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Generating series for GUE correlators

Boris Dubrovin, Di Yang

SISSA, via Bonomea 265, Trieste 34136, Italy

Abstract

We extend to the Toda lattice hierarchy the approach of [3, 4] to computation of logarithmic
derivatives of tau-functions in terms of the so-called matrix resolvents of the corresponding differ-
ence Lax operator. As a particular application we obtain explicit generating series for connected
GUE correlators. On this basis an efficient recursive procedure for computing the correlators in
full genera is developed.

1 Introduction

1.1 Formulation of the main result

Denote H(N) the space of N × N Hermitean matrices. The Gaussian Unitary Ensemble (GUE)
correlators of observables trM i, i = 1, 2, . . . with respect to the Gaussian probability measure on
H(N) are defined by

〈

trM i1 · · · trM ik
〉

:=

∫

H(N)

trM i1 . . . trM ik e−
1
2
trM2

dM

∫

H(N)

e−
1
2
trM2

dM
. (1.1.1)

They are certain polynomials in N that can be computed by the Wick rule. By
〈

trM i1 · · · trM ik
〉

c
we denote the connected correlators. That means that, applying the Wick rule to the computation of
Gaussian integrals (1.1.1) we keep summation over connected Feynman diagrams only. For example,

〈
(

trM2
)2 〉 = 2N2 + N4 but 〈

(

trM2
)2 〉c = 2N2; see more details in Appendix A. According to

[17, 18, 5] the connected GUE correlators have an important application to the problem of enumeration
of ribbon graphs on two-dimensional oriented surfaces, see details in Appendix A below. This was one
of the motivations for a significant interest to the problem of computation of the GUE correlators, see
e.g. [2, 14, 19, 23].

For every k ≥ 1 we will consider generating series of the k-point correlators of the form

Ck(N ;λ1, . . . , λk) :=

∞
∑

i1,...,ik=1

〈

trM i1 · · · trM ik
〉

c

λi1+1
1 . . . λik+1

k

(1.1.2)

where λ1, . . . , λk are independent variables, N refers to the size of the Hermitean matrices. Our main
result is the following explicit expressions for the generating series (1.1.2).
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Theorem 1.1.1 1) The generating series for 1-point correlators has the form

C1(N ;λ) = N
∑

j≥0

(2j − 1)!!

λ2j+1
[2F1(−j,−N ; 2; 2) − j · 2F1(1− j, 1 −N ; 3; 2)] . (1.1.3)

2) Introduce a 2× 2 matrix-valued series

Rn(λ) :=

(

1 0
0 0

)

+ n
∞
∑

j=0

(2j − 1)!!

λ2j+2





(2j + 1)An,j −λBn+1,j

λ
n Bn,j −(2j + 1)An,j



 ∈ Mat
(

2,Z[n]
[

[λ−1]
])

(1.1.4)
where

An,j =
1

n

j
∑

i=0

2i
(

j
i

)(

n
i+ 1

)

= 2F1(−j, 1 − n; 2; 2)

(1.1.5)

Bn,j =

j
∑

i=0

2i
(

j
i

)(

n− 1
i

)

= 2F1(−j, 1− n; 1; 2).

Then

C2(N ;λ1, λ2) =
trRN (λ1)RN (λ2)− 1

(λ1 − λ2)2
(1.1.6)

Ck(N ;λ1, . . . , λk) = −1

k

∑

σ∈Sk

tr [RN (λσ1) . . .RN (λσk
)]

(λσ1 − λσ2) . . . (λσk−1
− λσk

)(λσk
− λσ1)

, k ≥ 3. (1.1.7)

In the above formulae

2F1(a, b; c; z) =
∞
∑

j=0

(a)j(b)j
(c)j

zj

j!
= 1 +

a b

c

z

1!
+
a(a+ 1) b(b + 1)

c(c+ 1)

z2

2!
+ . . .

is the Gauss hypergeometric function. Recall that it truncates to a polynomial if a or b are non-positive
integers.

Remark 1.1.2 To the best of our knowledge the first generating series for the one-point connected
correlators was obtained by J. Harer and D. Zagier in [16]. In [22] A. Morozov and Sh. Shakirov con-
structed a generating function of the Harer–Zagier type for the two-point correlators. These generating
functions are different from ours but produce identical results for the correlators.

1.2 Matrix resolvent of a second order difference operator

and tau-function of the Toda lattice

Consider a second order difference operator L acting on functions ψn, n ∈ Z by

(Lψ)n = ψn+1 + vn ψn + wn ψn−1. (1.2.1)
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The standard realization of the Toda lattice hierarchy is given by the Lax representation

∂L

∂tj
= [Aj , L] , j ≥ 0 (1.2.2)

Aj =
(

Lj+1
)

+
. (1.2.3)

Introduce the matrix

Un(λ) =

(

vn − λ wn

−1 0

)

. (1.2.4)

Observe that the second order difference equation for the eigenfunctions of the Lax operator

Lψ = λψ

can be written in the matrix form

∆Ψn + Un(λ)Ψn = 0, Ψn =

(

ψn

ψn−1

)

(1.2.5)

where ∆ is the shift operator
∆Ψn = Ψn+1.

Introduce the ring Z[v,w] of polynomials with integer coefficients in the infinite set of variables
v = (vn), w = (wn), n ∈ Z.

Lemma 1.2.1 There exists a unique 2× 2 matrix series

Rn(λ) =

(

1 0
0 0

)

+O
(

λ−1
)

∈ Mat
(

2,Z[v,w]
[

[λ−1]
])

satisfying equation
Rn+1(λ)Un(λ)− Un(λ)Rn(λ) = 0 (1.2.6)

along with the normalization conditions

trRn(λ) = 1, detRn(λ) = 0. (1.2.7)

Definition 1.2.2 The series Rn(λ) is called the matrix resolvent of the difference operator L.

Let the difference operator L depend on the times of the Toda lattice hierarchy (1.2.2), (1.2.3).
Then so does the matrix resolvent, Rn = Rn(t, λ). Here and below t := (t0, t1, . . . ). We will now
present an algorithm for computing the so-called tau-function of an arbitrary solution vn(t), wn(t).
The tau-function of a solution will be determined uniquely, up to a simple factor, by an explicitly
written collection of its second order logarithmic derivatives in the continuous variables tk and the
discrete variable n.
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Lemma 1.2.3 For any solution vn = vn(t), wn = wn(t) to the Toda lattice hierarchy there exists a
function τn(t) such that

∑

i, j≥0

1

λi+2µj+2

∂2 log τn(t)

∂ti ∂tj
=

trRn(t, λ)Rn(t, µ)− 1

(λ− µ)2
(1.2.8)

∑

i≥0

1

λi+2

∂

∂ti
log

τn+1(t)

τn(t)
= [Rn+1(t, λ)]21 (1.2.9)

τn+1(t)τn−1(t)

τ2n(t)
= wn. (1.2.10)

The function τn(t) is determined uniquely by the solution vn(t), wn(t) up to

τn(t) 7→ ea0+a1n+
∑

j≥0 bjtjτn(t)

for some constants a0, a1, b0, b1, . . . independent of n.

Definition 1.2.4 The function τn(t) defined by eqs. (1.2.8)–(1.2.10) is called the tau-function of the
solution vn(t), wn(t).

Remarkably, the higher logarithmic derivatives of the tau-function can also be expressed in terms
of the matrix resolvent.

Theorem 1.2.5 The order k ≥ 3 logarithmic derivatives of the tau-function of a solution to the Toda
lattice hierarchy can be computed from the following generating series

∞
∑

i1,...,ik=0

1

λi1+2
1 . . . λik+2

k

∂k log τn(t)

∂ti1 . . . ∂tik
= −1

k

∑

σ∈Sk

tr [Rn(t, λσ1) . . . Rn(t, λσk
)]

(λσ1 − λσ2) . . . (λσk−1
− λσk

)(λσk
− λσ1)

. (1.2.11)

It is well-known [24], [15] that the GUE partition function (see eq. (A.1.1) below) is the tau-
function of a particular solution to the Toda lattice, identifying sk = tk−1. Logarithmic derivatives of
the tau-function evaluated at t = 0 coincide with the connected correlators (1.1.1). This solution is
specified by the initial data

vn(t = 0) = 0, wn(t = 0) = n. (1.2.12)

Hence it remains to compute the matrix resolvent of the operator

∆−
(

λ −n
1 0

)

. (1.2.13)

Theorem 1.2.6 The matrix resolvent of the operator (1.2.13) coincides with series Rn(λ) given by
eq. (1.1.4).

Theorem 1.1.1 readily follows from Theorems 1.1.1 and 1.2.5.

The approach of the present paper can be generalized to the integrable systems associated with
higher order difference Lax operators. Such a generalization will be developed in a subsequent publi-
cation.
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Organization of the paper. In Sect. 2 we prove Lem. 1.2.1, Lem. 1.2.3 and Thm. 1.2.5. In Sect. 3
we prove Thm. 1.2.6 and give an algorithm of computing connected GUE correlators in a recursive
way. In Sect. 4 we outline an algorithm for computing the genus expansion of the GUE free energy
based on [9, 7, 8]. A short review on the Hermitean matrix model, mainly following [5, 21, 15], is
given in Appendix A.

Acknowledgements The work is supported by PRIN 2010-11 Grant “Geometric and analytic the-
ory of Hamiltonian systems in finite and infinite dimensions” of Italian Ministry of Universities and
Researches.

2 Computing tau-functions of Toda lattice hierarchy

2.1 Matrix resolvents. Proof of Lemma 1.2.1

In this section we will remind basic constructions of the Toda lattice hierarchy. We will also prove the
Lemma 1.2.1.

The Toda lattice is a system of particles on the line with exponential interaction of neighbors. The
Hamiltonian is written as a formal infinite sum

H(q, p) =
∑

n∈Z

p2n
2

+ eqn−qn+1 .

After the substitution
vn = −q̇n, wn = eqn−1−qn (2.1.1)

the equations of motion
q̈n = eqn−1−qn − eqn−qn+1 , n ∈ Z

take the form
v̇n = wn+1 − wn

ẇn = wn(vn − vn−1).
(2.1.2)

Eqs. (2.1.2) are considered as a differential-difference evolution system with the time variable t and
discrete spatial variable n ∈ Z. Integrability of the Toda equations was discovered by H. Flaschka [13]
and S. Manakov [20]. The corresponding Lax operator is a second order difference operator (1.2.1).
The standard realization of the commuting flows of the Toda lattice hierarchy is given by the Lax
representation (1.2.2). The first flow of the hierarchy coincides with (2.1.2), t = t0, then

∂vn
∂t1

= wn+1(vn+1 + vn)− wn(vn + vn−1),
∂wn

∂t1
= wn(wn+1 − wn−1 + v2n − v2n−1)

etc. They are Hamiltonian equations of the form

∂vn
∂tj

= {vn,Hj},
∂wn

∂tj
= {wn,Hj}, j ≥ 0

with respect to the Poisson brackets

{qn, pm} = δmn ⇒ {vn, wn} = −wn, {vn, wn+1} = wn+1 (2.1.3)
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(use the substitution (2.1.1)) with the Hamiltonians

Hj =
∑

n

hj(n), hj(n) =
1

j + 2

(

Lj+2
)

nn
, j ≥ −1. (2.1.4)

Here
(

Lj+2
)

nn
means taking the n-th diagonal entry of the infinite matrix Lj+2. The first several

Hamiltonian “densities” read

h−1(n) = vn, h0(n) =
1

2
(v2n + wn + wn+1)

h1(n) =
1

3
[v3n + 2vn(wn + wn+1) + wnvn−1 + wn+1vn+1].

Note that h−1(n) is the density of one of the Casimirs of the Poisson bracket. The Hamiltonian
densities hj(n), j ≥ −1 satisfy

(i+ 1)
∂hj−1

∂ti
= (j + 1)

∂hi−1

∂tj
, ∀ i, j ≥ 0.

Observe that, changing the normalization

h̃j =
1

(j + 1)!
hj ⇒ t̃j = (j + 1)! tj

one arrives at the tau-symmetry property

∂h̃j−1

∂t̃i
=
∂h̃i−1

∂t̃j
. (2.1.5)

Such a normalization of the Hamiltonians/time variables of the hierarchy is used when working with
the Gromov–Witten invariants of P1 [10, 6].

It will be more convenient to work with the λ-dependent first order matrix version (1.2.5), (1.2.4)
of the Lax operator acting on two-component vector-valued functions on the lattice

Ψn =

(

ψn

ψn−1

)

.

Notice that the equation (1.2.6) for what we call matrix resolvent Rn(λ) can be written in the form

[∆ + Un(λ), Rn(λ)] = 0. (2.1.6)

Clearly the normalization conditions (1.2.7) are compatible with eq. (1.2.6).

Let us proceed with the proof of Lemma 1.2.1. Write

Rn(λ) =

(

1 + αn(λ) βn(λ)
γn(λ) −αn(λ)

)

.

Substituting this expression in (1.2.6) we obtain

βn = −wn γn+1 (2.1.7)

αn+1 + αn + 1 = γn+1 (λ− vn) (2.1.8)

(λ− vn)(αn − αn+1) = wn γn − wn+1 γn+2. (2.1.9)

6



Expand

γn =
∑

j≥0

cn,j
λj+1

, αn =
∑

j≥0

an,j
λj+1

.

It follows immediately from (2.1.8)–(2.1.9) the recursion relations:

cn,j+1 = vn−1 cn,j + an,j + an−1,j. (2.1.10)

an,j+1 − an+1,j+1 + vn [an+1,j − an,j] + wn+1 cn+2,j −wn cn,j = 0. (2.1.11)

The normalization conditions (1.2.7) imply

an,0 = 0, cn,0 = 1

along with another recursion relation

an,ℓ = wn (cn+1,ℓ−1 + cn,ℓ−1) +
∑

i+j=ℓ−1

[an,ian,j + cn,icn+1,j ] (2.1.12)

The Lemma 1.2.1 readily follows from the recursion relations (2.1.10) and (2.1.12).

2.2 Matrix resolvents and Toda flows. Proof of Lemma 1.2.3 and Thm. 1.2.6

We will now represent equations of the Toda flows in terms of the matrix resolvent Rn.

Lemma 2.2.1 The Toda flows (1.2.2) can be written in terms of cn,j, an,j as follows:

∂vn
∂tj

= an+1,j+1 − an,j+1, j ≥ 0 (2.2.1)

∂wn

∂tj
= wn (cn+1,j+1 − cn,j+1) , j ≥ 0. (2.2.2)

Proof. By using the recursion relations (2.1.10), (2.1.11) and by comparing them with (1.2.2).

Lemma 2.2.1 implies the following

Corollary 2.2.2 For any j ≥ −1, the following formula holds true

hj(n) =
1

j + 2
cn+1,j+2.

Lemma 2.2.3 The functions αn = αn(λ), γn = γn(λ) satisfy

γn+3 =
γn+2

wn+2
(λ− vn+1)

2 +
(λ− vn+1)(γnwn − γn+2wn+1)

wn+2 (λ− vn)
+
γn+1 [wn+1 − (λ− vn)(λ− vn+1)]

wn+2

(2.2.3)

(λ− vn−1) [wn+1(αn+2 + αn+1 + 1)− (λ− vn)(λ− vn+1)αn+1]

= (λ− vn+1) [wn(αn + αn−1 + 1)− (λ− vn)(λ− vn−1)αn] . (2.2.4)
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Proof. By using (2.1.8)–(2.1.9) and by eliminating one of the series αn(λ), γn(λ).

For any j ≥ 0, define the matrix-valued function

Vn,j(λ) =
[

λj+1Rn(λ)
]

+
+

(

0 0
0 cn,j+1

)

where [ ]+ means taking the polynomial part in λ. The flows of the Toda lattice hierarchy can be
represented as the following Lax equation

∂Un(λ)

∂tj
= Vn+1,j(λ)Un(λ)− Un(λ)Vn,j(λ), j ≥ 0

which are the compatibility conditions between eq. (1.2.5) and

∂Ψn

∂tj
= Vn,j(λ)Ψn, j = 0, 1, 2, . . . . (2.2.5)

Introduce an operator ∇(λ) depending on a parameter λ by

∇(λ) :=
∑

j≥0

1

λj+2

∂

∂tj
. (2.2.6)

From eq. (2.2.5) it readily follows that

∇(µ)Ψn(λ) =

[

Rn(µ)

µ− λ
+Qn(µ)

]

Ψn(λ)

where

Qn(µ) := − id

µ
+

(

0 0
0 γn(µ)

)

.

We arrive at

Lemma 2.2.4 The following equation holds true

∇(µ)Rn(λ) =
1

µ− λ
[Rn(µ), Rn(λ)] + [Qn(µ), Rn(λ)]. (2.2.7)

We are now in a position to prove Lemma 1.2.3.

Proof of Lemma 1.2.3. First, let us check that

trRn(λ)Rn(µ)− 1 (2.2.8)

is divisible by (λ − µ)2. Indeed, from the normalization conditions (1.2.7) it readily follows that
trR2

n(λ) = 1. So (2.2.8) is divisible by (λ − µ). Due to symmetry in λ, µ this implies divisibility by
(λ− µ)2. Thus the r.h.s. of the first eq. in (1.2.8) is a formal series in negative powers of λ, µ,

trRn(λ)Rn(µ)− 1

(λ− µ)2
=
∑

i,j≥0

Ωi;j(n)

λi+2 µj+2
for some coefficients Ωi;j(n) ∈ Z[v,w].
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The first few of them are

Ω0;0(n) = wn, Ω0;1(n) = wn(vn + vn−1), Ω1;1(n) = wn

[

wn+1 + wn−1 + (vn + vn−1)
2
]

.

Clearly
Ωi;j = Ωj;i, ∀ i, j ≥ 0.

Let us compute the time-derivatives of these coefficients. We have

∑

k,ℓ,m≥0

∂tm Ωk;ℓ

νm+2λk+2µℓ+2
= ∇(ν)

∑

k,ℓ≥0

Ωk;ℓ

λk+2µℓ+2

=
tr (R(µ)∇(ν)R(λ))

(λ− µ)2
+

tr (R(λ)∇(ν)R(µ))

(λ− µ)2

=
tr ([R(ν), R(λ)]R(µ))

(λ− µ)2(ν − λ)
− tr ([Q(ν), R(λ)]R(µ))

(λ− µ)2

+
tr (R(λ) [R(ν), R(µ)])

(λ− µ)2(ν − µ)
− tr (R(λ) [Q(ν), P (µ)])

(λ− µ)2

= − tr ([R(ν), R(λ)]R(µ))

(λ− µ)(µ − ν)(ν − λ)
.

It is easy to see that the last expression is symmetric in λ, µ, ν. Hence

∂Ωk;ℓ

∂tm
=
∂Ωm;ℓ

∂tk
∀ k, l,m ≥ 0.

We are now to prove compatibility between eq. (1.2.9) and eq. (1.2.8). On one hand, we have

∑

i, j≥0

1

λi+2µj+2
[Ωi;j(n+ 1)− Ωi;j(n)]

=
trRn+1(λ)Rn+1(µ)− trRn(λ)Rn(µ)

(λ− µ)2

=
(1 + 2αn(λ)) γn(λ)− (1 + 2αn(µ)) γn+1(λ)

λ− µ
− γn+1(λ) γn+1(µ)

=
(1 + 2αn+1(µ)) γn+1(λ)− (1 + 2αn+1(λ)) γn+1(µ)

λ− µ
+ γn+1(λ) γn+1(µ)

where the last equality uses the relation (2.1.8). On another hand, it follows from eq. (2.2.7) that

∇(µ)γn+1(λ) =
γn+1(λ)(1 + 2αn+1(µ))− γn+1(µ)(1 + 2αn+1(λ))

λ− µ
+ γn+1(λ)γn+1(µ). (2.2.9)

Hence
∑

i, j≥0

1

λi+2µj+2
[Ωi;j(n+ 1)− Ωi;j(n)] = ∇(µ)γn+1(λ).

9



Finally we show the compatibility between eq. (1.2.10) and eqs. (1.2.8), (1.2.9). Indeed,

∑

i, j≥0

1

λi+2µj+2
[Ωi;j(n+ 1) + Ωi;j(n− 1)− 2Ωi;j(n)]

=
trRn+1(λ)Rn+1(µ) + trRn−1(λ)Rn−1(µ)− 2 trRn(λ)Rn(µ)

(λ− µ)2

=
(1 + 2αn+1(µ)) γn+1(λ)− (1 + 2αn+1(λ)) γn+1(µ)

λ− µ
+ γn+1(λ) γn+1(µ)

−(1 + 2αn(µ)) γn(λ)− (1 + 2αn(λ)) γn(µ)

λ− µ
− γn(λ) γn(µ).

Also,

∇(µ)∇(λ) logwn = ∇(µ)
[

γn+1(λ)− γn(λ)− λ−1
]

=

[

γn+1(λ)(1 + 2αn+1(µ))− γn+1(µ)(1 + 2αn+1(λ))

λ− µ
+ γn+1(λ)γn+1(µ)

]

−
[

γn(λ)(1 + 2αn(µ))− γn(µ)(1 + 2αn(λ))

λ− µ
+ γn(λ)γn(µ)

]

.

Hence
∑

i, j≥0

1

λi+2µj+2
[Ωi;j(n+ 1) + Ωi;j(n− 1)− 2Ωi;j(n)] = ∇(µ)∇(λ) logwn.

This proves compatibility between (1.2.10) and (1.2.8). The compatibility between (1.2.10) and (1.2.9)
is equivalent to eq. (2.2.2).

As a result, for an arbitrary solution vn(t), wn(t) to the Toda lattice hierarchy, there exists a
function τn(t) of this solution satisfying (1.2.8)–(1.2.10). It is easy to see that the freedom of τn
satisfying (1.2.8)–(1.2.10) is only an arbitrary factor of the form

ea0+a1n+
∑

j≥0 bjtj

where a0, a1, b0, b1, b2, . . . are constants independent of n. The lemma is proved.

Definition 2.2.5 For a given k ≥ 2 and a given set of integers i1, . . . , ik ≥ 0, we call

∂k log τn(t)

∂ti1 . . . ∂tik

the k-point correlation functions of the given solution vn(t), wn(t) of the Toda lattice hierarchy.

Also the first logarithmic derivatives (“one-point correlation functions”) of the tau-function will
be under consideration. They are determined by a solution vn(t), wn(t) up to additive constants.

Clearly the above proof of Lemma 1.2.3 already shows that

Corollary 2.2.6 The generating series of three-point correlation functions of an arbitrary solution to
the Toda lattice hierarchy has the following expression

∑

i,j,l≥0

∂ti∂tj∂tl log τn

λi+2µj+2νl+2
= −trRn(λ)Rn(µ)Rn(ν)− trRn(λ)Rn(ν)Rn(µ)

(λ− µ)(µ − ν)(ν − λ)
.
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Proof of Thm. 1.2.5 For any permutation σ = [σ1, . . . , σq] ∈ Sq, q ≥ 2, define

P (σ) := −
q
∏

j=1

1

λσj
− λσj+1

, σq+1 := σ1.

We use mathematical induction for the proof. For k = 3, the formula (1.1.7) is already obtained in
Corollary 2.2.6. Suppose (1.1.7) is true for k = p, p ≥ 3. Then for k = p+ 1, we have1

∞
∑

i1,...,ip+1=0

1

λi1+2
1 . . . λ

ip+1+2
p+1

∂k log τ(t)

∂ti1 . . . ∂tip+1

= −1

p
∇(λp+1)

∑

σ∈Sp

tr
(

R(λσ1) . . . R(λσp)
)

∏p
j=1(λσj

− λσj+1)

= −1

p

∑

σ∈Sp

p
∑

q=1

tr
(

R(λσ1) . . .
[

R(λp+1)
λp+1−λσq

+Q(λp+1), R(λσq )
]

. . . R(λσp)
)

∏p
j=1(λσj

− λσj+1)

=
1

p

∑

σ∈Sp

P (σ)

p
∑

q=1

(λσq − λσq−1)
trR(λp+1)R(λσq ) . . . R(λσp)R(λσ1) . . . R(λσq−1)

(λp+1 − λσq)(λp+1 − λσq−1)

=
1

p

p
∑

q=1

∑

σ∈Sp

P ([p + 1, sq, . . . , sp, s1, . . . , sq−1]) trR(λp+1)R(λσq ) . . . R(λσp)R(λσ1) . . . R(λσq−1)

=
∑

σ∈Sp

P ([p+ 1, σ]) trR(λp+1)R(λσ1) . . . R(λσp).

The theorem is proved.

The resulting expressions for the generating series can be used for developing efficient algorithms
for computing the GUE correlators. To this end it is convenient to represent the multipoint formula
(1.1.7) in a slightly modified way.

Corollary 2.2.7 The generating series of order k ≥ 3 logarithmic derivatives of tau-function of a
solution to the Toda lattice hierarchy has the expression

∞
∑

i1,...,ik=0

1

λi1+2
1 . . . λik+2

k

∂k log τn(t)

∂ti1 . . . ∂tik
= −

∑

σ∈Sk−2

〈

Rn(t, λk) , adRn(t,λσ1)
· · · adRn(t,λσk−2

)Rn(t, λk−1)
〉

(λσk−2
− λk−1)(λk−1 − λk)(λk − λσ1)

∏k−3
j=1(λσj

− λσj+1)

(2.2.10)
where ada b := [a, b], and 〈a, b〉 := tr a b.

Remark 2.2.8 The same type formula as (2.2.10) holds true also for the generating series of [3, 25]
for the Witten–Kontsevich correlators and for the correlators of Drinfeld–Sokolov hierarchies [4].

3 Computing GUE correlators

In this section we prove Thm. 1.2.6, Thm. 1.1.1 and present some examples.

1In this calculation we omit the index n of τn and Rn.
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3.1 Proof of Thms. 1.2.6 and 1.1.1

We are to compute the matrix resolvent of the operator

∆−
(

λ −n
1 0

)

.

It follows from eq. (2.2.3) that the formal series

γn = γ(n, λ; t = 0) =
∑

j≥0

(2j − 1)!!

λ2j+1
γn,j

satisfies

γn+3 =
λ2 − (n+ 1)

n+ 2
(γn+2 − γn+1) +

n

n+ 2
γn (3.1.1)

along with the boundary conditions

γn,0 = 1, ∀n ≥ 0 (3.1.2)

γ0,j = (−1)j (2j − 1)!!, ∀ j ≥ 0. (3.1.3)

Clearly, solution to (3.1.1)–(3.1.3) if exists must be unique. We are to show that

γ∗n :=
∑

j≥0

(2j − 1)!!

λ2j+1 2F1(−j, 1− n, 1; 2), n ≥ 0

satisfies (3.1.1)–(3.1.3). Indeed, from

γ∗n,j = 2F1(−j, 1 − n; 1; 2) =

j
∑

i=0

2i
(

j
i

)(

n− 1
i

)

, ∀n, j ≥ 0 (3.1.4)

it is easy to see that
γ∗n,0 = 1, γ∗0,j = (−1)j (2j − 1)!!.

So eqs. (3.1.2)–(3.1.3) are verified. Eq. (3.1.1) is equivalent the following recursion on γn,j

(n+ 2)γn+3,j = (2j + 1)(γn+2,j+1 − γn+1,j+1)− (n+ 1)(γn+2,j − γn+1,j) + n γn,j.

To show γ∗ (see (3.1.4)) is a solution to the above equation, it suffices to show

(n+ 2) 2F1(−j,−n − 2; 1; 2) = (2j + 1) [ 2F1(−j − 1,−n − 1; 1; 2) − 2F1(−j − 1,−n; 1; 2)]
−(n+ 1) [ 2F1(−j,−n− 1; 1; 2) − 2F1(−j,−n; 1; 2)] + n 2F1(−j, 1 − n; 1; 2).

(3.1.5)

We now use the following contiguous relations of Gauss: ∀ a, b, c, z ∈ C

(c− a) 2F1(a− 1, b; c; z) + (a− c+ bz)2F1(a, b; c; z)

= (c− b) 2F1(a, b− 1; c; z) + (b− c+ az)2F1(a, b; c; z) (3.1.6)

a [ 2F1(a+ 1, b; c; z) − 2F1(a, b; c; z)] = b [ 2F1(a, b+ 1; c; z) − 2F1(a, b; c; z)] . (3.1.7)

12



Taking in (3.1.6) c = 1, a = −j, b = −n− 1 we obtain

(n+ 2) 2F1(−j,−n− 2; 1; 2) = (1 + j) 2F1(−j − 1,−n− 1; 1; 2) − (n+ 1− j) 2F1(−j,−n − 1; 1; 2).

Taking in (3.1.6) c = 1, a = −j, b = −n we obtain

(n+ 1) 2F1(−j,−n − 1; 1; 2) = (1 + j) 2F1(−j − 1,−n; 1; 2) − (n− j) 2F1(−j,−n; 1; 2).

Taking in (3.1.6) c = 1, a = −j, b = −n+ 1 we obtain

n 2F1(−j,−n; 1; 2) = (1 + j) 2F1(−j − 1, 1 − n; 1; 2) − (n− 1− j) 2F1(−j, 1 − n; 1; 2). (3.1.8)

Taking in (3.1.7) c = 1, a = −j − 1, b = −n− 1 we obtain

(n− j) 2F1(−j − 1,−n − 1; 1; 2) = (n + 1) 2F1(−j − 1,−n; 1; 2) − (j + 1) 2F1(−j,−n − 1; 1; 2).

So we have

l.h.s. of (3.1.5)

= (1 + j) 2F1(−j − 1,−n − 1; 1; 2) − (n+ 1− j) 2F1(−j,−n − 1; 1; 2)

=
(1 + j)(n + 1)

n− j
2F1(−j − 1,−n; 1; 2) − j2 + n+ j + 1 + (n − j)2

n− j
2F1(−j,−n − 1; 1; 2)

=
(1 + j)(1 + 2j)

n+ 1
2F1(−j − 1,−n; 1; 2) + j2 + n+ j + 1 + (n− j)2

n+ 1
2F1(−j,−n; 1; 2),

and we have

r.h.s. of (3.1.5)

=
(2j + 1)(j + 1)

n− j
2F1(−j − 1,−n; 1; 2) −

(

(2j + 1)(j + 1)

n− j
+ n+ 1

)

2F1(−j,−n− 1; 1; 2)

+(n+ 1) 2F1(−j,−n, 1; 2) + n 2F1(−j, 1 − n, 1; 2)

=
(2j − n)(j + 1)

n+ 1
2F1(−j − 1,−n; 1; 2) +

(

(2j + 1)(j + 1)

n+ 1
+ 2n− j + 1

)

2F1(−j,−n; 1; 2)

+n 2F1(−j, 1 − n; 1; 2).

Comparing the above equations and using (3.1.8) we find it suffices to show

2F1(−j − 1,−n; 1, 2) = 2F1(−j,−n; 1, 2) + 2F1(−j − 1, 1− n; 1; 2) + 2F1(−j, 1 − n; 1; 2)

which can be verified easily.

Finally, using (2.1.9) and considering vn = 0, wn = n we find

λ (αn − αn+1) = n γ∗n − (n+ 1) γ∗n+2. (3.1.9)

Similarly as above it can be verified that α∗ defined by

α∗
n = n

∑

j≥0

(2j + 1)!!

λ2j+2 2F1(−j, 1 − n; 2; 2)

13



is a solution to (3.1.9). Moreover, α∗ obviously satisfies the boundary condition

α∗
0(λ) = 0.

The theorem is proved.

Proof. of Thm. 1.1.1. The GUE partition function is a particular tau-function of the Toda lattice
hierarchy; see Prop.A.2.3 in Appendix A for a detailed proof. The initial data of the corresponding
solution satisfy vn = 0, wn = n. As a result, Part 2) of the theorem readily follows from Theorems
1.2.6 and 1.2.5. It remains to prove Part 1). By definition we have

cn+1,j+1 =
∂

∂tj
log

τn+1

τn
=

∂

∂tj
log τn+1 −

∂

∂tj
log τn, ∀ j ≥ 0. (3.1.10)

Taking t = 0 in (3.1.10) and recalling that γn =
∑

j≥0
(2j−1)!!
λ2j+1 2F1(−j, 1 − n; 1; 2), and using the

boundary condition C1(0;λ) = 0 we obtain the expression (1.1.3) for one-point correlators.

The theorem is proved.

3.2 An algorithm for computing connected GUE correlators. Examples

Based on Thm. 1.1.1 and formula (2.2.7), we give in this subsection a recursive procedure of calculating
connected GUE correlators, which is very efficient in computation.

Definition 3.2.1 Fix b = (b1, b2, b3 . . . ) an arbitrary sequence of positive integers. Define recursively
a family of Laurent series Rb

K(n, λ) ∈ Mat
(

2,Z[n]((λ−1))
)

with K = {k1, . . . , km} by

Rb

{}(n, λ) := Rn(λ),

Rb

K(n, λ) :=
∑

I⊔J=K−{k1}

[

Rb

I (n, λ),
(

λbk1 Rb

J (n, λ)
)

+

]

. (3.2.1)

Here k1, . . . , km are distinct positive integers, m = |K|, and Rn(λ) is defined by eq. (1.1.4).

Lemma 3.2.2 In the particular case that b1 = b2 = b3 = · · · = b we have

Rb

K(n, λ) = Rb

K ′(n, λ) =: Rb
|K|(n, λ), as long as |K| = |K ′|.

Moreover, the following formulae hold true for Rb
m(n, λ), m ≥ 1

Rb
m(n, λ) =

m−1
∑

i=0

(

m− 1
i

)[

Rb
i (n, λ),

(

λbRb
m−1−i(n, λ)

)

+

]

.

Clearly, Rb
0(n, λ) = Rn(λ).
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Proposition 3.2.3 Let b = (b1, b2, b3 . . . ) be any sequence of positive integers, and K = {k1, . . . , km}
any finite set of positive integers. The following formula holds true for connected GUE correlators

∑

i,j≥1

〈trM bk1 · · · trM bkm trM i trM j〉c
λi+2
1 λj+2

2

=
∑

I⊔J=K

trRb

I (N,λ1)R
b

J (N,λ2)

(λ1 − λ2)2
− δm,0

(λ1 − λ2)2
. (3.2.2)

Here m = |K|. In the particular case that b1 = b2 = · · · = b for some b ≥ 1, we have ∀m ≥ 0

∑

i,j≥1

〈(

trM b
)m

trM i trM j
〉

c

λi+1
1 λj+1

2

=
m
∑

i=0

(

m
i

)

trRb
i (N,λ1)R

b
m−i(N,λ2)

(λ1 − λ2)2
− δm,0

(λ1 − λ2)2
. (3.2.3)

Proof. By using mathematical induction and by noticing that the term containing Qn(µ) in r.h.s. of
(2.2.7) does not contribute to generating series of correlators as it was proved in Thm. 1.2.5.

Clearly, Def. 3.2.1, Lem. 3.2.2 and Prop. 3.2.3 give an algorithm of computing connected GUE
correlators. Similar recursive formulation as (3.2.1)–(3.2.3) also works for logarithmic derivatives of
tau-function of an arbitrary solution to the Toda lattice hierarchy.

Example 3.2.4 (1-point correlators) We have
〈

trMa+1
〉

c
= 0 if a is an even integer then van-

ishes; otherwise,

〈

trMa+1
〉

c
= N a!!

[

2F1

(

−a+ 1

2
,−N ; 2; 2

)

− a+ 1

2
2F1

(

−a− 1

2
, 1−N ; 3; 2

)]

, a ≥ 1. (3.2.4)

For example,

〈

trM2
〉

c
= N2,

〈

trM4
〉

c
= N + 2N3,

〈

trM6
〉

c
= 10N2 + 5N4,

〈

trM20
〉

c
= 16796N11 + 1385670N9 + 31039008N7 + 211083730N5 + 351683046N3 + 59520825N.

Example 3.2.5 (2-point correlators)
〈

trMa+1 trM b+1
〉

c
vanishes ∀ a, b ≥ 0, if a + b is an odd

integer; otherwise,

〈

trMa+1 trM b+1
〉

c

= N (a+ b+ 1)!! (1 + b) 2F1

(

−a+ b

2
, 1−N ; 2; 2

)

+2N2
∑

0≤j≤b−2
j≡b(mod2)

(a+ j + 1)!!(b − j − 1)!! (1 + j) 2F1

(

−a+ j

2
, 1−N ; 2; 2

)

2F1

(

−b− j − 2

2
, 1 −N ; 2; 2

)

−N
∑

0≤j≤b−1
j≡b−1(mod2)

(a+ j)!!(b − j − 2)!! (1 + j)

[

2F1

(

−a+ 1 + j

2
,−N ; 1; 2

)

2F1

(

−b− j − 1

2
, 1−N ; 1; 2

)

+2F1

(

−b− j − 1

2
,−N ; 1; 2

)

2F1

(

−a+ 1 + j

2
, 1−N ; 1; 2

)]

.

(3.2.5)
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For example, we have

〈trM trM〉c = N,
〈

trM2 trM4
〉

c
= 4N + 8N3,

〈

trM4 trM4
〉

c
= 60N2 + 36N4,

〈

trM18 trM20
〉

c

= 4813380N (8840N18 + 3275220N16 + 478887552N14 + 34305326120N12 + 1259109855744N10

+23197400694000N8 + 199375600144496N6 + 689468897044260N4 + 705221681016618N2

+85187495274525).

Example 3.2.6 (3-point correlators) We have ∀ i ≥ 1,
〈

(

trM2
)2

trM i
〉

c
= N Coefλ−i−1

[(

λ2 − 1
)

γN+1(λ)−
(

λ2 + 1
)

N γN (λ)
]

〈

trM2 trM3 trM i
〉

c
= N Coefλ−i−1

[

4αN (λ)− λ
(

λ2 + 2N + 2
)

γN (λ) + λ
(

λ2 + 2N − 2
)

γN+1(λ) + 2
]

〈

(

trM3
)2

trM i
〉

c
= N Coefλ−i−1

[

8λαN (λ)−
(

λ4 + 4N2 + λ2(4N + 3) + 8N + 3
)

γN (λ)

+
(

λ4 + 4N2 + λ2(4N − 3)− 8N + 3
)

γN+1(λ) + 4λ
]

〈

(

trM4
)2

trM i
〉

c
= N Coefλ−i−1

[

4λ
(

λ2 + 6N
)

(2αN (λ) + 1)

−
(

λ6 + λ4(4N + 3) + λ2(2N + 1)(2N + 9) + 36N(N + 1) + 15
)

γN (λ)

+
(

λ6 + λ4(4N − 3) + λ2(2N − 1)(2N − 9)− 36(N − 1)N − 15
)

γN+1(λ)
]

.

Here we recall

αn(λ) = n
∑

j≥0

(2j + 1)!!

λ2j+2 2F1(−j, 1− n; 2; 2), γn(λ) =
∑

j≥0

(2j − 1)!!

λ2j+1 2F1(−j, 1 − n, 1; 2).

For example,
〈

(

trM2
)3
〉

c
= 8N2,

〈

(

trM2
)2

trM4
〉

c
= 24N + 48N3,

〈

(

trM2
)2

trM6
〉

c
= 480N2 + 240N4,

〈

(

trM2
)2

trM8
〉

c
= 1680N + 5600N3 + 1120N5,

〈

(

trM2
)2

trM38
〉

c
= 1343120024400N2

(

2N18 + 1140N16 + 240312N14 + 24082880N12

+1231558302N10 + 32196168420N8 + 410364369452N6

+2294179050960N4 + 4562960651307N2 + 1979828515350
)

.

〈

trM2
(

trM3
)2
〉

c
= 18N + 72N3, 〈trM2 trM3 trM5〉c = 480N2 + 360N4,

〈trM2 trM3 trM7〉c = 480N2 + 360N4, 〈trM2 trM3 trM9〉c = 1470N + 6300N3 + 1680N5,

〈trM2 trM3 trM39〉c = 1033848966150N
(

16N20 + 10108N18 + 2401182N16 + 276911776N14

+16743310948N12 + 536717003004N10 + 8831088179794N8

+68958855149632N6 + 219890931285060N4 + 210352383917730N2

+24130040059125) .
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〈

(

trM3
)2

trM4
〉

c
= 468N2 + 432N4,

〈

(

trM3
)2

trM6
〉

c
= 1350N + 6660N3 + 2160N5,

〈

(

trM3
)2

trM8
〉

c
= 55440N2 + 68040N4 + 10080N6,

〈

(

trM3
)2

trM10
〉

c
= 213570N + 1183140N3 + 570780N5 + 45360N7,

〈

(

trM3
)2

trM38
〉

c
= 1511010027450N

(

16N20 + 9628N18 + 2180250N16 + 239934736N14

+13863233644N12 + 425408903244N10 + 6715474080598N8

+50449385602192N6 + 155303372658492N4 + 144060538320450N2

+16119257529375) .
〈

trM2
(

trM4
)2
〉

c
= 480N2 + 288N4,

〈

(

trM4
)3
〉

c
= 1728N5 + 6336N3 + 1440N,

〈

(

trM4
)2

trM6
〉

c
= 8640N6 + 63360N4 + 56160N2,

〈

(

trM4
)2

trM8
〉

c
= 40320N7 + 530880N5 + 1162560N3 + 221760N,

〈

(

trM4
)2

trM38
〉

c
= 8058720146400N2

(

12N20 + 8408N18 + 2249790N16 + 297878352N14

+21183159128N12 + 824144717136N10 + 17179527894426N8

+180912770249240N6 + 860693336297694N4 + 1496297650892364N2

+582832451267325) .

Example 3.2.7 (4-point correlators) We have ∀ i ≥ 1,
〈

(

trM2
)3

trM i
〉

c
= N Coefλ−i−1

[

−4λ3αN (λ) +
(

λ4 − 3
)

(γN (λ) + γN+1(λ))− 2λ3
]

〈

(

trM3
)3

trM i
〉

c
= N Coefλ−i−1

[

−2
(

λ6 − 3λ2 + 8N3 + 12λ2N2 + 6λ4N − 38N
)

(2αN (λ) + 1)

+
(

λ7 + 3λ3
(

4N2 − 2N − 1
)

+ 3λ5(2N + 1) + 2λ(N − 5)(2N + 1)(2N + 3)
)

γN (λ)

+
(

λ7 + 3λ3
(

4N2 + 2N − 1
)

+ 3λ5 (2N − 1) + 2λ(N + 5)(2N − 1)(2N − 3)
)

γN+1(λ)
]

〈

(

trM4
)3

trM i
〉

c
= N Coefλ−i−1

[

αN (λ)
(

λ (828 + 2160N2) + λ3(152N − 32N3)− 24λ5(1 + 2N2)− 24Nλ7 − 4λ9
)

+ γN (λ)
(

λ10 + 3λ8(1 + 2N) + 6λ6(1 + 2N + 2N2)− 2λ4(15 + 30N2 − 4N3)

−(315 + 756N + 828N2 + 144N3)λ2 − 1944N3 − 2916N2 − 56λ4N − 2862N − 945
)

+ γN+1(λ)
(

λ10 − 3λ8(1− 2N) + 6λ6(1− 2N + 2N2) + 2λ4(15 + 30N2 + 4N3)

−(315− 756N + 828N2 − 144N3)λ2 − 1944N3 + 2916N2 − 56λ4N − 2862N + 945
)

−2λ9 − 12λ7N − 12(1 + 2N2)λ5 + (76N − 16N3)λ3 + (414 + 1080N2)λ
]

.

For example,
〈

(

trM2
)4
〉

c
= 48N2,

〈

(

trM2
)3

trM4
〉

c
= 192N + 384N3,
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〈

(

trM2
)3

tr M20
〉

c
= 44341440N

(

4N10 + 330N8 + 7392N6 + 50270N4 + 83754N2 + 14175
)

,

〈

(

trM3
)4
〉

c
= 4536N2 + 5184N4,

〈

(

trM3
)3

trM5
〉

c
= 15390N + 82620N3 + 32400N5,

〈

(

trM3
)3

trM17
〉

c
= 149652360N2

(

16N10 + 1354N8 + 33462N6 + 282518N4 + 730832N2 + 374043
)

,

〈

(

trM4
)3

trM2
〉

c
= 17280N+76032N3+20736N5,

〈

(

trM4
)4
〉

c
= 770688N2+964224N4+145152N6,

〈

(

trM4
)3

trM20
〉

c
= 798145920N2

(

60N12 + 8674N10 + 402650N8 + 7343262N6 + 51873380N4

+120454639N2 + 57830535
)

.

Example 3.2.8 (5-point correlators) We have ∀ i ≥ 1,

〈

(

trM2
)4

trM i
〉

c
= N Coefλ−i−1

[(

λ6 + λ4 − 3λ2 − 4λ4N − 15
)

γN+1(λ)−
(

λ6 − λ4 − 3λ2 − 4λ4N + 15
)

γN (λ)− 8λ3αN (λ)− 4λ3
]

〈

(

trM3
)4

trM i
〉

c
= N Coefλ−i−1

[

8λ
(

λ6 − 64N3 − 3λ2
(

20N2 + 7
)

− 12λ4N + 304N
)

αN (λ)

+
(

λ10 + 315
(

λ2 − 3
)

− 4N
(

2N
(

2N
(

4N2 +N − 106
)

+ 463
)

− 687
)

+ λ8(4N − 3)

−λ6(8(N − 2)N + 9) + λ4(45− 8N(4N(2N − 3) + 13)) + 8λ2N(2N(N(6 − 7N) + 49)− 93)
)

γN+1(λ)

+
(

−λ10 − 315
(

λ2 + 3
)

− λ8(4N + 3) + λ6(8N(N + 2) + 9) + λ4(8N(4N(2N + 3) + 13) + 45)

+8λ2N(2N(N(7N + 6)− 49)− 93) + 4N(2N(2N(N(4N − 1)− 106) − 463) − 687)
)

γN (λ)

+4λ
(

λ6 − 64N3 − 3λ2
(

20N2 + 7
)

− 12λ4N + 304N
)]

.

For example,

〈

(

trM2
)5
〉

c
= 384N2,

〈

(

trM2
)4

trM4
〉

c
= 1920N + 3840N3,

〈

(

trM2
)4

tr M20
〉

c
= 1152877440N

(

4N10 + 330N8 + 7392N6 + 50270N4 + 83754N2 + 14175
)

,

〈

(

trM3
)4

tr M2
〉

c
= 62208N4+54432N2,

〈

(

trM3
)4

trM4
〉

c
= 528768N5+1181952N3+204120N,

〈

(

trM3
)4

trM18
〉

c
= 283551840N2(5440827+11132606N2+4554930N4+576009N6+25058N8+320N10).

The GUE correlators 〈trM i1 . . . trM ik〉c that we compute with i1 + · · · + ik ≤ 10 agree with
[1, 5, 22].
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3.3 Polygon numbers on Riemann surfaces

In this subsection, we consider correlators of the form

〈

(

trM b
)k
〉

c

, b ≥ 3, k ≥ 1

which is exactly the case when b1 = b2 = · · · = b in the algorithm described by Def. 3.2.1–Prop. 3.2.3.

These correlators are polynomials in N whose coefficients are positive integers, called polygon
numbers on Riemann surfaces. More precisely, we have

〈

(

trM b
)k
〉

c

=
∑

0≤g≤ k
4
(b−2)+ 1

2

ng,b,kN
2−2g+( b

2
−1)k

where ng,b,k counts the number of connected oriented labelled ribbon graphs of genus g with k vertices
of valencies b. In other words, ng,b,k counts the number of labelled maps which are embedded into a
connected oriented closed surface of genus g; see details for example in [5, 11], or Appendix A.

Using our algorithm we worked out a program computing the polygon numbers. Below are tables
of first several polygon numbers with b = 3, 4, 5, 6, 7, 8.

k g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

2 12 3 0 0 0 0

4 5184 4536 0 0 0 0

6 9797760 19362240 3061800 0 0 0

8 45148078080 164367221760 89414357760 0 0 0

10 392212641300480 2332019568291840 2834113460935680 357485480352000 0 0

12
5 560 971 849

577 267 200
49 838 762 032

083 763 200
110 757 832 882

937 856 000
47 537 982 337

808 793 600
0 0

Table 1: Triangle numbers ng,3,k.

The above numbers of triangulations agree with the ones computed by Fleming [14], and with
Table 7 in Appendix A.

The numbers of quadrangulations (Table 2) for k ≤ 6 agree with the ones computed by Pierce [23].

Most of the numbers in Tables 3–6 seem not to be computed in the literature.
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k g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 2 1 0 0 0 0

2 36 60 0 0 0 0

3 1728 6336 1440 0 0 0

4 145152 964224 770688 0 0 0

5 17915904 192098304 348033024 58060800 0 0

6 2956124160 47357706240 158525890560 92253634560 0 0

7 614873825280 13922807316480 76300251955200 100275872071680 13948526592000 0

8 154928203970560
4755537360322

560
39364669475389

440
95431198231756

800
45881115652915

200
0

9
45 977 357 978

173 440
1 850 918 058

999 152 640
21 844 654 140

570 992 640
86 654 328 700

277 882 880
93 561 769 862

061 096 960
11 473 053 680

664 576 000

Table 2: Quadrangle numbers ng,4,k.

k g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

2 180 600 165 0 0 0

4 6480000 93960000 332100000 219510000 0 0

6 1242216000000 45300060000000 546671268000000 2354983470000000 2843338018500000 389492853750000

8
6246072

00000000000
4472187552
0000000000

12283912451664
00000000

152254618488
00000000000

814486310134308
00000000

155872936216116
000000000

10
6135286523184

00000000000
748085330014848

00000000000
381919155214554

7200000000000
994894820469295
20000000000000

1345274552969624
982600000000000

886998667042254
5388000000000000

Table 3: Pentagon numbers ng,5,k.

k g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 5 10 0 0 0 0

2 600 4800 4770 0 0 0

3 216000 4176000 17290800 12315600 0 0

4 142560000 5287680000 54015984000 161062992000 93360956400 0

5 141523200000 8805542400000 174855024000000 1291104489600000 3123016385040000 1565262377280000

6 190356480000000
1819210752

0000000
611671917312

000000
8806826030976

000000
527219331093504

00000
1096721661511872

00000

7
3255095808

00000000
448921046016

00000000
233492421222144

0000000
5707503816562944

0000000
666456378352813

440000000
34239929870156

77440000000

Table 4: Hexagon numbers ng,6,k.
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k g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

2 2800 34300 81340 16695 0 0

4 4609920000 270256560000 5470015824000 42516370176000 108544213999200 56597795793000

6
43505659008

000000
66630746448

00000000
4225455365922

00000000
134784066695700

244000000
219133289516560

146000000
16984808089605

44078400000

8
11023506707447

80800000000
3382196457804530

68800000000
4700014305292697

9005440000000
369200898096647
5731179520000000

17291108386034951
6876140800000000

48125851798487907
98122421760000000

Table 5: Heptagon numbers ng,7,k.

k g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 14 70 21 0 0 0

2 9800 215600 1009400 781200 0 0

3 21952000 1218336000 20217792000 110898368000 158932166400 24309331200

4 92198400000 10058845440000 386873706240000 6319266481920000 42291774083328000 96422698084608000

5 588594585600000
1094166355968

00000
79095340412928

00000
277053418672128

000000
482663835053568

0000000
39425239788834

816000000

Table 6: Octagon numbers ng,8,k.

4 Calculating the GUE correlators from the two-dimensional Frobe-

nius manifold of the Toda lattice

In this section, we briefly outline following [9, 7, 8] an algorithm for computing the genus expansion
of the GUE free energy. It is just a specification of the general algorithm of [9, 7] applied to the
two-dimensional Frobenius manifold with the potential

F =
1

2
u v2 + eu.

Such a Frobenius manifold appears in the description of the structure of the long wave limit of the
Toda lattice. The algorithm of [9] proves to be quite powerful for computation of the low genera
multipoint correlators. We have used it for checking the explicit examples presented above.

The algorithm will be illustrated on computation of the weighted numbers of triangulations on
surfaces of genus 0, 1 and 2. We will only describe the main steps of the algorithm referring the reader
to [9] for details.

Let v = v(x, s) be the solution to the cubic equation

v
(

1− 9s v + 18s2v2
)

= 6s x (4.0.6)

in the form of a power series in s vanishing at s = 0,

v = 6 s x+ 324 s3x2 + 31104 s5x3 + . . . . (4.0.7)

Put
w =

x

1− 6 s v
= x

(

1 + 36 s2x+ 3240 s4x2 + . . .
)

. (4.0.8)
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Introduce also the series

u = logw = log x+ 36 s2x+ 2592 s4x2 + . . . . (4.0.9)

Then the genus zero free energy is given by the series expansion of the following expression

F0 =
1

2

(

v2w +
1

2
w2

)

− 6s

(

1

2
v3w + vw2

)

+ 18 s2
(

1

4
v4w + v2w2 +

1

3
w3

)

−x
(

1

2
v2 + w

)

+ 6 s x

(

1

6
v3 + v w

)

+
1

2
ux2 (4.0.10)

=
1

2
x2
(

log x− 3

2

)

+ 6 s2x3 + 216 s4x4 + . . . .

Recall that the coefficient of sk at x = 1 is equal to the weighted number of planar triangulations with
k triangles.

The genus one free energy is given by the formula

F1 =
1

24
log
(

v2x − w u2x
)

(4.0.11)

= − 1

12
log x+

3

2
s2x+ 189 s4x2 + . . . .

The genus two expression is more involved. Introduce two series

u1,2 = v ± 2
√
w = 6 s x+ 324 s3x2 + 31104 s5x3 ± 2

√
x
(

1 + 18 s2x+ 1458 s4x2 + . . .
)

. (4.0.12)

Then

242 F2 =
4u′′1

3 u12

5u′1
4 − 4u′′2

3 u12

5u′2
4 − u′′1 u

′′
2

4u′1 u
′
2

+
3u′′1
4u′1

3

(

1

2
u′′1 u

′
2 −

7

5
u′′′1 u12

)

+
3u′′2
4u′2

3

(

1

2
u′′2 u

′
1 +

7

5
u′′′2 u12

)

+
1

4u′1
2

(

33

10
u′′1

2 − 9

10
u′′′1 u

′
2 +

1

10
u′′1 u

′′
2 + uIV1 u12

)

+
1

4u′2
2

(

33

10
u′′2

2 − 9

10
u′′′2 u

′
1 +

1

10
u′′1 u

′′
2 − uIV2 u12

)

− 1

4u′1

(

17

5
u′′′1 +

1

2
u′′′2

)

− 1

4u′2

(

17

5
u′′′2 +

1

2
u′′′1

)

− 1

10u212

(

u′1
3

u′2
+
u′2

3

u′1

)

− 1

u212

(

u′1
2 − 11

5
u′1 u

′
2 + u′2

2
)

+
u′′1 − u′′2
u12

(

u′2
5u′1

+
u′1
5u′2

+ 1

)

(4.0.13)

= − 1

240x2
+

8505

2
s6x+ . . .

Here u12 = u1−u2, u′1,2 = ∂xu1,2, u
′′
1,2 = ∂2xu1,2 etc. Applying this algorithm one obtains the following

table of the weighted numbers of triangulations of surfaces of genera 0, 1, 2 with k ≤ 20 triangles (k
is necessarily even); the computation takes less than a second.
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k g = 0 g = 1 g = 2

2 6 3/2 0

4 216 189 0

6 13608 26892 8505/2

8 119744 4076568 2217618

10 540416448/5 3213210384/5 3905028468

12 11609505792 104047172352 231226436160

14 9425943686016/7 120228382104192/7 62004956093424

16 165505114570752 2877311706393600 15594280091334144

18 21285494650967040 487638320996544768 3749645355442763904

20 14195644503284514816/5 417102705028906942464/5 4360691488086816325632/5

Table 7: Weighted triangle numbers ag
(

3k
)

.

In a similar way one can easily compute the weighted numbers of quadrangulations etc. of surfaces
of genus 0, 1, 2. In principle one can extend this algorithm to higher genera but the calculations
become more involved.

We plan to do large g and large k asymptotics of connected GUE correlators based on the two
algorithms described above in an upcoming publication.

A Appendix. GUE, Toda lattice and enumeration of ribbon graphs

A.1 GUE partition function and orthogonal polynomials

Consider the GUE partition function represented as an integral over the space H(N) of N × N
Hermitean matrices M = (Mij)

ZN (s; ǫ) =
(2π)−N ǫ−

1
12

V ol(N)

∫

H(N)
e−

1
ǫ
tr V (M)dM. (A.1.1)

Here the formal series V depending on the parameters s = (s3, s4, . . . ) has the form

V (M) =
1

2
M2 −

∑

j≥3

sjM
j . (A.1.2)

The integral with respect to the measure

dM =

N
∏

i=1

dMii

∏

i<j

dRe(Mij) dIm(Mij)
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will be understood2 as a formal asymptotic expansion3 with respect to the small parameter ǫ → +0.
The pre-factor V ol(N)−1 corresponds to the volume, with respect to the Haar measure, of the quotient
of the unitary group over the maximal torus [U(1)]N

V ol(N) = V ol
(

U(N)/ [U(1)]N
)

=
π

N(N−1)
2

G(N + 1)
(A.1.3)

Here G is the Barnes G-function taking the value

G(N + 1) =

N−1
∏

n=1

n! (A.1.4)

at positive integers. The formula (A.1.3) will be re-derived below.

Denote DN the set of diagonal N ×N matrices Λ = diag (λ1, λ2, . . . , λN ) with real ordered eigen-
values λ1 ≤ λ2 ≤ · · · ≤ λN . The map

U(N)/ [U(1)]N ×DN → H(N)

(A.1.5)

(U,Λ) 7→ U ΛU∗

is a local diffeomorphism away from a subset of codimension three in H(N). Because of invariance of
the measure w.r.t. to the action of unitary group one obtains

∫

H(N)
e−

1
ǫ
tr V (M)dM = V ol

(

U(N)/ [U(1)]N
)

∫

DN

∆2(λ) e−
1
ǫ

∑N
k=1 V (λk)dλ1 . . . dλN .

Here
∆(λ) =

∏

i<j

(λi − λj)

is the Vandermonde determinant. Due to symmetry of the integrand one can rewrite the last formula
as

∫

H(N)
e−

1
ǫ
trV (M)dM =

1

N !
V ol

(

U(N)/ [U(1)]N
)

∫

RN

∆2(λ) e−
1
ǫ

∑N
k=1 V (λk)dλ1 . . . dλN .

Denote
pn(λ) = λn + a1nλ

n−1 + · · · + ann, n = 0, 1, . . . (A.1.6)

a system of monic polynomials orthogonal w.r.t. to the exponential weight

∫ ∞

−∞
pn(λ) pm(λ) e−

1
ǫ
V (λ)dλ = hn δmn. (A.1.7)

2An alternative way is to consider the integral (A.1.1) at ǫ = 1 as a formal expansion in the parameters sk. Then one
can extend ZN (s; 1) also to the variables s1 and s2, V (M) = 1

2
M2

−
∑

j≥1 sjM
j . In this way one obtains a generating

series for correlators of all traces trM j for arbitrary j ≥ 1.
3Under certain assumptions for the polynomial V (M) it can be rigorously justified [11, 12] that the formal series

considered below are asymptotic expansions of convergent matrix integrals.
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Representing the Vandermonde as

∆(λ) = det

















p0(λ1) p0(λ2) . . . p0(λN )
p1(λ1) p1(λ2) . . . p1(λN )

· · . . . ·
· · . . . ·
· · . . . ·

pN−1(λ1) pN−1(λ2) . . . pN−1(λN )

















one obtains an expression of the last integral via the normalizing factors of the orthogonal polynomials

∫

RN

∆2(λ)e−
1
ǫ

∑N
k=1 V (λk)dλ1 . . . dλN = N !h0 h1 . . . hN−1.

We conclude that
∫

H(N)
e−

1
ǫ
tr V (M)dM = V ol

(

U(N)/ [U(1)]N
)

h0 h1 . . . hN−1. (A.1.8)

The formula (A.1.3) for the volume V ol
(

U(N)/ [U(1)]N
)

can be easily derived from the last equation.

Indeed, evaluating the lhs of eq. (A.1.8) at the Gaussian point t = 0 one obtains

∫

H(N)
e−

1
2ǫ

trM2
dM = 2

N
2 (π ǫ)

N2

2 .

At s = 0 the orthogonal polynomials (A.1.6)–(A.1.7) are expressed via Hermite polynomials

pn(λ) = ǫ
n
2 Hen(x), λ = ǫ

1
2x.

From
∫ ∞

−∞
Hen(x)Hem(x) e−

1
2
x2
dx =

√
2π n! δmn

it follows that
hn(s = 0) = ǫn+

1
2

√
2π n!

So, eq. (A.1.8) at s = 0 takes the form

2
N
2 (π ǫ)

N2

2 = V ol
(

U(N)/ [U(1)]N
)

· (2π)
N
2 ǫ

N2

2

N−1
∏

n=1

n!

This implies (A.1.3).

We conclude this Section with the following expression for the GUE partition function

ZN (s; ǫ) = h0 h1 . . . hN−1. (A.1.9)

Our nearest goal is to prove that this partition function is the tau-function of a particular solution of
Toda hierarchy.
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A.2 GUE and Toda

Denote vn, wn the coefficients of the three-term recursion relation for the orthogonal polynomials
pn(λ)

λ pn(λ) = pn+1(λ) + vn pn(λ) + wn pn−1(λ), n ≥ 0 (A.2.1)

p−1 = 0. That is, the orthogonal polynomials are eigenvectors of the second order difference operator

(Lψ)n = ψn+1 + vn ψn + wn ψn−1. (A.2.2)

The corresponding tri-diagonal matrix will also be denoted L = (Lij).

Denote

(f, g) =

∫ ∞

−∞
f(λ) g(λ) e−

1
ǫ
V (λ)dλ (A.2.3)

an inner product on the space of polynomials. Recall that all integrals are understood as formal series
in ǫ1/2 (actually, after division by

√
ǫ they contain only integer powers of ǫ). The symmetry

(λ pn, pm) = (pn, λ pm) ⇔ Lmnhm = Lnmhn

implies

wn =
hn
hn−1

=
Zn+1Zn−1

Z2
n

. (A.2.4)

Here hn = (pn, pn) (see eq. (A.1.7) above).

For an arbitrary square matrix X = (Xij) denote X− and X+ its upper- and lower-triangular parts

X− = (Xij)i<j , X+ = (Xij)i≥j , X = X+ +X−.

Lemma A.2.1 The orthogonal polynomials pn = pn(λ) satisfy

ǫ
∂pn
∂sj

+ (Aj p)n = 0, Aj = −
(

Lj
)

−
, j ≥ 3. (A.2.5)

Proof. Write

∂pn(λ)

∂sj
=

n−1
∑

i=0

A
(j)
i n pi(λ), n ≥ 1

for some coefficients A
(j)
in . Differentiating in sj the equation (pn, pm) = 0 for m < n we obtain

A(j)
mnhm +

1

ǫ

(

λjpn, pm
)

= 0.

Introduce matrices of multiplication by powers of λ

λjpn(λ) =

n+j
∑

i=0

(

Lj
)

in
pi(λ). (A.2.6)

We have
(

λjpn, pm
)

=
(

Lj
)

mn
hm,
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hence
ǫA(j)

mn = −
(

Lj
)

mn
, m < n (A.2.7)

that is,
ǫA(j) = −

(

Lj
)

−
.

Repeating a similar calculation for m = n we obtain

∂

∂sj
log

Zn+1

Zn
≡ ∂

∂sj
log hn =

(

Lj
)

nn
. (A.2.8)

Corollary A.2.2 The difference operator L satisfies

ǫ
∂L

∂sj
= [Aj , L] , Aj =

(

Lj
)

+
. (A.2.9)

Proof. Differentiating equation

λ pn =

n+1
∑

i=0

Lin pi

in sj and using eq. (A.2.5) obtain

ǫ
∂L

∂sj
=
[

L,
(

Lj
)

−

]

.

Since the operators L and Lj commute we arrive at (A.2.9).

Proposition A.2.3 The GUE partition function Z is a tau-function, in the sense of Definition 1.2.4
of the Toda lattice hierarchy.

Proof. Cor.A.2.2 tells that wn, vn is a particular solution to the Toda lattice hierarchy.

It then follows from (A.2.4) and (A.2.8) that the partition function Zn satisfies eq. (1.2.9) and
eq. (1.2.10). Let tj = sj+1, j = 0, 1, 2, . . . . Here s1, s2 are understood as in the footnote 2. Eq. (A.2.8)
implies that

∂

∂tj
log

Zn+1

Zn
= (j + 1)hj−1(n), j ≥ 0

where hj−1(n) :=
1

j+1(L
j+1)nn. Define

γn(λ) =
1

λ
+
∑

j≥0

(j + 1)hj−1(n− 1)

λj+2
.

We have
∑

j≥0

1

λj+2

∂

∂tj
log

Zn+1

Zn
=
∑

j≥0

1

λj+2
(j + 1)hj−1(n) = γn+1(λ)−

1

λ
.

So
∑

i,j≥0

1

µi+2λj+2

∂2

∂tj∂ti
log

Zn+1

Zn
= ∇(µ) γn+1(λ).
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Here, ∇(µ) is defined in (2.2.6). Noting that

∇(µ) γn+1(λ) =
γn+1(λ)(1 + 2αn+1(µ))− γn+1(µ)(1 + 2αn+1(λ))

λ− µ
+ γn+1(λ)γn+1(µ)

=
trRn+1(λ)Rn+1(µ)− trRn(λ)Rn(µ)

(λ− µ)2

we obtain
∑

i,j≥0

1

µi+2λj+2

∂2

∂tj∂ti
logZn =

trRn(λ)Rn(µ)− 1

(λ− µ)2
.

In the above formulae, Rn is the matrix resolvent of L. The proposition is proved.

A.3 GUE and enumeration of ribbon graphs

After rescaling M 7→ ǫ
1
2M and expansion in powers of the parameters one obtains

∫

H(N)
e−

1
ǫ
trV (M)dM = ǫ

N2

2

∫

H(N)
e−

1
2
trM2+

∑
j≥3 ǫ

j
2−1sj trMj

dM

Expanding in a series in ǫ yields

ZN (s; ǫ)

ZN (0; ǫ)
=
∑

k≥0

1

k!

∑

m≥0

ǫm
∑

i1+···+ik=k+2m

si1 . . . sik
〈

trM i1 . . . trM ik
〉

(A.3.1)

where
〈

trM i1 . . . trM ik
〉

:=

∫

trM i1 . . . trM ik e−
1
2
trM2

dM
∫

e−
1
2
trM2

dM
. (A.3.2)

The coefficients (A.3.2) of the perturbative expansion (A.3.1) are polynomials in N that can be
computed by applying the Wick rule. E.g.,

〈

trM4
〉

= 2N3 +N,
〈

(

trM3
)2
〉

= 12N3 + 3N,
〈

trM6
〉

= 5N4 + 10N2

etc. Terms of the polynomial (A.3.2) correspond to oriented ribbon graphs with k vertices. Expansion
of the logarithm of the partition function has a similar structure keeping connected graphs only:

log
ZN (s; ǫ)

ZN (0; ǫ)
=
∑

k≥0

1

k!

∑

m≥0

ǫm
∑

i1+···+ik=k+2m

si1 . . . sik
〈

trM i1 . . . trM ik
〉

c
. (A.3.3)

Introduce the ’t Hooft coupling parameter

x = N ǫ.

Re-expanding in ǫ the logarithm of the partition function we arrive at the main statement of this
section, see [5].
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Theorem A.3.1 Logarithm of the tau-function of the solution to the Toda hierarchy given by the
GUE partition function has the following expansion

logZN (s; ǫ)|N=x
ǫ
= logZN (0; ǫ) +

∑

g≥0

ǫ2g−2Fg(x; s3, s4, . . . )

Fg(x; s3, s4, . . . ) =
∑

k≥0

∑

i1,...,ik

ag(i1, . . . , ik) si1 . . . sikx
h

ag(i1, . . . , ik) =
1

k!
#{connected oriented labelled ribbon graphs of genus g with k vertices of valencies i1, . . . , ik}

=
1

k!

∑

Γ

ρ(Γ) =
∑

Γ

1

#SymΓ
(A.3.4)

h = 2− 2g −
(

k − |i|
2

)

, |i| = i1 + · · ·+ ik,

where the two last summations are taken over all connected (unlabelled) ribbon graphs Γ of genus g
with k vertices of valencies i1, . . . , ik, ρ(Γ) is the number of labelled ribbon graphs having the same
topological shape Γ, and #SymΓ is the order of the symmetry group of Γ.

In the particular case i1 = i2 = · · · = ik = 3 the dual to the ribbon graph is a triangulation of
the surface of genus g consisting of k triangles. Thus ag

(

3k
)

:= ag(3, . . . , 3) (k times) is equal to the
weighted number of triangulations of genus g with k triangles. In a similar way, ag

(

4k
)

is the weighted
number of quadrangulations of a surface of genus g with k squares, etc.

Since

ZN (0; ǫ) = (2π)−
N
2 ǫ

N2

2
− 1

12 G(N + 1)

we can also expand the first term in (A.3.4) with the help of the asymptotic expansion of the Barnes
G-function

logG(z + 1) ∼ z2

2

(

log z − 3

2

)

+
z

2
log 2π − 1

12
log z + ζ ′(−1) +

∑

ℓ≥1

B2ℓ+2

4ℓ(ℓ+ 1)z2ℓ
, z → ∞.

This yields the following genus expansion of the logarithm of the tau-function of the interpolated Toda
hierarchy where the shift operator ψn 7→ ψn+1 acting on functions on a lattice is replaced with the
translation ψ(x) 7→ ψ(x+ ǫ) acting on smooth functions on the real line,

log τ(x; s3, s4, . . . ; ǫ) =
x2

2ǫ2

(

log x− 3

2

)

− 1

12
log x+ ζ ′(−1) +

∑

g≥2

ǫ2g−2 B2g

4g(g − 1)x2g−2

+
∑

g≥0

ǫ2g−2Fg(x; s3, s4, . . . ). (A.3.5)

Remark A.3.2 The genus expansion (A.3.5) is often written as 1/N expansion, setting x = 1, so
ǫ = 1/N ,

logZN (s;N−1) = −N
2

2
logN − N

2
log 2π +

1

12
logN + logG(N + 1) +

∑

g≥0

N2−2gFg(s3, s4, . . . )

Fg(s3, s4, . . . ) =
∑

k≥0

∑

i1,...,ik

ag(i1, . . . , ik) si1 . . . sik .
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The coefficients ag(i1, . . . , ik) are the same as in (A.3.4).

Observe that the coefficients of the connected correlators as polynomials in N can be expressed
via the numbers ag(i1, . . . , ik) enumerating ribbon graphs. Namely, ∀ k ≥ 1 and ∀ i1, . . . , ik such that
|i| is even, we have

〈trM i1 trM i2 . . . trM ik〉c = k!
∑

0≤g≤
|i|
4
− k

2
+ 1

2

ag(i1, . . . , ik)N
2−2g−k+ |i|

2 .
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