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1. As was shown in the remarkable communication [4] the Cauchy problem for the
Korteweg–de Vries (KdV) equation ut = 6uux−uxxx, familiar in theory of nonlinear
waves, is closely linked with a study of the spectral properties of the Sturm–Liouville
operator Lψ = Eψ, where L = −d2/dx2 + u(x). For rapidly decreasing initial
conditions u(x, 0), where

∫∞
−∞ u(x, 0)(1 + |x|)dx < ∞, the KdV equation can in

a sense be completely solved by going over to scattering data for the opreator L;
these data determine the potential u, as was shown in [3], [8], [10]. It was later
pointed out in [7] that this procedure actually provides the basis for representing
the operator of multiplication by the right side of the KdV equation in terms of the
commutator [A,L] = (6uux − uxxx), where A = −4d3/dx3 + 3(u d/dx + (d/dx)u).
It follows from this that the KdV equation is equivalent to the equation L̇ = [A,L].

In the case of functions u(x, t) periodic in x, and even more in the case of
conditionally periodic functions, it has not proved possible to make any serious use
of the connection between the operator L and the KdV equation. Recently, in [2],
[9], the present authors made substantial progress in this problem, and discovered
deep links with algebraic geometry. It should be mentioned that a substantial
part of Dubrovin’s results [2] was obtained simultaneously and independently by
Matveev and Its [6], Both the articles [2], [6] employed an idea of N. I. Ahiezer [l],
the full significance of which has only recently been appreciated.

2. Finite-zone potnetials and higher analogs of the KdV equation (see
[9]). For a periodic potential u(x), the eigenfunctions of the operator L are deter-
mined as usual on the entire axis by the conditions:

(1) Lψ(x, x0, E) = Eψ(x, x0, E);
(2) ψ(x, x0, E) = 1, x = x0;
(3) ψ±(x+ T, x0, E) = e±ip(E)ψ(x, x0, E),

where ψ− = ψ̄+, T is the period, and p(E) is a real function which is not defined
for all E. The domains of defintion of p(E) are called allowed zones, and their
complements forbidden zones, or lacunae, of which there are as a rule infinitely
many (their lengths decrease as E →∞).

a) We call u a finite-zone potential if there are only a finite number of lacunae
in the corresponding spectrum of the operator L (e.g., u = const).
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b) A higher order KdV equation is defined as an equation u̇ = Q(u, u′, . . . , u(N))
for which there exists an operator A = dN/dxN +

∑N
i=1 Pid

N−i/dxN−i such that the
commutator [A,L] is the operator of multiplication by the right sideQ(u, u′, . . . , u(N)).
It is assumed here that Q and all the Pi are polynomials in the function u and its
derivatives with respect to x, with constant (real) coefficients.

The higher order KdV equations are described as follows in [7]: if χ(x,E) =
−id lnψ/dx, then as E →∞ we have the asymptotic expansion

χ ∼ k +
∑
n≥1

χn(x)
(2k)n

, −iχ′ + χ2 + u = E, k2 = E;

all the χn(x) are polynomials in u, u′, u′′, . . . , while the integrals

Im =
∫ x0+T

x0

χ2m+1(x) dx

are such that İm = 0 by virtue of the initial and all the higher order KdV equations.
All the higher order KdV equations have the form

u̇ =
d

dx

δ

δu(x)

(
m+2∑
q=1

cqIq

)
.

The main theorem of [9] states that all the steady state periodic solutions u(x)
of any higher order KdV equation are finite-zone potentials. In addition, all the
equations

δ

δu(x)

(∑
cqIq

)
= const

prove to be completely integrable Hamiltonian systems. The method of [9] gives
an algorithm for evaluating the entire set of commuting integrals J1, . . . , Jm, which
are polynomials in u, u′, . . . , u(2m−1), where m is the number of lacunae. The set of
potentials obtained is invariant under all higher order KdV equations and fills an
(m+ 1)-dimensional family of Euclidean spaces R2m (or space R3m+1), dependent
on the set of constants {cq}. In each R2m

{cq} a commutative group Rm acts, the
orbits of which are distinguished by the set of integrals (polynomials) J1, . . . , Jm.
If an orbit is compact (a torus) and the numbers of revolutions are commensurable,
winding of this torus yields a periodic m-zone potential. In general, meromorphic
periodic potentials u(x) are obtained with a group of (real and imaginary) periods
T1, . . . , Tm, T

′
1, . . . , T

′
m. The entire construction admits obvious complexification,

and the complex orbits of the group Cm are Abelian varieties.

3. Finite-zone potentials and algebraic geometry (see [2]). It turns out
that, for a periodic potential, an eigenfunction ψ(x, x0, E) can be continuous an-
alytically with respect to E to a meromorphic function on a Riemann surface R
(except for E = ∞) having the form y2 =

∏2m+1
j=1 (E − Ej), where the Ej are the

zone boundaries. In the conditionally periodic case, this is a condition imposed on
the investigated class of potentials. If χ(x,E) = −id lnψ/dx, then χ = χR + iχI ,
where χI = +1

2d(lnχR)′/dx.
Hence it follows that

ψ(x, x0, E) =

√
χR(x0, E)
χR(x,E)

exp
{∫ x

x0

χR dx

}
.
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We can prove the important formula

χR(x,E) =
√
R(E)

/∏
j=1

(E − γj(x)),

where R(E) =
∏2m+1

j=1 (E − Ei), and the γj(x) each lie in a forbidden zone or
on the boundary of such a zone. Let C(x, x0, E) and S(x, x0, E) be a basis of
eigenfunctions, normalized for x = x0 by the conditions

C = 1, C ′ = 0, S = 0, S′ = 1.

It is clear from the general expression ψ = C+ iχ(x0, E)S that the poles of ψ lie
above the points γj(x0). However, a pole of ψ lies on just one of the sheets. The
condition for its contradiction to another position is given by the equation m∏

j=1

(E − γj(x))

′
E=γj(x)

= 2i
√
R(γj)

or
γ′j = 2i

√
R(γj)

/ ∏
j 6=k

(γj − γk).

Comparison with the results of [9] enables us to find the time dependence γ̇j

in the light of the higher order KdV equations. In particular, for the initial KdV
equation we obtain [2]

γ̇j = 8i

∑
k 6=j

γk − c

√R(γj)
/∏

j 6=k

(γj − γk),

where c = 1
2

∑
Ei. Here, γ1, . . . , γm is a set of points (divisors) on R, and u(x) =

−2
∑
γj(x) +

∑
Ei.

These equations may be integrated by an Abelian mapping:

ξk =
m∑

j=1

∫ γj(x)

Q

ωk, where ωk =
Ek dE√
R(E)

, k = 0, . . . ,m− 1,

is a basis of holomorphic differentials on R. By virtue of the higher order KdV
equations, all the derivatives ξ̇ are constant. The parameters ξk are defined up
to the periods of the forms ωk along the cycles and define a torus J(R), i.e., a
“Jacobian”, the rectilinear structure on which is specified by the higher order KdV
equations. The set of potentials with given zone-boundaries is itself isomorphic
(after complexification) to this Jacobi variety (complex torus).

It can easily be seen that p(E) =
∫
χR dx, where ψ(x + T ) = eip(E)ψ(x). The

general equation δp/δu(x) = 1/(2χR) holds. From the form of the function χR and
this identity, we obtain the converse of the theorem of §2: any finite-zone potential
is a steady state solution of one of the higher order KdV equations. The results
of §§2 and 3 make it possible for us to integrate completely a KdV equation with
“finite-zone” initial conditions u(x, 0) (whether periodic or conditionally periodic).
It was shown in [9] that these solutions represent an analog of the multiple soliton
solutions of the KdV equation. While the results of §3 can easily be extended to
the case of an infinite number of zones, they cease to be analytically effective as
applied to theory of the KdV equation. It seems possible that any smooth periodic
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potential may be approximated by a finite-zone potential. This question deserves
further study.

In the next section it will be shown that a combination of the results of §§2 and
3 enables certain nontrivial facts to be proved in theory of Abelian varieties.

4. The complete variety of moduli of hyperelliptic Jacobians J(R). Over
the variety of moduli of hyperelliptic curves V over the complex number field there
exists a natural fibering M 7→ V , each fiber of which is the Jacobi variety of the
corresponding curve. For genus 2 it is the same as the complete variety of moduli of
all (up to isogeny) two-dimensional Abelian varieties (apart from cartesian products
of one-dimensional varieties). To see what the variety M is, consider a (2g + 2)-
sheeted covering M̃ over this variety of moduli, connected with the fixing of one
of the 2g + 2 branch points, which may be assumed at infinity. This implies the
isolation of a second order point on the Jacobian J .

Theorem. The complete variety M̃ of moduli of hyperelliptic Jacobians J(R) with
distinguished point of second order is rational.

The proof is obtained from a combination of the results of §§2 and 3. In fact, the
set of all conditionally periodic finite-zone potentials with given zone-boundaries
Ei (assume that

∑2n+1
i=1 Ei = 0) is, after complexification, the Jacobian J(R); see

§3. On the other hand, the same varieties, in accordance with §2, fiber the space
C3n (if we exclude the points at infinity). In fact, we have an n-dimensional family
of fiberings of the spaces C2n

{cq} by means of the set of n polynomials J1, . . . , Jn,
which depend parametrically on the remaining coordinates {cq} in C3n. For n = 2,
these polynomials have the form (see [9])

J1 = p1p2 −
1
2

(
q22 + 5q21q2 +

5
4
q41

)
+ 8c2q21 − c1q1,

J2 = p2
1 − 2q1p1p2 + (2q2 − 16c2)p2

2 + q52 + 16c2q31 + c1q
2
1 + 32c2q1q2 − 2c1q2,

while the Riemann surface R is given by the equation

y2 = E5 + 2c2E3 − c1
16
E2 +

J1 + 32c22
32

E +
J2 + 16c1c2

162
,

where p1, p2, q1, q2 are coordinates in C4, and c1, c2 are superfluous coordinates in
C6.

The group C2 operators (locally) be means of the pair of Hamiltonian systems

ṗj =
∂Jα

∂qj
, q̇j =

∂Jα

∂pj
, α = 1, 2, j = 1, 2.

Isomorphic curves will be obtained if we multiply the entire set (Ei) be a number
which does not destroy rationality. After this, there will remain altogether 2g + 2
isomorphic curves, linked with the isolation of one of the branch points (at infinity).

In conclusion, note that the hyperellipticity is bound up with the order of the
operator L. Operators of higher order are now also known (see [5]) to which the
same methods are applicable.
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