiqRµ

and showing that ∂Vloc(r)
∂usα(q) = eiqr ˜∂Vloc(r)

∂usα(q) , where
˜∂Vloc(r)

∂usα(q) is a
lattice-periodic function, we can write the dynamical matrix at
finite q as:

Dsαs′β(q) =
1√

MsMs′

[∫
Ω

d3r
∂2Vloc(r)

∂u∗sα(q)∂us′β(q)
ρ(r)

+

∫
Ω

d3r

(
˜∂Vloc(r)

∂usα(q)

)∗
∂̃ρ(r)

∂us′β(q)

]
+ DI,I

sαs′β(q).
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Dynamical matrix at finite q - IV

∂2Vloc(r)

∂u∗sα(q)∂us′β(q)
=
∑
µν

e−iqRµ
∂2Vloc(r)

∂uµsα∂uνs′β
eiqRν

is a lattice-periodic function because the local potential can be
written as Vloc(r) =

∑
µ

∑
s vs

loc(r− Rµ − ds − uµs), and
∂2Vloc(r)

∂uµsα∂uνs′β
vanishes if µ 6= ν or s 6= s′. Since µ = ν the two

phase factors cancel, and we remain with a lattice-periodic
function:

∂2Vloc(r)

∂u∗sα(q)∂us′β(q)
= δs,s′

∑
µ

∂2vs
loc(r− Rµ − ds − uµs)

∂uµsα∂uµsβ

∣∣∣∣
u=0

.
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Dynamical matrix at finite q - V

In order to show that:

∂ρ(r)

∂us′β(q)
=
∑
ν

∂ρ(r)

∂uνs′β
eiqRν = eiqr ∂̃ρ(r)

∂us′β(q)

where ∂̃ρ(r)
∂us′β(q) is a lattice-periodic function, we can calculate the

Fourier transform of ∂ρ(r)
∂us′β(q) and show that it is different from

zero only at vectors q + G, where G is a reciprocal lattice
vector. We have

∂ρ

∂us′β(q)
(k) =

1
V

∫
V

d3r e−ikr
∑
ν

∂ρ(r)

∂uνs′β
eiqRν .
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Dynamical matrix at finite q - VI
Due to the translational invariance of the solid, if we displace
the atom s′ in the direction β in the cell ν = 0 and probe the
charge at the point r, or we displace in the same direction the
atom s′ in the cell ν and probe the charge at the point r + Rν ,
we should find the same value. Therefore

∂ρ(r + Rν)

∂uνs′β
=

∂ρ(r)

∂u0s′β

or, taking r = r′ − Rν , we have ∂ρ(r′)
∂uνs′β

= ∂ρ(r′−Rν)
∂u0s′β

which can be
inserted in the expression of the Fourier transform to give:

∂ρ

∂us′β(q)
(k) =

1
V

∫
V

d3r e−ikr
∑
ν

∂ρ(r− Rν)

∂u0s′β
eiqRν .
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Dynamical matrix at finite q - VII

Changing variable in the integral setting r′ = r− Rν , we have

∂ρ

∂us′β(q)
(k) =

1
V

∫
V

d3r ′e−ikr′
∑
ν

∂ρ(r′)
∂u0s′β

ei(q−k)Rν .

The sum over ν:
∑

ν ei(q−k)Rν gives N if k = q + G and 0
otherwise. Hence ∂ρ

∂us′β(q) (k) is non-vanishing only at
k = q + G. It follows that:

∂ρ(r)

∂us′β(q)
= eiqr

∑
G

∂ρ

∂us′β(q)
(q + G)eiGr

and the sum over G gives a lattice-periodic function.
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Properties of the wavefunctions: Bloch theorem
According to the Bloch theorem, the solution of the Kohn and
Sham equations in a periodic potential VKS(r + Rµ) = VKS(r):[

−1
2
∇2 + VKS(r)

]
ψkv (r) = εkvψkv (r)

can be indexed by a k-vector in the first Brillouin zone and by a
band index v , and:

ψkv (r + Rµ) = eikRµψkv (r),

ψkv (r) = eikrukv (r),

where ukv (r) is a lattice-periodic function. By time reversal
symmetry, we also have:

ψ∗−kv (r) = ψkv (r).
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Charge density response at finite q - I
The lattice-periodic part of the induced charge density at finite
q can be calculated as follows. We have:

∂ρ(r)

∂us′β(q)
= 2

∑
kv

[(
Pc
∑
ν

∂ψkv (r)

∂uνs′β
e−iqRν

)∗
ψkv (r)

+ ψ∗kv (r)Pc

(∑
ν

∂ψkv (r)

∂uνs′β
eiqRν

)]
.

Changing k with −k in the first term, using time reversal
symmetry ψ−kv (r) = ψ∗kv (r), and defining:

∂ψkv (r)

∂us′β(q)
=
∑
ν

∂ψkv (r)

∂uνs′β
eiqRν ,
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Charge density response at finite q - II

we have:
∂ρ(r)

∂us′β(q)
= 4

∑
kv

ψ∗kv (r)Pc
∂ψkv (r)

∂us′β(q)
.

We can now use the following identities to extract the periodic
part of the induced charge density:

∂ψkv (r)

∂us′β(q)
= eikr ∂ukv (r)

∂us′β(q)
= eikr

∑
ν

∂ukv (r)

∂uνs′β
eiqRν

= ei(k+q)r ∂̃ukv (r)

∂us′β(q)
,

where ∂̃ukv (r)
∂us′β(q) is a lattice-periodic function.
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Charge density response at finite q - III
The projector in the conduction band Pc = 1− Pv is:

Pc =
∑
k′c

ψk′c(r)ψ∗k′c(r′)

=
∑
k′c

eik′ruk′c(r)u∗k′c(r′)e−ik′r′

=
∑
k′

eik′rPk′
c e−ik′r′ ,

but only the term k′ = k + q gives a non zero contribution when
applied to ∂ψkv (r)

∂us′β(q) . We have therefore:

∂ρ(r)

∂us′β(q)
= eiqr4

∑
kv

u∗kv (r)Pk+q
c

∂̃ukv (r)

∂us′β(q)
,
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Charge density response at finite q - IV

so the lattice-periodic part of the induced charge density,
written in terms of lattice-periodic functions is:

∂̃ρ(r)

∂us′β(q)
= 4

∑
kv

u∗kv (r)Pk+q
c

∂̃ukv (r)

∂us′β(q)
.
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First-order derivative of the wavefunctions - I
∂̃ukv (r)
∂us′β(q) is a lattice-periodic function which can be calculated
with the following considerations. From first order perturbation
theory we get, for each displacement uνs′β, the equation:[
−1

2
∇2 + VKS(r)− εkv

]
Pc
∂ψkv (r)

∂uνs′β
= −Pc

∂VKS(r)

∂uνs′β
ψkv (r).

Multiplying every equation by eiqRν and summing on ν, we get:[
−1

2
∇2 + VKS(r)− εkv

]
Pc

∂ψkv (r)

∂us′β(q)

= −Pc
∂VKS(r)

∂us′β(q)
ψkv (r).

Andrea Dal Corso Density functional perturbation theory



Crystal lattice dynamics: phonons
Density functional perturbation theory

Dynamical matrix at finite q

First-order derivative of the wavefunctions - II

Using the translational invariance of the solid we can write

∂VKS(r)

∂us′β(q)
=
∑
ν

∂VKS(r)

∂uνs′β
eiqRν = eiqr ∂̃V KS(r)

∂us′β(q)
,

where ∂̃V KS(r)
∂us′β(q) is a lattice-periodic function. The right-hand side

of the linear system becomes:

−ei(k+q)rPk+q
c

∂̃V KS(r)

∂us′β(q)
ukv (r).
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First-order derivative of the wavefunctions - III

In the left-hand side we have

Pc
∑
ν

∂ψkv (r)

∂uνs′β
eiqRν = ei(k+q)rPk+q

c
∂̃ukv (r)

∂us′β(q)
,

and defining

Hk+q = e−i(k+q)r
[
−1

2
∇2 + VKS(r)

]
ei(k+q)r,

we obtain the linear system:[
Hk+q − εkv

]
Pk+q

c
∂̃ukv (r)

∂us′β(q)
= −Pk+q

c
∂̃V KS(r)

∂us′β(q)
ukv (r).
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Linear response: the self-consistent potential - I
The lattice-periodic component of the self-consistent potential
can be obtained with the same techniques seen above. We
have:

∂VKS(r)

∂uνs′β
=
∂Vloc(r)

∂uνs′β
+

∫
d3r ′

1
|r− r′|

∂ρ(r′)
∂uνs′β

+
∂Vxc

∂ρ

∂ρ(r)

∂uνs′β
.

Multiplying by eiqRν and summing on ν, we obtain:

∂VKS(r)

∂us′β(q)
=

∂Vloc(r)

∂us′β(q)
+

∫
d3r ′

1
|r− r′|

∂ρ(r′)
∂us′β(q)

+
∂Vxc

∂ρ

∂ρ(r)

∂us′β(q)
.
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Linear response: the self-consistent potential - II

Keeping only the lattice periodic parts gives:

eiqr ∂̃V KS(r)

∂us′β(q)
= eiqr ∂̃V loc(r)

∂us′β(q)
+

∫
d3r ′

1
|r− r′|

eiqr′ ∂̃ρ(r′)
∂us′β(q)

+
∂Vxc

∂ρ
eiqr ∂̃ρ(r)

∂us′β(q)
,

or equivalently:

∂̃V KS(r)

∂us′β(q)
=
∂̃V loc(r)

∂us′β(q)
+

∫
d3r ′

1
|r− r′|

eiq(r′−r) ∂̃ρ(r′)
∂us′β(q)

+
∂Vxc(r)

∂ρ

∂̃ρ(r)

∂us′β(q)
.
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