КОНЕЧНОЗОННЫЕ ЛИНЕИНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ ОПЕРАТОРЫ И АБЕЛЕВЫ МНОГООБРАЗИЯ

Настоящая заметка посвящена исследованию периодической и почти периодической задачи для нелинейных уравнений математической физики, связанных с матричными линейными дифференциальными операторами, естественно возникающих после работ В. Е. Захарова и А. Б. Шабата [1]. При этом имелись в виду две цели: с одной стороны, применение к теории самих нелинейных уравнений и к спектральной теории линейных операторов, а с другой — к теории абелевых многообразий по схеме работы [5]. Наши методы являются дальнейшим развитием методов работы С. П. Новикова [2], автора [3], [6], А. Р. Итса и В. Б. Матвеева [4] по периодической и почти периодической задаче для уравнения Кортевега — де Фриза (КдФ) и оператора Штурма — Лиувилля.

Мы рассматриваем оператор L=d/dx+U(x), где U(x) — матрица $n\times n$, периодическая по x с периодом T, причем $u_i^i\equiv 0$ $(i=1,\ldots,n)$. Для оператора L ставится задача на собственные значения

(1)
$$L\psi = EA\psi, \quad \psi(x+T, E) = e^{p(E)}\psi(x, E),$$

тде E — комплексный спектральный параметр, $A=(a_i\cdot \delta_{ij})$ — постоянная диагональная матрица, $a_i\neq a_j, \ \sum_i a_i=0.$ Если ${}^i_iU(x)$ — почти периодическая, то граничное условие

задачи (1) следует заменить таким: группа периодов логарифмической производной координат ψ совпадает с группой периода U(x). Из работы автора и С. П. Новикова [5] естественно вытекает

Определение 1. Потенциал U(x) называется конечнозонным относительно задачи (1), если собственные функции задачи (1) продолжаются по E до мероморфной функции на римановой поверхности Γ конечного рода. Поверхность Γ называется тогда спектром задачи (1).

С каждой задачей (1) мы свяжем серию динамических систем на многообразии потенциалов U (назовем их уравнениями типа КдФ), коммутирующих между собой и поэтому допускающих представление Лакса [7] $\dot{L}=[M,\ L]$ (M — дифференциальный оператор). В работе С. П. Новикова [2] было найдено другое представление таких систем — на матрицах n-го порядка, полиномиально зависящих от E:

(2)
$$\frac{\partial}{\partial x} \Lambda - \frac{\partial}{\partial t} Q = [\Lambda, Q], \quad \frac{\partial}{\partial t} T = [\Lambda, T].$$

Здесь T — матрица монодромии задачи (1). Соответствующие стационарные уравнения имеют представление

(3)
$$\frac{d}{dx} \Lambda = [\Lambda, Q], \quad [\Lambda, T] = 0$$

и оказываются вполне интегрируемыми конечномерными гамильтоновыми системами по аналогии с [2]. Их решения U(x) оказываются конечнозонными потенциалами. Пусть π — фактор-группа группы всех диагональных невырожденных матриц n-го порядка по подгруппе скалярных. Группа π действует на потенциалах по правилу $U \to \pi^{-1}U\pi$.

T е о р е м а. Совокупность конечнозонных потенциалов с данным спектром Γ ивоморфна пространству главного π -расслоения над многообразием Якоби $J(\Gamma)$ римановой поверхности Γ .

Матричные элементы потенциала U дают сечения указанного расслоения, но не алгебраические, а с существенными особенностями. Вся совокупность конечнозонных потенциалов расслаивается со слоем π над многообразием модулей якобианов $\{J(\Gamma)\}$.

Уравнение $\lambda' = [\lambda, \ Q]$, где Q = U - EA имеет единственное решение в виде ряда $\lambda = B + \lambda_1/E + \lambda_2/E^2 + \ldots, \ B = (b_i \ \delta_i^j), \ \lambda_i = \lambda_i \ (B, \ u, \ u', \ \ldots, \ u^{(i)}).$

Определение $2 \bullet N$ -м уравнением типа $K\partial \Phi$ называется уравнение

(4)
$$\dot{U} + [A, \lambda_{N+1}] = 0.$$

Уравнение (4) допускает представление Новикова (2), причем $\Lambda(E) = BE^k + \lambda_1 E^{k-1} + \ldots + \lambda_k$. Найдем стационарные решения уравнения (4). Рассмотрим алгебраическую кривую Γ : $R(W, E) = \det(W \cdot 1 - \Lambda(E)) = 0$. Кривая Γ не зависит от x и инвариантна относительно всех динамических систем вида (4). Ниже мы покажем, что система (3), получающаяся для определения стационарных решений уравнения (4), гамильтонова, отсюда по аналогии с [2] следует ее полная интегрируемость; коэффициенты полинома R(W, E) дают полный набор коммутирующих полиномиальных интегралов системы (3). Из коммутативности $\Lambda T = T\Lambda$ теперь получаем, что собственные функции задачи (1) будут собственными векторами матрицы Λ , и, следовательно, их координаты ψ^j будут однозначными функциями на поверхности Γ . Определим матричнозначную функцию $\Psi^j_4(x, y, P), P \in \Gamma$. Пусть E отлично от точки ветвления и $\psi_1(x, E), \ldots$ \dots , $\psi_n(x, E)$ — соответствующие собственные функции задачи (1). Выстроим их в матрицу $\psi^j_i(x, E)$. Пусть $\phi^j_i(x, E)$ — обратная матрица. Тогда при P = (E, k), k — номер листа, положим $\Psi^j_i(x, y, P) = \psi^j_k(x, E) \cdot \phi^i_i(y, E)$. Пусть $g^j_i(x, P) = \Psi^j_i(x, x, P)$.

Утверждение 1. Функция g(x, P): а) периодична по x, b) алгебраична на кривой Γ , c) является «проектором» для матрицы $\Lambda(E, x)$, т. е. $g^2 = g$, значения g на разных листах ортогональны, $\mathrm{Tr}_P g(x, P) = 1$, $\mathrm{Tr}_P \ W \cdot g(x, P) = \Lambda(E, x)$, d) g' = [g, Q], e) $\delta p(E)/\delta u_1^2 = -g_1^2$.

Из пунктов с) и е) вытекает гамильтоновость систем (3). На кривой Γ прообразом точки $E=\infty$ являются n упорядоченных точек; обозначим их {1}, . . ., {n}. Пусть $\Sigma=\sum_{i}$ {i}; ω_{i} — нормированный дифференциал второго рода с дивизором 2{i}; V_{i} — его вектор периодов (см. [3], [6]), $V=\sum_{i}a_{i}V_{i}$.

Утверждение 2. Функции $\Psi_i^j(x, y, P)$ мероморфны на $\Gamma \setminus \Sigma$, имеют полюсами дивизор D_w точек ветвления: дивизор пулей $\Psi_i^j(x, y, P)$ имеет вид $d_i(y) + d^j(x)$, deg $d_i = \deg d^j = pod$ Γ , причем на многообразии Якоби $J(\Gamma)$ имеют место соотношения

$$d_i(x) + d^j(x) - D_w + 2\Sigma - \{i\} - \{j\} = 0,$$

$$d_i(x) - d_i(y) = d^j(y) - d^j(x) = \mathbf{V} \cdot (x - y).$$

Теорема легко следует из написанных утверждений. Явные формулы для потенциала и временная динамика будут опубликованы в ближайшее время в подробной работе.

Замечание. Для случая n=2 (нелинейное уравнение Шрёдингера и модифицированное уравнение Кд Φ) близкие результаты были получены другим методом А. Р. Итсом.

ЛИТЕРАТУРА

- [1] В. Е. Захаров, А. Б. Шабат, Схема интегрирования нелинейных уравнений математической физики методом обратной задачи рассеяния. 1, Функц. анализ 8:3 (1974), 43—53.
- [2] С. П. Новиков, Периодическая задача для уравнения Кортевега де Фриза. 1, Функц. анализ 8:3 (1974), 54—66.
- [3] Б. А. Дубровин, Обратная задача теории рассеяния для периодических конечнозонных потенциалов, Функц. анализ 9:1 (1975).
- [4] А. Р. Итс, В. Б. Матвеев, Об операторах Хиллас конечным числом лакун, Функц. анализ 9:1 (1975).
- [5] Б. А. Дубровин, С. П. Новиков, Периодическая задача для уравнения Кортевега—де Фриза и Штурма—Лиувилля. Их связь с алгебраической геометрией, ДАН 219:3 (1974), 19—22.
- [6] Б. А. Дубровин, Периодическая задача для уравнения Кортевега де Фриза в классе конечнозонных потенциалов, Функц. анализ 9:3 (1975).
- [7] П. Д. Лакс, Интегралы нелинейных уравнений эволюции и уединенные волны, Математика 13:5 (1969), 128—150.

Поступило в Правление общества 11 марта 1975 г.