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Description of a solid

Let’s consider a periodic solid. We indicate with
R[ == R# + ds

the equilibrium positions of the atoms. R,, indicate the Bravais
lattice vectors and d the positions of the atoms in one unit cell
(3:1;---7Nat)-

We take N unit cells with Born-von Karman periodic boundary
conditions. € is the volume of one cell and V = NQ the volume
of the solid.

At time t, each atom is displaced from its equilibrium position.
u,(t) is the displacement of the atom /.
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Within the Born-Oppenheimer adiabatic approximation the
nuclei move in a potential energy given by the total energy of
the electron system calculated (for instance within DFT) at fixed
nuclei. We call

Etot(R/ + u))

this energy. The electrons are assumed to be in the ground
state for each nuclear configuration.

If |u,| is small, we can expand E;; in a Taylor series with
respect to u,. Within the harmonic approximation:

8El‘0t

Ewot(Ri+u;) = Etot(R)) +Z U Uyst...

2 7 8u,a6u

where the derivatives are calculated at u; = 0 and o and
indicate the three Cartesian coordinates.
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Equations of motion

Jait = 0, so the Hamiltonian of the ions

At equilibrium 5
becomes:

P% 8 E[’ot
H= %; 2M 2 Z 8u,a8uJ WiallJs

where P, are the momenta of the nuclei and M, their masses.
The classical motion of the nuclei is given by the N x 3 x Ny
functions u,,(t). These functions are the solutions of the
Hamilton equations:

4 _ OH
lo - 8P/a
: oH
P. = -
la 3U/a
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Equations of motion-I|

With our Hamiltonian:

u P/a
lOé M/
9?Eqor
Pla = E 8
75 GU/Q6UJ5

or:
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The phonon solution

We can search the solution in the form of a phonon. Let’s
introduce a vector q in the first Brillouin zone. For each q we
can write:

Uusa(t) = ——Re |Ugo(q)e/(@Rn—wad)

1
v Ms
where the time dependence is given by simple phase factors
e*wal and the displacement of the atoms in each cell identified
by the Bravais lattice R,, can be obtained from the
displacements of the atoms in one unit cell, for instance the one

that corresponds to R, = 0: ﬁUSa(q)-
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Characteristic of a phonon - |

A T -point phonon has the same displacements in all unit cells
(q=0):

R 1 1 1 1 1 =0
Eren B G B e
l—2 ]

A zone border phonon with qzz = G/2, where G is a reciprocal
lattice vector, has displacements which repeat periodically
every two unit cells:

ZHL

igR _
eq 1 -1 1 -1 10= >

&9 9 .—»7—»4040 e &9
L—»L—»
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Characteristic of a phonon - I

A phonon with q = qz5/2 has displacements which repeat
every four unit cells:

21

R 1 i -1 - 1 0= %

A phonon at a general wavevector g could be incommensurate
with the underlying lattice:

iZV2 inv2 iSoo  i2mb q_@\iz
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The phonon solution-ll

Inserting this solution in the equations of motion and writing
I=(u,s), J = (v,s") we obtain an eigenvalue problem for the
3 x Ng variables us,(q):

wUsa(d) = > _ Dsas's(a)us5(a)
s'B

where:

1 9?Eqor '
D oS’ = Iq(RU_RH)
sas'3(0) VMsMy £ au#saﬁuys,ﬂe

is the dynamical matrix of the solid.
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Within DFT the ground state total energy of the solid, calculated
at fixed nuclei, is:

B = Y (0~ 5 V2161 + [ Vil D)o 0)r+ Enlo] + Exclel+ Uy

where p(r) is the density of the electron gas (2 sums over

spins):
plr) =23 [oi(r) P

and |¢;) are the solutions of the Kohn and Sham equations. Ey
is the Hartree energy, Exc is the exchange and correlation
energy and Uy, is the ion-ion interaction. According to the
Hellmann-Feynman theorem, the first order derivative of the
ground state energy with respect to an external parameter is:

OEtot . aVloc(r) LU//
o oA oA

p(r)d®r +
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Deriving with respect to a second parameter p:

2 2 2
0 El‘Ot _ 0 VIOC(r)p(r)d3r+ 0 UII
OO Ao OO
OVioc(r) Op(r) 3
+ B\ o a’r

So the new quantity that we need to calculate is the charge
density induced, at first order, by the perturbation:

E Y 250+ i 20

To fix the ideas we can think that A = u,s, and . = U, g5
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The wavefunctions obey the following equation:

{_1v2 + VKs(r)] pi(r) = eipi(r)

2
where Vg = Vipe(r) + VH(r) + Vie(r). Vks(r, 1) depends on p
so that also ;(r, ), and ¢;(x) depend on u. We can expand
these quantities in a Taylor series:

oV,
Vis(r,pn) = Vks(r,u=0)+ gz(r)ﬁH-m
pi(r)
ill, = Yi(rbp=0)+—F—
¥i(r, p) Yi(r, p=0) + o M
Oe;
eilp) = Ei(u:0)+£u+---
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Inserting these equations and keeping only the first order in
we obtain:

1oy Vks(r) —81} ouilr) _ OVsz( r)+ 85,

5 o o 1/11( )

Where aVKS — 8\//00 + 8VH + 88VXC and

ou r—r| ou dar
8VXC . dVXC 0/)([')
o dp Opu

depend self-consistently on the charge density induced by the
perturbation.
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The induced charge density depends only on Pcaqﬁ' where
P. =1 — P, is the projector on the conduction bands and
Py =>";1vi)(¢i| is the projector on the valence bands. In fact:

20 - 22/3:(/30“’12’/5”) ule) + 0 0P

+ 23| (R2D) v+ simp 250

00(1) = ZZ _<Pcazg;£r)>*wi(r) + wf(r)Pcaqu/Er)-

X i 8¢/
+ 2> rmwin) (S e + Wil =)
) ( / op )
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DFPT

Therefore we can solve the self-consistent linear system:

1 oYi(r aV,
52 Vi) ai| P2 P TS
where
8VKS _ aVloc + OVy + OVxe
ou  Op ou o
and

—ZZIK a““) MM+¢ﬁna&gp
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Dynamical matrix at finite q - |
The dynamical matrix is:

>
—igR, _ 9"Eot  _jar,

1
Dsas’ﬁ(q) - W ; 8uu3a(9uys/@

Inserting the expression of the second derivative of the total
energy we have (neglecting the ion-ion term):

_ 02 Vioe(r)
3 iqR,, loc iqR.,
/ d rZ ( au;tSaauuS/ﬁe ) p(r)

1 3 —iqR,, OVioe(r) pULY
N /\/ ar <; © auusa Z auus/

We now show that these integrals can be done over Q.

Dsasp(q) =

+ D/as [j(q)
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Dynamical matrix at finite q - Il

Defining:
a VIOC /qR a ‘//OC( ) iqR
e T €&
8usa(q)8u3/5 Z OU,500U,s3
82 Vige(r)

we can show (see below) that T (@) 5(a) is a lattice-periodic
function. Then we can define

Z "
8U5/5 Bu,,s/g

30(") ar 8p(")
and show that 5 @ = = ¢ (@)

lattice-periodic function.

Ip(r)
where By (@) isa
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Dynamical matrix at finite q - llI

In the same manner, by defining

9 Vioc(r) Z A Vioc(r) olaR.

ausoz(q auﬂsa
and showing that av"’c((’)) = e’q’dv"’”((;)), where % is a
lattice-periodic function, we can write the dynamical matrix at
finite q as:

o D2 V(1)
Doasrel) = MSMS,[/strauza<q)auw(q>’”)
5. [ Viee(r)\" Jp(r)
* /er<au3a<q>) dugs(q)
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Dynamical matrix at finite q - IV

P Vio(r) 3 gk, 9% Vioe(r) claR,
8u§a(q)au5’ﬂ(q) auusaauus’ﬁ

is a lattice-periodic function because the local potential can be
written as Vieo(r) = >_,, > Vioe(r — R, — ds — uy,s), and

92 Vioe (1) ; ; / ; _
T T vanishes if u # v or s # s'. Since . = v the two

phase factors cancel, and we remain with a lattice-periodic
function:

92 Vioo(r) = sq Z 82V/Soc(r — R, —ds—uy) .
3U§a(Q)aUs’ﬁ(Q) ’ auusaauusﬁ u=0
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Dynamical matrix at finite q - V

In order to show that:

dp(r) _ dp(r) gdRy _ giar 5P(r)

duss(q) — OUyg3 dugs(q)

where 88"(’() ) is a lattice-periodic function, we can calculate the

Fourier transform of 8p(r) and show that it is different from
r5(d)

zero only at vectors q + G where G is a reciprocal lattice
vector. We have

d3r e —ikr /qR )
8“3’6 / Z 8uus’,8
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Dynamical matrix at finite q - VI

Due to the translational invariance of the solid, if we displace
the atom s’ in the direction /3 in the cell v = 0 and probe the
charge at the point r, or we displace in the same direction the
atom s’ in the cell v and probe the charge at the pointr + R,
we should find the same value. Therefore

Op(r+Ry) _ 9p(r)
8u,,s/g aUOS/B

or, taking r =¥ — R,,, we have gf(r) g;o . v) which can be

z/S/

inserted in the expression of the Fourler transform to give:

/ Pre /kr dp(r—R )quR

3Us/5 6u03/ﬁ
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Dynamical matrix at finite q - VII

Changing variable in the integral setting ' = r — R,,, we have

d3 ! o—iKr’ q k)R
8us/ﬁ V/ Z 6‘u051ﬂ

The sumover v: 5 e’ 9-KR. gives Nifk = q+ G and 0
otherwise. Hence 3u (k) is non-vanishing only at
k =q+ G. It follows that

ap _ glar iGr
s 5(q) Z 8u3/5 q +G)e

and the sum over G gives a lattice-periodic function.
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Properties of the wavefunctions: Bloch theorem

According to the Bloch theorem, the solution of the Kohn and
Sham equations in a periodic potential Vks(r + R,) = Vks(r):

|:_;V2 + VKs(I'):| ?f)kv(r) = Ekvq/)kV(r)

can be indexed by a k-vector in the first Brillouin zone and by a
band index v, and:

Ukv(r+Ry) = eikR”T/)kv(r)a
Yk (r) = € i (r),
where uy,(r) is a lattice-periodic function. By time reversal
symmetry, we also have:

kv (1) = P ().
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Charge density response at finite q - |

The lattice-periodic part of the induced charge density at finite
q can be calculated as follows. We have:

8p(r) _ awkv 7/ R,
Dusn(@) 22 <PCZ 8uys/ﬁ q ) Yy (F)
Oy o
+ Yy (r) (Z aiﬁkys(/; qRV) ] :

Changing k with —k in the first term, using time reversal
symmetry _, (r) = ¥, (r), and defining:

87/ka 8¢kv :qR
auslg 8u,,s/5
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Charge density response at finite q - Il

we have:
(9/)(!' 4Z¢ P 8wkv(r)
dus5(q kAl cﬁus’ﬁ(q)

We can now use the following identities to extract the periodic
part of the induced charge density:

Mk (1) — glkr AUy (I) _ /krz Oy (r) gldRy
dugp(q) duss(q ouyg g
_ ikt aUkv(")
dugp(a)’
where 8““”((03) is a lattice-periodic function.
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Charge density response at finite q - Il
The projector in the conduction band P, =1 — Py is:

P, = Zwk/c(r)wm(r’)

k'c

k'c

ik'r pk’ ,—ik'r’
= > eM'PEe T,
kl

but only the term k' = k + q gives a non zero contribution when
8"Zf’kv(r)

applied to By (@) We have therefore:
=4y "y (nPy 0L
8Us/5 Z ¢ 8Us/5(Q)
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Charge density response at finite q - IV

so the lattice-periodic part of the induced charge density,
written in terms of lattice-periodic functions is:

p(r) k+q OUiy(r)
— =4 NP ——
8Us//3 q Z kv ¢ 8us’ﬁ(‘-‘)
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First-order derivative of the wavefunctions - |

66;”";((2) is a lattice-periodic function which can be calculated
s/
with the following considerations. From first order perturbation

theory we get, for each displacement u, ¢ 3, the equation:

1 B Mwv(r) 5 OViks(r)
|: 2V + VKS(I') 6kv:| P, 8u,,s/g =P, 8uys/5 lﬁkv(r).
Multiplying every equation by e 4R~ and summing on v, we get:
T2 B Mk (r)
[ év + Vks(r) 6kv] Pc 78113//@((])
9 Vis(r)
- -P
CﬁUs/ﬁ(Q)ka( )
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First-order derivative of the wavefunctions - Il

Using the translational invariance of the solid we can write

9 Viks(r) OViks(F) jiar, _ giar OVks(r) Vs(r)
8Uslﬁ C| 8Ul,s/ﬁ 8U3/5(C|)

where 8‘/’(5((;)) is a lattice-periodic function. The right-hand side
of the Ilnear system becomes:

(k+q)rPk+q 9V is(r)

() "
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First-order derivative of the wavefunctions - Ili
In the left-hand side we have

awkv /qRV _ el(k+q)rPk+q aukv( )
auus’ﬂ 8u3/5(q)

and defining
H&+a = g-i(k+a)r [—;VZ + va(r)] elk+a)r
we obtain the linear system:

[Hk“‘ ]P"+q Jue(r) _  pkia9Vis(r)

Uy ().
© dugs@ ~ ° ugs(a)
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Linear response: the self-consistent potential - |

The lattice-periodic component of the self-consistent potential
can be obtained with the same techniques seen above. We
have:

OViks(r)  0Vipc(r) / 3, 1 0p(r)
= + d°r
8ul,s/5 8ul,sfg \r — I',‘ 6u1,3/5
OVie Dp(r)
8p 8ul/S/,3‘

Multiplying by e9R and summing on v, we obtain:

OViks(r) _ OVioe(r) N /d3r’ 1 9p(r)
dugs(d)  dusp(a) r =1 dugs(a)
OVxe Op(r)

dp Ougp(q)
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Linear response: the self-consistent potential - Il

Keeping only the lattice periodic parts gives:

j a~VKS(r) j aN\//oc(r) 1 - 8~p(r/)
g —— "2 L — gldh — 2L /d3r/ glar
dug5(q) dus () r—r]" Ougs(q)
OVxe glar dp(r)
Op ~ Ougp(q)’

_|_

or equivalently:

OVis(r)  9Viee(r) / 3, | iqr—r Op(r)
= + [ dr ghar-n 15/
dugp(a@)  Ougs(q)

r—r| dus5(q)
OVxo(r) Ip(r)
dp  Ougp(q)
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