"First principles investigation of chemical disorder in v-GeSe₂"

Luigi Giacomazzi

CNR-INFM/Democritos National Simulation Center and The Abdus Salam International Centre for Theoretical Physics (ICTP) (Trieste, Italy)

Introduction

- *v*-GeSe₂ is a prototypical chalcogenide glass.
- Structural differences with respect to chemically ordered v-GeO₂ or v-SiO₂:
 - Edge-sharing tetrahedra
 - Homopolar bonds Se-Se and Ge-Ge
 - Over- and under-coordinated atoms.

Introduction

Edge-sharing tetrahedra are supposed to originate the *C* line of the Raman spectrum

ESG2012, Maastricht, 3-6 June 2012

Questions

• What can we say about chemical order in v-GeSe2 by using first-principles methods ?

• How good are standard DFT functionals for calculating electronic structure properties e.g the dielectric constant ?

Outline

- Models generated by using Perdew-Wang (PW) GGA functional: struct. properties, vibrational spectra, dielect const...
- Models generated by using Becke-Lee-Yang-Parr (BLYP). Comparison with PW.
- NMR results
- Conclusions

L. Giacomazzi, C. Massobrio and A. Pasquarello, J. Phys. Cond. Matter **23**, 295401 (2011) L. Giacomazzi, C. Massobrio and A. Pasquarello, Phys. Rev. B **75**, 174207 (2007) M. Kibalchencko et al J. Phys. Chem. (2011).

PW models of v-GeSe₂

Model I and II:

- Quenching from the melt by classical molecular dynamics
- Classical potentials:

P. Vashishta, R.K. Kalia, G.A. Antonio, and I. Ebbsjö, PRL **62** (1989) Damped *ab-initio* dynamics in order to further relax the atomic positions.

Quantum-espresso package [www.quantum-espresso.org]

Model III:

- Quenching from the melt by ab-initio molecular dynamics
- Damped *ab-initio* dynamics in order to further relax the atomic positions.

DFT functionals

• Electronic structure is treated within **GGA** (**PW** or **BLYP**) to DFT. Core-valence interactions are described through a norm-conserving pseudo-potentials for Se and Ge.

• LDA does not give reliable structures:

Massobrio, Atomic-Scale Modeling of Nanosystems and Nanostructured Materials (2010)

PW models of v-GeSe₂

Two contending conceptions of the structure:

- Strong chemical order: Models I and II. The structure is mainly given by regular tetrahedra. [Vashishta, Kalia, Antonio, and Ebbsjö, Phys. Rev. Lett. 62 (1989)]
- Weak chemical order: Model III.

The structure features a rich variety of nearest neighbor motifs, as found in first-principles MD of liquid GeSe₂. [Massobrio, Pasquarello, and Car, PRL 80, 2324 (1998)]

Structural properties of PW Models of v-GeSe₂

Table 4.2: Composition of first-neighbor shells of Ge and Se atoms expressed as a percentage in our models of v-GeSe₂. For each composition, the coordination is indicated by ℓ . For Ge-Se and Se-Se bonds, we used cutoff radii of 3.0 and 2.7 Å, respectively. Ge-Ge bonds do not occur in our models. We also quantify the amount of homopolar bonds and of edge-sharing tetrahedra (ES-T) in terms of percentages of the involved atoms.

	Composition	ℓ	Model 1	Model II	Model III	Expt.
Ge						
	Se_3	3	5	7	20	
	${f Se}_4$	4	95	93	78	
	Se_5	5	—	—	2	
Se						
	Ge	1	1		1	
	SeGe	2	3	8	20	
	${f Ge}_2$	2	92	86	55	
	Se_2	2	—		4	
	$SeGe_2$	3	2	—	—	
	$\mathrm{Se}_{2}\mathrm{Ge}$	3	_	1	-	
	Ge_3	3	2	5	20	
Se-Se			5	9	24	20
Ge-Ge			—		-	25
ES-T			33	15	55	34

Strong chem. order

Structural properties of PW Models of v-GeSe₂

Table 4.2: Composition of first-neighbor shells of Ge and Se atoms expressed as a percentage in our models of v-GeSe₂. For each composition, the coordination is indicated by ℓ . For Ge-Se and Se-Se bonds, we used cutoff radii of 3.0 and 2.7 Å, respectively. Ge-Ge bonds do not occur in our models. We also quantify the amount of homopolar bonds and of edge-sharing tetrahedra (ES-T) in terms of percentages of the involved atoms.

	Composition	ℓ	Model I	Model II	Model III	Expt.
Ge						
	Se_3	3	5	7	20	
	${f Se}_4$	4	95	93	78	
	Se_5	5	—	—	2	
Se						
	Ge	1	1	—	1	
	SeGe	2	3	8	20	
	${f Ge}_2$	2	92	86	55	
	Se_2	2	_	—	4	
	$SeGe_2$	3	2	—	—	
	$\mathrm{Se}_{2}\mathrm{Ge}$	3	_	1	-	
	Ge_3	3	2	5	20	
Se-Se			5	9	24	20
Ge-Ge			—	—	—	25
ES-T			33	15	55	34

Weak chem. order

Experimental data: I. Petri et al. (2000).

Structural properties of PW Models of v-GeSe₂

		N	∠ Ge-Se-Ge	∠ Se-Ge-Se	$d_{\rm GeSe}$ (Å)
Strong chem. order	Model I	180	100.6° (12.1°)	109.1° (9.5°)	2.42 (0.05)
Ŭ	Model II	120	107.8° (12.7°)	108.6° (12.0°)	2.44 (0.07)
Weak chem. order	Model III	120	100.7° (16.2°)	106.8° (11.3°)	2.47 (0.13)
	Expt.				2.36

- $\mathbf{d}_{_{GeSe}}$ is remarkably longer than expt. for all the PW models

Neutron structure factors

PW models: electronic properties of v-GeSe₂

• Finite electric field scheme for calc \mathcal{E}_{∞} and also for accessing the infrared and Raman spectra [P. Umari and A. Pasquarello PRL 89, 157602 (2002)].

	Model I	Model II	Model III	Expt.
6 [∞]	7.2	7.65	7.3	5.5
B. Gap (eV)	0.50	0.62	0.81	2.2

+ $\epsilon_{_{\!\!\!\!\!\infty}}$ is for all the models about 30% larger than the expt. value

Vibrational density of states of v-GeSe₂

i) Diagonalize the dynamical matrix

ii) Calculate the vibrational density of states (v-DOS):

$$\rho(\omega) = \frac{1}{3N} \sum_{n} \delta(\omega_n - \omega)$$

iii) Calculate general spectra S (infrared,....)

 $S(\omega) = C(\omega) \cdot \rho(\omega)$

[Shuker and Gammon PRL(1970)] iv) Compare with experimental data

 No significant differences among the model structures are observed for the v-DOS

PW Models: Infrared spectrum of v-GeSe₂

• Significant differences among the model structures are observed for the imaginary part of the dielectric function.

ESG2012, Maastricht, 3-6 June 2012

Infrared spectra of v-GeSe₂

- Finite electric field scheme for accessing the infrared and Raman spectra [P. Umari and A. Pasquarello PRL 89, 157602 (2002)].
- Experimental data:

K. Murase in *Insulating and semiconducting glasses* Vol 17, ed. by P. Boolchand (WSP, Singapore, 2000), pp. 415-463.

Raman spectra of v-GeSe₂

• Significant differences among the model structures are observed for the Raman spectra.

Raman spectra of v-GeSe₂

•Projection onto Se breathing motions in four-atom rings supports the *assignment of the companion line to Se in ES tetrahedra*.

PW Models: conclusions (I)

- •Diffraction probes and neutron vibrational density of states are *not* sufficiently selective to discriminate among models.
- Significant differences are observed for the infrared and Raman Spectra.
- •The comparison with experiments finally favors a structural model of *v*-GeSe₂ with *strong* chemical order.

but...

L. Giacomazzi, C. Massobrio and A. Pasquarello, Phys. Rev. B 75, 174207 (2007) 🧩

- The high freq dielectric const is largely overestimated
 - Mean bond length is also overestimated
 - ...and if we choose BLYP functional ?

BLYP Models

We consider two models:

I) C-BLYP is obtained from PW Model I (C-PW) by a first-principle relaxing of the atomic positions with BLYP.

II) **FP-BLYP** is obtained by quench-from-the-melt and damped dynamics relaxation of the atomic positions *fully first-principles*. The fully first-principles PW Model III is named (FP-PW)

BLYP Models: structural properties

Model	C-PW	C-BLYP	FP-PW	FP-BLYP
Ge-Se (Å)	2.42 (0.05)	2.37 (0.06)	2.47 (0.13)	2.40 (0.14)

• BLYP gives Ge-Se bond length in better agreement with the experimental one ~2.36 Å

BLYP Models: structural properties

First-neighbor coordination shells of Ge and Se

	l	C-PW	C-BLYP	FP-PW	FP-BLYP
Ge					
Se ₃	3	5	5	20	15
Se ₄	4	95	95	78	83
Se ₅	5			2	2
Se					
Ge	1	1	1	1	—
SeGe	2	3	3	20	12
Ge ₂	2	92	92	55	68
Se ₂	2			4	5
SeGe ₂	3	2	2		_
Ge ₃	3	2	2	20	14
Ge ₄	4				1

• FP-BLYP shows a degree of chemical disorder comparable to FP-PW ("weak chem. order")

BLYP Models: electronic properties

• Finite electric field scheme for calc ϵ_{m} and also for accessing the infrared and Raman spectra [P. Umari and A. Pasquarello PRL 89, 157602 (2002)].

	C-PW	C-BLYP	FP-PW	FP-BLYP	Expt.
٤ _∞	7.2	6.2	7.3	6.1	5.5
B. Gap (eV)	0.50	0.43	0.81	1.1	2.2

- BLYP $\epsilon_{\rm m}$ is for all the models only about 10% larger than the expt. value

ESG2012, Maastricht, 3-6 June 2012

PW vs BLYP v-DOS of v-GeSe₂

BLYP shifts the frequencies of a few % wrt PW and improves.
 comparison with vibrational spectroscopy experiments.

ESG2012, Maastricht, 3-6 June 2012 **PW vs BLYP infrared spectra of v-GeSe**₂

Experimental data taken from:

K. Murase in *Insulating and semiconducting glasses* Vol 17, ed. by P. Boolchand (WSP, Singapore, 2000), pp. 415-463.

ESG2012, Maastricht, 3-6 June 2012 **PW vs BLYP Raman spectra of v-GeSe**₂

Experimental data taken from:

K. Murase in *Insulating and semiconducting glasses* Vol 17, ed. by P. Boolchand (WSP, Singapore, 2000), pp. 415-463.

First-principles NMR calculations

- Perdew-Burke-Ernzerhof (PBE) functional
- In GeSe, about 20% of the Se atoms belong to
- Se-Se-Ge units

• High fraction of Se belongs to corner-sharing and edge-sharing arrangements as inferred from neutron scattering data

(80% Se) of Petri et al PRL (2000).

config.	$\delta_{ m iso}$	σ	GeSe ₂
Se-Se-Se	828	141	0%
Ge-Se-Ge (ES)	628	132	17%
Se-Se-Ge	597	152	20%
Ge-Se-Ge (CS)	376	126	63%

Conclusions

- **FP-BLYP** models featuring up to 80% of Ge regular tetrahedra may give reasonably good Raman spectrum \rightarrow *No reason to pretend 95% of regular tetrahedra*: v-GeSe₂ structure may still be *compatible* with a rather "weak chemical order".
- **FP-BLYP** shows dielectric constant and band gap are closer to expt. than **FP-PW**. \rightarrow **BLYP** gives better description of the electronic structure than PW.
- **BLYP** vibrational properties of v-GeSe₂ are improved compared to PW ones as already seen for the structure [Micoulaut et al PRB (2009)]
- •FP analysis of NMR chemical shifts supports the picture of v-GeSe₂ as a quite ordered network with 80% of Se belonging to regular CS and ES tetrahedra.

Acknowledgements

Carlo Massobrio (IPCMS, Strasbourg) Alfredo Pasquarello (EPFL, Lausanne) Sandro Scandolo (ICTP, Trieste) Stefando de Gironcoli (Democritos, Trieste)

ESG2012, Maastricht, 3-6 June 2012

Thank you for your attention

