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Chapter 1
Introduction

These notes discuss the atomic units (a.u.) used in electronic structure codes.
They are updated with the recent (year 2019) changes to the international
system (SI). The conversion factors written here should be those implemented
in the QUANTUM ESPRESSO and thermo_pw codes.
These notes are part of the thermo_pw package. The complete package is
available at https://github.com/dalcorso/thermo_pw.
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1.1 People

These notes have been written by Andrea Dal Corso (SISSA - Trieste).
Disclaimer: I am not an expert of units. These notes reflect what I think about
units. If you think that some formula is wrong, that I misunderstood some-
thing, or that something can be calculated more simply, please let me know, I
would like to learn more. You can contact me by e-mail: dalcorso@sissa.it.
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1.2 Overview

Electronic structure codes use atomic units (a.u.). In these notes we explain
how to obtain the conversion factors from a.u. to the international system (SI)
units and viceversa. The most relevant physical formulas are written both in
SI units and in a.u.. Moreover, since several books and old literature still use
the c.g.s. (centimeter-gram-second) system we discuss also how to convert
from a.u. to c.g.s.-Gaussian units and viceversa.

These notes are organized in Sections, one for each physical quantity. For
each quantity we give its definition in the SI system and then we derive the
conversion factor from the a.u. to the SI unit, the conversion factor from the
c.g.s-Gaussian unit to the SI unit, and the conversion factor from the a.u.
to the c.g.s-Gaussian unit. The text in each Section depends on the defini-
tions given in previous Sections. Only in a few cases it depends on definitions
given in following Sections and in these cases we mention explicitly where to
find the required definition. Important physical formulas are introduced when
we have given sufficient information to convert the formula in different sys-
tems. Microscopic and macroscopic Maxwell’s equations are also summarized
in separate Sections.
Each system has a different color. In black the SI, in blue the a.u., in orange
the c.g.s.-Gaussian system, and in green the conversion factors from a.u. to
the c.g.s.-Gaussian units. Comments of interest not belonging to any sys-
tem in particular are given in red. We indicate the numerical value of a given
quantity in the SI with a tilde. The units in a.u. are indicated with a bar,
while the units in the c.g.s.-Gaussian system are indicated with a bar and the
subscript cgs. When the c.g.s.-Gaussian unit has an accepted name we use
it interchangeably with the generic name. Only Hartree a.u. are described in
the main text since these are the most common microscopic units. QUANTUM

ESPRESSO uses Rydberg a.u. that can be easily derived from the Hartree
a.u.. We describe Rydberg a.u. in Appendix A (in purple). In the ab − initio
literature modified a.u. have been introduced in which the electromagnetic
equations look like those of the c.g.s-Gaussian system. This requires some
modifications to the definitions given in the main text and we discuss these
units in Appendix B (in steelblue).

It is useful to recall a few preliminary facts needed in the rest of these notes.
A few experimental quantities have fixed values in the SI. Among these:
The Planck constant

h = 6.62607015× 10−34 J · s, (1.1)

the speed of light
c = 2.99792458× 108 m/s, (1.2)

and the electron charge

e = 1.602176634× 10−19 C. (1.3)

Two experimental quantities are known with high accuracy:
The Rydberg constant, measured spectroscopically from the frequencies of
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Hydrogen and Deuterium absorption and emission lines:

R∞ = 1.0973731568160× 107 1/m (1.4)

is known with a relative error of 1.9× 10−12

and the fine structure constant, measured from the anomaly of the electron
magnetic moment,

α = 7.2973525693× 10−3, (1.5)

is known with a relative error of 1.6× 10−10.
The Rydberg constant can be written in terms of the fine structure constant

α and the electron mass me or in terms of α and of the Bohr radius aB:

R∞ =
α2mec

2h
=

α

4πaB
. (1.6)

Using these equations we can calculate the electron mass as:

me =
2hR∞
α2c

= 9.1093837015× 10−31 kg (1.7)

and aB as:
aB =

α

4πR∞
= 5.29177210903× 10−11 m. (1.8)

α is a pure number equal to:

α =
e2

4πε0h̄c
=
µ0ce

2

2h
, (1.9)

where h̄ = h/2π, ε0 the vacuum electric permittivity and µ0 is the vacuum
magnetic permeability. Hence the Bohr radius can be rewritten as:

aB =
h̄

αmec
=
h̄24πε0
mee2

. (1.10)

Eq. 1.9 allows the calculation of µ0 as:

µ0 =
2hα

e2c
= 1.25663706212× 10−6 N

A2
. (1.11)

ε0 is obtained from the relation:

ε0 =
1

µ0c2
= 8.8541878128× 10−12 C2

N ·m2
. (1.12)

It is also useful to define the hartree energy:

Eh =
e2

4πε0aB
= 2hcR∞ = 4.3597447222072× 10−18 J, (1.13)

and the Bohr magneton:

µB =
h̄e

2me

= 9.2740100783× 10−24 J/T. (1.14)
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Chapter 2
Mechanical quantities

2.1 Time

In the SI, the unit of time is the second (symbol s), defined requiring that
the frequency of a particular line of the 133Cs atom is exactly 9192631770 s−1.

In a.u. the unit of time (symbol t̄) is defined requiring that the numerical
value of h̄ is 1. The conversion factor with the SI unit is obtained recalling that
in the SI the Planck constant is h̄ = ˜̄h J · s = ˜̄h kg · m2/s. Therefore in a.u. we
have:

h̄ =
m̄ · l̄2

t̄
, (2.1)

where l̄ is the unit of length and m̄ the unit of mass. As we discuss below l̄ = aB
and m̄ = me, therefore

t̄ =
mea

2
B

h̄
=
h̄4πε0aB

e2
=

h̄

Eh
=

1.0545718176462× 10−34 J · s
4.3597447222072× 10−18 J

= 2.4188843265857×10−17 s

(2.2)

In the c.g.s. system the unit of time is the second (symbol s), defined as in
the SI. We have t̄cgs = s.

The conversion factor between the a.u. and the c.g.s. unit is: t̄ = 2.4188843265857×
10−17 s.
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2.2 Length

In the SI, the unit of length is the metre (symbol m) defined as the length of
the path traveled by light during the time interval of 1/299792458 s.

In a.u. the unit of the length (symbol l̄) is defined requiring that the Bohr ra-
dius aB = l̄. The conversion factor with the SI unit is l̄ = 5.29177210903×10−11 m.

In the c.g.s. system the unit of length is the centimetre (symbol cm) defined
as cm = 1.0× 10−2 m. We have l̄cgs = 10−2 m.

The conversion factor between the a.u. and the c.g.s. unit is: l̄ = 5.29177210903×
10−9 cm.

A common unit of length is the angstrom (symbol Å). We have Å= 10−10 m.
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2.3 Mass

In the SI the unit of mass is the kilogram (symbol kg) defined requiring that
the Planck constant h has the value 6.62607015× 10−34 kg ·m2/s.

In a.u. the unit of mass (symbol m̄) is defined requiring that the mass of the
electron me = m̄. The conversion factor with the SI unit is m̄ = 9.1093837015 ×
10−31 kg.

In the c.g.s. system the unit of mass is the gram (symbol g) defined as
g = 1.0× 10−3 kg.

The conversion factor between the a.u. and the c.g.s. unit is m̄ = 9.1093837015×
10−28 g.

Atomic weights are usually expressed in atomic mass units (a.m.u. =
1.66053906660× 10−27 kg). This quantity can be converted in a.u. as:

a.m.u. =
1.66053906660× 10−27 kg

9.1093837015× 10−31 kg
m̄ = 1.8228884862× 103 m̄ (2.3)
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2.4 Mass density

In the SI the unit of mass density is derived from its definition:

ρm =
dm

dV
, (2.4)

and it is kg/m3.

In a.u. the unit of mass density (symbol ρ̄m) is derived from its definition:
ρ̄m = m̄

l̄3
. The conversion factor with the SI unit is:

ρ̄m =
me

a3
B

=
9.1093837015× 10−31 kg

(5.29177210903× 10−11 m)3
= 6.1473168257 kg/m3. (2.5)

In the c.g.s. system the unit of mass density is derived from its definition:
g/cm3. The conversion factor with the SI unit is g/cm3 = 103 kg/m3.

The conversion factor between the a.u. and the c.g.s. unit is ρ̄m = 6.1473168257×
10−3 g/cm3.
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2.5 Frequency

In the SI the unit of frequency (symbol Hz) is the inverse of the unit of time:
Hz = 1/s. This unit is called hertz. The angular frequency is defined as ω = 2πν
where ν is the frequency. Its units are radiant/s.

In a.u. the unit of frequency (symbol ν̄) is defined in a similar way ν̄ = 1/t̄.
The conversion factor with the SI unit is:

ν̄ =
1

2.4188843265857× 10−17 s
= 4.1341373335182× 1016 Hz. (2.6)

In the c.g.s. system the unit of frequency is the hertz defined as in the SI.

The conversion factor between the a.u. and the c.g.s. unit is ν̄ = 4.1341373335182×
1016 Hz.

A commonly used unit of frequency is the wavenumber, that is the number
of light waves with frequency ν per cm. If the wavelength λ is given in cm, the
wavenumber is ν̄ = 1

λ
and its units are cm−1. Since λ = c

ν
the conversion factor

from Hz to cm−1 is:

1

102c
= 3.33564095198152× 10−11 cm−1/Hz, (2.7)

while the conversion factor from cm−1 to Hz is:

102c = 2.99792458× 1010 Hz/cm−1 (2.8)
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2.6 Speed

In the SI the unit of speed is derived from its definition. For instance, the
speed (v) of a particle whose position as a function of time is r(t), is:

v =
dr

dt
, (2.9)

so the unit of speed is m/s.

In a.u. the unit of speed (v̄) is derived from its definition v̄ = l̄/t̄. The
conversion factor with the SI unit is:

v̄ =
aBh̄

mea2
B

=
h̄

meaB
= αc = 7.2973525693× 10−3 2.99792458× 108 m/s

= 2.18769126364× 106 m/s. (2.10)

Using the definitions of l̄ and t̄ we can also write:

v̄ =
aBEh
h̄

. (2.11)

Note that since v̄ = αc we can also write c = 1
α

v̄ meaning that the speed of light
in a.u. ca.u. = 1

α
= 1.37035999084× 102.

In the c.g.s. system the unit of speed is the v̄cgs = cm/s = 1.0× 10−2 m/s.

The conversion factor between the a.u. and the c.g.s. unit is: v̄ = 2.18769126364×
108 cm/s.
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2.7 Acceleration

In the SI the unit of acceleration is derived from its definition. For instance,
the acceleration (a) of a particle whose position as a function of time is r(t), is:

a =
d2r

dt2
, (2.12)

so the unit of acceleration is m/s2.

In a.u. the unit of acceleration (ā) is derived from its definition ā = l̄/t̄2. The
conversion factor with the SI unit is:

ā =
v̄

t̄
=
Ehαc

h̄
=

4.3597447222072× 10−18 J 7.2973525693× 10−3 2.99792458× 108 m/s

1.0545718176462× 10−34 J · s
= 9.0442161272× 1022 m/s2. (2.13)

In the c.g.s. system the unit of acceleration is the ācgs = cm/s2 = 1.0 ×
10−2 m/s2.

The conversion factor between the a.u. and the c.g.s. unit is: ā = 9.0442161272×
1024 cm/s2.
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2.8 Momentum

In the SI the unit of momentum is derived from its definition. For instance,
the momentum (p) of a particle of mass m whose position as a function of time
is r(t), is:

p = m
dr

dt
, (2.14)

so the unit of momentum is kg ·m/s.

In a.u. the unit of momentum (p̄) is derived from its definition p̄ = m̄ · v̄. The
conversion factor with the SI unit is:

p̄ =
meaB

t̄
=

h̄

aB
=

1.0545718176462× 10−34 kg ·m2/s

5.29177210903× 10−11 m
= 1.99285191410×10−24 kg ·m/s.

(2.15)

In the c.g.s. system the unit of momentum is p̄cgs = g·cm/s = 1.0×10−5 kg·m/s.

The conversion factor between the a.u. and the c.g.s. unit is: p̄ = 1.99285191410×
10−19 g · cm/s.
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2.9 Angular momentum

In the SI the unit of angular momentum is derived from its definition. For
instance, the angular momentum (L) of a particle at position r and with mo-
mentum p is:

L = r× p, (2.16)

so the unit of angular momentum is kg ·m2/s.

In a.u. the unit of angular momentum (L̄) is derived from its definition
L̄ = m̄·̄l2

t̄
. The conversion factor with the SI unit is:

L̄ =
mea

2
Bh̄

mea2
B

= h̄ = 1.0545718176462× 10−34 kg ·m2/s. (2.17)

In the c.g.s. system the unit of angular momentum is L̄cgs = g · cm2/s =
1.0× 10−7 kg ·m2/s.

The conversion factor between the a.u. and the c.g.s. unit is: L̄ = 1.0545718176462×
10−27 g · cm2/s.
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2.10 Force

In the SI the unit of force (symbol N) is derived from the Newton equation:

F = ma, (2.18)

so the unit of force is N = kg ·m/s2. This unit is called newton.

In a.u. the unit of force (̄f) is derived from the same equation so we have
f̄ = m̄ · ā. The conversion factor with the SI unit is:

f̄ =
meaBh̄Eh
mea2

Bh̄
=
Eh
aB

=
4.3597447222072× 10−18J

5.29177210903× 10−11m

= 8.2387234982× 10−8 N. (2.19)

So in a.u. the unit of force is hartree/bohr.

In the c.g.s. system the unit of force is the f̄cgs = g ·cm/s2 = 1.0×10−5 kg ·m/s2.
This unit is called dyne.

The conversion factor between the a.u. and the c.g.s. unit is: f̄ = 8.2387234982×
10−3 dyne.
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2.11 Energy

In the SI the unit of energy (symbol J) is derived from the definition of work:

U =

∫
F · dr (2.20)

so the unit of energy is J = kg ·m2/s2 = N ·m. This unit is called joule.

In a.u. the unit of energy (Ū) is derived from the definition of work so Ū = f̄ ·̄l.
The conversion factor with the SI unit is:

Ū =
Eh
aB
aB = Eh = 4.3597447222072× 10−18 J, (2.21)

so in a.u. the unit of the energy is the hartree.

In the c.g.s. system the unit of energy (symbol erg) is Ūcgs = erg = dyne · cm =
1.0× 10−7 N ·m. This unit is called erg.

The conversion factor between the a.u. and the c.g.s. unit is: Ū = 4.3597447222072×
10−11 erg.
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2.12 Power

In the SI the unit of power (symbol W) is derived from its definition as the
work per unit time:

P =
dU

dt
, (2.22)

so the unit of power is W = J/s. This unit is called watt.

In a.u. the unit of power (W̄) is derived from its definition W̄ = Ū
t̄
. The

conversion factor with the SI unit is:

W̄ =
4.3597447222072× 10−18 J

2.4188843265857× 10−17 s
= 1.8023783420686× 10−1 W. (2.23)

Using the definition of t̄ and Ū we can also write:

W̄ =
E2
h

h̄
. (2.24)

In the c.g.s. system the unit of power is W̄cgs = erg/s = 1.0× 10−7 W.

The conversion factor between the a.u. and the c.g.s. unit is: W̄ =
1.8023783420686× 106 erg/s.
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2.13 Pressure

In the SI the unit of pressure (or stress) (symbol Pa) is derived from its def-
inition as a force per unit area, so the unit of pressure is N/m2 = Pa. This unit
is called pascal.

In a.u. the unit of pressure (σ̄) is derived from its definition so σ̄ = f̄
l̄2

. The
conversion factor with the SI unit is:

σ̄ =
8.2387234982× 10−8 N

(5.29177210903× 10−11 m)2
= 2.9421015696× 1013 Pa (2.25)

Note also that f̄ = Eh

aB
so σ̄ = Eh

a3B
.

In the c.g.s. system the unit of pressure (symbol Ba) is the σ̄cgs = Ba =
dyne/cm2 = 1.0× 10−1 Pa. This unit is called barye.

The conversion factor between the a.u. and the c.g.s. unit is: σ̄ = 2.9421015696×
1014 Ba.

Other common units of pressure are: bar = 105 Pa, atmosphere (atm =
1.01325 bar), torr = 1

760
bar, millimeters of mercury (mmHg = 1 torr).

20



Units guide

2.14 Temperature

In the SI the unit of temperature is the kelvin (symbol K) defined so that
the Boltzmann constant is 1.380649× 10−23J/K.

In a.u. the unit of temperature (symbol K) is the kelvin as in the SI.

In the c.g.s. system the unit of temperature (symbol K) is the kelvin as in
the SI.

In the SI the Avogadro number is exact and given by:

NA = 6.02214076× 1023, (2.26)

and the universal gas constant is

R = kBNA = 1.380649× 10−23 J

K
× 6.02214076× 1023 = 8.31446261815324

J

K
. (2.27)

The heat necessary to increase the temperature of water from 16.5 ◦C to 17.5
◦C is known as (thermochemical) calorie (symbol cal) and is equal to 4.184 J.
This is the definition that we use in thermo_pw. There is also another defini-
tion of calorie called international calorie and equal to 4.1868 J, but we do not
use it.
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Chapter 3
Electromagnetic quantities

3.1 Current

In the SI the unit of current is the ampere (symbol A) defined requiring that
the charge of the electron is e = 1.602176634 × 10−19 A · s. The quantity A · s is
called coulomb (symbol C).

In a.u. the unit of the current (symbol Ī) is derived from its definition:

I =
dq

dt
, (3.1)

where dq is the charge that passes through a cross section of the conductor in
the time dt, so Ī = C̄/t̄ where C̄ is the unit of charge (equal to e, see below). The
conversion factor with the SI unit is:

Ī =
eEh
h̄

=
1.602176634× 10−19 C 4.3597447222072× 10−18J

1.0545718176462× 10−34 J · s
= 6.623618237510×10−3A.

(3.2)

In the c.g.s.-Gaussian system the unit of current (symbol statA) is defined
from Ampère law. The force per unit length between two parallel wires that
carry a current I and I ′ is:

F

l
=

2

c2

II ′

r
, (3.3)

therefore Īcgs = statA =
√

dyne cm/s. This unit is called statampere or electro-
static unit (esu) of current.

In order to convert between statA and A, we can write A = K statA. When
the currents in the two wires are I statA = I

KA and I ′ statA = I′

KA and their
distance is r cm = r 10−2 m the force per metre is in N/m = 105

102
dyne/cm

F = 2
µ̃0

4π

103

10−2K2

I I ′

r
dyne/cm, (3.4)
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where µ̃0 is the numerical value of µ0 in SI units (see Eq. 1.11). Comparing
this equation with Eq. 3.3 we obtain:

µ̃0

4π

105

K2
=

1

c̃2
cgs

, (3.5)

where c̃cgs is the numerical value of the speed of light in c.g.s. units. We have
c̃cgs = 102c̃ where c̃ is the numerical value of the speed of light in SI units. From
this equation we obtain:

K = c̃cgs

√
105µ̃0

4π
=
c̃cgs
c̃

√
105

4πε̃0
=

√
109

4πε̃0
= 2.99792458082× 109, (3.6)

where ε̃0 is the numerical value of the vacuum permittivity in SI units (Eq. 1.12).
In the old SI units µ̃0

4π
= 10−7, so K = 10−1c̃cgs = 10 c̃. In the new SI we have:

K
10c̃

= 1.00000000027... (3.7)

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
Ī = 6.623618237510× 10−3 K statA = 1.98571079282× 107 statA.
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3.2 Charge

In the SI the unit of the charge (symbol C), derived from the definition of the
current:

I =
dq

dt
, (3.8)

is the charge that passes in one second through the section of a conductor
in which the current is 1A. This unit is called coulomb.

In the SI the Coulomb force between two charges q and q′ at distance r is:

F =
1

4πε0

q q′

r3
r, (3.9)

where r = |r|.

In a.u. the unit of the charge (symbol C̄) is defined requiring that the
electron has charge e = C̄. The conversion factor between a.u. and the SI unit
is:

C̄ = 1.602176634× 10−19 C. (3.10)

With this information we can derive the form of the Coulomb law in a.u.. A
charge q C̄ at a distance r l̄ from a charge q′ C̄ will fill a force F f̄ that can be
calculated using Eq. 3.9:

F =
1

4πε0

C̄2

l̄2f̄

q q′

r3
r, (3.11)

but since
1

4πε0

C̄2

l̄2f̄
=

Eh
aB f̄

= 1 (3.12)

the Coulomb law in a.u. is:

F =
q q′

r3
r. (3.13)

In the c.g.s. system the unit of charge (symbol statC) is defined from the
Coulomb law:

F =
q q′

r3
r, (3.14)

Therefore the charge unit is C̄cgs = statC =
√

dyne · cm = statA · s. This unit is
called statcoulomb or electrostatic unit (esu) of charge or franklin.

The conversion factor between statC and C can be found by writing statC =
1
KC and considering two charges of q statC and q′ statC respectively, at a dis-
tance of r cm. Since the two charges are of q

K C and q′

K C at the distance
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of r 10−2 m, we can use the Coulomb law in SI units to find the force (in
N = 105dyne) acting between them:

F =
1

4πε̃0

105

10−4K2

q q′

r3
r dyne (3.15)

and comparing this equation with Eq. 3.14 we find:

K =

√
109

4πε̃0
= 2.99792458082× 109. (3.16)

Using this conversion factor we can write the equation that defines the cur-
rent. When a charge dq statC, or dq

K C passes in dt s through a section of a
conductor, the current (due to Eq. 3.8) is I = 1

K
dq
dt

A = dq
dt

statA, so in the c.g.s.-
Gaussian system Eq. 3.8 still holds.

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
C̄ = 1.602176634× 10−19 K statC = 4.80320471388× 10−10 statC.
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3.3 Charge density

In the SI the unit of the charge density is derived from its definition:

ρ =
dq

dV
, (3.17)

so the unit of the charge density is C/m3.

In a.u. the unit of charge density (symbol ρ̄) is derived its definition ρ̄ = C̄
l̄3

.
The conversion factor with the SI unit is:

ρ̄ =
e

a3
B

=
1.602176634× 10−19 C

(5.29177210903× 10−11 m)3
= 1.08120238456× 1012 C/m3. (3.18)

In the c.g.s. system the unit of charge density is derived from its definition
and it is ρ̄cgs = statC/cm3 = 1

K 10−6 C/m3 = 3.33564095107× 10−4 C/m3.

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
ρ̄ = 3.2413632055× 1015 statC/cm3.
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3.4 Current density

In the SI the unit of the current density is derived from its definition:

I =

∫
J · n̂ dS, (3.19)

so the unit of the current density is A/m2.
In SI units the continuity equation is:

∂ρ

∂t
= −∇ · J. (3.20)

In a.u. the unit of the current density (symbol J̄) is derived from the same
equation so we have J̄ = Ī

l̄2
. The conversion factor to SI units is:

J̄ =
6.623618237510× 10−3 A

(5.29177210903× 10−11 m)2
= 2.36533701094× 1018 A/m2. (3.21)

Inserting the expressions of Ī and l̄ we can also write:

J̄ =
eEh
h̄a2

B

. (3.22)

The continuity equation can be written as:

∂ρ

∂t
= − t̄J̄

ρ̄̄l
∇ · J. (3.23)

Since t̄J̄
ρ̄̄l

= 1 the continuity equation is Eq. 3.20.

In the c.g.s.-Gaussian system the unit of current density (symbol J̄cgs) is de-
rived from its definition J̄cgs = statA/cm2 = 1

K10−4 A/m2 = 3.33564095107×10−6 A/m2.
Since in Eq. 3.23 t̄cgsJ̄cgs

ρ̄cgs̄lcgs
= 1 the continuity equation is Eq. 3.20.

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
J̄ = 7.0911019670× 1023 statA/cm2
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3.5 Electric field

In the SI the unit of the electric field is derived from its definition:

E =
F

q
, (3.24)

so the unit of the electric field is N/C = kg·m
s2·C = V/m.

In a.u. the unit of the electric field (symbol Ē) is derived from its definition
Ē = f̄

C̄
. The conversion factor to the SI unit is:

Ē =
Eh
aBe

=
8.2387234982× 10−8 N

1.602176634× 10−19 C
= 5.14220674763× 1011 N/C. (3.25)

In the c.g.s.-Gaussian system the unit of electric field (symbol statV/cm)
is derived from its definition: Ēcgs = statV/cm = dyne/statC = 10−5 K N/C =
2.99792458082× 104 N/C.

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
Ē = 1.71525554062× 107 statV/cm.
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3.6 Electric potential

In the SI the unit of the electric potential (symbol V) is derived from its
definition. The electric potential is a function φ(r) such that:

E = −∇φ(r), (3.26)

so the unit of the electric potential is V = N·m
C

= J
C
. This unit is called volt.

In a.u. the unit of the electric potential (symbol V̄) is derived from its
definition so V̄ = Ē · l̄. The conversion factor to the SI unit is:

V̄ =
Eh
e

=
4.3597447222072× 10−18 N ·m

1.602176634× 10−19 C
= 2.7211386245988× 101 V. (3.27)

In the c.g.s.-Gaussian system the unit of electric potential (symbol statV)
is derived from its definition: V̄cgs = statV = dyne · cm/statC = 10−7 K N ·m/C =
2.99792458082× 102 V. This unit is called statvolt. Note that statV =

√
dyne.

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
V̄ = 9.07674142975× 10−2 statV.

A commonly used unit of energy is the electron volt (symbol eV) defined as
the energy acquired by an electron accelerated through a potential difference
of 1V. Therefore eV = 1.602176634 × 10−19 C · V (or J). The Hartree energy
espressed in eV is:

Eh = 2.7211386245988× 101 eV, (3.28)

while the Rydberg energy expressed in eV is:

Eh
2

= 1.3605693122994× 101 eV. (3.29)

These units are used also to measure the frequency giving the energy of a
photon of frequency ν, that is hν instead of ν.
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3.7 Capacitance

In the SI the unit of the capacitance (symbol F) is derived from its definition.
The capacitance of a capacitor is the ratio between the charge on its surfaces
and the voltage applied between them:

C = q/V, (3.30)

so the unit of the capacitance is F = C
V

= A·s
V

= C2

N·m = C2

J
. This unit is called

farad.

In a.u. the unit of the capacitance (symbol F̄) is derived from its definition:
F̄ = C̄

V̄
. The conversion factor with the SI unit is:

F̄ =
e2

Eh
=

(1.602176634× 10−19 C)2

4.3597447222072× 10−18 J
= 5.887890530517× 10−21 F. (3.31)

In the c.g.s.-Gaussian system the unit of capacitance is derived from its
definition: C̄cgs = statC/statV = cm. The conversion factor with the SI unit is:
cm = 1

10−7 K2 C/V = 1.11265005544× 10−12 F.

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
F̄ = 5.29177210903× 10−9 cm.
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3.8 Vacuum electric permittivity

In the SI the unit of the vacuum electric permittivity ε0 can be derived from
the Coulomb law:

F =
1

4πε0

qq′

r3
r, (3.32)

so the unit of ε0 is C2

N·m2 = F
m

. Its numerical value in these units is given in
Eq. 1.12.

In a.u. ε0 is not used.

In the c.g.s.-Gaussian system ε0 is not used.

In a.u. ε0 is not used.
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3.9 Electric dipole moment

In the SI the unit of the electric dipole moment of a localized charge density
is derived from its definition:

℘ =

∫
V

rρ(r)d3r, (3.33)

so the units of the electric dipole moment are C ·m.

In a.u. the unit of electric dipole moment is derived from its definition
℘̄ = C̄ · l̄. The conversion factor to the SI unit is:

℘̄ = e aB = 1.602176634×10−19 C 5.29177210903×10−11m = 8.4783536255×10−30 C ·m.
(3.34)

In the c.g.s.-Gaussian system the unit of electric dipole is derived from
its definition ℘̄cgs = statC · cm. The conversion factor to the SI unit is ℘̄cgs =
10−2

K C ·m = 3.33564095107× 10−12 C ·m.

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
℘̄ = 2.54174647389× 10−18 statC · cm.
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3.10 Polarization

In the SI the unit of the polarization is derived from its definition as the
electric dipole per unit volume C

m2 :

P = ℘/V. (3.35)

In a.u. the unit of the polarization (symbol P̄) is derived from its definition
P̄ = C̄

l̄2
. The conversion factor with the SI unit is:

P̄ =
e

a2
B

=
1.602176634× 10−19 C

(5.29177210903× 10−11 m)2
= 5.7214766229× 101 C/m2. (3.36)

In the c.g.s.-Gaussian system the unit of polarization is derived from its
definition: P̄cgs = statC/cm2 = 1

K 10−4 C/m2 = 3.33564095107× 10−6 C/m2.

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
P̄ = 1.71525554062× 107 statC/cm2.
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3.11 Electric displacement

In the SI the electric displacement is given in term of the electric field and
of the polarization by:

D = ε0E + P, (3.37)

so the polarization and the electric displacement have the same unit C
m2 .

This equation is usually justified starting from the Maxwell’s equation:

∇ · E =
ρ

ε0
, (3.38)

and separating ρ into ρ = ρf + ρb where ρf are the free charges and ρb are
the bound charges such that:

ρb = −∇ ·P. (3.39)

Therefore one obtains:

∇ · (ε0E + P) = ρf . (3.40)

In a.u. the unit of the electric displacement (symbol D̄) is derived from
the relationship between electric displacement, electric field, and polarization
that can be found writing the above equations in a.u.. The Maxwell’s equation
becomes:

Ē

l̄
∇ · E =

ρ̄

ε0
ρ (3.41)

and since ρ̄·̄l
ε0Ē

= 4π, in a.u. we have:

∇ · E = 4πρ. (3.42)

The link between bound charges and polarization does not change:

ρb = − P̄

l̄ · ρ̄
∇ ·P = −∇ ·P, (3.43)

where we used the fact that P̄
l̄·ρ̄ = 1. Inserting this expression in the Maxwell’s

equation we obtain:
∇ · (E + 4πP) = 4πρf , (3.44)

that suggests the following definition of the electric displacement:

D = E + 4πP. (3.45)
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Finally we can find D̄ by using Eq. 3.37 for an electric field EĒ, a polariza-
tion PP̄ and a displacement DD̄:

D =

[
E
ε0Ē

D̄
+ P

P̄

D̄

]
. (3.46)

Comparing this equation with Eq. 3.45 we obtain:

D̄ = ε0Ē =
P̄

4π
(3.47)

or D̄ = P̄
4π

= 4.5530064316 C/m2.

In the c.g.s.-Gaussian system the relationship between electric displace-
ment, electric field, and polarization can be found noticing that in Eq. 3.41
ρ̄cgs ·̄lcgs
ε0Ēcgs

= 4π so that the Maxwell’s equation becomes:

∇ · E = 4πρ. (3.48)

Moreover since P̄cgs

l̄cgs·ρ̄cgs = 1, the link between bound charge and polarization is
as in the SI units and we obtain:

∇ · (E + 4πP) = 4πρf , (3.49)

that suggests the following relationship between electric displacement, electric
field and polarization:

D = E + 4πP. (3.50)

The conversion factor with the SI unit D̄cgs can be found from Eq. 3.46 that
compared with Eq. 3.50 gives:

D̄cgs = ε0Ēcgs =
P̄cgs

4π
. (3.51)

The electric displacement and the polarization have the same dimensions
statC/cm2 but while the unit of polarization is P̄cgs = 1 statC/cm2 the unit of
electric displacement is D̄cgs = 1

4π
statC/cm2. The conversion factor to SI units

is:
D̄cgs =

1

4π K 10−4
C/m2 = 2.65441872871× 10−7 C/m2. (3.52)

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
D̄ = 1.71525554062× 107 statC/(cm2 · 4π).
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3.12 Resistance

In the SI the unit of the resistance (symbol Ω) is derived from its definition.
The resistance is the ratio between the applied voltage and the current that
passes through a system:

R = V/I, (3.53)

so the unit of the resistance is Ω = V
A

= N·m·s
C2 = J·s

C2 . This unit is called ohm.

In a.u. the unit of the resistance (symbol Ω̄) is derived from its definition:
Ω̄ = V̄

Ī
. The conversion factor with the SI unit is:

Ω̄ =
Ehh̄

e2Eh
=

h̄

e2
=

1.0545718176462× 10−34 J · s
(1.602176634× 10−19 C)2

= 4.1082359022277× 103 Ω. (3.54)

In the c.g.s.-Gaussian system the unit of resistance is derived from its def-
inition: Ω̄cgs = statV/statA = s/cm. The conversion factor with the SI unit is:
Ω̄cgs = 10−7 K2 V/A = 8.9875517923× 1011 Ω.

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
Ω̄ = 4.57102890439× 10−9 s/cm.
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3.13 Magnetic flux density

In the SI the unit of the magnetic flux density (symbol T) can be derived
from the Lorentz force equation:

F = q(v ×B), (3.55)

so the unit of the magnetic flux density is T = N·s
C·m = V·s

m2 = N
A·m = kg

s·C . This
unit is called tesla.
In the SI the second Maxwell’s equation reads:

∇× E = −∂B
∂t
. (3.56)

In a.u. the unit of the magnetic flux density (symbol B̄) is derived from the
Lorentz force: B̄ = f̄

v̄·C̄ . The conversion factor with the SI unit is:

B̄ =
Ehh̄

a2
BEhe

=
h̄

a2
Be

=
1.0545718176462× 10−34 J · s

(5.29177210903× 10−11 m)2 1.602176634× 10−19 C

= 2.35051756758× 105 T. (3.57)

Using the expression of aB we can also write:

B̄ =
mee

aBh̄4πε0
=

Eh
2µB

, (3.58)

where Eh is the Hartree energy (Eq.1.13) and µB is the Bohr magneton (Eq. 1.14).
In these units the second Maxwell’s equation is:

∇× E = − l̄ · B̄
t̄ · Ē

∂B

∂t
. (3.59)

Since l̄·B̄
t̄·Ē = 1, the second Maxwell’s equation has the same form as in the SI.

In the c.g.s.-Gaussian system the unit of magnetic flux density (symbol G)
is derived from the Ampère law by writing the force per unit length between
two parallel wires traversed by a current I as:

F

l
=

1

c
B · I, (3.60)

where B = 2
c
I
r

is the magnetic flux density produced by one wire at the distance
of the other. This relationship shows that B has the dimensions of a charge
per unit area statC/cm2. This unit is called gauss.

The conversion factor with the SI unit can be found using the expression
of the magnetic flux density B produced by a wire crossed by a currenit I in
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SI units: B = µ0
2π

I
r
. Writing G = 1

KT
T, a current of I statA = I

KA produces at a
distance of r 10−2m a magnetic field (in T = KTG):

B =
µ̃0

2π

KT
10−2K

I

r
G. (3.61)

Comparing with the c.g.s.-Gaussian expression we obtain:

KT =
4π

µ̃0

10−2 K
c̃cgs

=
103

KA
= 9.99999999726× 103, (3.62)

where KA = K/c̃cgs = 1.000000000274× 10−1. With the old SI units KT was exactly
104.
Using the conversion factor between T and G we can write the Lorentz force
in the c.g.s-Gaussian system. A particle with charge q statC = q

K C that moves
with a speed of v cm/s = v 10−2 m/s in a field of B G = B

KT
T will fill a force (in

N = 105 dyne) (using Eq. 3.55):

F =
10−2

K KT
q (v ×B) 105 dyne. (3.63)

Since 103

KKT
= 1

c̃cgs
we obtain the Lorentz force in the c.g.s.-Gaussian system:

F =
q

c
(v ×B). (3.64)

The second Maxwell’s equation can be found noticing that in Eq. 3.59 l̄cgs·B̄cgs

t̄cgs·Ēcgs
=

10−2

KT 10−5K = 103KA

103K = 1
c̃cgs

so we have:

∇× E = −1

c

∂B

∂t
. (3.65)

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
B̄ = 2.35051756693× 109 G.
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3.14 Vector potential

In the SI the unit of the vector potential (symbol T · m) is derived from its
definition. The vector potential (A) is a vector field such that:

B = ∇×A, (3.66)

so the unit of the vector potential is T ·m = N
A

= V·s
m

= N·s
C

.
When the vector potential depends on time the electric field is:

E = −∇φ− ∂A

∂t
. (3.67)

In a.u. the unit of the vector potential (symbol Ā) is derived from its defini-
tion Ā = B̄ · l̄. We have:

Ā =
h̄

aBe
=

1.0545718176462× 10−34 J · s
5.29177210903× 10−11 m 1.602176634× 10−19 C

= 1.24384033059× 10−5 T ·m. (3.68)

When the vector potential depends on time the electric field is:

E = − V̄

Ē · l̄
∇φ− Ā

Ē · t̄
∂A

∂t
. (3.69)

Since V̄
Ē·̄l = 1 and Ā

Ē·̄t = 1 Eq. 3.67 holds also in a.u..

In the c.g.s.-Gaussian system the unit of the vector potential (symbol Ācgs)
is derived from its definition Eq. 3.66. The conversion factor with the SI unit
is Ācgs = G · cm = 10−2

KT
T ·m = KA

105
T ·m = 1.000000000274× 10−6 T ·m.

When the vector potential depends on time we can calculate the electric
field as in Eq. 3.69 and since V̄cgs

Ēcgs ·̄lcgs = 1 and Ācgs

Ēcgs ·̄tcgs = 1
c̃cgs

, in the c.g.s.-Gaussian
system the electric field is given by:

E = −∇φ− 1

c

∂A

∂t
. (3.70)

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
Ā = 1.24384033025× 101 G · cm.
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3.15 Magnetic field flux

In the SI the unit of the magnetic field flux (symbol Wb) is derived from its
definition. The magnetic field flux through a surface perpendicular to n̂ is:

Φ =

∫
B · n̂ dS, (3.71)

so the unit of the magnetic field flux is Wb = T · m2 = N·s·m
C

= V · s = N·m
A

=
kg·m2

sC
= J·s

C
= J

A
. This unit is called weber.

In a.u. the unit of the magnetic field flux (symbol W̄b) can be derived from
its definition W̄b = B̄ · l̄2. The conversion factor with the SI unit is:

W̄b =
h̄

e
=

1.0545718176462× 10−34 J · s
1.602176634× 10−19 C

= 6.5821195695091× 10−16 Wb. (3.72)

In the c.g.s.-Gaussian system the unit of magnetic field flux (symbol Mx)
is derived from its definition: Mx = G · cm2. This unit is called maxwell. The
conversion factor with the SI unit is:

Mx =
10−4

KT
T ·m2 = 10−7 KA Wb = 1.000000000274× 10−8 Wb (3.73)

In the old SI units this factor was 10−8.

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
W̄ b = 6.58211956771× 10−8 Mx.
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3.16 Inductance

In the SI the unit of the inductance (symbol H) is derived from its definition
as the ratio of the magnetic field flux and the current in a circuit:

L =
Φ

I
, (3.74)

so the unit of inductance is H = Wb
A

= T·m2

A
= V·s

A
= Ω · s = N·m

A2 = J
A2 = kg·m2

C2 .
This unit is called henry.

In a.u. the unit of the inductance (symbol Ȳ) can be derived from its defi-
nition as: Ȳ = W̄b

Ī
. The conversion factor with the SI unit is:

Ȳ =
h̄t̄

e2
=
mea

2
B

e2
=

h̄2

Ehe2
=

(1.0545718176462× 10−34 J · s)2

4.3597447222072× 10−18 J (1.602176634× 10−19 C)2

= 9.937347433815× 10−14 H. (3.75)

In the c.g.s.-Gaussian system the unit of inductance (symbol statH) is de-
rived from its definition:

L =
1

c

Φ

I
. (3.76)

This relationship shows that inductance has the dimensions of s2/cm. This
unit is called stathenry. The conversion factor with the SI unit can be found
by writing Ȳcgs = statH and

L =
Φ̄cgs

Ȳcgs · Īcgs

Φ

I
. (3.77)

Comparing with Eq. 3.76 we obtain:

Ȳcgs =
c̃cgsΦ̄cgs

Īcgs

, (3.78)

therefore:

statH = c̃cgs
10−4K
KT

H = c̃cgs10−7KAK H = 10−7K2 H = 8.9875517923× 1011 H. (3.79)

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
H̄ = 1.10567901732× 10−25 statH.
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3.17 Magnetic dipole moment

In the SI the unit of the magnetic dipole moment can be derived from its
definition. For instance the magnetic dipole moment µ of a coil traversed by a
current I is:

µ = IAn̂, (3.80)

where A is the area of the coil and n̂ is a versor normal to the area. There-
fore the unit of the magnetic dipole moment is A ·m2 = N·m·A·m

N
= J/T.

In a.u. the unit of the magnetic dipole moment (symbol µ̄) is derived from
its definition as µ̄ = Ī · l̄2. The conversion factor with the SI unit is:

µ̄ =
C̄ · l̄2

t̄
=
ea2

Bh̄

mea2
B

=
h̄e

me

= 2µB =
1.0545718176462× 10−34 J · s 1.602176634× 10−19 C

9.1093837015× 10−31 kg

= 1.85480201567× 10−23J/T. (3.81)

In the c.g.s.-Gaussian system the unit of magnetic dipole moment (symbol
µ̄cgs) is derived from its definition:

µ =
1

c
IAn̂, (3.82)

hence its dimensions are statC · cm. To find the conversion factor with the SI
unit we use Eq. 3.80 for a current I Īcgs and area A l̄2cgs that gives a dipole
moment µ̄cgsµ. We have therefore:

µ =
Īcgs · l̄2cgs

µ̄cgs
IAn̂. (3.83)

Comparing with Eq. 3.82 we obtain:

µ̄cgs = c̃cgsĪcgs · l̄2cgs =
c̃cgs10−4

K
A ·m2 =

1

104KA
A ·m2 = 9.99999999726× 10−4 A ·m2.

(3.84)

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
µ̄ = 1.85480201618× 10−20 statC · cm.
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3.18 Magnetization

In the SI the unit of the magnetization can be derived from its definition as
the magnetic dipole moment per unit volume:

M =
µ

V
, (3.85)

where V is the volume of the sample. Therefore the unit of the magnetiza-
tion is A

m
.

In a.u. the unit of the magnetization (symbol M̄) is derived from its defini-
tion as M̄ = Ī

l̄
. The conversion factor with the SI unit is:

M̄ =
6.623618237510× 10−3 A

5.29177210903× 10−11 m
= 1.25168244230× 108A/m. (3.86)

Using the expression of µ̄ and l̄ we can write also:

M̄ =
2µB
a3
B

. (3.87)

In the c.g.s.-Gaussian system the unit of magnetization (symbol M̄cgs) is
derived from its definition: M̄cgs = statC

cm2 . The conversion with the SI unit is:

M̄cgs =
µ̄cgs
cm3

=
1

10−2 KA
A/m = 9.99999999726× 102 A/m. (3.88)

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
M̄ = 1.25168244264× 105 statC/cm2.
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3.19 Vacuum magnetic permeability

In the SI the unit of the vacuum magnetic permeability µ0 be derived from
the equation:

µ0 =
1

c2ε0
, (3.89)

where c is the speed of light. Therefore the unit of µ0 is N·s2
C2 = N

A2 = V·s
A·m = H

m
=

m·T
A

. Its numerical value is given in Eq. 1.11 and it is approximately 4π × 10−7.

In a.u. the vacuum magnetic permeability µ0 is not used.

In the c.g.s.-Gaussian system µ0 is not used.
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3.20 Magnetic field strength

In the SI the magnetic field strength is given in term of the magnetic flux
density and of the magnetization by:

H =
B

µ0

−M, (3.90)

so the magnetic field and the magnetization have the same unit A
m

.
Eq. 3.90 can be derived from the fourth Maxwell’s equation:

∇×B = µ0J +
1

c2

∂E

∂t
. (3.91)

Separating J = Jf + Jm + Jd where Jf is the current of the free charges,

Jm = ∇×M (3.92)

is the magnetization current, and

Jd =
∂P

∂t
(3.93)

is the displacement current and inserting these expressions in Eq. 3.91 one
obtains, after dividing by µ0:

∇× (
B

µ0

−M) = Jf +
∂(P + ε0E)

∂t
. (3.94)

Using Eq. 3.90 and the definition of D the fourth macroscopic Maxwell’s
equation becomes:

∇×H = Jf +
∂D

∂t
. (3.95)

In a.u. the unit of magnetic field strength (H̄) can be derived from the
relationship between magnetic field strength, magnetic flux density, and mag-
netization. This relationship can be derived writing Eq. 3.91 in a.u.. We have:

∇×B =
µ0J̄ · l̄

B̄
J +

Ē · l̄
c2t̄ · B̄

∂E

∂t
. (3.96)

Since µ0J̄·̄l
B̄

= 4πα2 and Ē·̄l
c2 t̄·B̄ = α2, where α is the fine structure constant, this

equation becomes:

∇×B = 4πα2J + α2∂E

∂t
. (3.97)
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Moreover we have:

Jm =
M̄

l̄ · J̄
∇×M (3.98)

and

Jd =
P̄

t̄ · J̄
∂P

∂t
. (3.99)

Since M̄
l̄·J̄ = 1 and P̄

t̄·J̄ = 1 we have:

Jm = ∇×M (3.100)

and
Jd =

∂P

∂t
, (3.101)

as in the SI. Therefore after division by α2 Eq. 3.97 becomes:

∇× (
B

α2
− 4πM) = 4πJf +

∂(E + 4πP)

∂t
. (3.102)

This equation suggests the definition of the magnetic field strength as:

H =
B

α2
− 4πM, (3.103)

that gives the macroscopic Maxwell’s equation:

∇×H = 4πJf +
∂D

∂t
. (3.104)

Finally, we can find H̄ by writing:

H =
B̄

µ0H̄
B− M̄

H̄
M. (3.105)

Comparing with Eq. 3.103 we obtain:

H̄ =
B̄α2

µ0

=
M̄

4π
. (3.106)

Therefore the conversion factor with the SI unit is:

H̄ = 9.9605723936× 106 A/m. (3.107)

In the c.g.s.-Gaussian system the unit of the magnetic field strength (sym-
bol Oe) is derived from the relationship between magnetic field strength, mag-
netic flux density, and magnetization. This relationship can be derived as dis-
cussed for the a.u. case. In Eq. 3.96 we have µ0J̄cgs ·̄lcgs

B̄cgs
= 4π

ccgs
and Ēcgs ·̄lcgs

c2 t̄cgs·B̄cgs
= 1

ccgs

so the Maxwell’s equation becomes:

∇×B =
4π

c
J +

1

c

∂E

∂t
. (3.108)
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Moreover we have: M̄cgs

l̄cgs·J̄cgs
= K
KA

= ccgs and P̄cgs

t̄cgs·J̄cgs
= 1 so in c.g.s. units:

Jm = c∇×M (3.109)

and
Jd =

∂P

∂t
. (3.110)

Inserting these expressions in the Maxwell’s equation we have:

∇× (B− 4πM) =
4π

c
Jf +

1

c

∂(E + 4πP)

∂t
. (3.111)

This equation suggests the definition of the magnetic field strength as:

H = B− 4πM, (3.112)

that gives the macroscopic Maxwell’s equation:

∇×H =
4π

c
Jf +

1

c

∂D

∂t
. (3.113)

Comparing Eq. 3.112 and Eq. 3.105, we can find the conversion factor with
the SI unit. We have Oe = B̄cgs

µ0
= M̄cgs

4π
or

Oe =
1

4π 10−2KA
A/m = 7.95774715242× 101 A/m. (3.114)

This unit is called oersted.

The conversion factor between the a.u. and the c.g.s.-Gaussian unit is:
H̄ = 1.25168244264× 105 statC/cm2.
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3.21 Microscopic Maxwell’s equations

In the SI the microscopic Maxwell’s equations are:

∇ · E =
ρ

ε0
, (3.115)

∇× E = −∂B
∂t
, (3.116)

∇ ·B = 0, (3.117)

∇×B = µ0J +
1

c2

∂E

∂t
. (3.118)

The form of the microscopic Maxwell’s equations in a.u. has been obtained
in the previous text:

∇ · E = 4πρ, (3.119)

∇× E = −∂B
∂t
, (3.120)

∇ ·B = 0, (3.121)

∇×B =
4π

c2
J +

1

c2

∂E

∂t
, (3.122)

where in these equations c is actually ca.u. = 1
α

and all other quantities are
measured in a.u..

The form of the microscopic Maxwell’s equations in the c.g.s-Gaussian sys-
tem has been discussed in the previous text:

∇ · E = 4πρ, (3.123)

∇× E = −1

c

∂B

∂t
, (3.124)

∇ ·B = 0, (3.125)

∇×B =
4π

c
J +

1

c

∂E

∂t
, (3.126)

where in these equations c is actually ccgs and all other quantities are measured
in c.g.s.-Gaussian units.
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3.22 Macroscopic Maxwell’s equations

In the SI the macroscopic Maxwell’s equations can be formally obtained
first by averaging the microscopic equations and then dividing the macro-
scopic charge density into a free part and a bound part ρ = ρf + ρb with
ρb = −∇ · P where P is the polarization. Similarly the macroscopic current
density is divided into a free part, a magnetization part, and a displacement
part with J = Jf + Jm + Jd where Jm = ∇ ×M and Jd = ∂P

∂t
. Inserting these

expressions we have:

∇ ·D = ρf , (3.127)

∇× E = −∂B
∂t
, (3.128)

∇ ·B = 0, (3.129)

∇×H = Jf +
∂D

∂t
. (3.130)

where D = ε0E + P and H = B
µ0
−M.

The form of the macroscopic Maxwell’s equations in a.u. has been dis-
cussed in the previous text. We can write ρ = ρf + ρb with ρb = −∇ · P where
P is the polarization. Similarly the current density can be divided into a free
part, a magnetization part, and a displacement part with J = Jf +Jm+Jd where
Jm = ∇×M and Jd = ∂P

∂t
We have:

∇ ·D = 4πρf , (3.131)

∇× E = −∂B
∂t
, (3.132)

∇ ·B = 0, (3.133)

∇×H = 4πJf +
∂D

∂t
. (3.134)

where D = E+ 4πP and H = c2B− 4πM. Here c is ca.u. = 1
α

and all other quanti-
ties are measured in a.u..

The form of the macroscopic Maxwell’s equations in the c.g.s-Gaussian
system has been discussed in the previous text. In these units ρ = ρf + ρb with
ρb = −∇ · P where P is the polarization. Similarly the current density can be
divided into a free part, a magnetization part, and a displacement part with
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J = Jf + Jm + Jd where Jm = c∇×M and Jd = ∂P
∂t

∇ ·D = 4πρf , (3.135)

∇× E = −1

c

∂B

∂t
, (3.136)

∇ ·B = 0, (3.137)

∇×H =
4π

c
Jf +

1

c

∂D

∂t
, (3.138)

where D = E + 4πP and H = B− 4πM. In these equations c is actually ccgs and
all other quantities are measured in c.g.s.-Gaussian units.
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Chapter 4
Quantum Mechanics

4.1 The Schrödinger equation

In the SI the time independent Schrödinger equation for a particle with
charge q, mass m and spin 1/2 in an electromagnetic field described by the
scalar potential φ(r) and the vector potential A(r) is:[

1

2m
(p− qA)2 + qφ− qh̄

2m
σ ·B

]
Ψ(r) = EΨ(r) (4.1)

where B = ∇ × A, σ are the Pauli matrices and Ψ(r) is a two component
spinor.

In a.u. the time independent Schrödinger equation becomes:[
1

2mm̄
(p̄p− C̄ · ĀqA)2 + C̄ · V̄qφ− C̄ · B̄

m̄

h̄q

2m
σ ·B

]
Ψ(r) = ĒEΨ(r) (4.2)

Using p̄ = h̄
aB

, Ā = h̄
eaB

, C̄ = e, V̄ = Eh

e
, B̄ = h̄

ea2B
and Ē = Eh we get[

h̄2

mea2
B

1

2m
(p− qA)2 + Ehqφ−

h̄2

mea2
B

q

2m
σ ·B

]
Ψ(r) = EhEΨ(r) (4.3)

but since Eh = h̄2

mea2B
the equation can be simplified into[
1

2m
(p− qA)2 + qφ− q

2m
σ ·B

]
Ψ(r) = EΨ(r) (4.4)

where all quantities are in a.u..

For an electron m = 1 and q = −1 and one should write:[
1

2
(p + A)2 − φ+

1

2
σ ·B

]
Ψ(r) = EΨ(r). (4.5)
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However this form is rarely used. One prefers to introduce the potential energy
of the electron V = qφ and keep the symbol µB = −1

2
so that the equation is

written: [
1

2
(p + A)2 + V − µBσ ·B

]
Ψ(r) = EΨ(r). (4.6)

When A = 0 we can write explicitly p = −i∇, and the Schrödinger equation
becomes: [

−1

2
∇2 + V − µBσ ·B

]
Ψ(r) = EΨ(r). (4.7)

The form of the Schrödinger equation in the c.g.s.-Gaussian system can be
found starting from Eq. 4.2 and using: p̄cgs = 10−5 kg·m

s
, C̄cgs ·Ācgs = 1

K
10−2

KT
C·T·m =

10−5

c̃cgs

kg·m
s

, C̄cgs · V̄cgs = 1
K10−7K C · V = 10−7J, C̄cgs·B̄cgsh̄

m̄cgs
= ˜̄h 1

K
1

KT 10−3 J = 10−7 ˜̄hcgs
c̃cgs

J, and
Ēcgs = 10−7J leading to:[

1

2m
(p− q

c
A)2 + qφ− h̄q

2mc
σ ·B

]
Ψ(r) = EΨ(r) (4.8)

where all quantities are expressed in c.g.s.-Gaussian units.
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Appendix A
Rydberg atomic units

In this Appendix we discuss the Rydberg a.u. using the same symbols used
for Hartree a.u. with the subscript R. Rydberg a.u. are defined requiring that
aB = l̄R, me = 1

2
m̄R, e =

√
2 C̄R and h̄ =

m̄R ·̄l2R
t̄R

. We have therefore

l̄R = aB = l̄, (A.1)

m̄R = 2me = 2m̄ = 1.82187674030× 10−30 kg, (A.2)

C̄R =
e√
2

=
C̄√
2

= 1.1329099625600× 10−19 C, (A.3)

t̄R =
m̄R · l̄2R
h̄

=
2mea

2
B

h̄
= 2t̄ = 4.8377686531714× 10−17 s. (A.4)

Using these relationships we can derive the conversion factors for the other
units discussed in the text.
Frequency:

ν̄R =
1

t̄R

=
1

2t̄
=

1

2
ν̄ = 2.0670686667591× 1016 Hz. (A.5)

Speed:

v̄R =
l̄R
t̄R

=
l̄

2t̄
=

1

2
v̄ = 1.09384563182× 106 m/s. (A.6)

Acceleration:

āR =
l̄R
t̄2
R

=
l̄

4t̄2
=

1

4
ā = 4.52210806362× 1022 m/s2. (A.7)

Momentum:

p̄R =
m̄R · l̄R

t̄R

=
2m̄ · l̄

2t̄
= p̄. (A.8)

Angular momentum:

L̄R =
m̄R · l̄2R

t̄R

=
2m̄ · l̄2

2t̄
= L̄. (A.9)

Force:

f̄R =
m̄R · l̄R

t̄2
R

=
2m̄ · l̄
4t̄2

=
1

2
f̄ = 4.11936174912× 10−8 N. (A.10)
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Energy:

ŪR = f̄R · l̄R =
1

2
f̄ · l̄ =

1

2
Ū = 2.1798723611036× 10−18 J. (A.11)

Power:

W̄R =
ŪR

t̄R

=
Ū

4t̄
=

1

4
W̄ = 4.505945855171× 10−2 W. (A.12)

Pressure:

σ̄R =
f̄R
l̄2R

=
Ū

2̄l2
=

1

2
σ̄ = 1.47105078482× 1013 Pa. (A.13)

Current:

ĪR =
C̄R

t̄R

=
C̄

2
√

2 t̄
=

1

2
√

2
Ī = 2.3418026858671× 10−3 A. (A.14)

Charge density:

ρ̄R =
C̄R

l̄3R
=

C̄√
2 l̄3

=
1√
2
ρ̄ = 7.6452553796× 1011 C/m3. (A.15)

Current density:

J̄R =
ĪR

l̄2R
=

Ī

2
√

2 l̄2
=

1

2
√

2
J̄ = 8.36272920114× 1017 A/m2. (A.16)

Electric field:

ĒR =
f̄R
C̄R

=

√
2 f̄

2C̄
=

1√
2

Ē = 3.63608926151× 1011 N/C. (A.17)

Electric potential:

V̄R = ĒR · l̄R =
Ē√
2 l̄

=
1√
2

V̄ = 1.9241355740025× 101 V. (A.18)

Capacitance:

F̄R =
C̄R

V̄R

=

√
2 C̄√
2 V̄

= F̄. (A.19)

Electric dipole moment:

℘̄R = C̄R · l̄R =
1√
2

C̄ · l̄ =
1√
2
℘̄ = 5.99510134192× 10−30 C ·m. (A.20)

Polarization:

P̄R =
C̄R

l̄2R
=

C̄√
2 l̄2

=
1√
2

P̄ = 4.0456949184× 101 C/m2. (A.21)

Resistence:

Ω̄R =
V̄R

ĪR

=
2
√

2 V̄√
2 Ī

= 2Ω̄ = 8.2164718044553× 103 Ω. (A.22)
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Magnetic flux density:

B̄R =
f̄R

C̄R · v̄R

=
2
√

2 f̄

2C̄ · v̄
=
√

2B̄ = 3.3241338227× 105 T. (A.23)

Vector potential:

ĀR = B̄R · l̄R =
√

2 B̄ · l̄ =
√

2 Ā = 1.75905586495× 10−5 T ·m. (A.24)

Magnetic field flux:

W̄bR = B̄R · l̄2R =
√

2 B̄ · l̄2 =
√

2 W̄b = 9.3085227643611× 10−16 Wb. (A.25)

With this definition the Lorentz force remains:

F = qE + q (v ×B) , (A.26)

and since l̄R·B̄R

ĒR ·̄tR
= l̄R·B̄R

ĒR ·̄tR
= 1 the second Maxwell’s equation remains:

∇× E = −∂B
∂t
, (A.27)

Inductance:

ȲR =
W̄bR

ĪR

= 2(
√

2)2 W̄b

Ī
= 4Ȳ = 3.9749389735260× 10−13 H. (A.28)

Magnetic dipole moment:

µ̄R = ĪR · l̄2R =
1

2
√

2
Ī · l̄2 =

1

2
√

2
µ̄ = 6.5577154152× 10−24 A ·m2. (A.29)

Magnetization:

M̄R =
ĪR

l̄R
=

1

2
√

2
Ī · l̄ =

1

2
√

2
M̄ = 4.42536571420× 107 A/m. (A.30)

In order to discuss the units of the electric displacement and of the mag-
netic field strength, we need to discuss the Maxwell’s equations. The first
Maxwell’s equation is

∇ · E = 4πρ, (A.31)

since ρ̄R ·̄lR
ε0ĒR

= ρ̄·̄l
ε0Ē

= 4π. Moreover since P̄R

l̄R·ρ̄R
= P̄

l̄·ρ̄ = 1 in these units

ρb = −∇ ·P, (A.32)

and the macroscopic Maxwell’s equation becomes:

∇ · (E + 4πP) = 4πρf , (A.33)

suggesting the definition:
D = E + 4πP. (A.34)
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Therefore:

D̄R =
P̄R

4π
=

1√
2

D̄ = 3.21946172254 C/m2. (A.35)

The fourth Maxwell’s equation can be written using µ0J̄R ·̄lR
B̄R

= 1
4
µ0J̄·̄l

B̄
= πα2 and

ĒR ·̄lR
c2 t̄R·B̄R

= 1
4

Ē·̄l
c2 t̄·B̄ = α2

4
so we have:

∇×B = πα2J +
α2

4

∂E

∂t
. (A.36)

Since M̄R

l̄R·J̄R
= M̄

l̄·J̄ = 1 and P̄R

t̄R·J̄R
= P̄

t̄·J̄ = 1 we can write

Jm = ∇×M (A.37)

and
Jd =

∂P

∂t
, (A.38)

obtaining the equation

∇× (
4B

α2
− 4πM) = 4πJf +

∂(E + 4πP)

∂t
. (A.39)

Defining the magnetic field strengh as:

H =
4B

α2
− 4πM, (A.40)

we can write the fourth macroscopic Maxwell’s equation as:

∇×H = 4πJf +
∂D

∂t
. (A.41)

Therefore we have:

H̄R =
M̄R

4π
=

1√
2

M̄

4π
=

1√
2

H̄ = 3.52159414202× 106 A/m. (A.42)

We note also that l̄R·B̄R

ĒR ·̄tR
= l̄·B̄

Ē·̄t = 1 so the second Maxwell’s equation remains:

∇× E = −∂B
∂t
. (A.43)

Finally we consider the continuity equation. Since t̄R·J̄R

ρ̄R ·̄lR
= t̄·J̄

ρ̄·̄l = 1 this equation
remains:

∂ρ

∂t
= −∇ · J. (A.44)

The form of the Schrödinger equation in Rydberg a.u. can be found starting
from Eq. 4.2 and using: p̄R = p̄, C̄R · ĀR = C̄ · Ā, C̄R · V̄R = 1

2
C̄ · V̄, C̄Rh̄B̄R

m̄R
= 1

2
C̄h̄B̄

m̄
,

and ĒR = 1
2
Ē leading to:[

1

2m
(p− qA)2 + qφ− q

2m
σ ·B

]
Ψ(r) = EΨ(r) (A.45)
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where all quantities are expressed in Rydberg a.u..

For an electron m = 1
2

and q = −
√

2 and one should write:[
(p +

√
2A)2 −

√
2φ+

√
2σ ·B

]
Ψ(r) = EΨ(r). (A.46)

However this form is rarely used. One prefers to introduce the potential energy
of the electron V = qφ and keep the symbol µB = q

2m
= −
√

2 so that the equation
is written: [

(p +
√

2A)2 + V − µBσ ·B
]

Ψ(r) = EΨ(r). (A.47)

When A = 0 we can write explicitly p = −i∇, and the Schrödinger equation
becomes: [

−∇2 + V − µBσ ·B
]

Ψ(r) = EΨ(r). (A.48)
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Appendix B
Gaussian atomic units

It is possible to make the electromagnetic equations in a.u. look like those
of the c.g.s.-Gaussian system. This requires the modification of the units of
the magnetic flux density, vector potential, magnetic field flux, magnetic dipole
moment, magnetization, and magnetic field strength, while the other units re-
main unchanged. We discuss these quantities here using a subscript G to
identify the modified units. Although the unit of inductance is not modified
we discuss it since it depends on the definition of the magnetic field flux. In
order to avoid confusion we use α which is the same in all systems, but these
equations are sometimes written using the speed of light c = 1

α
instead of α.

Magnetic flux density:
The definition of the Lorentz force in these units should be:

F = αq(v ×B). (B.1)

Therefore we must have C̄G·v̄G·B̄G

f̄G
= α. Since one takes C̄G = C̄, v̄G = v̄ and

f̄G = f̄, we have

B̄G = α
h̄

ea2
B

= αB̄ = 1.71525554109× 103 T. (B.2)

With this conversion factor we have l̄G·B̄G

ĒG ·̄tG
= α l̄·B̄

Ē·̄t = α and the second Maxwell’s
equation becomes:

∇× E = −α∂B
∂t
. (B.3)

Vector potential:
We still have B = ∇×A, therefore:

ĀG = B̄G · l̄G = αĀ = 9.0767414322× 10−8 T ·m (B.4)

When the vector potential is time dependent it gives rise to an electric field
given by:

E = −∇Φ− α∂A
∂t

(B.5)
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since ĀG

t̄G·ĒG
= α Ā

t̄·Ē = α.

Magnetic field flux:
We still have:

Φ̄G = B̄G · l̄2G = αΦ̄ = 4.80320471520× 10−18 Wb. (B.6)

Inductance:
To have the same equation as in the c.g.s.-Gaussian system:

L = α
Φ

I
, (B.7)

we must have Φ̄G

ĪG·ȲG
= α or:

ȲG =
Φ̄G

αĪG

= Ȳ. (B.8)

Magnetic dipole moment:
To have the same equation as in the c.g.s.-Gaussian system:

µ = αIAn̂, (B.9)

we must have ĪG ·̄l2G
µ̄G

= α or

µ̄G =
ĪG · l̄2G
α

=
1

α
µ̄ = 2.5417464732× 10−21 A ·m2. (B.10)

Magnetization:
We still have:

M̄G =
µ̄G

l̄3G
=

1

α
M̄ = 1.71525554016× 1010 A/m. (B.11)

Magnetic field strength:
The unit of the magnetic field strength is derived from the relationship between
magnetic field flux, magnetization, and magnetic field strength. Since µ0J̄G ·̄lG

B̄G
=

µ0J̄·̄l
αB̄

= 4πα and ĒG ·̄lG
c2 t̄G·B̄G

= Ē·̄l
c2 t̄αB̄

= α, the fourth Maxwell’s equation becomes

∇×B = 4παJ + α
∂E

∂t
. (B.12)

Since M̄G

l̄G·J̄G
= M̄

ᾱl·J̄ = 1
α

and P̄G

t̄G·J̄G
= P̄

t̄·J̄ = 1 we can write:

Jm =
1

α
∇×M (B.13)

and
Jd =

∂P

∂t
. (B.14)
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So the fourth macroscopic Maxwell’s equation becomes

∇× (B− 4πM) = 4παJf + α
∂(E + 4πP)

∂t
. (B.15)

This suggests the definition of the magnetic field strength as H = B − 4πM in
addition to the usual equation for the electric induction D = E + 4πP. This
gives:

∇×H = 4παJf + α
∂D

∂t
. (B.16)

The unit of magnetic field strength is therefore derived from µ0B̄G

H̄G
= 1 or M̄G

H̄G
= 4π

that gives

H̄G = µ0B̄G = αµ0B̄ =
M̄G

4π
=

1

α
H̄ = 1.36495698941× 109 A/m. (B.17)

60



Appendix C
Magnetization Intensity

Several authors use the magnetization intensity instead of the magnetiza-
tion. This quantity is defined as:

I = µ0M, (C.1)

and has the same unit of the magnetic field (Tesla T ). The relationship between
magnetic field strength, magnetic flux density, and magnetization intensity is
written as:

B = µ0H + I. (C.2)
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Appendix D
Conversion factors tables

This Appendix collects the conversion factors discussed in the text and
gives their absolute and relative errors. The data reported here have been ob-
tained with the tool tools/units.f90 using as input the values of the first
seven quantities of this list taken from the NIST web-site (https://www.nist.gov/).
Errors are calculated from the errors of the Rydberg constant and of the fine
structure constant available in the same site.
These values are updated to October 2019.

Experimental quantities exact in the SI:
Planck constant: 6.62607015E-34 J.s
Planck constant / 2 pi: 1.0545718176462E-34 J.s
Speed of light: 2.99792458E+08 m/s
Electron charge: 1.602176634E-19 C
Avogadro number: 6.02214076E+23
Boltzmann constant: 1.380649E-23 J/K

Approximate quantities determined by experiment:
Rydberg constant: 1.0973731568160E+07 1/m
Fine structure constant: 7.2973525693E-03
Atomic mass unit: 1.66053906660E-27 kg

Derived Physical quantities:
Electron mass: 9.1093837015E-31 kg
mu0: 1.25663706212E-06 N/A^2
epsilon0: 8.8541878128E-12 C^2/N m^2
E_hatree: 4.3597447222072E-18 J
Bohr radius: 5.29177210903E-11 m
Bohr magneton: 9.2740100783E-24 J/T

Conversion factors (Atomic units - SI):
Length: \l= 5.29177210903E-11 m
Mass: \m= 9.1093837015E-31 kg
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Mass density: \rhom= 6.1473168257E+00 kg/m^3
Time: \t= 2.4188843265857E-17 s
Frequency: \nu= 4.1341373335182E+16 Hz
Speed: \v= 2.18769126364E+06 m/s
Acceleration: \a= 9.0442161272E+22 m/s^2
Momentum: \p= 1.99285191410E-24 kg m/s
Angular momentum: \L= 1.0545718176462E-34 kg m^2/s
Force: \f= 8.2387234982E-08 N
Energy: \U= 4.3597447222072E-18 J
Power: \W= 1.8023783420686E-01 W
Pressure: \pr= 2.9421015696E+13 Pa
Current: \I= 6.623618237510E-03 A
Charge: \C= 1.602176634E-19 C
Charge density: \rho= 1.08120238456E+12 C/m^3
Current density: \J= 2.36533701094E+18 A/m^2
Electric field: \E= 5.14220674763E+11 N/C
Electric potential: \V= 2.7211386245988E+01 V
Capacitance: \F= 5.887890530517E-21 F
Dipole moment: \dip= 8.4783536255E-30 C m
Polarization: \P= 5.7214766229E+01 C/m^2
Electric displacement: \D= 4.5530064316E+00 C/m^2
Resistance: \R= 4.1082359022277E+03 Ohm
Magnetic induction: \B= 2.35051756758E+05 T
Vector potential: \A= 1.24384033059E-05 T m
Magnetic field flux: \Phi= 6.5821195695091E-16 Wb
Inductance: \Y= 9.937347433815E-14 H
Magnetic dipole: \mu= 1.85480201567E-23 A m^2 (J/T)
Magnetization: \M= 1.25168244230E+08 A/m
Magnetic strength: \H= 9.9605723936E+06 A/m

Conversion factors (c.g.s.-Gaussian - SI):
Length: cm= 1.0E-02 m
Mass: g= 1.0E-03 kg
Mass density: g/cm^3= 1.0E+03 kg/m^3
Time: s= 1.0E+00 s
Frequency: Hz= 1.0E+00 Hz
Speed: cm/s= 1.0E-02 m/s
Acceleration: cm/s^2= 1.0E-02 m/s^2
Momentum: g cm/s= 1.0E-05 kg m/s
Angular momentum: g cm^2/s=1.0E-07 kg m^2/s
Force: dyne= 1.0E-05 N
Energy: erg= 1.0E-07 J
Power: erg/s= 1.0E-07 W
Pressure: Ba= 1.0E-01 Pa
Current: statA= 3.33564095107E-10 A
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Charge: statC= 3.33564095107E-10 C
Charge density: statC/cm^3=3.33564095107E-04 C/m^3
Current density: statA/cm^2=3.33564095107E-06 A/m^2
Electric field: dyne/statC=2.99792458082E+04 N/C
Electric potential: statV= 2.99792458082E+02 V
Capacitance: cm= 1.11265005544E-12 F
Dipole moment: statC cm= 3.33564095107E-12 C m
Electric polarization: statC/cm^2= 3.33564095107E-06 C/m^2
Electric displ: statC/cm^2 4 pi = 2.65441872871E-07 C/m^2
Resistance: s/cm= 8.987551792288E+11 Ohm
Magnetic induction: G= 1.000000000274E-04 T
Vector potential: G cm= 1.000000000274E-06 T m
Magnetic field flux: Mx= 1.000000000274E-08 Wb
Inductance: statH= 8.98755179229E+11 H
Magnetic dipole: statC cm= 9.99999999726E-04 A m^2
Magnetization: statC/cm^2= 9.99999999726E+02 A/m
Magnetic strength: statC/cm^2 4 pi= 7.95774715242E+01 A/m

C/statC= 2.99792458082E+09 (C/statC)/10c= 1.00000000027E+00

mu_0/4 pi 10^-7= 1.00000000055E+00

Conversion factors (SI - c.g.s.-Gaussian):
Length: m= 1.0E+02 cm
Mass: kg= 1.0E+03 g
Time: s= 1.0E+00 s
Frequency: Hz= 1.0E+00 Hz
Speed: m/s= 1.0E+02 cm/s
Acceleration: m/s^2= 1.0E+02 cm/s^2
Momentum: kg m/s= 1.0E+05 g cm/s
Angular momentum: kg m^2/s=1.0E+07 g cm^2/s
Force: N= 1.0E+05 dyne
Energy: J= 1.0E+07 erg
Power: W= 1.0E+07 erg/s
Pressure: Pa= 1.0E+01 Ba
Current: A= 2.99792458082E+09 statA
Charge: C= 2.99792458082E+09 statC
Charge density: C/m^3= 2.99792458082E+03 statC/cm^3
Current density: A/m^2= 2.99792458082E+05 statA/cm^2
Electric field: N/C= 3.33564095107E-05 dyne/statC
Electric potential: V= 3.33564095107E-03 statV
Capacitance: F= 8.98755179229E+11 cm
Dipole moment: C m= 2.99792458082E+11 statC cm
Electric polarization: C/m^2= 2.99792458082E+05 statC/cm^2
Electric displ.: C/m^2= 3.76730313565E+06 statC/cm^2 4pi
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Resistance: Ohm= 1.112650055445E-12 s/cm
Magnetic induction: T= 9.999999997263E+03 G
Vector potential: T m= 9.999999997263E+05 G cm
Magnetic field flux: Wb= 9.999999997263E+07 Mx
Inductance: H= 1.11265005544E-12 statH
Magnetic dipole: A m^2= 1.00000000027E+03 statC cm
Magnetization: A/m= 1.00000000027E-03 statC/cm^2
Magnetic strength: A/m= 1.25663706178E-02 statC/cm^2 4pi

Conversion factors (Atomic units - c.g.s.-Gaussian):
Length: 5.29177210903E-09 cm
Mass: 9.1093837015E-28 g
Mass density: 6.1473168257E-03 g/cm^3
Time: 2.4188843265857E-17 s
Frequency: 4.1341373335182E+16 Hz
Speed: 2.18769126364E+08 cm/s
Acceleration: 9.0442161272E+24 cm/s^2
Momentum: 1.99285191410E-19 g cm/s
Angular momentum: 1.0545718176462E-27 g cm^2/s
Force: 8.2387234982E-03 dyne
Energy: 4.3597447222072E-11 erg
Power: 1.8023783420686E+06 erg/s
Pressure: 2.9421015696E+14 Ba
Current: 1.98571079282E+07 statA
Charge: 4.80320471388E-10 statC
Charge density: 3.2413632055E+15 statC/cm^3
Current density: 7.0911019670E+23 statA/cm^2
Electric field: 1.71525554062E+07 dyne/statC
Electric potential: 9.07674142975E-02 statV
Capacitance: 5.29177210903E-09 cm
Dipole moment: 2.54174647389E-18 statC cm
Polarization: 1.71525554062E+07 statC/cm^2
Electric displacement: 1.71525554062E+07 statC/cm^2 4pi
Resistance: 4.57102890439E-09 s/cm
Magnetic induction: 2.35051756693E+09 G
Vector potential: 1.24384033025E+01 G cm
Magnetic field flux: 6.58211956771E-08 Mx
Inductance: 1.10567901732E-25 statH
Magnetic dipole: 1.85480201618E-20 statC cm
Magnetization: 1.25168244264E+05 statC/cm^2
Magnetic strength: 1.25168244264E+05 statC/cm^2 4pi

Conversion factors (Rydberg atomic units - SI):
Length: \l_R= 5.29177210903E-11 m
Mass: \m_R= 1.82187674030E-30 kg
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Time: \t_R= 4.8377686531714E-17 s
Frequency: \nu_R= 2.0670686667591E+16 Hz
Speed: \v_R= 1.09384563182E+06 m/s
Acceleration: \a_R= 4.52210806362E+22 m/s^2
Momentum: \p_R= 1.99285191410E-24 kg m/s
Angular momentum: \L_R= 1.0545718176462E-34 kg m^2/s
Force: \f_R= 4.11936174912E-08 N
Energy: \U_R= 2.1798723611036E-18 J
Power: \W_R= 4.505945855171E-02 W
Pressure: \pr_R= 1.47105078482E+13 Pa
Current: \I_R= 2.3418026858671E-03 A
Charge: \C_R= 1.1329099625600E-19 C
Charge density: \rho_R= 7.6452553796E+11 C/m^3
Current density: \J_R= 8.36272920114E+17 A/m^2
Electric field: \E_R= 3.63608926151E+11 N/C
Electric potential: \V_R= 1.9241355740025E+01 V
Capacitance: \F_R= 5.887890530517E-21 F
Dipole moment: \dip_R= 5.99510134192E-30 C m
Polarization: \P_R= 4.0456949184E+01 C/m^2
Electric displacement: \D_R=3.21946172254E+00 C/m^2
Resistance: \R_R= 8.2164718044553E+03 Ohm
Magnetic induction: \B_R= 3.3241338227E+05 T
Vector potential: \A_R= 1.75905586495E-05 T m
Magnetic field flux: \Phi_R=9.3085227643611E-16 Wb
Inductance: \Y_R= 3.9749389735260E-13 H
Magnetic dipole: \mu_R= 6.5577154152E-24 A m^2 (J/T)
Magnetization: \M_R= 4.42536571420E+07 A/m
Magnetic field: \H_R= 3.52159414202E+06 A/m

Conversion factors (Gaussian atomic units - SI):
Magnetic induction: \B_G= 1.71525554109E+03 T
Vector potential: \A_G= 9.0767414322E-08 T m
Magnetic field flux: \Phi_G=4.80320471520E-18 Wb
Magnetic dipole: \mu_G= 2.5417464732E-21 A m^2 (J/T)
Magnetization: \M_G= 1.71525554016E+10 A/m
Magnetic field: \H_G= 1.36495698941E+09 A/m

Physical constants in Hartree atomic units:
Speed of light: 1.37035999084E+02
atomic mass unit: 1.8228884862E+03

Physical constants in eV:
Hartree in eV: 2.7211386246E+01
Rydberg in eV: 1.3605693123E+01
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Frequency conversion:
Hz in cm^-1: 3.33564095198152E-11
cm^-1 in Hz: 2.99792458E+10

------------------------------------------------------------
Errors: Absolute Relative

rydberg = 2.10E-05 1/m 1.91E-12
alpha = 1.10E-12 1.51E-10
amu = 5.00E-37 3.01E-10

me = 2.76E-40 kg 3.03E-10
abohr = 8.08E-21 m 1.53E-10
mu0 = 1.89E-16 N/A^2 1.51E-10
epsilon0 = 1.33E-21 C^2/Nm^2 1.51E-10
hartree = 8.34E-30 J 1.91E-12
bohr mag = 2.81E-33 J/T 3.03E-10

Errors of conversion factors (atomic units - SI):
\l = 8.08E-21 m 1.53E-10
\m = 2.76E-40 kg 3.03E-10
\rhom = 4.68E-09 kg/m^3 7.61E-10
\t = 4.63E-29 s 1.91E-12
\nu = 7.91E+04 s 1.91E-12
\v = 3.30E-04 m/s 1.51E-10
\a = 1.38E+13 m/s^2 1.53E-10
\p = 3.04E-34 kg m/s 1.53E-10
\L = 0.00E+00 kg m^2/s 0.00E+00
\f = 1.27E-17 N 1.55E-10
\U = 8.34E-30 J 1.91E-12
\W = 6.90E-13 W 3.83E-12
\pr = 1.35E+04 Pa 4.60E-10
\I = 1.27E-14 A 1.91E-12
\C = 0.00E+00 C 0.00E+00
\rho = 4.95E+02 C/m^3 4.58E-10
\J = 7.27E+08 A/m^2 3.07E-10
\E = 7.95E+01 V/m 1.55E-10
\V = 5.21E-11 V 1.91E-12
\F = 1.13E-32 F 1.91E-12
\dip = 1.29E-39 C m 1.53E-10
\P = 1.75E-08 C/m^2 3.05E-10
\D = 1.39E-09 C/m^2 3.05E-10
\R = 0.00E+00 Ohm 0.00E+00
\B = 7.18E-05 T 3.05E-10
\A = 1.90E-15 T m 1.53E-10
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\phi = 0.00E+00 Wb 0.00E+00
\Y = 1.90E-25 H 1.91E-12
\mu = 5.63E-33 J/T 3.03E-10
\M = 1.93E-02 A/m 1.55E-10
\H = 1.54E-03 A/m 1.55E-10

cspeed = 2.07E-08 \v 1.51E-10
amu = 1.10E-06 \m 6.04E-10

Errors of conversion factors (c.g.s.-Gaussian - SI):
Current = 2.51E-20 A 7.54E-11
Charge = 2.51E-20 C 7.54E-11
Charge density = 2.51E-14 C/m^3 7.54E-11
Current density = 2.51E-16 A/m^2 7.54E-11
Electric field = 2.26E-06 V/m 7.54E-11
Electric potential = 2.26E-08 V 7.54E-11
Capacitance = 1.68E-22 F 1.51E-10
Dipole moment = 2.51E-22 C m 7.54E-11
Electric Polarization = 2.51E-16 C/m^2 7.54E-11
Electric Displacement = 2.00E-17 C/m^2 7.54E-11
Resistance = 1.35E+02 Ohm 1.51E-10
Magnetic induction = 7.54E-15 T 7.54E-11
Vector potential = 7.54E-17 T m 7.54E-11
Magnetic field flux = 7.54E-19 Wb 7.54E-11
Inductance = 1.35E+02 H 1.51E-10
Magnetic dipole = 7.54E-14 J/T 7.54E-11
Magnetization = 7.54E-08 A/m 7.54E-11
Magnetic strength = 6.00E-09 A/m 7.54E-11

Errors of conversion factors (atomic units-c.g.s.-Gaussian):
Current = 1.53E-03 statA 7.73E-11
Charge = 3.62E-20 statC 7.54E-11
Charge density = 1.73E+06 statC/cm^3 5.33E-10
Current density = 2.71E+14 statA/cm^2 3.83E-10
Electric field = 3.94E-03 statV/cm 2.30E-10
Electric potential = 7.01E-12 statV 7.73E-11
Capacitance = 8.08E-19 cm 1.53E-10
Dipole moment = 5.80E-28 statC cm 2.28E-10
Electric Polarization = 6.53E-03 statC/cm^2 3.81E-10
Electric displacement = 6.53E-03 statC/cm^2 4pi 3.81E-10
Resistance = 6.89E-19 s/cm 1.51E-10
Magnetic induction = 8.95E-01 G 3.81E-10
Vector potential = 2.84E-09 G cm 2.28E-10

68



Units guide

Magnetic field flux = 4.96E-18 Mx 7.54E-11
Inductance = 1.69E-35 statH 1.53E-10
Magnetic dipole = 7.03E-30 statC cm 3.79E-10
Magnetization = 2.88E-05 statC/cm^2 2.30E-10
Magnetic strength = 2.88E-05 statC/cm^2 4pi 2.30E-10

Errors of conversion factors (Rydberg atomic units - SI):
\l_R = 8.08E-21 m 1.53E-10
\m_R = 5.53E-40 kg 3.03E-10
\t_R = 9.26E-29 s 3.83E-12
\nu_R = 3.96E+04 s 1.91E-12
\v_R = 1.65E-04 m/s 1.51E-10
\a_R = 6.90E+12 m/s^2 1.53E-10
\p_R = 3.04E-34 kg m/s 1.53E-10
\L_R = 0.00E+00 kg m^2/s 0.00E+00
\f_R = 6.37E-18 N 1.55E-10
\U_R = 4.17E-30 J 1.91E-12
\W_R = 1.72E-13 W 3.83E-12
\pr_R = 6.76E+03 Pa 4.60E-10
\I_R = 4.48E-15 A 1.91E-12
\C_R = 0.00E+00 C 0.00E+00
\rho_R = 3.50E+02 C/m^3 4.58E-10
\J_R = 2.57E+08 A/m^2 3.07E-10
\E_R = 5.62E+01 V/m 1.55E-10
\V_R = 5.21E-11 V 2.71E-12
\F_R = 1.13E-32 F 1.91E-12
\dip_R = 9.15E-40 C m 1.53E-10
\P_R = 1.24E-08 C/m^2 3.05E-10
\D_R = 9.83E-10 C/m^2 3.05E-10
\R_R = 0.00E+00 Ohm 0.00E+00
\B_R = 1.01E-04 T 3.05E-10
\A_R = 2.69E-15 T m 1.53E-10
\phi_R = 0.00E+00 Wb 0.00E+00
\Y_R = 7.61E-25 H 1.91E-12
\mu_R = 1.99E-33 J/T 3.03E-10
\M_R = 6.84E-03 A/m 1.55E-10
\H_R = 5.44E-04 A/m 1.55E-10

Errors of conversion factors (Gaussian atomic units - SI):
\B_G = 7.82E-07 T 4.56E-10
\A_G = 2.75E-17 T m 3.03E-10
\phi_G = 7.24E-28 Wb 1.51E-10
\mu_G = 1.15E-30 J/T 4.54E-10
\M_G = 5.24E+00 A/m 3.05E-10
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\H_G = 4.17E-01 A/m 3.05E-10
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