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A periodic solid

We study a periodic solid indicating with

RI = Rµ + ds

the equilibrium positions of the atoms. Rµ label the Bravais
lattice vectors and ds the positions of the atoms in one unit cell
(s = 1, . . . ,Nat).
We take N unit cells with Born-von Karman periodic boundary
conditions. Ω is the volume of one cell and V = NΩ the volume
of the solid.
At time t , each atom is displaced from its equilibrium position.
uI(t) is the displacement of the atom I.
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A phonon

In a phonon of wave-vector q the displacement of the atom
I = (µ, s) is:

uµsα(t) = Re
(

1√
Ms

usα(q)ei(qRµ−ωqt)
)
,

where the time dependence is given by a complex phase e±iωqt

and α indicates the cartesian coodinate. The displacements of
the atoms in a cell identified by the Bravais lattice Rµ can be
obtained from the displacements of the atoms in a chosen unit
cell, for instance the one identified by Rµ = 0: 1√

Ms
usα(q).
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Characteristic of a phonon - I
A Γ-point phonon has the same displacements in all unit cells
(q = 0):

A zone border phonon with qZB = G/2, where G is a reciprocal
lattice vector, has displacements which repeat periodically
every two unit cells:
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Characteristic of a phonon - II
A phonon with q = qZB/2 has displacements which repeat
every four unit cells:

A phonon at a general wavevector q could be incommensurate
with the underlying lattice:
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Dynamical matrix at finite q - I
The dynamical matrix is:

Dsαs′β(q) =
1√

MsMs′

∑
ν

e−iqRµ
∂2Etot

∂uµsα∂uνs′β

∣∣∣∣
u=0

eiqRν .

Inserting the expression of the second derivative of the total
energy we have (neglecting the ion-ion term):

Dsαs′β(q) =
1√

MsMs′

[
1
N

∫
V

d3r
∑
µν

(
e−iqRµ

∂2Vloc(r)
∂uµsα∂uνs′β

eiqRν

)
ρ(r)

+
1
N

∫
V

d3r

(∑
µ

e−iqRµ
∂Vloc(r)
∂uµsα

)(∑
ν

∂ρ(r)
∂uνs′β

eiqRν

)]
.

We now show that these integrals can be done over Ω.
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Dynamical matrix at finite q - II

Defining:

∂2Vloc(r)
∂u∗sα(q)∂us′β(q)

=
1√

MsMs′

∑
µν

e−iqRµ
∂2Vloc(r)

∂uµsα∂uνs′β
eiqRν

we can show (see below) that ∂2Vloc(r)
∂u∗

sα(q)∂us′β(q) is a lattice-periodic
function. Then we can define

∂ρ(r)
∂us′β(q)

=
1√
Ms′

∑
ν

∂ρ(r)
∂uνs′β

eiqRν

and show that ∂ρ(r)
∂us′β(q) = eiqr ∂̃ρ(r)

∂us′β(q) , where ∂̃ρ(r)
∂us′β(q) is a

lattice-periodic function.

Andrea Dal Corso Density functional perturbation theory



Phonons: a short description
Dynamical matrix at finite q

Density functional perturbation theory at finite q
Codes for phonon dispersions

Dynamical matrix at finite q - III
In the same manner, by defining(

∂Vloc(r)
∂usα(q)

)∗
=

1√
Ms

∑
µ

e−iqRµ
∂Vloc(r)
∂uµsα

and showing that ∂Vloc(r)
∂usα(q) = eiqr ˜∂Vloc(r)

∂usα(q) , where
˜∂Vloc(r)

∂usα(q) is a
lattice-periodic function, we can write the dynamical matrix at
finite q as:

Dsαs′β(q) =

∫
Ω

d3r
∂2Vloc(r)

∂u∗sα(q)∂us′β(q)
ρ(r)

+

∫
Ω

d3r

(
˜∂Vloc(r)

∂usα(q)

)∗(
∂̃ρ(r)

∂us′β(q)

)
.
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Dynamical matrix at finite q - IV

∂2Vloc(r)
∂u∗sα(q)∂us′β(q)

=
1√

MsMs′

∑
µν

e−iqRµ
∂2Vloc(r)

∂uµsα∂uνs′β

∣∣∣∣
u=0

eiqRν

is a lattice-periodic function because the local potential can be
written as Vloc(r) =

∑
µ

∑
s vs

loc(r− Rµ − ds − uµs), and
∂2Vloc(r)

∂uµsα∂uνs′β
vanishes if µ 6= ν or s 6= s′. Since µ = ν the two

phase factors simplify, and we remain with a lattice-periodic
function:

∂2Vloc(r)
∂u∗sα(q)∂us′β(q)

=
δs,s′

Ms

∑
µ

∂2vs
loc(r− Rµ − ds − uµs)

∂uµsα∂uµsβ

∣∣∣∣
u=0

.

Andrea Dal Corso Density functional perturbation theory



Phonons: a short description
Dynamical matrix at finite q

Density functional perturbation theory at finite q
Codes for phonon dispersions

Dynamical matrix at finite q - V

In order to show that:

∂ρ(r)
∂us′β(q)

=
1√
Ms′

∑
ν

∂ρ(r)
∂uνs′β

eiqRν = eiqr ∂̃ρ(r)
∂us′β(q)

where ∂̃ρ(r)
∂us′β(q) is a lattice-periodic function, we can calculate the

Fourier transform of ∂ρ(r)
∂us′β(q) and show that it is different from

zero only at vectors q + G, where G is a reciprocal lattice
vector. We have

∂ρ

∂us′β(q)
(k) =

1
V

∫
V

d3r e−ikr 1√
Ms′

∑
ν

∂ρ(r)
∂uνs′β

eiqRν .
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Dynamical matrix at finite q - VI
Due to the translational invariance of the solid, if we displace
the atom s′ in the direction β in the cell ν = 0 and probe the
charge at the point r, or we displace in the same direction the
atom s′ in the cell ν and probe the charge at the point r + Rν ,
we should find the same value. Therefore

∂ρ(r + Rν)

∂uνs′β
=

∂ρ(r)
∂u0s′β

or, taking r = r′ − Rν , we have ∂ρ(r′)
∂uνs′β

= ∂ρ(r′−Rν)
∂u0s′β

which can be
inserted in the expression of the Fourier transform to give:

∂ρ

∂us′β(q)
(k) =

1
V

∫
V

d3r e−ikr 1√
Ms′

∑
ν

∂ρ(r− Rν)

∂u0s′β
eiqRν .
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Dynamical matrix at finite q - VII

Changing variable in the integral and setting r′ = r− Rν , we
have

∂ρ

∂us′β(q)
(k) =

1
V

∫
V

d3r ′e−ikr′ 1√
Ms′

∑
ν

∂ρ(r′)
∂u0s′β

ei(q−k)Rν .

The sum over ν:
∑

ν ei(q−k)Rν gives N if k = q + G and 0
otherwise. Hence ∂ρ

∂us′β(q)(k) is non-vanishing only at
k = q + G. It follows that:

∂ρ(r)
∂us′β(q)

= eiqr
∑

G

∂ρ

∂us′β(q)
(q + G)eiGr

and the sum over G gives a lattice-periodic function.
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Charge density response at finite q
Linear response: wavefunctions
Linear response: the self-consistent potential

Properties of the wavefunctions: Bloch theorem
According to the Bloch theorem, the solution of the Kohn and
Sham equations in a periodic potential VKS(r + Rµ) = VKS(r):[

−1
2
∇2 + VKS(r)

]
ψkv (r) = εkvψkv (r)

can be indexed by a k-vector in the first Brillouin zone and by a
band index v , and:

ψkv (r + Rµ) = eikRµψkv (r),

ψkv (r) = eikrukv (r),

where ukv (r) is a lattice-periodic function. By time reversal
symmetry, we also have:

ψ∗−kv (r) = ψkv (r).
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Charge density response at finite q
Linear response: wavefunctions
Linear response: the self-consistent potential

Charge density response at finite q - I
The lattice-periodic part of the induced charge density at finite
q can be calculated as follows. We have:

∂ρ(r)
∂us′β(q)

=
1√
Ms′

∑
kv

[
Pc

(∑
ν

∂ψ∗kv (r)
∂uνs′β

eiqRν

)
ψkv (r)

+ ψ∗kv (r)Pc

(∑
ν

∂ψkv (r)
∂uνs′β

eiqRν

)]
.

Changing k with −k in the first term, using time reversal
symmetry ψ−kv (r) = ψ∗kv (r), and defining:

∂ψkv (r)
∂us′β(q)

=
1√
Ms′

∑
ν

∂ψkv (r)
∂uνs′β

eiqRν ,
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Charge density response at finite q
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Charge density response at finite q - II

we have:
∂ρ(r)

∂us′β(q)
= 2

∑
kv

ψ∗kv (r)Pc
∂ψkv (r)
∂us′β(q)

.

We can now use the following identities to extract the periodic
part of the induced charge density:

∂ψkv (r)
∂us′β(q)

= eikr ∂ukv (r)
∂us′β(q)

= eikr 1√
Ms′

∑
ν

∂ukv (r)
∂uνs′β

eiqRν

= ei(k+q)r ∂̃ukv (r)
∂us′β(q)

,

where ∂̃ukv (r)
∂us′β(q) is a lattice-periodic function.
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Charge density response at finite q
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Charge density response at finite q - III
The projector in the conduction band Pc = 1− Pv is:

Pc =
∑
k′c

ψk′c(r)ψ∗k′c(r
′)

=
∑
k′c

eik′ruk′c(r)u∗k′c(r
′)e−ik′r′

=
∑
k′

eik′rPk′
c e−ik′r′ ,

but only the term k′ = k + q gives a non zero contribution when
applied to ∂ψkv (r)

∂us′β(q) . We have therefore:

∂ρ(r)
∂us′β(q)

= eiqr2
∑
kv

u∗kv (r)Pk+q
c

∂̃ukv (r)
∂us′β(q)

,
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Charge density response at finite q - IV

so the lattice-periodic part of the induced charge density,
written in terms of lattice-periodic functions is:

∂̃ρ(r)
∂us′β(q)

= 2
∑
kv

u∗kv (r)Pk+q
c

∂̃ukv (r)
∂us′β(q)

.
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Charge density response at finite q
Linear response: wavefunctions
Linear response: the self-consistent potential

First-order derivative of the wavefunctions - I
∂̃ukv (r)
∂us′β(q) is a lattice-periodic function which can be calculated
with the following considerations. From first order perturbation
theory we get, for each displacement uνs′β, the equation:[

−1
2
∇2 + VKS(r)− εkv

]
Pc
∂ψkv (r)
∂uνs′β

= −Pc
∂VKS(r)
∂uνs′β

ψkv (r).

Multiplying every equation by 1√
Ms′

eiqRν and summing on ν, we

get: [
−1

2
∇2 + VKS(r)− εkv

]
Pc

∂ψkv (r)
∂us′β(q)

= −Pc
∂VKS(r)
∂us′β(q)

ψkv (r).
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Charge density response at finite q
Linear response: wavefunctions
Linear response: the self-consistent potential

First-order derivative of the wavefunctions - II

Using the translational invariance of the solid we can write

∂VKS(r)
∂us′β(q)

=
1√
Ms′

∑
ν

∂VKS(r)
∂uνs′β

eiqRν = eiqr ∂̃V KS(r)
∂us′β(q)

,

where ∂̃V KS(r)
∂us′β(q) is a lattice-periodic function. The right-hand side

of the linear system becomes:

−ei(k+q)rPk+q
c

∂̃V KS(r)
∂us′β(q)

ukv (r).
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Charge density response at finite q
Linear response: wavefunctions
Linear response: the self-consistent potential

First-order derivative of the wavefunctions - III
In the left-hand side we have

Pc
1√
Ms′

∑
ν

∂ψkv (r)
∂uνs′β

eiqRν = ei(k+q)rPk+q
c

∂̃ukv (r)
∂us′β(q)

,

and defining

Hk+q = e−i(k+q)r
[
−1

2
∇2 + VKS(r)

]
ei(k+q)r,

we obtain the linear system:[
Hk+q − εkv

]
Pk+q

c
∂̃ukv (r)
∂us′β(q)

= −Pk+q
c

∂̃V KS(r)
∂us′β(q)

ukv (r).
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Charge density response at finite q
Linear response: wavefunctions
Linear response: the self-consistent potential

Linear response: the self-consistent potential - I
The lattice-periodic component of the self-consistent potential
can be obtained with the same techniques seen above. We
have:

∂VKS(r)
∂uνs′β

=
∂Vloc(r)
∂uνs′β

+

∫
d3r ′

1
|r− r′|

∂ρ(r′)
∂uνs′β

+
∂Vxc

∂ρ

∂ρ(r)
∂uνs′β

.

Multiplying by 1√
Ms′

eiqRν and adding, we obtain:

∂VKS(r)
∂us′β(q)

=
∂Vloc(r)
∂us′β(q)

+

∫
d3r ′

1
|r− r′|

∂ρ(r′)
∂us′β(q)

+
∂Vxc

∂ρ

∂ρ(r)
∂us′β(q)

.
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Linear response: the self-consistent potential - II
Keeping only the lattice periodic parts gives:

eiqr ∂̃V KS(r)
∂us′β(q)

= eiqr ∂̃V loc(r)
∂us′β(q)

+

∫
d3r ′

1
|r− r′|

eiqr′ ∂̃ρ(r′)
∂us′β(q)

+
∂Vxc

∂ρ
eiqr ∂̃ρ(r)

∂us′β(q)
,

or equivalently:

∂̃V KS(r)
∂us′β(q)

=
∂̃V loc(r)
∂us′β(q)

+

∫
d3r ′

1
|r− r′|

eiq(r′−r) ∂̃ρ(r′)
∂us′β(q)

+
∂Vxc(r)
∂ρ

∂̃ρ(r)
∂us′β(q)

.
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ph.x

The program ph.x solves the self-consistent linear system for
3× Nat perturbations at a fixed q vector. Having ∂̃ρ(r)

∂us′β(q) for all
the perturbations it can calculate the dynamical matrix
Dsαs′β(q) at the given q which can be diagonalized to obtain
3× Nat frequencies ωq. By repeating this procedure for several
q we could plot ωq as a function of q and display the phonon
dispersions. However, it is more convenient to adopt a different
approach that requires the calculation of the dynamical matrix
in a small set of points q.
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q2r.x
matdyn.x

PHONON DISPERSIONS
The dynamical matrix of the solid:

Dsαs′β(q) =
1√

MsMs′

∑
ν

∂2Etot

∂uµsα∂uνs′β
eiq(Rν−Rµ) (1)

is a periodic function of q with Dsαs′β(q + G) = Dsαs′β(q) for
any reciprocal lattice vector G. Furthermore, due to the
translational invariance of the solid it does not depend on µ.
Eq.1 is a Fourier expansion of a three dimensional periodic
function. We have Fourier components only at the discrete
values Rν of the Bravais lattice and we can write:

1√
MsMs′

∂2Etot

∂uµsα∂uνs′β
=

Ω

(2π)3

∫
d3qDsαs′β(q)e−iq(Rν−Rµ).

(2)
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q2r.x
matdyn.x

DISCRETE FOURIER TRANSFORM - I
We can use the properties of the discrete Fourier transform and
sample the integral in a uniform mesh of points q. This will give
the inter-atomic force constants only for a certain range of
values of Rν neighbors of Rµ.
In order to recall the main properties of the discrete Fourier
transform, let us consider a one dimensional periodic function
f (x + a) = f (x) with period a. This function can be expanded in
a Fourier series and will have a discrete set of Fourier
components at the points kn = 2π

a n, where n is an integer
(positive, negative or zero).

f (x) =
∑

n

cneiknx

where the coefficients of the expansion are:
Andrea Dal Corso Density functional perturbation theory
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q2r.x
matdyn.x

DISCRETE FOURIER TRANSFORM - II

cn =
1
a

∫ a

0
f (x)e−iknxdx .

In general, if f (x) is a sufficiently smooth function, cn → 0 at
large n. Now suppose that we discretize f (x) in a uniform set of
N points xj = j∆x where ∆x = a/N and j = 0, . . . ,N − 1, then
we can calculate:

c̃n =
1
N

N−1∑
j=0

f (xj)e−i 2π
N nj ,

c̃n is a periodic function of n and c̃n+N = c̃n. So, if N is
sufficiently large that cn = 0 when |n| ≥ N/2, c̃n is a good
approximation of cn for |n| < N/2 and the function
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q2r.x
matdyn.x

DISCRETE FOURIER TRANSFORM - III

f (x) =

n=N/2∑
n=−N/2

c̃neiknx

is a good approximation of the function f (x) also on the points
x different from xj . In three dimensions the discretization of
Eq. 2 on a uniform mesh of qi points is:

∂2Etot

∂uµsα∂uνs′β
=

1
Nq

Nq∑
i=1

Csαs′β(qi)e−iqi (Rν−Rµ), (3)

where we defined Csαs′β(q) =
√

MsMs′Dsαs′β(q). Since
∂2Etot

∂uµsα∂uνs′β
depends only on the vector R = Rµ−Rν , we can call
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q2r.x
matdyn.x

q2r.x

Csαs′β(R) = ∂2Etot
∂uµsα∂uνs′β

and write the relationship:

Csαs′β(R) =
1

Nq

Nq∑
i=1

Csαs′β(qi)eiqi R.

The code q2r.x reads a set of dynamical matrices obtained for
a uniform mesh of qi points and calculates, using this equation,
the inter-atomic force constants for some neighbors of the point
R = 0.
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matdyn.x

matdyn.x

If the dynamical matrix is a sufficiently smooth function of q, the
inter-atomic force constants decay sufficiently rapidly in real
space and we can use Eq. 1 limiting the sum over ν to the few
neighbors of Rµ for which we have calculated the interatomic
force constants. With the present notation Eq. 1 becomes:

Csαs′β(q) =
∑

R

Csαs′β(R)e−iqR, (4)

a relationship that allows the interpolation of the dynamical
matrix at arbitrary q, by a few interatomic force constants. The
program matdyn.x reads the inter-atomic force constants
calculated by q2r.x and calculates the dynamical matrices at
an arbitrary q using this equation.
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q2r.x
matdyn.x

This procedure fails in two cases:

In metals when there are Kohn anomalies. In this case
Dsαs′β(q) is not a smooth function of q and the inter-atomic
force constants are long range.
In polar insulators where the atomic displacements
generate long range electrostatic interactions and the
dynamical matrix is non analytic for q → 0. This case,
however, can be dealt with by calculating the Born effective
charges and the dielectric constant of the material.
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