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NON-LINEAR EQUATIONS OF KORTEWEG-DE
VRIES TYPE, FINITE-ZONE LINEAR

OPERATORS, AND ABELIAN VARIETIES

B. A. Dubrovin, V. B. Matveev, and S. P. Novikov

The basic content of this survey is an exposition of a recently developed method of constructing a
broad class of periodic and almost-periodic solutions of non-linear equations of mathematical physics to
which (in the rapidly decreasing case) the method of the inverse scattering problem is applicable. These
solutions are such that the spectrum of their associated linear differential operators has a finite-zone
structure. The set of linear operators with a given finite-zone spectrum is the Jacobian variety of a
Riemann surface, which is determined by the structure of the spectrum. We give an explicit solution of
the corresponding non-linear equations in the language of the theory of Abelian functions.

Contents

Introduction 60
Chapter 1. Examples of non-linear equations admitting a commutation

representation. Methods of finding them 66
§ 1. The K-dV equation and its higher order analogues 66
§2. The non-linear equation of the string and the two-dimensional

K-dV equation 68
§3. The non-linear Schrodinger equation 68
§4. First order matrix operators 69
§5. Discrete systems. The Toda chain and the "K-dV difference

equation" 70
§6. The method of Zakharov and Shabat of constructing non-

linear equations that have an L—A pair 71
Chapter 2. The Schrodinger operator and the k—dV equation. Finite-

zone potentials 72
§ 1. General properties of the Schrodinger operator with a periodic

and rapidly decreasing potential 72
§2. A new commutation representation of the K-dV and "higher

order K-dV" equations. An algorithm for finding finite-zone
potentials and their spectra 79

§3. The inverse problem for periodic and almost-periodic (real
and complex) finite-zone potentials. The connection with the
theory of Abelian varieties 90

§4. Applications. The time dynamics of finite-zone potentials
according to K-dV equations. The universal fibering of Jacobian
varieties (the hyperelliptic case) 101

59



60 Β. Α. Dubrovin, V. Β. Matveev and S. P. Novikov

Chapter 3. Generalizations. Discrete systems and first order
matrix operators 106

§1. The periodic problem for the Toda chain and the "K-dV
difference" equation 106

§2. First order matrix operators and their associated non-linear
systems 114

Appendix 1. Non-reflective potentials against the background of finite-
zone potentials. Their algebraic-geometric axiomatics . . . . 125

Appendix 2. Another method of obtaining some theorems in Ch.2,
§2 134

Appendix 3. On the use of linear and non-linear trace formulae for
the integration of equations of K-dV type and the expression
of the Bloch solution of the Schrodinger equation in terms of
a 0-function 136

Concluding Remarks 140
References 143

Introduction

In 1967 a remarkable mechanism was discovered relating some important
non-linear wave equations with the spectral theory of auxiliary linear
operators. This connection makes it possible, in a certain sense, to "integrate"
these non-linear equations (see [18]). The first such equation, the famous
Korteweg-de Vries (K-dV) equation, was reduced in [18] to the inverse
scattering problem for the Schrodinger operator L - —d2/dx2 + u(x), to
solve the Cauchy problem for the K-dV equation in the class of rapidly
decreasing functions u(x). Subsequently, this mechanism was perfected and
interpreted from different points of view by Lax [19], Zakharov and
Faddeev [21], and Gardner [22]; later, other important non-linear
equations were found to which a similar mechanism can also be applied.
The first after the K-dV equation was the non-linear Schrodinger equation
(Zakharov and Shabat [25], [26]) then the standard sine-Gordon equation,
the Toda chain, the non-linear equation of the string, and a number of
others (see [23]—[35]); for all these equations an analogue of the method
of Gardner-Green-Kruskal-Miura makes it possible to "integrate" the Cauchy
problem for rapidly decreasing functions of x, by means of the scattering
theory for an auxiliary linear operator. In particular, this method enables
us to investigate the asymptotic behaviour of solutions in time and to
obtain some important particular solutions called "multisoliton", which
describe the interaction of a finite number of "solitons" (isolated waves of
the form u{x - ct)).

Up to the end of 1973 there were no papers in which this mechanism
was used successfully to study the Cauchy problem for functions periodic
in x, even for the original K-dV equation. This is not surprising: one of
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the reasons is that the inverse problem for the Schrodinger equation with
periodic potential was, in essence, unsolved. There were no effective
methods whatever of finding the potential from the spectral data. (For
almost periodic potentials this problem had not even been raised.) Recently,
Novikov, Dubrovin, Matveev and Its have published a number of papers (see
[ 3 8 ] - [ 4 3 ] , [46], [47]) in which a method is developed that permits us
to find a broad set of exact solutions of the K-dV equation, periodic and
almost periodic in x, which give a natural generalization of the multisoliton
solutions. It is fairly clear that this set of solutions is dense among the
periodic functions. This was noted in [42] and [43], but has not yet been
established rigorously. The method of the present authors, which is
expounded in this survey, required a substantial perfection of the algebraic
mechanism mentioned above, and also an appeal to ideas of algebraic
geometry. This method is applicable not only to the K-dV equation, but
also to other non-linear equations of this type, for the investigation of the
periodic problem, as was pointed out in [42] and [43]. The appropriate
modifications of the method will be indicated in the survey.

At the International Congress of Mathematicians in Vancouver it became
known that simultaneously with Novikov's first paper [38], the work of
Lax [50] appeared, which contains as its principal result part of the main
theorem of Novikov's paper [38]; Lax's proof is not constructive and
differs from Novikov's method (see Ch. 2, §2, p. 84). Furthermore,
Marchenko has completed his works [44] and [45] in which he develops
a method of successive approximations to solutions of the K-dV equation,
which is based on the spectral theory of the Schrodinger operator L. Some
of his arguments overlap with specific technical arguments of [38].

In studying a periodic or almost-periodic problem by the method of the
authors an important part is played by the class of potentials u{x) for
which the Schrodinger operator L = —d2fdx2 + u(x) has only finitely many
forbidden zones (lacunae or zones of instability) in the spectrum on the
whole real χ-axis.

We must bear in mind that the physical interpretation of the K-dV
equation in the theory of non-linear waves (see [16]) is such that its
natural Cauchy problem must be posed without definite boundary conditions
(for example, periodic functions with a given period in χ are insufficient).
We must find as wide as possible a set of solutions u(x, t) belonging to
various classes of functions that are bounded in x. The most natural such
classes are, apart from the class of rapidly decreasing functions already
mentioned, those of periodic functions with arbitrary periods in x, and also
those of almost periodic functions of χ with an arbitrary group of periods
(in any case, the dynamics in t turns out to be almost-periodic a posteriori).

The formulation in which we shall solve the inverse problem for the
Schrodinger operator L automatically gives not only periodic, but also
almost-periodic real and complex potentials and the corresponding solutions
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of the K-dV equation. Our approach, based on the consideration of finite-
zone potentials, is closely connected both with the theory of the K-dV
equation and with the algebraic geometry of Riemann surfaces and Abelian
varieties (see Ch. 2). This is a constructive approach and enables us to
obtain exact analytic solutions. It is noteworthy that the connection with
the K-dV equation gives non-trivial new results in the theory of Abelian
varieties itself, in particular, it leads to explicit formulae for the universal
fibering of the Jacobian varieties of hyperelliptic Riemann surfaces (for
example, even the fact that this covering space is unirational was not known
hitherto).

Examples of finite-zone potentials (but in a context unrelated to algebraic
geometry and the K-dV equation) have in the past aroused the interest of
various mathematicians in isolation, beginning with Ince who noted in 1940
that the potential of the Lame problem, which coincides with the doubly
elliptic function of Weierstrass, has only one lacuna, but the n(n + l)/2 —
fold Lame potentials have η lacunae (see [7]). In 1961, Akhiezer [10] began to
construct examples of finite-zone potentials on the half-line χ > 0 without
knowing of Ince's work [7]. He proposed an interesting (in essence, algebraic-
geometric) method of constructing the eigenfunctions without constructing
the potentials themselves. The potentials which result from Akhiezer's
construction, turn out under analytic continuation in χ to be even almost-
periodic functions of x; true, he paid no attention to this and considered
the whole problem only on the half-line and pursued the analysis to its
conclusion only in the single-zone case. The development of Akhiezer's
ideas, which was undertaken by Dubrovin [40] and Matveev and Its [41],
plays a large part in the method of the present authors (see Ch. 2).

In 1965, Hochstadt [9], without knowing of Akhiezer's work [10],
raised the inverse problem for finite-zone periodic potentials and began to
solve it. He proved that there are no potentials other than elliptic functions
with a single lacuna (for η = 1 this theorem is the converse of the result
of Ince). For a number η > 1 of lacunae Hochstadt could only prove that
a continuous η-lacuna potential is an infinitely smooth function. Such is
the history of this problem prior to the recent papers covered in this
survey.

We are particularly concerned with the properties of the one-dimensional
Schrodinger (Sturm-Liouville) equation with an almost-periodic potential
u(x). Before the publication of [38] there were in the literature neither
serious general results, nor integrable cases of this problem. In fact, the
translation matrix T, the law of dispersion p(E), and the Bloch eigen-
functions ψ± are formally meaningless. Although the Bloch eigenfunction
φ± (χ, χ ο, Ε) can here also be defined by requiring that the function

dx
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has the same group of periods as the potential (instead of the condition

$±(x+ Τ) =

it is no longer clear whether it exists for all real and complex values of the
spectral parameter E, L\jj± - Εφ± (the strongest results on this problem
were obtained quite recently in [59]); the usual spectrum of the operator
L in X2 (r°°, °°) is obtained when φ± is bounded, but we need it for all
complex values of E. We shall study the class of real and complex almost-
periodic potentials u(x) that possess what we call correct analytic
properties: for these an analogue of the Bloch eigenfunction φ±(χ, x0, E)
exists for all complex Ε and it has the following properties (see Ch. 2,
§2):

1) Ιφ± = Εφ±;
2) φ±(χ, χ0, Ε) \χ=Χο = 1;

3) φ± ~ «>*'•*<*-*.) as Ε -+ oo k2 = E;

d In φ±

4) φ± is almost periodic with the same group of periods as
dx

the potential u(x);
5) φ±(χ, xQ, E) is meromorphic on a Riemann surface Γ doubly covering

the £-plane and φ+ and φ_ are obtained from one another by exchanging
the two sheets.

It is permitted here also to consider potentials with poles at certain
points; in this case, if the potential is unbounded, we assume the function
u(x) to be complex analytic (meromorphic) in a certain strip χ + iy around
the x-axis.

We say that the potential u(x) (or the operator L) is finite-zoned
(finitely lacunary) if the Riemann surface Γ has finite genus. Γ itself is
called the spectrum of the operator L, its genus is the number of forbidden
zones (or lacunae), and the branch-points are "boundaries of the zones"
(or lacunae), although a direct spectral interpretation of these concepts is
valid only in the case of bounded real potentials u(x).

Novikov in [38] observed that it is natural to consider periodic potentials
in the solution of inverse scattering problems. He proved there that every
stationary periodic solution u(x) of the so-called "higher order K-dV
equations" is a finite-zone potential and that these stationary K-dV equations
are themselves totally integrable Hamiltonian systems with η degrees of
freedom (n being the number of zones). Hence their general solution is an
almost-periodic function, possibly meromorphic. These equations depend
o n n + 1 constants c0, . . . , cn and have η commuting integrals Jx, . . . , / „ ;
furthermore, symmetric functions of the boundaries of the forbidden zones
(lacunae) can be expressed in terms of these constants, and the levels of the
integrals (c 0, . . . , cn, J1, . . . , Jn). From this there follows an important
result: for any given boundaries of zones (lacunae) we can find a potential
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by solving stationary higher K-dV equations, but, generally speaking, it is
almost-periodic with group of periods Tu . . . , Tn and may possibly have
poles. All the right-hand sides of the K-dV equations and of the integrals
Ja are polynomials, and naturally there arise also complex meromorphic
almost-periodic potentials.

Soon after the completion of the papers of Dubrovin [40] and Its and
Matveev [41], Novikov and Dubrovin showed [43] that the complex level
surface of the integrals Jlt . . . , Jn is an Abelian variety, explicitly embedded
in projective space; all the potentials u(x) have regular analytic properties
and are almost-periodic (if χ is complex) with a group of 2n "real and
imaginary" periods 7\, . . . ,Tn, T[, . . . ,T'n, and their time evolution by
the K-dV equation and all its higher order analogues for these potentials is
given by a rectilinear (complex) development of this Abelian variety (the
2«-dimensional complex torus). This Abelian variety is called the "Jacobian
variety" of Γ.

These results can also be applied directly to the theory of Abelian
varieties (see Ch. 2). To see this it suffices to note that in the solution of
the inverse problem of the spectral theory for the Schrodinger operator L
by the method of the present authors all reference to results from the
theory of the Schrodinger operator with periodic potential is easily eliminated,
and all the results are true for the almost-periodic case when the boundaries
of the zone (branch-points of Γ) are given arbitrarily. The group of periods
of u(x) is determined by the spectrum (by Γ); to specify the potential
u(x) we need one arbitrary point on the complex torus — the Jacobian
variety J(F). Explicit formulae are given for the potential u(x). There are
formulae of several types (see Ch. 2); the best of them seems to be that due
to Matveev and Its (see [41] and Ch. 2, §3): it expresses the potential by
a simple explicit formula in terms of the Riemann 0-function. A number of
useful formulae for the time dynamics according to K-dV can be found in
[46]. We recall that in the usual statement of the inverse problem for a
periodic potential as "scattering data" all the eigenvalues (En) are given for
which the eigenfunctions are periodic with the same period Τ as the
potential, as well as the residual spectrum of the Sturm-Liouville problem
on the half-line (see, for example, [6] ; uniqueness theorems were already
proved by Borg [ 1 ]). In this form even finite-zoned potentials cannot be
effectively distinguished.

In our formulation (for example, for the finite-zone case) the boundaries
of the zones are specified arbitrarily, then all the potentials with this
spectrum which have a common group of periods and form the Jacobian
variety J(F) are found explicitly. If the branch-points (boundaries of zones)
are all real and the poles of the function ψ±(χ, x0, E) lie at points of the
"spectrum" Γ over finite lacunae, then we obtain a family of bounded
almost-periodic real potentials, forming a real torus Τ", on which the higher
equations of K-dV type form rectilinear developments in the corresponding



Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties 65

"angular" variables (see [46]).
If even the potential u(x) obtained is real and periodic in x, then under

continuation into the complex domain in x, it becomes conditionally
periodic along the imaginary axis, generally speaking, with a group of η
imaginary periods T[, . . . , T'n. The only exceptions are the cases when the
potential reduces to elliptic functions. Such potentials are given, for example,
in Ch. 2 and in [42]. The simplest is the Lame potential.

It is not difficult to obtain the "closure" of our formulations, as the
number of zones tends to infinity. However, in this case the relevant
theorems become "existence and uniqueness theorems" and cease to be
analytically constructive. It has not yet been proved rigorously that any
(periodic) potential can be approximated by finite-zone potentials.

In Ch. 3 we give generalizations of our theorems to some other non-
linear equations. As was pointed out to the authors by A. N. Tyurin, of
particular interest from the point of view of algebraic geometry is the
translation of the theory to the case of first order in X «)-matrix operators
with η > 2, in which non-hyperelliptic Riemann surfaces appear. If arbitrary
Riemann surfaces can, in fact, occur in the periodic theory of Zakharov-
Shabat operators (see Ch. 3, §2) as "spectra" of a finite-zone linear
operator, then this leads to a proof of the celebrated conjecture that the
space of moduli of Riemann surfaces of arbitrary genus is unirational. Indeed,
according to the scheme of [43] (see Ch. 2, §3) we can show that the
space of the universal fibering of Jacobian varieties is unirational. But then
the base also (that is, the variety of moduli of the curves themselves) is
also unirational. However, the question of whether all Riemann surfaces Γ
can occur in this way, is not yet settled.

Thus, in naturally occurring totally Liouville integrable Hamiltonian
systems connected with the scattering theory for the auxiliary local operator
L, the level surfaces of the commuting integrals are not simply real tori Τ",
but under continuation into the complex domain, they are Abelian varieties
T2n which are the Jacobian varieties J(F) of Riemann surfaces arising as
spectra of the operator L. An interesting question is whether there are
natural classes of totally integrable systems in which there arise similarly
Abelian varieties that are not the Jacobian varieties of any Riemann
surfaces.

Incidentally, as a concluding remark we point out that in the classical non-
trivial integrable cases of Jacobi (geodesies on a 3-dimensional ellipsoid) and
of Sonya Kovalevski (the case of the heavy gyroscope) Abelian varieties also
occur as level surfaces of commuting integrals: the direct product of one-
dimensional ones for Jacobi's case and non-trivial two-dimensional Abelian
varieties for the Kovalevski case. (This can be guessed from the formulae
given, for example, in [57], although the result has not been stated any-
where explicitly.) Here we quote from a letter written by Sonya Kovalevski
in December 1886.
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"He (Picard) reacted with great disbelief when I told him that functions
of the form

y %i (cx + a,

can be useful in the integration of certain differential equations" (quoted
in [57]). The analysis of the present authors shows that for 90 years after
the work of Sonya Kovalevski, until the 1974 papers on the K-dV equations,
Picard's scepticism was justified.

The present survey consists of three chapters and applications. The first
chapter is a brief survey of the non-linear equations integrable by the
method of the inverse scattering problem that were known up to the end
of 1974. The second and third chapters and the Appendices contain an
account of the results of the authors, Its and Krichever.

CHAPTER 1

EXAMPLES OF NON-LINEAR EQUATIONS ADMITTING A
COMMUTATION REPRESENTΑΉON. METHODS OF FINDING THEM

§ 1 . The K-dV equation and its higher order analogues

As Lax pointed out in 1968 (see [19]), the Kruskal—Gardner—Green—
Miura method [18] of integrating the Cauchy problem for functions rapidly
decreasing in χ for the K-dV equation ut = 6uux - uxxx can be obtained,
by reduction to the inverse scattering problem for the Schrodinger operator,
from the operator representation of this equation

(1.1.1) ^- = [A, L],

d2 d3 ι d d \
in which L = -—. + u(x, t) and A = -4 — - + 3 [u — + — u . The

dx dx3 \ dx dx I
operators L and A act on functions on x, dL/dt is the operator of multi-
plication by the function ut, while [A, L] is the operator of multiplication
by 6uux - uxxx. It follows from (1.1.1) that the discrete spectrum X,(L)
does not change in time. This is true both for functions u{x, t) rapidly
decreasing in Λ: and also for periodic functions (although in the latter case
this gives a set of integrals equivalent to the Kruskal-Zabusskii integrals
[17]. Lax and Gardner (see [19], [22]) indicated a series of evolution
equations of the form

du d2u d2n+iu
ΙΛ Α οχ η

(1.1.2) U f = 0

admitting an analogous representation

(1.1.1') %=[A
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d 2n d'

where A + Σ Pi — r , Pi and Qn are polynomials in u, ux, uxxx, . .
dx2n+1 «=o dx' ,2

with constant coefficients, L is the Schrodinger operator L = - — - + u(x, t),
dx

d
Ao = — , Ax -A, and

dx

All these are called "higher order K-dV equations" and have the form

Qn = Γ " V^~\ ' w h e r e 7 « - i = *2« + i ( " · ux> ·•·> u{n~l)dx and theox ou(x) J
are polynomials to be specified below; for example,

, Iu=^u*dx, ^ =
(1.1.3)

As was shown first in [17], the quantities /„ are conserved in time by

the K-dV equation. From the representation Qn = -— -——- it follows,

ox ou(x)
as Gardner noted, that all the "higher order K-dV equations" are Hamilton-

ian systems with infinitely many degrees of freedom, since =— is a skew-

symmetric operator. Faddeev and Zakharov [21] have shown that all the

K-dV equations are totally integrable Hamiltonian systems in which the

scattering data of L (see Ch. 2, §1) are "action-angle" canonical variables,

and the eigenvalues of the discrete spectrum λ,-(Ζ,) commute (have vanishing

Poisson brackets). From this it follows that the integrals /„ also

commute. This last fact was proved independently by Gardner [22] by

another method. An algorithm for discovering the integrals /„ is as follows

(these integrals were first found in 1965). Let Ζ,ψ = Εφ and

ϊχ(χ, k) = —j—> where k2 = E. Then the quantity χ satisfies the Riccati

equation

(1.1.4) -ix'+ t+ u-E = 0

and admits, by (1.1.4), the formal expansion as Ε -> °°:

oo

(1.1.5) X(x, k)~k+% Ϊ0-, & = E.

All the polynomials X2n(x) are purely imaginary and are total derivatives,
while the polynomials X2n+1(x) are real and depend on u, ux, uxx, • • • ,u(n~l\
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CO

For all k, the integral Ik = f χ(χ, k)dx is time-invariant under all "higher

order K-dV equations", hence, all the quantities /„ are also conserved. The
scattering data and also the method of integrating the periodic problem will
be explained later (see Ch. 2). We know that the modified K-dV equation
ut = 6\u \2ux~uxxx can be reduced to the K-dV equation, hence is also
totally integrable.

§2. The iraara-ilinear equation of the string and the
two^fimerasional K-dV equation

Closest to the K-dV equation from the present point of view are the non-
linear equations of the string (see '[23])

/ι ι) Μ 3 Q du dw η dw 1 / o \ , Λ

(l.Z.l) _ β _ ==_.__„ §-^=-£(&uux+uXxx) + %ux

and the "two-dimensional K-dV equation" (see [24], [37])

!

3 ο du dw

Ρ-gj- = α -gf + *ux + -j (6uux + uxxx),

which occurred earlier in the study of transverse perturbations of long waves
in non-linear media with dispersion. Here the operators L and A have the
form £ ( )

The equation (1.2.1) is equivalent to the following:

(1-2.3) P | H L ' A]-

and (1.2.2) to the relation

In fact, in (1.2.1) and (1.2.3) the operators L and A have exchanged
their roles in comparison with the K-dV equation, and the two-dimensional
K-dV equation ((1.2.2) and (1.2.4)) unites them.

§3. The non-linear Schrodinger equation

This equation has the form

(1.3.1) 4^iJ± M3u
and was after the K-dV equation the first for which Zakharov and Shabat
discovered in 1970 a mechanism for the reduction to the scattering problem
for the auxiliary linear operator, which is no longer a Schrodinger operator
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(see [25], [26]). Here the operators L and A have the form

+ 2 ( A

If u = ΰ, then the equation

11.3.2) α ϊ = Μ. L]

is equivalent to (1.3.1):
du ίι + ϊ» ο Ί + 'a ι ι?
σ£ i2 — tj '1*2

for an appropriate choice of constants l\ and /2. The integration of
(1.3.1) for rapidly decreasing functions can be found in [25] and [26].

§4. First order matrix operators

Suppose that L and A are first order matrix operators in x. We look for
them in the form

(1.4.1) £ = *i •£•+[*!, El, A = lz± + [lx, I],

where [/,, l2] = 0, lu l2 are constant (Ν Χ ΛΟ-matrices and if = (£,·,·). The
matrices lx and /2 can be assumed to be diagonal, lx = aibij,lt = bibij. The
equation

dL , n dA r τ λ,

can easily be brought to the form

(1.4.2) {ai-ai)%L = (bi-bj)^+...

In a number of cases, by imposing on £/; constraints of the type
ξ* = /£/, where I2 = 1, we can reduce (1.4.2) to a system with fewer
unknowns. Some important cases of this kind for Ν = 3 were first given

in [27], with / = I 1 1 or / = I -1 I . A general method of obtain-

ing these systems was developed in [37].
The degenerate case in which some of the components of the matrices

/*!, l2 vanish, a,· = bi - 0, is very interesting. For fourth order matrices we
have here systems for which the corresponding non-linear equation reduces
to the standard "sine-Gordon" equation (see [30]):

(1.4.3) utt — uxx = sin u.

As a consequence of the degeneracy at = &,· mentioned above, the
spectral problem for the corresponding operator L turns out to be non-
trivial; various difficulties are overcome in [30]. More straightforward is the
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variant of the "sine-Gordon" equation

(1.4.4) Μ|η = — sin u,

in which the initial data are placed on a single characteristic. This case is
simpler. It was studied previously in [29] and [28]. Here the spectral
problem is not degenerate, and the operators L, A for (1.4.4) have the form

(1-4 .5) L= I . „ ] -; h - T r U f l . . ) ,

x) =

«(*',*))) 0 \
/ t ν U (*') dx'.

e x p ( - j < i » ( x f t) + u{x>, t)))J

§5. Discrete systems
The Toda chain and the "K-dV equation difference"

We consider a chain of particles in a straight line with coordinates xn and

the interaction Hamiltonian Η = Σ (e

x»~Xn-1 + x*/2), which was first dis-
n

cussed in [31]. The integrals found by Henon in [32] for the Toda chain
explicitly showed its integrability. In [33]—[35], the L— A pair for this
chain was found and the commutativity of the integrals previously found by
Henon was proved. For the "rapidly decreasing" case, where
cn ->· 1, υη -> 0 (cn - e

Xn~x"~1, vn = * „ ) , the Toda chain was integrated by the
scattering theory method. Here the equations have the form

(1.5.1) vn = cn+1 — cn, cn = cn(vn — yn_i),

and the operators L and A are as follows:

i '-'mn = = Ϊ V Cn On, m+1 ^ V cm On + i, m~\~ VnVmm

Amn=-o\V cn °n. m+l + V Cm On+1, m ) .

(1.5.1) is equivalent to the equation dLjdt = [A, L].
In addition to the Toda chain (1.5.1), in [35] another "K-dV difference

equation" is considered:

(1-5-3) cn = cn(cn+1 — <:„_!),

which can be obtained from the L —A pair (1.5.2) with the_ same operator
L under the condition υη = 0 and the new operator A -*• A, where

then (1.5.3) is equivalent to the equation dL/dt = [A, L], vn = 0. The
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operator L itself, given by (1.5.2), is a difference analogue to a Sturm-
Liouville operator and was considered previously for other purposes [12],
where the inverse problem on the half-line η 5* 0 was solved for it.

§6. The method of Zakharov and Shabat of constructing
non-linear equations that have an L - A pair

Let F be a linear integral operator acting on the vector function
(ΦΧ , . . . , φΝ) = φ of the variable χ (~°°<χ <°°):

(1.6.1) F$ = [ F(x, z)^{z)dz,
— oo

where φ and F depend in addition on two parameters t and y. Let us
assume that the operator F admits the following representation:

(1.6.2) 1 + F = (1 + K+y^i + K-),

-in which K+ and K_ are Volterra integral operators with

(1.6.3) fK+(x,z) =
K-.(x, z) = 0, ζ

From (1.6.1) and (1.6.2) there follows the (Gel'fand—Levitan) equation
for the kernel K+:

(1.6.4) F {x, z) + K+ (x, z) + j K+ (x, s) F (s, z) ds = 0,
χ

and the kernel K_ can be found from the formula
oo

K_(x, z) = F(x, z) + ^K+(x, s)F(s, z)ds.

We consider the operator Mo = a =— + β — + LQ, acting on φ(ί, y, x),
ot ay

where Lo = Σ ln 3"/3x", and the /„ are constant (iVX 7V)-matrices. By
η

analogy with the theory of the inverse scattering problems we can establish
the following fact: if the operators Mo and F commute, [MQ, F] = 0, then
the transformed operator Μ = (1 + K+)M0(l + K+)'1 is also a differential
operator with variable coefficients

where L is an operator involving only differentials in x. In scattering theory
this fact was known for the Shrodinger operator and was used for the

operator Lo = —- .
dx2

We assume now that M^ and Afl2) are two operators such that
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and [Af̂ >, M<0

2>] = 0.

If F commutes with both of these, [F, M{

o

l)] = [F, Λί(

0

2)] = 0, then we
obtain the differential operators

M{2) = (1 + K+) M(o2) (1 + Kji = β -A + L(2),

The relations (1.6.7) lead to an equation for the operators Z,(1) and L ( 2 ) :

(1.6.8)

which is equivalent to a system of non-linear equations for the coefficients
of Z,(1) and L ( 2 ) . Here the kernel Fix, z, t, y) of F satisfies a system of
linear equations with constant coefficients, which follow from the identities

(1.6.9) [F, M^] = [F, M(o2)]=O.

We can easily solve the Cauchy problem in time t for the equations
(1.6.9) in the usual way, and then, having solved the Gel'fand—Levitan
equation (1.6.4) define the coefficients of the operators L^ and L^ at
any time t. In principle, this procedure can lead to the integration of the
Cauchy problem for (1.6.8) only for functions rapidly decreasing in χ as
coefficients of I ( 1 ) and Z,(2). We note that the method of Zakharov—
Shabat permits us to construct a number of new systems with an L — A
pair, among them some of physical interest (see [37]); this method both
constructs the systems and produces a way of solving the inverse problem —
the Gel'fand—Levitan equation. Some of the above examples of L~A-pairs
were first found in this manner.

CHAPTER 2

THE SCHRODINGER OPERATOR AND THE K-dV EQUATION.
FINITE-ZONE POTENTIALS

§ 1. General properties of the Schrodinger operator with a
periodic and rapidly decreasing potential

We first consider the usual Schrodinger operator L = - —- + u from the

requisite point of view. It is convenient to fix a basis in the space of solu-



Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties 73

tions of the equation Ζ,γ? = Εφ. Let x0 be a given point. We specify a
solution φ (χ, χ 0 , ± k) by setting

f a) Σφ(χ, x0, k) = k\(x, x0, k),
(2.1.1) { b) φ (s 0 , x 0, ft) = 1,

I c) φ'(#, a:0) /e) = £/c when χ = x 0 (/c2 = Z?).

Then we have a basis </?(&),<£>(-&) for all k Φ 0; for real fc (or is1 > 0) we

have </>("&) = </>(&)·
We obtain another basis c(x, x 0 , £ ) , s(x, x0, E) as follows:

(2.1.2) { Ι Ζ J; C

s' = 5' w h e n * = *ο·
If the potential u(x) is periodic with period T, then the operator of

translation (or "monodromy") is defined by

(2.1.3) (f^)(x) =ψ(χ+ Τ).

The translation operator becomes a matrix of the second order in the
bases (2.1.1) and (2.1.2)

(2.1.4)

From the invariance of the Wronskian it follows that det f = 1, or
I a | 2 - | b | 2 = 1 for real k, and an<x22 ~ «21*12 = 1 for all E. The matrix
f depends on x 0 and Ε (or k). In the basis (2.1.2), f is an integral function
of E. Under a change of the parameter x 0 the matrix ΐ^Χο, k) changes to
a similar matrix. Hence the dependence on x 0 is governed by the very use-
ful equation

(2.1.5) " ^ ~ = [ < ? ' ^ ] '

in which the matrix Q is easily evaluated and in the bases (2.1.1) and
(2.1.2) has the form

Q = ik(l _ J ) — S " ( i - ! ) (basis (2.1.1)),

Q=(-°iE^U) (basis (2.1.2)).

The eigenfunctions ("Bloch" functions) are characterized by the
requirements

(2.1.6) ft+^e+^hl·^,

where p(E) is called the quasi-momentum. For the Schrodinger operator it
is convenient to normalize them by setting

(2.1.7) ψ±(ζ, x0, E) = 1 for χ = x0.

If the potential u(x) is real, then the solution zones (points of the
spectrum) are determined, p(E) being real and the functions \pt almost
periodic. The complements of the solution zones are called forbidden zones,
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lacunae, or zones of instability. As a rule, a typical potential has infinitely
many lacunae, the lengths of which decrease rapidly as Ε -» °°. The rate of
decrease depends on the smoothness of the potential. If the potential is
analytic, then the rate of decrease of the lengths of the lacunae is
exponential.

The eigenvalues of the translation matrix Τ do not depend on the basis
or on the choice of x0; they determine the quasi-momentum p(E) and the
boundaries of the solution zones and forbidden zones. The trace of Τ has
the form

= 2aR e (basis (2.1.1)),
a R e (basis (2.1.2)),

and the eigenvalues μ± = e ± I p ( £ ) a r e :

μ± (Ε) = aR e ± i V I— a | ,
(2.1-8) *\

It follows, clearly, from (2.1.8) that the periodic levels
\pn (χ + Τ) = φη (χ), Ε = Εη, are determined by

(2.1.9) i - S p f = aR e = l .

The antiperiodic levels \pm (χ + Τ) = —ψ(χ) are determined by

(2.1.9') i-Sp25 = flRe=-l.

The periodic and antiperiodic levels can be simple (that is, singly degener-
ate) or doubly degenerate. In both cases we have μ±(Ε) = ±1, but in the
degenerate case Τ is diagonal:

(2.1.10) r = ± ( J J ) , or b(En, xo)^O, a2l(En, xo) = Q.

In the non-degenerate case Τ is a Jordan matrix and

I b(En, xo)\ Φ 0, «2i =£ 0. From the condition \a\2-\b\2 = 1 we have for
F = F

(2.1.10') | e R e | = l, | oim | = | 61, E = En,

where | b \ Φ 0. We already know that the boundaries of the forbidden and
the solution zones are precisely the non-degenerate periodic and antiperiodic
levels for which \b \Φ0, α.2ϊΦ 0. Degenerate levels can be visualised as a
forbidden zone contracted to a point. For example, if we increase the
period to an integer multiple of itself, Γ-> m i , then we obtain

(2.1.11) f~^fm, e^E) _„. eimp(E) _

The transformation (2.1.11) conserves the solution zones and forbidden
zones, but inside the solution zones new degenerate levels appear when
mp(E) is a multiple of 2π.

As we know, 1 - γ Sp f is an entire function of order j in the variable
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E, whose zeros, by (2.1.9), precisely determine all the periodic levels En.
Therefore, the function 1 - ±- Sp f can be represented as an infinite
product, which is completely determined by the zeros. Hence, by (2.1.9')
the antiperiodic levels are determined by the complete set of periodic levels
(including the degenerate ones). However, we use as basic parameters only
the boundaries of the zones, or the non-degenerate part of the periodic and
antiperiodic levels (that is, the spectrum of the operator L over the whole
line).

The following simple proposition is extremely important for our
situation.

LEMMA. For any (real or complex) smooth periodic potential u(x), the
Bloch eigenfunction φ+(χ, x 0 , E) defined by the conditions (2.1.6) and
(2.1.7) is meromorphic on a two-sheeted Riemann surface Γ, covering the
Ε-plane and having branch-points (for a real potential) at the ends of the
zones. In general, this Riemann surface has infinite genus; however, if the
number of lacunae is finite (this case is especially important for the theory
of the K-dV equation), then Γ is hyperelliptic and has finite genus equal
to the number of lacunae.

This proposition naturally leads to the following definition.
DEFINITION l . A periodic potential u(x) is said to be finite-zoned if

the eigenfunction φ+(χ, x0, E) defined by the conditions (2.1.6) and (2.1.7)
is meromorphic on a hyperelliptic Riemann surface Γ of finite genus; the
branch-points of the Riemann surface are said to be the "boundaries of the
zones".

For later purposes we also need the following definition.
DEFINITION Γ. An almost periodic (real or complex) potential u(x) is

said to be finite-zoned if it has for all Ε an eigenfunction φ(χ, Ε), mero-
morphic on a hyperelliptic Riemann surface Γ of finite genus, doubly
covering the is-plane, with (2.1.6) modified as follows: the logarithmic

d In (x)
derivative ——^-J- is an almost-periodic function with the same group of

periods as the potential u(x).
It is also required that an Ε -*• °° the function φ(χ, Ε) has the

asymptotic form φ ~ exp {±ik(x -x0)}, k2 = E. Then we denote φ by

φ(χ, x0, E), where φ \x=x = 1, as in the periodic case. The logarithmic

derivative i\(x, E)=~^L does not depend on x0 and is a quantity of great

importance in the theory of the operator L = - —=- + u and in the theory
dx

of the K-dV equation, as we have already indicated in Ch. 1, §1. It satis-
fies the Riccati equation (1.1.4). If the potential is real, and in the solution
zones for Ε we set χ = x R e + ϊχ^ then from the Riccati equation we
deduce the relation

(Ί.ΙΛΔ) '-im = -5-(in χ Κ ε ) .
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In the solution zones we have for the Wronskian W of the Bloch
functions

(2.1.13) Wftt ψ) = Wft+, ψ_) = 2ΐχΚβ (*0, E).

By (2.1.13) the function equal to

XR = jf W + , Φ-) = jfW+Y- ~ Φ+Φ'-) is defined for all £,· it is as the

analogue to x R e for complex potentials. We always denote this function by

XR. By definition, we have from (2.1.12)

(2.1.14) ψ±(χ, χ0, Ε) = y ** (g' ^ exp { ± i j %Λ (a;, £) ^ } ,

from which it follows, by the definition of the quasi-momentum, that

(2.1.15) P(E)= \ XR{x, E)dx.

Since cos p{E) = \ Sp f by (2.1.8), and since the function 1 - I Sp f

is completely determined by the periodic spectrum, for example, as an
XO + T Xo+T

infinite product, the integral I %R(#. k)dx — | χ(χ, k)dx and all the

1 |
coefficients of its expansion in—-=. = — as Ε ->• °° (see (2.1.18) and below)

£" k

are expressible in terms of the spectrum of the periodic problem (including
the degenerate levels). These expressions are called "trace identities". In
what follows it will become clear that all these quantities can be expressed
in terms of only the boundaries of the zones.

It is convenient to express the function \p(x, x0, E) in the basis (2.1.2):

(2.1.16) $(x, xe, E) = c{x, xc, E) + ia{x0, E)s{x, x0, E).

Evaluating the Wronskian W(\p, c), we obtain

(2.1.16') a(x0, Ε) = χ(χ0, Ε).

For p(E) we can obtain the important general relations when the potential
varies

xo+T

(2 117) dp{E) Γ dx

dE J 2XR(x,E) ' 6u(x) 2xR(x,E)'
XO

where δρ/Su is the variational derivative. A proof of these relations can be
found in [40], [46].

As | Ε | -*• °°, χ(χ, Ε) admits the asymptotic expansion

(2.1.18) χ(χ, E)~k+2 ^ M ,

in which the expansion coefficients χη(χ) can be found by recurrence
formulae derived from the Riccati equation (1.1.4); they are polynomials
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inw, u, u", . . . . All the polynomials X^OO are purely imaginary and by
(2.1.12) they are total derivatives. Hence their integrals over a period vanish.
A list of the first few polynomials X 2 n + i 0 0 is given in Ch. 1, §1 (see
(1.1.3)).

Using the representation of ψ±(χ, x 0 , E) m the form (2.1.16), (2.1.16')
it is not difficult to obtain an expression for χ(χ, Ε) in terms of the
coefficients of the translation matrix f, since φ is an eigenvector of this
matrix. In the bases (2.1.1) and (2.1.2) we obtain

χ ί ? (Χ,Ε)= / , b

 R e (basis (2.1.1)), Λ2 = Ε,

(2.1.19) { ^ ρ -

Xa(*, £) = — 4

g ° " " " (basis (2.1.2)),

where in the basis (2.1.1) the formula is valid only in a solution zone. The
function φ±{χ, x 0 , E) can have poles at certain points Plt P2, • . . on Γ,
depending, in general, on x 0 and x. For a real potential, these poles lie at
the points of Γ over points of the lacunae (or their boundaries)
7i(*o)> · · · > 7m (*ο)> · · · j independent of x, one each for every lacuna (a
pole occurs only on one sheet of Γ over the point 7;(xo))· As is clear from
(2.1.14), the zeros of φ+ lie over the points 7;·(χ), independent of x 0 . If
the potential is finite-zoned, having η lacunae, then there are altogether η
zeros P\{x), . . . , Pn(x) of φ+(χ, x 0 . E), lying over the points
Ji(x), . . . , 7,2(x) of the is-plane, and η poles / Ί ( χ 0 ) , . . . , ^ ( x o ) over the
points 7 1 (x 0 ), · · · , 7w(*o)· For complex potentials the zeros and poles can
be located arbitrarily on Γ.

We conclude this section by considering rapidly decreasing potentials for
which the analytic properties of the eigenfunctions and the scattering
matrices can be found in [5]. From our point of view, rapidly decreasing
potentials are a degenerate limiting case of periodic potentials when
Τ -> °°, u(x) ->• 0, as 1 χ | -> °°, and u , u", ...-»· 0 as | χ | ->• °° (more precisely:

oo

j (1 + I x I) I M(X) I dx < oo). Suppose to begin with that the potential u(x)
— oo

is of compact support (that is, Μ is a finite function). We consider the
bases of solutions analogous to (2.1.1) in which we set x 0 = ±°°. We have
two bases (the right and the left):

/+ (x, k) -*» eihx, f_ (x, k) ->• e-zkx,

I
(9 1 '

e ι Β- \ χ ι

(X -> — oo ).
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Here the translation matrix for the period Τ = °° is the matrix of the
transition from the basis (g+, g_) to the basis (f+, /_). For real k this
matrix has the form

(2.1.21) Γ! !

and /+ = ag+ + bg_, f =J(k).
The scattering matrix S is the matrix expressing the basis (f_, g+) in terms

of the basis (g_, /+); it is unitary and has the form

(2.1.22)

The coefficients sn = I/a and s12 = b/a are called transmission and
reflection coefficients (the scattering amplitudes in the directions 0 and n).

We note that for finite potentials f{k) can be continued analytically as
an entire function of k; if Im k > 0, then /+ decreases and g_ decreases,
as χ -*• + °°. From the equation /+ = a(k)g+ + b(k)g_ it follows that we
obtain a solution that decreases in both directions (| χ | -»• °o) when

a{kn) = 0 (or the amplitude sn(k) = —has a pole). There are finitely many

discrete levels En = k2

n; the functions /+ (x, k) and a(k) are analytic for
Im k > 0, and

(2.1.23) a(k) -*.i + Ο (l/k), | f t | - > o o , I m f t > 0 .

The eigen functions of the discrete spectrum for the levels En = k2

n, where
a(kn) = 0, have the form

(2.1.24) ψη(α:) = g_(x, kn);

the normalization factors are easily evaluated:

da
i

ft='i>t"

In the general case of a rapidly decreasing potential, according to [5] we
have functions a(k), b{k), where a(k) is analytic in the upper half-plane
Im k > 0, has the asymptotic form (2.1.23) and the relation
| a | 2 - | b | 2 = 1 holds on the real axis Im k = 0. In addition, there are
finitely many zeros kn, a(kn) = 0 (all the kn are purely imaginary) and
corresponding numbers cn given by (2.1.25). From the uniqueness theorem
of Marchenko [4] it follows that (a(k), b(k), kn, cn) is a set of "scatter-
ing data", completely determining the potential u(x). Moreover, the kernel



Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties 79

(2.1.26) F(z + t)=

is well-defined, and we can write down the Gel'fand-Levitan equation

(2.1.27) K(k, z)+F(x + z)+

The potential itself is obtained from the formula u(x) = 2 — K(x, x).

When a(k) has the indicated analytic properties [5], the Gel'fand-Levitan
equation (2.1.27) has one and only one solution. An important special case
is that for which b = 0 on the real &-axis. Such potentials are called "non-
reflecting". In this case the equation (2.1.27) becomes algebraic, and the
potential u(x) is a rational function of the exponentials

exi«) e ^ ^ ev.nx^ j n which kn = ίκη = \/Εη. The function a{k) then
has the form

(2.1.28) a(k) = ]}*=%*..

These potentials were first found by Borg [1] and Bargmann [2] . They
play an important part in the theory of the K-dV equation. They are also
important to us in our concern with periodic problems, because as Τ -*• °°,
the finite-zone potentials degenerate into non-reflecting ones; the solution
zones shrink to isolated points of the discrete spectrum inside the solution
zones b Ξ 0 for Τ = °°, by (2.1.10) and (2.1.11), and Γ degenerates into
a rational surface, since the pairs of branch-points coalesce.

§2. A new commutation representation of the K-dV and
"higher order K-dV" equations. An algorithm for finding

finite-zone potentials and their spectra

In Ch. 1, §1 we have recalled the Lax representation (1.1.1) and (1.1.1')
of the K-dV equation and its higher order analogues in the form

— = [An, L], where ύ = Qn(u, u, u", . . . , z / 2 " + 1 ) ) . We now reproduce

the algorithm [18] for integrating the Cauchy problem for K-dV equations
with rapidly decreasing functions. This algorithm is based on the following
equation for the translation (or monodromy) matrix T(k), discovered in
[18]:

(2.2.1) a{k) = 0, b(k) = —8ik3b{k).

For finite potentials we obtain from (2.2.1) the following equation for the
discrete levels, using (2.1.24) and (2.1.25):
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(2.2.1') κη = {Y~ZE;y= 0, cn = -8x°ncn,

since k = i%n are the zeros of the function a(k), and cn =(^) , r , Y

" \dklk=kn °\Kn)

Therefore, (2.2.1) and (2.2. Γ) hold for any rapidly decreasing potential and
completely determine the time-development of the scattering data (and hence
of the potential itself). Let us derive the equations (2.2.1). We consider the

eigenfunction f+(x, k) defined by (2.1.20). Clearly, ^f+(.x, k) -> 0, as

x -> + oo Since Lf+ = k2f+, for the derivative {{L ~k2)f+)' we have

Lf+ + (L- k*)U = (AL - LA)f+ + (L- k*)f+ = (L - A2)(/+ - Af+).

From this we obtain

(2.2.2) /+ = Af+ + λ(Α)/+ + μ(*)/_.

By letting χ -»• °°, we obtain

0 ~ μ/+)χ-+οο + (λ/+)«^+ββ + (μ/-)χ^ + »,

.3 Id d \

consequently, since A has the form /I = -4 — - + 31 Μ —- + —- u) and
dx3 \ dx dx )

u, u -*• 0, we finally have
(2.2.3) (Af+)x^+oo -> 4iPe i f t : c, μ(Λ) = 0, λ (ft) = -4i/c 3 .

We now recall the equation /+ = ag+ + bg_ (2.1.21) and let χ -> - °°. Then
g+ -* eikx, g_ -»• e~ikx. From this it follows that /+ -»· ae** + be~ikx, as
χ -^ — °°. Comparing these formulae with (2.2.2) and bearing (2.2.3) in
mind, we finally obtain (2.2.1): ά = 0, b = -8ik3b. Now (2.2.1') follows
from this, as indicated above, and the integration of the K-dV equation
for rapidly decreasing functions is complete.

For the higher order K-dV equations we have
2 n

• + 2 pi iu,u', ...) -£j, where Pt = 0 when u = 0.
i=fl

By analogy with the preceding derivation it follows for T{k) that

(2.2.4) α = 0, b = const(i/c)2n+1.

We see from (2.2.4) that all the higher order K-dV equations commute
as dynamical systems in the function space of rapidly decreasing functions.

Gardner [22] has shown that all the higher order K-dV equations have
the Hamiltonian form

O 9 ^ ii — d δΙη

as already stated in Ch. 1, § 1, where the In are the Hamiltonians. From
the commutativity of these dynamical systems it follows that the Poisson
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brackets of the functionals /„ vanish:

(2-2.6) [/„, / J = 0.

since the skew-symmetric form is determined by ^—, (2.2.6) is equivalent to

6u (x)
(2.2.6') [ *lji-
v ' J 6u (x)~ o o

for any rapidly decreasing function u{x). Since /„ and Im are integrals of
expressions that are polynomials in u, u', u", with constant coefficients, it
now becomes absolutely clear that the identity (2.2.6) also holds for any
periodic function u(x). Gardner proved in [22] the commutativity relation
(2.2.6) by direct calculations. Simultaneously, Faddeev and Zakharov in
[21] computed all the Poisson brackets of all the "scattering data"
a(k), b(k), Kncn and proved that

(2.2.7)
I

where bn = icn {daldk)\h=iv.n,

are canonical variables ("action-angle" variables) for all the Hamiltonian
systems (2.2.5) and all the K-dV equations.

Great difficulties arise in attempts to generalize this method of integrating
the K-dV equation to the periodic case. These will become clearer after we
have derived the natural analogue to (2.2.1) for T. We consider the bases
(2.1.1) or (2.1.2) and compute the time derivatives by analogy with (2.2.2)
at χ - xn instead of χ - °°:

ο 2 8) J Ψ+ — Λ Ψ + "τ λχιφ+ + λ12φ_,ί φ+ = Αψ+
( φ_ = Αφ_ λ2ιΦ+ Η

in the basis (2.1.1), or

c = Ac + anc + a12s,

s = As -f- a21c + a22s

in the basis (2.1.2), where λ η = λ, λ1 2 = μ, λ2 1 = μ, λ2 2 = λ for real k and
all the a;i are real for real E. We have the matrix

Λ = L " y1} , or Λ = (an ai2\ , in the bases (2.1.1) and (2.1.2),
\Λ2ι Λ22 / \β21 #22/

respectively, the coefficients of which can be expressed in terms of
u(x0), u'(x0), . . . and k by the following formulae:

(<p+)x=x0 = 0 = (Αψ+)χ=χο Η- λυ Η- λ12

(2.2.9)
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For real k we have

(/,.^.ιυ; Λ — ι— γ , λ = λπ, μ = λ12,

where the trace Sp Λ = 0 or λ + λ = 0, and the coefficients λ, μ are as
in (2.2.9). The matrix Λ = (α/;·) for the basis (2.1.2) is obtained in exactly
the same way. We note that in the basis (2.1.2) the coefficients αί;· of Λ
are polynomials in k2 = E, u{x0), u'(xQ), . . . The determinant det Λ does
not depend on the choice of basis and is a polynomial

(2.2.11) det Λ = P2n+1(E),

the operator A = An being of degree 2« + 1. To calculate the dynamics of
the matrix T(x0, E) in any of the bases we must compute (2.2.8) for
χ = x0 + T, where Τ is the period. For example, in the basis (2.1.1) and
for real k we obtain

[ψ+]χ=χο+τ = a+b = [A (αφ++ 6φ_)]α=

(2.2.12) I _ . . _ - · r Λ τ

+ lik (a — b) + Vik (b— α).

Bearing in mind that A is real, we finally obtain without difficulty

(2.2.13) ά = μ6 — 6μ, 6 = (λ — λ ) δ + ( α —α) μ,

where

V μ λ /

Clearly, the equations (2.2.13) are equivalent to the matrix equation

(2.2.14) ±-f = [K,f\,

where the matrix Λ is defined by (2.2.8) and in the basis (2.1.2) depends
polynomially on E, u(x0), u'(x0), • • • , u^2n\x0). In the form (2.2.14) the
equation holds, of course, in any basis. If at a point xQ we have
u = u = . . . = 0, then in the basis (2.1.1) we easily obtain

( ih2n+l 0 \

0 _ifc*»*l)·
Substituting (2.2.15) in (2.2.14) we clearly obtain the Gardner—Green—
Kruskal-Miura formulae for rapidly decreasing potentials by setting
x0 = ± oo. In the periodic case, (3.2.14) can no longer be integrated. For
the initial K-dV equation (2.2.14) the formula in the basis (2.1.2) was
derived by another method by Marchenko [44], who went further in
constructing a method of successive approximations for solving this
equation.

We shall proceed in a different way. The matrix f depends on the
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parameters xQ, t, and E. We consider for Τ the pair of equations (2.2.14)
and (2.1.5):

From the condition for compatibility of this pair of equations,
9 9 -fi 9 9 ,ΐΐ

. ., . / , we obtain
9i 9f 9xo

from which it follows, since the trace of the left-hand side vanishes, that

(2.2.17) "L-fQ-^Qi.

Now (2.2.17) gives a new and very convenient commutation representation
of the K-dV and all "higher order K-dV" equations by second order
matrices that depend polynomially on Ε (in the base (2.1.2)). An analogue
of this commutation representation as well as analogues of (2.2.14) and
(2.1.5) can also be obtained naturally for all other non-linear systems
mentioned in Ch. 1 (see Ch. 3).

We now consider the "general K-dV equation"

(2.2.18) « = -£
i=0

and the equivalent Lax equation

(2.2.19) L = [A, L], where A=^ c ^ . j .
i=0

The matrix Λ constructed according to (2.2.8) depends additively on A,
and we have the new representation (2.2.17)

η

(2.2.20) <9Λ dQ __ ^ Q Λ = V cA,,.;.

Suppose that we wish to find a stationary solution ύ = 0 of the higher
order K-dV equation (2.2.18). If it = 0, then °i? = 0 and we obtain

9f
(2.2.21) -|£- = [Λ, 0].

Thus, we have proved the following result.
COROLLARY 1 (see [38]). The system of ordinary equations

(2.2.22)

is equivalent to the equation of Lax type (2.2.21) with second order
matrices that are polynomially dependent on the extra parameter Ε and are
polynomial in u{x), u\x), . ... In particular, all the coefficients of the
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characteristic polynomial P(E), where

W2 + P(E) = det(W - Λ) = W* + det Λ (Sp Λ = 0),

are polynomials in u, u', u", . . . independent of χ (that is, they are integrals
of the system (2.2.22)). The polynomial P(E) itself is of degree 2n + 1.

We now prove the following beautiful and unexpected corollary of equation
(2.2.14).

COROLLARY 2. The roots of the polynomial P(E) = 0 are the complete
set of boundaries of the forbidden and of the solution zones of the
Schrodinger operator L with potential u(x) satisfying the equation (2.2.22)
for the stationary solutions of any higher order K-dV equation. In particular, all
the stationary solutions of the K-dV equations are potentials whose number
of zones does not exceed n.

DERIVATION OF COROLLARY 2. From (2.2.14) f= [A, f] we obtain

Τ = 0 or [Λ, Τ] = 0. Weconsider the matrix element (in the base (2.1.1)
[Λ, T]l2 - (a - α)μ + (λ — X)b for real k. Since λ = —λ, we have 2μαί[η =2\b.
From this it follows that in all the non-degenerate levels (boundaries of the
zones) for which | b \ Φ 0

(2.2.23) aim
6

λ

μ

or det Λ = P{E) = | λ | 2 - | μ | 2 when Ε = En. By adding a constant to u
we can always achieve that all En > 0 and the kn = y/En are real. Thus,
Corollary 2 is proved. This proof is taken from [38]. Another derivation of
Corollary 2 was indicated by Dubrovin in connection with a generalization
of these results to matrix systems (see Ch. 3): since by the definition
(2.1.6) the Bloch function ψ±(χ, x0, E) is an eigenfunction for
Τ Τφ+ = e'P(E)\p+, it follows from [Λ, f] = 0 that it is also an eigenvector
for the matrix Λ. Since Λ depends polynomially on E, the eigenvector φ±

is meromorphic on the Riemann surface Γ:

(2.2.24) R(W, E) = det(W — Λ) = 0.

In our case Sp Λ = 0, and we have

(2.2.24') R(W, E) = W2 + P2n+1(E) = 0,

where P^+iiE) = det Λ. The branch-points of Γ are the boundaries of the
zones, as indicated in Ch. 2, § 1. It is important that this derivation easily
generalizes not only to complex potentials, but also to almost-periodic
potentials and to other linear operators.

A third derivation, which yields part of the result of Corollary 2, was
obtained by Lax {50] simultaneously with, and independently of, [38],
as was mentioned in the Introduction. In fact, following [50] we prove that
every periodic stationary solution of any "higher order K-dV equation" has
only finitely many forbidden zones in the spectrum of the operator
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L = ~j-^ + u(x). For the sake of simplicity, we produce Lax's derivation

for the original K-dV equation. Let /„ be a non-degenerate periodic eigen-
function. We consider a normalization of the eigenfunction /,,(x) instead of
the bases (2.1.1) and (2.1.2) in which Lfn = E, such that the development
in time has the form

(2.2.25) /„ = Afn.

Since Lfn = Enfn, (2.2.25) leads to a first order equation in x, which for

A = -4 - ^ + 3(M — + -β-u) is as follows:
dx3 dx dx

(2.2.25') fn = (4£ + 2u)/B j e- uj^.

The characteristics of the equation have the form

(2.2.26) - g . _ _ ( 4 £ + 2a),

and along the characteristics we have

Ο 9 971· ^ " — n /

Hence the zeros of /„ are situated along the characteristics. For stationary
solutions of the form u(x - ct) (that is, A = Ax + cA0) we have

(2.2.28) fn = fn(x — ct), ~£- = ci x

Comparing (2.2.28) and (2.2.26), we obtain for the zeros of fn:

(2.2.29) -g. = c = - ( 4 E n + 2 u ( a : - c t ) ) = - AEn - 2u (x0).

For large values of η the number En is large and (2.2.29) cannot hold.
This means that either the eigenfunction /„ has no zeros, or that it cannot
be non-degenerate. We know that eigenfunctions corresponding to high
levels En -*• 0 have more and more zeros. In consequence, all but finitely
many levels are degenerate. A similar derivation for antiperiodic levels
(period 2Γ) shows that there are finitely many zones. It is easy to see
that this derivation generalizes also to higher order K-dV equations. From
this derivation it does not follow that the number of lacunae is < η for
the nth analogue of the K-dV equation (for the excluded case η = 1 see
[50]). Moreover, this derivation, unlike Corollaries 1 and 2 above, does not
give an algorithm for the integration of the stationary problem for higher
order K-dV equations nor an algorithm for finding the boundaries of the
zones.

We now pass on to the most recent work on stationary solutions of
higher order K-dV equations. All the (2.2.22) are equations for extremals of
the functional

(2.2.30) 6(d/_1+Sci/n-i) = 0 (ce=l),
i=0
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where I_1 = - \u dx. Therefore, all the equations (2.2.30) are Hamiltonian

systems with η degrees of freedom, depending on the (n + 1) constants
d, Ci, . . . , cn. The coefficients of the polynomial P^ + yiE) = det Λ are
constructed in such a way that the leading one is a constant, then the
next η + 1 are formed from the parameters (clt c2, . . . , cn, d) and the
last n, denoted by Jx, . . . , Jn, give a set of polynomials that are algebrai-
cally independent integrals of the system (2.2.22). In fact, the integrals
Ji, . . . , Jn are involutory and hence the system (2.2.22) is totally
integrable, and its solutions, in principle, can be determined by the Liouville
algorithm. (It will become clear later that the Hamiltonians Ja give a set of
independent commuting systems, hence we do not prove this here.) Follow-
ing the method applied above in the derivation of (2.2.17) from (2.2.14)
and (2.1.5), we use the commutativity of all the higher order K-dV equations
as dynamical systems in a function space. If we have two equations

da

dtm

dt

d
dx

dx

61
6u ι
η

/ I

m
[X)

δ/

δίί (χ)

t=0

then the solution is a function u(x, t, tm) by virtue of the commutativity
of these systems. For the matrix T(x0, E) we obtain

(2.2.31) J H A m ' f ] ' 4- = ΙΛ·#1·
η fiu

where Λ = Σ c,Ar,_i. If u(x) is a stationary solution, that is, r— = 0 (so
!=0 Of
!=0

that u is a solution of (2.2.22)), then

dt dt

In all cases we obtain from the compatibility of the two equations (2.2.31),
by analogy with (2.2.17),

(2.2.32) •^• — -^- = [A,Am}.

If | Γ = | Δ « = ο , then
dt dt

(2.2.33) -^- = [Am, Λ].

When m = 0, (2.2.33) becomes (2.2.21) with Λο = Q. Clearly, (2.2.33) is
defined over the same phase space as (2.2.21) and gives a set of commuting
Hamiltonians of dynamical systems on the phase space of the problem
(2.2.21) (or on the set of stationary solutions of the higher order K-dV
equations, given by (2.2.22)).

When m = 1, (2.2.33) determines the dynamics of finite-zone potentials
under time evolution governed by the K-dV equation, which is described
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explicitly in the form of a finite-dimensional dynamical system, represented
by a matrix equation for second order matrices polynomially dependent on
the parameter Ε (in the basis (2.1.2)). Here, the matrix Λ replaces the
Schrodinger operator L and the characteristic polynomial of Λ has the form
R{W, E) = det (W~A), and the Riemann surface R(W, E) = 0 is also the
"spectrum" (in the sense of Ch. 2, §1) of the potential we are studying.

We exhibit the matrix Λο = Q, Alt Λ2 in the basis (2.1.1) for real k,
the corresponding polynomials P3 (E), Ps (E), and the integrals / (for η = 1),

Ji and J2 for η = 2. The matrix Λ = 1— ^ I has the following form:

(2.2.34) l)7i = 0; % = ik—J, μ = -|£, R^E-c,

and the potential has the form u = c.

(2.2.35) 2) ra = l; A = A

•ii3 V·^/ — I'M — Ι Π — · - · I 2

J = [u'Y — (2u3 + cu* + 2du)

the potential has the form
du

(2.2.36) 3) n = 2; A = A2

μ = — u" + 6uu' - 4«'/c2 + -jn [ y u l V + 4uu" + 3 ( " ' ) 2

- 3«3 + Λ2 (2uu" - 4a2) - 8u/c4 + c2 -J

— c2) pl + q[ + 2c2q\ + dq\ —

The Hamiltonian system (2.2.22) for cx = 0 is given by the Hamiltonian
Η = Jx, and the canonical coordinates are:

(2.2.37)
q2= —
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In particular, for the Lame potential 3M(X), where uix) = 2<§{x), <§>(x)
being the Weierstrass elliptic function, we can exhibit the boundaries of
the zones: i f ( f ' ) s = 4g>3— gjp — g3 and elt e2, e3 are the roots of the
polynomial 4x3 ~g2x~g3 ("all et are real, ex < e2 < e3), then the
boundaries of the zones are

(2.2.38) E! = 3eit ΕΛ=—V~3gli E3 = 3e2, Ek = Y^gl, E5 = 3e3

Convenient coordinates yY, y2 on the level surfaces J^ = const, and

5

J2 = const are given as follows (let Σ Ei = 0):
/= ι

( 2 · 2 · 3 9 )

and all p i , p2, qx, q2 can be expressed in terms of 7 t and γ 2 . The
interpretation of the coordinates γι and γ 2 , the formation of "angle
variables" from them, and the completion of the integration of the equation
(2.2.22) for η = 2 will be discussed in §3 (see (2.3.14)). In general, the
real solutions of (2.2.22) are almost-periodic functions with a group of
periods T1, . . . , Tn. Bounded solutions correspond to tori in the phase
space, and the group of periods can be expressed in terms of the boundaries
of the zones, or, what amounts to the same thing, in terms of the constants
(ci, . . . , cn, d) and the integrals / 1 ; . . . , / „ . Later, in §3, we shall give
convenient formulae for the periods Tlt . . . , Tn and for the potentials
themselves. The actual methods, to be developed in §3, are all connected
with a very important circumstance, which has so far not been clear: the
«-dimensional level surface Jx = α γ, . . . , / „ = an, when continued into the
complex domain, is an Abelian variety (the complex torus T2n), which is
the Jacobian variety of the Riemann surface Γ given by the equation
R(W, E) = 0 in which R(W, E) = det (W - A) = W2 + /» t e + 1 (£). This
important property generalizes the natural case η = 1, where the Abelian
varieties are defined as the complex solutions of the equation

u" = — ^ — , P3 being a polynomial of degree 3. The corresponding result

when the number of lacunae is η > 1 is non-trivial and will be obtained by
combining the methods of §3 with those of the present section.

We give one more useful application of the equations (2.1.15) and
(2.2.17) for the matrices f and Λ. We recall the formula (2.1.19) for

XR(x, E) (in the base (2.1.1)), χκ(Χ, Ε) = 1~dR . From (2.1.5) and

(2.1.17) follow the general identities
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_ _ d

(2-2.40) R „ _ , , _ ,

~~* r

Comparing these with the form of xR and the condition aR = 0, we
obtain

(2.2.41) XK = («XR)'. where a = λ ΐ π ι + μ ΐ π ι .

For the K-dV equation we have Λ = Aj and a = -2{2E + u). From
XQ+T XQ+T

(2.2.41) it follows that the quantity I(k)=p(E)= f %Rdx = f χ ώ
XQ XQ

is conserved. We shall use (2.2.41) in §3 in the calculation of the
dynamics of finite-zone potentials in terms of the parameters 7 t , . . . , yn.

As Ε -*• °°, we have the expansion

XO+T

ι (k) ~ kT + 2 -(2ϊ^τ )
>0η > 0

where the integrals /η-ι = \ %2n+idx are Hamiltonians of the higher
X0

order K-dV equations, ii = r— g /-"-,, ί = Wn. ^ 1 - It is natural to intro-

duce a generating function for this set of equations. We consider an

operator Az, which depends on the parameter ζ and has the following

property (by (2.1.17) and (2.1.15)):

O 9 42Ϊ \A Π

where χ(χ, ζ) = XR + /Χ /, Χ / = 1 (In χ Λ ) ' , - /χ' + χ 2 + u -Ε = 0. Then

all the operators An are obtained as coefficients of the expansion of Az,

as ζ -> °°, in powers of ζ "^. We can verify that Az has the form
l r ι d ι

(2.2.43) Az= — X L X R ( X ! Z ) - ^ 2

We now give a convenient algorithm for obtaining all the matrices Am (in
the base (2.1.2)), which will also be very useful in Ch. 3 for the generali-
zation to first order matrix operators. We consider the differential
equation λ' = [Q, λ ] , in which the matrix Q in the base (2.1.2) has the

form Q = I I . This equation has a unique solution as a formal
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series
/Ο 1\ λι λ2

ies λ = I I + — + —^ + · • · ; the coefficients λη are determined from

the recurrence relation \\n, i I = X'n_j + \\_i, ( I . Then the

matrices Am have the form

(2.2.44) A m J

§3. The inverse problem for periodic and almost-periodic (real and
complex) finite-zone potentials. The connection with the

theory of Abelian varieties

Starting from the Definitions 1 and 1' of Ch. 2, § 1, by a "finite-zone"
potential we now understand a potential u(x) for which the Bloch eigen-
function ψ+(χ, x0, E), normalized by (2.1.6) and (2.1.7), is meromorphic
on the Riemann surface Γ:

2n+l

(2.3.1) Γ: W* = P3n+i(E)= [J (E-Et)t
lt = l

and has the asymptotic form

(2.3.2) ψ ± ~ e±««*-*o), & = Ε, E-+00.

According to (2.1.13), we study on Γ the function xR,

using the representation (2.1.14) and (2.1.16), (2.1.16'):

ψ ± (χ, x0, E) = l/ X R ( J e x P | i KJ (X, E)dx\ ,

A:Vl-aR

where according to (2.1.19) xR = — — (basis (2.1.1), real k) or

XR = V l - ^ («ii + α 2 2 ) 2 /α 2 ι (basis (2.1.2), arbitrary E). We note that at

degenerate points En of the spectrum we have, according to (2.1.10),
/I 0\

T= ± I I, «2i = 0, and α2ι(
χο> Ε) has a simple zero in E. By contrast,

at non-degenerate points En of the spectrum we have α 2 ι ( χ ο . Εη) ψθ. Let
Έα (α = 1, 2, 3, . . . ) be all the degenerate points of the (periodic and anti-
periodic) spectrum. Since the quantity (1 ~aR)= 1 -j(ocn +CC22)2 n a s a
two-fold zero at all points Ea and a simple zero at the non-degenerate
points El, . . . , £"!„+!, we see that

/+

(2.3.3) /l-afe = y .Π (E-Ei
where /(£) is an entire function having only simple zeros at the points Ea.
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Therefore, the quotient

(2.3.4) «*=7m

is an entire function of E. We have the expression
/ 2n+l

V Π &-Et)
(2.3.5) χ Η = i = l *

«21

As Ε -*• oo, the quantity xR(x0, E) has the asymptotic form xR ~ k =y/E .
Hence, by (2.3.5), the quantity ^x2i has the asymptotic form

(2.3.6) α 2 1 ~ £ " as £ - > o o .

Since α 2 ι(^ο. £) is a n entire function, we see from (2.3.6) that it is, in
fact, a polynomial:

(2.3.7) a2i(x0,E)=ll(E-yj(x)).
i=i

From this we obtain the final result.
COROLLARY 3. The quantity xR(x0, E) = jr W(\]j+, φ_) has the

following form:

1/ Π (Ε~Ει) ,
(2.3.8) xfl (*>£) = — - = Pn ( X i £ ) ·

[] (£-Vj(*))

NOTE. The quantity α2ι = Π (E-y.(x)) can be determined otherwise;

it is a solution of the equation

(2.3.9) -y' + 4(« - £)!/' + 2u'y = 0.

which is polynomial in E.
From this argument we can obtain another derivation of (2.3.8), since

(2.3.8) is satisfied by the product φλ . ψ2 of two solutions of the
equation Ζ,φα = Εφα, setting φί = φ+, ψ2 = φ_ (the derivation in [41]
and [47]).

Following the derivation in [40] and [46] we evaluate the product
φ+φ_ starting from (2.1.14):

(2.3.10) ψ+ψ-= X R (

;

X O ' 5 = II -zr-

Formally speaking, this derivation refers only to periodic potentials
because it uses the translation matrix T. However, the formulae (2.3.8)
and (2.3.10) hold also in the almost-periodic case. To prove this we can
proceed as follows: later, when we obtain the functions yAx), we have to
verify that the function φ±(χ, x0, E) defined by (2.1.14) really satisfies the
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equation Lip = Εφ.
We now draw some conclusions from the results obtained.
1. The poles of the Bloch function lie only on one sheet over the points

7,·(*ο) if Μ the 7-(JC0) are pairwise distinct.
PROOF. From (2.1.16), (2.3.8) we see that the poles of φ± can lie only

above points yXx0) where \R has poles, since Ψ± = c + ΐχ(χο· E)s and
since c and s are entire functions of E. If there were poles on both sheets

E—y (x)
(γ(χο)> ±) then in the product ψ+ψ_ = Π -—'-—- we would have a

' / £-7/(*o)

double pole. This contradiction completes the proof. We note that for real
periodic potentials the poles y,(x0) occur one each in the forbidden zones.

2. Symmetric functions of 7i(x), . . . , yn(x) can be expressed in terms
of the potential u(x) and its derivatives; in fact,

(2.3.11) u ( * ) = - 2 ΣΥί(*) + "Σ £ι.
1 i l

PROOF. Starting from the asymptotic form of XR(x, k) as k -*• °°, we
have (see (2.1.18)

where χ1 (χ) = -Μ(Χ), . . . Comparing this fact with the form of xR (see
(2.3.8)), we obtain the result.

3. Each finite-zone potential u{x) is a stationary solution of one of the
higher order K-dV equations (2.2.22).

PROOF. We start from (2.1.17):

f χ ΐχM L - J _ f χ ΐχ E\dx

"βίΠϊΓ- &Γ(ΪΓ J *-*(x>tl>ax- 2χΒ(χ, Ε)

in the case of periodic potentials. From the form of xR it follows that

amongst the coefficients of the expansion of - ^— = γ- in powers of

— there are only finitely many linearly independent functions of x, and
E

this leads to the relation

η

Cm du (x) ~ '

xo+T

where Im_x = f X2m+i^x (m ** ̂ ) are the coefficients of the expansion
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of p(E), as Ε -> °°, as follows from (2.1.18) and (2.1.15). From this the
proof follows in the periodic case. The almost-periodic case is similar: the
integrals over the period must be replaced by the mean value; all the formu-
lae remain valid. For real periodic functions the result is suggested by
standard uniqueness theorems (see [ 1 ]), from which it follows that the
potentials form at most an «-dimensional family for a given spectrum (with
η forbidden zones); actually, by the results of Ch. 2, §2 we have an
exactly «-dimensional family. However, this result is needed also for almost-
periodic and for complex potentials.

4. The set of quantities 7i(x), . · . , 7n(x) satisfies the system of
equations

(2.3.12) γ- = + 2i V ρ * " ΐ Μ .
I] (Yft — Yj)

Strictly speaking, these equations must be treated as equations in x 0 for
the set of points Ρχ{χ0), . . . , Pn(x0) on Γ, where Pj{x0) = (7/(*ο), ±), and
the poles of φ±(χ, x0, E) lie at Pj(x0). Above each lacuna [E^, E2i+1] = /,·
in the real case lies the cycle at on Γ that is obtained by fusing the two
intervals a,· = (/,-, +) U (/;, -) at the end-points (E2i, +) = (E2j, -) and
(E2i+1, +) = (E2i+l, - ) . The points Pj(x0) lie one each on the cycles α;· (by
Corollary 1 above) and more over these cycles as x0 varies. The whole
"phase point" ( Λ , . . . , Pn) lies on the torus Tn = S\ X . . . X Sl

n (the
direct product of the cycles a.·), and (2.3.12) is actually written down for
the motion of the point ( Λ , . . . , Pn) e Tn.

PROOF OF (2.3.12). According to 1. above, the poles of φ± lie only on
one of the sheets (7.·, ±) over y.(.x0)- On the other sheet there is no pole
at (7^, ±). This means that in the formula (2.1.16) for ψ±, or what is the
same thing, in the quantity χ = χ Λ + /χ/ = xR + l--^- In xR (by (2.1.12))

the pole is cancelled for Ε = jj and one choice of sign in the radical. From
the form (2.3.8) of xR we obtain

Solving (2.1.13) for 7! we obtain (2.3.12). This proves the assertion.
We now analyse by way of illustration cases of one and two zones; the

two-zone potentials were not previously known.
EXAMPLE 1. {n = 1). The equations (2.3.12) have the form

\Uy-Ej), u=

these formulae transform in an obvious way into (2.2.35).
EXAMPLE 2. (n = 2). The equations (2.3.12) for the parameters have

the form
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Y1-Y2 " V2-71

where -2(7! + 72) = ". 7i72 = | (3«2 - w") + | Σ £,·£}. As was indicated in §2
(see (2.2.39), 7 t and 7 2 are coordinates on the level surface of the two
integrals Jx and J2 for the stationary solutions of the second order K-dV
equation.

The equations (2.3.14) can be integrated by a change of variable

(2.3.15) dx = — d x .

For real potentials, where E2 *ί 7i *^E3, E4 < 7 2 *^E5, we introduce two
functions Fx (r) and F2 (τ), setting

(2.3.16) x

We select an initial point τ 0 so that

(2.3.17) V l ( T ) = ^ ( τ ) , ν,(τ) = F2(x + τ 0).

From (2.3.15) we have

(2.3.18) x-xo= {
0

5

The potential u(x) has the form u(x) = — 2(7j + 7 2 ) + Σ Eh and in con-
/ = 1

junction with (2.3.16), (2.3.17) and (2.3.18) we obtain our final expression
for the two-zone almost periodic potentials:

5

u (x) = - 2 [Fi (τ) + F2 (τ + το)1 + ^ ^ί,

where

In (2.2.38) values of the boundaries of the zones £,· were exhibited for
which, under a special choice of x0 and T 0 , the Lame potential 3u(x)
results, in which u(x) is a one-zone potential (the Weierstrass ^-function).
Other potentials of this family (with the same spectrum as 3Μ(Λ:)) have
the form (see [42])

2 - β3 = ̂ i1 [ - f (βι - β3)

We now pass on to the connection with Abelian varieties. We have
proved (see (2.3.11)) the formula u(x) = - 2 Σ 7 / + 2 Σ £ / for the potential
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u(x). The Bloch eigenfunction φ±(χ, x0, E) has the set of poles
P1(x0), . . . , Pn(x0), which are points on the Riemann surface Γ, situated
one each over the points 7i(xo)> · · · > Ύη(

χο) of the i'-plane. Strictly
speaking, (2.3.11) is to be understood as follows: there is a canonical
projection it: Γ -»· C of Γ onto the £-plane, and the potential u{x) has
the form

η

(2.3.20) u(x)=—2^ π (Ρ}(χ)) + const.

Essentially, the projection π is a numerical function on Γ, invariant
under interchange of the sheets (the canonical involution, which always
occur on a hyperelliptic surface Γ). It is natural to define a numerical
function σ on the symmetrized set of η points {Px, . . . , Pn) such that

The symmetrized sets (Plt . . . , Pn) of points of Γ form an algebraic

variety, the symmetric power S"(F)), and a is an algebraic function on this

variety. The set of points (Pi, . . . , Pn) varies when the parameter χ is

changed, and the value of the function

—2a{P1(x) Pn(x)) + const

is the potential u(x), by (2.3.11). In classical algebraic geometry it has long
been known that the symmetric power is birationally isomorphic to the
2n-dimensional torus J(F), the Jacobian variety for Γ. Therefore, in particular,
σ is expressible in terms of multidimensional 0-functions (of the Riemann
0-function and its derivatives). The birational equivalence S"(F)->• J(F) is
realized by the standard Abel map, which we describe below. We select a
base of cycles on Γ:

(2.3.21) flj. . . ., a n , ..., bit .. ., bn>

where the intersection matrix has the form

(2.3.21') dioaj = bi°bj = 0, atob} = 6U

(the cycles at for a real hyperelliptic surface Γ were indicated above, they
are the complete inverse images of the forbidden zones on Γ). We consider
the basis of holomorphic differentials on Γ:

η

(2.3.22) Qh = 2 c « v

normalized by the conditions

(2.3.22')
ai

So we obtain the matrix

(2.3.23)
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We know that this matrix is symmetric and has a real part of definite
sign (the matrix Bkl cannot be split into blocks, for η = 2 it is a complete
set of constraints). The full η Χ 2n matrix

(2.3.24) ( φ Qh, § Qfc) = (2M6Jh, Bjh)

defines In vectors in «-dimensional complex space C", the integral linear
combinations of which form a lattice that defines the torus J(F) as a
Jacobian variety (the "Jacobian of Γ"). The Abel map A: S"(O-> J{T) is
defined as follows. We fix the points / * ? , . . . , /^. We set

(2.3.25) A(Plt . ., Pn) = (Th, . . ., ηη),

where

and Ω .̂ is the basis (2.3.22) of holomorphic differentials. Clearly, the
parameters r\k are determined to within a vector of the lattice (2.3.24).
This is the way the Abel mapping is constructed.

An important observation, mainly due to Akhiezer [10] consists in the
fact that (translating the language of [10] into contemporary language)
under the Abel map the set of zeros {Pl (x), . . . , Pn Qc)} of the eigen-
function \p± transforms into a straight line on the Jacobian variety (we
shall show later that the eigenfunction %, which Akhiezer constructed in
his examples for the half-line is the same as the Bloch function
ψ±(χ, x0, E) when the potential is even, u(x) = u(—x), and x 0

 = 0)· We
use the information on the zeros /y(x) of ψ±(χ, XQ> E) lying over the
points 7;-(x), on the poles Pj(x0) lying over 7,(x0), and on the asymptotic
form φ± ~ β * / *( χ - χ ο) ) as Ε ->• °°. We consider the logarithmic differential

ω =(-ΊϋΠ)άΕ>

which has the following properties:
a) it has poles with residue -1 at the points /y(xo);
b) it has poles with residue +1 at the points P;-(x);

c) it has a pole of the second order at Ε = °°, which in the local para-

meter ζ has the form: ω i(x - x 0 ) —?-, where ζ = — = —==, since
ζ K V Εψ± ~ £**(*-*.), as Ε -> oo;

d) all the integrals over the cycles i ω and φ ω are integer multiples of
•a. bt

2m, because ψ± is a single-valued function on Γ.
We claim that the properties a), b), c), d) completely determine the
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function φ+(χ, x0, E) and that as χ varies, the set of zeros
(Ρχ(χ), . . . , Pn(x)) moves in a straight line on the Jacobian variety J(F)
after the Abel map A.

PROOF. We introduce the differential Ω whose only singularity is a pole
of the second order at Ε = °°, and whose asymptotic form is

Ω = -i -4-, as Ε -»• oo where ζ = —==. We normalize Ω by the conditions
z2 sJE

(2.3.26) φΩ = Ο (7 = 1, . . . , η).

Then Ω has the form

where the coefficients a.· are determined by (2.3.26).
Let Ωρ® be a differential on Γ whose only singularities are a pole of

residue —1 at Q and a pole of residue +1 at P, normalized by the
condition

(2.3.27) |

j

In algebraic geometry it is known that if the Ω;- are normalized by (2.3.22')
and Ω,Ρβ by (2.3.27), then (for any path from Ρ to Q)

ρ

(2.3.28) φ QPQ = j Ω
ρ

Ω ;·,

where the cycles (a,-, bj) satisfy (2.3.21'). We now consider the differential
ω = dE In φ and represent it in the form

(2.3.29) ω = [χ— χ0) Ω + 2 QP'<se)P'<ste) + D,
3=1

η

where D is the holomorphic differential D = Σ α,Ω,·. From the condition

<J> co = 2mmj-, in which the m;· are integers, we obtain, using the

normalizations (2.3.22), (2.3.26) and (2.3.27),

η

2nimj=(Yi ah8hj)2ni (7 = 1, · · . , « ) ,

from which it follows that all the α;· are integers, ay = Wy. From the con-

ditions φ ω = 2m'rij, in which n;· are the integers, we obtain, using (2.3.28)

h

(2.3.30) 2nin} = (x-x0) U,+ % f Ω, + ^
ft=l P f t (K 0 ) ft-=l

where i/; = - § Ω. From (2.3.30) it also follows that, to within a lattice
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vector, under variation of the parameter the set of points
(Qi(x), . . . , Qn(x)), describes a straight line on the torus J(F) whose
gradient is defined by the vector (£/,, . . . , Un), depending only on Γ.

(2.3.30) can be rewritten as

(2.3.30') i\i = i\9

} + (x-Xo)Uj,

in which the n;- are coordinates in C , defined to within an element of the
lattice (2.3.24). The restriction of the algebraic function a to the rectilinear
winding (2.3.30') also gives (in the real case) the potential u(x), which is
almost periodic with the group of periods (Tj, . . . , Tn), where

(2.3.31) T]1 = 2 B}hUh .
fc=l

(Here B'k is the inverse of the matrix of periods (2.3.23).) Under continu-
ation into the complex χ-domain, the potential becomes a meromorphic
almost-periodic function with In periods Tx, . . . , Tn, T[, . . . , T'n, where
the T'j along the imaginary axis have the form

(2.3.31') T-=~.

For complex Γ the potential has 2« periods in the complex domain. For
the potential u(x) to be periodic in x, it is necessary and sufficient that
the real periods 7Ί, . . . , Tn satisfy η - 1 equations of the form

η

ΣηυΤ}=0 (i = l, . . . , n-l),
i=i

where the n/;· are integers.
If the whole group of 2n complex periods (7Ί, . . . , Tn, T[, . . . , Γη')

reduces to two generators, then u{x) is expressible in terms of elliptic
functions (for this 2«—2 integral linear relations are needed).

Thus, the Abel map integrates the equations (2.3.12) for the quantities
(7i > · · · > 7,j)· From our results so far, bearing in mind that u(x) is uniquely
determined by the set of initial points [Pi(x0), . . . , Pn(x0)] on Γ, we
obtain the following theorem.

THEOREM 1) The set of (real and complex) almost periodic finite-zone
potentials with a given spectrum Γ is canonically isomorphic to the Jacobian
variety J(P) of Γ, which is a In-dimensional Abelian variety, and this iso-
morphism is realized by the analytic operations described above. The group
of periods is determined by the spectrum Γ. 2) The set of all complex
solutions of the stationary problem for higher order K-dV equations is, to
within a birational equivalence, for given constants (d, c1, . . . , cn) and
levels of the commuting integrals J^, . . . , Jn {or for a given spectrum) the
Abelian variety J(F), where the Riemann surface Γ is defined by the
equation W2 ~P2n+1 (£) = 0 (see (2.2.24)). The affine part ofUY) is canonically
embedded in the space C2n.

As was shown above (see (2.3.20)), u(x) has the form
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(2.3.32) u{x) = - 2 σ « + (χ - xo)Ulf . . ., η» + (χ - xo)Un) + const,

in which σ is an algebraic function on the torus J(F) and is expressed in
algebraic form in terms of the Riemann 0-function and its derivatives,
where the classical Riemann 0-function is constructed from the lattice
(2.3.24) in the standard form:

(2.3.33) θ(η ι, ..., ηη)= 2 exp {i. 2 Bjhmjmh+ 2
mi,.. .,mn j , ft k

(the mx, . . . , mn are integers).
In [41] there is a convenient explicit formula expressing σ in terms of

the 0-function (2.3.33). For u(x) we have
(2.3.34) u(x) =

= -2-£Γ1ηθ(η? + £Μ*-*ο)-#1. · · ·. < + Un (x-z0) -Kn)
η pfc(*o)

where C is a constant depending only on Γ. Let us prove this formula. We
consider the function

(2.3.35) F(P) = θ(η(Ρ) - η"),
ρ _

where Ρ £ Γ and τ?;·(Ρ) = f Ω;·. The function F(P) is single-valued on Γ
«I

cut along the cycles {ajt bj) (2.3.21). By a result of Riemann, (see [56]),
F(P) has η zeros P1} .. . , Pn on Γ (for almost all η° Ε Ι(Γ), and the
following relation holds on J(F):

(2.3.36) A(Plt . - ·, Pn) =Ά° - K,

ι "
where Kf = — Σ 5 Λ / - πί;· are the "Riemann constants". Therefore,

n
( 2 · 3 · 3 7) 2ΗΓ § J1^) d l n F W = 2 a(pj) +2ΗΓ

+ res π (Ρ) d ln F (Ρ) = σ (r)°-K) + res π (Ρ) d In F (P).
P = o

Since the 0-function (2.3.33) has the properties

θ(ΐΊι, · ·, η* + 2JU, . . ., ηη) = θ(η!, . . ., η η ),

the integral (2.3.37) is

< 2 · 3- 3 7 ') 1ΗΓ§ π (Ρ) d In F (Ρ) =
af
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From (2.3.37) and (2.3.37') we have
η

(2.3.38) σ (η» - Κ) = - res π (Ρ) d In F + 2 § π (Ρ) ον

To derive (2.3.34) from (2.3.38) we must calculate the residue
res π(Ρ)ά In F at Ρ = °°, where τ?° is chosen so that

η° -K = AWx), . . ., Pn(x)) = 4(Λ(*ο), · · · P»(*o)) + V τ - ζβ).

To do this it remains to observe that the quantities Uj in (2.3.30) and
ckl in (2.3.22) are connected by Uf = c,-n (a consequence of the relation
between the periods of the differentials on Γ; see [55]).

From the preceding results we have seen that the Bloch function ψ± and
the potential u itself are completely determined by the spectrum, (the
Riemann surface Γ), and the "divisor" (the set of poles), that is, the
numbers 7i(xo)> • · · , 7η(*ο) together with an indication of the sheet on
which the poles lie. The zeros of ψ+ also form a divisor
(7i(*), σι), (72CO, σ2), · · • , (ln(x), an), where σ;· = ± labels the sheet in
which the zero lies. If the potential is real, then all the 7;- lie in the
lacunae E2i < 7,· < E2i+i, the Riemann surface is real, and it makes sense
to talk of the "upper sheet" (+) and the "lower sheet" (-) for real values
of Ε over the lacunae (the positive and negative values of the root
/ If t n e sten of the sheet is +, then φ+(χ, x0, E) -*• 0, as χ -»• + °°,

for Ε inside the lacuna; if the sign of the sheet is - when Ε is in the lacuna,
then ψ_(χ, *o> E) ^- 0, as χ ^- — °°. Hence the function
ψ+(τ, x0, E) = fj{r\ Ε = jj(x), belongs to the discrete (non-degenerate)
spectrum of the Sturm-Liouville problem on the half-line

τ > ζ , f(x) = 0, /( + oo)=0,
τ < χ, f{x) = 0, /(-oo) = 0,

depending on the sign (±) of the sheet on which the zero Pj(x) of
φ(χ, x0, E) lies, and the set {7,·} comprises all the non-degenerate levels
of these spectra. A similar though rather simpler situation arose in the work
of Shabat [11]: he suggested a method of studying non-reflecting
potentials by means of "conditional" eigenvalues jj on two half-lines for
which he derived in [11] an equation analogous to (2.3.5) (but, of course,
in this case the Riemann surface degenerates and there is, in general, no
Abelian variety; equations of the type (2.3.5) in this degenerate case were
derived by completely different methods). In our case, when χ varies, the
set of points (7,·, ±) describes the cycles α;·, and the sign of the sheet
changes when passing through a branch-point.

We consider now the case of even potentials, u(x) = u(—x), with x0 = 0.
It is easy to verify that when χ -^ -x the sheets of Γ are exchanged. Hence,
for the equation u{x) = u(-x) to hold it is necessary and sufficient that
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the poles 7,(0) are invariant under this exchange, that is, occur at branch-
points. Moreover, when x 0 = 0, the function χ(χο> Ε) has the form

χ(0, Ε) = χΒ(0, Ε),
since

(0, Ε)=-\[*. Injj (E-y,) l^ = 0,jj

because 7/(0) = 0; this follows from (2.3.5) and the fact that 7/(0) lies at
a branch-point. Therefore, φ±(χ, 0, Ε) in this case has the form

y
[J (E-yj(0))

where the 7 ;(0) lie at the branch-points (ends of the lacunae). This gives the
Akhiezer formula of [10] for the function g in case the 7y(0) are taken
as the lower boundaries of the lacunae. The point of the derivation is the
fact that for a given zone structure there are only finitely many even
potentials.

We conclude this section by showing that the parameters (η j , . . . , ηη) on
the torus J(F) give "angle" variables, canonically conjugate to the "action"
variables, which, for the Hamiltonian systems (2.2.22), can be taken as
the integrals Jx, . . . , Jn, the last n coefficients of the polynomial
P2n+i ~ det Λ (see §2). The Poisson brackets here form the constant non-
singular matrix

(2.3.39) (Mk, i\j] = ahj,
[/ft, Js] = [η f t, r\s] = 0.

It turns out (see §4) that the parameters ηΙι on J(F) also give the set of
"angles" for the time evolution by the K-dV and higher order K-dV
equations: by the higher order K-dV equations, all the derivatives % are
constant, and by virtue of the operator _ , which is connected with the

dx
t i m e d y n a m i c s , t h e P o i s s o n b r a c k e t s a l l v a n i s h : [r\k, T ? S ] = 0 .

§4. Applications. The time dynamics of finite-zone potentials
according to the K-dV equations. The universal fibering of Jacobian

varieties (the hyperelliptic case).

We study the time evolution according to any of the higher order K-dV
equations. In Ch. 2, §2 we have derived the equation (2.2.33) for the time
evolution, which for m = 1 coincides with the usual K-dV equation:

( 2 4 1 ) Ι Λ Λ ]

where Λ = Σ cjAn_i, (2.4.1) holds for the set of solutions of (2.2.22)
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6u(x)
= d,

and the algorithm for finding the matrices in the basis (2.1.2) is given by
(2.2.44).

Starting from the results of §3, we now find formulae for the time
dynamics in terms of the parameters 7.·. We use (2.2.41), which in the basis

ΰχβ Q λ/ + Hi
(2.1.1) has the form-g— = γ- (αχΛ ), where a = — and a = -2(u + 2E)

for the initial K-dV equation {m = 1). Using the form

we obtain

(2.4.2)

Pn(E,x)

d^JL=£±p a

d P n
at dx n dx '

or, substituting Ε = 7;· in (2.4.2) after solving for fy and using (2.3.5) for

; _ ... 2ta,·(2.4.3)

where α;· = -2(M + 2E)\E=y_M for the original K-dV equation, and by

η 2η + 1

(2.3.11) u = -2( Σ γ,·) + Σ £.·; this gives the final formula for 7.·.

EXAMPLE. Consider η = 2 and the original K-dV equation with
α = -2(« + 2£·). We obtain

(2.4.3')

8£ 2 — 2 - 2

1 ~~ 72 — 71

As in (2.3.15), we introduce the parameter τ given by dr = * , and
obtain

(2.4.3")

y -ps (72)
5

Suppose, for simplicity, that Σ Ei = 0. Introducing the parameter w where

8(72 Ύ i)dr = du;, we then have
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(2.4.4) , ^ ' 1 =d,nt /

 Ύ 2 ^ 2 =dm,

where dw is a first order differential on Γ. Now (2.4.4) and thus also
(2.4.3) can be integrated in the obvious way. Comparing the result with the

formulae (2.3.11) for the potential, we find that^—r 0 = 4, — x0 = 4 ( F 1 ( T 0 ) - - | S

and the potential has the form

(2.4.5) u(x, t) = -2lF1(t(x - xo(t))) + F2(x(x - xo(t)) + το(ί))] + %Et,

where the hyperelliptic functions Ft and F2 are defined in Ch. 2, §3 (see
(2.3.16).

If u(x, 0) is the Ince (Lame) potential, where u(x, 0) = 6tP(z) with the
boundaries of the zones (2.2.38) (f(x) is the Weierstrass elliptic function),
then we have

(2.4.6) u(x, t) = 2<§{x - Ut)) + 2f(x - β,(ί)) + 2<§>(x - β8(ί)),

where

+ p2 + β3 = 0, t= j
Pi-Pa

dz

V 1 2 ( ^ - 3 ^ (z))

It turns out that the Abel map (2.3.25) integrates (2.4.3) for K-dV
equation and all its higher order analogues, and the parameters r\k have
constant derivatives by virtue of all these equations. We can calculate the
derivatives

(2.4.7) η Λ = W^

by the mth K-dV equation:

(2.4.8) 4ru^4--icJh -
V · / dt dx ou (x)

The idea of this calculation, by analogy with §3, consists in the fact that
under time development the eigenfunction ψ±(χ, xQ, E) has the asymptotic
form, as Ε -> °° (for a suitable normalization)

(2.4.9) ψ ~ exp [ik(x — x0) + ik2n+1(t — t0)].

If (2.4.9) can be established (this involves certain difficulties), then, by
analogy with §3, we obtain the following result: let coOT be a differential
on Γ such that at Ε = °° it has a pole of order 2m + 2 (for the mth
K-dV equation (2.4.8), as Ε •+ <*>)

(2.4.10) com = j2Sf2+ a r e g u l a r part

where ζ = —γ= = "r> and normalized by the conditions
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(2.4.10')

Arguing as in §3 in "the case of the differential dE In φ, we have the
required result, namely

(2.4.11) y}h=W™, t n m > = &com.

Substituting in the formula (2.3.34), which expresses the potential
u(x, t) in terms of the Riemann 0-function, we obtain the K-dV dynamics
in the form

(2.4.12) u(x, t)=-2-^lnQ((x-x!))U,+(t-t0)W? +

+ r\l-Ku . . . , ( χ - * „ ) tf»+ (*-«ο) Η ^ ' + η * - £ „ ) + < ? .

So we have obtained the following result.
THEOREM . The time development of finite-zone potentials according

to the K-dV equation or any of its higher order analogues is described by
(2.4.3), (2.4.5), (2.4.11), (2.4.12) and represents a motion on a torus along
a rectilinear winding on the variety of all potentials with the given spectrum
Γ, which is isomorphic to the Jacobian variety J(F), the complex torus
T 2 " . In particular, the rectilinear structure on J(F) is determined by "higher
order K-dV" equations, written in the form of a set of commuting poly-
nomial Hamiltonian systems with η degrees of freedom and the Hamiltonians
Jx, . . . , Jn in the realization of §2.

In the case of a real Riemann surface Γ (or a real bounded potential)
the motion is on the torus Τ", which can be visualized in the form of a
direct product of the cycles a.·, the inverse images of the lacunae on Γ.
This motion is conditionally periodic in time with a set of η real and η
imaginary periods, where the periods are expressed in terms of the integrals
W .̂m) of the differentials tom (for the mth analogue of the K-dV equation)
over the cycles bk and the lattice matrix Β μ.

Since the higher order K-dV equations are rectilinear on J(F), we see that
on this Abelian variety the law of addition of points, by means of motions
along these systems holds. In the realization of §2 of the varieties J ( D of
finite-zone potentials by the equations Jx =J°, . . . ,Jn = /°, all the higher
order K-dV equations were realized as Hamiltonian dynamical systems in a
phase space with η degrees of freedom, depending on the η + 1 constants
(d, cx, . . . , cn) (if Σ£;· = 0, then cl = 0 ) , and the Hamiltonians
Ja((x = 1, . . . , n) of these systems are polynomials in the phase variables,
having vanishing Poisson brackets [Ja, J0 ] = 0 . The Jacobian }(Γ) is defined
in C 2 " by the equations Jx = / ? , . . . , / „ =J°, and the Riemann surface Γ
has the form

R{W, E) = W2 - P2n+1 = 0,
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where
η

Pin+l(E)=-detA, Λ=Λ η + Σ ^Αη.,;
i=l

for η = 2, according to (2.2.36), we have the Abelian varieties J(P):

Ji = P1P2— (γ Qi-l· γq2iQ2 + -jQ*) + c.1q\ — dqi,

Jz = p\ — 2qiPip2 -f 2 (q, — c2) p\ + q\ -f 2c^q\ + dq\ — 4g,gf + 4c2?1<72 — 2dq2;

- det Λ = P5 (E) = E* -f 1 c2E* - -1 . dE* + (^- -Λ + { c\) Ε + / 2/2 8 + c2d/27,

where cx = ΣΕ{ = 0, qx = M, i?2 = ~ y « 2 + w", Pi = ? ί , Ρ2 = «'·

Isomorphic Abelian varieties are obtained when the Riemann surfaces are
isomorphic, that is, when the roots (£",·) of the polynomial P2n+i(^ differ
only by a factor λ if Σ£;· = Ci = 0. After taking account of this equivalence,
there remain altogether 2« + 2 isomorphic surfaces Γ(« being the genus)
because one of the 2n + 2 branch-points is distinguished and is situated at
Ε = oo. We recall that hyperelliptic Riemann surfaces are characterized
uniquely by the roots of a polynomial Q2n+2(E) to within a common
fractionally-linear transformation and an arbitrary permutation of the roots.
We place one branch-point E2n+2 = °° at infinity, and also assume that
ΣΕι = 0; the remaining 2n numbers can be simultaneously multiplied by
one and the same number λ. Furthermore, all the coefficients of the
polynomial det Λ = P2n+l(E) can be expressed symmetrically in terms of
E1, . . . , E2n+1. The only remaining non-symmetry in our constructions is
the selection of the branch-points E2n+2 = °°.

Let κ G V be a base point of the variety of moduli of hyperelliptic
curves Γ defined by the set υ - (El, . . . , E2n+2) to within a common

fractionally-linear transformation and a permutation; let V—-» V be our
covering associated with the selection of the branch-point E2n+2 = °°.
Over each point of V there is the Jacobian variety J(F) of the correspond-

j(r)
ing curve Γ, and we have the universal fibering of Jacobian varieties Μ ->V

~ J(r) ~ ^ ~
and its (2« + 2)-sheeted covering Μ > V, where υ e V is determined by
the set υ = {Ex, . . . , E2n+1) to within a permutation and multiplication:
(£1, . . . , E2n+l) ~ λ(£Ί, . . . , Ε2η+1), ΣΕ; = 0. This variety Μ can be
computed in our constructions as follows: in C 3 " the coordinates are
z l 5 . . . , z3n, where zt = qt, zn+i = pu i <n;z2n+1 = d, z2n + i = ch 2<i<n,
and the symplectic form Ω = Σάρ; f\ dqt. All the Abelian varieties are
given by the equations '

{ Zj — const, / ^ 2n + 1,

Ja = const, (a = 1, . . ., n),
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and thus lie in the spaces C2n. The universal fibering splits into a family of
fiberings of each C2n{zj = const, / > In) by level surfaces of all the poly-
nomials Ja, depending on the remaining η coordinates z2n+1,. . . ,z3n and
on the parameters. An algorithm for calculating the polynomials Ja was
described in §2. The law of addition on the Abelian varieties and all the
one-parameter subgroups are given by Hamiltonian systems with the
Hamiltonians Ja. The group of multiplications of the roots Et by λ acts
by multiplying the coefficients of the polynomial Ρ2η+ι(Ε) = det Λ by the
corresponding power of λ. We can choose λ by requiring that c2 - 1.

Thus, we obtain the following result:
The manifold M, the space of the universal fibering of the Jacobian varieties
J(F) with the distinguished branch-point E2n+2 = °°, is a rational variety;
this universal fibering with the fibre J(F) splits into a family of fiberings
with rational fibering spaces of dimension In, fibred by the polynomials Ja

(an algorithm to calculate them was given in §2). On affine parts of the
fibering space C 2 " there is a symplectic form, and the Poisson brackets of
all pairs of polynomials Ja vanish. The Abelian varieties are complex
solutions of this commuting set of Hamiltonian systems.

We mention that the variety Μ itself is probably also rational, but here
we have only proved its universality. In the general (non-hyperelliptic) case
we can also develop an analogous method, using operators of higher order
instead of the Schrodinger operator. For an approach to these problems,
see Ch. 3, §2.

CHAPTER 3

GENERALIZATIONS. DISCRETE SYSTEMS AND MATRIX OPERATORS
OF FIRST ORDER

§ 1. The periodic problem for the Toda chain and the "K-dV
difference equation"

As we have said in Ch. 1, §5, Manakov [35] and Flaschka [33], [34]
found an L - A pair for the Toda chain, proved that the Henon
integrals [32] are involutory and integrated completely the Cauchy problem
for the Toda chain with rapidly decreasing initial conditions
cn ->• const, υη -* 0, as | η | -> °°, by the method of scattering theory.
Furthermore, with the operator L under the condition vn = 0 another
physically interesting system is associated, the "difference K-dV equation",
discovered in [35], for which Manakov first found the integrals and then
integrated the system by the same method as in the rapidly decreasing case.
Following unpublished work of S. P. Novikov, we consider here the periodic
case for both these systems, by a method similar to that of Ch. 2. The
operator L has the form indicated in Ch. 1, §5, and the equation
L4in= Εφη is
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(3.1.1) (E — Vn)\fn = i VTn^n-

After the change ψη •-»· i" \pn we obtain

(3.1.1') {E-vn)yn = VTnyn-i

The Wronskian for the operator (3.1.Γ) has the form

(3.1.2) Wn(y, ψ) = ( - 1 ) η ΐ Λ ^ ( ψ η + 1 φ η - ψ η φ η + 1 )

and does not depend on n. We use here an analogue c(n, nQ, E), s(n, n0, E)
to the basis (2.1.2) of Ch. 2, where

(3.1-3) \
Uno = 0,

and W(c, s) = y/cn + 1(-1)"°+ 1. In the periodic case the matrix of a translation

by a period is defined in the usual way, (in the basis 3.1.2):

f __ /«ll «12 \
\α2ι a22 / '

where the α/;- are real for real Ε and det f = 1 (we assume that the period
Ν is even). In exactly the same way the Bloch eigenfunctions ψ±(η, n0, E)
are defined where φη = 1, Τφ± = e±ip(-E) φ±; they are meromorphic on the
Riemann surface Γ and have branch-points at the boundaries of the zones.
It is important to note that the operator L (see (3.1.1) and (3.1.Γ) has
altogether finitely many forbidden and solution zones, and the neighbour-
hood of Ε = °° is always a forbidden zone. Thus, Γ is always of finite
genus and is defined by the equation

2n+2

(3.1.4) yz = Pin+*{E)= Σ (Ε-Ε,),

where the £,· are the boundaries of the zones. We introduce the notation:

{
n - l

ψ±(η, η0, £) = exp(2j Δη),
710

Χ* (re, £) = eA n.

From (3.1.1) we obtain the following equation (an analogue to the Riccati
equation):

iO A ft\ Ρ 7, —~\/~r p — Δη-l A-~\f~r ~ oAn

In the solution zones, where p(E) is real, we obtain from (3.1.6)

Λ 1 1
hmin + i, E))-[V^%lm(n, E)]\.

From (3.1.7) it follows that (in the solution zones)

(3.1.8) ψ±(η, no, E)= 1/ V_p^lXlra(^ *> exp { i 2 ΔΠ/} .
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Further, from the definition of W we have

(3.1.8') / W ^ + ' *-) = :

0» ^) ^i " — " ΟΓ Λ —- Λ .

As in Ch. 2, the function χ(η0. Ε) can be expressed in terms of T, and
XIm(n, E) has the same form as in (2.1.19):

] / l - l ( S p f ) 2
(3.1.9) %Im («o, E) = ^ .

As in Ch. 2, §3, the function 2zxIm(w0, Ε) y/cn +1~can be continued from
the solution zones to all complex values of Ε by the formula (3.1.9) and
coincides with the Wronskian W(\j/+, φ_). As Ε -*• °°, it has one of two
asymptotic forms (we recall that the Riemann surface Γ given by (3.1.4)
has two sheets. ± over the point Ε = °°, and ζ = j; is a local parameter on

each

(3

of

. 1 .

them)

10)
x +

%-

(n,

(n,

E)

E)

on the two sheets of Γ, as Ε ->· °°. Hence, for W(\p+, ψ_) = χ+ - χ we
have the asymptotic form, as Ε -*• «>:

(3.1.10') w ^-2E + 0(1).

Exactly as in Ch. 2, §3, from the asymptotic form (3.1.10') we obtain

V 2m + 2V
H ( E t )

From (3.1.11) it follows that in the solution zones

(3.1.11') Χΐ,ηΚ, E)= Ji

Comparing with the formulae (3.1.7), which are applicable within the
solution zones, we obtain

(3.1.12) y±(».l F,)=

2m+2 m
where /?(£) = Π (Ε - £,-), ΠΜ = Π (£ - 7,·(«))· However, this expression

/= ι /= ι '
cannot yet be regarded as the final result for χ±(η0, Ε). In fact, formally
speaking (3.1.12) is algebraic in a Riemann surface Γ", covering Γ doubly.
We know that the quantity χ*(«0, Ε) is algebraic on Γ and has poles of
first order over y(n0) at only one of the inverse images of this point. This
has an important consequence: the expression R + 4cn+lUnUn+i under the
root sign must be a perfect square of some polynomial of degree m + 1:
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m+1

(3.1.13) u + 4 c n M n n n n + 1 = Π (E-ah {n))2.

The conditions (3.1.13) lead to a full set of relations of the form

(3.1.13')
cn+l = cn+i(Yi(«), · · ·, ym(n)),

giving a difference analogue of the Dubrovin equations for the y(n), and
an analogue, which we shall need, of the "trace identities" for expressing
cn+l in terms of Ji(n), . . . , 7 m («)·

Of course, from the asymptotic form of %{n, E), as Ε -*• °°, we can
obtain the usual trace identities as in Ch. 2; for from (3.1.6) we have

(3.1.14) x+{n,E)~
V cn+l

Expanding (3.1.12), as Ε -»· °°, we obtain

(3.1.15)
* » = - 2 Y, (»)

Thus, the usual trace formulae are insufficient to calculate cn+x, and we
obtain the missing expressions from (3.1.13).

Here are the simplest examples.

4

m = 1. For the sake of convenience, let ax = Σ Ei = 0. Then from
(3.1.13) we have 1 = 1

(3.1.16)

m = 2. Let urt = 0 (symmetric spectrum). Then

From (3.1.13) we obtain

(3.1.17)

In these examples we can easily obtain from (3.1.16) and (3.1.17) the
Dubrovin equation and an expression for cn.

Continuing to follow the scheme of Ch. 2, §3, we consider the analytic
properties of the function φ±(η, n0, E) on Γ:
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1) \p± has zeros Ρ}(η) = tT,(«)> ±1 and poles P}(nQ) = [^(η0), ± ] , which
for real vn and cn > 0 lie one each in the lacunae on one of the sheets
of Γ.

2) As Ε -*• <*>, w e have on both sheets of Γ

ψ± ~ £ ± ( η - η ο ) -const.

Hence the differential dEln \p has poles of the first order with residue +1 at
Pj(n) and with residue -1 at Pjin0); at Ε = °° it has poles with residues
±{n ~n0) on the sheets (±). The integrals of dEln φ over all the cycles are
integer multiples of 2iti. If

. R(E)
h=0 '

are holomorphic differentials, normalized by the conditions

a.

where the a.- are cycles over the lacunae, then by analogy with the argu-
ments of §3 we have

(3.1.18) 2 J Ωΐ = (2πϊ§Ω)(Β-ηο),
j = l Pj(.no) b ;

where Ω = Ω°°+>ο°- is a differential having poles at the points (°°+, °°_) with

residues (+1, —1), respectively, normalized by the conditions φΩ = 0. More-

over, we have <£> Ω = \ Ω;·, as in §3, for the differentials Ω ρ ^ , since the
b j °o+

cycles bj are conjugate to Uj. In the real case we obtain

(3.1.19)
bj £2n+2

From (3.1.18) and (3.1.19) we obtain, as in §3, using the trace identity
(3.1.15), an analogue of the Matveev-Its formula for vn in terms of the
restriction of the 0-function to the rectilinear winding in the direction Uj
on the Jacobian variety J(P):

P fe(no)

(3.4.20) va= -4- In ««"-"0)^+^-? + canst; W±),= Σ (
d n β ( { ) ϋ + £ Κ )

Using the technique of Appendix 3, we can easily express the sum
cn + cn+l in terms of the Riemann 0-function on the basis of the trace
identities (3.1.15). However, we cannot obtain a convenient expression for
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cn. In principle, we can perform all the calculations starting from (3.1.13).
Incidentally, under the condition vn = 0 the spectrum of L is symmetric:

m+l

(3.1.21) R(E)= Π (E-Et)(E + E,).

The distribution of the zeros 7;-(n) and the poles 7,(«o) m t n e lacunae is
also symmetric.

We now turn to the non-linear systems associated with L. Their
Hamiltonians Ik can be obtained, as indicated in [35], from the expansion
of \(E) = In χ(η, E) in terms of E'1, as Ε -»• °°, which follows from
(3.1.6) and (3.1.10):

(3.1.22) Δ+ (E) ~ I n E — l n y 7 ^ + In(1 + Ο (!/£)) =

Ε Ε* £3 ι · · ·

All the integrals I = Σ b are conserved in time by each of the systems,
η = n0

and all these systems commute; by definition, cn - ex" *"~1.
The canonical coordinates are (xn, υη). The first of these systems has the

form

(3.1.23)
c) xn=

For the system (3.1.23), c) the variety vn = 0 is invariant, and on it the
system has the form of the "K-dV difference equation"

(3.1.23') cn = cn(cn+1 — <:„_!>.

To find important families of solutions of these equations we have to solve
the stationary problem for linear combinations of these systems (that is, to
look for the singular points of the Hamiltonians Η = Σλ,·/,·), which
determines "potentials" (un, cn) with finitely many lacunae. In particular,
the stationary solutions of the Toda chain (3.1.23), b) have the form of
"O-zone" operators

(3.1.24) [v.n = Xn = c o n s t ' H = 72 + λ /ι>
\vn = 0 = cn+1 — cn (cn == const).

We obtain the "1-zone" operators L from the stationary points of the
Hamiltonian H, where
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(3.1.25) Η = 73
λ/2 μ/χ

or

Vn)cn
+ 1

Vn + Cn+1 + Cn + λνη + μ = 0,

Vn + Vn-^Cn + λ(ί η + 1 — cn) = 0.

Clearly, the change of variables υη -> υη + const, cn -*· crt allows us to
assume that λ Ξ 0. However, (3.1.25) are difference equations and are
difficult to solve (even in the one-lacuna case). To find an analytic form
of the 1-zone operators L we may proceed by one of two methods.

METHOD 1. We use the algebraic-geometric formula for vn (see (3.1.20)
and then compute cn, starting from (3.1.16).

METHOD 2. We use the fact that the time dynamics of the Toda chain
for the one-zone potentials (vn, cn) is a "simple wave" {v(n - ct), c(n - at)}
for all t, and we calculate the dynamics in / instead of the difference
equation in n.

After the Abel map, as in Ch. 3, §4, the time dynamics of all these
systems becomes linear.

EXAMPLE 1. Let m = 1; using (3.1.16) we obtain (ΣΕί = σ, = 0)

(3.1.26)
11 (Ε- Et),

If σ 3 = 0, then we have

(3.1.26')
'η — C n + 1 — C n — I

Thus, for MI = 1 the functions jn(t) = y(n~at) have the form of the
elliptic function

_ ? dx

According to (3.1.16) we find for the coefficients cn and υη

(σ, + Acn+lf + 4cn + 1 - 4a 4 V i = 0 (σ, = 0),

where yn + yn+1 are determined from (3.1.26).
EXAMPLE 2. Let m = 2 and υη Ξ 0.
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We now consider the symmetric spectrum with σι = σ3 = σ5 = 0. We
have τ 1 η + y2n

 = 0 since υη = Σ7;-η Ξ 0; from the trace identities (3.1.15)
we obtain

(3.1.28) - (cn+i + cn) = y\n + -i

We denote y\n by yn. Using (3.1.17) we obtain

(3.1.29)

) 2 ι 4σ4

.. + 16οη ·

We now use the K-dV difference equation

T n - 1 — 2 "I" K 162C2

Together with (3.1.29) we have

(3.1.30) (lnc n ·) · = γ η - γ η _ 1 .

Using the expression for yn and 7M_ t in terms of cn we obtain

(3.1.31) cn =

where P 4 ( c J = [4σ4 - (σ3 + 4 c n ) 2 ] 2 + 16-4a6cn.
Finally we note the difference analogues to certain other results of Ch. 2.
By analogy with Ch. 2, §2, we define the matrices Q{n0, E) and

Λ(η0, Ε) for a given non-linear system in the basis (3.1.3). Then

f = Q(nu)fQ~l(no),

-jfC(n, n0, Ε) =

-£• s (n, n0, E) = kzlc + λ3 ?ί + As,

Q_ /?11 ?12\

\?21 922/ '

?12

?21 922

[A, L] is defined on the RiemannThe spectrum of L such that t
surface Γ:

detfo - Λ(£)) = 0,

or, if Sp Λ = 0, then y2 = det Λ = Ρ2η+2(Ε). As before, the coefficients
of det Λ = P2n+2(E) give "integrals" of the difference equation for the
stationary problem. They can be used, in particular, to embed the Jacobian
variety J(F) in a projective space, by analogy with Ch. 2. From the
compatibility condition for the equations
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f = [A, T]and Tn+l =

we obtain

These equations are equivalent to the original non-linear system. For the
stationary problem, then

In conclusion we mention that our arguments require that L is "local" (and
that quantities of Wronskian kind are conserved). It is important for us that,
irrespective of the value of the period, a basis of eigenfunctions can be
determined (for a given E) by values in a set of neighbouring points, in
which the normalization of the Bloch function ψ+ can also be uniquely
determined.

§2. First order matrix operators and their associated non-linear systems

We give here an account (with sketches of the proofs) of some very recent
results of Dubrovin and Its as applied to non-linear systems associated with
first order linear differential matrix operators. Its [52] has studied in detail
the case of a two-dimensional matrix operator and its associated non-linear
Schrodinger equation and modified K-dV equation, by comparing trace
formulae (see Appendix 3 of the present survey), and for this case he has
obtained convenient explicit formulae in terms of 0-functions. The case of
general matrix operators was analyzed by Dubrovin [51] (in our account we
essentially follow [51]). Our aims were as follows.

1. The generalization of the methods of the authors to more than two-
dimensional matrix operators meets certain difficulties. However, a number
of physically interesting non-linear equations give rise to such operators; for
example, for three-dimensional operators as was pointed out by Zakharov and
Manakov in [27], the equation for the interaction of wave packets in non-
linear media (see Ch. 1, §4 of the present survey).

2. The application to the theory of Abelian varieties according to the
scheme of [43] (see Ch. 2, §4, of this survey). Here we can describe
explicitly the universal fibering of Jacobian varieties that are not necessarily
hyperelliptic.

3. As Tyurin has indicated, an interesting topic is the applicability of our
technique to the classical problem of unirationality not only of the space
of the universal fibering of Jacobian varieties, but also of the base of this
fibering, that is, the unirationality of the space of moduli of algebraic
curves. We show that the algebraic curves Γ (see below) obtained within
the framework of our construction form a necessarily unirational family, but
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the codimension of this family in the space of moduli is always non-zero.
We consider an «-dimensional linear differential first order matrix operator

L = —+ U(x), where U(x) = (ui(x)) is an « Χ Μ matrix, periodically

dependent on χ with period T, and with zero diagonal elements
u\ = 0 0" = 1, . . . , n). We pose the eigenvalue problem for L:

(3.2.1) £ψ = ΕΑψ, ψ(ζ + Τ, Ε) = e^E) ψ(ζ, Ε).

Here E is a complex parameter and A is a constant diagonal matrix
A = (α,·δ0, Σα,- = 0. It is convenient to consider at once the family of such
problems parametrized by the matrices A.

Let A be the (n - 1 )-dimensional space of complex diagonal η Χ η
matrices of trace zero. In what follows we consider functions of η — 1
variables, parametrized by the matrices A; to each matrix A Ε A there
corresponds a variable xA , where xA+B = xA

 +*B, X-^ ~ λχ^ ; the set of
these (n - 1) variables is denoted by X. Let V = V(X) be an η Χ η matrix
depending on X. For each matrix A e A we construct an operator LA

depending on the parameter E:

(3.2.2) LA = ~ + [A,V(X)]^EA.

The matrix V is called the potential of the operator LA, which acts on
functions of xA and depends parametrically on the remaining variables
xB(B S A). We require that for different A E A all the operators LA

commute among themselves:

(3 2 3) /
QA=[A,V]-EA, QB = [B,V]-EB.

The commutativity condition (3.2.3) is equivalent to the following non-
linear equation for V(X):

- Ο
The formulae (3.2.3) show that the equation (3.2.4) admits a commutation
representation by η Χ η matrices that are polynomially (linearly) dependent
on the parameter E, In the sense of Ch. 2, §2 (see (2.2.20)). Varying the
matrices A and B, we obtain a system of η — 2 equations for the matrix
V(X) depending on the (« — l)-fold argument, so that knowing the
dependence of V on one variable xA , we can determine the dependence on
any other χβ(Β Ε A) by solving the Cauchy problem for (3.2.4). In what
follows, we always assume that V(X) is a solution of the system (3.2.4)
where A and Β range over all the diagonal matrices A.

We now construct a set of commuting dynamical systems on the variety
of matrices V(X) that are solutions of the system (3.2.4). It is easy to see
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that the equation ^ — λ^ = [λ^, QA ] has a unique solution in the form

of a formal series in \jE, beginning with A

(3.2.5) λΑ = λ0,Α + ^ + % ^ + . . . ; ΚΑ = Α.

If V{X) is a solution of (3.2.4), then λ^ satisfies the following equation:

-^•λΑ=[λΑ, QB].

The matrix elements of Xk A are polynomials in the elements of
V, dV/dxA, d2V/dxA . . . with constant coefficients, depending on A.
Suppose now that Ax, . . . , AN+l €• A.

D E F I N I T I O N 1. The Nth equation of K-dV type is

(3.2.6) [A, V-(kAi, N+1+WN+ ••• + λΑΝ + 1, ι)] = 0,

where the matrices ^Ak,N-h + 2 a r e defined by the algorithm (3.2.5) and

V = V(X, t) is a solution of (3.2.4).
The equation (3.2.6) admits a commutation representation by η Χ η

matrices polynomially dependent on E, in the sense of Ch. 2, §2:

(3.2.7) | L _ i g L = l A , e A ] . '

Here

(3.2.7') Λ = ΛΑι. N(E)+...+ AAjV+1, ο (£),

where
(3.2.7") Λ Λ , ^ ^ + λ , , ^ - 1 + . . . + V , μ ξ A).

It is easy to see that AlA = ~QA, therefore (3.2.4) is the first equation of
K-dV type in the sense of Definition 1.

Let V = V{X) be a periodic function of the variable xA with period Τ
(for simplicity we assume in the subsequent formulae that all the diagonal
elements of A are pairwise distinct). Then we have the eigenvalue problem
for LA:

(3 .2 .8) LAy(xA, E) = 0, q(xA +T,E)= e«E> ψ(«, Ε).

By analogy with Definition 1 in Ch. 2, § 1, we make the following
definition:

DEFINITION 2. The potential V is said to be finite-zoned for the
operator LA if the eigenfunctions of the problem (3.2.8) are meromorphic
on a Riemann surface Γ of finite genus, which gives an «-fold covering of
the £-plane. The surface Γ is then called the spectrum of LA.

If V is almost-periodic as a function of xA, then Definition 2 is
modified as follows:

DEFINITION 2'. The potential V is said to be finite-zoned for the
operator LA if LA for all Ε has an eigenfunction \J/(xA, E) that is mero-
morphic on a Riemann surface Γ of finite genus that gives an «-fold cover-
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ing of the £-plane, with the "boundary condition" of (3.2.8) replaced by
the following: the group of periods of the logarithmic derivatives of the
coordinates of φ(χΑ, Ε) is the same as the group of periods of V. The
surface Γ is called the spectrum of LA .

We consider the stationary solutions of (3.2.6) (that is, those not depend-
ing on the time t). (We recall that V(X) is a solution of the system
(3.2.4).) To find them, as in Ch. 2, §2, we have a commutation represent-
ation of Lax type on matrices polynomially dependent on E:

(3.2.9) 4^ = ̂  QA]'
where the matrix Λ is defined by (3.2.7). We consider the Riemann surface
Γ of the algebraic function W = W(E), where W(E) is given by the equation

(3.2.10) R(W, E) = det | W Λ - Λ 1 = 0.

Actually, Γ is a complex algebraic curve in two-dimensional complex space
with the coordinates W and E, defined by (3.2.10). Since for an arbitrary
Ε there are η values of W(E), Γ gives an «-fold covering of the is-plane.
The infinitely distant part of Γ consists of η ordered points {1}, . . ., {n};
the order is determined by the conditions W(E) ~ auEN (E -+ °°) in a
neighbourhood of {i} (where axi is the ith diagonal element of Α γ).

Let π be the factor group of the subgroup of scalar matrices in the group
of all non-singular diagonal η Χ η matrices. Then π acts on the potentials
V by the following rule:

V _>.

THEOREM 1. The stationary equation (3.2.9) is a totally integrable

Hamiltonian system with Ν n~.—- degrees of freedom, and the coefficients

of the polynomial R(W, E) give a complete set of commuting polynomial
integrals of (3.2.9).

2. The potential V is finite-zoned for all the operators LA ; their spectrum
is the Riemann surface Γ defined by (3.2.10).

3. The set of finite-zoned potentials V with a given spectrum Γ is the
space of the principal ττ-fibering over the Jacobian variety J(P) of Γ.

PROOF. As in Ch. 2, §2, we see that Γ, defined by (3.2.10), does not
depend on the variable X and is invariant under all the dynamical systems
of the form (3.2.6), that is, the coefficients of R(W, E) are integrals of
(3.2.9). Later we shall show that the systems (3.2.9) are Hamiltonian,
hence the first part of the theorem follows by analogy with Ch. 2, §2.

In the solution space of the equation LAf(x, E) = 0 we introduce the
basis of solutions cx{x, y, E), . . . , cn(x, y, E) (denoting the variable xA

simply by χ and regarding A as fixed) such that c\(y, y, Ε) = δ^ (where
y is a parameter). Let T(y, E) be the translation matrix for LA in the
basis Cj(x, y, E), . . . , cn(x, y, E) if V is periodic in x. If V evolves in



118 Β. A. Dubrovin, V. Β. Matveev and S. P. Novikov

time t according to the K-dV type equation (3.2.6), then the time
derivative for f has the form

(3.2.11) 4ri = \f> Λ 1 '
with Λ defined by (3.2.7'). Since we look for stationary solutions of
(3.2.6), the matrices Τ and Λ commute:

(3.2.11') TA = AT.

Let φ(χ, Ε) be an eigenfunction of the problem (3.2.8) (x = xA),
normalized by fixing the value of one coordinate when χ = y, for
example, $l(y, E) = 1.

We note that

(3.2.12) Ψ(*, Ε) = ΣΨ(ν, E)c}(x, y, E).
i

Here (ι/ζ'Ο, E), . . . , φη(γ, Ε)) is an eigenvector of f(y, E), hence also of
ΛΟ, E), by (3.2.11). Consequently, the coordinates \j/(y, E) can be
expressed rationally (with the normalization taken into account) in terms
of the elements of the matrix W{E)-\ - A(y, E), that is, they are algebraic
functions on the Riemann surface Γ defined by (3.2.10). Therefore, by
(3.2.12) φ(χ, Ε) can be continued as a meromorphic function on the
Riemann surface Γ \ °° (that is, away from the "infinitely distant part" of
Γ). So we have proved that LA is finite-zoned with spectrum Γ. If V is
an almost-periodic solution of (3.2.9), then we define the eigenfunction φ
by

(3.2.12') ·ψ(ζ, Ε) = Σ%(ϋ, E)cj(x, y, E),

where (£'(y, E), . . . , ξη(γ, Ε)) is an eigenvector of ΛΟ, Ε) with the
eigenvalue W(E). The definition (3.2.12) is not contradictory because
according to (3.2.9) LA commutes with the operator of multiplication by
Λ. The finite-zone property is subsequently proved as in the periodic case
(compare with the second method of proof of Corollary 2 in Ch. 2, §2).

We construct the matrix-valued function Ψ(χ, y, P), where Ρ is a point
of Γ. Let £ be a point that is not a branch-point, so that for the given
Ε the problem (3.2.8) has exactly η linearly independent arbitrarily
ordered eigenfunctions ψι(χ. Ε), . . . , ψη(χ, Ε). We form from their
coordinates a matrix ψ!(χ, Ε). Let φ!(χ, Ε) be its inverse, which exists
because i//1; . . . , φη are linearly independent. If Ρ G Γ, Ρ = (Ε, k), where
k labels the sheet, then we set

(3.2.13) Ψ\(χ, y, Ρ) = ψέ(χ, Ε) -cpfo, Ε).

This definition does not depend on the original ordering of the eigen-
functions Φι, . . . , φη nor on their normalization. The function ~Φ(χ, y, P)
becomes meromorphic on the Riemann surface Γ \ °°.
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We define the operation TrP, which is important in what follows, of
taking the trace of a function defined on Γ. Let φ = φ(Ρ) be such a
function, Ρ G Γ, that is, Ρ is a pair (E, k) where k labels the sheet. If Ε
is not a branch-point, there are exactly η points (£, 1), . . . , (E, n) on Γ
over E. We then set

(3.2.14) (7ΥΡφ)(£) = q>((£, 1)) + . . . + φ((£, ή)).

Now Ττρψ is a single-valued function on the £-plane. In particular, if

TrPW{x, y, P) ( i<y),

ο <*>„),
then G(x, y, E) is the Green's matrix of LA. Let g(x, Ρ) = Ψ(χ, χ, Ρ).
Then g(x, />) has the following important properties.

a) The group of periods of g{x, P) is the same as that of the potential
V.

b) It is algebraic on Γ.
c) It gives the "spectral decomposition" for the matrix Λ(χ, Ε) that is,

g2 =g, g(x, (E, k))'g(x, (E, /)) = 0 for k Φ I (where k, I label the sheets),
Trpg(x, P) = 1, TrPW'g(x, Ρ) = Λ(£, χ).

d) ^ = [g, (25 ] for any 5 e A.

e) The variational derivative of the functional p(E) {V} defined in
(3.2.8) (in the periodic case) has the form

^ i £ L = _ (Oi _ aj) g{ (see (2.1.17)).

f) As Ρ ->· {fc}, g(x, P) has an expansion of the form

1L + Jj^+ . . . ,

where

^ - Σ ̂  («i-«.w] δ1-^+ δ " (Σ

Here the dash denotes differentiation with respect to χ = xA .
From c) and e) it follows immediately that the systems (3.2.9) are

Hamiltonian. Let us find the zeros and poles of the matrix elements
gj(x, P), which are algebraic on Γ. From c) it follows that the poles of
g{x, P) are precisely the branch-points of Γ, that is, the points at which
the different branches of the algebraic function W(E) merge. We denote
the set of branch-points by the symbol 3)w- There are Nn(n- 1) of them.
From the expansion f) it follows that at the infinitely distant part of Γ
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all the g! have zeros and their disposition is as follows: for i Φ j , g!{x, P)
has double zeros at all the points Ρ = {k} (k Φ i, /) and simple zeros at
the points Ρ = {/}, Ρ = {/}; gi{x, Ρ) has double zeros at all the points
Ρ = {k}, (k Φ i), and g.'(x, P) = 1 at /> = {/}. There is a convenient
notation to describe the distribution of zeros and poles of a function
defined on Γ. Let φ(Ρ) be a function on Γ having zeros of multiplicity
«! at Pl, n2 at P2, . . . , and poles of multiplicity mx at Qx, m2 at
Q2, . . . . We express this by saying that φ(Ρ) has the divisor
D = ηϊΡι + n2P2 + . . .- mlQl - m2Q2 - . . . on Γ. It is clear that the
whole divisor D of φ(Ρ), that is, the set of zeros and poles of φ(Ρ) with
their multiplicities taken into account, can be decomposed into the
difference D = D+ — D_, where D+ = η^Ρχ + n2P2 + . . . is the set of zeros
(the divisor of zeros), and D_ = m1Ql + m2Q2 + . . . the set of poles of
φ(Ρ) (the divisor of poles). The degree of the divisor D is defined to be

degZ> = 2 r a i — S m j = &egD+ — degZ)_.

If φ(Ρ) is an algebraic function on Γ, that is meromorphic everywhere on
Γ, then deg D = 0 (the number of zeros, counting multiplicities, is equal
to the number of poles, counting multiplicities). In particular, the result
on the zeros and poles of gf(x, F) on Γ can be expressed concisely as:

(3.2.15) divisor {g{{x, P))= 2 2{k} + {i} + {j}-2Sw+ ... =

where Σ = Σ{&}, and the dots denote the unknown divisor of the zeros
k

of g!(x, P) in the finite part of Γ. To find this we turn to a study of the
analytic properties of the matrix Ψ(χ, y, P) defined by (3.2.13). We note
the formula Φ(χ, y, P) = c(x, y, E(P))g(y, P) similar to (3.2.12). Therefore,
the poles of the matrix elements Φ(χ, y, P) lie only at the branch-points
(that is, the divisor of poles of Φ/(χ, y, F) is equal to 3>w for all / and /).
The matrix Ψ(χ, y, P) is of rank 1; its columns are eigenfunctions of LA ,
which acts on the variable x, and differ only in normalization, and the
rows are eigenfunctions of the adjoint operator L%, which acts on y and
is defined as follows:

LA = -4 QA (T denotes the transpose).

Therefore the relations

and

vU*v,P) =A^P) d o n o t d d o n k

Ρ) ύ ( Ρ )
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From (3.2.16) and (3.2.16') it follows that the zeros of Φ/(χ, y, P) split
into two parts: zeros depending on / and on x, and zeros depending on /
and on y. We express this in the following way:

(3.2.17) divisor of the zeros of (Ψ\{χ, y, P)) = dt{y) + d\x),

where the divisors dt(x) and d'(y) have the form

(3.2.17') dtiy) = P u ( y ) + • • · , d'{x) = Q{(x) + . . .

Thus, we define the divisor of gf{x, P) as

(3.2.18) divisor (g\(x, P)) = 2Σ - {i} - {;} - 35 „ + dt{x) + dj(x).

The function gj(x, P) is algebraic on Γ, hence the degree of its divisor is
zero (the number of zeros is equal to the number of poles). Therefore,

deg [dj(x) + d'(x)] = 2[N n(<n~^ - {n - 1)]. Since the operators LA and

L*A are entirely of equal standing, we have the important relation

(3.2.19) degdt (x) = deg dj (x) = N n (n~i] ~(n-i) = genus (T)=p.

Hence d^x) = Pu(x) + . . . + Ppi(x), d> (x) = Q{(x) + ... + Q'{x). The
divisors d{{x) and d'{x) can therefore be regarded as points of the pth
symmetric power SPT of Γ (see the definition in Ch. 2, §3). We recall that
the Abelian map 51 from the kth symmetric power of Γ into its Jacobian
variety

(3.2.20) §1: S T ^ J ( r ) ,

is almost everywhere one-to-one if k - ρ = genus (Γ). (More accurately, it
is a birational equivalence, see (2.3.25).) The map % has the following
property: if D = D+ - D_ is the divisor of the zeros and of the poles of
φ{Ρ), algebraic on Γ then (by the classical theorem of Abel)

(3.2.21) g(Z)+) = S[(Z)_).

We know that gj(x, P) is algebraic on Γ and has a divisor of the form
(3.2.8). Now, bearing (3.2.21) in mind we obtain a system of linear
equations on J(F) for the quantities 21(<3;(ζ)), 2I(cP(:r)):

(3.2.22) St (d, {x)) +St (dj (*)) = $! (&„)-<& (2Σ-{ί}-{/}).

It is easy to see that the specification of any one of the unknowns, for
example, of %{dl(x)), determines all the remaining St(df(x)), SKd'Qc)).
Thus, we have constructed a correspondence

(3.2.23) ^ ^ η , η 6 ί ( Γ ) ,

where V is a solution of (3.2.9) and the specification of η G J(F) uniquely
determines the distribution of the zeros of g{x, P) (for fixed x) on Γ.

We now show that, as χ varies, the point η on J(F) moves in a straight
line, that is,
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(3.2.24) φ) = nfo) + (x- y)U;

where U is a constant vector. We consider the function Ψ(χ, y, P) where

(3.2.25) Ψ'(ζ, y, Ρ) = Ψ&:, y, P)/g{(y, P)

does not depend on i. Then Ψ'(χ, >>, Ρ) has on Γ \ » zeros at the points
of d'(x) and poles at the points of d'(y), and as Ρ -> {fc}, it has the
asymptotic form exp {akE(x - y)}. The latter assertion follows from the
formula

X

(3.2.26) Ψ' (r, y, P) = exp { j χ* (|, P) d\ } ,

where

and from the expansions for #/(£, P) given in 0· Hence we find ourselves in
a situation similar to that of Ch. 2, §3, in the proof of (2.3.30) and
(2.3.30'). Reasoning in exactly the same way, we obtain the relation on
J(D

(3.2.27) SI (dj (x)) - « (d* (y)) =*(x-y) U,

which is equivalent to (3.2.4). We shall choose the vector U below.
We have seen that the specification of η on J(F) determines the

position of the zeros of all the functions Ψ/(χ, y, P) for arbitrary χ and
y. It is easy to see that the "phases" χ'(χ, Ρ) are likewise determined
for all %. It remains to define the "amplitudes" of the functions
Φ/(Χ, y, P), that is, the functions gj(y, P). We note that gj(y, P) is
uniquely determined by its zeros, and the functions gj(y, P), i Φ /, are
uniquely determined to within a constant factor: that is, for a given
point η £ J(P) we can construct a matrix g(y, P), which is, in general,
distinct from our g(y, P):

g\(y, P) = *ki{y, P),

where ε\ = constant. If we require that g 2 = g, then we find that
ε| = ej/ej, ex, . . ., εη Φ 0, that is, the non-uniqueness in the definition
of the "amplitudes" g((y, P) of the functions Ψ;-(χ, y, P) lies in the
action of the group π. The same non-uniqueness occurs also in the
definition of the potential V. It is noteworthy that the action of π on the
variety of potentials V commutes with all the dynamical systems of the
form (3.2.6).

We give an explicit construction of V. We define the following
functions on J(F): let η e J(F). We construct for η the set of divisors
d0 d' of degree ρ on Γ such that 9i (d1) - η, and the remaining ST(c?(),
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5KJ-) are determined by the system of linear equations (3.2.22). Let hj(P)
be an algebraic function on Γ whose divisor of zeros and poles has the
form

2Σ - {*} - {/} + dt + d} - 3)w

(compare with (3.2.18)). We normalize hj as follows: for / Φ ] we

require hUP) ~ - -i as Ρ -*•{/}; for i = j we require that hj{{i}) = 1. Let

ojk(r}) be the coefficient of ^ in the expansion of h!(P), as Ρ -*• {k}. Also,

let ρ*(η) be the coefficient of l\E2 in the expansion of h}(P), as
Ρ-+ {k}. Then

(3.2.28) v{ (x) = v\ (xd) exp { j 2 α"σ^ dx } >

where the integration is in the direction of U, and the constants υ/(χ 0)
satisfy the relations

(3.2.28') ) »J(*o)

As independent variables we can take, for example, the parameters
v}(xo\ i = 2, . . . , n.

We note now that the above arguments carry over trivially to the
calculation of the time dependence on the variety of potentials V that are
solutions of the Hamiltonian system (3.2.9). We need merely replace the

operators LA everywhere by ^— + A, where Λ is another matrix of the

form (3.2.7) and the definition of g is independent of the operator in
question (g gives a "spectral decomposition" for A). We write down the
law of time evolution of a point η on J(F) for standard equations of
K-dV type

(3.2.29) [A,V — λΝ+1,Β] = 0

(the remaining ones are linear combinations of these). Then

(3.2.30) η (τ) - η(τ0) = W •(% - τ 0).

The vector W can be found as follows. Let ω ^ ,- be an Abelian differential
of the second kind with an (N + l)-fold pole at Ρ = {/}, normalized by
the conditions

(3.2.31)

J

Here a,·, j3,- ( i= 1, . . . ,p) is the set of cycles on Γ with the intersection
matrix of the form (2.3.2Γ).
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Let

(3.2.31')

Then the vector W in (3.2.30) has the form

(3-2.32) W, = %btUjt.
i

In particular, we have shown that the potential V is finite-zoned for all

the operators r—+ Λ, where Λ is of the form (3.2.7). This completes the

proof of the theorem.

EXAMPLE. Let η = 2. V = ί ° |Μ , A = (l

Q _®\; we consider the

(TV + l)th equation of K-dV type. The matrix AN+1(E) has the form

Ρ± = ψ2υ±[[ (E-yf), Q =

The Riemann surface Γ has the form W2 - R(E) = 0, where
R(E) = Q2 + P+P_, deg R = 27V + 2. The projection g has the form

2YR

2 Y~R 2
The divisor d2 + d1 is the complete inverse image of the points
Ε = y\, . . . , Ε = y*N on Y. Thus, d1 comprises the Ν points Px,
lying over the points Ε = y\, . . . , Ε = y*N. Let ΣΕ{ = 0, where

2N + 2

R(E) = Π (Ε - £,). Then

. . , P
N

/=!

-2
(3.2.33)

The algebraic function ρ = υ+υ_ has the form

γ ? - 2 ... 1
(3.2.33') p=-±-det

•N+l ••"ΊΓΪγΤ) γ ^ 2 · . . ΐ

( Π (ν* —v/))-1

We now write down the π-fibering over J(F) referred to in the theorem.

To do this we rewrite (3.2.33) in the form
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η

v+ — v+{r\, η0, c) = c exp | j ω | ,

(3.2.34)

Here c is the coordinate in the fibre of π (for η = 2, π is one-dimensional),
η, T}0 £ J(F), and c together with the initial point η 0 determine the
potential V in accordance with the theorem, and the dependence of V on
η includes the dependence of the potential on a displacement along the
trajectories of any one of the dynamical systems of the form (3.2.6); also,

ω = d In y-+ = —*- dx -f- "V, —*-—- dti
l > + '—• V+

X

is a closed meromorphic differential on J(F). The periods of ω on the torus
are given by the transition functions of the required 7r-fibering:

c ->· c exp φ ω for a circuit of τ?0 along a cycle in J(F). Here ω has the

form

(3.2.34') a = - 2 ( 2 v i ) d a ; - r - ( 4 _ 2 . Y i V J - 2 S ^ ^ ) d i 1 + . . .

In concluding this section we mention that, by analogy with Ch. 2, §3, we
can prove a converse theorem: any finite-zoned potential (in the sense of
Definitions 2 or 2') of LA is a solution of a stationary equation of K-dV
type (that is, of the form (3.2.9)). The proof is based on the properties of
g(x, P) described above.

Simultaneously with [51] and [52], the papers [60] and [61] were
completed, in which matrix operators are studied by the methods of
Marchenko [44], [45].

APPENDIX 1

NON-REFLECTIVE POTENTIALS AGAINST THE BACKGROUND OF FINITE-
ZONE POTENTIALS. THEIR ALGEBRAIC-GEOMETRIC AXIOMATICS

As was shown in Ch. 2, §2, every periodic or almost-periodic stationary
solution of any higher order K-dV equation is a finite-zone potential.
However, these equations also have degenerate "separatrix" solutions. In
[38] it was shown that rapidly decreasing separatrix solutions are non-
reflecting potentials u(x), associated with the so-called "multisoliton"
solutions of the K-dV equation, which have been studied in detail, for
example in [20]. The general separatrix solutions of any of the higher
order K-dV equations are, as shown in [38], degenerate limits of
conditionally periodic potentials, when some of the group of periods
Tlt ...,TH tend to 00.
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By virtue of the K-dV equation it is natural to call the dynamics of such
potentials "multisoliton solutions against a finite-zone background". A study
of the inverse scattering problem for potentials of this kind was made by
Krichever [49]; some months earlier for multisoliton potentials against the
background of one-zone potentials the problem was solved by another
method in [48]. We give here an account of the main arguments of [49],
including the algebraic-geometric axiomatics of the class of non-reflective
potentials against a finite-zone background. We begin by explaining the
axiomatics. For convenience we recall some elementary concepts of algebraic
geometry. By a divisor we mean a set of points Pt on a Riemann surface
Γ of finite genus with multiplicities kt, formally written as a sum:

divisor D=^skiPi.
i

By the divisor (/) of a function we mean the divisor of its zeros and poles,
where the multiplicities of the zeros are positive and those of the poles are
negative. The divisor (~D) has the form Σ-λ,Ρ,·.

Formal addition of divisors is defined in the obvious way. A divisor
whose multiplicities are all positive, ki ~> 0, is said to be effective. We say
that an effective divisor is greater than zero: D > 0.

DEFINITION. An algebraic function / on Γ is said to belong to the
space L(D) if (/) + D > 0. We define the degree of the divisor D, denoted
by n(D), to be the sum of the multiplicities of its points. We have the
standard (Riemann) estimate

dim L(D) > n(D) — g + 1 (g = genus Γ),

and equality holds for divisors of degree n(D) > 2g - 2. Now let Γ" be a
Riemann surface, doubly covering Γ with branch-points P1} . . . , Pn,

m •n

forming the "branching divisor" Σ P.-, Γ -• Γ. We define an involution Τ
j=\

on Γ, which interchanges the sheets of the covering, with TPj = Pj. For
any divisor D we define the "conjugate divisor" D+ = T(D).

We also assume that an algebraic function E(P) is given on Γ", with
simple poles at <2i> · · · > Qs> whose sum forms the "divisor of poles"

s
Dx = - Σ β ο , and that all the poles of Ε lie at branch-points Qa = Pj .

a=\ a

We denote by Ε = π*Ε the lifting of Ε to Γ.
DEFINITION. We say that a potential u(x) on the interval [a, b] has

correct algebraic-geometric properties if there exists an eigenfunction
φ(χ, Ρ), χ G [a, b] (PeT) such that

A) it satisfies the Sturm-Liouville equation

-* ·(*, P) + u(xWx, P) = E(PWz, P);

B) it is meromorphic everywhere on Γ, except at the poles of Ε at the
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points TT~X(DX) and^the poles of φ(χ, Ρ) do not depend on x;
C) near poles of Ε the following asymptotic form holds:

ψ (a:, P ) ~ const e<

(that is, \//e~'V (̂f)(x-Xo) i s regular at the poles of E). The properties A)
and C) are natural requirements in the axiomatics for this class of
potentials. As for B), it is a natural generalization of properties of the
Bloch function. We recall that the Bloch function φ is meromorphic on a
Riemann surface Γ, doubly covering a rational (trivial) surface, the is-plane,
on which Ε has a pole at infinity (by definition). The two-sheeted character
of the covering is a natural requirement because the Sturm-Liouville equation
is of the second order, and we have a basis of solutions when there are two
sheets (see Ch. 2, §1, and Ch. 3, §2). Apart from φ we also consider the
function φ+ = Τ* φ (the sheets are exchanged) and their Wronskian

which is constant when condition A) is satisfied (that is, does not depend
on x).

We now come to a statement of the "scattering data" problem on the
Riemann surface Γ defining the potential u{x).

EXAMPLE 1. In the case of a rapidly decreasing non-reflecting potential
(see Ch. 2, §1) a complete set of scattering data on the rational surface

Γ with the parameter k = y/E was the collection of points ix l 5 . . . . ix s

(in the upper half-plane Im k > 0 for real u(x), or on the upper sheet of
the surface k = y/E for real E), and the set of numbers c t , . . . , cs. The
numbers ix1? . . ., ix s determine the position of the discrete levels

The eigenfunctions f{x, k) and g(x, k) defined by the conditions

/ ± (*, ft)-v e±«* (z->+oo),

g±(x, k)->-e±ihx (x-^—oo),

do not satisfy the conditions A), B), C). By analogy with the Bloch
function (see Ch. 2), we introduce a new function φ(χ, χ0, k) proportional
to f{x, k) by a factor depending rationally on k, and such that
φ(χ, x0, k)=\ when χ = x0. Then ψ(χ, x0, k) satisfies A), B), C). Any point Ρ
on Γ is determined by the parameter k = y/Έ , and the function E(P) has
the form Ε = k2. It is easy to verify that the zeros PjQc) of φ lie over
points 7·(χ) and the poles Pj(x0) over points y(x0) (j = \, . . . , N) on Γ.
The "divisor of the poles" has the form

£ = . Σ Pj(x0).

The Wronskian Μ{φ, φ*) vanishes at the branch-point k = 0 and at the
points of the discrete spectrum
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Q± = ±f X l , . . ., Q± = ± i K n i Ea = - κ £ (a = 1, . . ., n).

Clearly, η = Ν. The set of points

where the /y lie over γ., uniquely determine the potential u(x). Equations
in χ for the quantities 7-(x) for rapidly decreasing non-reflecting potentials
were first found by Shabat [11], in the language of "conditional eigen-
values". At the branch-points k - 0 and at all the points kj = ΐκ;- the
following equations hold:

\p(x, x0, ix}) = ψ+(χ, χ0, ixj)
or

, ψ+) = 0, k

We call the pair of divisors

a "complete set of scattering data".
EXAMPLE 2. Suppose that we are given a non-degenerate N-zone

periodic or almost-periodic potential (real or complex) with the Bloch
eigenfunction ψ*(χ, x0, E), as defined in Ch. 2. The divisor of the poles
has the form

D=I> Pj(x0),

where the Pj(x0) lie on Γ over the points γ,-Oto) of the £-plane. The
function ψ satisfies the conditions A), B), C), and its Wronskian has the
f o r m

The Wronskian vanishes only at the branch-points Eh which are completely
determined by Γ and the involution Τ interchanging the sheets. In this case
the divisor of poles D completely determines the potential u(x), by the
results of Ch. 2.

We now pass on to the general case of potentials with correct algebraic-
geometric properties.

Let ψ(χ, Ρ) be a function on Γ satisfying B) and C), and let D be its
divisor of poles. Let d = Σλ,·κ; be another effective divisor (where the λ,·
are numbers and the κ ; are points on Γ).

DEFINITION. We say that the pair of effective divisors (A d) is com-
patible if the following conditions are satisfied:

η (d) = S λ; = dim L_ (Δ) — 1,

dim[L(A — d) ΠΙ.(Δ)] = 1,
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where the effective divisor Δ has the form

Δ =D + D+ -Doc,

D+ = T(D), Dx is the divisor of poles of the function Ε on Γ, and L_(A)
is the subspace of rational functions / on Γ that change sign under the
interchange Τ of sheets and such that if) + Δ > 0.

Let us explain this definition. The Wronskian W(\p, φ+) belongs to L_(A);
for it has poles of the first order at the points of D^, it can have poles at
the points of the divisors D and D+, by definition, and finally, it changes
sign when the sheets Τ are interchanged. The divisor d arises from those
zeros of Μ/(φ, ι//+) that do not lie at branch-points of Γ. Now we have the
following proposition.

PROPOSITION 1. If φ satisfies the requirements B) and C) above, and if
the divisor D of its poles and the divisor d of the zeros of the Wronskian
\Ψ(φ, φ+) form a compatible pair (D, d), then φ satisfies a Sturm-Liouville
equation for a certain potential u(x). Conversely, if φ satisfies the
requirements A), B), C) and if D is the divisor of its poles, then there
exists a d such that the pair (D, d) is compatible.

The proof of the direct assertion follows from the fact that the
Wronskian W(\p, φ*) belongs to the space L(A — d) Π L_(A), which is one-
dimensional according to the compatibility condition for (D, d).

Thus, as χ varies, the Wronskian as a function of Ρ is simply multiplied
by a constant c(x). However, it clearly follows from Condition C) that
c(x) = 1. Hence dW/dx = 0 from which the direct assertion follows easily.

ψ

The expression -r-+ Ε does not depend on E, as follows from its
properties. The proof of the converse assertion follows easily from the
definition of a compatible pair. If the divisor d has the form

then at the points xf the following identities hold (identically in x):

(gr = 0, . . ., λ, - 1),
where ζ is a local parameter on Γ near κ;.

In [49] the following theorem is proved.
THEOREM. // the inverse scattering problem is soluble for any compatible

pair of effective divisors {D, d) (that is, if there exist u(x) and φ(χ, Ρ)
with the correct algebraic-geometric properties), then the Riemann surface
Γ" is rational, the function Ε on it has exactly one pole at Ε = °° and Γ
is hyperelliptic and covers the Ε-plane twice. (All the potentials u(x) with
correct algebraic-geometric properties in this case satisfy one of the higher
order K-dV equations.)

We do not prove this theorem here (it follows in a straightforward way
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from some very simple algebraic-geometric facts). The theorem completes
the axiomatics of the class of potentials satisfying equations of K-dV type.
In fact, all the potentials of this class can be defined as meromorphic
almost-periodic functions on the whole complex x-plane with a group of
2n periods 7\, . . . , Tn, T\, . . . , T'n, where any part of the periods can
degenerate and become infinite. The number of poles of φ(χ, Ρ) (the
degree of the divisor «(£>)) must not be smaller than the genus of Γ:

Ν = n(D) > g,

a degree of n(D) for this class of potentials is Ν — g. We now give an
explicit construction of this class of potentials.

In the first place, we can use the equations of Ch. 2, §2, for the poles
7,·(*ο) i n t n e variable x0 (or the zeros yAx)) of the Bloch function
Ψ±(.Χ> Χο· Ε), which can be defined naturally in the given case, for example,
by means of the formula

ψ±(χ, x0, E) = c(x, x0, E) + i%(x0, E)s(x, x0, E),
where

Ν

-a^H (E-yj(xo))

J ] (E~yj(x0))

2n + l
R(E) = Π (Ε — Ej) is a polynomial defining Γ, and

is the polynomial defined by d.

where the Q.- lie above the points iX; on the is-plane. One can imagine that
R(E)· [φ(Ε)Υ is obtained as a result of degeneration of a more complicated
Riemann surface for which all the roots iKj are of multiplicity 2λ;- (we may
assume that λ;- = 1). For the poles y-(x0) we obtain the equation similar to
(2.3.12)

dyj _ . φ (γ;·) V R (Υ;)

[[ (yj-n)

An equation like (2.4.3) is obtained for the time dynamics under the K-dV
equation and its higher order analogues by the formal change

V ^ (Τ;) [φ (Υ;)]2·

For a Riemann surface of genus g = 0 we can solve these equations in
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the obvious way and obtain rapidly decreasing non-reflecting potentials and
multisoliton solutions for the K-dV equations (see [11], [8], [20]).

For a Riemann surface Γ of genus g = 1 the equations can be solved
without difficulty in terms of elliptic functions. We do not perform this
integration, because the resulting formulae are already published in [48],
[49].

Of course, for all g > 2 all these equations can be solved in terms of
hyperelliptic functions on the Riemann surface. We draw attention to the
following circumstance: if ΩΛ are differentials of the first kind on Γ,
normalized as in Ch.2, §3, then we have the Abel map SI :

η * = 2 j Ω , ( f c = l , . . . , n ) ,
j = l Pj(x0)

,(where η is the genus of Γ and Ν is the number of poles Pj(x0) and zeros
PAx) of ψ±(χ, x0, E)). AS before, the parameters r\k on the torus
(Jacobian variety) J(F) are such that

^h-=Uk = const, ^&-=WZ = const

(by virtue of all higher K-dV equations of order m). Moreover, the points
of the divisor d = Σλ;·(λ depend neither on χ nor on the time. However,
there remain (TV — ή) unknown parameters whose dynamics is not contained
in J(F). The Abel map here has the form

where the inverse image / l " 1 ^ , . . . , r\n) of a point is the complex
projective space C P ^ " " . In [49] the following results are obtained.

Let Ν = η + k and let Λ(*ο)> · · · » PN+k(xo) be the poles of
ψ(χ, Ρ), D = Ργ + . . . + Pn+k and let d = x1 + . . . + κΑ be that half of
of the zeros of the Wronskian W(\]j, \p+) that do not lie at branch-points
of the surface

2n+l

yt= Π (E-EJ

and chosen on the upper sheet. According to the results above, the pair
(D, d) uniquely determines the potential u{x) with the eigenfunction
φ(χ, Ρ). Suppose that Μ,·(Χ) are the η-zone potentials on Γ given by the
divisors of the poles

and Ψι(χ, Ρ) the corresponding Bloch eigenfunctions.
PROPOSITION 2. The eigenfunction φ for u{x) can be represented in

the form
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(A. 1.1) ψ(ί, i>) = Σ αϊ (*) Ψ* (*, Ρ),

where the a^x) do not depend on the point of the Riemann surface {on E)

and can be determined from the system of equations

J j ai (x) [ψι (x, κ.) - Ψ? (x, κ.)] - Ο (« = 1, . . ., k),

h

i=i

χ χ

Now let K{x) = j «(ί)ώ, Kt(x) = j «,(«)<&.
«O Xf)

PROPOSITION 3.

Κ{χ) = Σ ai(x)Ki(x).
i=i

We also introduce the "monosoliton potentials against the background of
«-zone potentials". We can show that the integral K(x) of a multisoliton
potential against the background of an «-zone potential can be expressed
rationally in terms of the similar integrals Κ^{χ) of the "monosoliton
potentials against the background of w-zone potentials" and of the «-zone
potentials Kf(x) themselves. This rational representation can be thought of
as a non-linear analogue of the superposition of the monosoliton solutions
against the background of «-zone solutions with a given Riemann surface

2« + l
Γ. For real bounded potentials u(x) associated with Γ: y2 = Π (Ε - ΕΛ,

/=i

where - ° ° < £ ' 1 < . . . <E2n + l <°°, the points κ;· lie in the intervals
Ε 2k < κ«< 2̂/fc+i (~ °° < κβ < Ε ι), and the poles 7 ;(x0) h e o n e e a c n in the
intervals obtained (complementary to the solution zones and the points κ;·.)
Then ψ}(χ, «s) -*• 0 and ψ(χ, κ5) -*• 0, as χ -*• ± °°, as follows from
Proposition 2.

COROLLARY. Under these hypotheses about the distribution of the
poles 7,-Oco) and of the points x} the potential u(x) is smooth and
bounded in x, and as χ -*• ± °°, the potential tends exponentially to the
finite-zone potential u±(x), where u+(x) is given on Γ by the divisor of
the poles of the Bloch function, which is equivalent to D — d, while
u_{x) is given by a divisor equivalent to D - d* (we recall that any divisor
of degree η is equivalent to an effective divisor, that is, to a sum of η
distinct points; to say that two divisors D^ and D2 are equivalent means
that the difference D1 - D2 is the complete divisor of the zeros and poles
if) of an algebraic function / on Γ).
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For a surface of genus η = 1 the difference of the two potentials u+(x)
reduces to a phase shift, as indicated in [48].

In the general case this "displacement" of the potential on the torus
J(F) is given by the divisor (d - d+), as follows from the corollary; the
corresponding displacement vector in the parameter r\k on the Jacobian
variety is

where the points xf lie over κ;· of the £-plane on the upper and lower
sheets, respectively, and the integral is over "half" of a cycle as joining
the points xf, in the lacuna in which κ;· lies. Here the Ω ? , normalized as
in Ch. 2, §3, form a basis of differentials of the first kind.

For monosoliton potentials against the background of η-zone potentials
with a single point κχ = κ , we obtain from Proposition 3

where

φ ί = ψί(α:, κ) — \pt (x, κ),

K= \ udx, Kt= \ Uidx.

For the eigenfunctions ψ,· we can use a modification of Its' formula [54]

(A 1 3) ψ,(χ, P] = e«-*^ "

(for the definition of the differentials here, see Ch. 2, §3), where

ft η+ί

ft=i οο οο

The time dynamics is included automatically. (A. 1.3) remains true at all
times t, and for the eigenfunctions ψ;-(χ, t, P), which depend on the time
by virtue of the K-dV equation, we have

(A. 1.4)

yt{z, t, P) = elx~xo) ΙΏ+ί('-ίο).\'ω2 Q( i

in which the differential ω 2 has zero a-periods and a singularity dz/zA, as
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Ε -*• °°, where ζ = IS/Ε .

APPENDIX 2

ANOTHER METHOD OF OBTAINING SOME THEOREMS IN CH. 2, §2

Quite recently (at the beginning of 1975) a preprint of a new paper by
Lax has reached us, in which he essentially develops the results of his
earlier paper [50], which was mentioned in the Introduction and was dis-
cussed in Ch. 2, §2. Although the actual results are contained in the
previously published paper [38], the proofs differ substantially from the
methods of [38]. We quote the basic arguments from Lax's preprint,
whose main results are as follows.1

1) A stronger form is given of the result of [50] on the spectrum of a
Schrodinger operator with periodic potential u(x) satisfying any one of the
stationary higher order K-dV equations (2.2.22). Stated in our language, al-
though the theorem in [50] that these potentials are finite-zoned, is non-
constructive it is now also proved that the number of forbidden zones does
not exceed η (true, this proof is also non-constructive, and in Lax's paper
there is no analogue of the algorithm for finding the boundaries of the
zones which is described in [38] and in Ch. 2, §2 of this survey. This
will be clear from the derivation below).

2) Polynomial integrals are found of the stationary K-dV equations
(2.2.22) by another method than that of [38]. As stated already, the
boundaries of the zones have so far not been expressed in terms of these
integrals.2

3) It is proved that the simple eigenvalues of the operator L are
commutative (or involutory), and also that all the integrals p{Ej) are involutory,
where p(E) is the Bloch dispersion law. The fact that the discrete eigenvalues
of a rapidly decreasing potential are involutory was already established in

[21]; for the periodic case this was also well known after [21]; a rigorous
proof was published, for example, in [66]. As for the function p(E), it is
known that it is determined by the spectrum of the periodic problem
(including degenerate levels), since the trace of the translation matrix

aR = -r Sp Τ is an entire function of order -̂  and is completely determined

by the levels of the periodic problem aR = 1 including their multiplicities.
(In classical terminology, an eigenvalue eip(-E) of the translation matrix f
is called a "Flock exponent".) Since for almost any small perturbation
u + διι the eigenvalues become non-degenerate and the functional p(E) is

Lax's paper has now been published [63].
A construction of these integrals was also a

[62] - see the "Concluding remarks" at the end of this paper.
A construction of these integrals was also achieved simultaneously and independently in the survey
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smooth, the vanishing of the Poisson brackets [p(E), p(E')] = 0 follows
formally from [66]. This was pointed out by Faddeev (see the Introduction
and [38], §1).

PROOF OF 1). We consider the higher order K-dV equation and its
operator representation

f ) L = [A, L],

where A = XciAn^i. We know that A is a skew-symmetric operator. If
ύ = 0 and L = 0, then [L, A] = 0. Hence, if L\pj = λ;·ι//;· and λ;· is a non-
degenerate level of the periodic problem, then Α ψ β = Μ/Ψ/· This follows
from elementary algebra. From the skew symmetry it follows that μ;- is
purely imaginary. From the reality of the operator and of ι//;· it follows
that μ;- is real. Therefore, μ;· = 0. Hence, all the non-degenerate periodic
eigenfunctions \pj of L satisfy Α ψ;· = 0. Since the order of A is 2n + 1,
we see that there can be no more than 2n + \ non-degenerate levels λ.·
for L, because all the ψ;· must be linearly independent. Thus, 1) is proved.
The proof is non-constructive: it is not clear so far how to determine the
disposition of the levels λ;· by this method.

PROOF OF 2). We use the result of [21], [22] that the integrals
τ

Im = J Pm(u,u', . . . , uSm))dx are involutory. The Poisson brackets has the
ο

form

and we know that [/„, Im ] = 0 . From the vanishing of this integral for an
arbitrary periodic function u(x) it follows, clearly, that

(A 7 21 6/m d 61 n _ d j ,
(A 7 21
( · Α · / · Ζ - ) 6u(x) dx 6u(x) - dx

where Jmn is a polynomial in u, u', u" . . .. Obviously,

Τ Λ- Τ —

We consider the stationary equation

(A.2.3) Σ ct I'^-i =d, or " ^ ^ - ^ ^ O ,
i=0 i=0

τ

d δ/ ηwhere d - cn + i, I_x = - j u dx. Multiplying this equation by
0

and using (A.2.2), we obtain



136 Β. Α. Dubrovin, V. Β. Matveev and S. P. Novikov

n+l

Let
n+l

(A.2.4') 7m=^C^n-i.m (l» = 0, . . . , » - 1 ) .

By (A.2.4) all the polynomials Im are integrals of (2.2.22), and 2) is
proved. It is easy to prove that the integrals Im are algebraically
independent. By a direct calculation it can be shown that the Im are also
conserved in time under the higher order K-dV equations (this is done in
the preprint).

Of course, from this it follows more or less that these integrals Im can
be expressed in terms of the boundaries of the zones of the potential.
Therefore, by the results of Ch. 2, §2, they can be expressed in terms of
the constants c0 = 1, cx, . . . , cn, cn + 1 and the integrals Ja. However this
expression is not clear so far, and Lax gives no indication on how to
calculate the boundaries of the zones in terms of the integrals Im and the
constants c0, . . . , cn + 1(c0 = 1, cn + l = d) (see [65]).

We note, finally, that it follows trivially from these results that the set
of periodic potentials for a given spectrum is an «-dimensional real algebraic
variety in R2n whose bounded connected components are isomorphic to the
tori Tn. The complexification of these varieties and almost-periodic
potentials are not discussed in Lax's paper. In his exposition Lax starts out
from the following problem: how does one minimize the functional /„
under given constraints \Ih = ah} (k < n) over the class of periodic
functions with a given period?

APPENDIX 3

ON THE USE OF LINEAR AND NON-LINEAR TRACE FORMULAE FOR THE
INTEGRATION OF EQUATIONS OF K-dV TYPE AND THE EXPRESSION OF THE

BLOCH SOLUTION OF THE SCHRODINGER EQUATION IN TERMS OF A 0-FUNCTION

In the mathematical literature, beginning with the papers [13] and [14]
of Gel'fand, Levitan, and Dikii which were completed in 1953—1955, there
are many publications dealing with the derivation of various identities for
sums of powers of the eigenvalues of linear differential operators, in other
words, trace formulae.

Formulae of this kind which we call non-linear trace formulae, have
already appeared in the main part of this survey. In fact, we have
established the relation

ή 2η+1
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and from (2.3.11') it follows at once that

(A.3.2) 2 *(*, t)= u**ft] -^l+JL+^E,.
j = l 3=1

The computations leading to (A.3.2) can easily be generalized to higher
order trace formulae; in particular, for the sums of the cubes of the
quantities γ;· we easily obtain the expression

η η

vn ι ii3 , 3 . 15 2 3 . 1 ν r,3

y, y3

l=—-^ + -^uuxx + ^-ui — -^-uxxxx + -Y2j Ei-
t = l i = l

We note that, to within the evaluation of the constants -̂  Σ Ef, these

formulae follow directly from the results of Dikii [14], as was explained
in [54]. They can be obtained even more simply (again to within the

1 " It

constant — Σ Ef) from the fact mentioned earlier in this survey, that the
1 ; = 1

polynomial

P=\\(E-yi(x,t))

satisfies the differential equation

-Pxxx + 4PMx, t) + 2uxP = 4EPX.

•We emphasize that the derivation of the trace formulae in our situation is

connected with the Riemann surface Γ of the function 1/ [I (E — Et)

and holds for arbitrary complex values of the Et. A foundation for trace
formulae for arbitrary boundaries of zones can also be obtained using the
following theorem of Its [54], which is of independent interest.

THEOREM. The function

ψ(ζ, t, E)
Q(A(E) + tW + l(Q, 0))Q (xU-]-tW + l (0,0))

in which

f ' " + ^ + - > n dz, &άω{Ε)=0 (fc=l f. ..,»),
E2n+i 2 ] / [ j (z-Ej) ah

* j=l
Ε

(A(E))h=\Qk (k=l, . . . , « ) ,
oo

satisfies the Schrodinger equation with the potential (2.3.34). Here
\p(x, t, E) and φ(χ, t, E*), E* = TE {where Τ is the involutory auto-
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morphism of Γ interchanging the sheets) form a fundamental system of
solutions of the Schrodinger equation.

However, the Riemann surface Γ generates a series of trace formulae of
another kind, namely linear trace formulae. They are obtained by integrating
the form Em dlnF, where F is defined by (2.3.35), over the boundary
9Γ of Γ, which is obtained by cutting Γ along all the basic cycles at and
bj, and they have the form

h=l h=i
(A.3.3) 2 V™ ( * . * ) = Σ <$ £mQh " r e s ^ l n

The evaluation of the residue in the first of these formulae has already
been discussed and led to (2.3.34). For m = 2 the evaluation of the residue
and a subsequent differentiation with respect to χ give

(A.3.4) ^ 2 τ ί ( * . ' ) = ^ Ϊ

It was observed by one of the present authors in [53] and [54] that a
comparison between linear and non-linear trace formulae can be taken as a
basis for integration of non-linear equations connected with Riemann
surfaces.

This idea was used for the integration of the non-linear Schrodinger
equation and the modified Korteweg-de Vries equation (see [52]).

When applied to the Korteweg-de Vries equation it is particularly
effective: by differentiating the right-hand side of (A.3.2) and comparing
the resulting identity with (A.3.4), we see that the function u(x) (originally
defined as the sum u = — 2 Σ γ(- + Σ Ε() satisfies the K-dV equation, a
calculation of the residue on the right-hand side of (A.3.3) for m = 1 gives rise
to an explicit representation for u. To integrate the higher order analogues of
the K-dV equation within this framework we must be justified in writing out
explicitly the corresponding Jacobi problem, that is, selecting the corresponding
direction (the vector ϊν) on the Jacobian of the Riemann surface. It turns out
that the form of the corresponding vector W is uniquely determined by the
condition that the right-hand sides of (A.3.3) after the evaluation of the residue
and subsequent differentiation with respect to x, has the form Gu, where G is a
linear differential operator with constant coefficients. Therefore, the form of
the corresponding vectors W is determined by the asymptotic form of the

expression , as Ε -> °°, where ω .̂ = <2£. A detailed description

of this method of integrating the higher order K-dV equations is given in
[54]. We quote here only the formula for 0 that describes the solution of
the second K-dV equation:
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We recall that the second K-dV equation has the form

x x — 10uuxxx — 30u2ux

We ought to mention also that in this "trace" approach to the integration
of non-linear equations we can use non-linear trace formulae, different in
form and origin, which we call dynamic. The source of these formulae are
the equations (2.4.3); for example, for the K-dV equation it follows
directly from (2.4.3) that

2(u

from which we obtain by summation over / the equation

η

(A.3.5) -£· 2 V3(*. t) = ±-uux-±-ut.
i=i

Comparing (A.3.5) and (A.3.4) we again confirm that u is a solution of
the K-dV equation, and this argument makes no use of the Schrodinger
equation, but deals all the time with objects directly connected with the
Riemann surface.

Its has shown that when applied to hyperelliptic surfaces generated by a
In

polynomial of even order P(E) = Π (Ε — ΕΛ, this approach leads to the
/ = i

integration of a series of non-linear evolutionary systems, generalizing the
non-linear Schrodinger equation and modified K-dV equation, which were
discussed above. Here are some examples of such systems:

ivt-vxx + 2 (ϋ-ϋϊ.) = 0

-2iffx-2ivs = 0,

vz — 6vvx + vxxx — 3 [/ (Jv — ivx)]x = 0,
_3_
ΤU - 3/2/* + f*xx - 4 i (f%x - 6 {vf)x = 0.
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CONCLUDING REMARKS1

1. In the summer of 1975 L. D. Faddeev brought to the attention of the
authors new preprints which he had obtained in May in the USA. A paper
of McKean and van Moerbeke "On Hill's equation" contains proofs of a
number of the results quoted in Ch. 2, §3 of this survey. Apparently the
authors of this preprint were not familiar with the papers [39], [42],
[43], published in 1974. Incidentally, the text contains a historical
inaccuracy: the fact that the Lame potential n{n + 1) ψ (χ) is finite-zoned
was established not in 1975 but many years before (see, for example, our
Introduction).

A number of preprints (of Kac and van Moerbeke) deals with periodic
problems for the Toda chain and a discrete version of the K-dV equation.
All these papers were written in 1975; the first, which contains only a small
part of the results, has appeared in print recently (Proc. Nat. Acad. Sci.
USA 72 (1975), 1627; Adv. in Math. 16 (1975), 160ff.). In subsequent
preprints some of the results of Ch. 3, §1 of this survey, which have not
previously been published, are obtained independently. The authors
evidently are not familiar with the paper of Manakov [35] on discrete
systems, in which an L— A pair of operators for the discrete K-dV equation
was first found (see also Ch. 1, §5 and Ch. 3, §1).

In addition, we have received from Japan a preprint (by E. Date and
S. Tanaka "Exact solutions for the periodic Toda lattice"), in which the
method of the authors is also applied to the periodic problem for the
Toda chain.

2. I. M. Gel'fand informs us that the survey of Gel'fand and Dikii
"Asymptotic behaviour of the resolvent of Sturm-Liouville equations and
the algebra of the Korteweg-de Vries equations", Uspekhi Mat. Nauk
30:5 (1975), 67-100 = Russian Math. Surveys 30:5 (1975), 77-113,
contains the construction of the integrals for stationary problems for higher
order K-dV equations of which an account is given in Appendix 3 of this
survey from Lax's recent preprint. They have found this construction
independently and at the same time as Lax. Moreover, Gel'fand and Dikii
also prove that these integrals are involutory, having subjected them to a
concrete analysis (this result is not in Lax's paper). Without knowing the
results of Gel'fand and Dikii, Novikov and Bogoyavlenskii have also proved
that these integrals are involutory, as a consequence of a very simple and
quite general theorem on the interrelation of the Hamiltonian formalisms
of non-stationary and stationary equations. (Attention to this connection
had already been drawn in [38], but it had not been formulated accurately.)
We give here a statement of this theorem (see [64]). We recall that
according to Gardner, Hamiltonian systems on a function space have the
form
1 This addendum was received by the Editors on 24 September 1975.
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du _ " _ d 6/
' ' ~dT~U~lx 6u(x) '

where

/ = j P(u, u', u", . . ., u™)dx, « ' = ! " ,

and / is the Hamiltonian. We assume that Ρ does not depend explicitly on
x. We consider the system formally without making precise the nature of
the function space, which can even turn out to consist of increasing
functions.

For the two functionals

/ = j Ρ dx, J = j Q dx

the Poisson bracket has the form

and the Hamiltonian (/,/) formally defines the commutator of the two
flows (on any class of functions on a straight line). If the flows commute,
(I, J) = 0, then we have, by definition,

δ/ \ 6/ dV(I,J)d 6/ \
dx όίί (χ) Ι:(x)l Su(x)~ dx

where V = V(u, u , . . .). We consider the stationary problem ~—-,—y = 0

(or const) which has a Hamiltonian form in the canonical coordinates (see
[38], Example 2 for η = 2)

_ dP I dP \' I dP \" , / dP \("-D
du \ du ) \ du

— dP _ /dp \", ι dP γ" ι / dP y n ~ 2 >
5u" \ du'" ) \ 3ii<4) / ' \ dum / '

with the Hamiltonian

(4) H{p, q) = Ρ — u'Pl — u'pi - . . . - u^pn,

provided that they can all be expressed by the coordinates (p, q). This is
in text-books on the calculus of variations with higher order derivatives.

Γ Γ

If / = J P(u, u, . . . ,u{n))dx,J= J Q(u, u, . . . ,ulm))dx, and </,/> = 0,

then on the set of fixed points of the flow (1) the functional / defines the

flow u = -— f— -̂r as a finite-dimensional dynamical system, for example,
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as a higher order K—dV equation in [38]. Under these conditions we have
the following general and fairly simple result:

THEOREM. If m <n and </,/> = 0, then the flow ii = — δ /

ondx du(x)
the set of fixed points of the flow (1) is a one-parameter family of finite-
dimensional dynamical systems, depending on the constant of integration

z—— = d; all these systems are Hamiltonian and are given by the

Hamiltonian Vd(I, I), which can be expressed in terms of the phase
coordinates (3), where

d
 IT ι τ τ\ I d δ/ \ / 6/ ,\

1 ^ V ^ / ) = (*ΓβϊίΜ") (&Γ(Ϊ)-- d) •

Example: let / = \ — dx; in this case the flow ii = — J^L- = u'J 2 ' dx 8u(x)

defines the group of shifts through χ and commutes with I if Ρ does not
depend explicitly on x. Then we have

where H(p, q) is a Hamiltonian of the stationary problem for the flow (1).
From the theorem it follows, obviously, that if two integrals / t and J2

of the flow (1) commute in the non-stationary problem, (JltJ2) = 0, then
their images V(I, /j) and V(I, J2) commute in the phase space of the
stationary problem with the canonical coordinates (3).

The application of the theorem to the theory of K-dV equations is
obvious, because in this theory we have many commuting flows in a
function space (the higher K-dV equations according to Gardner); the
images of .these flows on the set of fixed points of any one, as stated in
[38], give a set of commuting systems in the stationary problem. It is
interesting that in [38] a complete set of integrals Jx, . . . , Jn is found
for the stationary problem, which can be expressed explicitly in terms of
the spectrum of the Sturm-Liouville operator (Hill, Schrodinger). In a later
paper we shall show how to express these integrals of Novikov in terms of
the integrals of Lax—Gel'fand-Dikii and vice versa (see [65]).

3. Very recently Krichever, developing a technique of Dubrovin and Its,
and Matveev, has found a beautiful algebraic-geometric method of
constructing analogues of finite-zone solutions of the periodic problem (in
χ) for "two-dimensional K-dV" equation or the equations of Kadomtsev—
Petviashviki (see [37] and Ch. 1, §2 of this survey) and some other
equations of Zakharov and Shabat, containing an additional coordinate y.
It is remarkable that in the construction of solutions of "two-dimensional
K-dV" equation by Krichever's scheme an arbitrary Riemann surface of
genus g appears. The possibility of applying this method to problems of
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algebraic geometry (and of constructing explicit universal fiberings over the

variety of moduli of Riemann surfaces) by the scheme of Novikov—

Dubrovin (see [43] and Ch. 2, §4 of this survey and also Ch. 3, §2) is

here subjected to a careful analysis.

4. Very recently a new paper of Moser has appeared (Three integrable

Hamiltonian systems connected with isospectral deformations, Adv. in Math.

16 (1975), 354 ff.), in which he finds an L~A pair for a very interest-

ing class of discrete systems of classical particles on a straight line with

various interaction potentials. (According to work of Calogero and

Sutherland, in some of these models it is known that the corresponding

quantum problem is completely soluble). An interesting group

theoretical approach to the systems of Moser and Calogero has now been

developed by Perelomov and Ol'shanetskii ("Complete integrable systems

connected with Lie algebras")· These systems lead, in contrast to the Toda

chain, to "non-local" operators L and cannot be described by the methods

of the present survey, even when the periodic problem is meaningful.
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