Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs

Boris Dubrovin ${ }^{\text {a,* }}$, Si-Qi Liu ${ }^{\text {b }}$, Di Yang ${ }^{\text {a }}$, Youjin Zhang ${ }^{\text {b }}$
${ }^{\text {a }}$ SISSA, via Bonomea 265, Trieste 34136, Italy
${ }^{\text {b }}$ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, PR China

A R T I C L E I N F O

Article history:

Received 23 October 2014
Received in revised form 27 October 2015
Accepted 25 January 2016
Available online 24 February 2016
Communicated by Ravi Vakil

$M S C$:

primary 53D45
secondary 37 K 10

Keywords:
Frobenius manifold
Hodge integral
Integrable hierarchy
Tau-symmetry
Gromov-Witten invariant

Abstract

For an arbitrary semisimple Frobenius manifold we construct Hodge integrable hierarchy of Hamiltonian partial differential equations. In the particular case of quantum cohomology the tau-function of a solution to the hierarchy generates the intersection numbers of the Gromov-Witten classes and their descendents along with the characteristic classes of Hodge bundles on the moduli spaces of stable maps. For the onedimensional Frobenius manifold the Hodge hierarchy is an integrable deformation of the Korteweg-de Vries hierarchy depending on an infinite number of parameters. Conjecturally this hierarchy is a universal object in the class of scalar Hamiltonian integrable hierarchies possessing tau-functions. © 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let X be a smooth projective variety. Assume that the odd cohomologies $H^{\text {odd }}(X ; \mathbb{C})$ vanish. Denote by $X_{g, m, \beta}$ the moduli space of stable maps of degree $\beta \in H_{2}(X, \mathbb{Z})$ with target X of curves of genus g with m marked points. Choose a basis $\phi_{1}=1, \phi_{2}, \ldots, \phi_{n}$ of the cohomology space $H^{*}(X ; \mathbb{C})$. The genus g Hodge integrals of X are certain rational numbers which admit the generating function

$$
\begin{equation*}
\mathcal{H}_{g}(\mathbf{t} ; \mathbf{s})=\sum_{\beta \in H_{2}(X, \mathbb{Z})}\left\langle e^{\sum_{k \geq 1} s_{2 k-1} \mathrm{ch}_{2 k-1}(\mathbb{E})} e^{\sum_{p \geq 0} t^{\alpha, p} \tau_{p}\left(\phi_{\alpha}\right)}\right\rangle_{g, \beta} \tag{1.1}
\end{equation*}
$$

Here \mathbb{E} is the rank g Hodge bundle over $X_{g, m, \beta}, \operatorname{ch}_{k}(\mathbb{E}) \in H^{2 k}\left(X_{g, m, \beta}\right)$ are the components of the Chern character of \mathbb{E}, and

$$
\begin{align*}
& \left\langle\prod_{i=1}^{l} \operatorname{ch}_{k_{i}}(\mathbb{E}) \prod_{j=1}^{m} \tau_{p_{j}}\left(\phi_{\alpha_{j}}\right)\right\rangle_{g, \beta} \\
& \quad=\int_{\left[X_{g, m, \beta}\right]^{\text {vir }}} \prod_{i=1}^{l} \operatorname{ch}_{k_{i}}(\mathbb{E}) \wedge \prod_{j=1}^{m} e v_{j}^{*}\left(\phi_{\alpha_{j}}\right) \wedge c_{1}^{p_{j}}\left(\mathcal{L}_{j}\right) \tag{1.2}
\end{align*}
$$

where \mathcal{L}_{j} are the tautological line bundles over $X_{g, m, \beta}$, and $e v_{i}: X_{g, m, \beta} \rightarrow X$ are the evaluation maps. The indices of the independent variables $s_{2 k-1}, t^{\alpha, p}$ take integer values $k \geq 1, \alpha=1, \ldots, n, p \geq 0$. Here and in what follows, the Einstein summation convention is assumed only for repeated Greek indices with one-up and one-down. We call $\mathcal{H}_{g}(\mathbf{t} ; \mathbf{s})$ the genus g Hodge potential of X, and the function

$$
\mathcal{H}(\mathbf{t} ; \mathbf{s} ; \epsilon)=\sum_{g=0}^{\infty} \epsilon^{2 g-2} \mathcal{H}_{g}(\mathbf{t} ; \mathbf{s})
$$

the Hodge potential of X. Here ϵ is an independent variable. Note that when the s-parameters are set to zero, the functions $\mathcal{H}_{g}(\mathbf{t} ; \mathbf{s}), \mathcal{H}(\mathbf{t} ; \mathbf{s} ; \epsilon)$ reduce to the generating functions for Gromov-Witten invariants of X

$$
\mathcal{F}_{g}(\mathbf{t})=\mathcal{H}_{g}(\mathbf{t} ; \mathbf{0}), \quad \mathcal{F}(\mathbf{t} ; \epsilon)=\mathcal{H}(\mathbf{t} ; \mathbf{0} ; \epsilon)
$$

The partition function $Z_{\mathbb{E}}=Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)$ of the Hodge integrals (also called the total Hodge potential in [28]) is defined by

$$
Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)=e^{\mathcal{H}(\mathbf{t} ; \mathbf{s} ; \epsilon)} .
$$

As it was shown by C. Faber and R. Pandharipande [22], this function satisfies the equations

$$
\begin{align*}
\frac{\partial Z_{\mathbb{E}}}{\partial s_{2 k-1}}= & \frac{B_{2 k}}{(2 k)!}\left(\frac{\partial}{\partial t^{1,2 k}}-\sum_{p \geq 0} t^{\alpha, p} \frac{\partial}{\partial t^{\alpha, p+2 k-1}}\right. \\
& \left.+\frac{\epsilon^{2}}{2} \sum_{p=0}^{2 k-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial^{2}}{\partial t^{\alpha, p} \partial t^{\beta, 2 k-2-p}}\right) Z_{\mathbb{E}} \tag{1.3}
\end{align*}
$$

where $B_{2 k}$ are the Bernoulli numbers. Here the matrix $\left(\eta^{\alpha \beta}\right)=\left(\eta_{\alpha \beta}\right)^{-1}$ is the inverse ${ }^{1}$ to the Poincaré pairing matrix

$$
\eta_{\alpha \beta}=\int_{X} \phi_{\alpha} \wedge \phi_{\beta}
$$

To simplify notations, we redenote $-\frac{B_{2 k}}{(2 k)!} s_{2 k-1}$ by s_{k}. In new notations the equations (1.3) take the form

$$
\begin{align*}
& \frac{\partial Z_{\mathbb{E}}}{\partial s_{k}}=\left(\sum_{p \geq 0} \tilde{t}^{\alpha, p} \frac{\partial}{\partial t^{\alpha, p+2 k-1}}-\frac{\epsilon^{2}}{2} \sum_{p=0}^{2 k-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial^{2}}{\partial t^{\alpha, p} \partial t^{\beta, 2 k-2-p}}\right) Z_{\mathbb{E}}, \tag{1.4}\\
& Z_{\mathbb{E}}(\mathbf{t} ; 0 ; \epsilon)=Z(\mathbf{t} ; \epsilon) . \tag{1.5}
\end{align*}
$$

Here $k \geq 1, \tilde{t}^{\alpha, p}=t^{\alpha, p}-\delta_{1}^{\alpha} \delta_{1}^{p}, Z(\mathbf{t} ; \epsilon)=e^{\mathcal{F}(\mathbf{t} ; \epsilon)}$ is the partition function for GromovWitten invariants of X.

In this paper, we present an algorithm to solving equations (1.4) with the given initial condition (1.5). It yields a representation of the Hodge potentials $\mathcal{H}_{g}(\mathbf{t} ; \mathbf{s})$ in terms of the Gromov-Witten potentials $\mathcal{F}_{g}(\mathbf{t})$ and the genus zero primary two-point functions

$$
v_{\alpha}(\mathbf{t})=\frac{\partial^{2} \mathcal{F}_{0}(\mathbf{t})}{\partial t^{1,0} \partial t^{\alpha, 0}}, \quad \alpha=1, \ldots, n
$$

Such a representation of the Hodge potentials enables us to derive the hierarchy of PDEs in certain normal form [16] that controls the Hodge integrals as well as to study its properties.

Moreover, in our construction the quantum cohomology of X can be replaced with an arbitrary calibrated semisimple Frobenius manifold. Recall that the construction of [16] associates with such a Frobenius manifold an integrable hierarchy of topological type. It is a hierarchy of Hamiltonian PDEs of the form

$$
\begin{equation*}
\frac{\partial u^{\alpha}}{\partial t^{\beta, q}}=P^{\alpha \gamma} \frac{\delta H_{\beta, q}}{\delta u^{\gamma}(x)}, \quad \alpha, \beta=1, \ldots, n, q \geq 0 \tag{1.6}
\end{equation*}
$$

[^1]with $n=$ the dimension of the Frobenius manifold. Here the Hamiltonian operator $P^{\alpha \gamma}=$ $\sum_{g \geq 0} \epsilon^{2 g} P_{g}^{\alpha \gamma}$ and the Hamiltonians
$$
H_{\beta, q}=\int h_{\beta, q}\left(u ; u_{x}, \ldots ; \epsilon\right) d x, \quad \beta=1, \ldots, n, q \geq 0
$$
are formal power series in an independent variable ϵ^{2} of the form
\[

$$
\begin{align*}
& P_{0}^{\alpha \gamma}=\eta^{\alpha \gamma} \partial_{x}, \quad P_{g}^{\alpha \gamma}=\sum_{k=1}^{2 g+1} P_{g, k}^{\alpha \gamma}\left(u ; u_{x}, \ldots, u^{(2 g+1-k)}\right) \partial_{x}^{k}, g \geq 1 \tag{1.7}\\
& h_{\beta, q}=\theta_{\beta, q+1}(u)+\sum_{k \geq 1} \epsilon^{2 k} h_{\beta, q, k}\left(u ; u_{x}, \ldots, u^{(2 k)}\right), \tag{1.8}
\end{align*}
$$
\]

where $u=\left(u^{1}, \ldots, u^{n}\right), u^{(m)}=\partial_{x}^{m} u,\left(\eta^{\alpha \gamma}\right)$ is a constant symmetric invertible matrix (which is also used to raise the Greek indices, similarly as footnote 1), and $P_{g, k}^{\alpha \gamma}, h_{\beta, q, k}$ are graded homogeneous polynomials $[7,8]$ in $u_{x}^{\gamma}, u_{x x}^{\gamma}, \ldots, u^{\gamma, m}=\partial_{x}^{m} u^{\gamma}$ of degree $2 g+1-k$ and $2 k$ respectively with the assignment of degrees

$$
\operatorname{deg} \partial_{x}^{m} u^{\gamma}=m
$$

In the above formula $\theta_{\beta, q}(u)$ are the coefficients of expansion of the deformed flat coordinates associated with the chosen calibration of the Frobenius manifold.

As it is clear from the form (1.7), the variables u_{1}, \ldots, u_{n} are densities of Casimirs of the Poisson bracket. It is convenient to include them into the list of conservation laws $h_{\beta, q}$ of the hierarchy assigning to them the level -1 ,

$$
\begin{gather*}
h_{\beta,-1}=u_{\beta}, \quad \beta=1, \ldots, n \tag{1.9}\\
H_{\beta,-1}=\int u_{\beta}(x) d x, \quad P^{\alpha \gamma} \frac{\delta H_{\beta,-1}}{\delta u^{\gamma}(x)} \equiv 0
\end{gather*}
$$

The hierarchy (1.6) also possesses the tau-symmetry property

$$
\begin{equation*}
\frac{\partial h_{\alpha, p-1}\left(u ; u_{x}, \ldots ; \epsilon\right)}{\partial t^{\beta, q}}=\frac{\partial h_{\beta, q-1}\left(u ; u_{x}, \ldots ; \epsilon\right)}{\partial t^{\alpha, p}}, \quad \alpha, \beta=1, \ldots, n, \quad p, q \geq 0 \tag{1.10}
\end{equation*}
$$

Due to this property, for an arbitrary common solution

$$
\begin{equation*}
u_{\alpha}(x, \mathbf{t} ; \epsilon)=v_{\alpha}(x, \mathbf{t})+\sum_{g \geq 1} \epsilon^{2 g} v_{\alpha}^{[g]}(x, \mathbf{t}), \quad \alpha=1, \ldots, n \tag{1.11}
\end{equation*}
$$

to the equations (1.6), there exists a tau-function

$$
\begin{equation*}
\tau(x, \mathbf{t} ; \epsilon)=\exp \sum_{g \geq 0} \epsilon^{2 g-2} \mathcal{F}_{g}(x, \mathbf{t}) \tag{1.12}
\end{equation*}
$$

such that

$$
\begin{equation*}
u_{\alpha}(x, \mathbf{t} ; \epsilon)=\epsilon^{2} \frac{\partial^{2} \log \tau(x, \mathbf{t} ; \epsilon)}{\partial x \partial t^{\alpha, 0}} \tag{1.13}
\end{equation*}
$$

Note that, in particular

$$
\begin{equation*}
v_{\alpha}(x, \mathbf{t})=\frac{\partial^{2} \mathcal{F}_{0}(x, \mathbf{t})}{\partial x \partial t^{\alpha, 0}} \tag{1.14}
\end{equation*}
$$

The functions $v_{1}(x, \mathbf{t}), \ldots, v_{n}(x, \mathbf{t})$ are common solutions to the so-called principal hierarchy

$$
\begin{equation*}
\frac{\partial v_{\alpha}}{\partial t^{\beta, q}}=\frac{\partial}{\partial x} \frac{\partial \theta_{\beta, q+1}(v)}{\partial v^{\alpha}} \tag{1.15}
\end{equation*}
$$

obtained from (1.6) by the "dispersionless limit" $\epsilon \rightarrow 0$. Moreover, the higher genus terms $\mathcal{F}_{g}, g \geq 1$ in the expansion of the free energy can be expressed $[18,16]$ as functions of $v_{\alpha}(x, \mathbf{t})$ and their x-derivatives, up to the order $3 g-2$.

Remark 1.1. According to E. Witten [43] in a certain class of quantum field theories the partition function can be identified with the tau-function of an integrable hierarchy. The time variables of the hierarchy are identified with the coupling constants of the quantum field theory; the dependent variables of the hierarchy are two-point correlators of the so-called primary fields,

$$
u_{\alpha}=\left\langle\left\langle\phi_{1} \phi_{\alpha}\right\rangle\right\rangle, \quad \alpha=1, \ldots, n
$$

The dimension of the Frobenius manifold coincides with the number of primaries. The Hamiltonian densities of the hierarchy coincide with certain two-point correlators of the so-called gravitational descendents of the primaries. In our notations,

$$
\begin{equation*}
\left.h_{\alpha, p}\left(u ; u_{x}, \ldots ; \epsilon\right)\right|_{u=u(x ; \mathbf{t} ; \epsilon)}=\left\langle\left\langle\phi_{1,0} \phi_{\alpha, p+1}\right\rangle\right\rangle=\epsilon^{2} \frac{\partial^{2} \log \tau(x, \mathbf{t} ; \epsilon)}{\partial x \partial t^{\alpha, p+1}} \tag{1.16}
\end{equation*}
$$

The parameter ϵ can be identified with the string coupling constant.
Hamiltonian hierarchies of the type (1.6)-(1.10) will be called tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs (see below Definition 4.1 for details). They can be considered as ϵ-deformations of principal hierarchies (1.15).

Remark 1.2. In the axiomatic definition [16] of an integrable hierarchy of topological type it is also included existence of a bihamiltonian structure of equations (1.6). For the hierarchy (1.6) associated with an arbitrary semisimple calibrated Frobenius manifold the second Hamiltonian structure does exist. However the proof of polynomiality in jet variables of this second Hamiltonian structure remains an open question. The class of
tau-symmetric Hamiltonian integrable hierarchies is wider than the subclass of integrable hierarchies of topological type.

Let us fix a calibrated n-dimensional semisimple Frobenius manifold; choose a particular solution of the form (1.11) to the associated hierarchy (1.6) such that the tau-function of this solution satisfies the celebrated string equation:

$$
\sum_{p \geq 1} \tilde{t}^{\alpha, p} \frac{\partial \tau(\mathbf{t} ; \epsilon)}{\partial t^{\alpha, p-1}}+\frac{1}{2 \epsilon^{2}} \eta_{\alpha \beta} \tilde{t}^{\alpha, 0} \tilde{t}^{\beta, 0} \tau(\mathbf{t} ; \epsilon)=0
$$

with $\tilde{t}^{\alpha, p}=t^{\alpha, p}-c^{\alpha, p}$ for some constants $c^{\alpha, p}$ (from now on we will suppress the explicit dependence on x due to the identification $x=t^{1,0}$). The solution is called topological if $c^{\alpha, p}=\delta_{1}^{\alpha} \delta_{1}^{p}$. Denote

$$
\mathcal{F}(\mathbf{t} ; \epsilon)=\sum_{g \geq 0} \epsilon^{2 g-2} \mathcal{F}_{g}(\mathbf{t})=\log \tau(\mathbf{t} ; \epsilon)
$$

the logarithm of $\tau(\mathbf{t} ; \epsilon)$. We want to solve the system of equations

$$
\begin{equation*}
\frac{\partial Z_{\mathbb{E}}}{\partial s_{k}}=\left(\sum_{p \geq 0} \tilde{t}^{\alpha, p} \frac{\partial}{\partial t^{\alpha, p+2 k-1}}-\frac{\epsilon^{2}}{2} \sum_{p=0}^{2 k-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial^{2}}{\partial t^{\alpha, p} \partial t^{\beta, 2 k-2-p}}\right) Z_{\mathbb{E}} \tag{1.17}
\end{equation*}
$$

with the initial data

$$
\begin{equation*}
Z_{\mathbb{E}}(\mathbf{t} ; 0 ; \epsilon)=e^{\mathcal{F}(\mathbf{t} ; \epsilon)} \tag{1.18}
\end{equation*}
$$

The logarithm of the solution

$$
\log Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)=: \mathcal{H}(\mathbf{t} ; \mathbf{s} ; \epsilon)
$$

will be called Hodge potential associated with the Frobenius manifold. Note that it also depends on the choice of a solution to the hierarchy (1.6). The solution to (1.17)-(1.18) will be written in the form

$$
Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)=\exp \sum_{g \geq 0} \epsilon^{2 g-2} \mathcal{H}_{g}(\mathbf{t} ; \mathbf{s})
$$

where the coefficients $\mathcal{H}_{g}(\mathbf{t} ; \mathbf{s})$ of the genus expansion are written in terms of $\mathcal{F}_{g}(\mathbf{t})$ and certain polynomials in $s_{1}, s_{2}, \ldots, s_{g}$ with coefficients depending polynomially on the variables $\partial_{x}^{k} v^{\alpha}=\partial_{x}^{k} v^{\alpha}(\mathbf{t}), k \geq 2$. We also derive upper bounds for the degrees of these polynomials with respect to a gradation $\overline{\operatorname{deg}}$ defined as follows

$$
\begin{align*}
& \overline{\operatorname{deg}} s_{k}=2 k-1, \quad k \geq 1 \tag{1.19}\\
& \overline{\operatorname{deg}} \partial_{x}^{j} v^{\alpha}=j-1, \quad j \geq 2 \tag{1.20}
\end{align*}
$$

Theorem 1.3. For an arbitrary calibrated semisimple Frobenius manifold and an arbitrary solution (1.11) to the associated integrable hierarchy of topological type there exists a unique Hodge potential determined by the system of equations (1.17) with the initial conditions (1.18). It can be represented in the form

$$
\begin{aligned}
& \mathcal{H}_{0}=\mathcal{F}_{0} \\
& \mathcal{H}_{1}=\mathcal{F}_{1}-\frac{1}{2} s_{1} \eta^{\alpha \beta} \partial_{v^{\alpha}} \partial_{v^{\beta}} F(v) \\
& \mathcal{H}_{g}=\mathcal{F}_{g}+\Delta \mathcal{H}_{g}\left(v ; v_{x}, v_{x x}, \ldots, v^{(3 g-3)} ; s_{1}, \ldots, s_{g}\right) \quad \text { for } \quad g \geq 2
\end{aligned}
$$

where F is the potential of the Frobenius manifold, $\Delta \mathcal{H}_{g}(g \geq 2)$ is a polynomial in $s_{1}, \ldots, s_{g}, v_{x x}, \ldots, v^{(3 g-3)}$ and a rational function in v_{x} satisfying

$$
\begin{equation*}
\overline{\operatorname{deg}} \Delta \mathcal{H}_{g} \leq 3 g-3 \tag{1.21}
\end{equation*}
$$

The coefficients of these polynomials/rational functions are smooth functions of v belonging to the semisimple part of the Frobenius manifold. They are independent from the choice of a solution (1.11).

In the above formulae the vector-function $v=v(\mathbf{t})$ depends on $\mathbf{t}=\left(t^{\alpha, p}\right)$ according to the dispersionless limit (1.15) of the hierarchy (1.6). The algorithm for recursive calculations of the coefficients $\Delta \mathcal{H}_{g}$ will be given in Section 3 below.

Example 1.4. For $n=1$ there is only one Frobenius manifold. It corresponds to the case $X=a$ point. The associated integrable hierarchy of topological type coincides with the KdV hierarchy [43,33,16,13]

$$
\begin{align*}
\frac{\partial u}{\partial t_{0}} & =u_{x} \tag{1.22}\\
\frac{\partial u}{\partial t_{1}} & =u u_{x}+\frac{\epsilon^{2}}{12} u_{x x x} \tag{1.23}\\
\frac{\partial u}{\partial t_{q}} & =\frac{1}{2 q+1}\left(\frac{\epsilon^{2}}{4} \partial_{x}^{2}+2 u+u_{x} \partial_{x}^{-1}\right) \frac{\partial u}{\partial t_{q-1}}, \quad q \geq 2 \tag{1.24}
\end{align*}
$$

where we redenote u^{1} by u. For the topological solution to the KdV hierarchy the Hodge potential gives the generating function of intersection numbers of the ψ - and λ-classes on the Deligne-Mumford moduli spaces $\overline{\mathcal{M}}_{g, m}$ of stable algebraic curves. In this case the above procedure gives the following expressions of the Hodge potentials in terms of the Witten-Kontsevich tau-function of the KdV hierarchy

$$
\begin{align*}
& \mathcal{H}_{0}(\mathbf{t} ; \mathbf{s})=\mathcal{F}_{0}(\mathbf{t}) \tag{1.25}\\
& \mathcal{H}_{1}(\mathbf{t} ; \mathbf{s})=\mathcal{F}_{1}(\mathbf{t})-\frac{1}{2} s_{1} v=\frac{1}{24} \log v_{x}-\frac{1}{2} s_{1} v \tag{1.26}
\end{align*}
$$

$$
\begin{equation*}
\mathcal{H}_{2}(\mathbf{t} ; \mathbf{s})=\mathcal{F}_{2}(\mathbf{t})+s_{1}\left(\frac{11 v_{x x}^{2}}{480 v_{x}^{2}}-\frac{v_{x x x}}{40 v_{x}}\right)+\frac{7}{40} s_{1}^{2} v_{x x}-\left(\frac{s_{1}^{3}}{10}+\frac{s_{2}}{48}\right) v_{x}^{2} \tag{1.27}
\end{equation*}
$$

etc. Here we redenote v^{1} by v. Recall that

$$
\mathcal{F}_{2}(\mathbf{t})=\frac{v^{(4)}}{1152 v_{x}^{2}}-\frac{7 v_{x x} v_{x x x}}{1920 v_{x}^{3}}+\frac{v_{x x}^{3}}{360 v_{x}^{4}} .
$$

We also omit the first index (being always equal to one) of the time variables and of the Hamiltonians. The dependence of v on $\mathbf{t}=\left(t_{0}=x, t_{1}, \ldots\right)$ (change of notations: $t^{p} \rightarrow t_{p}$ is made) is determined by the dispersionless limit of the KdV hierarchy

$$
\begin{equation*}
\frac{\partial v}{\partial t_{q}}=\frac{\partial}{\partial x} \frac{\delta H_{q}}{\delta v(x)}=\frac{v^{q}}{q!} v_{x}, \quad q \geq 0 \tag{1.28}
\end{equation*}
$$

(also called the Riemann hierarchy) with

$$
H_{q}=\int \frac{v^{q+2}}{(q+2)!} d x .
$$

For the topological (aka Witten-Kontsevich) solution one has

$$
\begin{equation*}
v(\mathbf{t})=\sum_{k=1}^{\infty} \frac{1}{k} \sum_{p_{1}+\ldots+p_{k}=k-1} \frac{t_{p_{1}}}{p_{1}!} \ldots \frac{t_{p_{k}}}{p_{k}!}, \tag{1.29}
\end{equation*}
$$

which is determined by the dispersionless KdV hierarchy (1.28) and the genus zero string equation.

We will now construct a new hierarchy of integrable Hamiltonian PDEs associated with the calibrated semisimple n-dimensional Frobenius manifold under consideration. The equations of the hierarchy will have the form analogous to (1.6)-(1.10) but they will depend on the parameters s_{1}, s_{2}, \ldots Logarithms of tau-functions of the new hierarchy are Hodge potentials, $\log \tau=\mathcal{H}$. That is, the solutions w_{1}, \ldots, w_{n} are given by the second derivatives of the Hodge potential

$$
\begin{equation*}
w_{\alpha}(\mathbf{t} ; \mathbf{s} ; \epsilon)=\epsilon^{2} \frac{\partial^{2} \mathcal{H}(\mathbf{t} ; \mathbf{s} ; \epsilon)}{\partial x \partial t^{\alpha, 0}}=v_{\alpha}+\sum_{g \geq 1} \epsilon^{2 g} \frac{\partial^{2} \mathcal{H}_{g}(\mathbf{t} ; \mathbf{s})}{\partial x \partial t^{\alpha, 0}} . \tag{1.30}
\end{equation*}
$$

Note that, due to Theorem 1.3, the expansion (1.30) can be represented in the form

$$
\begin{equation*}
w_{\alpha}=v_{\alpha}+\sum_{g \geq 1} \epsilon^{2 g} V_{\alpha}^{[g]}\left(v ; v_{x}, \ldots, v^{(3 g)} ; s_{1}, \ldots, s_{g}\right) \tag{1.31}
\end{equation*}
$$

where the g-th term of the expansion is a polynomial in $s_{1}, \ldots, s_{g}, v_{x x}, \ldots, v^{(3 g)}$ with coefficients that are rational functions in v_{x} and smooth functions in v on the semisimple
part of the Frobenius manifold. This is the clue for constructing the new hierarchy called Hodge hierarchy associated with the given calibrated semisimple Frobenius manifold. Namely, following the scheme of [16], we apply the substitution

$$
\begin{equation*}
v_{\alpha} \mapsto w_{\alpha}=v_{\alpha}+\sum_{g \geq 1} \epsilon^{2 g} V_{\alpha}^{[g]}\left(v ; v_{x}, \ldots, v^{(3 g)} ; s_{1}, \ldots, s_{g}\right), \quad \alpha=1, \ldots, n \tag{1.32}
\end{equation*}
$$

to the equations of the principal hierarchy (1.15) (the so-called quasi-Miura transformation, in the terminology of [16]). The same substitution has to be applied to the Hamiltonian structure and to the Hamiltonians of the hierarchy.

Theorem 1.5. The Hodge hierarchy associated with an arbitrary semisimple calibrated Frobenius manifold is a tau-symmetric integrable hierarchy of Hamiltonian evolutionary PDEs.

The main step in the proof of the theorem is in proving polynomiality, at every order in ϵ, of the equations of the hierarchy, of the Hamiltonian densities as well as of the deformed Poisson bracket. This can be achieved with the help of the technique developed by A. Buryak, H. Posthuma and S. Shadrin $[7,8]$.

Example 1.6. For the one-dimensional Frobenius manifold the substitution (1.32) has the form

$$
\begin{align*}
w(\mathbf{t} ; \mathbf{s}) & =\frac{\partial^{2}}{\partial x^{2}}\left(\mathcal{H}_{0}+\epsilon^{2} \mathcal{H}_{1}+\epsilon^{4} \mathcal{H}_{2}+\cdots\right) \\
& =v+\epsilon^{2}\left(-\frac{1}{2} v_{2} s_{1}-\frac{v_{2}^{2}}{24 v_{1}^{2}}+\frac{v_{3}}{24 v_{1}}\right)+\epsilon^{4}\left[\frac{v_{2}^{5}}{18 v_{1}^{6}}-\frac{35 v_{2}^{3} v_{3}}{288 v_{1}^{5}}\right. \\
& +\frac{19 v_{2} v_{3}^{2}}{384 v_{1}^{4}}+\frac{17 v_{2}^{2} v_{4}}{480 v_{1}^{4}}-\frac{73 v_{3} v_{4}}{5760 v_{1}^{3}}-\frac{41 v_{2} v_{5}}{5760 v_{1}^{3}}+\frac{v_{6}}{1152 v_{1}^{2}} \\
& +\left(\frac{11 v_{2}^{4}}{80 v_{1}^{4}}-\frac{67 v_{2}^{2} v_{3}}{240 v_{1}^{3}}+\frac{17 v_{3}^{2}}{240 v_{1}^{2}}+\frac{23 v_{2} v_{4}}{240 v_{1}^{2}}-\frac{v_{5}}{40 v_{1}}\right) s_{1} \\
& \left.+\frac{7 v_{4}}{40} s_{1}^{2}-\left(\frac{v_{2}^{2}}{5}+\frac{v_{1} v_{3}}{5}\right) s_{1}^{3}-\left(\frac{v_{2}^{2}}{24}+\frac{v_{1} v_{3}}{24}\right) s_{2}\right]+\mathcal{O}\left(\epsilon^{6}\right) \tag{1.33}
\end{align*}
$$

Here we denote

$$
v_{k}=\partial_{x}^{k} v(\mathbf{t}), \quad k \geq 1
$$

After the substitution one arrives at the following equations (like above we denote $w_{k}=$ $\left.\partial_{x}^{k} w(\mathbf{t})\right)$ (also here change of notations $t^{p} \rightarrow t_{p}$)

$$
\begin{equation*}
\frac{\partial w}{\partial t_{0}}=\tilde{P} \frac{\delta \tilde{H}_{0}}{\delta w(x)}=w_{x} \tag{1.34}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial w}{\partial t_{1}}= & \tilde{P} \frac{\delta \tilde{H}_{1}}{\delta w(x)}=w w_{x}+\epsilon^{2}\left(\frac{w_{x x x}}{12}-w_{x} w_{x x} s_{1}\right) \\
& +\epsilon^{4}\left[-\frac{w_{5}}{60} s_{1}+\left(w_{2} w_{3}+\frac{1}{5} w_{1} w_{4}\right) s_{1}^{2}+\left(-\frac{8}{5} w_{1} w_{2}^{2}-\frac{4}{5} w_{1}^{2} w_{3}\right) s_{1}^{3}\right. \\
& \left.+\left(-\frac{1}{3} w_{1} w_{2}^{2}-\frac{1}{6} w_{1}^{2} w_{3}\right) s_{2}\right]+\mathcal{O}\left(\epsilon^{6}\right) \tag{1.35}\\
\frac{\partial w}{\partial t_{q}}= & \tilde{P} \frac{\delta \tilde{H}_{q}}{\delta w(x)}, \quad q \geq 2 \tag{1.36}
\end{align*}
$$

Here the Hamiltonian operator is given by

$$
\begin{equation*}
\tilde{P}=\partial_{x}-\epsilon^{2} s_{1} \partial_{x}^{3}+\frac{3}{5} \epsilon^{4} s_{1}^{2} \partial_{x}^{5}+\mathcal{O}\left(\epsilon^{6}\right) \tag{1.37}
\end{equation*}
$$

and the first two Hamiltonians have the following expressions

$$
\begin{align*}
\tilde{H}_{0} & =\int\left[\frac{1}{2} w^{2}-\frac{1}{2} \epsilon^{2} s_{1} w_{x}^{2}+\frac{1}{5} \epsilon^{4} s_{1}^{2} w_{x x}^{2}+\mathcal{O}\left(\epsilon^{6}\right)\right] d x \tag{1.38}\\
\tilde{H}_{1} & =\int\left[\frac{1}{6} w^{3}+\epsilon^{2}\left(-\frac{1}{24}-\frac{1}{2} s_{1} w\right) w_{x}^{2}\right. \\
& \left.+\epsilon^{4}\left(\left(-\frac{1}{5} s_{1}^{3}-\frac{1}{24} s_{2}\right) w w_{x}^{2} w_{x x}+\frac{1}{30}\left(s_{1}+6 s_{1}^{2} w\right) w_{x x}^{2}\right)+\mathcal{O}\left(\epsilon^{6}\right)\right] d x \tag{1.39}
\end{align*}
$$

Equations (1.34)-(1.36) are called the Hodge hierarchy of a point. ${ }^{2}$
More specific examples will be presented in Sect. 4.
We expect that the Hodge hierarchy of Example 1.6 plays the role of a universal object in the following class of tau-symmetric integrable hierarchies of scalar Hamiltonian evolutionary PDEs obtained by deformations of the Riemann hierarchy (1.28):

$$
\begin{equation*}
\frac{\partial w}{\partial t_{q}}=P \frac{\delta H_{q}}{\delta w(x)}, \quad H_{q}=\int h_{q}\left(w ; w_{x}, \ldots ; \epsilon\right) d x, \quad q \geq 0 \tag{1.40}
\end{equation*}
$$

with

$$
\begin{aligned}
& h_{q}\left(w ; w_{x}, \ldots ; \epsilon\right)=\frac{w^{q+2}}{(q+2)!}+\sum_{k \geq 1} \epsilon^{k} h_{q}^{[k]}\left(w ; w_{x}, \ldots, w^{(k)}\right), \\
& P=\partial_{x}+\sum_{k \geq 1} \epsilon^{k} \sum_{l=1}^{k+1} P_{l}^{[k]}\left(w ; w_{x}, \ldots, w^{(k+1-l)}\right) \partial_{x}^{l} .
\end{aligned}
$$

[^2]Here all the terms of expansions in ϵ must be graded homogeneous polynomials in the jet variables $w_{x}, w_{x x}, \ldots$ of the degrees

$$
\operatorname{deg} h_{q}^{[k]}=k, \quad \operatorname{deg} P_{l}^{[k]}=k+1-l .
$$

These integrable hierarchies are required to satisfy the conditions given in Definition 4.1 specified for the one-dimensional Frobenius manifold. They are called in Section 4 the tau-symmetric integrable Hamiltonian deformations of the principal hierarchy of the one-dimensional Frobenius manifold. For example, the KdV hierarchy satisfies the above definition.

Clearly rescalings $\epsilon \rightarrow c \epsilon, c \neq 0$, of the parameter ϵ preserve the class of integrable hierarchies under consideration. Below we will use sometimes a suitable normalization of the coefficients $h_{q}^{[k]}$ for some q and k in order to reduce the number of parameters of the hierarchy.

The class of tau-symmetric Hamiltonian integrable hierarchies is invariant with respect to a subgroup of the so-called normal Miura-type transformations. The precise definition of normal Miura-type transformations will be given in Section 4 below. One of the questions addressed in the present paper is the problem of classification of tau-symmetric Hamiltonian integrable hierarchies with respect to normal Miura-type transformations. Conjecturally, the universal object for such a classification problem is given by the Hodge hierarchy of a point. Namely,

Conjecture 1.7. Any nontrivial tau-symmetric integrable Hamiltonian deformation of the Riemann hierarchy is equivalent, modulo normal Miura-type transformations and rescalings of ϵ, to the Hodge hierarchy of a point with a certain particular choice of the parameters $s_{k}, k \geq 1$.

The paper is organized as follows. In Sec. 2 we recall some basic formulas and notions of the theory of Frobenius manifolds and describe two approaches, given respectively by Dubrovin-Zhang and by Givental, of the definition of the partition function of a semisimple Frobenius manifold. We also prove Lemma 2.5 that will be used to prove the identity (3.11) of Sec. 3. In Sec. 3 we give an algorithm to represent the Hodge potentials $\mathcal{H}_{g}, g \geq 0$ in terms of the free energy \mathcal{F}_{0} and the genus zero two-point functions. In Sec. 4, we give the definition of tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs, prove Theorem 1.5 and study in detail the Hodge hierarchy for the one-dimensional Frobenius manifold for some particular choices of the parameters s_{k}, $k \geq 1$. In Sec. 5 , by applying the results of Sec. 3 we present some explicit formulae for Hodge integrals on the moduli spaces of stable curves, and give the integrable hierarchy for the total Gromov-Witten potential of degree zero for a smooth projective threefold. Concluding remarks are given in Sec. 6, where we also propose a detailed version of Conjecture 1.7.

2. The partition function of a semisimple Frobenius manifold

We recall in this section some basic properties of Frobenius manifolds, and the constructions of the partition functions of semisimple Frobenius manifolds given by Dubrovin-Zhang [16] and by Givental [28,29], based respectively on linearization of Virasoro symmetries of the principal hierarchies of Frobenius manifolds and on quantum canonical transformations.

Let M be an n-dimensional Frobenius manifold. By definition on each of its tangent space there is defined a structure of commutative and associative algebra with unity, and a non-degenerate symmetric bilinear form \langle,$\rangle which is invariant with respect to$ the multiplication operation ".". These structures depend analytically on the points of the Frobenius manifold. The bilinear form gives a flat metric on M, and one can choose its local flat coordinates v^{1}, \ldots, v^{n} such that the unity vector field is given by $e=\frac{\partial}{\partial v^{1}}$. The potential $F\left(v^{1}, \ldots, v^{n}\right)$ of the Frobenius manifold satisfies the property that

$$
\eta_{\alpha \beta}=\left\langle\frac{\partial}{\partial v^{\alpha}}, \frac{\partial}{\partial v^{\beta}}\right\rangle=\frac{\partial^{3} F(v)}{\partial v^{1} \partial v^{\alpha} \partial v^{\beta}}=\text { constant }
$$

and the multiplication table of the vector fields on M is given by

$$
\frac{\partial}{\partial v^{\alpha}} \cdot \frac{\partial}{\partial v^{\beta}}=c_{\alpha \beta}^{\gamma}(v) \frac{\partial}{\partial v^{\gamma}} \quad \text { with } \quad c_{\alpha \beta}^{\gamma}(v)=\eta^{\gamma \zeta} \frac{\partial^{3} F(v)}{\partial v^{\zeta} \partial v^{\alpha} \partial v^{\beta}}, \quad\left(\eta^{\alpha \beta}\right)=\left(\eta_{\alpha \beta}\right)^{-1}
$$

The Frobenius manifold structure also satisfies certain quasi-homogeneity property which is characterized by an Euler vector field E satisfying $\nabla \nabla E=0$, where ∇ is the LeviCivita connection of the flat metric. Assume that ∇E is diagonalizable, then the flat coordinates can be chosen so that the Euler vector field has the expression

$$
E=\sum_{\alpha=1}^{n}\left(\left(1-\frac{d}{2}-\mu_{\alpha}\right) v^{\alpha}+r_{\alpha}\right) \frac{\partial}{\partial v^{\alpha}}
$$

The axioms of the Frobenius manifold ensure that the deformed connection

$$
\tilde{\nabla}_{a} b=\nabla_{a} b+z a \cdot b, \quad \forall a, b \in \operatorname{Vect}(M), \quad z \in \mathbb{C}
$$

on M is also flat. It can be extended to a flat connection on $M \times \mathbb{C}^{*}[11,12]$ by defining

$$
\tilde{\nabla}_{\frac{d}{d z}} b=\partial_{z} b+E \cdot b-\frac{1}{z} \mu b, \quad \tilde{\nabla}_{\frac{d}{d z}} \frac{d}{d z}=\tilde{\nabla}_{b} \frac{d}{d z}=0
$$

for any vector field b of $M \times \mathbb{C}^{*}$ with zero component along the z direction. Here $\mu=$ $\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)$. One can find a system of flat coordinates of the deformed connection of the form

$$
\begin{equation*}
\left(\tilde{v}_{1}(v, z), \ldots, \tilde{v}_{n}(v, z)\right)=\left(\theta_{1}(v, z), \ldots, \theta_{n}(v, z)\right) z^{\mu} z^{R} \tag{2.1}
\end{equation*}
$$

where the functions $\theta_{\alpha}(v, z)$ are analytic at $z=0$. Here $R=\left(R_{\beta}^{\alpha}\right)$ is an $n \times n$ nilpotent matrix; it is a part of the monodromy data [12] of the Frobenius manifold at $z=0$. It is different from zero only in the resonant case $\mu_{\alpha}-\mu_{\beta}=$ a positive integer for some $1 \leq \alpha, \beta \leq n$. It can be decomposed $R=R_{1}+R_{2}+\cdots$ in a finite sum of matrices satisfying

$$
\begin{equation*}
\left[\mu, R_{k}\right]=k R_{k}, \quad k=1,2, \ldots \tag{2.2}
\end{equation*}
$$

and also

$$
\left\langle R_{k} a, b\right\rangle=(-1)^{k+1}\left\langle a, R_{k} b\right\rangle, \quad \forall a, b \in \mathbb{C}^{n} .
$$

For the Frobenius manifold coming from the Gromov-Witten theory of a smooth projective variety X only the R_{1} matrix is nontrivial. It coincides with the matrix of multiplication by the first Chern class of the tangent bundle of X.

Denote $\theta_{\alpha, p}(v)$ the coefficients of Taylor expansions of the functions $\theta_{\alpha}(v, z)$,

$$
\begin{equation*}
\theta_{\alpha}(v, z)=\sum_{p \geq 0} \theta_{\alpha, p}(v) z^{p}, \quad \alpha=1, \ldots, n . \tag{2.3}
\end{equation*}
$$

The functions $\theta_{\alpha, p}(v)$ satisfy the following equations:

$$
\begin{align*}
& \partial_{v^{\alpha}} \partial_{v^{\beta}} \theta_{\gamma, p+1}(v)=c_{\alpha \beta}^{\sigma}(v) \partial_{v^{\sigma}} \theta_{\gamma, p}(v), \tag{2.4}\\
& \theta_{\alpha, 0}(v)=\eta_{\alpha \gamma} v^{\gamma}, \quad \theta_{\alpha, 1}(v)=\frac{\partial F(v)}{\partial v^{\alpha}}, \quad \frac{\partial \theta_{\alpha, p+1}}{\partial v^{1}}(v)=\theta_{\alpha, p}(v) . \tag{2.5}
\end{align*}
$$

It also satisfies the following quasi-homogeneity condition

$$
\begin{equation*}
\mathcal{L}_{E}\left(\partial_{v^{\beta}} \theta_{\alpha, p}\right)=\left(p+\mu_{\alpha}+\mu_{\beta}\right) \partial_{v^{\beta}} \theta_{\alpha, p}+\sum_{r=1}^{p}\left(R_{r}\right)_{\alpha}^{\gamma} \partial_{v^{\beta}} \theta_{\gamma, p-r}, \tag{2.6}
\end{equation*}
$$

and the normalization conditions

$$
\begin{equation*}
\left\langle\nabla \theta_{\alpha}(v, z), \nabla \theta_{\beta}(v,-z)\right\rangle=\eta_{\alpha \beta} . \tag{2.7}
\end{equation*}
$$

A choice of a system of flat coordinates of the deformed flat connection satisfying the above conditions will be called a calibration of the Frobenius manifold. For the particular subclass of Frobenius manifolds coming from quantum cohomology of smooth projective varieties there is a natural calibration associated with a choice of a basis in the classical cohomology. Below it will be assumed by default that every Frobenius manifold under consideration is calibrated.

The principal hierarchy (1.15) of the Frobenius manifold is an integrable Hamiltonian hierarchy of hydrodynamic type

$$
\begin{equation*}
\frac{\partial v^{\alpha}}{\partial t^{\beta, q}}=\eta^{\alpha \gamma} \frac{\partial}{\partial x} \frac{\delta H_{\beta, q}}{\delta v^{\gamma}(x)}, \quad q \geq 0 \tag{2.8}
\end{equation*}
$$

Here the Hamiltonians are given by

$$
\begin{equation*}
H_{\beta, q}=\int \theta_{\beta, q+1}(v(x)) d x \tag{2.9}
\end{equation*}
$$

with the functions $\theta_{\beta, q}$ defined as in (2.3). A dense subset of analytic solutions of the principal hierarchy can be obtained by solving the Euler-Lagrange equations

$$
\begin{equation*}
\sum_{p \geq 0} \tilde{t}^{\alpha, p} \frac{\partial \theta_{\alpha, p}(v)}{\partial v^{\gamma}}=0, \quad \gamma=1, \ldots, n \tag{2.10}
\end{equation*}
$$

Here $\tilde{t}^{\alpha, p}=t^{\alpha, p}-c^{\alpha, p}, c^{\alpha, p}$ are certain constants which are equal to zero except for a finite number of them, and they are also required to satisfy certain genericity conditions [16].

Example 2.1. Consider the one-dimensional Frobenius manifold with the natural calibration $\theta_{1}(v, z)=\left(e^{z v}-1\right) / z$. The corresponding Euler-Lagrange equations read

$$
\begin{equation*}
\sum_{p \geq 0} \tilde{t}^{1, p} \frac{v^{p}}{p!}=0 \tag{2.11}
\end{equation*}
$$

which yields in the choice $c^{1, p}=\delta_{1}^{p}$ the topological solution

$$
v(\mathbf{t})=-\frac{t^{1,0}}{t^{1,1}-1}-\frac{\left(t^{1,0}\right)^{2} t^{1,2}}{2\left(t^{1,1}-1\right)^{3}}-\frac{\left(t^{1,0}\right)^{3}\left(t^{1,2}\right)^{2}}{2\left(t^{1,1}-1\right)^{5}}+\cdots
$$

The closed form of this solution is already given in equation (1.29).
Let us define the functions $\Omega_{\alpha, p ; \beta, q}(v)$ on the Frobenius manifold by the following generating function

$$
\begin{equation*}
\sum_{p, q \geq 0} \Omega_{\alpha, p ; \beta, q} z_{1}^{p} z_{2}^{q}=\frac{\left\langle\nabla \theta_{\alpha}\left(v, z_{1}\right), \nabla \theta_{\beta}\left(v, z_{2}\right)\right\rangle-\eta_{\alpha \beta}}{z_{1}+z_{2}} \tag{2.12}
\end{equation*}
$$

It follows from the definition that these functions satisfy the equations

$$
\begin{equation*}
\frac{\partial \Omega_{\alpha, p ; \beta, q}}{\partial v^{\gamma}}=c_{\gamma}^{\xi \zeta} \frac{\partial \theta_{\alpha, p}}{\partial v^{\xi}} \frac{\partial \theta_{\beta, q}}{\partial v^{\zeta}} \tag{2.13}
\end{equation*}
$$

and the quasi-homogeneity condition

$$
\begin{align*}
& \mathcal{L}_{E} \Omega_{\alpha, p ; \beta, q}(t)=\left(p+q+1+\mu_{\alpha}+\mu_{\beta}\right) \Omega_{\alpha, p ; \beta, q}(t)+\sum_{r=1}^{p}\left(R_{r}\right)_{\alpha}^{\gamma} \Omega_{\gamma, p-r ; \beta, q}(t) \\
& \quad+\sum_{r=1}^{q}\left(R_{r}\right)_{\beta}^{\gamma} \Omega_{\alpha, p ; \gamma, q-r}(t)+(-1)^{q}\left(R_{p+q+1}\right)_{\alpha}^{\gamma} \eta_{\gamma \beta} \tag{2.14}
\end{align*}
$$

They also satisfy the equations

$$
\begin{equation*}
\Omega_{\alpha, p ; 1,0}(v)=\theta_{\alpha, p}(v), \quad \Omega_{\alpha, p ; \beta, 0}(v)=\frac{\partial \theta_{\alpha, p+1}(v)}{\partial v^{\beta}} \tag{2.15}
\end{equation*}
$$

For any solution $v(\mathbf{t})=\left(v^{1}(\mathbf{t}), \ldots, v^{n}(\mathbf{t})\right)$ of the principal hierarchy solved from (2.10), we define the genus zero free energy $\mathcal{F}_{0}(\mathbf{t})$ as follows:

$$
\begin{equation*}
\mathcal{F}_{0}(\mathbf{t})=\frac{1}{2} \sum_{p, q \geq 0} \tilde{t}^{\alpha, p} \tilde{t}^{\beta, q} \Omega_{\alpha, p ; \beta, q}(v(\mathbf{t})) \tag{2.16}
\end{equation*}
$$

Observe that, by using eqs. (2.5), (2.10) and (2.12) one can easily check that

$$
\frac{\partial^{2} \mathcal{F}_{0}(\mathbf{t})}{\partial t^{\alpha, p} \partial t^{\beta, q}}=\Omega_{\alpha, p ; \beta, q}(v(\mathbf{t})) .
$$

In the case when M is semisimple, one can also define the genus g free energies

$$
\mathcal{F}_{g}=\mathcal{F}_{g}\left(v ; v_{x}, \ldots, v^{(3 g-2)}\right), \quad g \geq 1
$$

of M by solving the so-called loop equations of M [16,14]. In particular, if we substitute the variables $v, v^{(k)}(k \geq 1)$ of the genus g free energy \mathcal{F}_{g} by the topological solution $v=v(\mathbf{t}), v^{(k)}=\partial_{x}^{k} v(\mathbf{t})$ obtained from (2.10) by taking $c^{\alpha, p}=\delta_{1}^{\alpha} \delta_{1}^{p}$, then we arrive at a function of \mathbf{t} which, due to [42], coincides with the genus g Gromov-Witten potential if M is a Frobenius manifold associated to the quantum cohomology (assume semisimplicity) of a certain smooth projective variety with vanishing odd cohomologies. Recall that the loop equation takes the form [16]

$$
\begin{align*}
& \sum_{r \geq 0} \frac{\partial \Delta \mathcal{F}}{\partial v^{\gamma, r}} \partial_{x}^{r}\left(\frac{1}{E-\lambda}\right)^{\gamma}+\sum_{r \geq 1} \frac{\partial \Delta \mathcal{F}}{\partial v^{\gamma, r}} \sum_{k=1}^{r}\binom{r}{k} \partial_{x}^{k-1} \partial_{1} p_{\alpha} G^{\alpha \beta} \partial_{x}^{r-k+1} \partial^{\gamma} p_{\beta} \\
& =-\frac{1}{16} \operatorname{tr}(\mathcal{U}-\lambda)^{-2}+\frac{1}{4} \operatorname{tr}\left[(\mathcal{U}-\lambda)^{-1} \mu\right]^{2} \\
& +\frac{\epsilon^{2}}{2} \sum\left(\frac{\partial^{2} \Delta \mathcal{F}}{\partial v^{\gamma, k} \partial v^{\rho, l}}+\frac{\partial \Delta \mathcal{F}}{\partial v^{\gamma, k}} \frac{\partial \Delta \mathcal{F}}{\partial v^{\rho, l}}\right) \partial_{x}^{k+1} \partial^{\gamma} p_{\alpha} G^{\alpha \beta} \partial_{x}^{l+1} \partial^{\rho} p_{\beta} \\
& +\frac{\epsilon^{2}}{2} \sum \frac{\partial \Delta \mathcal{F}}{\partial v^{\gamma, k}} \partial_{x}^{k+1}\left[\nabla \frac{\partial p_{\alpha}(v ; \lambda)}{\partial \lambda} \cdot \nabla \frac{\partial p_{\beta}(v ; \lambda)}{\partial \lambda} \cdot v_{x}\right]^{\gamma} G^{\alpha \beta} \tag{2.17}
\end{align*}
$$

where

$$
\Delta \mathcal{F}=\sum_{g \geq 1} \epsilon^{2 g-2} \mathcal{F}_{g}\left(v ; v_{x}, \ldots, v^{(3 g-2)}\right)
$$

$p_{\alpha}, \alpha=1, \ldots, n$ are the periods of the Frobenius manifold, \mathcal{U} is the operator of multiplication by the Euler vector field E, and

$$
G^{\alpha \beta}=-\frac{1}{2 \pi}\left[\left(e^{\pi i R} e^{\pi i \mu}+e^{-\pi i R} e^{-\pi i \mu}\right) \eta^{-1}\right]^{\alpha \beta} .
$$

Theorem 2.2. (See [16].) The loop equation can be solved recursively to give functions $\mathcal{F}_{g}, g \geq 1$ with

$$
\mathcal{F}_{1}=\frac{1}{24} \log \operatorname{det}\left(c_{\beta \gamma}^{\alpha}(v) v_{x}^{\gamma}\right)+G(v)
$$

where $G(v)$ is the so called G-function of the Frobenius manifold [14]. For each $g \geq 2$ the function $\mathcal{F}_{g}=\mathcal{F}_{g}\left(v ; v_{x}, \ldots, v^{(3 g-2)}\right)$ depends polynomially on $\partial_{x}^{k} v^{\gamma}, k \geq 2$ and rationally on v_{x}^{γ}, and it is uniquely determined by the loop equation (up to the addition of a constant) and satisfies the homogeneity condition

$$
\operatorname{deg} \mathcal{F}_{g}=2 g-2, \quad \overline{\operatorname{deg}} \mathcal{F}_{g} \leq 3 g-3
$$

Here we use the " \leq " sign to indicate that \mathcal{F}_{g} is not necessarily homogeneous with respect to the degree assignment (1.20) and its highest degree terms have degree $3 g-3$.

The partition function of a semisimple Frobenius manifold associated to a solution $v(\mathbf{t})$ of the principal hierarchy is defined by

$$
\begin{equation*}
Z(\mathbf{t} ; \epsilon)=\left.e^{\epsilon^{-2} \mathcal{F}_{0}(\mathbf{t})+\sum_{g \geq 1} \epsilon^{2 g-2} \mathcal{F}_{g}\left(v ; v_{x}, \ldots, v^{(3 g-2)}\right)}\right|_{v=v(\mathbf{t})}, \tag{2.18}
\end{equation*}
$$

where $v(\mathbf{t})$ is obtained by solving the equation (2.10). It is also called the total descendent potential when $v(\mathbf{t})$ is taken to be the topological solution of the principal hierarchy corresponding to the following choice of parameters $c^{\alpha, p}=\delta_{1}^{\alpha} \delta_{1}^{p}$.

An alternative construction of the partition function for a semisimple Frobenius manifold is given by Givental [28,29]. It is given by the action of certain quantized operators on the tensor product of n copies of the partition function $Z_{p t}(\mathbf{t} ; \epsilon)$ of the one dimensional Frobenius manifold. Let us give a brief review of this construction and prove some useful lemmas.

Let M^{n} be a semisimple Frobenius manifold, i.e. there exists a point $u \in M$ such that the algebra structure on $T_{u}(M)$ is semisimple. Let $V=T_{u}(M)$ or $V=\mathbb{C}^{n}$. There is a non-degenerate symmetric bilinear form \langle,\rangle_{V} on V which is defined by the flat metric of M when $V=T_{u}(M)$, or by the standard Euclidean inner product when $V=\mathbb{C}^{n}$. Denote by \mathcal{V} the space of V-valued functions defined on the unit circle S^{1} which can be
extended to an analytic function in a small annulus. On \mathcal{V} there is a natural polarization $\mathcal{V}=\mathcal{V}_{+} \oplus \mathcal{V}_{-}$, where functions in \mathcal{V}_{+}can be analytically continued inside of S^{1}, while functions in \mathcal{V}_{-}can be analytically continued outside of S^{1} and vanish at $z=\infty$. There also exists a symplectic structure ω on \mathcal{V} defined by

$$
\begin{equation*}
\omega(f, g)=\frac{1}{2 \pi i} \oint_{S^{1}}\langle f(-z), g(z)\rangle_{V} d z, \quad \forall f(z), g(z) \in \mathcal{V} \tag{2.19}
\end{equation*}
$$

The pair (\mathcal{V}, ω) is called Givental's symplectic space associated to $\left(V,\langle,\rangle_{V}\right)$.
Take a basis $e_{\alpha}(\alpha=1, \ldots, n)$ of V. Let e^{α} be the dual basis with respect to \langle,\rangle_{V}. Any element $f(z) \in \mathcal{V}$ can be written as

$$
f(z)=\sum_{k \geq 0}\left((-1)^{k+1} p_{k} z^{k}+q^{k} z^{-k-1}\right)
$$

where $q^{k}=q^{\alpha, k} e_{\alpha}$ and $p_{k}=p_{\alpha, k} e^{\alpha}$. This gives the Darboux coordinates

$$
\left\{q^{\alpha, k}, p_{\alpha, k} \mid k \geq 0\right\}
$$

of the symplectic structure ω. The canonical quantization of $\left\{q^{\alpha, k}, p_{\alpha, k}\right\}$ is defined as follows:

- When $V=T_{u}(M)$, we take $e_{\alpha}=\frac{\partial}{\partial v^{\alpha}}$, and then

$$
\left(p_{\alpha, k}\right)^{\wedge}=\epsilon \frac{\partial}{\partial t^{\alpha, k}}, \quad\left(q^{\alpha, k}\right)^{\wedge}=\epsilon^{-1} t^{\alpha, k} .
$$

The variables $\left\{t^{\alpha, k}\right\}$ are the times of the principal hierarchy of M. We denote $\mathcal{O}(V)=$ $\mathbb{C}\left[\left[\left\{t^{\alpha, k}\right\}\right]\right]$.

- When $V=\mathbb{C}^{n}$, we take e_{i} to be the standard basis of \mathbb{C}^{n}, then

$$
\left(p_{i, k}\right)^{\wedge}=\epsilon \frac{\partial}{\partial t^{(i), k}}, \quad\left(q^{i, k}\right)^{\wedge}=\epsilon^{-1} t^{(i), k}
$$

The variables $\left\{t^{(i), k}\right\}$ are the times of n copies of the KdV hierarchy. We denote $\mathcal{O}(V)=\mathbb{C}\left[\left[\left\{t^{(i), k}\right\}\right]\right]$.

Let $A(z)$ be an $\operatorname{End}(V)$-valued function satisfying $A^{\dagger}(-z)+A(z)=0$. Then $A(z)$ is an infinitesimal sympltectic transformation of (\mathcal{V}, ω) whose Hamiltonian is given by

$$
H_{A(z)}(f)=\frac{1}{2} \omega(f, A f)=\frac{1}{4 \pi i} \oint_{S^{1}}\langle f(-z), A(z)(f(z))\rangle_{V} d z .
$$

This Hamiltonian is a quadratic function on \mathcal{V}, and its quantization is defined by

$$
\left(p_{I} p_{J}\right)^{\wedge}=\epsilon^{2} \frac{\partial^{2}}{\partial t^{I} \partial t^{J}}, \quad\left(p_{I} q^{J}\right)^{\wedge}=t^{J} \frac{\partial}{\partial t^{I}}, \quad\left(q^{I} q^{J}\right)^{\wedge}=\epsilon^{-2} t^{I} t^{J}
$$

where I, J are $(\alpha, k),(\beta, l)$ or $((i), k),((j), l)$. Denote the quantization of $H_{A(z)}$ by $\hat{H}_{A(z)}$, these quantized operators satisfy the commutation relation

$$
\left[\hat{H}_{A(z)}, \hat{H}_{B(z)}\right]=\hat{H}_{[A(z), B(z)]}+\mathcal{C}\left(\hat{H}_{A(z)}, \hat{H}_{B(z)}\right)
$$

where the 2 -cocycle \mathcal{C} satisfies

$$
\mathcal{C}\left(p_{I} p_{J}, q^{K} q^{L}\right)=-\mathcal{C}\left(q^{K} q^{L}, p_{I} p_{J}\right)=\delta_{I}^{K} \delta_{J}^{L}+\delta_{I}^{L} \delta_{J}^{K}
$$

and $\mathcal{C}=0$ for any other pairs of quadratic monomials. Here I, J, K, L are indices of the form (α, p) or $((i), k)$. Let $G(z)=e^{A(z)}$ be the symplectic transformation defined by $A(z)$ (if it exists), then the quantization $\hat{G}(z)$ of $G(z)$ is defined as $e^{\hat{H}_{A(z)}}$.

Example 2.3. (a) Let $V=T_{u}(M)$, and $d_{k}(z)=-z^{-2 k+1} \operatorname{Id}(k \geq 1)$. Then it is easy to see that $d_{k}(z)$ is an infinitesimal symplectic transformation whose quantization is given by

$$
\mathcal{D}_{k}=\sum_{p \geq 0} t^{\alpha, p} \frac{\partial}{\partial t^{\alpha, p+2 k-1}}-\frac{\epsilon^{2}}{2} \sum_{p=0}^{2 k-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial^{2}}{\partial t^{\alpha, p} \partial t^{\beta, 2 k-2-p}}
$$

(b) Let $V=\mathbb{C}^{n}$, and $d_{k}^{(i)}(z)=-z^{-2 k+1} P_{i}(k \geq 1)$, where $P_{i}: V \rightarrow V$ is the projection to $\mathbb{C} e_{i}$. Then $d_{k}^{(i)}(z)$ is also an infinitesimal symplectic transformation whose quantization is given by

$$
\mathcal{D}_{k}^{(i)}=\sum_{p \geq 0} t^{(i), p} \frac{\partial}{\partial t^{(i), p+2 k-1}}-\frac{\epsilon^{2}}{2} \sum_{p=0}^{2 k-2}(-1)^{p} \frac{\partial^{2}}{\partial t^{(i), p} \partial t^{(i), 2 k-2-p}} .
$$

(c) Let $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a map given by a diagonal matrix whose diagonal entries are u^{1}, \ldots, u^{n}. Then we have

$$
(z U)^{\wedge}=-\sum_{i=1}^{n} \sum_{k \geq 1} u^{i} t^{(i), k} \frac{\partial}{\partial t^{(i), k-1}}-\frac{1}{2 \epsilon^{2}} \sum_{i=1}^{n} u^{i}\left(t^{(i), 0}\right)^{2}
$$

We have the following two important types of symplectic transformations $G(z)$:

- Type I Let $G(z)$ be a symplectic transformation which is analytic and nondegenerate inside of the unit circle. Then, for an arbitrary function $I[\mathbf{q}(z)]$ defined on \mathcal{V}_{-}, we have

$$
\left(\hat{G}(z)^{-1} I\right)[\mathbf{q}(z)]=e^{\frac{1}{2 \epsilon^{2}}\langle\mathbf{q}, \Omega \mathbf{q}\rangle_{V}} I\left[(G(z) \mathbf{q}(z))_{-}\right]
$$

where $\langle\mathbf{q}, \Omega \mathbf{q}\rangle_{V}=\sum_{k, l \geq 0}\left\langle q^{k}, \Omega_{k l} q^{l}\right\rangle_{V}$ is defined by

$$
\sum_{k, l \geq 0} \Omega_{k l} w^{k} z^{l}=\frac{G^{\dagger}(w) G(z)-\mathrm{Id}}{w+z}
$$

- Type II Let $G(z)$ be a symplectic transformation which is analytic and nondegenerate outside of the unit circle. Then for an arbitrary function $I[\mathbf{q}(z)]$ defined on \mathcal{V}_{-}we have

$$
(\hat{G}(z) I)[\mathbf{q}(z)]=\left(e^{\frac{\epsilon^{2}}{2}\left\langle\partial_{\mathbf{q}}, W \partial_{\mathbf{q}}\right\rangle_{V}} I\right)\left[G^{-1}(z) \mathbf{q}(z)\right]
$$

where $\left\langle\partial_{\mathbf{q}}, W \partial_{\mathbf{q}}\right\rangle_{V}=\sum_{k, l \geq 0}\left\langle p_{k}, W_{k l} p_{l}\right\rangle_{V}$ is defined by

$$
\sum_{k, l \geq 0}(-1)^{k+l} W_{k l} w^{-k} z^{-l}=\frac{G^{\dagger}(w) G(z)-\mathrm{Id}}{z^{-1}+w^{-1}}
$$

If $G(z)$ is a symplectic transformation from \mathcal{V}_{2} to \mathcal{V}_{1}, then the quantized operator $\hat{G}(z)$ maps $\mathcal{O}\left(V_{2}\right)$ to $\mathcal{O}\left(V_{1}\right)$.

Let us denote by $Z_{p t}^{\mathrm{vac}}\left(\mathbf{t}^{(i)} ; \epsilon\right)$ the vacuum partition function of the one-dimensional Frobenius manifold $M=\mathbb{C}$ with $F(v)=\frac{1}{6} v^{3}$, which is obtained from the WittenKontsevich tau-function $\tau_{\mathrm{KdV}}\left(t_{0}, t_{1}, \ldots ; \epsilon\right)$ by a dilaton shift

$$
Z_{\mathrm{pt}}^{\mathrm{vac}}\left(\mathbf{t}^{(i)} ; \epsilon\right)=\left.\tau_{\mathrm{KdV}}\left(t_{0}, t_{1}, \ldots ; \epsilon\right)\right|_{t_{p} \rightarrow t^{(i), p}+\delta_{1}^{p}}
$$

For any semisimple Frobenius manifold M, the vacuum partition function $Z_{M}^{\mathrm{vac}}(\mathbf{t} ; \epsilon)$ is defined by

$$
\begin{equation*}
Z_{M}^{\mathrm{vac}}(\mathbf{t} ; \epsilon)=\tau_{I}(u) \hat{S}_{u}^{-1}(z) \hat{\Psi}_{u} \hat{R}_{u}(z) e^{(z U)^{\wedge}}\left(\prod_{i=1}^{n} Z_{p t}^{\mathrm{vac}}\left(\mathbf{t}^{(i)} ; \epsilon\right)\right) \tag{2.20}
\end{equation*}
$$

Here u is a semisimple point of M, and

- $z U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is the diagonal matrix $\operatorname{diag}\left(z u^{1}, \ldots, z u^{n}\right)$, where u^{1}, \ldots, u^{n} are canonical coordinates of M.
- $S_{u}(z)$ and $R_{u}(z)$ are given by bases of horizontal sections of the deformed flat connection $\tilde{\nabla}$ at $z=0$ and $z=\infty$ respectively. The matrix $S_{u}(z)$ has entries $S_{\beta}^{\alpha}(z)=\eta^{\alpha \gamma} \partial_{\gamma} \theta_{\beta}(z)$, and $R_{u}(z)$ has asymptotic expansion of the form

$$
R_{u}(z)=\operatorname{Id}+\frac{\Gamma_{1}(u)}{z}+\frac{\Gamma_{2}(u)}{z^{2}}+\cdots
$$

- Ψ_{u} is the transition matrix from the frame of the flat coordinates to the orthonormal frame of the canonical coordinates. Note that in the notions of $[11,16]$ it is given by the matrix $\left(\psi_{i \alpha}(u)\right)^{-1}$.
- $\tau_{I}(u)$ is the isomonodromic tau-function of the Frobenius manifold $[16,14]$.

Theorem 2.4. (See [28-30,16].) The total descendent potential of M

$$
\mathcal{D}_{M}=\left.Z_{M}^{\mathrm{vac}}(\mathbf{t} ; \epsilon)\right|_{t^{\alpha, p} \rightarrow t^{\alpha, p}-\delta_{1}^{\alpha} \delta_{1}^{p}}
$$

is independent of the choice of the semisimple point $u \in M$ and satisfies the Virasoro constraints

$$
L_{m} \mathcal{D}_{M}=0, \quad m \geq-1
$$

Here the Virasoro operators L_{m} are given in [15,16,28,30] with

$$
L_{-1}=\sum_{p \geq 1} t^{\alpha, p} \frac{\partial}{\partial t^{\alpha, p-1}}+\frac{1}{2 \epsilon^{2}} \eta_{\alpha \beta} t^{\alpha, 0} t^{\beta, 0}-\frac{\partial}{\partial t^{1,0}}
$$

From the uniqueness of the solution of the Virasoro constraints that is proved in [16], it follows that the partition function $Z(\mathbf{t} ; \epsilon)$ defined in (2.18) which is associated to the solution of the principal hierarchy given by (2.10) can also be represented as

$$
\begin{equation*}
Z(\mathbf{t} ; \epsilon)=\left.Z_{M}^{\mathrm{vac}}(\mathbf{t} ; \epsilon)\right|_{t^{\alpha, p} \rightarrow t^{\alpha, p}-c^{\alpha, p}} \tag{2.21}
\end{equation*}
$$

where the constants $c^{\alpha, p}$ are given as in (2.10).
The following lemma will be used to prove the identity (3.11).

Lemma 2.5. For any semisimple Frobenius manifold M, we have

$$
\begin{equation*}
\mathcal{D}_{k}=\hat{S}_{u}^{-1}(z) \hat{\Psi}_{u} \hat{R}_{u}(z) e^{(z U)^{\wedge}}\left(\sum_{i=1}^{n} \mathcal{D}_{k}^{(i)}\right) e^{-(z U)^{\wedge}} \hat{R}_{u}^{-1}(z) \hat{\Psi}_{u}^{-1} \hat{S}_{u}(z) \tag{2.22}
\end{equation*}
$$

where \mathcal{D}_{k} and $\mathcal{D}_{k}^{(i)}$ are given in Example 2.3.

Proof. By computing the 2-cocycle terms, we have

$$
\left[(z U)^{\wedge}, \sum_{i=1}^{n} \mathcal{D}_{k}^{(i)}\right]=-\frac{1}{2} \delta_{k, 1} \operatorname{Tr}(U)
$$

which implies

$$
e^{(z U)^{\wedge}}\left(\sum_{i=1}^{n} \mathcal{D}_{k}^{(i)}\right) e^{-(z U)^{\wedge}}=\sum_{i=1}^{n} \mathcal{D}_{k}^{(i)}-\frac{1}{2} \delta_{k, 1} \operatorname{Tr}(U)
$$

It is easy to see that

$$
\hat{R}_{u}(z)\left(\sum_{i=1}^{n} \mathcal{D}_{k}^{(i)}\right) \hat{R}_{u}^{-1}(z)=\sum_{i=1}^{n} \mathcal{D}_{k}^{(i)}, \quad \hat{\Psi}_{u}\left(\sum_{i=1}^{n} \mathcal{D}_{k}^{(i)}\right) \hat{\Psi}_{u}^{-1}=\mathcal{D}_{k}
$$

Thus in order to prove the lemma, we only need to show that

$$
\hat{S}_{u}^{-1}(z) \mathcal{D}_{k} \hat{S}_{u}(z)=\mathcal{D}_{k}+\frac{1}{2} \delta_{k, 1} \operatorname{Tr}(U)
$$

Let $A(z)=\log S(z)=\sum_{i \geq 1} A_{i} z^{i}$. Then we have

$$
\hat{S}_{u}^{-1}(z) \mathcal{D}_{k} \hat{S}_{u}(z)-\mathcal{D}_{k}=\left[\mathcal{D}_{k}, \hat{H}_{A(z)}\right]=\frac{1}{2}(2 k-1) \operatorname{Tr}\left(A_{2 k-1}\right) .
$$

By using the identity $\operatorname{Tr}(A(z))=\log \operatorname{det} S(z)$ we obtain

$$
\frac{d}{d z} \operatorname{Tr}(A(z))=\frac{1}{\operatorname{det} S(z)} \frac{d}{d z}(\operatorname{det} S(z))=\operatorname{Tr}\left(\frac{d S(z)}{d z} S(z)^{-1}\right)
$$

It follows from the definition of $S(z)$ (see [11,12]) that

$$
\frac{d S(z)}{d z} S(z)^{-1}=\mathcal{U}+\frac{\mu}{z}-S(z)\left(\frac{\mu}{z}+R_{1}+R_{2} z+\cdots+R_{m} z^{m-1}\right) S^{-1}(z)
$$

where $\operatorname{Tr}(\mathcal{U})=\operatorname{Tr}(U), V$ and μ have trace zero. Recall that the matrices R_{ℓ} in the decomposition $R=R_{1}+R_{2}+\cdots+R_{m}$ are nilpotent. So we have

$$
\operatorname{Tr}(A(z))=\operatorname{Tr}(U) z
$$

or, equivalently, $\operatorname{Tr}\left(A_{2 k-1}\right)=\delta_{k, 1} \operatorname{Tr}(U)$. The lemma is proved.
Corollary 2.6. Let M be a semisimple Frobenius manifold, $u \in M$ be a semisimple point on M, then the total Hodge potential $Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)$ of M can be written as

$$
\begin{equation*}
Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)=\left.Z_{\mathbb{E}}^{\mathrm{vac}}(\mathbf{t} ; \mathbf{s} ; \epsilon)\right|_{t^{\alpha, p} \rightarrow t^{\alpha, p}-c^{\alpha, p}} \tag{2.23}
\end{equation*}
$$

where the vacuum total Hodge potential is given by

$$
\begin{equation*}
Z_{\mathbb{E}}^{\mathrm{vac}}(\mathbf{t} ; \mathbf{s} ; \epsilon)=\tau_{I}(u) \hat{S}_{u}^{-1}(z) \hat{\Psi}_{u} \hat{R}_{u}(z) e^{(z U)^{\wedge}}\left(\prod_{i=1}^{n} Z_{\mathrm{pt}, \mathbb{E}}^{\mathrm{vac}}\left(\mathbf{t}^{(i)} ; \mathbf{s} ; \epsilon\right)\right) \tag{2.24}
\end{equation*}
$$

and $Z_{p t, \mathbb{E}}^{\mathrm{vac}}\left(\mathbf{t}^{(i)} ; \mathbf{s} ; \epsilon\right)$ is the vacuum total Hodge potential for $M=\mathbb{C}$ with $F(v)=\frac{1}{6} v^{3}$, which is given by

$$
Z_{\mathrm{pt}, \mathbb{E}}^{\mathrm{vac}}\left(\mathbf{t}^{(i)} ; \mathbf{s} ; \epsilon\right)=e^{\sum_{k \geq 1} s_{k} \mathcal{D}_{k}^{(i)}} Z_{\mathrm{pt}}^{\mathrm{vac}}\left(\mathbf{t}^{(i)} ; \epsilon\right)
$$

3. An algorithm for solving \mathcal{H}_{g}

We consider in this section the genus expansion

$$
\mathcal{H}(\mathbf{t} ; \mathbf{s} ; \epsilon)=\sum_{g \geq 0} \epsilon^{2 g-2} \mathcal{H}_{g}(\mathbf{t} ; \mathbf{s})
$$

of the Hodge potential $\mathcal{H}(\mathbf{t} ; \mathbf{s} ; \epsilon)=\log Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)$. We will give an algorithm to solve recursively the defining equations (1.17), (1.18), and to represent the genus g Hodge potential $\mathcal{H}_{g}(\mathbf{t} ; \mathbf{s})$ as the summation of $\mathcal{F}_{g}(\mathbf{t})$ and a polynomial of s_{1}, \ldots, s_{g} with coefficients depending polynomially on the jet variables $v^{\alpha, p}, 2 \leq p \leq 3 g-2$ and rationally on $v^{\alpha, 1}$.

From the equations (1.17), (1.18) we know that

$$
\begin{equation*}
Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)=e^{\sum_{k \geq 1} s_{k} \tilde{\mathcal{D}}_{k}} Z(\mathbf{t} ; \epsilon), \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\mathcal{D}}_{k}=\left.\mathcal{D}_{k}\right|_{t^{\alpha, p} \rightarrow \tilde{t}^{\alpha, p}}, \quad \tilde{t}^{\alpha, p}=t^{\alpha, p}-c^{\alpha, p} \tag{3.2}
\end{equation*}
$$

In the case when the semisimple Frobenius manifold M is given by the quantum cohomology of a smooth projective variety, \mathcal{H}_{g} is in fact a polynomial of s_{1}, \ldots, s_{g}. So in order to compute \mathcal{H}_{g}, we only need to compute

$$
\log \left(e^{\sum_{k=1}^{g} s_{k} \tilde{\mathcal{D}}_{k}} Z(\mathbf{t} ; \epsilon)\right)=\epsilon^{-2} \mathcal{H}_{0}+\mathcal{H}_{1}+\epsilon^{2} \mathcal{H}_{2}+\cdots+\epsilon^{2 g-2} \mathcal{H}_{g}+\mathcal{O}\left(\epsilon^{2 g}\right)
$$

and the exponential maps on the left hand side of the above equation can be truncated at certain orders of s_{k} that depend on g and k. This observation enables us to give an algorithm to compute \mathcal{H}_{g}, and we show below that this algorithm is also valid for an arbitrary semisimple Frobenius manifold.

The equations (1.17) and (1.18) are equivalent to the equations for \mathcal{H}_{0}

$$
\begin{align*}
& \frac{\partial \mathcal{H}_{0}}{\partial s_{k}}=\sum_{p \geq 0} \tilde{t}^{\alpha, p} \frac{\partial \mathcal{H}_{0}}{\partial t^{\alpha, p+2 k-1}}-\frac{1}{2} \sum_{p=0}^{2 k-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial \mathcal{H}_{0}}{\partial t^{\alpha, p}} \frac{\partial \mathcal{H}_{0}}{\partial t^{\beta, 2 k-2-p}} \tag{3.3}\\
& \mathcal{H}_{0}(\mathbf{t} ; \mathbf{0})=\mathcal{F}_{0}(\mathbf{t}) \tag{3.4}
\end{align*}
$$

and the equations for $\mathcal{H}_{g}(g \geq 1)$

$$
\begin{align*}
& \frac{\partial \mathcal{H}_{g}}{\partial s_{k}}=D_{k}\left(\mathcal{H}_{g}\right)+E_{k, g} \tag{3.5}\\
& \mathcal{H}_{g}(\mathbf{t} ; \mathbf{0})=\mathcal{F}_{g}(\mathbf{t}) \tag{3.6}
\end{align*}
$$

Here

$$
\begin{aligned}
D_{k} & =\sum_{p \geq 0} \tilde{t}^{\alpha, p} \frac{\partial}{\partial t^{\alpha, p+2 k-1}}-\sum_{p=0}^{2 k-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial \mathcal{H}_{0}}{\partial t^{\alpha, p}} \frac{\partial}{\partial t^{\beta, 2 k-2-p}}, \\
E_{k, g} & =-\frac{1}{2} \sum_{p=0}^{2 k-2}(-1)^{p} \eta^{\alpha \beta}\left(\frac{\partial \mathcal{H}_{g-1}}{\partial t^{\alpha, p} \partial t^{\beta, 2 k-2-p}}+\sum_{\ell=1}^{g-1} \frac{\partial \mathcal{H}_{\ell}}{\partial t^{\alpha, p}} \frac{\partial \mathcal{H}_{g-\ell}}{\partial t^{\beta, 2 k-2-p}}\right) .
\end{aligned}
$$

Proposition 3.1. Equations (3.3) and (3.4) have a unique solution

$$
\mathcal{H}_{0}(\mathbf{t} ; \mathbf{s})=\mathcal{F}_{0}(\mathbf{t})
$$

Proof. We only need to prove the following identity: for any $k \geq 1$,

$$
\begin{equation*}
\sum_{p \geq 0} \tilde{t}^{\alpha, p} \frac{\partial \mathcal{F}_{0}}{\partial t^{\alpha, p+2 k-1}}-\frac{1}{2} \sum_{p=0}^{2 k-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial \mathcal{F}_{0}}{\partial t^{\alpha, p}} \frac{\partial \mathcal{F}_{0}}{\partial t^{\beta, 2 k-2-p}}=0 \tag{3.7}
\end{equation*}
$$

Noting that \mathcal{F}_{0} is given by (2.16), one can show that the above identity is a corollary of the following equation:

$$
\begin{equation*}
\Omega_{\alpha, p+2 k-1 ; \beta, q}+\Omega_{\alpha, p ; \beta, q+2 k-1}=\sum_{\ell=0}^{2 k-2}(-1)^{\ell} \Omega_{\alpha, p ; \alpha^{\prime}, \ell} \eta^{\alpha^{\prime} \beta^{\prime}} \Omega_{\beta^{\prime}, 2 k-2-\ell ; \beta, q}, \tag{3.8}
\end{equation*}
$$

where $p, q \geq 0$, and $k \geq 1$.
For any p, q, define a matrix $\Omega_{p, q}$ whose entries are given by

$$
\left(\Omega_{p, q}\right)_{\beta}^{\alpha}=\left(\eta^{\alpha \gamma} \Omega_{\gamma, p ; \beta, q}\right)
$$

We will prove that, for any $s \geq 1$,

$$
\begin{equation*}
\Omega_{p+s, q}+(-1)^{s-1} \Omega_{p, q+s}=\sum_{\ell=0}^{s-1}(-1)^{\ell} \Omega_{p, \ell} \Omega_{s-1-\ell, q}, \quad p, q \geq 0 \tag{3.9}
\end{equation*}
$$

Then (3.8) is just the particular case with $s=2 k-1$.
The $s=1$ case of (3.9) can be proved by using (2.12) and (2.15). We assume that the identity (3.9) holds true for $s \leq m$. In order to prove the validity of (3.9) for any $s \geq 1$, we need to prove its validity for $s=m+1$. Take $s=m$ and replace (p, q) by $(p+1, q)$ in (3.9) we obtain

$$
\Omega_{p+1+m, q}+(-1)^{m-1} \Omega_{p+1, q+m}=\sum_{\ell=0}^{m-1}(-1)^{\ell} \Omega_{p+1, \ell} \Omega_{m-1-\ell, q}
$$

So to prove the validity of (3.9) for $s=m+1$ we only need to prove the following identity:

$$
\begin{aligned}
& (-1)^{m}\left(\Omega_{p, q+m+1}+\Omega_{p+1, q+m}\right)=\Omega_{p, 0} \Omega_{m, q} \\
& \quad+\sum_{\ell=0}^{m-1}(-1)^{m-\ell}\left(\Omega_{p, m-\ell}+\Omega_{p+1, m-1-\ell}\right) \Omega_{\ell, q}
\end{aligned}
$$

Taking $s=1$ and replacing (p, q) by $(p, q+m)$ and by $(p, m-\ell-1)$ in (3.9) we obtain respectively the following identities:

$$
\begin{array}{r}
\Omega_{p, q+m+1}+\Omega_{p+1, q+m}=\Omega_{p, 0} \Omega_{0, q+m} \\
\Omega_{p, m-\ell}+\Omega_{p+1, m-1-\ell}=\Omega_{p, 0} \Omega_{0, m-1-\ell}
\end{array}
$$

Thus we are left to show

$$
\Omega_{m, q}+(-1)^{m-1} \Omega_{0, q+m}=\sum_{\ell=0}^{m-1}(-1)^{\ell} \Omega_{0, \ell} \Omega_{m-1-\ell, q},
$$

which is exactly the identity (3.9) for $s=m$ with (p, q) replaced by $(0, q)$. The proposition is proved.

The identity (3.7) with $k=1$ first appeared in [19]. In the case of Frobenius manifolds coming from quantum cohomology of a smooth projective variety the identity (3.7) is proved for any k in [22].

The above lemma also shows that the operator

$$
D_{k}=\sum_{p \geq 0} \tilde{t}^{\alpha, p} \frac{\partial}{\partial t^{\alpha, p+2 k-1}}-\sum_{p=0}^{2 k-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial \mathcal{H}_{0}}{\partial t^{\alpha, p}} \frac{\partial}{\partial t^{\beta, 2 k-2-p}}
$$

does not depend on \mathbf{s}.

Let us proceed to considering \mathcal{H}_{g} with $g \geq 1$.
Define

$$
\mathcal{H}_{g, h}=\left.\mathcal{H}_{g}(\mathbf{t}, \mathbf{s})\right|_{s_{k}=0(k>h)}, \quad E_{k, g, h}=\left.E_{k, g}\right|_{s_{k}=0}(k>h) .
$$

Then $\mathcal{H}_{g, h}$ are determined by the following recursion relations:

$$
\begin{equation*}
\frac{\partial \mathcal{H}_{g, h}}{\partial s_{h}}=D_{h}\left(\mathcal{H}_{g, h}\right)+E_{h, g, h},\left.\quad \mathcal{H}_{g, h}\right|_{s_{h}=0}=\mathcal{H}_{g, h-1} \tag{3.10}
\end{equation*}
$$

and the initial condition $\mathcal{H}_{g, 0}=\mathcal{F}_{g}$.
Theorem 3.2. For any semisimple Frobenius manifold, the genus g Hodge potential \mathcal{H}_{g} does not depend on s_{k} with $k>g$, i.e. $\mathcal{H}_{g}=\mathcal{H}_{g, g}$ for all $g \geq 1$.

Proof. By using the formula (3.1) we can see that the theorem is equivalent to the following asymptotic behavior:

$$
\begin{equation*}
\tilde{\mathcal{D}}_{k}(Z(\mathbf{t} ; \epsilon))=\mathcal{O}\left(\epsilon^{2 k-2}\right) Z(\mathbf{t} ; \epsilon), \quad \text { when } \epsilon \rightarrow 0 \tag{3.11}
\end{equation*}
$$

Here $\tilde{\mathcal{D}}_{k}$ are defined in (3.2).
We already know that, when M is the semisimple Frobenius manifold defined by the quantum cohomology of a smooth projective variety the above asymptotic relation holds true by definition. In particular, we have

$$
\mathcal{D}_{k}^{(i)} Z_{p t}^{\mathrm{vac}}\left(\mathbf{t}^{(i)} ; \epsilon\right)=\mathcal{O}\left(\epsilon^{2 k-2}\right) Z_{p t}^{\mathrm{vac}}\left(\mathbf{t}^{(i)} ; \epsilon\right), \quad \text { when } \epsilon \rightarrow 0
$$

For a general semisimple Frobenius manifold M, the validity of the above asymptotic relation can be proved by using the formula (3.1), Lemma 2.5 and standard asymptotic analysis techniques. The theorem is proved.

We would like to mention that an alternative form of the asymptotic formula (3.11) is given by

$$
\begin{align*}
D_{k} \mathcal{F}_{g} & -\frac{1}{2} \sum_{p=0}^{2 k-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial^{2} \mathcal{F}_{g-1}}{\partial t^{\alpha, p} \partial t^{\beta, 2 k-2-p}} \\
& -\frac{1}{2} \sum_{p=0}^{2 k-2} \sum_{m=1}^{g-1}(-1)^{p} \eta^{\alpha \beta} \frac{\partial \mathcal{F}_{m}}{\partial t^{\alpha, p}} \frac{\partial \mathcal{F}_{g-m}}{\partial t^{\beta, 2 k-2-p}}=0, \quad k \geq g+1 . \tag{3.12}
\end{align*}
$$

It was conjectured in [35] and proved in [34] that the following equalities hold true for Gromov-Witten potentials of a smooth projective variety:

$$
\begin{align*}
& \sum_{p=0}^{2 k-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial^{2} \mathcal{F}_{g-1}}{\partial t^{\alpha, p} \partial t^{\beta, 2 k-2-p}}=0, \quad k \geq g+1 \tag{3.13}\\
& D_{k} \mathcal{F}_{g}-\frac{1}{2} \sum_{p=0}^{2 k-2} \sum_{m=1}^{g-1}(-1)^{p} \eta^{\alpha \beta} \frac{\partial \mathcal{F}_{m}}{\partial t^{\alpha, p}} \frac{\partial \mathcal{F}_{g-m}}{\partial t^{\beta, 2 k-2-p}}=0, \quad k \geq g \tag{3.14}
\end{align*}
$$

Here we conjecture ${ }^{3}$ the validity of these equalities for all semisimple Frobenius manifolds.

Now let us proceed to finding the solution to (3.10). We prove some lemmas first.
Lemma 3.3. Let $P(z), Q(z)$ be the matrices whose entries are given by

$$
P_{\beta}^{\alpha}(z)=\eta^{\alpha \gamma} \frac{\partial \theta_{\gamma}(z)}{\partial v^{\beta}}, \quad Q_{\beta}^{\alpha}(z)=\eta^{\alpha \gamma} \frac{\partial \theta_{\beta}(z)}{\partial v^{\gamma}} .
$$

Define a matrix $C=\left(C_{\beta}^{\alpha}\right)$ with entries $C_{\beta}^{\alpha}=c_{\beta \gamma}^{\alpha} v_{x}^{\gamma}$. Then
i) $Q(-z) P(z)=I$,
ii) $\partial_{x} P(z)=z P(z) C$,
iii) $\partial_{x} Q(z)=z C Q(z)$,
iv) For all $l, m \geq 0, \partial_{x}^{l} Q(-z) \partial_{x}^{m} P(z)$ is a polynomial in z with degree $l+m$.

Proof. The normalization condition (2.7) of $\theta_{\alpha}(z)$ gives $P(z) Q(-z)=I$, so we have $Q(-z) P(z)=I$. Items ii) and iii) are equivalent to Equation (2.4). Item iv) is an easy consequence of ii) and iii).

Denote by \mathcal{A} the ring of functions $f\left(v, v_{x}, \ldots, v^{(m)}\right)$ (where m can be arbitrary nonnegative integers) satisfying

- f depends on $v \in M$ analytically;
- f depends on v_{x} rationally;
- f depends on higher jets $v_{x x}, v_{x x x}, \ldots, v^{(m)}$ polynomially.

Define $\hat{\mathcal{A}}=\mathcal{A}\left[s_{1}, s_{2}, \ldots\right]$. We introduce a gradation on $\hat{\mathcal{A}}$ as follows:

$$
\overline{\operatorname{deg}} s_{k}=2 k-1, \quad \overline{\operatorname{deg}} f\left(v, v_{x}\right)=0, \quad \overline{\operatorname{deg}} \partial_{x}^{s} v^{\alpha}=s-1, \quad k \geq 1, s \geq 2
$$

Proposition 3.4.

i) The following inequality holds true:

[^3]$$
\overline{\operatorname{deg}}\left(\sum_{p=0}^{N}(-1)^{p} \eta^{\alpha^{\prime} \beta^{\prime}} \partial_{x}^{l}\left(\frac{\partial \theta_{\alpha^{\prime}, p}}{\partial v^{\alpha}}\right) \partial_{x}^{m}\left(\frac{\partial \theta_{\beta^{\prime}, N-p}}{\partial v^{\beta}}\right)\right) \leq l+m-N .
$$

In particular, if $l+m<N$ then the above sum vanishes.
ii) The following inequality holds true:

$$
\overline{\operatorname{deg}}\left(D_{k}\left(\partial_{x}^{m} v^{\alpha}\right)\right) \leq m-2 k
$$

In particular, if $m<2 k$ then $D_{k}\left(\partial_{x}^{m} v^{\alpha}\right)=0$.

Proof. The first part is an easy consequence of the item iv) of Lemma 3.3. Let us give the proof of the second part of the corollary.

By acting $\frac{\partial^{2}}{\partial t^{\alpha, p} \partial t^{\beta, q}}$ on the identity (3.7), and using the identity (3.8), we obtain

$$
\begin{aligned}
& D_{k}\left(\Omega_{\alpha, p ; \beta, q}\right) \\
= & \sum_{\ell=0}^{2 k-2}(-1)^{\ell} \eta^{\alpha^{\prime} \beta^{\prime}} \Omega_{\alpha, p ; \alpha^{\prime}, \ell} \Omega_{\beta, q ; \beta^{\prime}, 2 k-2-\ell}-\Omega_{\alpha, p+2 k-1 ; \beta, q}-\Omega_{\alpha, p ; \beta, q+2 k-1} \\
= & 0 .
\end{aligned}
$$

In particular, we have $D_{k}\left(v^{\alpha}\right)=D_{k}\left(\eta^{\alpha \beta} \Omega_{1,0 ; \beta, 0}\right)=0$.
For $m \geq 1$, by considering the commutator [D_{k}, ∂_{x}] one obtains the equality

$$
D_{k}\left(\partial_{x}^{m} v^{\alpha}\right)=\partial_{x}\left(D_{k}\left(\partial_{x}^{m-1} v^{\alpha}\right)\right)-\eta^{\alpha \beta} \sum_{p=0}^{2 k}(-1)^{p} \eta^{\alpha^{\prime} \beta^{\prime}} \frac{\partial \theta_{\alpha^{\prime}, p}}{\partial v^{1}} \partial_{x}^{m}\left(\frac{\partial \theta_{\beta^{\prime}, 2 k-p}}{\partial v^{\beta}}\right)
$$

If $m<2 k$, the first part of the corollary implies that the above sum vanishes; if $m \geq 2 k$, the first part of the corollary gives us the desired inequality. The lemma is proved.

Lemma 3.5.

$$
\sum_{p=0}^{N}(-1)^{p} \eta^{\alpha \beta} \Omega_{\alpha, p ; \beta, N-p}=\operatorname{Tr}(U) \delta_{N, 0}
$$

Proof. Recall that

$$
\Omega\left(z_{1}, z_{2}\right)=\left(\sum_{p, q} \eta^{\alpha \gamma} \Omega_{\gamma, p ; \beta, q} z_{1}^{p} z_{2}^{q}\right)=\frac{S^{\dagger}\left(z_{1}\right) S\left(z_{2}\right)-I}{z_{1}+z_{2}} .
$$

So, the statement of the lemma is equivalent to the identity

$$
\operatorname{Tr}(\Omega(-z, z))=\operatorname{Tr}(U)
$$

By using L'Hôspital's rule, it is easy to see that

$$
\operatorname{Tr}(\Omega(-z, z))=\operatorname{Tr}\left(S^{\dagger}(-z) \frac{d S(z)}{d z}\right)=\operatorname{Tr}\left(\frac{d S(z)}{d z} S^{-1}(z)\right)=\operatorname{Tr}(U)
$$

The last step has been explained in the proof of Lemma 2.5. The lemma is proved.
We note that the following identity holds true:

$$
\operatorname{Tr}(U)=\operatorname{Tr}(\mathcal{U})=\eta^{\alpha \beta} \frac{\partial^{2} F}{\partial v^{\alpha} \partial v^{\beta}}=\eta^{\alpha \beta} \Omega_{\alpha, 0 ; \beta, 0}
$$

Proposition 3.6.

i) Let $f \in \hat{\mathcal{A}}$ such that $\overline{\operatorname{deg}} f \leq m$. Then we have

$$
\overline{\operatorname{deg}}\left(D_{k}(f)\right) \leq m+1-2 k .
$$

ii) Let $f_{1}, f_{2} \in \hat{\mathcal{A}}$ such that $\overline{\operatorname{deg}} f_{i} \leq m_{i}(i=1,2)$. Then

$$
\overline{\operatorname{deg}}\left(\sum_{p=0}^{N}(-1)^{p} \eta^{\alpha \beta} \frac{\partial f_{1}}{\partial t^{\alpha, p}} \frac{\partial f_{2}}{\partial t^{\beta, N-p}}\right) \leq m_{1}+m_{2}+2-N .
$$

In particular, if f_{1} does not depend on $v_{x}, v_{x x}, \ldots$, then the bound can be reduced to $m_{2}+1-N$; if both f_{1}, f_{2} do not depend on the jet variables, then the bound becomes $-N$, and the sum vanishes if $N \geq 1$.
iii) Let $f \in \hat{\mathcal{A}}$ such that $\overline{\operatorname{deg}} f \leq m$. Then

$$
\overline{\operatorname{deg}}\left(\sum_{p=0}^{N}(-1)^{p} \eta^{\alpha \beta} \frac{\partial^{2} f}{\partial t^{\alpha, p} \partial t^{\beta, N-q}}\right) \leq m+2-N .
$$

In particular, if f does not depend on $v_{x}, v_{x x}, \ldots$, then the sum vanishes for $N \geq 1$.

Proof. i) By using the chain rule and the part ii) of Proposition 3.4, we have

$$
\overline{\operatorname{deg}}\left(D_{k}(f)\right)=\overline{\operatorname{deg}}\left(\sum_{\ell \geq 0} \frac{\partial f}{\partial v^{\alpha, \ell}} D_{k}\left(v^{\alpha, \ell}\right)\right) \leq m-(l-1)+l-2 k=m+1-2 k .
$$

Here $v^{\alpha, \ell}=\partial_{x}^{\ell} v^{\alpha}$.
ii) By using the chain rule and the principal hierarchy (2.8), one can obtain that

$$
\sum_{p=0}^{N}(-1)^{p} \eta^{\alpha \beta} \frac{\partial f_{1}}{\partial t^{\alpha, p}} \frac{\partial f_{2}}{\partial t^{\beta, N-p}}
$$

$$
=\frac{\partial f_{1}}{\partial v_{\alpha^{\prime}, l}} \frac{\partial f_{2}}{\partial v_{\beta^{\prime}, m}} \sum_{p=0}^{N+2}(-1)^{p+1} \eta^{\alpha \beta} \partial_{x}^{l+1}\left(\frac{\partial \theta_{\alpha, p}}{\partial v^{\alpha^{\prime}}}\right) \partial_{x}^{m+1}\left(\frac{\partial \theta_{\beta, N-p}}{\partial v^{\beta^{\prime}}}\right),
$$

where $v_{\alpha, k}=\partial_{x}^{k} v_{\alpha}$. Then the inequality follows from Proposition 3.4.
iii) By using Lemma 3.5 and Equation (2.16), one can show that

$$
\sum_{p=0}^{2 N}(-1)^{p} \eta^{\alpha \beta} \frac{\partial^{2} \mathcal{F}_{0}}{\partial t^{\alpha, p} \partial t^{\beta, 2 N-p}}=0
$$

so we have

$$
\sum_{p=0}^{2 N}(-1)^{p} \eta^{\alpha \beta} \frac{\partial^{2}\left(\partial_{x}^{m}\left(v^{\gamma}\right)\right)}{\partial t^{\alpha, p} \partial t^{\beta, 2 N-p}}=0
$$

Then the inequality can be proved by applying the chain rule again and by using part ii) of the corollary.

Proposition 3.7. The genus one Hodge potential has the expression

$$
\begin{equation*}
\mathcal{H}_{1}=\mathcal{F}_{1}-\frac{s_{1}}{2} \operatorname{Tr}(U) \tag{3.15}
\end{equation*}
$$

Proof. From Theorem 3.2 it follows that $\mathcal{H}_{1}=\mathcal{H}_{1,1}$, so we only need to find $\mathcal{H}_{1,1}$, which is determined by the following equations:

$$
\begin{aligned}
& \frac{\partial \mathcal{H}_{1,1}}{\partial s_{1}}=D_{1}\left(\mathcal{H}_{1,1}\right)-\frac{1}{2} \eta^{\alpha \beta} \frac{\partial^{2} \mathcal{H}_{0}}{\partial t^{\alpha, 0} \partial t^{\beta, 0}}=D_{1}\left(\mathcal{H}_{1,1}\right)-\frac{1}{2} \operatorname{Tr}(U) \\
& \left.\mathcal{H}_{1,1}\right|_{s_{1}=0}=\mathcal{F}_{1}
\end{aligned}
$$

Expand $\mathcal{H}_{1,1}$ as formal power series

$$
\mathcal{H}_{1,1}=\mathcal{F}_{1}+s_{1} \mathcal{H}_{1,1}^{(1)}+s_{1}^{2} \mathcal{H}_{1,1}^{(2)}+\cdots
$$

then we have

$$
\begin{aligned}
\mathcal{H}_{1,1}^{(1)} & =D_{1}\left(\mathcal{F}_{1}\right)-\frac{1}{2} \operatorname{Tr}(U) \\
k \mathcal{H}_{1,1}^{(k)} & =D_{1}\left(\mathcal{H}_{1,1}^{(k-1)}\right), \quad(k \geq 2) .
\end{aligned}
$$

Note that $\overline{\operatorname{deg}}\left(\mathcal{F}_{1}\right)=0$, from Proposition 3.6 it follows that $D_{1}\left(\mathcal{F}_{1}\right)=0$, thus $\mathcal{H}_{1,1}^{(1)}=$ $-\frac{1}{2} \operatorname{Tr}(U)$ and $\overline{\operatorname{deg}}\left(\mathcal{H}_{1,1}^{(1)}\right)=0$. By using Proposition 3.6 again we arrive at the equalities $\mathcal{H}_{1,1}^{(k)}=0$ for $k \geq 2$. The proposition is proved.

Theorem 3.8. For $g \geq 2$ we have $\mathcal{H}_{g} \in \hat{\mathcal{A}}$ and

$$
\overline{\operatorname{deg}} \mathcal{H}_{g} \leq 3 g-3
$$

In particular, equation (3.10) has a unique solution of the following form

$$
\mathcal{H}_{g, h}=\mathcal{H}_{g, h-1}+\sum_{i=1}^{N_{g, h}} \mathcal{H}_{g, h}^{(i)} s_{h}^{i},
$$

where $N_{g, h}=\left[\frac{3 g-3}{2 h-1}\right]$, and the coefficients $\mathcal{H}_{g, h}^{(i)}$ can be obtained recursively from the equation (3.10).

Proof. We prove the theorem by induction on h. When $h=0$ we know from Theorem 2.2 that $\mathcal{H}_{g, 0}=\mathcal{F}_{g}$ satisfies the condition $\overline{\operatorname{deg}} \mathcal{F}_{g} \leq 3 g-3$. We assume that $\overline{\operatorname{deg}} \mathcal{H}_{g, m} \leq 3 g-3$ when $m \leq h-1$, and then consider the degree of $\mathcal{H}_{g, h}$.

By definition, $\mathcal{H}_{g, h}$ is a formal power series of s_{h}. We write it as

$$
\mathcal{H}_{g, h}=\mathcal{H}_{g, h-1}+s_{h} \mathcal{H}_{g, h}^{(1)}+s_{h}^{2} \mathcal{H}_{g, h}^{(2)}+\cdots .
$$

Then equation (3.10) implies that

$$
\begin{aligned}
\mathcal{H}_{g, h}^{(1)} & =D_{h}\left(\mathcal{H}_{g, h-1}\right)+\operatorname{Coef}\left(E_{h, g, h}, s_{h}^{0}\right) \\
2 \mathcal{H}_{g, h}^{(2)} & =D_{h}\left(\mathcal{H}_{g, h}^{(1)}\right)+\operatorname{Coef}\left(E_{h, g, h}, s_{h}^{1}\right) \\
3 \mathcal{H}_{g, h}^{(3)} & =D_{h}\left(\mathcal{H}_{g, h}^{(2)}\right)+\operatorname{Coef}\left(E_{h, g, h}, s_{h}^{2}\right), \quad \cdots,
\end{aligned}
$$

where

$$
E_{h, g, h}=-\frac{1}{2} \sum_{p=0}^{2 h-2}(-1)^{p} \eta^{\alpha \beta}\left(\frac{\partial^{2} \mathcal{H}_{g-1, h}}{\partial t^{\alpha, p} \partial t^{\beta, 2 h-2-p}}+\sum_{\ell=1}^{g-1} \frac{\partial \mathcal{H}_{\ell, h}}{\partial t^{\alpha, p}} \frac{\partial \mathcal{H}_{g-\ell, h}}{\partial t^{\beta, 2 h-2-p}}\right),
$$

and $\operatorname{Coef}\left(P(x), x^{k}\right)$ denote the coefficient of x^{k} of a polynomial $P(x)$.
From Proposition 3.6 we know that

$$
\begin{aligned}
\overline{\operatorname{deg}}\left(D_{h}\left(\mathcal{H}_{g, h-1}\right)\right) & \leq 3 g-2 h-2, \\
\overline{\operatorname{deg}}\left(\sum_{p=0}^{2 h-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial^{2} \mathcal{H}_{g-1, h}}{\partial t^{\alpha, p} \partial t^{\beta, 2 h-2-p}}\right) & \leq 3 g-2 h-2, \\
\overline{\operatorname{deg}}\left(\sum_{p=0}^{2 h-2}(-1)^{p} \eta^{\alpha \beta} \frac{\partial \mathcal{H}_{\ell, h}}{\partial t^{\alpha, p}} \frac{\partial \mathcal{H}_{g-\ell, h}}{\partial t^{\beta, 2 h-2-p}}\right) & \leq 3 g-2 h-2,
\end{aligned}
$$

Table 1
An algorithm for \mathcal{H}_{g}.

FUNCTION H(g)		
Argument:	g	The genus $g \geq 2$.
Global variables:	$\mathrm{F}(1), \ldots, \mathrm{F}(\mathrm{g})$	Free energies of genus 1 to g, obtained from the loop equation (2.17).
	$\mathrm{H}(1), \ldots, \mathrm{H}(\mathrm{g}-1)$	Hodge potentials of genus 1 to $g-1$, obtained from Proposition 3.7 and the algorithm itself.
	VT ($\mathrm{a}, \mathrm{p}, \mathrm{b}$)	$\frac{\partial v^{b}}{\partial t^{a, p}}$, the principal hierarchy (1.15).
	DV (k, a,m)	$D_{k}\left(\partial_{x}^{m} v^{a}\right)$, obtained from Proposition 3.4.
Local variables:	h, j	Positive integers.
	n	$N_{g, h}$.
	$\mathrm{H}(\mathrm{g}, \mathrm{h})$	$\mathcal{H}_{g, h}$.
	$\mathrm{H}(\mathrm{g}, \mathrm{h}, \mathrm{j})$	$\mathcal{H}_{g, h}(j)$.
Subroutines:	FLOOR (x)	$[x]$, the Gauss floor function.
	D (k, A)	$D_{k}(A)$, computed by using $\operatorname{DV}(\mathrm{k}, \mathrm{a}, \mathrm{m})$ and the chain rule.
	$E(h, g, h)$	$E_{h, g, h}$, computed by using VT(a, p, c), H(1) , ..., $\mathrm{H}(\mathrm{g}-1)$ and the chain rule.
	$\operatorname{COEF}(\mathrm{A}, \mathrm{x}, \mathrm{k})$	$\operatorname{Coef}\left(A, x^{k}\right)$.

BEGIN
$\mathrm{H}(\mathrm{g}, 0):=\mathrm{F}(\mathrm{g})$
FOR $h=1$ TO g DO
$\mathrm{H}(\mathrm{g}, \mathrm{h}, 0):=\mathrm{H}(\mathrm{g}, \mathrm{h}-1)$
$\mathrm{n}:=\operatorname{FLOOR}((3 * \mathrm{~g}-3) /(2 * \mathrm{~h}-1))$
FOR $j=1$ TO n DO
$H(g, h, j):=\left(D(h, H(g, h, j-1))+\operatorname{COEF}\left(E(h, g, h), s_{-}, j-1\right)\right) / j$
END FOR $H(g, h):=\operatorname{SUM}\left(H(g, h, j) s _h^{-} j, j=0, \ldots, n\right)$
END FOR
RETURN $\mathrm{H}(\mathrm{g}, \mathrm{g})$
so $\overline{\operatorname{deg}}\left(\mathcal{H}_{g, h}^{(1)}\right) \leq 3 g-2 h-2$. Note that, when $g=2, l=1$, or $l=g-1, \mathcal{H}_{1, h}$ appears in the above estimate, whose degree is not 0 but 1 . In these cases, we must use the explicit form of \mathcal{H}_{1} and the fact that $\operatorname{Tr}(U)$ does not depend on the jet variables to obtain the best bounds of the degrees of the relevant functions.

Similarly, one can show that $\overline{\operatorname{deg}}\left(\mathcal{H}_{g, h}^{(j)}\right) \leq 3 g-3-(2 h-1) j$, so we have $\overline{\operatorname{deg}}\left(\mathcal{H}_{g, h}\right) \leq$ $3 g-3$. The theorem is proved.

It is clear that Theorem 3.8, Proposition 3.1, Theorem 3.2 and Proposition 3.7 give a refinement of Theorem 1.3. Together with Theorem 2.2, they provide an algorithm (see Table 1) for computation of the Hodge potentials \mathcal{H}_{g} for $g \geq 0$.

Before we proceed to considering the Hodge hierarchy satisfied by the two-point correlation functions (1.30), let us calculate some Hodge integrals by using the above algorithm. Assume M is a semisimple Frobenius manifold defined by the quantum cohomology of a certain smooth projective variety X with vanishing odd cohomology. Denote by $\lambda_{i}=c_{i}(\mathbb{E})$ the Chern classes of the Hodge bundle over the moduli space $X_{g, m, \beta}$.

Corollary 3.9. Let $v^{\alpha}(\mathbf{t})$ be the topological solution of the Euler-Lagrange equations (2.10) subjected to $c^{\alpha, p}=\delta_{1}^{\alpha} \delta_{1}^{p}$. Then the following formula holds true:

$$
\begin{aligned}
& \sum_{m=0} \frac{1}{m!} \sum_{p_{1}, \ldots, p_{m} \geq 0} t^{\alpha_{1}, p_{1}} \ldots t^{\alpha_{m}, p_{m}} \sum_{\left.\beta \in H_{2}(X, \mathbb{Z})_{\left[X_{1, m}, \beta\right.}\right]_{\mathrm{vir}}} \lambda_{1} \prod_{j=1}^{m} e v_{j}^{*}\left(\phi_{\alpha_{j}}\right) \wedge c_{1}^{p_{j}}\left(\mathcal{L}_{j}\right) \\
& =\frac{1}{24} \eta^{\alpha \beta} \frac{\partial^{2} F}{\partial v^{\alpha} \partial v^{\beta}}(v(\mathbf{t})) .
\end{aligned}
$$

Proof. This is a simple corollary of Theorem 3.8 and $\operatorname{ch}_{1}(\mathbb{E})=\lambda_{1}$.

For the case when $X=a$ point, we have computed the corresponding Hodge potentials up to genus 6 by applying Theorem 3.8. We also have the following corollary of Theorem 3.8.

Corollary 3.10. Let $v(\mathbf{t})$ denote the topological solution (1.29) of the dispersionless $K d V$ hierarchy. For $g \geq 2$, the following formula holds true:

$$
\begin{aligned}
& \sum_{m \geq 0} \sum_{p_{1}, \ldots, p_{m} \geq 0} \frac{t_{p_{1}} \ldots t_{p_{m}}}{m!} \int_{\overline{\mathcal{M}}_{g, m}} \lambda_{g} \lambda_{g-1} \lambda_{g-2} \psi_{1}^{p_{1}} \ldots \psi_{m}^{p_{m}} \\
& \quad=\frac{1}{2(2 g-2)!} \frac{\left|B_{2 g-2}\right|}{2 g-2} \frac{\left|B_{2 g}\right|}{2 g} v_{x}^{2 g-2}(\mathbf{t}) .
\end{aligned}
$$

Proof. Due to Theorem 3.8, for $g \geq 2$ the left hand side can be expressed as a polynomial in $v_{x x}, v_{x x x}, \ldots$ with coefficients rationally depending on v_{x}. Noting that $\overline{\operatorname{deg}} \mathcal{H}_{g} \leq 3 g-3$, we find that the left hand side has degree 0 , so it does not contain $v_{x x}, v_{x x x}, \ldots$. Then by using the fact that $v(0)=0, v_{x}(0)=1$, $\operatorname{deg} \mathcal{H}_{g}=2 g-2$, and the well-known Hodge integral formula (see eq. (5.3) below) we obtain that the left hand side must have the form

$$
\frac{1}{2(2 g-2)!} \frac{\left|B_{2 g-2}\right|}{2 g-2} \frac{\left|B_{2 g}\right|}{2 g} f(v(\mathbf{t})) v_{x}^{2 g-2}(\mathbf{t})
$$

for some smooth function $f(v)$ satisfying $f(0)=1$.
The string equation now reads

$$
\begin{equation*}
\sum_{p \geq 1} \tilde{t}_{p} \frac{\partial Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)}{\partial t_{p-1}}+\frac{1}{2 \epsilon^{2}} t_{0}^{2} Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)-\frac{s_{1}}{2} Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)=0 \tag{3.16}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{\partial \mathcal{H}_{g}}{\partial v}=0, \quad g \geq 2 \tag{3.17}
\end{equation*}
$$

So we have $f(v) \equiv 1$. The corollary is proved.

4. Tau-symmetric integrable Hamiltonian deformations of the principal hierarchy

In this section, we introduce the notion of tau-symmetric integrable Hamiltonian deformations of the principal hierarchy, and prove Theorem 1.5. We will also study in detail the Hodge hierarchy associated to the one-dimensional Frobenius manifold for some particular choices of the parameters $s_{k}, k \geq 1$.

Definition 4.1. Let M be a Frobenius manifold. A hierarchy of Hamiltonian evolutionary PDEs

$$
\begin{equation*}
\frac{\partial w^{\alpha}}{\partial t^{\beta, q}}=\left\{w^{\alpha}(x), H_{\beta, q}\right\}=P^{\alpha \gamma} \frac{\delta H_{\beta, q}}{\delta w^{\gamma}(x)}, \quad q \geq 0 \tag{4.1}
\end{equation*}
$$

is called a tau-symmetric integrable Hamiltonian deformation of the principal hierarchy of M if the flow $\frac{\partial}{\partial t^{1,0}}$ is given by the translation along the spatial variable x and the following conditions are satisfied:

1) Integrability: for $\beta=1, \ldots, n, q \geq 0$ the functionals $H_{\beta, q}$ are conserved quantities for each flow of the hierarchy.
2) Polynomiality: the Hamiltonian operator $P^{\alpha \beta}$ and the densities of the Hamiltonians $H_{\beta, q}=\int h_{\beta, q} d x$ take the form

$$
\begin{align*}
P^{\alpha \beta} & =\eta^{\alpha \beta} \partial_{x}+\sum_{k \geq 1} \epsilon^{k} \sum_{l=0}^{k+1} P_{k, l}^{\alpha \beta}\left(w ; w_{x}, \ldots, w^{(k+1-l)}\right) \partial_{x}^{l} \tag{4.2}\\
h_{\beta, q} & =\theta_{\beta, q+1}(w)+\sum_{k \geq 1} \epsilon^{k} h_{\beta, q ; k}\left(w ; w_{x}, \ldots, w^{(k)}\right), \quad q \geq 0 .
\end{align*}
$$

Here $P_{k, l}^{\alpha \beta}, h_{\beta, q ; k}$ are homogeneous differential polynomials in $w_{x}^{\gamma}, w_{x x}^{\gamma}, \ldots$ of degrees $k+1-l$ and k respectively. Like above the degree is defined as $\operatorname{deg} \partial_{x}^{m} w^{\gamma}=m$.
3) Tau-symmetry:

$$
\frac{\partial h_{\alpha, p-1}}{\partial t^{\beta, q}}=\frac{\partial h_{\beta, q-1}}{\partial t^{\alpha, p}}, \quad p, q \geq 0
$$

where $h_{\alpha,-1}=w_{\alpha}=\eta_{\alpha \gamma} w^{\gamma}$.
4) $H_{\beta,-1}=\int h_{\beta,-1}(w(x)) d x$ are Casimirs of the Hamiltonian operator P,

$$
P^{\alpha \gamma} \frac{\delta H_{\beta,-1}}{\delta w^{\gamma}(x)}=0
$$

We note that, for the case of one-dimensional Frobenius manifold, the integrability condition can be deduced from the other conditions given in the above definition of the tau-symmetric integrable Hamiltonian deformation of the principal hierarchy.

The integrability condition of the above definition implies the commutativity of the flows of the hierarchy, i.e.

$$
\begin{equation*}
\frac{\partial}{\partial t^{\beta, q}}\left(\frac{\partial w^{\gamma}}{\partial t^{\alpha, p}}\right)=\frac{\partial}{\partial t^{\alpha, p}}\left(\frac{\partial w^{\gamma}}{\partial t^{\beta, q}}\right), \quad \forall p, q \geq 0 \tag{4.3}
\end{equation*}
$$

This condition together with the polynomiality and tau-symmetry condition also ensures the existence of functions

$$
\tilde{\Omega}_{\alpha, p ; \beta, q}=\Omega_{\alpha, p ; \beta, q}(w)+\sum_{k \geq 1} \epsilon^{k} \Omega_{\alpha, p ; \beta, q}^{[k]}\left(w ; w_{x}, \ldots, w^{(k)}\right)
$$

such that

$$
\frac{\partial h_{\alpha, p-1}}{\partial t^{\beta, q}}=\partial_{x} \tilde{\Omega}_{\alpha, p ; \beta, q}=\partial_{x} \tilde{\Omega}_{\beta, q ; \alpha, p}
$$

Here $\Omega_{\alpha, p ; \beta, q}^{[k]}$ are graded homogeneous polynomials of $w_{x}^{\gamma}, \ldots, \partial_{x}^{k} w^{\gamma}$ of degree k. By taking $(\beta, q)=(1,0)$ in the above equalities we obtain

$$
h_{\alpha, p}=\tilde{\Omega}_{\alpha, p+1 ; 1,0}, \quad \alpha=1, \ldots, n, p \geq-1
$$

For any given solution $w=w(\mathbf{t} ; \epsilon)$ of the integrable hierarchy (4.1), since the differential polynomial

$$
\frac{\partial \tilde{\Omega}_{\alpha, p ; \beta, q}\left(w ; w_{x}, \ldots\right)}{\partial t^{\gamma, k}}
$$

is symmetric with respect to permutations of pairs of indices $\{\alpha, p\},\{\beta, q\},\{\gamma, k\}$, there exists a function $\tau(\mathbf{t} ; \epsilon)$, called the tau-function of the solution $w(\mathbf{t} ; \epsilon)$, such that

$$
\tilde{\Omega}_{\alpha, p ; \beta, q}=\epsilon^{2} \frac{\partial^{2} \log \tau(\mathbf{t} ; \epsilon)}{\partial t^{\alpha, p} \partial t^{\beta, q}}, \quad \alpha, \beta=1, \ldots, n, p, q \geq 0
$$

In particular, we have

$$
\begin{align*}
& w_{\alpha}(\mathbf{t} ; \epsilon)=\epsilon^{2} \frac{\partial^{2} \log \tau(\mathbf{t} ; \epsilon)}{\partial x \partial t^{\alpha, 0}} \\
& h_{\alpha, p}\left(w(\mathbf{t} ; \epsilon) ; w_{x}(\mathbf{t} ; \epsilon), \ldots ; \epsilon\right)=\epsilon^{2} \frac{\partial^{2} \log \tau(\mathbf{t} ; \epsilon)}{\partial x \partial t^{\alpha, p+1}}, \quad p \geq-1 . \tag{4.4}
\end{align*}
$$

Let us define a subclass of Miura-type and quasi-Miura transformations

$$
\begin{equation*}
w_{\alpha} \mapsto \tilde{w}_{\alpha}=w_{\alpha}+\sum_{k \geq 1} \epsilon^{k} W_{\alpha}^{k}\left(w ; w_{x}, w_{x x}, \ldots\right), \quad \alpha=1, \ldots, n \tag{4.5}
\end{equation*}
$$

(cf. (1.31) above) suitable for working with tau-symmetric integrable hierarchies (cf. [16]). Recall that for a Miura-type transformation the terms W_{α}^{k} of the expansion must be graded homogeneous differential polynomials of degree k with coefficients depending smoothly on $w \in$ semisimple part of M. For a quasi-Miura transformation the k-th term W_{α}^{k} depends rationally on the first jet variables w_{x}^{γ} and polynomially on $\partial_{x}^{l} w^{\gamma}, l \geq 2$. Like before, this rational function must be homogeneous in the jet variables of the degree k.

Definition 4.2. We call a Miura-type transformation (4.5) normal if it can be represented in the form

$$
\begin{equation*}
\tilde{w}_{\alpha}=w_{\alpha}+\epsilon^{2} \partial_{x} \partial_{t^{\alpha, 0}} \sum_{k \geq 0} \epsilon^{k} A_{k}\left(w ; w_{x}, \ldots\right) \tag{4.6}
\end{equation*}
$$

for some functions $A_{k}\left(w ; w_{x}, \ldots\right)$. In a similar way it is defined the class of normal quasi-Miura transformations.

It is easy to see that for a normal Miura transformation the functions A_{k} are graded homogeneous polynomials of $w_{x}^{\gamma}, \ldots, \partial_{x}^{k} w^{\gamma}$ of degree k. For a normal quasi-Miura transformation the functions A_{k} for $k \geq 2$ depend rationally on w_{x}^{γ} and polynomially on $\partial_{x}^{l} w^{\gamma}$, $l \geq 2$; the term A_{1} may also contain logarithms of the first order jets (see more details in [16]).

Recall that, under a Miura-type (or quasi-Miura) transformation the Hamiltonian operator transforms as follows:

$$
\tilde{P}^{\alpha \beta}=L_{\gamma}^{* \alpha} P^{\gamma \xi} L_{\xi}^{\beta}
$$

where

$$
L_{\beta}^{\alpha}=\sum_{s}\left(-\partial_{x}\right)^{s} \circ \frac{\partial \tilde{w}^{\alpha}}{\partial w^{\beta, s}}, \quad L_{\beta}^{* \alpha}=\sum_{s} \frac{\partial \tilde{w}^{\alpha}}{\partial w^{\beta, s}} \circ \partial_{x}^{s}, \quad w^{\alpha, s}=\partial_{x}^{s} w^{\alpha} .
$$

We also choose the following functions as the densities for the Hamiltonians of the transformed hierarchy:

$$
\tilde{h}_{\alpha, p}\left(\tilde{w} ; \tilde{w}_{x}, \ldots\right)=h_{\alpha, p}\left(w ; w_{x}, \ldots\right)+\epsilon^{2} \partial_{x} \partial_{t^{\alpha, p+1}} \sum_{k \geq 0} \epsilon^{k} A_{k}\left(w ; w_{x}, \ldots\right) .
$$

Needless to say that the Hamiltonians

$$
\int h_{\alpha, p}\left(w ; w_{x}, \ldots\right) d x \text { and } \int \tilde{h}_{\alpha, p}\left(\tilde{w} ; \tilde{w}_{x}, \ldots\right) d x
$$

coincide. Thus we have the following lemma.

Lemma 4.3. A normal Miura-type transformation transforms a tau-symmetric integrable Hamiltonian deformation of the principal hierarchy of a Frobenius manifold to a deformation of the same type.

Unlike the normal Miura-transformations, a normal quasi-Miura transformation in general does not preserve the polynomiality property of a tau-symmetric integrable hierarchy. However, in the special case when the normal quasi-Miura transformation is given by

$$
u_{\alpha}=v_{\alpha}+\epsilon^{2} \partial_{x} \partial_{t^{\alpha}, 0} \sum_{g \geq 1} \epsilon^{2 g-2} \mathcal{F}_{g}\left(v ; v_{x}, \ldots, v^{(3 g-2)}\right)
$$

where \mathcal{F}_{g} are the genus g free energies of a semisimple Frobenius manifold M, it transforms the principal hierarchy of the Frobenius manifold to its topological deformation (1.6), which is a tau-symmetric integrable deformation of the principal hierarchy, see [16, $7,8]$ for details. Similarly, Theorem 1.5 tells that the quasi-Miura transformation (1.30) also transforms the principal hierarchy to a tau-symmetric integrable hierarchy.

Proof of Theorem 1.5. Let us consider a normal quasi-Miura transformation defined in (1.30), (1.31). It transforms the principal hierarchy (1.15) of a semisimple Frobenius manifold to the Hodge hierarchy

$$
\begin{equation*}
\frac{\partial w^{\alpha}}{\partial t^{\beta, q}}=\tilde{P}^{\alpha \gamma} \frac{\delta \tilde{H}_{\beta, q}}{\delta w^{\gamma}(x)} \tag{4.7}
\end{equation*}
$$

According to Theorem 1.3, the quasi-Miura transformation defined by (1.30) has the form (1.31). So the transformed Hamiltonian operator and Hamiltonian densities have the following forms

$$
\begin{aligned}
& \tilde{P}^{\alpha \gamma}=\eta^{\alpha \gamma} \partial_{x}+\sum_{g \geq 1} \epsilon^{2 g} \sum_{k=1}^{3 g+1} \tilde{P}_{g, k}^{\alpha \gamma}\left(w ; w_{x}, \ldots, w^{(3 g+1-k)} ; s_{1}, \ldots, s_{g}\right) \partial_{x}^{k} \\
& \tilde{h}_{\beta, q}=\theta_{\beta, q+1}(w)+\sum_{g \geq 1} \epsilon^{2 g} \tilde{h}_{\beta, q, g}\left(w ; w_{x}, \ldots, w^{(3 g)} ; s_{1}, \ldots, s_{g}\right)
\end{aligned}
$$

It is easy to verify the first, third, and fourth conditions of Definition 4.1. So we only need to show the polynomiality of $\tilde{P}^{\alpha \gamma}$ and $\tilde{h}_{\beta, q}$.

Note that the total Hodge potential $Z_{\mathbb{E}}(\mathbf{t} ; \mathbf{s} ; \epsilon)$ is in the orbit of Givental group actions. Indeed, the corresponding infinitesimal transformation is given by

$$
-\sum_{k \geq 1} s_{k} \widehat{z^{-2 k+1}}
$$

Thus the polynomiality of the Hodge hierarchy and its Hamiltonian structure follows from Buryak-Posthuma-Shadrin's result [7,8]. The theorem is proved.

Let us study the Hodge hierarchy (1.34)-(1.36) of a point in detail for some specific choices of the values of the parameters s_{1}, s_{2}, \ldots. The simplest case is the original KdV hierarchy obtained by taking $s_{1}=s_{2}=\cdots=0$. We proceed to consider other examples.

Example 4.4. (See Buryak [4].) Let us assume that the parameters s_{k} take the following form:

$$
\begin{equation*}
s_{k}=-\frac{B_{2 k}}{2 k(2 k-1)} s^{2 k-1}, \quad \text { for } \quad k \geq 1 \tag{4.8}
\end{equation*}
$$

where s is an arbitrary parameter. Then we have

$$
e^{\sum s_{2 k-1} \mathrm{ch}_{2 k-1}(\mathbb{E})}=e^{\sum(2 k-2)!s^{2 k-1} \mathrm{ch}_{2 k-1}(\mathbb{E})}=e^{\sum_{m \geq 1}(-1)^{m-1}(m-1)!s^{m} \mathrm{ch}_{m}(\mathbb{E})} .
$$

Denote x_{1}, \ldots, x_{g} the Chern roots of the Hodge bundle on the moduli space of genus g curves. From the definition

$$
\operatorname{ch}_{m}(\mathbb{E})=\frac{1}{m!}\left(x_{1}^{m}+\cdots+x_{g}^{m}\right)
$$

it follows that

$$
\begin{aligned}
& e^{\sum_{m \geq 1}(-1)^{m-1}(m-1)!s^{m} \operatorname{ch}_{m}(\mathbb{E})}=\prod_{i=1}^{g} e^{\sum_{m \geq 1}(-1)^{m-1} \frac{s^{m}}{m} x_{i}^{m}} \\
& =\prod_{i=1}^{g}\left(1+s x_{i}\right)=1+s \lambda_{1}+\cdots+s^{g} \lambda_{g}=: \Lambda_{g}(s) .
\end{aligned}
$$

Here we use standard notations for the Chern classes of Hodge bundle

$$
\lambda_{i}=c_{i}(\mathbb{E}), \quad i=1, \ldots, g
$$

$\Lambda_{g}(s)$ is called the Chern polynomial of the Hodge bundle. So, after the substitution (4.8) the Hodge potential of a point specifies to

$$
\mathcal{H} \mapsto \sum_{g} \epsilon^{2 g-2} \sum_{n \geq 0} \sum_{k_{1}, \ldots, k_{n}} \frac{t_{k_{1}} \ldots t_{k_{n}}}{n!} \int_{\overline{\mathcal{M}}_{g, n}} \Lambda_{g}(s) \psi_{1}^{k_{1}} \ldots \psi_{n}^{k_{n}} .
$$

This is exactly the generating function of the special Hodge numbers considered by Buryak in [4]. He proved that the function

$$
u=w+\sum_{g \geq 1} \frac{(-1)^{g}}{2^{2 g}(2 g+1)!} \epsilon^{2 g} s^{g} w_{2 g}
$$

with $w=\epsilon^{2} \frac{\partial^{2} \mathcal{H}}{\partial x \partial x}$ satisfies the Intermediate Long Wave (ILW) equation

$$
u_{t_{1}}=u u_{x}+\sum_{g \geq 1} \epsilon^{2 g} s^{g-1} \frac{\left|B_{2 g}\right|}{(2 g)!} u_{2 g+1}
$$

So from Buryak's result it follows that the integrable hierarchy (1.34)-(1.36) of Hamiltonian evolutionary PDEs, with the special choice (4.8) of the parameters s_{k}, is equivalent to the ILW hierarchy, and the associated Hamiltonian operator have the explicit expression

$$
\tilde{P}=\partial_{x}+\sum_{g \geq 1} \frac{(2 g-1)\left|B_{2 g}\right|}{(2 g)!} s^{g} \epsilon^{2 g} \partial_{x}^{2 g+1}
$$

We note that in [32] Kazarian considered the generating function of the form

$$
\begin{equation*}
G=\sum_{g} \epsilon^{2 g-2} \sum_{n \geq 0} \sum_{k_{1}, \ldots, k_{n}} \frac{t_{k_{1}} \ldots t_{k_{n}}}{n!} \int_{\overline{\mathcal{M}}_{g, n}} \Lambda_{g}\left(-\xi^{2}\right) \psi_{1}^{k_{1}} \ldots \psi_{n}^{k_{n}} . \tag{4.9}
\end{equation*}
$$

He proved that, after the substitution $\left(t_{0}, t_{1}, \ldots\right) \mapsto\left(q_{1}, q_{2}, \ldots\right)$ of the form

$$
t_{0}=q_{1}, \quad t_{k+1}=\sum_{m \geq 1} m\left(\xi^{2} q_{m}+2 \xi q_{m+1}+q_{m+2}\right) \frac{\partial}{\partial q_{m}} t_{k}, \quad k \geq 0
$$

the function $\tau:=\exp G\left(\xi ; q_{1}, q_{2}, \ldots\right)$ turns out to be the tau-function of a family of solutions to the KP hierarchy depending on the parameter ξ.

Example 4.5. Now let us consider a particular choice of the parameters s_{k} such that the resulting Hodge hierarchy of a point possesses a bihamiltonian structure. We require that the parameters are given by

$$
\begin{equation*}
s_{k}=\left(4^{k}-1\right) \frac{B_{2 k}}{2 k(2 k-1)} s^{2 k-1}, \quad k \geq 1 \tag{4.10}
\end{equation*}
$$

Here, as in the above example, s is an arbitrary parameter. Then the Hodge potential is reduced to

$$
\mathcal{H} \mapsto \sum_{g} \epsilon^{2 g-2} \sum_{n \geq 0} \sum_{k_{1}, \ldots, k_{n}} \frac{t_{k_{1}} \ldots t_{k_{n}}}{n!} \int_{\overline{\mathcal{M}}_{g, n}} \Lambda_{g}(s) \Lambda_{g}(-2 s) \Lambda_{g}(-2 s) \psi_{1}^{k_{1}} \ldots \psi_{n}^{k_{n}}
$$

Consider the following combination

$$
\frac{\partial w}{\partial t}:=2 \sum_{k=0}^{\infty}(2 s)^{k} \frac{\partial w}{\partial t_{k}}
$$

of the flows of the Hodge hierarchy. It has the expression

$$
\frac{\partial w}{\partial t}=2 e^{2 s w} w_{x}+\frac{\epsilon^{2}}{3} e^{2 s w}\left(-s^{3} w_{x}^{3}+s^{2} w_{x} w_{x x}+s w_{x x x}\right)+\mathcal{O}\left(\epsilon^{4}\right)
$$

Making a rescaling

$$
w \rightarrow \frac{w}{2 s}
$$

and setting $s=1$, we obtain the equation

$$
\begin{equation*}
w_{t}=2 e^{w} w_{x}+\frac{\epsilon^{2}}{3} e^{w}\left(-\frac{1}{4} w_{x}^{3}+\frac{1}{2} w_{x} w_{x x}+w_{x x x}\right)+\mathcal{O}\left(\epsilon^{4}\right) \tag{4.11}
\end{equation*}
$$

Finally, performing a Miura-type transformation

$$
u=w+\sum_{k=1}^{\infty} \epsilon^{2 k} \frac{3^{2 k+2}-1}{(2 k+2)!4^{k+1}} w_{2 k}
$$

we can check up to the ϵ^{12}-approximations that the equation (4.11) is transformed to the discrete $K d V$ equation

$$
u_{t}=\frac{1}{\epsilon}\left(e^{u(x+\epsilon)}-e^{u(x-\epsilon)}\right)=2 e^{u} u_{x}+\frac{\epsilon^{2}}{3} e^{u}\left(u_{x}^{3}+3 u_{x} u_{x x}+u_{x x x}\right)+\mathcal{O}\left(\epsilon^{4}\right)
$$

which is also known as the Volterra lattice equation. At the same order of approximation, we find that, apart from the KdV case, this is the only specification of the Hodge hierarchy of a point which possesses a bihamiltonian structure ${ }^{4}$ by using the method given in $[38,36]$. From $[1,24]$ we know that the bihamiltonian structure of the Volterra system is given by the following pair of compatible Poisson brackets

$$
\begin{aligned}
&\{u(x), u(y)\}_{1}=\frac{\delta(x-y+\epsilon)-\delta(x-y-\epsilon)}{\epsilon} \\
&\{u(x), u(y)\}_{2}=\left[e^{u(x)}+e^{u(y)}\right] \frac{\delta(x-y+\epsilon)-\delta(x-y-\epsilon)}{\epsilon} \\
&+\frac{1}{\epsilon}\left[e^{u(x+\epsilon)} \delta(x-y+2 \epsilon)-e^{u(y+\epsilon)} \delta(x-y-2 \epsilon)\right]
\end{aligned}
$$

[^4]The central invariant $[17,36]$ of this bihamiltonian structure is given by

$$
c(\lambda)=\frac{1}{24 \lambda}
$$

where $\lambda=4 e^{u}$ is the canonical coordinate of this bihamiltonian structure. If we take the bihamiltonian structure as

$$
\{,\}_{1}=-\{,\}_{2}, \quad\{,\}_{2}=-\{,\}_{1},
$$

then the central invariant becomes $\tilde{c}(\tilde{\lambda})=1 / 24$, where $\tilde{\lambda}=\lambda^{-1}$.
In [44] Zhou constructed alternative generating functions of the cubic Hodge integrals and showed that they are tau-functions of a family of solutions to the KP hierarchy. Denote by $n=l(\mu)$ the length of a partition $\mu=\left(\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}>0\right)$, and by \mathcal{P}_{+} the set of all non-empty partitions. Introduce the notation

$$
z_{\mu}=\prod_{j} m_{j}(\mu)!j^{m_{j}(\mu)}
$$

where $m_{j}(\mu)=\left|i: \mu_{i}=j\right|$. The tau-function of Zhou's solution to the KP hierarchy as a function of $\left(t_{1}, t_{2}, \ldots\right), t_{n}=\frac{1}{n} p_{n}$ depending on an arbitrary parameter r is given by the sum

$$
\tau=\exp \left(\sum_{\mu \in \mathcal{P}_{+}} G_{\mu}(r ; \epsilon) p_{\mu}\right), \quad p_{\mu}=p_{\mu_{1}} p_{\mu_{2}} \ldots p_{\mu_{n}}
$$

where

$$
\begin{aligned}
& G_{\mu}(r ; \epsilon)=-\frac{\sqrt{-1}^{l(\mu)}}{z_{\mu}}[r(r+1)]^{l(\mu)-1} \prod_{i=1}^{l(\mu)} \frac{\prod_{a=1}^{\mu_{i}-1}\left(\mu_{i} r+a\right)}{\mu_{i}!} \\
& \times \sum_{g \geq 0} \epsilon^{2 g-2} \int_{\overline{\mathcal{M}}_{g, l(\mu)}} \frac{\Lambda_{g}^{\vee}(1) \Lambda_{g}^{\vee}(r) \Lambda_{g}^{\vee}(-1-r)}{\prod_{i=1}^{l(\mu)} \frac{1}{\mu_{i}}\left(\frac{1}{\mu_{i}}-\psi_{i}\right)} .
\end{aligned}
$$

In this expression

$$
\Lambda_{g}^{\vee}(r):=\sum_{i=0}^{g}(-r)^{i} \lambda_{g-i}=(-r)^{g} \Lambda_{g}\left(-\frac{1}{r}\right)
$$

is the Chern polynomial of the dual Hodge bundle. The derivation of this statement uses the Gopakumar-Mariño-Vafa formula [31,39] proven in [37,41]. This formula expresses the intersection numbers of the above form in terms of Schur polynomials. Also a generating function of more general cubic Hodge integrals labeled by pairs of partitions was
considered in [44]. It gives rise to solutions of the 2D Toda hierarchy. See in Example 4.6 for our specification of the Hodge hierarchy of a point for this more general case.

We also note that in [2] Brini derived up to ϵ^{4}-approximation the integrable hierarchy for the Hodge integrals associated to the tri-polynomial

$$
\Lambda_{g}^{\vee}(1) \Lambda_{g}^{\vee}(f) \Lambda_{g}^{\vee}(-1-f)
$$

where f is called a framing. It is conjectured in [3] that this integrable hierarchy is equivalent to the q-deformed KdV hierarchy [25] which does not possess bihamiltonian structure in the usual sense for generic q.

Example 4.6. Let us consider a special choice of the parameters $s_{k}, k \geq 1$ such that the Hamiltonian operator \tilde{P} of the Hodge hierarchy of a point has the coefficients independent of w and its x-derivatives

$$
\begin{equation*}
\tilde{P}=\partial_{x}+\sum_{g \geq 1} \epsilon^{2 g} P_{g}\left(s_{1}, \ldots, s_{g}\right) \partial_{x}^{2 g+1} \tag{4.12}
\end{equation*}
$$

We conjecture that this requirement is equivalent to the following choice of the parameters s_{k} :

$$
s_{k}=-\frac{B_{2 k}}{2 k(2 k-1)}\left(p^{2 k-1}+q^{2 k-1}-\left(\frac{p q}{p+q}\right)^{2 k-1}\right), \quad k \geq 1 .
$$

Here p and q are arbitrary complex numbers such that $p+q \neq 0$. We checked the validity of the conjecture at the approximation up to ϵ^{12}, and the Hamiltonian operator \tilde{P} has the expression

$$
\begin{align*}
\tilde{P}= & \partial_{x}-\epsilon^{2} s_{1} \partial_{x}^{3}+\frac{3}{5} \epsilon^{4} s_{1}^{2} \partial_{x}^{5}-\epsilon^{6}\left(\frac{31 s_{1}^{3}}{105}+\frac{s_{2}}{504}\right) \partial_{x}^{7} \\
& +\epsilon^{8}\left(\frac{71 s_{1}^{4}}{525}+\frac{s_{1} s_{2}}{315}\right) \partial_{x}^{9}-\epsilon^{10}\left(\frac{117 s_{1}^{5}}{1925}+\frac{9 s_{1}^{2} s_{2}}{3080}\right) \partial_{x}^{11} \\
& +\epsilon^{12}\left(\frac{42953}{1576575} s_{1}^{6}+\frac{11}{5292} s_{1}^{3} s_{2}+\frac{703 s_{2}^{2}}{181621440}\right) \partial_{x}^{13}+\mathcal{O}\left(\epsilon^{14}\right) \tag{4.13}
\end{align*}
$$

We also conjecture the following closed formula for the Hamiltonian operator

$$
\begin{equation*}
\tilde{P}=\frac{\frac{p}{2 \sqrt{p+q}} \epsilon \partial_{x}}{\sin \left(\frac{p}{2 \sqrt{p+q}} \epsilon \partial_{x}\right)} \circ \frac{\frac{q}{2 \sqrt{p+q}} \epsilon \partial_{x}}{\sin \left(\frac{q}{2 \sqrt{p+q}} \epsilon \partial_{x}\right)} \circ \frac{\frac{\sqrt{p+q}}{2} \epsilon \partial_{x}}{\sin \left(\frac{\sqrt{p+q}}{2} \epsilon \partial_{x}\right)} \circ \partial_{x} . \tag{4.14}
\end{equation*}
$$

This two-parameter family of the Hodge hierarchy corresponds to the cubic Hodge potential

$$
\begin{equation*}
\mathcal{H}=\sum_{g} \epsilon^{2 g-2} \sum_{n \geq 0} \sum_{k_{1}, \ldots, k_{n}} \frac{t_{k_{1}} \ldots t_{k_{n}}}{n!} \int_{\overline{\mathcal{M}}_{g, n}} \Lambda_{g}(p) \Lambda_{g}(q) \Lambda_{g}\left(-\frac{p q}{p+q}\right) \psi_{1}^{k_{1}} \ldots \psi_{n}^{k_{n}} . \tag{4.15}
\end{equation*}
$$

Note that
(1) when $p=0, q=s$ this example degenerates to Example 4.4;
(2) when $p=-2 s, q=s$ this example is reduced to Example 4.5;
(3) if we set $u_{1}=p, u_{2}=q, u_{3}=-\frac{p q}{p+q}$, then they satisfy

$$
\frac{1}{u_{1}}+\frac{1}{u_{2}}+\frac{1}{u_{3}}=0
$$

which is exactly the local Calabi-Yau condition that appears in the localization calculation of Gromov-Witten invariants.

The conjectural formula (4.14) holds true for Examples 4.4 and 4.5.

5. Hodge integrals and degree zero Gromov-Witten invariants

In this section we collect some explicit formulae for intersection numbers of the form

$$
\begin{equation*}
\int_{\overline{\mathcal{M}}_{g, m}} \lambda_{i_{1}} \ldots \lambda_{i_{k}} \psi_{1}^{p_{1}} \ldots \psi_{m}^{p_{m}} \tag{5.1}
\end{equation*}
$$

for $g \leq 5$. Note that, from the Mumford's relation

$$
\Lambda_{g}^{\vee}(s) \Lambda_{g}^{\vee}(-s)=(-1)^{g} s^{2 g}
$$

one derives the following identities for the λ-classes:

$$
\lambda_{k}^{2}+2 \sum_{i=0}^{k-1}(-1)^{k-i} \lambda_{i} \lambda_{2 k-i}=0, \quad k \geq 1
$$

(it is understood that $\lambda_{0}=1$ and $\lambda_{m}=0$ for $m>g$). So, it suffices [26] to consider the integrals (5.1) with pairwise distinct $i_{1}, i_{2}, \ldots i_{k}$. The Theorem 1.3 implies the following vanishing property of the intersection numbers (5.1).

Corollary 5.1. For $g \geq 2$ the intersection numbers (5.1) vanish unless

$$
i_{1}+\cdots+i_{k} \leq 3 g-3
$$

Proof. This readily follows from the upper bound estimate

$$
\overline{\operatorname{deg}} \mathcal{H}_{g} \leq 3 g-3, \quad g \geq 2
$$

Alternatively, Corollary 5.1 can be easily obtained from the dimension counting together with the string equation (3.16).

Introduce the following notation for the generating functions of the integrals (5.1) for given $i_{1}, i_{2}, \ldots, i_{k}$:

$$
\begin{equation*}
H_{g}\left(\lambda_{i_{1}} \ldots \lambda_{i_{k}} ; \mathbf{t}\right)=\sum_{m \geq 0} \frac{1}{m!} \sum_{p_{1}, \ldots, p_{m} \geq 0} t_{p_{1} \ldots t_{p_{m}} \int_{\overline{\mathcal{M}}_{g, m}} \lambda_{i_{1}} \ldots \lambda_{i_{k}} \psi_{1}^{p_{1}} \ldots \psi_{m}^{p_{m}}} \tag{5.2}
\end{equation*}
$$

They will be expressed via the topological solution $v=v(\mathbf{t})$ to the dispersionless KdV hierarchy and its derivatives $v_{k}=v^{(k)}(\mathbf{t})$ with respect to $x=t_{0}$. Due to formula (1.29) the series expansions of the derivatives read as follows

$$
\begin{aligned}
& v_{x}(\mathbf{t})=1+\sum_{k=1}^{\infty} \sum_{p_{1}+\ldots+p_{k}=k} \frac{t_{p_{1}}}{p_{1}!} \cdots \frac{t_{p_{k}}}{p_{k}!}, \\
& v^{(m)}(\mathbf{t})=\sum_{k=1}^{\infty} \sum_{p_{1}+\ldots+p_{k}=k+m-1}(k+1) \ldots(k+m-1) \frac{t_{p_{1}}}{p_{1}!} \cdots \frac{t_{p_{k}}}{p_{k}!}, m \geq 2 .
\end{aligned}
$$

For $g=1$ the only nontrivial generating function is $H_{1}\left(\lambda_{1} ; \mathbf{t}\right)$. From (1.25) it readily follows that

$$
H_{1}\left(\lambda_{1} ; \mathbf{t}\right)=\frac{1}{24} v
$$

This formula was already obtained in [27]. For $g=2$ with the help of (1.27) one derives the following three generating functions

$$
\begin{aligned}
& H_{2}\left(\lambda_{1} ; \mathbf{t}\right)=\frac{1}{480} \frac{v_{3}}{v_{1}}-\frac{11}{5760} \frac{v_{2}^{2}}{v_{1}^{2}} \\
& H_{2}\left(\lambda_{2} ; \mathbf{t}\right)=\frac{7}{5760} v_{2} \\
& H_{2}\left(\lambda_{1} \lambda_{2} ; \mathbf{t}\right)=\frac{1}{5760} v_{1}^{2} .
\end{aligned}
$$

The expression for $H_{2}\left(\lambda_{2} ; \mathbf{t}\right)$ was obtained in [27], other two seem to be new (the formula for $H_{2}\left(\lambda_{1} ; \mathbf{t}\right)$ was also obtained in [13] by a different method). It is easy to continue this calculation of all intersection numbers of λ-classes and ψ-classes also for higher g by applying the procedure of the Theorem 3.8. E.g., for genera 3 and 4 the complete list is given below.

$$
H_{3}\left(\lambda_{1} ; \mathbf{t}\right)=\frac{131 v_{2}^{5}}{45360 v_{1}^{6}}-\frac{9343 v_{2}^{3} v_{3}}{1451520 v_{1}^{5}}+\frac{869 v_{2} v_{3}^{2}}{322560 v_{1}^{4}}+\frac{185 v_{2}^{2} v_{4}}{96768 v_{1}^{4}}-\frac{689 v_{3} v_{4}}{967680 v_{1}^{3}}
$$

$$
\begin{aligned}
& -\frac{383 v_{2} v_{5}}{967680 v_{1}^{3}}+\frac{7 v_{6}}{138240 v_{1}^{2}}, \\
& H_{3}\left(\lambda_{2} ; \mathbf{t}\right)=-\frac{19 v_{2}^{4}}{53760 v_{1}^{4}}+\frac{151 v_{2}^{2} v_{3}}{207360 v_{1}^{3}}-\frac{61 v_{3}^{2}}{322560 v_{1}^{2}}-\frac{373 v_{2} v_{4}}{1451520 v_{1}^{2}}+\frac{41 v_{5}}{580608 v_{1}} \text {, } \\
& H_{3}\left(\lambda_{3} ; \mathbf{t}\right)=\frac{31 v_{4}}{967680}, \\
& H_{3}\left(\lambda_{1} \lambda_{2} ; \mathbf{t}\right)=\frac{v_{2}^{3}}{36288 v_{1}^{2}}-\frac{19 v_{2} v_{3}}{483840 v_{1}}+\frac{23 v_{4}}{193536}, \\
& H_{3}\left(\lambda_{1} \lambda_{3} ; \mathbf{t}\right)=\frac{31 v_{2}^{2}}{1451520}+\frac{41 v_{1} v_{3}}{1451520}, \\
& H_{3}\left(\lambda_{2} \lambda_{3} ; \mathbf{t}\right)=\frac{v_{1}^{2} v_{2}}{120960}, \\
& H_{3}\left(\lambda_{1} \lambda_{2} \lambda_{3} ; \mathbf{t}\right)=\frac{v_{1}^{4}}{1451520}, \\
& H_{4}\left(\lambda_{1} ; \mathbf{t}\right)=-\frac{263 v_{2}^{8}}{8100 v_{1}^{10}}+\frac{87059 v_{2}^{6} v_{3}}{777600 v_{1}^{9}}-\frac{1932781 v_{2}^{4} v_{3}^{2}}{16588800 v_{1}^{8}}+\frac{613883 v_{2}^{2} v_{3}^{3}}{16588800 v_{1}^{7}} \\
& -\frac{7379 v_{3}^{4}}{4300800 v_{1}^{6}}-\frac{8513 v_{2}^{5} v_{4}}{259200 v_{1}^{8}}+\frac{2598059 v_{2}^{3} v_{3} v_{4}}{49766400 v_{1}^{7}}-\frac{422129 v_{2} v_{3}^{2} v_{4}}{29030400 v_{1}^{6}}-\frac{3313 v_{2}^{2} v_{4}^{2}}{645120 v_{1}^{6}} \\
& +\frac{317 v_{3} v_{4}^{2}}{276480 v_{1}^{5}}+\frac{71179 v_{2}^{4} v_{5}}{9953280 v_{1}^{7}}-\frac{26473 v_{2}^{2} v_{3} v_{5}}{3317760 v_{1}^{6}}+\frac{2069 v_{3}^{2} v_{5}}{2322432 v_{1}^{5}}+\frac{2441 v_{2} v_{4} v_{5}}{1935360 v_{1}^{5}} \\
& -\frac{1129 v_{5}^{2}}{23224320 v_{1}^{4}}-\frac{2383 v_{2}^{3} v_{6}}{1990656 v_{1}^{6}}+\frac{31111 v_{2} v_{3} v_{6}}{38707200 v_{1}^{5}}-\frac{463 v_{4} v_{6}}{5806080 v_{1}^{4}}+\frac{1277 v_{2}^{2} v_{7}}{8294400 v_{1}^{5}} \\
& -\frac{179 v_{3} v_{7}}{4147200 v_{1}^{4}}-\frac{559 v_{2} v_{8}}{38707200 v_{1}^{4}}+\frac{v_{9}}{1244160 v_{1}^{3}}, \\
& H_{4}\left(\lambda_{2} ; \mathbf{t}\right)=\frac{7541 v_{2}^{7}}{1814400 v_{1}^{8}}-\frac{1540579 v_{2}^{5} v_{3}}{116121600 v_{1}^{7}}+\frac{293051 v_{2}^{3} v_{3}^{2}}{24883200 v_{1}^{6}}-\frac{145921 v_{2} v_{3}^{3}}{58060800 v_{1}^{5}} \\
& +\frac{95047 v_{2}^{4} v_{4}}{23224320 v_{1}^{6}}-\frac{152107 v_{2}^{2} v_{3} v_{4}}{29030400 v_{1}^{5}}+\frac{81331 v_{3}^{2} v_{4}}{116121600 v_{1}^{4}}+\frac{33913 v_{2} v_{4}^{2}}{69672960 v_{1}^{4}}-\frac{32719 v_{2}^{3} v_{5}}{34836480 v_{1}^{5}} \\
& +\frac{104981 v_{2} v_{3} v_{5}}{139345920 v_{1}^{4}}-\frac{145 v_{4} v_{5}}{1548288 v_{1}^{3}}+\frac{57787 v_{2}^{2} v_{6}}{348364800 v_{1}^{4}}-\frac{1969 v_{3} v_{6}}{33177600 v_{1}^{3}}-\frac{15461 v_{2} v_{7}}{696729600 v_{1}^{3}} \\
& +\frac{1357 v_{8}}{696729600 v_{1}^{2}}, \\
& H_{4}\left(\lambda_{3} ; \mathbf{t}\right)=-\frac{247 v_{2}^{6}}{1290240 v_{1}^{6}}+\frac{16951 v_{2}^{4} v_{3}}{29030400 v_{1}^{5}}-\frac{51791 v_{2}^{2} v_{3}^{2}}{116121600 v_{1}^{4}}+\frac{1469 v_{3}^{3}}{29030400 v_{1}^{3}} \\
& -\frac{1459 v_{2}^{3} v_{4}}{7257600 v_{1}^{4}}+\frac{5963 v_{2} v_{3} v_{4}}{29030400 v_{1}^{3}}-\frac{6217 v_{4}^{2}}{348364800 v_{1}^{2}}+\frac{409 v_{2}^{2} v_{5}}{7741440 v_{1}^{3}}-\frac{473 v_{3} v_{5}}{17418240 v_{1}^{2}} \\
& -\frac{3953 v_{2} v_{6}}{348364800 v_{1}^{2}}+\frac{13 v_{7}}{6220800 v_{1}} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& H_{4}\left(\lambda_{4} ; \mathbf{t}\right)=\frac{127 v_{6}}{154828800}, \\
& H_{4}\left(\lambda_{1} \lambda_{2} ; \mathbf{t}\right)=-\frac{841 v_{2}^{6}}{1161216 v_{1}^{6}}+\frac{349 v_{2}^{4} v_{3}}{161280 v_{1}^{5}}-\frac{2083 v_{2}^{2} v_{3}^{2}}{1290240 v_{1}^{4}}+\frac{593 v_{3}^{3}}{3317760 v_{1}^{3}}-\frac{6359 v_{2}^{3} v_{4}}{8709120 v_{1}^{4}} \\
& \quad+\frac{12031 v_{2} v_{3} v_{4}}{16588800 v_{1}^{3}}-\frac{473 v_{4}^{2}}{7741440 v_{1}^{2}}+\frac{2179 v_{2}^{2} v_{5}}{11612160 v_{1}^{3}}-\frac{31 v_{3} v_{5}}{331776 v_{1}^{2}} \\
& \quad-\frac{757 v_{2} v_{6}}{19353600 v_{1}^{2}}+\frac{269 v_{7}}{38707200 v_{1}}, \\
& H_{4}\left(\lambda_{1} \lambda_{3} ; \mathbf{t}\right)=\frac{67 v_{2}^{5}}{3628800 v_{1}^{4}}-\frac{1703 v_{2}^{3} v_{3}}{34836480 v_{1}^{3}}+\frac{1567 v_{2} v_{3}^{2}}{58060800 v_{1}^{2}}+\frac{197 v_{2}^{2} v_{4}}{11612160 v_{1}^{2}} \\
& \quad-\frac{907 v_{3} v_{4}}{87091200 v_{1}}-\frac{29 v_{2} v_{5}}{6967296 v_{1}}+\frac{1859 v_{6}}{348364800}, \\
& H_{4}\left(\lambda_{1} \lambda_{4} ; \mathbf{t}\right)=\frac{1093 v_{3}^{2}}{348364800}+\frac{127 v_{2} v_{4}}{29030400}+\frac{103 v_{1} v_{5}}{69672960}, \\
& H_{4}\left(\lambda_{2} \lambda_{3} ; \mathbf{t}\right)=-\frac{v_{2}^{4}}{1382400 v_{1}^{2}}+\frac{v_{2}^{2} v_{3}}{453600 v_{1}}+\frac{113 v_{3}^{2}}{129902400}+\frac{127 v_{2} v_{4}}{9676800}+\frac{17 v_{1} v_{5}}{3317760}, \\
& H_{4}\left(\lambda_{2} \lambda_{4} ; \mathbf{t}\right)=\frac{127 v_{2}^{3}}{87091200}+\frac{29 v_{1} v_{2} v_{3}}{5529600}+\frac{127 v_{1}^{2} v_{4}}{116121600}, \\
& H_{4}\left(\lambda_{3} \lambda_{4} ; \mathbf{t}\right)=\frac{17 v_{1}^{2} v_{2}^{2}}{19353600}+\frac{v_{1}^{3} v_{3}}{3225600}, \\
& H_{4}\left(\lambda_{1} \lambda_{2} \lambda_{3} ; \mathbf{t}\right)=\frac{443 v_{2}^{3}}{43545600}+\frac{137 v_{1} v_{2} v_{3}}{3870720}+\frac{1343 v_{1}^{2} v_{4}}{174182400}, \\
& H_{4}\left(\lambda_{1} \lambda_{2} \lambda_{4} ; \mathbf{t}\right)=\frac{97 v_{1}^{2} v_{2}^{2}}{29030400}+\frac{v_{1}^{3} v_{3}}{777600}, \\
& H_{4}\left(\lambda_{1} \lambda_{3} \lambda_{4} ; \mathbf{t}\right)=\frac{v_{1}^{4} v_{2}}{3628800}, \\
& H_{4}\left(\lambda_{2} \lambda_{3} \lambda_{4} ; \mathbf{t}\right)=\frac{v_{1}^{6}}{87091200} .
\end{aligned}
$$

For higher genus the calculations are also simple (we have the complete list for $g \leq 6$) but the expressions become more involved. We write just one example

$$
H_{5}\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} ; \mathbf{t}\right)=\frac{5851 v_{1}^{4} v_{2}^{2}}{1277337600}+\frac{89 v_{1}^{5} v_{3}}{85155840}
$$

Finally, we list several particular Hodge integrals (with no insertion of ψ-classes) derived from the above expressions by taking $\mathbf{t}=0$. For $g=2$,

$$
H_{2}\left(\lambda_{1}^{3} ; 0\right)=\frac{1}{2880} .
$$

This number was originally calculated in [40]. For $g \geq 3$, we have

$$
\begin{aligned}
& H_{3}\left(\lambda_{1} \lambda_{2} \lambda_{3} ; 0\right)=\frac{1}{1451520}, \quad H_{4}\left(\lambda_{2} \lambda_{3} \lambda_{4} ; 0\right)=\frac{1}{87091200}, \\
& H_{5}\left(\lambda_{3} \lambda_{4} \lambda_{5} ; 0\right)=\frac{1}{2554675200}, \quad H_{6}\left(\lambda_{4} \lambda_{5} \lambda_{6} ; 0\right)=\frac{691}{31384184832000}
\end{aligned}
$$

These numbers agree with the well-known formula

$$
\begin{equation*}
H_{g}\left(\lambda_{g-2} \lambda_{g-1} \lambda_{g} ; 0\right)=\frac{1}{2(2 g-2)!} \frac{\left|B_{2 g-2}\right|}{2 g-2} \frac{\left|B_{2 g}\right|}{2 g}, \quad g \geq 2 . \tag{5.3}
\end{equation*}
$$

We have

$$
\begin{aligned}
& H_{3}\left(\lambda_{1}^{6} ; 0\right)=\frac{1}{90720}, \\
& H_{4}\left(\lambda_{1}^{9} ; 0\right)=\frac{1}{113400}, \\
& H_{5}\left(\lambda_{1}^{12} ; 0\right)=\frac{31}{680400}, \quad H_{5}\left(\lambda_{1} \lambda_{2} \lambda_{4} \lambda_{5} ; 0\right)=\frac{1}{766402560}, \\
& H_{6}\left(\lambda_{1}^{15} ; 0\right)=\frac{431}{481140}, \quad H_{6}\left(\lambda_{1} \lambda_{3} \lambda_{5} \lambda_{6} ; 0\right)=\frac{691}{6276836966400}, \\
& H_{6}\left(\lambda_{2} \lambda_{3} \lambda_{4} \lambda_{6} ; 0\right)=\frac{1697}{2988969984000}, \quad H_{6}\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} \lambda_{5} ; 0\right)=\frac{150719}{15692092416000} .
\end{aligned}
$$

These integrals except $H_{6}\left(\lambda_{1} \lambda_{3} \lambda_{5} \lambda_{6} ; 0\right)$ were also derived by Faber in $[20,21]$.
We will now apply the above results to constructing integrable hierarchy of the topological type associated with the degree zero part of quantum cohomology of a smooth projective threefold X. The construction extends the results of [13] where the integrable hierarchy was constructed for manifolds of complex dimension $d \geq 4$. As in [13] we assume vanishing of odd cohomologies of X.

Theorem 5.2. For a smooth projective threefold X with $H^{\text {odd }}(X)=0$ the total GromovWitten potential of degree zero is (log of) a tau-function of the following integrable hierarchy

$$
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t_{p}^{\alpha}}= & \frac{\partial}{\partial x}\left(\phi _ { \alpha } \cdot \left[\frac{\mathbf{u}^{p+1}}{(p+1)!}-\frac{\epsilon^{2}}{24} c_{2} \cdot \frac{\mathbf{u}^{p-1}}{(p-1)!} \mathbf{u}_{x}^{2}\right.\right. \\
& +\frac{\epsilon^{2}}{24} c_{3} \cdot\left(2 \frac{\mathbf{u}^{p-1}}{(p-1)!} \mathbf{u}_{x x}+\frac{\mathbf{u}^{p-2}}{(p-2)!} \mathbf{u}_{x}^{2}\right) \\
& +\left(c_{3}-c_{1} c_{2}\right) \cdot\left(\epsilon^{3}\left(3 \frac{\mathbf{u}^{p-1}}{(p-1)!} \mathbf{u}_{x} \mathbf{u}_{x x}+\frac{\mathbf{u}^{p-2}}{(p-2)!} \mathbf{u}_{x}^{3}\right) f^{\prime}\left(\epsilon \mathbf{u}_{x}\right)\right. \\
& \left.\left.\left.+\epsilon^{4} \frac{\mathbf{u}^{p-1}}{(p-1)!} \mathbf{u}_{x}^{2} \mathbf{u}_{x x} f^{\prime \prime}\left(\epsilon \mathbf{u}_{x}\right)\right)\right]\right) \tag{5.4}
\end{align*}
$$

for the $H^{*}(X)$-valued function $\mathbf{u}=\mathbf{u}(x, \mathbf{t}), \mathbf{t}=\left(t_{p}^{\alpha}\right)$. Here $c_{i}=c_{i}(X)$ are Chern classes of the tangent bundle of X and the function f is defined by the following series

$$
\begin{equation*}
f(s)=\frac{1}{2} \sum_{g=2}^{\infty} \frac{(-1)^{g}}{(2 g-2)!} \frac{\left|B_{2 g-2}\right|}{2 g-2} \frac{\left|B_{2 g}\right|}{2 g} s^{2 g-2} \tag{5.5}
\end{equation*}
$$

The proof is based on the following lemma.
Lemma 5.3. For any smooth projective threefold X satisfying the above assumptions the degree zero Gromov-Witten potential is given by the following expressions

$$
\begin{equation*}
\mathcal{F}=\epsilon^{-2} \mathcal{F}_{0}(\mathbf{t})+\frac{1}{24}\left\langle c_{3}, \log \mathbf{v}_{x}\right\rangle-\frac{1}{24}\left\langle c_{2}, \mathbf{v}\right\rangle+\left\langle c_{3}-c_{1} c_{2}, f\left(\epsilon \mathbf{v}_{x}\right)\right\rangle \tag{5.6}
\end{equation*}
$$

where $\mathbf{v}=\mathbf{v}(\mathbf{t})$ is defined by the formula

$$
\begin{equation*}
\mathbf{v}=\sum_{n=1}^{\infty} \frac{1}{n} \sum_{p_{1}+\cdots+p_{n}=n-1} \frac{\mathbf{t}_{p_{1}}}{p_{1}!} \cdots \frac{\mathbf{t}_{p_{n}}}{p_{n}!}, \tag{5.7}
\end{equation*}
$$

the genus zero part reads

$$
\mathcal{F}_{0}(\mathbf{t})=\sum_{n \geq 3} \frac{1}{n(n-1)(n-2)} \sum_{p_{1}+\cdots+p_{n}=n-3} \int_{X} \frac{\mathbf{t}_{p_{1}}}{p_{1}!} \cdots \frac{\mathbf{t}_{p_{n}}}{p_{n}!}
$$

and f is given by eq. (5.5).
In these formulae we use cohomology-valued time variables $\mathbf{t}_{p}=t^{\alpha, p} \phi_{\alpha} \in H^{*}(X, \mathbb{C})$ and the dependent functions $\mathbf{v}(\mathbf{t})=v^{\alpha}(\mathbf{t}) \phi_{\alpha} \in H^{*}(X, \mathbb{C})$.

Proof. The first three terms in (5.6) were already derived in [13]. To find the expression for \mathcal{F}_{g} for $g \geq 2$ one has to use that

$$
\begin{align*}
& \left\langle\tau_{p_{1}}\left(\phi_{\alpha_{1}}\right) \ldots \tau_{p_{m}}\left(\phi_{\alpha_{m}}\right)\right\rangle_{g, \beta=0} \\
& =\int_{\overline{\mathcal{M}}_{g, m} \times X} \psi_{1}^{p_{1}} \ldots \psi_{m}^{p_{m}} e\left(\mathbb{E}^{\vee} \boxtimes T_{X}\right) \phi_{\alpha_{1}} \ldots \phi_{\alpha_{m}} . \tag{5.8}
\end{align*}
$$

Here $e\left(\mathbb{E}^{\vee} \boxtimes T_{X}\right)$ is the Euler class of the obstruction bundle over $\overline{\mathcal{M}}_{g, m} \times X$. For a three-fold X one has

$$
\begin{equation*}
e\left(\mathbb{E}^{\vee} \boxtimes T_{X}\right)=(-1)^{g} \frac{1}{2}\left(c_{3}-c_{1} c_{2}\right) \lambda_{g-1}^{3}=(-1)^{g}\left(c_{3}-c_{1} c_{2}\right) \lambda_{g-1} \lambda_{g-2} \lambda_{g} \tag{5.9}
\end{equation*}
$$

for $g \geq 2$, (see [27]). Hence

$$
\begin{aligned}
& \left\langle\tau_{p_{1}}\left(\phi_{\alpha_{1}}\right) \ldots \tau_{p_{m}}\left(\phi_{\alpha_{m}}\right)\right\rangle_{g, \beta=0} \\
& =(-1)^{g} \int_{\overline{\mathcal{M}}_{g, m}} \lambda_{g-2} \lambda_{g-1} \lambda_{g} \psi_{1}^{p_{1}} \ldots \psi_{m}^{p_{m}} \int_{X}\left(c_{3}-c_{1} c_{2}\right) \phi_{\alpha_{1}} \ldots \phi_{\alpha_{m}}
\end{aligned}
$$

It follows that

$$
\mathcal{F}_{g}=\int_{X}\left(c_{3}-c_{1} c_{2}\right) H_{g}\left(\lambda_{g-2} \lambda_{g-1} \lambda_{g} ; \mathbf{t}\right)
$$

where we replace the arguments in the function (5.2) with the cohomology-valued time variables. To compute this function it suffices to know the expression for $H_{g}\left(\lambda_{g-2} \lambda_{g-1} \lambda_{g} ; \mathbf{t}\right)$ for $X=\mathrm{pt}$. In this case

$$
\begin{equation*}
H_{g}\left(\lambda_{g-2} \lambda_{g-1} \lambda_{g} ; \mathbf{t}\right)=\frac{1}{2(2 g-2)!} \frac{\left|B_{2 g-2}\right|}{2 g-2} \frac{\left|B_{2 g}\right|}{2 g} v_{x}^{2 g-2} \tag{5.10}
\end{equation*}
$$

as it follows from Corollary 3.10. This completes the proof of the Lemma.

Applying the substitution

$$
\begin{equation*}
v_{\alpha}=\left\langle\phi_{\alpha}, \mathbf{v}\right\rangle \mapsto u_{\alpha}=\left\langle\phi_{\alpha}, \mathbf{u}\right\rangle=v_{\alpha}+\epsilon^{2} \frac{\partial^{2}}{\partial x \partial t^{\alpha, 0}} \sum_{g \geq 1} \epsilon^{2 g-2} \mathcal{F}_{g} \tag{5.11}
\end{equation*}
$$

with

$$
\begin{equation*}
\sum_{g \geq 1} \mathcal{F}_{g}=\frac{1}{24}\left\langle c_{3}, \log \mathbf{v}_{x}\right\rangle-\frac{1}{24}\left\langle c_{2}, \mathbf{v}\right\rangle+\left\langle c_{3}-c_{1} c_{2}, f\left(\epsilon \mathbf{v}_{x}\right)\right\rangle \tag{5.12}
\end{equation*}
$$

to the dispersionless degree zero hierarchy

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial t^{\alpha, p}}=\frac{\partial}{\partial x}\left(\phi_{\alpha} \cdot \frac{\mathbf{v}^{p+1}}{(p+1)!}\right), \quad \alpha=1, \ldots, n \tag{5.13}
\end{equation*}
$$

one arrives at the equations (5.4). Theorem 5.2 is proved.
It is easy to also compute the resulting bihamiltonian structure of the integrable hierarchy (5.4) by applying the same substitution (5.11) to the Poisson brackets of the hierarchy (5.13). The resulting bihamiltonian structure reads

$$
\begin{align*}
& \{\langle a, \mathbf{u}(x)\rangle,\langle b, \mathbf{u}(y)\rangle\}_{1}=\langle a, b\rangle \delta^{\prime}(x-y)-\frac{\epsilon^{2}}{12}\left[\left\langle a, c_{2}\right\rangle\langle b, \phi\rangle+\left\langle b, c_{2}\right\rangle\langle a, \phi\rangle\right] \delta^{\prime \prime \prime}(x-y) \\
& \{\langle a, \mathbf{u}(x)\rangle,\langle b, \mathbf{u}(y)\rangle\}_{2}= \\
& =\left[\left\langle\left(\frac{a}{2}+\mu(a)\right) \cdot b, \mathbf{u}(x)\right\rangle+\left\langle a \cdot\left(\frac{b}{2}+\mu(b)\right), \mathbf{u}(y)\right\rangle+\left\langle a \cdot b, c_{1}\right\rangle\right] \delta^{\prime}(x-y) \\
& -\frac{\epsilon^{2}}{12}\left[\partial_{x}\left(\left\langle a, c_{2}\right\rangle\langle b \cdot \phi, \mathbf{u}(x)\rangle \delta^{\prime \prime}(x-y)\right)-\partial_{y}\left(\left\langle b, c_{2}\right\rangle\langle a \cdot \phi, \mathbf{u}(y)\rangle \delta^{\prime \prime}(x-y)\right)\right] \\
& -\frac{\epsilon^{2}}{12}\left\langle a \cdot b, c_{1} \cdot c_{2}\right\rangle \delta^{\prime \prime \prime}(x-y) . \tag{5.14}
\end{align*}
$$

Here $a, b \in H^{*}(X)$ are arbitrary cohomology classes, $\phi \in H^{6}(X)$ is the volume element normalized by

$$
\int_{X} \phi=1 .
$$

The operator $\mu: H^{*}(X) \rightarrow H^{*}(X)$ is defined by the formula

$$
\mu(a)=\left(k-\frac{3}{2}\right) a \quad \text { for } \quad a \in H^{2 k}(X)
$$

The bihamiltonian structure (5.14) turns out to coincide with the one derived in [13] by specializing the latter at $d=3$.

For the remaining cases $d=1,2$ the structure of the integrable hierarchy for degree zero Gromov-Witten invariants is more involved. In the case $X=\mathbf{P}^{1}$ it can be obtained from the extended Toda hierarchy [10] by taking the degree zero limit. For the remaining case of $X=$ a surface the computation of the degree zero Gromov-Witten invariants of X requires an explicit form of the following Hodge integrals

$$
H_{g}\left(\lambda_{g-2} \lambda_{g} ; \mathbf{t}\right), \quad H_{g}\left(\lambda_{g-1} \lambda_{g} ; \mathbf{t}\right) .
$$

Construction of the corresponding integrable hierarchy will be studied in a separate publication.

6. Conclusion

In this paper, we give an algorithm to solve the equations satisfied by the Hodge potentials associated to an arbitrary semisimple Frobenius manifold. This algorithm enables us to represent the Hodge potential in terms of the genus zero free energy of the Frobenius manifold and the genus zero two-point functions. We show that the Hodge potential is the logarithm of a tau-function of an integrable hierarchy of Hamiltonian evolutionary PDEs called the Hodge hierarchy, which is a tau-symmetric integrable deformation of the principal hierarchy of the Frobenius manifold with deformation parameters $s_{k}, k \geq 1$ and ϵ. For the one-dimensional Frobenius manifold, this integrable hierarchy is called the Hodge hierarchy of a point.

For a certain particular choice of the parameters s_{k}, we show at the approximation up to ϵ^{12} that the Hodge hierarchy of a point is equivalent to the discrete KdV hierarchy which possesses a bihamiltonian structure. Conjecturally, the KdV hierarchy and the discrete KdV hierarchy are the only two integrable hierarchies that are contained in the Hodge hierarchy of a point and possess bihamiltonian structures. We also reveal a relationship between the constant condition (4.12) for the Hamiltonian operator \tilde{P} of the Hodge hierarchy of a point and the local Calabi-Yau condition that appears in the localization calculation of Gromov-Witten invariants.

We also formulate Conjecture 1.7 on certain universality of the Hodge hierarchy of a point in the class of tau-symmetric integrable Hamiltonian deformations (1.40) of the Riemann hierarchy (or the principal hierarchy of the one-dimensional Frobenius manifold) defined in Section 4. In fact, we have the following conjecture about tau-symmetric integrable Hamiltonian deformations of the Riemann hierarchy:

Conjecture 6.1. Any tau-symmetric integrable Hamiltonian deformation of the Riemann hierarchy is equivalent, under a normal Miura-type transformation, to the canonical tausymmetric integrable deformation of the form

$$
\begin{equation*}
\frac{\partial w}{\partial t^{q}}=\frac{\partial}{\partial x}\left(\frac{\delta H_{q}}{\delta w(x)}\right), \quad q \geq 0 \tag{6.1}
\end{equation*}
$$

which is uniquely determined by the following standard form of the density h_{1} of the Hamiltonian H_{1} :

$$
\begin{align*}
h_{1} & =\frac{w^{3}}{6}-\frac{\epsilon^{2}}{24} a_{0} w_{1}^{2}+\epsilon^{4} a_{1} w_{2}^{2}+\epsilon^{6}\left(a_{2} w_{2}^{3}+b_{1} w_{3}^{2}\right) \\
& +\epsilon^{8}\left(a_{3} w_{2}^{4}+b_{2} w_{2} w_{3}^{2}+b_{3} w_{4}^{2}\right) \\
& +\epsilon^{10}\left(a_{4} w_{2}^{5}+b_{4} w_{2}^{2} w_{3}^{2}+b_{5} w_{2} w_{4}^{2}+b_{6} w_{5}^{2}\right) \\
& +\epsilon^{12}\left(a_{5} w_{2}^{6}+b_{7} w_{2}^{3} w_{3}^{2}+b_{8} w_{3}^{4}+b_{9} w_{2}^{2} w_{4}^{2}+b_{10} w_{4}^{3}\right. \\
\quad & \left.\quad+b_{11} w_{2} w_{5}^{2}+b_{12} w_{6}^{2}\right)+\cdots+\text { total derivatives. } \tag{6.2}
\end{align*}
$$

Here $w_{k}=\partial_{x}^{k} w, a_{0}, a_{i}, b_{i}, i \geq 1$ are certain constants and, starting from ϵ^{4}, the terms appearing in this standard form are selected by the following two rules:
i) The factor with the highest order derivative in each monomial is nonlinear.
ii) Each of these terms does not contain any w_{x} factor.

In this standard form, the coefficient of $\epsilon^{2} w_{1}^{2}$ is denoted by $-\frac{a_{0}}{24}$; the coefficient of $\epsilon^{2 k} w_{2}^{k}$ is denoted by $a_{k-1}, k \geq 2$; other coefficients are denoted by b_{1}, b_{2}, \ldots Moreover, in the case $a_{0}=0$ all coefficients $a_{j}, b_{j}, j \geq 1$ must vanish. In the case $a_{0} \neq 0$, the coefficients b_{j} with $j \geq 1$ are uniquely determined by $a_{0}, a_{1}, a_{2} \ldots$

Observe that parameter $a_{0} \neq 0$ can be absorbed by rescaling of ϵ. So it will not be taken into account in the problem of classification of tau-symmetric integrable deformations.

As it was already proven in [4,36] (see e.g. Lemma 3.3 in [36]), an integrable hierarchy of Hamiltonian PDEs for a single dependent function u is uniquely determined by h_{1}. Let us explain the statement about uniqueness of the standard form (6.2) of a canonical tau-symmetric perturbation. First of all, constancy of the coefficients a 's, b 's in the Hamiltonian density h_{1} can be derived from the tau-symmetry property. Let us analyze
the freedom in the choice of this Hamiltonian. Recall that under a canonical normal Miura transformation of the form

$$
\tilde{w}(x)=w(x)+\epsilon\{w(x), K\}+\frac{1}{2!} \epsilon^{2}\{\{w(x), K\}, K\}+\frac{1}{3!} \epsilon^{3}\{\{\{w(x), K\}, K\}, K\}+\cdots
$$

with

$$
K=\int \sum_{p=0}^{\infty} \epsilon^{2 p+1} k_{p}\left(w_{1}, \ldots, w_{2 p+1}\right) d x, \quad k_{p} \in \mathcal{A}_{w}, \operatorname{deg} k_{p}=2 p+1
$$

the Hamiltonian H_{1} transforms as follows

$$
\tilde{H}_{1}=H_{1}+\epsilon\left\{H_{1}, K\right\}+\frac{1}{2!} \epsilon^{2}\left\{\left\{H_{1}, K\right\}, K\right\}+\cdots
$$

Applying integration by parts one can easily derive that

$$
\begin{equation*}
\left\{\frac{1}{6} w^{3}(x), \int \prod_{i=1}^{q} w_{i}^{m_{i}} d x\right\}=-\left(\left(m_{1}-1\right)+\sum_{j=2}^{q}(j+1) m_{j}\right) w_{1} \prod_{i=1}^{q} w_{i}^{m_{i}}+\text { l.o.t. } \tag{6.3}
\end{equation*}
$$

modulo total derivatives. Here, m_{1}, \ldots, m_{q} are non-negative integers with $m_{q} \geq 2$, and "l.o.t." denotes terms of strictly lower reverse-lexicographic order satisfying the above two conditions i) and ii). From (6.3), using

$$
\left(m_{1}-1\right)+\sum_{j=2}^{q}(j+1) m_{j} \neq 0
$$

it can be easily derived that the standard form (6.2) of h_{1} is unique.
Proof of existence of a normal Miura-type transformation that reduces an arbitrary Hamiltonian tau-symmetric integrable hierarchy to its unique standard form will be presented in a separate publication; such a Miura-type transformation if exists must be unique as the leading term of the transformation is unique (use Lemma 3.3 in [36]).

We can verify the validity of Conjecture 6.1 at the approximation up to ϵ^{12}. For $a_{0} \neq 0$, the first few b_{j} are found to be

$$
\begin{aligned}
& b_{1}=-\frac{240 a_{1}^{2}}{7 a_{0}}, \quad b_{2}=-\frac{2376 a_{1} a_{2}}{7 a_{0}}, \\
& b_{3}=\frac{a_{0}^{3} a_{2}+43200 a_{1}^{3}}{35 a_{0}^{2}}, \quad b_{4}=-\frac{1728\left(6 a_{2}^{2}+7 a_{1} a_{3}\right)}{11 a_{0}}, \\
& b_{5}=\frac{7 a_{0}^{3} a_{3}+1497600 a_{1}^{2} a_{2}}{56 a_{0}^{2}}, \quad b_{6}=-\frac{240\left(a_{0}^{3} a_{1} a_{2}+14400 a_{1}^{4}\right)}{77 a_{0}^{3}} .
\end{aligned}
$$

Under the assumption of the validity of the above conjecture, the class of non-trivial tau-symmetric Hamiltonian deformations of the Riemann hierarchy is parameterized by
the constants a_{1}, a_{2}, \ldots (normalizing $a_{0}=1$). In order to establish the equivalence of the above conjecture with Conjecture 1.7, we need to find a bijective map between the sets of parameters $\left\{s_{k} \mid k \geq 1\right\}$ and $\left\{a_{k} \mid k \geq 1\right\}$. Indeed, we find that the following normal Miura-type transformation

$$
\begin{align*}
\tilde{w} & =w+\epsilon^{2} \partial_{x}^{2}\left(\frac{1}{2} s_{1} w\right)+\epsilon^{4} \partial_{x}^{2}\left[\left(\frac{s_{1}^{3}}{10}+\frac{s_{2}}{48}\right) w_{x}^{2}+\frac{3 s_{1}^{2}}{40} w_{x x}\right] \\
& +\epsilon^{6} \partial_{x}^{2}\left[\left(-\frac{8 s_{1}^{6}}{175}+\frac{5 s_{2}^{2}}{504}-\frac{s_{1} s_{3}}{480}-\frac{s_{1}^{3} s_{2}}{21}\right) w_{x}^{4}+\left(\frac{s_{3}}{480}+\frac{s_{1}^{2} s_{2}}{7}+\frac{48 s_{1}^{5}}{175}\right) w_{x}^{2} w_{x x}\right. \\
& \left.+\left(\frac{s_{1}^{4}}{210}-\frac{s_{1} s_{2}}{1008}\right)\left(-10 w_{x x}^{2}+w_{x} w_{3}\right)+\left(\frac{17 s_{1}^{3}}{1680}+\frac{s_{2}}{1008}\right) w_{4}\right]+\cdots \tag{6.4}
\end{align*}
$$

transforms the Hodge hierarchy of a point (1.35) to the above standard form (6.2) with

$$
\begin{aligned}
\tilde{h}_{1}= & \frac{1}{6} \tilde{w}^{3}-\frac{\epsilon^{2}}{24} \tilde{w}_{x}^{2}-\frac{\epsilon^{4}}{120} s_{1} \tilde{w}_{x x}^{2}-\epsilon^{6}\left[\left(\frac{s_{1}^{3}}{360}+\frac{s_{2}}{1728}\right) \tilde{w}_{x x}^{3}+\frac{s_{1}^{2}}{420} \tilde{w}_{x x x}^{2}\right] \\
& -\epsilon^{8}\left[\left(\frac{2 s_{1}^{5}}{525}+\frac{s_{1}^{2} s_{2}}{504}+\frac{s_{3}}{34560}\right) \tilde{w}_{x x}^{4}+\left(\frac{11 s_{1}^{4}}{1400}+\frac{11 s_{1} s_{2}}{6720}\right) \tilde{w}_{x x} \tilde{w}_{x x x}^{2}\right. \\
& \left.+\left(\frac{s_{1}^{3}}{1260}+\frac{s_{2}}{60480}\right) \tilde{w}_{x x x x}^{2}\right]+\cdots+\text { total derivatives. }
\end{aligned}
$$

Thus we have the following correspondence between the two set of parameters

$$
\begin{aligned}
& s_{1}=-120 a_{1}, \quad s_{2}=8294400 a_{1}^{3}-1728 a_{2}, \\
& s_{3}=-\frac{34398535680000}{7} a_{1}^{5}+\frac{11943936000}{7} a_{1}^{2} a_{2}-34560 a_{3} .
\end{aligned}
$$

Note added: In [5], A. Buryak introduced a novel approach of constructing an integrable hierarchy associated to a given cohomological field theory (CohFT), called the double ramification ($D R$) hierarchy. Conjecturally [5], being associated to a given CohFT, the DR hierarchy is normal Miura equivalent to the Hodge hierarchy. This deep conjecture has been verified in several interesting examples [4-6].

Acknowledgments

This work is partially supported by PRIN 2010-11 Grant "Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions" of Italian Ministry of Universities and Researches and by the Russian Federation Government Grant No. 2010-220-01-077. It is also supported by NSFC No. 11171176, No. 11222108 and No. 11371214. The authors would like to thank Jian Zhou for very helpful discussions, and the anonymous referee for valuable suggestions and constructive comments.

References

[1] M. Adler, On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries type equations, Invent. Math. 50 (1979) 219-248.
[2] A. Brini, Open topological strings and integrable hierarchies: remodeling the A-model, Comm. Math. Phys. 312 (3) (2012) 735-780.
[3] A. Brini, G. Carlet, S. Romano, P. Rossi, Rational reductions of the 2D-Toda hierarchy and mirror symmetry, arXiv preprint, arXiv:1401.5725, 2014.
[4] A. Buryak, Dubrovin-Zhang hierarchy for the Hodge integrals, arXiv preprint, arXiv:1308.5716, 2013.
[5] A. Buryak, Double ramification cycles and integrable hierarchies, Comm. Math. Phys. 336 (3) (2015) 1085-1107.
[6] A. Buryak, P. Rossi, Recursion relations for Double Ramification Hierarchies, arXiv preprint, arXiv:1411.6797, 2014.
[7] A. Buryak, H. Posthuma, S. Shadrin, A polynomial bracket for the Dubrovin-Zhang hierarchies, J. Differential Geom. 92 (1) (2012) 153-185.
[8] A. Buryak, H. Posthuma, S. Shadrin, On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket, J. Geom. Phys. 62 (7) (2012) 1639-1651.
[9] R. Camassa, D.D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993) 1661-1664.
[10] G. Carlet, B. Dubrovin, Y. Zhang, The extended Toda hierarchy, Mosc. Math. J. 4 (2) (2004) 313-332.
[11] B. Dubrovin, Geometry of 2D topological field theories, in: M. Francaviglia, S. Greco (Eds.), Integrable Systems and Quantum Groups, in: Lecture Notes in Math., vol. 1620, Springer, 1996, pp. 120-348.
[12] B. Dubrovin, Painlevé transcendents in two-dimensional topological field theory, in: R. Conte (Ed.), The Painlevé Property: One Century Later, Springer-Verlag, 1998, pp. 287-412, 1999.
[13] B. Dubrovin, Gromov-Witten invariants and integrable hierarchies of topological type, Amer. Math. Soc. Transl. 234 (2014) 141-171.
[14] B. Dubrovin, Y. Zhang, Bi-Hamiltonian hierarchies in $2 D$ topological field theory at one-loop approximation, Comm. Math. Phys. 198 (1998) 311-361.
[15] B. Dubrovin, Y. Zhang, Frobenius manifolds and Virasoro constraints, Selecta Math. 5 (1999) 423-466.
[16] B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, preprint, arXiv:math.DG/0108160.
[17] B. Dubrovin, S.-Q. Liu, Y. Zhang, On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasi-triviality of bi-Hamiltonian perturbations, Comm. Pure Appl. Math. 59 (4) (2006) 559-615.
[18] T. Eguchi, Y. Yamada, S.-K. Yang, On the genus expansion in the topological string theory, Rev. Math. Phys. 7 (1995) 279-309.
[19] T. Eguchi, K. Hori, C.-S. Xiong, Quantum cohomology and Virasoro algebra, Phys. Lett. B 402 (1997) 71-80.
[20] C. Faber, Intersection-theoretical computations on \bar{M}_{g}, in: Parameter Spaces, Banach Center Publications, vol. 36(1), Polish Acad. Sci., Warsaw, 1994, 1996, pp. 71-81.
[21] C. Faber, Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians, in: New Trends in Algebraic Geometry, in: London Mathematical Society Lecture Note Series, vol. 264, Cambridge University Press, 1999, pp. 93-110.
[22] C. Faber, R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000) 173-199.
[23] C. Faber, S. Shadrin, D. Zvonkine, Tautological relations and the r-spin Witten conjecture, Ann. Sci. Éc. Norm. Supér. 43 (2010) 621-658.
[24] L. Faddeev, L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1986.
[25] E. Frenkel, Deformations of the KdV hierarchy and related soliton equations, Int. Math. Res. Not. 1996 (2) (1996) 55-76.
[26] G. van der Geer, Cycles on the moduli space of abelian varieties, in: Moduli of Curves and Abelian Varieties, Vieweg+Teubner Verlag, 1999, pp. 65-89.
[27] E. Getzler, R. Pandharipande, Virasoro constraints and the Chern classes of the Hodge bundle, Nuclear Phys. B 530 (3) (1998) 701-714.
[28] A.B. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551-568.
[29] A.B. Givental, Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. 23 (2001) 1265-1286.
[30] A.B. Givental, T.E. Milanov, Simple singularities and integrable hierarchies, in: The Breadth of Symplectic and Poisson Geometry, Birkhäuser, Boston, 2005, pp. 173-201.
[31] R. Gopakumar, C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415-1443.
[32] M. Kazarian, KP hierarchy for Hodge integrals, Adv. Math. 221 (1) (2009) 1-21.
[33] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1-23.
[34] X. Liu, R. Pandharipande, New topological recursion relations, J. Algebraic Geom. 20 (3) (2011) 479-494.
[35] K. Liu, H. Xu, A proof of the Faber intersection number conjecture, J. Differential Geom. 83 (2) (2009) 313-335.
[36] S.-Q. Liu, Y. Zhang, On quasi-triviality and integrability of a class of scalar evolutionary PDEs, J. Geom. Phys. 57 (2006) 101-119.
[37] C.C.M. Liu, K. Liu, J. Zhou, A proof of a conjecture of Mariño-Vafa on Hodge integrals, J. Differential Geom. 65 (2) (2003) 289-340.
[38] S.-Q. Liu, C.-Z. Wu, Y. Zhang, On properties of Hamiltonian structures for a class of evolutionary PDEs, Lett. Math. Phys. 84 (1) (2008) 47-63.
[39] M. Mariño, C. Vafa, Framed knots at large N, Contemp. Math. 310 (2002) 185-204.
[40] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in: Arithmetic and Geometry, Birkhäuser, Boston, 1983, pp. 271-328.
[41] A. Okounkov, R. Pandharipande, Hodge integrals and invariants of the unknot, Geom. Topol. 8 (2004) 675-699.
[42] C. Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (3) (2012) 525-588.
[43] E. Witten, Two-dimensional gravity and intersection theory on moduli space, in: Surveys in Differential Geometry, Cambridge, MA, 1990, Lehigh Univ., Bethlehem, PA, 1991, pp. 243-310.
[44] J. Zhou, Hodge integrals and integrable hierarchies, Lett. Math. Phys. 93 (1) (2010) 55-71.

[^0]: * Corresponding author.

 E-mail addresses: dubrovin@sissa.it (B. Dubrovin), liusq@tsinghua.edu.cn (S.-Q. Liu), dyang@sissa.it (D. Yang), youjin@tsinghua.edu.cn (Y. Zhang).

[^1]: ${ }^{1}$ We will use the matrices $\left(\eta^{\alpha \beta}\right)$ and $\left(\eta_{\alpha \beta}\right)$ for raising and lowering indices. E.g., $v^{\alpha}=\eta^{\alpha \beta} v_{\beta}, v_{\alpha}=\eta_{\alpha \beta} v^{\beta}$ (see below).

[^2]: ${ }^{2}$ We would like to mention that, according to [32,44] generating functions of certain Hodge integrals are also related to the KP hierarchy and the 2-dimensional Toda hierarchy. See more details in Examples 4.4 and 4.5 in Section 4. More recently A. Buryak [4] constructed a one-parameter deformation of the KdV hierarchy satisfied by a generating function of Hodge classes depending linearly on $\lambda_{1}, \ldots, \lambda_{n}$. He proved that this hierarchy is Miura-equivalent to the Intermediate Long Wave (ILW) hierarchy (see below Example 4.4).

[^3]: ${ }^{3}$ As it was suggested by the anonymous referee, validity of this conjectural statement can be derived from the results of [34] by applying the approach of [23] based on the Givental idea [28] of a generalized Gromov-Witten descendent potential associated with an arbitrary calibrated semisimple Frobenius manifold.

[^4]: 4 The Camassa-Holm equation [9]

 $$
 v_{t}-\epsilon^{2} v_{x x t}=\frac{3}{2} v v_{x}-\epsilon^{2}\left[v_{x} v_{x x}+\frac{1}{2} v v_{x x x}\right]
 $$

 is known to also possess of a bihamiltonian structure. However it cannot be obtained as a specification of the hierarchy (1.34)-(1.36) as it does not admit a tau-structure [16].

