All-electron radial equation Norm-conserving pseudopotentials Fully separable pseudopotentials

#### Modern pseudopotentials: an introduction

#### Andrea Dal Corso

SISSA and DEMOCRITOS Trieste (Italy)

Andrea Dal Corso Pseudopotentials

All-electron radial equation Norm-conserving pseudopotentials Fully separable pseudopotentials

# Outline



- 2 Norm-conserving pseudopotentials
  - The logarithmic derivative
  - Using the pseudopotential in the solid
  - Transferability tests
- Fully separable pseudopotentials
  - Ultrasoft pseudopotentials
  - PAW method

・ロト ・ 同ト ・ ヨト ・ ヨト

-

## Modern pseudopotentials: an overview

Modern pseudopotentials are constructed on the isolated atom. The radial Kohn and Sham equations are first solved for all the electrons. Then the orbitals are divided into core and valence, and for the valence orbitals a pseudopotential that reproduces the all-electron results is calculated.

Modern pseudopotentials are divided in three types:

- Norm-conserving pseudopotentials
- Ultrasoft pseudopotentials
- The projector augmented-wave data sets

イロン 不良 とくほう 不良 とうほ

# Spherical symmetry - I

The Kohn and Sham (KS) equation is (in atomic units):

$$\left[-\frac{1}{2}\nabla^2 + V_{ext}(\mathbf{r}) + V_{H}(\mathbf{r}) + V_{xc}(\mathbf{r})\right]\psi_i(\mathbf{r}) = \epsilon_i\psi_i(\mathbf{r}).$$

For an atom  $V_{ext}(\mathbf{r}) = -Z/r$ , where Z is the nuclear charge and  $r = |\mathbf{r}|$ . Assuming a spherically symmetric charge density  $\rho(\mathbf{r}) = \rho(r)$ , one can show that the Hartree and exchange and correlation potentials are spherically symmetric too. In this hypothesis, the solutions of this equation have the form:

$$\psi_{n\ell m}(\mathbf{r}) = \frac{\psi_{n\ell}(\mathbf{r})}{\mathbf{r}} Y_{\ell m}(\Omega_{\mathbf{r}}),$$

where  $(r, \Omega_r)$  are the spherical coordinates of **r**.

<ロト (四) (日) (日) (日) (日) (日) (日)

# Spherical symmetry - II

Here *n*, the main quantum number, is a positive integer,  $0 \le \ell \le n-1$  indicates the orbital angular momentum and  $-\ell \le m \le \ell$  its projection on a quantization axis.  $Y_{\ell m}(\Omega_r)$  are the spherical harmonics, eigenstates of  $L^2$  and  $L_z$ :

Inserting this solution in the KS equation, we obtain, for each value of  $\ell$ , an ordinary differential equation for  $\psi_{n\ell}(r)$ :

$$\left[-\frac{1}{2}\frac{d^2}{dr^2}+\frac{\ell(\ell+1)}{2r^2}+V_{KS}(r)\right]\psi_{n\ell}(r)=\epsilon_{n\ell}\psi_{n\ell}(r),$$

where  $V_{KS}(r) = V_{ext}(r) + V_H(r) + V_{xc}(r)$ .

## Spherical symmetry - III

The charge density is determined by the total number of electrons and by their distribution among the available orbitals defined by the occupation numbers  $f_{n\ell}$ . The maximum value of  $f_{n\ell}$  is 2, 6, 10, 14 for  $\ell = 0, 1, 2, 3$  (s, p, d, f states) respectively. Note that we assumed a spherically symmetric atom, so we cannot specify the occupation of a state with a given m. For open-shell configurations, a uniform distribution of electrons among the available orbitals is implicitly assumed. The charge density is:

$$\tilde{\rho}(\mathbf{r}) = 4\pi r^2 \rho(\mathbf{r}) = \sum_{n\ell} f_{n\ell} |\psi_{n\ell}(\mathbf{r})|^2.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

# Spherical symmetry - IV

The radial equation is solved by the Numerov's method, discretizing the *r* coordinate by a logarithmic radial grid from  $r_{min}$  to  $r_{max}$ . The grid is:

$$r_i=rac{1}{Z}e^{x_{min}}e^{(i-1)dx}, \qquad i=1,\cdots,N_{
ho}.$$

From input, it is possible to change the default values of  $x_{min}$ , dx and  $r_{max}$  but, usually, this is not needed.

The output of the calculation are the eigenvalues  $\epsilon_{n\ell}$ , the radial orbitals  $\psi_{n\ell}(r)$ , the charge density  $\tilde{\rho}(r)$ , and the total energy. For instance for Si, with Z = 14 and the electron configuration  $1s^22s^22p^63s^23p^2$ , we obtain:

<ロト (四) (日) (日) (日) (日) (日) (日)

#### An example: the Si atom within the LDA



The orbitals can be divided into core and valence states according to the energy eigenvalues and the spatial localization about the nucleus. In Si, the 1s, 2s and 2p are core states while the 3s and 3p are valence states.

・ロト ・ 同ト ・ ヨト ・ ヨト

## Norm-conserving pseudopotentials - I

Let us now consider, for each orbital angular momentum  $\ell,$  the equation [1]:

$$\left[-\frac{1}{2}\frac{d^2}{dr^2}+\frac{\ell(\ell+1)}{2r^2}+V_{\rho s,\ell}(r)\right]\phi_\ell(r)=\epsilon_\ell\phi_\ell(r).$$

We would like to find an  $\ell$  dependent pseudopotential  $V_{ps,\ell}(r)$  with the following properties:

- 1) For each  $\ell$ , the lowest eigenvalue  $\epsilon_{\ell}$  coincides with the valence eigenvalue  $\epsilon_{n\ell}$  in the all-electron equation. *n* identifies the valence state.
- 2) For each  $\ell$ , it is possible to find a  $r_{c,\ell}$  such that  $\phi_{\ell}(r) = \psi_{n\ell}(r)$  for  $r > r_{c,\ell}$ .

イロン 不良 とくほう 不良 とうほ

#### Norm-conserving pseudopotentials - II

The solution of the problem is not unique, and actually there are several recipes to construct a pseudopotential. First of all, it is convenient to note that at sufficiently large r,  $V_{ps,\ell}(r)$  coincides with the all-electron potential because  $\phi_{\ell}(r) = \psi_{n\ell}(r)$  for  $r > r_{c,\ell}$  and  $\epsilon_{\ell} = \epsilon_{n\ell}$ . We can therefore choose a  $V_{eff}(r)$  such that  $V_{eff}(r) = V_{KS}(r)$  for  $r > r_{loc}$  and rewrite the radial equation in the form:

$$\left[-\frac{1}{2}\frac{d^2}{dr^2}+\frac{\ell(\ell+1)}{2r^2}+V_{eff}(r)+\Delta V_{ps,\ell}(r)\right]\phi_\ell(r)=\epsilon_\ell\phi_\ell(r).$$

Then suppose that we have a recipe to get a node-less  $\phi_{\ell}(r)$  for  $r < r_{c,\ell}$ . Then:

#### Norm-conserving pseudopotentials - III

$$\Delta V_{
m 
hos,\ell}(r) = rac{1}{\phi_\ell(r)} \left[ \epsilon_\ell + rac{1}{2} rac{d^2}{dr^2} - rac{\ell(\ell+1)}{2r^2} - V_{
m eff}(r) 
ight] \phi_\ell(r).$$

There are some guidelines to follow in the choice of the form of  $\phi_{\ell}(r)$  and one important condition. First of all the function must be as smooth as possible, with continuity of a certain number of derivatives at the matching point  $r_{c,\ell}$ . Then it is useful to search a function whose Fourier transform decays as rapidly as possible. However, the most important constraint is the norm-conserving condition [2] that is:

$$\int_0^{r_{c,\ell}} dr |\phi_{\ell}(r)|^2 = \int_0^{r_{c,\ell}} dr |\psi_{n,\ell}(r)|^2.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

The logarithmic derivative Using the pseudopotential in the solid Transferability tests

イロト 不得 とくほ とくほとう

#### An example: Si

An example: the wavefunctions of Si.



イロン 不良 とくほう 不良 とうほ

## The logarithmic derivative - I

In order to illustrate the importance of the norm-conserving condition, it is useful to define the concept of logarithmic derivative. Let us consider the two equations:

$$[T_{\ell} + V_{\mathcal{KS}}(r)] \psi_{\epsilon}(r) = \epsilon \psi_{\epsilon}(r),$$

$$\left[T_{\ell} + V_{eff}(r) + \Delta V_{ps,\ell}(r)\right]\phi_{\epsilon}(r) = \epsilon \phi_{\epsilon}(r),$$

where we defined  $T_{\ell} = -\frac{1}{2}\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{2r^2}$ . By construction, we know that at  $\epsilon = \epsilon_{n\ell}$ , the solution  $\phi_{\epsilon}(r)$  coincides with the  $\psi_{\epsilon}(r)$  for  $r > r_{c,\ell}$ . But what about the other energies? The transferability of the pseudopotential depends on the fact that  $\phi_{\epsilon}(r)$  reproduces  $\psi_{\epsilon}(r)$  for a certain range of energies about  $\epsilon_{n\ell}$ .

All-electron radial equation Norm-conserving pseudopotentials Fully separable pseudopotentials The logarithmic derivative Using the pseudopotential in the solid Transferability tests

### The logarithmic derivative - II

The two logarithmic derivatives usually coincide for a quite extended range of energies, of the order of a few Rydberg making the pseudopotential concept quite useful in practice. Here is the example of the s, p and d logarithmic derivatives for the Si atom (color: all-electron; black: pseudopotential) :



Andrea Dal Corso

Pseudopotentials

-

ヘロア ヘビア ヘビア・

## Using the pseudopotential in the solid - I

In order to use the pseudopotential in the solid we have to subtract from  $V_{eff}(r)$  the Hartree and exchange and correlation potentials.

$$V_{loc}(r) = V_{eff}(r) - V_H(r) - V_{xc}(r).$$

Usually only the valence atomic charge is used to calculate  $V_H(r)$  and  $V_{xc}(r)$ . This however can introduce a significant error if there is a large overlap of the core and valence charge. In this case it is also possible to use the total charge  $\rho_c(r) + \rho_v(r)$  in the calculation of  $V_{xc}(r)$ . The technique is known as nonlinear core correction. In order to improve the plane wave convergence a pseudized version of  $\rho_c(r)$  is generally used for  $r \leq r_{core}$ .

イロン 不良 とくほう 不良 とうほ

## Using the pseudopotential in the solid - II

 $V_{loc}(r)$  behaves as  $-Z_v/r$  for large r, while  $\Delta V_{ps,l}(r)$  is localized and goes to zero for  $r \ge \max(r_{loc}, r_{c,\ell})$ . In order to apply the nonlocal part of the potential, that is different for different  $\ell$ , we use projectors into subspaces of well defined  $\ell$ :

$$m{P}_\ell = \sum_{m=-\ell}^{m=\ell} |m{Y}_{\ell m}
angle \langlem{Y}_{\ell m}|.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

## Using the pseudopotential in the solid - III

Therefore the resulting potential is nonlocal (actually it is called semilocal because it is local in the radial variable and nonlocal in the angular variables). We can write:

$$V_{\rho s}(\mathbf{r}, \mathbf{r}') = \sum_{l} V_{loc}^{l}(|\mathbf{r} - \mathbf{R}_{l}|)\delta(\mathbf{r} - \mathbf{r}') \\ + \sum_{l} \sum_{lm} \Delta V_{\rho s, \ell}^{l}(|\mathbf{r} - \mathbf{R}_{l}|)\delta(|\mathbf{r} - \mathbf{R}_{l}| - |\mathbf{r}' - \mathbf{R}_{l}|) \\ \times Y_{\ell m}(\Omega_{\mathbf{r} - \mathbf{R}_{l}})Y_{\ell m}^{*}(\Omega_{\mathbf{r}' - \mathbf{R}_{l}}).$$

Note that  $V_{loc}(\mathbf{r})$  is applied to all angular momenta larger than  $\ell_{max}$ , the maximum angular momentum included in the nonlocal part.

イロン 不良 とくほう 不良 とうほ

## Transferability tests - I

The energy range in which the logarithmic derivatives coincide give an estimate of the pseudopotential guality. However, the logarithmic derivative is calculated at fixed charge density. Before using the pseudopotential in the solid, we can check its transferability on the atom by predicting the eigenvalues and the total energy of atomic configurations different from the reference one used for the generation. We can also check spin-polarized atomic configurations. An accuracy of a few mRy on the eigenvalues of atomic configurations that differ in energy up to a few Ry from the reference configuration is within the possibilities of the method. As an example, in Si, we can check the configuration  $3s^13p^3$  and the spin-polarized configuration  $3s^23p^2$ . We find:

#### Transferability tests - II

|       | S                                                                               | f_nl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                              | e_AE                                                                                                                                                                                                                           | (Ry)                                                 |                                                                                                                                                                                                                                                                                                                                                                      | e_P                                                                                                                                                                                                                                                                                                                                                                               | 'S (Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                    | c                                                    | liff                                                 |
|-------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 35    | 1(                                                                              | 2.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              | -0.7                                                                                                                                                                                                                           | 9663                                                 |                                                                                                                                                                                                                                                                                                                                                                      | -0.                                                                                                                                                                                                                                                                                                                                                                               | 79663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | 0.                                                   | 00000                                                |
| 3P    | 1(                                                                              | 2.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              | -0.3                                                                                                                                                                                                                           | 0705                                                 |                                                                                                                                                                                                                                                                                                                                                                      | -0.                                                                                                                                                                                                                                                                                                                                                                               | 30705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | 0.                                                   | 00000                                                |
| = .   | -576.3                                                                          | 383950 Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                                                                                                                                                                            | - 28                                                                                                                                                                                                                           | 8.191                                                | 975                                                                                                                                                                                                                                                                                                                                                                  | Ha,                                                                                                                                                                                                                                                                                                                                                                               | - 784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.102                                                | 2455 e                                               | eV                                                   |
| s =   | -9.2                                                                            | 254121 Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                              | 4.627                                                | 960                                                                                                                                                                                                                                                                                                                                                                  | Ha,                                                                                                                                                                                                                                                                                                                                                                               | - 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.908                                                | 8713 e                                               | eV                                                   |
| 35    | 1(                                                                              | 1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              | -0.8                                                                                                                                                                                                                           | 5139                                                 |                                                                                                                                                                                                                                                                                                                                                                      | -0.                                                                                                                                                                                                                                                                                                                                                                               | 85190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                    | 0.                                                   | 00051                                                |
| 3P    | 1                                                                               | 3.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              | -0.3                                                                                                                                                                                                                           | 4907                                                 |                                                                                                                                                                                                                                                                                                                                                                      | -0.                                                                                                                                                                                                                                                                                                                                                                               | 34898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | -0.                                                  | 00009                                                |
| ae =  |                                                                                 | 0.49609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 Ry                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                      |                                                      |
| _ps = |                                                                                 | 0.49637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 Rý                                                                                                                                                                                                                                         | ,                                                                                                                                                                                                                              | Delta                                                | E=                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                   | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0282                                                 | Ry                                                   |                                                      |
| 35    | 1(                                                                              | 1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              | -0.8                                                                                                                                                                                                                           | 3109                                                 |                                                                                                                                                                                                                                                                                                                                                                      | -0.                                                                                                                                                                                                                                                                                                                                                                               | 83154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | Θ.                                                   | 00045                                                |
| 3P    | 1(                                                                              | 2.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              | -0.3                                                                                                                                                                                                                           | 3829                                                 |                                                                                                                                                                                                                                                                                                                                                                      | -0.                                                                                                                                                                                                                                                                                                                                                                               | 33867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | 0.                                                   | 00038                                                |
| 3S    | 2(                                                                              | 1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              | -0.7                                                                                                                                                                                                                           | 2857                                                 |                                                                                                                                                                                                                                                                                                                                                                      | -0.                                                                                                                                                                                                                                                                                                                                                                               | 72723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | -0.                                                  | 00134                                                |
| 3P    | 2 (                                                                             | 0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              | -0.2                                                                                                                                                                                                                           | 4627                                                 |                                                                                                                                                                                                                                                                                                                                                                      | -0.                                                                                                                                                                                                                                                                                                                                                                               | 24521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | -0.                                                  | 00106                                                |
| ae =  |                                                                                 | -0.04494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 Ry                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                      |                                                      |
| ps =  |                                                                                 | -0.04568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 Ry                                                                                                                                                                                                                                         | ,                                                                                                                                                                                                                              | Delta                                                | E=                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0733                                                 | Ry                                                   |                                                      |
|       | 3S<br>3P<br>=<br>s =<br>_ae =<br>_ps =<br>3S<br>3P<br>3S<br>3P<br>_ae =<br>ps = | S<br>3S 1(<br>3P 1(<br>= -576.3<br>S = -9.3<br>3S 1(<br>3P 1(<br>3P 1(<br>3P 1(<br>3P 2(<br>3P 2(<br>aP 2(<br>aP 2)<br>3P 2( | s f_nl<br>3S 1( 2.00)<br>3P 1( 2.00)<br>= -576.383950 Ry<br>s = -9.254121 Ry<br>3S 1( 1.00)<br>3P 1( 3.00)<br>_ae = 0.49609<br>_ps = 0.49637<br>3S 1( 1.00)<br>3P 1( 2.00)<br>3S 2( 1.00)<br>3P 2( 0.00)<br>_ae = -0.04494<br>ps = -0.044568 | <pre>s f_nl 3S 1( 2.00) 3P 1( 2.00) = -576.383950 Ry, s = -9.254121 Ry, 3S 1( 1.00) 3P 1( 3.00) _ae = 0.496095 Ry _ps = 0.496377 Ry 3S 1( 1.00) 3P 1( 2.00) 3S 2( 1.00) 3P 2( 0.00) _ae = -0.044949 Ry ps = -0.045683 Ry</pre> | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | s f_nl e_AE (Ry)<br>3S 1(2.00) -0.79663<br>3P 1(2.00) -0.30705<br>= -576.383950 Ry, -288.1919<br>s = -9.254121 Ry, -4.6270<br>3S 1(1.00) -0.85139<br>3P 1(3.00) -0.34907<br>ae = 0.496095 Ry<br>ps = 0.496377 Ry, Delta<br>3S 1(1.00) -0.83109<br>3P 1(2.00) -0.33829<br>3S 2(1.00) -0.72857<br>3P 2(0.00) -0.24627<br>ae = -0.044949 Ry<br>ps = -0.045683 Ry, Delta | s f_nl e_AE (Ry)<br>3S 1(2.00) -0.79663<br>3P 1(2.00) -0.30705<br>= -576.383950 Ry, -288.191975<br>s = -9.254121 Ry, -4.627060<br>3S 1(1.00) -0.85139<br>3P 1(3.00) -0.34907<br>_ae = 0.496095 Ry<br>_ps = 0.496377 Ry, Delta E=<br>3S 1(1.00) -0.83109<br>3P 1(2.00) -0.33829<br>3S 2(1.00) -0.72857<br>3P 2(0.00) -0.24627<br>_ae = -0.044949 Ry<br>ps = -0.045683 Ry, Delta E= | s       f_nl       e_AE (Ry)       e_F         3S       1(2.00)       -0.79663       -0.         3P       1(2.00)       -0.30705       -0.         =       -576.383950 Ry,       -288.191975 Ha,         s       -9.254121 Ry,       -4.627060 Ha,         3S       1(1.00)       -0.85139       -0.         .3P       1(3.00)       -0.34907       -0.         .ae       0.496095 Ry       -0.34907       -0.         .ps       0.496377 Ry,       Delta E=         3S       1(1.00)       -0.83109       -0.         .3P       1(2.00)       -0.33829       -0.         .3S       2(1.00)       -0.72857       -0.         .3P       2(0.00)       -0.24627       -0.         .ae       -0.044949 Ry       -0.       -0.045683 Ry,       Delta E= | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

**Pseudopotentials** 

<ロト <回 > < 注 > < 注 > 、

-20

# Fully separable pseudopotentials - I

The semilocal form of the pseudopotential is not very efficient for practical calculations. It requires to keep in memory the matrix  $\langle \mathbf{k} + \mathbf{G} | V_{ps} | \mathbf{k} + \mathbf{G}' \rangle$  that becomes rapidly big for large systems and matrix-vector multiplications to apply it to the wavefunctions. It is convenient to write the nonlocal part of the pseudopotential in the fully separable form [5]:

$$V_{NL}(\mathbf{r},\mathbf{r}') = \sum_{l} \sum_{\ell m} E_{\ell}^{l} \langle \mathbf{r} | \beta_{\ell}^{l} Y_{\ell,m}^{l} \rangle \langle \beta_{\ell}^{l} Y_{\ell,m}^{l} | \mathbf{r}' \rangle.$$

In this way we can keep in memory only the vectors  $\langle \mathbf{k} + \mathbf{G} | \beta_{\ell}^{I} Y_{\ell,m}^{I} \rangle$  which are the Fourier transform of  $\langle \mathbf{r} | \beta_{\ell}^{I} Y_{\ell,m}^{I} \rangle$  and to apply the nonlocal pseudopotential by doing a few scalar products with the vectors which represent the wavefunction.

イロン 不良 とくほう 不良 とうほ

# Fully separable pseudopotentials - II

In the atom, we can define  $\beta_{\ell}(r) = \Delta V_{ps,\ell}(r)\phi_{\ell}(r)$  and  $E_{\ell} = \left[\int_{0}^{\infty} dr \ \phi_{\ell}(r)\Delta V_{ps,\ell}(r)\phi_{\ell}(r)\right]^{-1}$  so that the fully separable potential:

$$V_{NL} = E_\ell |eta_\ell
angle \langle eta_\ell |$$

has the following property:

$$\langle r | V_{\mathsf{NL}} | \phi_{\ell} \rangle = \Delta V_{\mathsf{ps},\ell}(r) \phi_{\ell}(r).$$

As a consequence, the equation

$$[T_{\ell} + V_{eff}(r)] \Phi_{\ell}(r) + \langle r | V_{NL} | \Phi_{\ell} \rangle = \epsilon \Phi_{\ell}(r)$$

has  $\epsilon_{\ell}$  as an eigenvalue and  $\phi_{\ell}(r)$  as an eigenfunction.

・ロン ・ 一 マン・ 日 マー・

# Ultrasoft pseudopotentials - I

What about fitting the pseudopotential at more than one energy for each  $\ell$ ? This is possible and one can also relax the norm-conserving condition:



But the orbitals obey a generalized orthogonality constraint:  $\langle \tilde{\psi}_i | S | \tilde{\psi}_j \rangle = \delta_{ij}$ 

-

### Ultrasoft pseudopotentials - II

The resulting Hamiltonian is the following:

$$H = -\frac{1}{2}\nabla^2 + \tilde{V}_{eff}(\mathbf{r}) + \sum_{l,mn} \left( \int d^3 r \ \tilde{V}_{eff}(\mathbf{r}) Q_{mn}'(\mathbf{r}) + D_{l,mn}^{(0)} \right) |\beta_m'\rangle \langle \beta_n'|,$$

and one solves a generalized eigenvalue equation:  $H|\tilde{\psi}_i\rangle = \varepsilon_i S|\tilde{\psi}_i\rangle$ . The functions  $Q_{mn}^{l}(\mathbf{r})$  are used to recover the correct charge density:

$$\rho(\mathbf{r}) = \sum_{i} |\tilde{\psi}_{i}(\mathbf{r})|^{2} + \sum_{I,mn} Q_{mn}^{I}(\mathbf{r}) \langle \tilde{\psi}_{i} | \beta_{m}^{I} \rangle \langle \beta_{n}^{I} | \tilde{\psi}_{i} \rangle$$

<ロト (四) (日) (日) (日) (日) (日) (日)

All-electron radial equation Norm-conserving pseudopotentials Fully separable pseudopotentials

Ultrasoft pseudopotentials PAW method

#### PAW mapping: from pseudo-wave-functions to all-electron wave-functions



Andrea Dal Corso

Pseudopotentials

ヘロト ヘ回ト ヘヨト ヘヨト

#### **PAW Hamiltonian**

In the PAW scheme one still solves a generalized eigenvalue equation  $(H - \epsilon_i S) |\tilde{\Psi}_i\rangle = 0$ , with the Hamiltonian

$$H = -\frac{1}{2}\nabla^2 + \tilde{V}_{eff} + \sum_{l,mn} \left( \int d^3 r \ \tilde{V}_{eff}(\mathbf{r}) Q_{mn}^{l}(\mathbf{r}) + D_{l,mn}^1 - \tilde{D}_{l,mn}^1 \right) |\beta_m^{l}\rangle \langle \beta_n^{l}|,$$

where

$$D^{1}_{l,mn} = \langle \Phi^{l,AE}_{m} | \frac{\mathbf{p}^{2}}{2} + V^{l}_{\text{eff}} | \Phi^{l,AE}_{n} \rangle,$$
  
$$\tilde{D}^{1}_{l,mn} = \langle \Phi^{l,PS}_{m} | \frac{\mathbf{p}^{2}}{2} + \tilde{V}^{l}_{\text{eff}} | \Phi^{l,PS}_{n} \rangle + \int_{\Omega_{l}} d^{3}r \ \hat{Q}^{l}_{mn}(\mathbf{r}) \tilde{V}^{l}_{\text{eff}}(\mathbf{r}).$$

# Bibliography

- 1 W. Pickett, Comp. Phys. Rep. 9, 115 (1989).
- 2 D.R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. **43**, 1494 (1979).
- G.P. Kerker, J. Phys. C: Solid St. Phys. 13, L189 (1980).
   N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).
- 4 A.M. Rappe, K. Rabe, E. Kaxiras, J.D. Joannopoulos, Phys. Rev. B **41**, 1227 (1990).
- 5 L. Kleinman and D.M. Bylander, Phys. Rev. Lett. **48**, 1425 (1982).
- 6 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
- 7 P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).
- 8 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).