Notes on integrable systems and Toda lattice

Tamara Grava

Contents

1 A short review of tensors 1
2 Poisson Manifolds 6
2.1 Hamiltonian systems 10
2.2 Integrable systems and Liouville-Arnold theorem 12
3 Bi-Hamiltonian geometry and Lax pair 16
3.1 First integrals associated to a Lax pair 21
4 The Toda system 22
4.1 Toda flows and orthogonal polynomials 28
4.2 Integration of Toda lattice 31
5 Jacobi Operators 35

1 A short review of tensors

Let us consider an N dimensional smooth manifold P over the real numbers.
Definition 1.1 A tensor of type (p, q) in a given coordinate chart $\left(U, x=\left(x^{1}, \ldots, x^{N}\right)\right)$ of the manifold P is described by a set of N^{p+q} real numbers

$$
A_{j_{1}, \ldots j_{p}}^{i_{1}, \ldots i_{p}}(x) .
$$

In another coordinate chart $\left(\tilde{U}, \tilde{x}=\left(\tilde{x}^{1}, \ldots, \tilde{x}^{N}\right)\right)$ the tensor is described by

$$
\tilde{A}_{j_{1}^{\prime}, \ldots j_{p}^{\prime}}^{i_{1}^{\prime}, \ldots i_{p}^{\prime}}(\tilde{x})
$$

and if $U \cap \tilde{U}$

$$
\tilde{A}_{j_{1}^{\prime}, \ldots j_{p}^{\prime}}^{i_{1}^{\prime}, \ldots i_{p}^{\prime}}(\tilde{x})=\frac{\partial \tilde{x}_{1}^{i_{1}^{\prime}}}{\partial x^{i_{1}}} \ldots \frac{\partial \tilde{x}^{i_{p}}}{\partial x^{i_{p}}} \frac{\partial x^{j_{1}}}{\partial \tilde{x}_{1}^{j_{1}^{\prime}}} \ldots \frac{\partial x^{j_{q}}}{\partial \tilde{x}_{q}^{j_{q}^{\prime}}} A_{j_{1}, \ldots j_{p}}^{i_{1}, \ldots i_{p}}(x)
$$

where we sum over repeated indices.
For example $(1,0)$ tensors are associated to vector fields. Indeed

$$
\tilde{X}^{i^{\prime}}=\frac{\partial \tilde{x}^{i^{\prime}}}{\partial x^{i}} X^{i}
$$

which is exactly the law of transformation of the vector field

$$
X=X^{i} \frac{\partial}{\partial x^{i}}=\left[X^{i} \frac{\partial \tilde{x}^{i^{\prime}}}{\partial x^{i}}\right] \frac{\partial}{\partial \tilde{x}^{i^{\prime}}}
$$

In the same way $(0,1)$ tensors are one forms $\omega=\omega_{i} d x^{i}$ Under a change of coordinates $\tilde{x}=\tilde{x}(x)$ we have

$$
\omega=\left[\omega_{i} \frac{\partial x^{i}}{\partial \tilde{x}^{i^{\prime}}}\right] d \tilde{x}^{i^{\prime}}
$$

Given two tensors of type (p, q) their linear combination is still a tensor of type (p, q). Therefore, the tensors of type (p, q) form a linear space $\mathcal{T}_{q}^{p}(P)$. Such space can be identified with the tensor product of p copies of the tangent space $T_{x}(P)$ and q copies of the cotangent space $T_{x}^{*}(P)$, here we identify a point of the space with the system of coordinates $x=$ $\left(x^{1}, \ldots, x^{N}\right)$ at the point. In this way a basis of the space \mathcal{T}_{q}^{p}

$$
\frac{\partial}{\partial x^{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_{p}}} d x^{j_{1}} \otimes \cdots \otimes d x^{j_{q}}
$$

and a decomposition of a tensor A of type (p, q) with respect to this basis gives

$$
A=A_{j_{1} \ldots j_{q}}^{i_{i} \ldots i_{p}} \frac{\partial}{\partial x^{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_{p}}} d x^{j_{1}} \otimes \cdots \otimes d x^{j_{q}}
$$

There are two important linear operations that can be done on tensors: product of tensors and contraction of tensor. Given a tensor A of type (p, q) and a tensor B of type (r, s) the tensor product $A \otimes B$ is the tensor of type $(p+r, q+s)$ such that

$$
(A \otimes B)_{j_{1} \ldots j_{q} n_{1} \ldots n_{s}}^{i_{1} \ldots i_{p} k_{1} \ldots k_{r}}=A_{j_{1} \ldots j_{q}}^{i_{1} \ldots i_{p}} B_{n_{1} \ldots n_{s}}^{k_{1} \ldots k_{r}}
$$

For example if we consider the $(1,1)$ tensor A and the vector v their tensor product is

$$
(A \otimes v)_{j}^{i k}=A_{j}^{i} v^{k}
$$

The contraction of tensors transform a tensor of type (p, q) to a tensor of type ($p-$ $1, q-1$). It depends on the choice of one upper index i_{k} and one lower j_{l} :

$$
C_{j_{l}}^{i_{k}}(A)_{j_{1} \ldots j_{q}}^{i_{1} \ldots i_{p}}=A_{j_{1} \ldots j_{l-1} s j_{l+1} \ldots j_{q}}^{i_{1}}
$$

where it is summed over the repeated index s.
Example 1.2 Let v be a vector and $A=A_{j}^{i}$ a $(1,1)$ tensor. Their tensor product $A \otimes v$ is a $(2,1)$ tensor. The operation of contraction gives a $(1,0)$ tensor

$$
C_{j}^{k}(A \otimes v)_{j}^{i k}=A_{s}^{i} v^{s} .
$$

For this reason we can think of a $(1,1)$ tensor as a linear operation on the tangent space $A: T P \rightarrow T P$ such that $v \rightarrow A v$ where $(A v)^{i}=A_{j}^{i} v^{j}$. The adjoint operator A^{*} can be identified with linear operations from the cotangent space $T^{*} P \rightarrow T^{*} P$

$$
\omega \rightarrow A^{*} \omega, \quad\left(A^{*} \omega\right)_{j}=A_{j}^{i} \omega_{i}
$$

Example 1.3 A $(0,2)$ tensor $\omega=\omega_{i j}$ can be realised as a bilinear form on the space $T P \otimes T P$

$$
(\omega, v, u) \rightarrow \omega_{i j} v^{i} u^{j}:=\omega(v, u) .
$$

An important subspace of $\mathcal{T}_{q}(P)$ and $\mathcal{T}^{p}(P)$ is the space of antisymmetric $(p, 0)$ and $(0, q)$ tensors. The operation Alt defined as

$$
\operatorname{Alt}\left(a_{i_{1}, \ldots i_{p}}\right)=\frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sign}(\sigma) a_{i_{\sigma(1)} i_{\sigma(2)} \ldots i_{\sigma(p)}}
$$

produces an antisymmetric tensor and the same applies to $(0, q)$ tensors. The subspace of antisymmetric $(p, 0)$ tensors is denoted as $\Lambda^{p} T P \subset T P \otimes \cdots \otimes T P$. Combining the operation of tensor product with the operation of alternation, one obtains the operation of wedge product Λ. Namely the space $\Lambda^{p}\left(T_{x} P\right)$, can be identified with the antisymmetric product of p copies of the tangent space $T_{x} P$. In particular, $\Lambda^{1} T P=T P$. If $\left(x^{1}, \ldots, x^{N}\right)$ is a local system of coordinates at x, then $\Lambda^{p} T_{x} P$ admits a linear basis consisting of the elements

$$
\frac{\partial}{\partial x^{i_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial x^{i_{p}}}
$$

A smooth p-vector field A is by definition a section of $\Lambda^{p} T P$, in local coordinates takes the form

$$
A(x)=\sum_{i_{1}<\cdots<i_{p}} A^{i_{1}, \ldots, i_{p}} \frac{\partial}{\partial x^{i_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial x^{i_{p}}}=\frac{1}{p!} \sum_{i_{1}, \ldots, i_{p}} A^{i_{1}, \ldots, i_{p}} \frac{\partial}{\partial x^{i_{1}}} \wedge \cdots \wedge \frac{\partial}{\partial x^{i_{p}}}
$$

The coefficients $A^{i_{1}, \ldots, i_{p}}(x)$ are smooth function of x and antisymmetric with respect to the change of the indices and transform as a $(p, 0)$ tensor.

In the same way an antisymmetric tensor $(0, q)$ is a q-differential antisymmetric form ω or a section of $\Lambda^{q} T^{*} P$. In local coordinates it takes the form

$$
\begin{equation*}
\omega=\sum_{i_{1}<\cdots<i_{q}} \omega_{i_{1}, \ldots i_{q}}(x) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{q}}=\frac{1}{q!} \sum_{i_{1}, \ldots, i_{q}} \omega_{i_{1}, \ldots i_{q}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{q}} \tag{1.1}
\end{equation*}
$$

where $\omega_{i_{1}, \cdots q}$ is a smooth antisymmetric tensor of type $(0, q)$. The form $d \omega$ is the $q+1$ antisymmetric tensor defined as

$$
(d \omega)_{j_{1}, \ldots j_{q+1}}=\sum_{m=1}^{q+1}(-1)^{m+1} \frac{\partial \omega_{j_{1} \ldots \hat{j}_{m} \ldots j_{q+1}}(x)}{\partial x^{j_{m}}} .
$$

The pullback of a q form ω is defined as follows. Let $f: M \rightarrow P$ be a smooth map and let ω be a q-form on P defined by (1.1). Then the form $f^{*} \omega$ on M is defined as

$$
f^{*} \omega=\sum_{i_{1}<\cdots<i_{q}} \omega_{i_{1}, \ldots i_{q}}(x(y)) d x^{i_{1}}(y) \wedge \cdots \wedge d x^{i_{q}}(y)
$$

where the map f in local coordinates takes the form

$$
y=\left(y^{1}, \ldots, y^{N}\right) \xrightarrow{f}\left(x^{1}(y), \ldots x^{N}(y)\right) .
$$

Exercise 1.4 Show that the operation of exterior differentiation commutes with the operation of pullback. Namely if $f: M \rightarrow P$ is a smooth map and ω is a differential form on P then

$$
f^{*}(d \omega)=f^{*}(d \omega)
$$

Given a k-vector field A and k-form α, the pairing $\langle\alpha, A\rangle$ is the function

$$
\langle\alpha, A\rangle=\sum_{i_{1}<\cdots<i_{k}} \alpha_{i_{1}, \ldots i_{k}} A^{i_{1}, \ldots, i_{k}} .
$$

Exercise 1.5 Show that the above definition of $\langle\alpha, A\rangle$ does not depend on the choice of local coordinates.

A smooth k-vector field A defines a \mathbb{R}-multilinear skew symmetric map from $\mathcal{C}^{\infty}(P) \times$ $\cdots \times \mathcal{C}^{\infty}(P)\left(k\right.$-times) to $\mathcal{C}^{\infty}(P)$ by the formula

$$
\begin{equation*}
A\left(f_{1}, \ldots, f_{k}\right)=\left\langle A, d f_{1} \wedge \cdots \wedge d f_{k}\right\rangle \tag{1.2}
\end{equation*}
$$

For example for a 1 -vector field X we have

$$
X(f)=\langle X, d f\rangle=X^{i} \frac{\partial f}{\partial x^{i}}
$$

and for a 2 -vector field π we have

$$
\left\langle\pi, d f_{1} \wedge d f_{2}\right\rangle=\pi\left(f_{1}, f_{2}\right)=\pi^{i j} \frac{\partial f_{1}}{\partial x^{i}} \frac{\partial f_{2}}{\partial x^{j}} .
$$

Exercise 1.6 Show that a \mathbb{R}-multilinear skew-symmetric map $A: \mathcal{C}^{\infty}(P) \times \cdots \times \mathcal{C}^{\infty}(P) \rightarrow$ $\mathcal{C}^{\infty}(P)$ arises from a smooth k-vector field by formula (1.2) if and only if A is skew symmetric and (1.2) satisfies the Leibnitz rule

$$
A\left(f g, f_{2}, \ldots, f_{k}\right)=f A\left(g, f_{2}, \ldots, f_{k}\right)+g A\left(f, f_{2}, \ldots, f_{k}\right)
$$

A map that satisfies the above condition is said multi-derivation, and the above exercise shows that multi-derivations are identified with multi-vector fields.

The Lie derivative of a tensor follows the notion of Lie derivative of a function along a vector field X. Indeed let Φ_{t} the one parameter flux generated by the vector field X, then we have

$$
L_{X} f(x):=\left.\frac{d}{d t} \phi_{t}^{*} f(x)\right|_{t=0}=\left.\frac{d}{d t} f\left(\phi_{t}(x)\right)\right|_{t=0}=X^{i}(x) \frac{\partial f(x)}{\partial x^{i}} .
$$

Similarly, the Lie derivative of a vector Y along the vector X is given by

$$
L_{X} Y(x)=\left.\frac{d}{d t} \phi_{t}^{*} Y\left(\phi_{t}(x)\right)\right|_{t=0}=\frac{d}{d t}\left(Y^{i}\left(\phi_{t}(x)\right) \frac{\partial}{\partial \phi_{t}^{i}(x)}\right)
$$

We have
$Y^{i}\left(\phi_{t}(x)\right)=Y^{i}\left(x^{1}+t X^{1}(x)+O\left(t^{2}\right), \ldots, x^{N}+X^{N}(x) t+O\left(t^{2}\right)\right)=Y^{i}(x)+t X^{k} \frac{\partial}{\partial x^{k}} Y^{i}+O\left(t^{2}\right)$
and

$$
\frac{\partial}{\partial \phi_{t}^{i}(x)}=\frac{\partial x^{s}}{\partial \phi_{t}^{i}(x)} \frac{\partial}{\partial x^{s}}=\left(\delta^{i s}-t \frac{\partial X^{i}}{\partial x^{s}}+O\left(t^{2}\right)\right) \frac{\partial}{\partial x^{s}}
$$

so that the Lie derivative takes the standard form

$$
L_{X}(Y)=\left(X^{k} \frac{\partial}{\partial x^{k}} Y^{s}-Y^{s} \frac{\partial X^{i}}{\partial x^{s}}\right) \frac{\partial}{\partial x^{s}} .
$$

In a similar way one obtains the Lie derivative of a tensor T of type (p, q)

$$
\begin{aligned}
L_{X}(T)_{j_{1} \ldots, j_{q}}^{i_{1} \ldots i_{p}} & =X^{s} \frac{\partial}{\partial x^{s}} T_{j_{1} \ldots, j_{q}}^{i_{1} \ldots i_{p}}-\frac{\partial X^{i_{1}}}{\partial x^{s}} T_{j_{1} \ldots, j_{q}}^{s i_{2} \ldots i_{p}}-\cdots-\frac{\partial X^{i_{p}}}{\partial x^{s}} T_{j_{1} \ldots, j_{q}}^{i_{1} \ldots i_{p-1} s} \\
& +\frac{\partial X^{s}}{\partial x^{j_{1}}} T_{s j_{2} \ldots j_{q}}^{i_{1} \ldots i_{p}}+\ldots \frac{\partial X^{s}}{\partial x^{j_{q}}} T_{j_{1} \ldots j_{q-1} s}^{i_{1} \ldots i_{p}} .
\end{aligned}
$$

We conclude remarking that the Lie derivative is a linear operation that satisfies Leibniz rule with respect to product (tensor or wedge product) so that

$$
L_{X}(T \otimes S)=L_{X}(T) \otimes S+T \otimes L_{X}(S) .
$$

2 Poisson Manifolds

In this section we introduce the concept of Poisson bracket and Poisson manifold.
Definition 2.1 A manifold P is said to be a Poisson manifold if P is endowed with a Poisson bracket $\{.$.$\} , that is a Lie algebra structure defined on the space \mathcal{C}^{\infty}(P)$ of smooth functions over P

$$
\begin{align*}
\mathcal{C}^{\infty}(P) \times \mathcal{C}^{\infty}(P) & \rightarrow \mathcal{C}^{\infty}(P) \\
(f, g) & \mapsto\{f, g\} \tag{2.1}
\end{align*}
$$

so that $\forall f, g, h \in \mathcal{C}^{\infty}(P)$ the bracket $\{.,$.

- is antisymmetric:

$$
\begin{equation*}
\{g, f\}=-\{f, g\} \tag{2.2}
\end{equation*}
$$

- bilinear

$$
\begin{align*}
\{a f+b h, g\} & =a\{f, g\}+b\{h, g\}, \tag{2.3}\\
\{f, a g+b h\} & =a\{f, g\}+b\{f, h\}, \quad a, b \in \mathbb{R}
\end{align*}
$$

- satisfies Jacobi identity

$$
\begin{equation*}
\{\{f, g\}, h\}+\{\{h, f\}, g\}+\{\{g, h\}, f\}=0 ; \tag{2.4}
\end{equation*}
$$

- it satisfies Leibnitz identity with respect to the product of function

$$
\begin{equation*}
\{f g, h\}=g\{f, h\}+f\{g, h\} . \tag{2.5}
\end{equation*}
$$

From the exercise 1.6 a bilinear antisymmetric map that satisfies the Leibniz rule can be identified with a bi-vector, namely an antisymmetric $(2,0)$ tensor. Let us denote this tensor by π. Then we have

$$
\{f, g\}=\pi(f, g)=\langle\pi, d f \wedge d g\rangle=\pi^{i j}(x) \frac{\partial f(x)}{\partial x^{i}} \frac{\partial g(x)}{\partial x^{j}}
$$

where $x=\left(x^{1}, \ldots, x^{N}\right)$ is a system of coordinates. In particular

$$
\begin{equation*}
\left\{x^{i}, x^{j}\right\}=\pi^{i j}(x), \quad i, j=1, \ldots, N=\operatorname{dim} P . \tag{2.6}
\end{equation*}
$$

In order to satisfy the Jacobi identity we need to impose the condition

$$
\left\{x^{i},\left\{x^{j}, x^{k}\right\}\right\}+\left\{x^{j},\left\{x^{k}, x^{i}\right\}\right\}+\left\{x^{k},\left\{x^{j}, x^{i}\right\}\right\}=0, \quad 1 \leq i<j<k \leq N
$$

which give the relation

$$
\frac{\partial \pi^{i j}(x)}{\partial x^{s}} \pi^{s k}(x)+\frac{\partial \pi^{k i}(x)}{\partial x^{s}} \pi^{s j}(x)+\frac{\partial \pi^{j k}(x)}{\partial x^{s}} \pi^{s i}(x)=0, \quad 1 \leq i<j<k \leq N .
$$

We summarise the above considerations with the following theorem.
Theorem 2.2 1) Given a Poisson manifold P, and a system of local coordinates over P, then the matrix $\pi^{i j}(x)$ defined in (2.6) is antisymmetric and satisfies

$$
\begin{equation*}
\frac{\partial \pi^{i j}(x)}{\partial x^{s}} \pi^{s k}(x)+\frac{\partial \pi^{k i}(x)}{\partial x^{s}} \pi^{s j}(x)+\frac{\partial \pi^{j k}(x)}{\partial x^{s}} \pi^{s i}(x)=0, \quad 1 \leq i<j<k \leq N . \tag{2.7}
\end{equation*}
$$

Furthermore the Poisson bracket of two smooth functions is calculated according to

$$
\begin{equation*}
\{f, g\}=\pi^{i j}(x) \frac{\partial f(x)}{\partial x^{i}} \frac{\partial g(x)}{\partial x^{j}} . \tag{2.8}
\end{equation*}
$$

2) Given a change of coordinates

$$
\tilde{x}^{k}=\tilde{x}^{k}(x), \quad k=1, \ldots, N,
$$

then the matrices $\pi^{i j}(x)=\left\{x^{i}, x^{j}\right\}$ e $\tilde{\pi}^{k l}(\tilde{x})=\left\{\tilde{x}^{k}, \tilde{x}^{l}\right\}$ satisfy the rule of transformation of a tensor of type (2,0):

$$
\begin{equation*}
\tilde{\pi}^{k l}(\tilde{x})=\pi^{i j}(x) \frac{\partial \tilde{x}^{k}}{\partial x^{i}} \frac{\partial \tilde{x}^{l}}{\partial x^{j}} . \tag{2.9}
\end{equation*}
$$

3) Viceversa, given a smooth manifold P and an antisymmetric tensor (2,0) $\pi^{i j}(x)$ such that (2.7) is satisfied, then (2.8) defines over P a Poisson bracket.

Definition 2.3 If the rank of the matrix $\pi^{i j}$ is equal to $N=\operatorname{dim} P$, the Poisson bracket is non degenerate.

It immediately follows that non degenerate Poisson bracket exists only on even dimensional manifolds.
Definition 2.4 Given a Poisson bracket $\{$,$\} , the set of functions that commutes with$ any other functions of $\mathcal{C}^{\infty}(P)$, namely

$$
\left\{f \in \mathcal{C}^{\infty}(P) \mid\{f, h\}=0, \forall h \in \mathcal{C}^{\infty}(P)\right\}
$$

are called Casimirs of the Poisson bracket.

For a nondegenerate Poisson bracket, the only Casimir is zero.
For a given $f \in \mathcal{C}^{\infty}(P)$, and f not a Casimir of the Poisson bracket, the map

$$
g \rightarrow\{f, g\}
$$

is a derivation. It immediately follows that there is a unique vector field X_{f} such that

$$
X_{f}(g)=\{f, g\} .
$$

In particular in local coordinates we have

$$
X_{f}=\pi^{i j} \frac{\partial f}{\partial x^{i}} \frac{\partial}{\partial x^{j}} .
$$

In this way the Poisson bracket defines a homomorphism

$$
\begin{aligned}
\mathcal{C}^{\infty}(P) & \rightarrow T P \\
f & \rightarrow X_{f}=\{f, .\}
\end{aligned}
$$

so that

$$
\left[X_{f}, X_{g}\right]=X_{\{f, g\}} .
$$

Definition 2.5 A diffeomorphism $\phi: P \rightarrow P$ that preserves the Poisson bracket

$$
\begin{equation*}
\phi^{*}\{f, g\}=\left\{\phi^{*} f, \phi^{*} g\right\}, \quad \phi^{*} f(x)=f(\phi(x)), \tag{2.10}
\end{equation*}
$$

is called a Poisson diffeomorphism.
Let ϕ_{t} with $t \geq 0$ be a one parameter group of diffeomorphism of P generated by the smooth vector field X, namely

$$
X=\left.\frac{d}{d t} \phi_{t}(x)\right|_{t=0} .
$$

The infinitesimal version of the relation (2.10) can be obtained by differentiating at $t=0$ the relation $\left\{\phi_{t}^{*} f, \phi_{t}^{*} g\right\}=\phi_{t}^{*}\{f, g\}$, which gives

$$
\begin{equation*}
X(\{f, g\})=\{X(f), g\}+\{f, X(g)\} . \tag{2.11}
\end{equation*}
$$

In this case the vector field X is called Poisson vector field.
Lemma 2.6 A vector field X on a Poisson manifold (P, π), is a Poisson vector field iff

$$
\begin{equation*}
L_{X} \pi=0 . \tag{2.12}
\end{equation*}
$$

Proof. By the Leibniz rule we have $X(\{f, g\})=L_{X}(\{f, g\})=L_{X}(\langle\pi, d f \wedge d g\rangle)=$ $\left\langle L_{X} \pi, d f \wedge d g\right\rangle+\left\langle\pi, d L_{X} f \wedge d g\right\rangle+\left\langle\pi, d f \wedge d L_{X} g\right\rangle=\left\langle L_{X} \pi, d f \wedge d g\right\rangle+\{X(f), g\}+\{f, X(g)\}$, namely

$$
X(\{f, g\})=\left\langle L_{X} \pi, d f \wedge d g\right\rangle+\{X(f), g\}+\{f, X(g)\},
$$

which implies, by (2.11), the statement of the Lemma.
It can be easily verified that any Hamiltonian vector field X_{h}, is a Poisson vector field, indeed (2.11) is nothing but the Jacobi identity. Every Hamiltonian vector field is a Poisson vector field, while the contrary is not true in general.

Definition 2.7 A $2 n$-dimensional P manifold is called symplectic manifold if it is endowed with a close non degenerate 2 -form ω.

In local coordinates one has

$$
\omega=\sum_{i<j, 1}^{n} \omega_{i j} d x^{i} \wedge d x^{j}
$$

where \wedge stands for the exterior product. We recall that the form ω is closed if $d \omega=$ $\sum_{i j k=1}^{n} \frac{\partial}{\partial x^{k}} \omega_{i j} d x^{k} \wedge d x^{i} \wedge d x^{j}=0$, which implies that

$$
\frac{\partial}{\partial x^{k}} \omega_{i j}+\frac{\partial}{\partial x^{i}} \omega_{j k}+\frac{\partial}{\partial x^{j}} \omega_{k i}=0, \quad i \neq j \neq k .
$$

Lemma 2.8 A Poisson manifold $\{P, \pi\}$ with non degenerate Poisson bracket π, is a symplectic manifold, with $\omega_{i j}=\left(\pi^{i j}\right)^{-1}$.

Indeed the Jacobi identity is equivalent to the closure of the 2 -form ω. For a symplectic manifold (P, ω) we have the map from $T P \rightarrow T P^{*}$

$$
X \rightarrow \omega(X, .), \quad \omega(X, .)=\omega_{i j} X^{i} d x^{j} .
$$

Therefore we have the identities

$$
\{f, g\}=-\omega\left(X_{f}, X_{g}\right)=X_{f}(g)=-\left\langle d f, X_{g}\right\rangle .
$$

The classical Darboux theorem says that in the neighbourhood of every point of (P, ω) $\operatorname{dim} P=2 n$, there is a local systems of co-ordinates $\left(q^{1}, \ldots q^{n}, p_{1}, \ldots, p_{n}\right)$ called Darboux coordinates or canonical coordinates such that

$$
\begin{equation*}
\omega=\sum_{i=1}^{n} d p_{i} \wedge d q^{i} \tag{2.13}
\end{equation*}
$$

In such coordinated the Poisson bracket takes the form

$$
\{f, g\}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q^{i}}\right)
$$

with Hamiltonian vector field

$$
X_{f}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial q^{i}} \frac{\partial}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial}{\partial q^{i}}\right)
$$

and Poisson tensor π

$$
\pi=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

The existence of Darboux coordinates is related to the vanishing of the second group of the so called Poisson cohomology $H^{*}(U, \pi)$, where U is an open neighbourhood of P. If the Poisson bracket is non-degenerate, the Poisson cohomology coincides with the deRham cohomology and Darboux theorem is equivalent to the vanishing of the second de-Rham cohomology group in an open set. In order to have global Darboux coordinates one needs the vanishing of the Poisson cohomology group $H^{2}(P, \pi)$. There are many tools for computing de Rham cohomology groups, and these groups have probably been computed for most ÒfamiliarÓ manifolds. However, when π is not symplectic, then $H^{*}(P, \pi)$ does not vanish even locally [10] and it is much more difficult to compute it then the de Rham cohomology. There are few Poisson (non-symplectic) manifolds for which Poisson cohomology has been computed [7]. The Poisson cohomology $H^{*}(P, \pi)$ can have infinite dimension even when P is compact, and the problem of determining whether $H^{*}(P, \pi)$ is finite dimensional or not is already a difficult open problem for most Poisson structures that we know of. In the case of linear Poisson structures, Poisson cohomology is intimately related to Lie algebra cohomology, also known as Chevalley - Eilenberg cohomology, [4].

2.1 Hamiltonian systems

Given a Poisson manifold $(P, \pi), \operatorname{dim} P=N$, and a function $H \in \mathcal{C}^{\infty}(P)$, an Hamiltonian system in local coordinates $\left(x^{1}, \ldots, x^{N}\right)$ is a set of N first order ODEs defined by

$$
\frac{d}{d t} x^{i}:=\dot{x}^{i}=\left\{x^{i}, H\right\}
$$

with initial condition $x^{i}(t=0)=x_{0}^{i}$. For a symplectic manifold $(P, \omega), \operatorname{dim} P=2 n$, the Hamilton equations in Darboux coordinates takes the form

$$
\begin{align*}
& \dot{q}^{i}=\left\{q^{i}, H\right\} \tag{2.14}\\
&=\frac{\partial H}{\partial p_{i}} \\
& \dot{p}_{i}=\left\{p_{i}, H\right\}
\end{align*}=\frac{\partial H}{\partial q^{i}}, \quad i=1, \ldots, n, ~ l
$$

with initial conditions $q^{i}(t=0)=q_{0}^{i}, p_{i}(t=0)=p_{i}^{0}$.
Definition 2.9 A function $F \in \mathcal{C}^{\infty}(P)$ is said to be a conserved quantity for the Hamiltonian system (2.14) if

$$
\frac{d F}{d t}=\{F, H\}=0
$$

Namely conserved quantities Poisson commute with the Hamiltonian. We remark that if F_{1}, \ldots, F_{m} are conserved quantities, then any function of $g=g\left(F_{1}, \ldots, F_{m}\right)$ is a conserved quantity.

Next we will show that couples of commuting vector fields define an action of an Abelian group.

Lemma 2.10 Let $(P,\{.,\}$.$) be a nondegenerate Poisson bracket. Consider the Hamilto-$ nians $F, H \in \mathcal{C}^{\infty}(P)$, and their Hamiltonian flows

$$
\begin{align*}
\frac{d x^{i}}{d t} & =\left\{x^{i}, H\right\}, \tag{2.15}\\
\frac{d x^{i}}{d s} & =\left\{x^{i}, F\right\}, \tag{2.16}\\
& i=1, \ldots, N
\end{align*}
$$

The common solution $x(t, s)$ of (2.15) and (2.16) with initial data $x(0,0)=x_{0} \in P$ exists for sufficiently small t and s if

$$
\{F, H\}=0
$$

Proof. By definition the common solution must satisfy the relation

$$
\frac{d}{d s} \frac{d x^{i}(t, s)}{d t}=\frac{d}{d t} \frac{d x^{i}(t, s)}{d s} .
$$

Taking the derivative with respect to s of equation (2.15) and with respect to t of equation (2.16). One has

$$
\begin{gathered}
\frac{d}{d s} \frac{d x^{i}}{d t}=\frac{d}{d s}\left\{x^{i}, H\right\}=\left\{\frac{d}{d s} x^{i}, H\right\}+\left\{x^{i}, \frac{d}{d s} H\right\}=\left\{\left\{x^{i}, F\right\}, H\right\}, \quad i=1, \ldots, N \\
\frac{d}{d t} \frac{d x^{i}}{d s}=\frac{d}{d t}\left\{x^{i}, F\right\}=\left\{\frac{d}{d t} x^{i}, H\right\}+\left\{x^{i}, \frac{d}{d t} H\right\}=\left\{\left\{x^{i}, H\right\}, F\right\}, \quad i=1, \ldots, N
\end{gathered}
$$

Subtracting the two terms and applying Jacobi identity one arrives to

$$
\frac{d}{d s} \frac{d x^{i}}{d t}-\frac{d}{d t} \frac{d x^{i}}{d s}=\left\{\left\{x^{i}, F\right\}, H\right\}+\left\{\left\{H, x^{i}\right\}, F\right\}=\left\{\{H, F\}, x^{i}\right\}=0, \quad i=1, \ldots, N
$$

which is equal to zero by the commutativity of F and H.
We remark that the converse statement is also true (see Dubrovin pg.20).

2.2 Integrable systems and Liouville-Arnold theorem

We start with the definition of a canonical transformation. A diffeomorphism of P to itself defines a change of coordinates $x \rightarrow \Phi(x)$. Let us notice that we need $2 n$ functions to define Φ.

Definition 2.11 A change of coordinates $x \rightarrow \Phi(x)$ is a canonical transformation if $\Phi^{*} \omega=\omega$ where Φ^{*} is the pullback of the symplectic form ω through Φ.

Since $\omega=d W$ and the pullback commutes with differentiation (see exercise 1.4), one has

$$
\omega-\Phi^{*} \omega=d W-\Phi^{*}(d W)-d W=d\left(W-\Phi^{*} W\right)=0
$$

Namely the form $d\left(W-\Phi^{*} W\right)$ is exact, and by Poincare theorem there is locally a function S defined on an open set of P so that

$$
\begin{equation*}
W-\Phi^{*} W=d S \tag{2.17}
\end{equation*}
$$

The function S is called the generating function of the canonical transformation. In other words a canonical change of coordinates is defined by one function. Canonical transformations are used to make a suitable change of coordinates that reduce an integrable Hamiltonian system to a "trivial" evolution. We first introduce the concept of integrable system.

Definition 2.12 A Hamiltonian system defined on a $2 n$ dimensional Poisson manifold P with non degenerate Poisson bracket and with Hamiltonian $H \in \mathcal{C}^{\infty}(P)$ is called completely integrable if there are n independent conserved quantities $H=H_{1}, \ldots, H_{n}$ in involution, namely

$$
\begin{equation*}
\left\{H_{j}, H_{k}\right\}=0, \quad j, k=1, \ldots, n \tag{2.18}
\end{equation*}
$$

and the gradients $\nabla H_{1}, \ldots \nabla H_{n}$ are linearly independent.
Let us consider the level surface

$$
\begin{equation*}
M_{E}=\left\{(p, q) \in P \mid H_{1}(p, q)=E_{1}, \quad H_{2}(p, q)=E_{2}, \quad H_{n}(p, q)=E_{n}\right\} \tag{2.19}
\end{equation*}
$$

for some constants $E=\left(E_{1}, \ldots, E_{n}\right)$. Here without loss of generality we assume that (q, p) are canonical coordinates. Such level surface enjoys a special property, namely it is a Lagrangian sub-manifold which we will define below.

Definition 2.13 Let P be a symplectic manifold of dimension $2 n$. A a sub-manifold $G \subset P$ is called a Lagrangian submanifold if $\operatorname{dim} G=n$ and the symplectic form is identically zero on vectors tangent to G, namely

$$
\omega(X, Y)=0, \quad \forall X, Y \in T G
$$

Lemma 2.14 The manifold M_{E} defined in (2.19) where H_{1}, \ldots, H_{n} are independent and commuting Hamiltonians, is a Lagrangian sub manifold.

Proof. The gradients

$$
\nabla H_{j}=\left(\frac{\partial H_{j}}{\partial q^{1}}, \ldots, \frac{\partial H_{j}}{\partial q^{n}}, \frac{\partial H_{j}}{\partial p_{1}}, \ldots, \frac{\partial H_{j}}{\partial p_{n}}\right)
$$

are orthogonal to the surface M_{E}. Since the vector fields $X_{H_{j}}$ are orthogonal to ∇H_{k} because $\left\{H_{j}, H_{k}\right\}=0$, it follows that the vector fields $X_{H_{j}}$ are tangent to the level surface M_{E}. Furthermore, since the Hamiltonian H_{j} are linearly independent, it follows that the vector fields $X_{H_{j}}, j=1, \ldots, n$ generate all the tangent space $T M_{E}$. Therefore the symplectic form is identically zero on the tangent space to M_{E}, namely $\left.\omega\right|_{T M_{E}} \equiv 0$ because

$$
\omega\left(X_{H_{j}}, X_{H_{k}}\right)=-\left\{H_{k}, H_{j}\right\}=0 .
$$

This is equivalent to say that M_{E} is a Lagrangian submanifold.
Theorem 2.15 [Liouville, see e.g. [3]] Consider a completely integrable Hamiltonian system on a non degenerate Poisson manifold P of dimension $2 n$ and with canonical coordinates (q, p). Let us suppose that the Hamiltonians $H_{1}(p, q), \ldots, H_{n}(p, q)$ are linearly independent on the level surface M_{E} (2.19) for a given $E=\left(E_{1}, \ldots, E_{n}\right)$. The Hamiltonian flows on M_{E} are integrable by quadratures.

Proof. By definition the system posses n independent conserved quantities $H_{1}=H$, $H_{2}, \ldots H_{n}$. Without loosing generality, we assume that (q, p) are canonical coordinates with respect to the symplectic form ω and the Poisson bracket \{.,.\}. The idea of the proof is to construct a system of canonical variables that make the evolution trivial. Since the evolution is restricted to the level surface M_{E}, parametrised by $E=\left(E_{1}, \ldots, E_{n}\right)$, we need to complete the coordinates E with another set of coordinates $\psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$ so that the transformation $(q, p) \rightarrow(\psi, E)$ is canonical.

For the purpose we also observe that since $\nabla H_{j}, j=1, \ldots, n$ are linearly independent, it is possible to assume, without loosing in generality that

$$
\operatorname{det} \frac{\partial H_{j}}{\partial p_{k}} \neq 0 .
$$

Then by the implicit function theorem we can define

$$
p_{k}=p_{k}(q, E) .
$$

Since M_{E} is a Lagrangian sub-manifold we have

$$
0=\left.\omega\right|_{T M_{E}}=\sum_{i} d p_{i}(q, E) \wedge d q^{i}=\sum_{i j} \frac{\partial p_{i}}{\partial q^{j}} d q^{j} \wedge d q^{i}
$$

which implies

$$
\frac{\partial p_{i}}{\partial q^{j}}-\frac{\partial p_{j}}{\partial q^{i}}=0, \quad i \neq j
$$

The above identity implies that the one form $W=p_{i}(q, E) d q^{i}$ is exact on $T^{*} M_{E}$, and therefore there exists a function $S=S(q, E)$ so that $\left.W\right|_{T M_{E}}=\left.d S\right|_{T M_{E}}$. The function S is the generating function of a canonical transformation Φ which maps the variable $(q, p) \xrightarrow{\Phi}(\psi, E)$ and

$$
\Phi^{*} W=\sum E_{i} d \psi^{i}=-\sum \psi^{i} d E_{i}
$$

and by (2.17)

$$
\sum p_{i} d q^{i}-\frac{\partial S}{\partial q^{i}} d q^{i}-\frac{\partial S}{\partial E_{i}} d E_{i}=-\sum \psi^{i} d E_{i}
$$

so that

$$
p_{i}=\frac{\partial S}{\partial q^{i}}, \quad \psi_{i}=\frac{\partial S}{\partial E_{i}} .
$$

In the canonical coordinates (ψ, E) the Hamiltonian flow with respect to the Hamiltonian $H_{1}=H$ takes the form

$$
\begin{aligned}
& \dot{\psi}_{i}=\left\{\psi_{i}, H_{1}\right\}=\frac{\partial H_{1}}{\partial E_{i}}=\delta_{1 i} \\
& \dot{E}_{i}=\left\{E_{i}, H_{1}\right\}=-\frac{\partial H_{1}}{\partial \psi_{i}}=0 .
\end{aligned}
$$

So the above equations can be integrated in a trivial way:

$$
\psi_{1}=t+\psi_{1}^{0}, \quad \psi_{i}=\psi_{i}^{0}, \quad i=2, \ldots, n \quad E_{i}=E_{i}^{0}, \quad i=1, \ldots, n
$$

where ψ_{i}^{0} and E_{i}^{0} are constants. Therefore we have shown that the Hamiltonian flow can be integrated by quadratures. Furthermore

$$
q=q\left(t+\psi_{1}^{0}, \psi_{2}^{0}, \ldots, \psi_{n}^{0}, E\right), \quad p=p\left(t+\psi_{1}^{0}, \psi_{2}^{0}, \ldots, \psi_{n}^{0}, E\right) .
$$

We remark that the above theorem is a local theorem, since the existence of the function S relies on a local result, namely Poincare' theorem. In 1968 Arnold observed that if the level surface M_{E} is compact, Liouville theorem becomes a global theorem and the motion takes place on a torus and is quasi-periodic.

Theorem 2.16 (Arnold) If the level surface $M_{E^{0}}$ defined in (2.19) is compact and connected then the level surfaces M_{E} for $\left|E-E^{0}\right|$ sufficiently small, are diffeomorphic to a torus

$$
\begin{equation*}
M_{E} \simeq T^{n}=\left\{\left(\phi_{1}, \ldots, \phi_{n}\right) \in \mathbb{R}^{n} \mid \phi_{i} \sim \phi_{i}+2 \pi, i=1, \ldots, n\right\}, \tag{2.20}
\end{equation*}
$$

and the motion on M_{E} is quasi-periodic, namely

$$
\begin{equation*}
\phi_{1}(t)=\omega_{1}(E) t+\phi_{1}^{0}, \ldots, \phi_{n}(t)=\omega_{n}(E) t+\phi_{n}^{0} \tag{2.21}
\end{equation*}
$$

where $\omega_{1}(E), \ldots, \omega_{n}(E)$ depends on E and the phases $\phi_{1}^{0}, \ldots, \phi_{n}^{0}$ are arbitrary.
Proof. To prove the theorem we use a standard lemma (see [3]).
Lemma 2.17 Let M be a compact connected n-dimensional manifold. If on M there are n linearly independ vector fields X_{1}, \ldots, X_{n} such that

$$
\left[X_{i}, X_{j}\right]=0, \quad i, j=1 \ldots, n
$$

then $M \simeq T^{N}$, the n-dimensional torus.
In our case the vector field $X_{H_{1}}, \ldots, X_{H_{n}}$ are linearly independent and commuting, so, in the case $M_{E^{0}}$ is compact and connected, it is also isomorphic to a n-dimensional torus. By continuity, for small values of $\left|E-E^{0}\right|$ the surface M_{E} is also isomorphic to a torus. The coordinates $\psi=\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right)$ introduced in the proof of Liouville theorem 2.15 are not angles on the torus. Let us make a change of variable $\phi=\phi(\psi)$ so that the coordinates $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$ are angles on the torus and let $I_{1}(E), \ldots I_{n}(E)$ be the canonical variables associated to the angles $\left(\phi_{1}, \ldots, \phi_{n}\right)$. By definition one has for any Hamiltonian H_{m}

$$
X_{H_{m}}=\sum_{j=1}^{n} \frac{\partial H_{m}}{\partial E_{j}} \frac{\partial}{\partial \psi_{j}}=\frac{\partial}{\partial \psi_{m}}=\sum_{j=1}^{n} \frac{\partial H_{m}}{\partial I_{j}} \frac{\partial}{\partial \phi_{j}}
$$

since H_{m} depends only on E and ϕ depends only on ψ. It follows that ϕ_{j} and ψ_{k} are related by a linear transformation

$$
\phi_{j}=\sum_{m} \sigma_{j m} \psi_{m}, \quad \sigma_{j m}=\sigma_{j m}(E), \quad \operatorname{det} \sigma_{j m} \neq 0
$$

Comparing the above two relations one arrives to

$$
\sigma_{j m}=\frac{\partial H_{m}}{\partial I_{j}}
$$

Let us verify that (ϕ, I) are indeed canonical variables:

$$
\left\{\phi_{j}, I_{k}\right\}=\left\{\sum_{k} \sigma_{j m} \psi_{m}, I_{k}\right\}=\sum_{m} \sigma_{j m}\left\{\psi_{m}, I_{k}\right\}=\sum_{m} \sigma_{j m} \frac{\partial I_{k}}{\partial E_{m}}=\sum_{m} \frac{\partial H_{m}}{\partial I_{j}} \frac{\partial I_{k}}{\partial E_{m}}=\delta_{j k} .
$$

The equation of motions in the variables (ϕ, I) are given by

$$
\dot{\phi}_{k}=\frac{\partial H_{1}}{\partial I_{k}}=: \omega_{k}(E)
$$

$$
\dot{I}_{k}=\frac{\partial H_{1}}{\partial \phi_{k}}=0
$$

therefore the motion is quasi periodic on the tori. In the variable (p, q), with $p=$ $p(\phi, I), q=q(\phi, I)$, the evolution is given as

$$
\begin{aligned}
q & =q\left(\omega_{1} t+\phi_{1}^{0}, \ldots, \omega_{n} t+\phi_{n}^{0}, I\right) \\
p & =p\left(\omega_{1} t+\phi_{1}^{0}, \ldots, \omega_{n} t+\phi_{n}^{0}, I\right)
\end{aligned}
$$

where $\left(\phi_{1}^{0}, \ldots, \phi_{n}^{0}\right)$ are constant phases.

3 Bi-Hamiltonian geometry and Lax pair

In this subsections we give the basic concepts of bi-Hamiltionian geometry.
Definition 3.1 Two Poisson tensors π_{0} and π_{1} on a manifold P are called compatible if

$$
c_{0} \pi_{0}+c_{1} \pi_{1}
$$

is a Poisson tensor for any real c_{0} and c_{1}. Such Poisson tensor is also called Poisson pencil.
It follows that the bracket

$$
\{f, g\}_{\lambda}=\{f, g\}_{0}+\lambda\{f, g\}_{1}
$$

is a Poisson bracket for any value of λ. Applying the Jacobi identity one obtains that

$$
\begin{array}{r}
\left\{f,\{g, h\}_{0}\right\}_{1}+\left\{h,\{f, g\}_{0}\right\}_{1}+\left\{g,\{h, f\}_{0}\right\}_{1}+ \tag{3.1}\\
\left\{f,\{g, h\}_{1}\right\}_{0}+\left\{h,\{f, g\}_{1}\right\}_{0}+\left\{g,\{h, f\}_{1}\right\}_{0}=0,
\end{array}
$$

for any triple of functions $f, g, h \in \mathcal{C}^{\infty}(P)$. Such identity can be also written in the equivalent form

$$
\begin{equation*}
\left[Y_{f}, X_{g}\right]+\left[X_{f}, Y_{g}\right]=Y_{\{f, g\}_{0}}+X_{\{f, g\}_{1}} \tag{3.2}
\end{equation*}
$$

where $X_{f}=\{f, .\}_{0}$ and $Y_{f}=\{f, .\}_{1}$.
Definition 3.2 A vector field X on a manifold is called a bi-Hamiltonian system if it is Hamiltonian with respect to two compatible Poisson structures π_{1} and π_{0}

$$
\begin{equation*}
X=\left\{H_{1} \cdot,\right\}_{0}=\left\{H_{0}, .\right\}_{1} \tag{3.3}
\end{equation*}
$$

From now on we assume to have a Poisson manifold P of dimension $2 n$ with non degenerate Poisson bracket.

Remark 3.3 Bi-Hamiltonian systems admit large set of first integrals, which make them into integrable Hamiltonian systems. Conversely, a vast majority of known integrable systems turn out to be bi-Hamiltonian. The importance of bi-Hamiltonian systems for the recursive construction of integrals of motion starts with Magri [11] and there is now a very large amount of articles on the subject.

Lemma 3.4 [11] Let H_{0}, H_{1}, \ldots, be a sequence of functions on Poisson manifold P with compatible Poisson structures π_{1} and π_{0} satisfying the Lenard-Magri recursion relation

$$
\begin{equation*}
\left\{., H_{p+1}\right\}_{0}=\left\{., H_{p}\right\}_{1}, \quad p=0,1, \ldots \tag{3.4}
\end{equation*}
$$

Then

$$
\left\{H_{p}, H_{q}\right\}_{1}=\left\{H_{p}, H_{q}\right\}_{0}=0, \quad p, q=0,1, \ldots
$$

Proof. Let $p<q$ and $q-p=2 m$ for some $m>0$. Using the recursion and antisymmetry of the brackets we obtain

$$
\left\{H_{p}, H_{q}\right\}_{0}=\left\{H_{p}, H_{q-1}\right\}_{1}=-\left\{H_{q-1}, H_{p}\right\}_{1}=-\left\{H_{q-1}, H_{p+1}\right\}_{0}=\left\{H_{p+1}, H_{q-1}\right\}_{0} .
$$

Iterating one arrives to

$$
\left\{H_{p}, H_{q}\right\}_{0}=\cdots=\left\{H_{p+m}, H_{q-m}\right\}_{1}=0
$$

since $p+m=q-m$. In a similar way in the case $q-p=2 m+1$ one obtains

$$
\left\{H_{p}, H_{q}\right\}_{0}=\cdots=\left\{H_{n}, H_{n+1}\right\}_{0}=\left\{H_{n}, H_{n}\right\}_{1}=0
$$

where $n=p+m=q-m-1$.
We remark that this proof uses only (3.4) and the skew symmetry of π_{1} an π_{0}, while it does not uses the assumption of compatibility of the Poisson structures.

However, the assumption that π_{1} and π_{0} are compatible Poisson structures is essential in order to guarantee the existence of functions H_{k} fulfilling the Magri recursion relations (3.4). The question of existence of such functions in the case of an arbitrary bi-Hamiltonian structure is a difficult problem. In the special case π_{0} is invertible, one can defined the field $(1,1)$ tensor $N: T P \rightarrow T P$

$$
\begin{equation*}
N=\pi_{1} \pi_{0}^{-1} \tag{3.5}
\end{equation*}
$$

which is called the recursion operator or Nijenhuis operator for the bi-Hamiltonian structure. It is called recursion operators, because given a bi-Hamiltonian vector field X the vector fields $N^{k} X$ will be bi-Hamiltonian. It is called Nijenhuis operator, because it has zero torsion (see below). We recall that for a vector field X one has $(N X)^{i}=N_{j}^{i} X^{j}$. The
lemma 3.4 requires the existence of vector fields $X_{H_{p+1}}$ with respect to π_{0} and $Y_{H_{p}}$ with respect to π_{1} such that

$$
X_{H_{p+1}}=Y_{H_{p}}
$$

Then applying the recursive operator N we obtain

$$
N X_{H_{p+1}}=Y_{H_{p+1}}=X_{H_{p+2}}
$$

We observe that applying the tensor N to a bi-Hamiltonian vector field $X_{H_{p+1}}$, one obtains a vector field that in general is not a bi-Hamiltonian vector field. The main ingredient of bi-Hamiltonian geometry is the existence of such bi-Hamiltonian vector fields.

Definition 3.5 The torsion of a $(1,1)$ tensor N on a manifold P is the vector valued two-form $T(N)$ defined as

$$
\begin{equation*}
T(N)(X, Y)=[N X, N Y]-N([N X, Y]+[X, N Y])+N^{2}[X, Y], \tag{3.6}
\end{equation*}
$$

A $(1,1)$ tensor with vanishing torsion is called Nijenhuis tensor or Nijenhuis operator.
Remark 3.6 The condition (3.6) is equivalent to

$$
\begin{equation*}
L_{N X} N-N L_{X} N=0 \tag{3.7}
\end{equation*}
$$

for all vector fields on P where L_{X} is the Lie derivative with respect to X. Indeed
$T(N)(X, Y)=L_{N X}(N Y)-N L_{N X}(Y)-N\left(\left(L_{X}(N Y)-N\left(L_{X} Y\right)\right)=\left(L_{N X} N\right) Y-N\left(L_{X} N\right) Y\right.$.
Lemma 3.7 If $\left(\pi_{1}, \pi_{0}\right)$ are compatible Hamiltonian structures on P and π_{0} is invertible, then the recursion operator $N=\pi_{1} \pi_{0}^{-1}$ is a Nijenhuis operator.

Proof. It is enough to show that N vanishes on any pair of vectors of the form $X_{f}=\pi_{0} d f$ and $X_{g}=\pi_{0} d g$ with $f, g \in \mathcal{C}^{\infty}(P)$. We have $Y_{f}=N X_{f}, Y_{g}=N X_{g}$ and

$$
\begin{align*}
T(N)\left(X_{f}, X_{g}\right) & =\left[Y_{f}, Y_{g}\right]-N\left(\left[Y_{f}, X_{g}\right]+\left[X_{f}, Y_{g}\right]\right)+N^{2}\left[X_{f}, X_{g}\right] \\
& =Y_{\{f, g\}_{1}}-N\left(\left[Y_{f}, X_{g}\right]+\left[X_{f}, Y_{g}\right]\right)+N^{2} X_{\{f, g\}_{0}} \tag{3.8}\\
& =N\left(X_{\{f, g\}_{1}}-\left[Y_{f}, X_{g}\right]-\left[X_{f}, Y_{g}\right]+Y_{\{f, g\}_{0}}\right)=0,
\end{align*}
$$

where we have used in the last identity the relation (3.2).
Remark 3.8 If X is a bihamiltonian vector field, namely

$$
X=\pi_{1} d H_{1}=\pi_{0} d H_{0}
$$

then $L_{X} \pi_{1}=L_{X} \pi_{0}=0$ (see lemma 2.6). It follows that also $L_{X} N=0$. Indeed assuming that π_{0} is invertible and using the Leibniz rule of Lie derivative with respect to the product we have

$$
L_{X}(N)=L_{X}\left(\pi_{1} \pi_{0}^{-1}\right)=\pi_{1} L_{X}\left(\pi_{0}^{-1}\right)+L_{X}\left(\pi_{1}\right) \pi_{0}^{-1}=0
$$

because X is a bi-Hamiltonian vector field.

Lemma 3.9 IF X is a bi-Hamiltonian vector field with respect to π_{0} and π_{1} that are invertible Poisson tensors, then $N^{k} X, k \geq 1$ are bi-Poisson vector fields.

Proof. If π_{0} and π_{1} are compatible Poisson bracket the relation (3.7) holds. In particular if X is a bi-Hamiltonian vector field we have by Remark 3.8 that $L_{X}(N)=0$ so that

$$
L_{N X}(N)=0 .
$$

Since X is a bi-Hamiltonian vector field, it follows that $X=\pi_{0} d f=\pi_{1} d g$ for some functions f and g. Applying the recursion operator we have

$$
N X=N \pi_{0} d f=\pi_{1} d f
$$

which means that $N X$ is a Hamiltonian vector field with respect to π_{1}, and that $L_{N X}\left(\pi_{1}\right)=$ 0 . It follows that

$$
0=L_{N X}(N)=\pi_{1} L_{N X}\left(\pi_{0}^{-1}\right)+L_{N X}\left(\pi_{1}\right) \pi_{0}^{-1}=\pi_{1} L_{N X}\left(\pi_{0}^{-1}\right)
$$

which is equivalent to say that $L_{N X}\left(\pi_{0}\right)=0$ because π_{1} is invertible. Therefore $N X$ is a bi-Poisson vector field. Repeating the argument $k-1$ times we conclude that $N^{k} X$ are bi-Poisson vector fields for $k \geq 0$.

Remark 3.10 A stronger hypothesis namely the assumption that all Poisson vector fields are also Hamiltonian, guarantees that the above recursion relation generates biHamiltonian vector fields. The recursion relation is effective, namely it produces first integrals when, for a given Hamiltonian vector field $X=X(x)$ of the tangent space $T_{x} P$, the vectors

$$
\left\langle X, N X, \ldots, N^{n-1} X\right\rangle
$$

span a n-dimensional subspace of $T_{x} P$, where we assume that $\operatorname{dim} P=2 n$.
We conclude, by drawing some consequences from the equation $L_{X}(N)=0$. Let us write it in components,

$$
\begin{equation*}
0=\left(L_{X} N\right)_{j}^{i}=\sum_{k}\left(X^{k} \frac{\partial}{\partial x_{k}} N_{j}^{i}+\frac{\partial X_{1}^{k}}{\partial x_{j}} N_{k}^{i}-\frac{\partial X_{1}^{i}}{\partial x_{k}} N_{j}^{k}\right) . \tag{3.9}
\end{equation*}
$$

If we interpret N as a matrix with entries N_{j}^{i}, the term $X^{k} \frac{\partial}{\partial x_{k}} N_{j}^{i}$ in the r.h.s. of the above relation can be considered as the Lie derivative of N_{j}^{i} with respect to the vector field X. We denote by $\mathcal{L}_{X} N$ the Lie derivative of the components of N with respect to X. Let us define the matrix J with entries

$$
J_{m}^{k}=\frac{\partial X^{k}}{\partial x_{m}}
$$

Then the equation (3.9) can be written in the compact form

$$
\mathcal{L} N+J N-N J=0
$$

or equivalently, defining as $\frac{d}{d t}$ the flow associated to the vector field X

$$
\begin{equation*}
\frac{d}{d t} N=[N, J] \tag{3.10}
\end{equation*}
$$

where now $[N, J]=N J-J N$ is simply the matrix commutator. Such equation has the so-called Lax form, (see below). From the relation (3.10) it follows that the traces of powers of N are constant of motions.

Lemma 3.11 If N satisfies equation (3.10), then $\operatorname{Tr}\left(N^{k}\right)$ are constants of motions.
Proof. We need to calculate

$$
\frac{d}{d t} \operatorname{Tr}\left(N^{k}\right)=k \operatorname{Tr}\left(N^{k-1} \frac{d}{d t} N\right)=k \operatorname{Tr}\left(N^{k-1}[N, J]\right)=0
$$

because of the ciclicity of the trace.
With this procedure we have obtained families of constant of motions
Theorem 3.12 The quantities

$$
\begin{equation*}
H_{k}=\frac{1}{k} \operatorname{Tr}\left(N^{k}\right), \quad k \geq 1 \tag{3.11}
\end{equation*}
$$

satisfies the Magri recursion relation (3.4).
Proof. We have for any vector field X

$$
L_{N X} H_{k}=\operatorname{Tr}\left(N^{k-1} L_{N X}(N)\right), \quad L_{X} H_{k+1}=\operatorname{Tr}\left(N^{k-1} N L_{X}(N)\right),
$$

so that

$$
L_{N X} H_{k}-L_{X} H_{k+1}=\operatorname{Tr}\left(N^{k-1}\left(L_{N X}(N)-N L_{X}(N)\right)=0, \quad k \geq 1\right.
$$

where we have used the relation (3.7), which is equivalent to say that N is Nijenhuis operator. We can write the l.h.s. of the above relation in the form

$$
L_{N X} H_{k}-L_{X} H_{k+1}=\left\langle N X, d H_{k}\right\rangle-\left\langle X, d H_{k+1}\right\rangle=\left\langle X, N^{*} d H_{k}\right\rangle-\left\langle X, d H_{k+1}\right\rangle=0
$$

for any vector field X. therefore

$$
\pi_{0} d H_{k+1}=\pi_{1} d H_{k}, \quad k \geq 1
$$

3.1 First integrals associated to a Lax pair

One of the most known method to construct first integrals of a Hamiltonian system is through symmetries of the space P. Another powerful method is due to Lax [?] and represents the starting point of the modern theory of integrable systems. Given an ODE

$$
\begin{equation*}
\dot{x}=f(x), \quad x=\left(x^{1}, \ldots, x^{N}\right) \tag{3.12}
\end{equation*}
$$

and two $m \times m$ matrices $L=\left(L_{i j}(x)\right), A=\left(A_{i j}(x)\right)$, they constitute a Lax pair for the dynamical systems if for every solution $x=x(t)$ of (3.12) the matrices $L=\left(L_{i j}(x(t))\right)$ and $A=\left(A_{i j}(x(t))\right)$ satisfy the equation

$$
\begin{equation*}
\dot{L}=[A, L]:=L A-A L \tag{3.13}
\end{equation*}
$$

and the validity of (3.13) for $L=L(x), A=A(x)$ implies (3.12).
Theorem 3.13 Given a Lax pair for the dynamical system (3.12), then the eigenvalues $\lambda_{1}(x), \ldots, \lambda_{m}(x)$ of $L(x)$ are integrals of motion for the dynamical system.

Proof. The coefficients $a_{1}(x), \ldots, a_{m}(x)$ of the characteristic polynomial

$$
\begin{equation*}
\operatorname{det}(L-\lambda I)=(-1)^{m}\left[\lambda^{m}-a_{1}(x) \lambda^{m-1}+a_{2}(x) \lambda^{m-2}+\cdots+(-1)^{m} a_{m}(x)\right] \tag{3.14}
\end{equation*}
$$

of the matrix $L=L(x)$ are polynomials in in $\operatorname{tr} L, \operatorname{tr} L^{2}, \ldots, \operatorname{tr} L^{m}$:

$$
a_{1}=\operatorname{tr} L, \quad a_{2}=\frac{1}{2}\left[(\operatorname{tr} L)^{2}-\operatorname{tr} L^{2}\right], a_{3}=\ldots
$$

Next we show that

$$
\begin{equation*}
\operatorname{tr} L^{k}, \quad k=1,2, \ldots \tag{3.15}
\end{equation*}
$$

are first integral of the dynamical system. Indeed for $k=1$

$$
\frac{d}{d t} \operatorname{tr} L=\operatorname{tr} \dot{L}=\operatorname{tr}(A L-L A)=0
$$

more generally

$$
\begin{equation*}
\frac{d}{d t} \operatorname{tr} L^{k}=k \operatorname{tr}\left([A, L] L^{k-1}\right)=0 . \tag{3.16}
\end{equation*}
$$

Since the coefficients of the characteristic polynomial $L(x)$ are constants of motion it follows that its eigenvalues are constants of motion.

Another proof of the theorem, close to Lax's original proof, can be obtained observing that the solution of the equation $\dot{L}=[A, L]$ can be represented in the form

$$
\begin{equation*}
L(t)=Q(t) L\left(t_{0}\right) Q^{-1}(t) \tag{3.17}
\end{equation*}
$$

where the evolution of $Q=Q(t)$ is determined from the equation

$$
\begin{equation*}
\dot{Q}=A(t) Q \tag{3.18}
\end{equation*}
$$

with initial data

$$
Q\left(t_{0}\right)=1 .
$$

Then the characteristic polynomials of $L\left(t_{0}\right)$ e $Q(t) L\left(t_{0}\right) Q^{-1}(t)$ are the same and consequently the eigenvalues are the same.

Example 3.14 [6] Let us consider in $\mathbb{R}^{2 n}$ with coordinates $\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)$ the canonical Poisson bracket π_{0} and the non degenerate Poisson bracket π_{1} given by

$$
\pi_{1}=\sum_{i=1}^{n-1} e^{q_{i}-q_{i+1}} \frac{\partial}{\partial p_{i+1}} \wedge \frac{\partial}{\partial p_{i}}+\sum_{i=1}^{n} p_{i} \frac{\partial}{\partial q_{i}} \wedge \frac{\partial}{\partial p_{i}}+\frac{1}{2} \sum_{i<j} \frac{\partial}{\partial q_{j}} \wedge \frac{\partial}{\partial q_{i}} .
$$

The canonical bracket π_{0} and π_{1} are compatible brackets. The first traces of the recursion operator $N=\pi_{1} \pi_{0}^{-1}$ are given by

$$
\begin{gathered}
H_{0}=\frac{1}{2} \operatorname{tr} N=\sum_{i=1}^{n} p_{i}, \quad H_{1}=\frac{1}{4} \operatorname{tr} N^{2}=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i}-q_{i+1}} \\
H_{2}=\frac{1}{6} \operatorname{tr} N^{3}=\frac{1}{3} \sum_{i=1}^{n} p_{i}^{3}+\sum_{i=1}^{n-1}\left(p_{i}+p_{i+1}\right) e^{q_{i}-q_{i+1}}
\end{gathered}
$$

and so on. The Hamiltonian H_{1} is the Hamiltonian of the open Toda lattice equation with respect to the Poisson bracket π_{0}. The conserved quantities given by $H_{k}=$ $\frac{1}{2(k+1)} \operatorname{Tr} N^{k+1}, \quad k \geq 0$ are independent and involution with respect to both Poisson brackets π_{0} and π_{1}.

4 The Toda system

Let us consider the system of n points $q_{1}, q_{2}, \ldots, q_{n}$ on the real line interacting with potential

$$
U\left(q_{1}, \ldots, q_{n}\right)=\sum_{i=1}^{n-1} e^{q_{i}-q_{i+1}}
$$

the so called Toda lattice. The Hamiltonian $H(q, p) \in \mathcal{C}^{\infty}\left(T^{*} \mathbb{R}^{n}\right)$ takes the form

$$
\begin{equation*}
H(q, p)=\frac{1}{2} \sum_{i=1}^{n} p_{i}^{2}+\sum_{i=1}^{n-1} e^{q_{i}-q_{i+1}} \tag{4.1}
\end{equation*}
$$

with Hamilton equations with respect to the canonical Poisson bracket

$$
\begin{align*}
& \left\{q_{k}, p_{j}\right\}=\delta_{k j}, \quad\left\{q_{k}, q_{j}\right\}=\left\{p_{k}, p_{j}\right\}=0, j k=1, \ldots, n \tag{4.2}\\
& \dot{q}_{k}=\frac{\partial H}{\partial p_{k}}=p_{k}, \quad k=1, \ldots, n \\
& \dot{p}_{k}=-\frac{\partial H}{\partial q_{k}}=\left\{\begin{array}{cc}
-e^{q_{1}-q_{2}} & \text { if } k=1 \\
e^{q_{k-1}-q_{k}}-e^{q_{k}-q_{k+1}} & \text { if } 2 \leq k \leq n-1 \\
e^{q_{n-1}-q_{n}} & \text { if } k=n
\end{array}\right.
\end{align*}
$$

Since the Hamiltonian is translation invariant, the total momentum is a conserved quantity together with the Hamiltonian.

Flaschka and Manakov separetely showed that the Toda lattice Hamiltonian system is completely integrable. Let us introduce a new set of dependent variables

$$
\begin{align*}
& a_{k}=\frac{1}{2} e^{\frac{q_{k}-q_{k+1}}{2}}, \quad k=1, \ldots, n-1 \tag{4.3}\\
& b_{k}=-\frac{1}{2} p_{k}, \quad k=1, \ldots, n,
\end{align*}
$$

with evolution given by the equations

$$
\begin{align*}
\dot{a}_{k} & =a_{k}\left(b_{k+1}-b_{k}\right), \quad k=1, \ldots, n-1 \\
\dot{b}_{k} & =2\left(a_{k}^{2}-a_{k-1}^{2}\right), \quad k=1, \ldots, n, \tag{4.4}
\end{align*}
$$

where we use the convention that $a_{0}=a_{n}=0$. Observe that there are only $2 n-1$ variables and this is due the translation invariance of the original system. The equations (4.4) have an Hamiltonian form with Hamiltonian

$$
H(a, b)=2 \sum_{i=1}^{n} b_{i}^{2}+4 \sum_{i=1}^{n-1} a_{i}^{2}
$$

with Poisson bracket define on $\left(\mathbb{R}^{*}\right)^{n-1} \times \mathbb{R}^{n}$ given by

$$
\left\{a_{i}, b_{j}\right\}=-\frac{1}{4} \delta_{i j} a_{i}+\frac{1}{4} \delta_{i, j-1} a_{i}, \quad i=1, \ldots, n-1, \quad j=1, \ldots, n,
$$

while all the other entries are equal to zero. We observe that the total momentum is a Casimir of the above Poisson bracket

Next we introduce the tridiagonal $n \times n$ matrices:

$$
\begin{align*}
& L=\left(\begin{array}{cccccc}
b_{1} & a_{1} & 0 & \ldots & 0 & 0 \\
a_{1} & b_{2} & a_{2} & & 0 & 0 \\
0 & a_{2} & b_{3} & & & 0 \\
& & & & & \\
\cdots & & & \cdots & & \cdots \\
& & & & b_{n-1} & a_{n-1} \\
0 & & & & a_{n-1} & b_{n}
\end{array}\right) \tag{4.5}\\
& A=\left(\begin{array}{cccccc}
0 & a_{1} & 0 & \ldots & 0 & 0 \\
-a_{1} & 0 & a_{2} & & 0 & 0 \\
0 & -a_{2} & 0 & & & 0 \\
\ldots & & & \ldots & & \cdots \\
\cdots & & & & & \\
0 & & & & 0 & a_{n-1} \\
0 & & & & -a_{n-1} & 0
\end{array}\right)
\end{align*}
$$

where $A=L_{+}-L_{-}$and we are using the following notation: for a square matrix X we call X_{+}the upper triangolar part of X

$$
\left(X_{+}\right)_{i j}=\left\{\begin{array}{cc}
X_{i j}, & i \leq j \\
0, & \text { otherwise }
\end{array}\right.
$$

and in a similar way by X_{-}the lower triangular part of X

$$
\left(X_{-}\right)_{i j}=\left\{\begin{array}{cc}
X_{i j}, & i \geq j \\
0, & \text { otherwise }
\end{array}\right.
$$

A straighforward calculation shows that
Lemma 4.1 The Toda lattice equations (4.4) are equivalent to

$$
\begin{equation*}
\frac{d L}{d t}=[A, L] \tag{4.6}
\end{equation*}
$$

The non periodic Toda lattice equation can sometimes be written in Hessebeg form. Conjugating the matrix L by a diagonal matrix $D=\operatorname{diag}\left(1, a_{1}, a_{1} a_{2}, \ldots, \prod_{j=1}^{n-1} a_{j}\right)$ yelds
the matrix $\widehat{L}=D L D^{-1}$

$$
\widehat{L}=\left(\begin{array}{cccccc}
b_{1} & 1 & 0 & \ldots & 0 & 0 \tag{4.7}\\
a_{1}^{2} & b_{2} & 1 & & 0 & 0 \\
0 & a_{2}^{2} & b_{3} & & & 0 \\
& & & & & \\
\cdots & & & \cdots & & \cdots \\
& & & & b_{n-1} & 1 \\
0 & & & & a_{n-1}^{2} & b_{n}
\end{array}\right)
$$

The Toda equations (4.4) take the form

$$
\begin{equation*}
\frac{d \widehat{L}}{d t}=-2[\widehat{A}, \widehat{L}] \tag{4.8}
\end{equation*}
$$

where the matrix $\widehat{A}=\widehat{L}_{-}$namely

$$
\widehat{A}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 0 \tag{4.9}\\
a_{1}^{2} & 0 & 0 & & 0 & 0 \\
0 & a_{2}^{2} & 0 & & & 0 \\
& & & & & \\
\cdots & & & \cdots & & \cdots \\
& & & & 0 & 0 \\
0 & & & & a_{n-1}^{2} & 0
\end{array}\right)
$$

It follows from the results of the previous section that the Lax formulation guarantees the existence of conserved quantities, namely the traces

$$
H_{k}=\frac{4}{k+1} \operatorname{tr} L^{k+1}, \quad k=0, \ldots, n-1 .
$$

are conserved quantities. To show the independence of the integrals H_{0}, \ldots, H_{n-1} let us consider the restriction

$$
H_{i}^{0}(p):=H_{i}(p, a=0), \quad i=0, \ldots, n-1,
$$

It then follows that the matrix $L=L(b, a=0)$ is diagonal and the functions $H_{i}^{0}(p)$ coincides with i-th symmetric elementary function of the variables p_{1}, \ldots, p_{n} and so they are linearly independent. To show that the integrals are involution, we will show that the eigenvalues of L are in involution. Before doing that we show that the eigenvalues are all distinct. The following relations hold true.

Lemma 4.2 (i) The spectrum of L consists of n distinct real numbers $\lambda_{1}<\lambda_{2}<\cdots<$ λ_{n}.
(ii) Let $L v=\lambda v$ with $v=\left(v_{1}, \ldots v_{n}\right)^{t}$. Then $v_{1} \neq 0$ and $v_{n} \neq 0$. Furthermore, $v_{k}=$ $p_{k}(\lambda)$ where $p_{k}(\lambda)$ is a polynomial of degree k in λ.

Proof. We will first prove (ii). From the equation $L v=\lambda v$ one obtains

$$
\begin{align*}
& \left(b_{1}-\lambda\right) v_{1}+a_{1} v_{2}=0 \tag{4.10}\\
& a_{k-1} v_{k-1}+\left(b_{k}-\lambda\right) v_{k}+a_{k} v_{k+1}=0, \quad 2 \leq k<n \tag{4.11}
\end{align*}
$$

Since $a_{1} \neq 0$ clearly $v_{1}=0 \Longrightarrow v_{2}=0$, but then from (4.11) with $k=2$, since $a_{2} \neq 0$, then $v_{1}=0$ and $v_{2}=0$ implies $v_{3}=0$. Hence $v=0$ if $v_{1}=0$. Therefore $v_{1} \neq 0$. In the same way it can be proved that $v_{n} \neq 0$. From (4.10) and (4.11) it easily follows that v_{k} is a polynomial of degree k in λ. To prove (i), suppose that v and \tilde{v} are two eigenvalues corresponding to the same eigenvector λ. Then the linear combination $\alpha v+\beta \tilde{v}, \alpha, \beta \in \mathbb{R}$ is also an eigenvector of L with eigenvalue λ. But then one can choose $\alpha \neq 0$ and $\beta \neq 0$ so that $\alpha v_{1}+\beta \tilde{v}_{1}=0$ and by (ii) it follows that $\alpha v+\beta \tilde{v}=0$ implying that v and \tilde{v} are dependent.

By the above lemma it follows that

$$
\begin{equation*}
L=U \Lambda U^{t} \tag{4.12}
\end{equation*}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and U is an orthogonal matrix $U U^{t}=1$ with entries $U_{i j}=u_{i j}$ the normalized eigenvectors $u_{i}=\left(u_{i 1}, \ldots u_{i n}\right)^{t}$ of L. From $U U^{t}=U^{t} U=1$ one has

$$
\left(u_{i}, u_{j}\right)=\delta_{i j}, \quad \sum_{k=1}^{n}\left(u_{k j}\right)^{2}=1, \quad i, j=1, \ldots, n
$$

Proposition 4.3 The eigenvalues of L commute with respect to the canonical Poisson bracket (4.2).

Proof. Let λ and μ be two eigenvalues of L with normalized eigenvectors v an w respectively. Then

$$
\begin{align*}
\frac{\partial \lambda}{\partial p_{i}} & =\frac{\partial}{\partial p_{i}}(v, L v)=\lambda \frac{\partial}{\partial p_{i}}(v, v)+\left(v, \frac{\partial L}{\partial p_{i}} v\right)=-\frac{1}{2} v_{i}^{2} \\
\frac{\partial \lambda}{\partial q_{i}} & =\frac{\partial}{\partial q_{i}}(v, L v)=\left(v, \frac{\partial L}{\partial q_{i}} v\right)=a_{i} v_{i} v_{i+1}-a_{i-1} v_{i} v_{i-1}, \quad i=1, \ldots, n \tag{4.13}
\end{align*}
$$

where we use the fact that $(v, v)=1$ and we define $a_{0}=0=a_{n}$. The same relations hold for the eigenvalue μ. Then one has

$$
\begin{align*}
\{\lambda, \mu\} & =\sum_{i=1}^{n}\left(\frac{\partial \lambda}{\partial q_{i}} \frac{\partial \mu}{\partial p_{i}}-\frac{\partial \lambda}{\partial p_{i}} \frac{\partial \mu}{\partial q_{i}}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n}\left(v_{i} w_{i}\left(a_{i-1}\left(v_{i} w_{i+1}-v_{i+1} w_{i}\right)+a_{i-2}\left(w_{i} v_{i-1}-v_{i} w_{i-1}\right)\right)\right. \tag{4.14}
\end{align*}
$$

We introduce the quantity $R_{i}=a_{i-1}\left(v_{i} w_{i+1}-v_{i+1} w_{i}\right), i=1, \ldots, n$ with $R_{-1}=R_{n}=0$, and we observe that from the equations $L v=\lambda v$ and $L w=\mu w$ one obtains $R_{i}-R_{i-1}=$ ($\mu-\lambda) v_{i} w_{i}$. Substituting the above relation in (4.14) one obtains

$$
\{\lambda, \mu\}=\frac{1}{2(\mu-\lambda)} \sum_{i=1}^{n}\left(R_{i}^{2}-R_{i-1}^{2}\right)=\frac{R_{n}^{2}-R_{-1}^{2}}{2(\mu-\lambda)}=0 .
$$

Summarazing, we have proved that the Toda Lattice is a completely integrable system possessing n conserved quantities H_{1}, \ldots, H_{n}, linearly independent and in involution. It follows that the system can be integrated by quadratures. Let us show how to do this. We know the eigenvalues of $L(t)$, since they are constants of motion. In order to know $L(t)$ at time t we need to know the orthogonal matrix $U=U(t)$, with entries $U_{i j}=u_{i j}$. From (4.6) and (4.12) one has that

$$
\begin{equation*}
\dot{U}=A U . \tag{4.15}
\end{equation*}
$$

In particular, the dynamics implied by the above equation of the first row $u_{1 i}, i=1, \ldots, n$ of the matrix U is quite simple.

Lemma 4.4 The time evolution on the first row of the matrix U, namely the entries $u_{1 i}$ $i=1, \ldots, n$ is given by

$$
\begin{equation*}
u_{1 i}(t)^{2}=\frac{e^{2 \lambda_{i} t} u_{1 i}(0)^{2}}{\sum_{k=1}^{n} e^{2 \lambda_{k} t} u_{1 k}(0)^{2}}, \quad i=1, \ldots, n \tag{4.16}
\end{equation*}
$$

Proof. From (4.15) one has

$$
\frac{d u_{1 i}}{d t}=(A U)_{1 i}=a_{1} u_{2 i}
$$

and from the relation $L v_{i}=\lambda_{i} v_{i}$, with $v_{i}=\left(u_{1 i}, \ldots, u_{n i}\right)^{t}$, one reduces the above equation to the form

$$
\frac{d u_{1 i}}{d t}=\left(\lambda_{i}-b_{1}\right) u_{1 i} .
$$

The solution is given by

$$
u_{1 i}(t)=E(t) e^{\lambda_{i} t} u_{1 i}(0), \quad E(t)=\exp \left(-\int_{0}^{t} b_{1}(\tau) d \tau\right)
$$

Using the normalization conditions

$$
1=\sum_{i=1}^{n} u_{1 i}(t)^{2}=E(t)^{2} \sum_{i=1}^{n} e^{2 \lambda_{i} t} u_{1 i}(0)^{2}
$$

which implies

$$
\begin{equation*}
E(t)^{2}=\left(\sum_{i=1}^{n} e^{2 \lambda_{i} t} u_{1 i}(0)^{2}\right)^{-1} \tag{4.17}
\end{equation*}
$$

one arrives at the statement of the lemma.
Introducing the notation

$$
\begin{equation*}
w_{k}(t)=u_{1 i}(t)^{2}, \quad k=1, \ldots, n \tag{4.18}
\end{equation*}
$$

one can see from lemma 4.2 that the orthogonal matrix U can be written in the form

$$
U=\left(\begin{array}{ccccc}
\sqrt{w_{1}(t)} p_{0}\left(\lambda_{1}, t\right) & \sqrt{w_{2}(t)} p_{0}\left(\lambda_{2}, t\right) & \ldots & \sqrt{w_{n}(t)} p_{0}\left(\lambda_{n}, t\right) & \\
\sqrt{w_{1}(t)} p_{1}\left(\lambda_{1}, t\right) & \sqrt{w_{2}(t)} p_{1}\left(\lambda_{2}, t\right) & \cdots & \sqrt{w_{n}(t)} p_{1}\left(\lambda_{n}, t\right) & \\
\vdots & \vdots & & & \vdots \\
\sqrt{w_{1}, t} p_{n-1}\left(\lambda_{1}, t\right) & \sqrt{w_{2}(t)} p_{n-1}\left(\lambda_{2}, t\right) & \ldots & \sqrt{w_{n}(t)} p_{n-1}\left(\lambda_{n}, t\right) &
\end{array}\right)
$$

Since U is an orthogonal matrix, the orthogonality relations on the rows of U take the form

$$
\begin{equation*}
\sum_{k=1}^{n} w_{k} p_{l}\left(\lambda_{k}\right) p_{j}\left(\lambda_{k}\right)=\delta_{l j} \tag{4.19}
\end{equation*}
$$

In other words, the polynomials $p_{j}(\lambda)$ are normalized orthogonal polynomials with respect to the discrete weights w_{k} at the points λ_{k}. To find the orthogonal polynomials from the weights, is a standard procedure, called the Gram-Schmidt orthogonalization process. Therefore, from the weights $w_{1}(t), \ldots w_{n}(t)$ at time t one can get the orthogonal matrix $U(t)$.

4.1 Toda flows and orthogonal polynomials

It is instructive to relate the integration of the Toda flows to orthogonal polynomials. Let $d \mu(\lambda)$ be a positive measure on the real line such that

$$
\int_{\mathbb{R}} \lambda^{k} d \mu(\lambda)<\infty, \quad k \geq 0
$$

Consider the $(n+1) \times(n+1)$ Hankel matrix M_{n} with entries

$$
\left(M_{n}\right)_{i j}=\int_{\mathbb{R}} \lambda^{i+j-2} d \mu(\lambda), \quad i, j=1, \ldots, n+1
$$

Lemma 4.5 The matrix M_{n} is positive definite.
Proof. It is sufficient to consider the positive integral

$$
0<\int_{\mathbb{R}}\left(\sum_{k=0}^{n} t_{k} \lambda^{k}\right)^{2} d \mu(\lambda)=\int_{\mathbb{R}} \sum_{j, k=0}^{n} t_{k} t_{j} \lambda^{k+j} d \mu(\lambda)=<t, M_{n} t>
$$

where $t=\left(t_{0}, \ldots, t_{n}\right)$. For the arbitrariness of t it follows that M_{n} is a positive definite matrix.

We define the determinant

$$
\begin{equation*}
D_{n}=\operatorname{det} M_{n} \tag{4.20}
\end{equation*}
$$

which is by lemma 4.5 positive. For convenience we are setting $D_{-1}=1$.
Let us now consider the polynomial of degree n

$$
\pi_{n}(\lambda)=\operatorname{det}\left(\begin{array}{ccccc}
& & & \int \lambda^{n} d \mu(\lambda) \tag{4.21}\\
& & M_{n-1} & & \cdots \\
& & & & \int \lambda^{2 n-1} d \mu(\lambda) \\
\lambda^{0} & \lambda^{1} & \ldots & \lambda^{n-1} & \lambda^{n}
\end{array}\right)
$$

Lemma 4.6 The polynomials

$$
\begin{align*}
& p_{0}(\lambda)=\frac{1}{\sqrt{D_{0}}} \\
& p_{n}(\lambda)=\frac{\pi_{n}(\lambda)}{\sqrt{D_{n} D_{n-1}}}=\sqrt{\frac{D_{n-1}}{D_{n}}}\left(\lambda^{n}+O\left(\lambda^{n-1}\right)\right), n>0 \tag{4.22}
\end{align*}
$$

are orthonormal polynomials with respect to the measure $d \mu(\lambda)$, namely

$$
\begin{equation*}
\int_{\mathbb{R}} p_{n}(\lambda) p_{m}(\lambda) d \mu(\lambda)=\delta_{n m} \tag{4.23}
\end{equation*}
$$

Proof. The orthonormality condition (4.23) is equivalent to the conditions $\int_{\mathbb{R}} p_{n}(\lambda) \lambda^{m} d \mu(\lambda)=$ 0 for $m<n$ and $\int_{\mathbb{R}} p_{n}(\lambda)^{2} d \mu(\lambda)=1$ Using the fact that the determinant is a multilinear map one has

$$
\int_{\mathbb{R}} p_{n}(\lambda) \lambda^{m} d \mu(\lambda)=\operatorname{det}\left(\begin{array}{lllll}
& & & \int \lambda^{n} d \mu(\lambda) \\
& & M_{n-1} & & \\
& & & \\
& & & \\
& & \lambda^{2 n-1} d \mu(\lambda) \\
\int \lambda^{m} d \mu(\lambda) & \int \lambda^{m+1} d \mu(\lambda) & \ldots & \int \lambda^{m+n-1} d \mu(\lambda) & \int \lambda^{m+n} d \mu(\lambda)
\end{array}\right)=0, \quad m<n .
$$

The above determinant is equal to zero because the last row of the above matrix is equal to the $(m+1)$ th row. Regarding the normalising condition one has

$$
\int_{\mathbb{R}} p_{n}(\lambda)^{2} d \mu(\lambda)=\frac{1}{D_{n} D_{n-1}} \int_{\mathbb{R}} D_{n-1} \lambda^{n} \pi_{n}(\lambda) d \mu(\lambda)=1 .
$$

Lemma 4.7 The orthogonal polynomials (4.22) satisfy a 3-term recurrence relations

$$
\begin{align*}
& \lambda p_{0}(\lambda)=a_{1} p_{1}(\lambda)+b_{1} p_{0}(\lambda) \tag{4.24}\\
& \lambda p_{n}(\lambda)=a_{n+1} p_{n+1}(\lambda)+b_{n+1} p_{n}(\lambda)+a_{n} p_{n-1}(\lambda),
\end{align*}
$$

with

$$
\begin{align*}
& a_{n+1}=\sqrt{\frac{D_{n+1} D_{n-1}}{D_{n}^{2}}} \tag{4.25}\\
& b_{n+1}=\frac{G_{n}}{D_{n}}-\frac{G_{n-1}}{D_{n-1}} \tag{4.26}
\end{align*}
$$

where G_{n-1} is the determinant of the minor of $D_{n}(\lambda)$ that is obtained by erasing the $(n+1)$ row and the n column,

Proof. The polynomial $\lambda p_{n}(\lambda)$ is of degree $n+1$ so one has

$$
\lambda p_{n}(\lambda)=\sum_{k=0}^{n+1} \gamma_{k}^{n} p_{k}(\lambda)
$$

for some constants γ_{k}^{n}. Multiplying both sides of the above identity by $p_{j}(\lambda), 0 \leq j<n-1$ and integrating over $d \mu(\lambda)$ one has, using orthogonality

$$
0=\int_{\mathbb{R}} \lambda p_{n}(\lambda) p_{j}(\lambda) d \mu(\lambda)=\gamma_{j}^{n}, \quad 0 \leq j<n-1 .
$$

because $\lambda p_{j}(\lambda)$ is a polynomial of degree at most $j+1$ and $\lambda p_{n}(\lambda)$ is at most of degree $n+1$. Therefore only $\gamma_{n+1}^{n}, \gamma_{n}^{n}$ and γ_{n-1}^{n} are different from zero. In order to determine the coefficient γ_{n+1}^{n} let us observe that

$$
p_{n}(\lambda)=\sqrt{\frac{D_{n-1}}{D_{n}}} \lambda^{n}+O\left(\lambda^{n-1}\right)
$$

and comparing the right and left-handside of (4.24) one has

$$
\begin{equation*}
\gamma_{n+1}^{n}=\sqrt{\frac{D_{n+1} D_{n-1}}{D_{n}^{2}}}:=a_{n+1} \tag{4.27}
\end{equation*}
$$

Regarding γ_{n-1}^{n} one has

$$
\gamma_{n-1}^{n}=\int_{\mathbb{R}} \lambda p_{n}(\lambda) p_{n-1}(\lambda) d \mu(\lambda)=\sqrt{\frac{D_{n} D_{n-2}}{D_{n-1}^{2}}}
$$

so that $\gamma_{n-1}^{n}=a_{n}$. Defining G_{n-1} the determinant of the minor of $D_{n}(\lambda)$ that is obtained by erasing the $(n+1)$ row and the n column, one has that

$$
p_{n}(\lambda)=\sqrt{\frac{D_{n-1}}{D_{n}}} \lambda^{n}-\frac{G_{n-1}}{\sqrt{D_{n} D_{n-1}}} \lambda^{n-1}+O\left(\lambda^{n-2}\right)
$$

so that comparing the left and righthandside of (4.24) one obtains

$$
\begin{equation*}
b_{n+1}=\frac{G_{n}}{D_{n}}-\frac{G_{n-1}}{D_{n-1}} \tag{4.28}
\end{equation*}
$$

4.2 Integration of Toda lattice

Now let us consider the measure associated to the Toda lattice

$$
d \tilde{\mu}(\lambda)=E^{2}(t) \sum_{j=1}^{n} e^{2 \lambda_{i} t} \delta\left(\lambda-\lambda_{i}\right) u_{1, i}(0)^{2} d \lambda,
$$

with $E(t)$ a function of time as in (4.17). Then it is easy to check that the ratios G_{n} / D_{n} in (4.28) are independent from $E(t)$ as well as the ratios $\sqrt{\frac{D_{n+1} D_{n-1}}{D_{n}^{2}}}$ in the definition of a_{n}. Therefore we can set $E(t)=1$ without loss of generality. It in an easy calculation to derive the identity

$$
\frac{\partial D_{n}}{\partial t}=2 G_{n}
$$

So using the above identity one can write the coefficient b_{n+1} in the form

$$
\begin{equation*}
b_{n+1}=\frac{1}{2} \frac{\partial}{\partial t} \log \frac{D_{n}}{D_{n-1}} \tag{4.29}
\end{equation*}
$$

We conclude that the integration of the Toda lattice equation is given by the relation (4.29) and (4.25) with respect to the measure

$$
d \mu(\lambda, t)=\sum_{j=1}^{n} u_{1, i}(0)^{2} e^{2 \lambda_{i} t} \delta\left(\lambda-\lambda_{i}\right) d \lambda .
$$

We are now interested in determining the evolution of the coefficients a_{n} and b_{n} as a function of the parameter t. To operate in a more general setting let us introduce the modified weight

$$
d \mu(\lambda)=e^{2 \sum_{k=1}^{s} \lambda^{k} t_{k}} d \tilde{\mu}(\lambda)
$$

with $d \tilde{\mu}(\lambda)$ independent from the times $t_{k}, k=1, \ldots, s$ and with $t_{1}=t$. Consider the tridiagonal seminfinte matrix L

$$
L=\left(\begin{array}{ccccccc}
b_{1} & a_{1} & 0 & \ldots & 0 & 0 & \ldots \tag{4.30}\\
a_{1} & b_{2} & a_{2} & & 0 & 0 & \ldots \\
0 & a_{2} & b_{3} & & & 0 & \ldots \\
\ldots & & & \ldots & & \ldots & \ldots \\
& & & & & & \\
0 & & & & b_{n-1} & a_{n-1} & \ldots \\
0 & & & & a_{n-1} & b_{n} & \ldots \\
\ldots & & & \ldots & & \cdots & \ldots
\end{array}\right)
$$

and the infinite vector

$$
p(\lambda)=\left(\begin{array}{c}
p_{0}(\lambda) \\
p_{1}(\lambda) \\
p_{2}(\lambda) \\
\ldots \\
p_{n}(\lambda) \\
\ldots
\end{array}\right)
$$

Then the 3 -term recurrence relation can be written in the compact form

$$
\begin{equation*}
\lambda p(\lambda)=L p(\lambda) \tag{4.31}
\end{equation*}
$$

Now let us introduce the quasi-polynomials

$$
\psi_{k}(\lambda)=p_{k}(\lambda) e^{\sum_{k=1}^{s} \lambda^{k} t_{k}} .
$$

Clearly from the orthonormality of the polynomials $p_{k}(\lambda)$ it follows that

$$
\begin{equation*}
\int_{\mathbb{R}} \psi_{k}(\lambda) \psi_{j}(\lambda) d \tilde{\mu}(\lambda)=\delta_{k j} . \tag{4.32}
\end{equation*}
$$

Now we are going to investigate the dependence of ψ_{k} on the times t_{1}, \ldots, t_{s}.
Lemma 4.8 The following relation is satisfied:

$$
\begin{equation*}
\frac{\partial \psi_{j}(\lambda)}{\partial t_{\alpha}}=\sum_{m=0}^{\infty}\left(A_{\alpha}\right)_{j m} \psi_{m}(\lambda), \quad \alpha=1, \ldots, s \tag{4.33}
\end{equation*}
$$

with A_{α} antisymmetric matrix.

Proof. Let us differentiate with respect to t_{α} the orthonormality relations (4.32)

$$
\int_{\mathbb{R}} \frac{\partial \psi_{j}(\lambda)}{\partial t_{\alpha}} \psi_{k}(\lambda) d \tilde{\mu}(\lambda)+\int_{\mathbb{R}} \psi_{j}(\lambda) \frac{\partial \psi_{k}(\lambda)}{\partial t_{\alpha}} d \tilde{\mu}(\lambda)=0
$$

so that

$$
\begin{aligned}
& \int_{\mathbb{R}} \sum_{m}\left(A_{\alpha}\right)_{j m} \psi_{m}(\lambda) \psi_{k}(\lambda) d \tilde{\mu}(\lambda)+\int_{\mathbb{R}} \psi_{j}(\lambda) \sum_{m}\left(A_{\alpha}\right)_{k m} \psi_{m}(\lambda) d \tilde{\mu}(\lambda) \\
& =\left(A_{\alpha}\right)_{j k}+\left(A_{\alpha}\right)_{k j}=0
\end{aligned}
$$

Lemma 4.9 The following relation is satisfied

$$
\begin{equation*}
A_{\alpha}=\left(L^{\alpha}\right)_{+}-\left(L^{\alpha}\right)_{-}, \quad \alpha=1, \ldots, s \tag{4.34}
\end{equation*}
$$

where $\left(L^{\alpha}\right)_{ \pm}$is the projection of L^{α} to the upper/lowe triangular part of L^{α}.
Proof. We observe that

$$
\psi_{k}(\lambda)=\left(\sqrt{\frac{D_{k-1}}{D_{k}}} \lambda^{k}+O\left(\lambda^{k-1}\right)\right) e^{\sum_{\beta=1}^{s} \lambda^{\beta} t_{\beta}},
$$

so that

$$
\frac{\partial \psi_{k}(\lambda)}{\partial t_{\alpha}}=\psi_{k}(\lambda) \frac{\partial}{\partial t_{\alpha}}\left(\log \sqrt{\frac{D_{k-1}}{D_{k}}}\right)+\lambda^{\alpha} \psi_{k}(\lambda)+O\left(\lambda^{k-1}\right) e^{\sum_{\beta=1}^{s} \lambda^{\beta} t_{\beta}},
$$

so that for $j>k$

$$
\begin{aligned}
A_{k j} & =\int_{\mathbb{R}} \frac{\partial \psi_{k}(\lambda)}{\partial t_{\alpha}} \psi_{j}(\lambda) d \tilde{\mu}(\lambda)=\int_{\mathbb{R}} \lambda^{\alpha} \psi_{k}(\lambda) \psi_{j}(\lambda) d \tilde{\mu}(\lambda)=\int_{\mathbb{R}} \sum_{m}\left(L^{\alpha}\right)_{k m} \psi_{m}(\lambda) \psi_{j}(\lambda) d \tilde{\mu} \\
& =\left(L^{\alpha}\right)_{k j}
\end{aligned}
$$

Using the antisymmetry of A_{α}, (4.34) follows.
Lemma 4.10 The semiinfinite matrix L satisfies the Lax equation

$$
\begin{equation*}
\frac{d L}{d t_{\alpha}}=\left[A_{\alpha}, L\right], \quad \alpha=1, \ldots, s \tag{4.35}
\end{equation*}
$$

Proof. We differentiate with respect to t_{α} the 3-term recurrence relation (4.31) to obtain

$$
\begin{equation*}
\frac{d L}{d t_{\alpha}} \psi+(L-\lambda) \frac{d \psi}{d t_{\alpha}}=0 \tag{4.36}
\end{equation*}
$$

where $\psi(\lambda)=p(\lambda) e^{\sum_{k=1}^{s} t_{k} \lambda^{k}}$. Using (4.33) one obtains

$$
\frac{d L}{d t_{\alpha}} \psi+(L-\lambda) A_{\alpha} \psi=\left(\frac{d L}{d t_{\alpha}}-\left[A_{\alpha}, L\right]\right) \psi=0
$$

so that by the completeness of ψ one has (4.35).
Remark 4.11 Let $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the zeros of the polynomial $p_{n}(\lambda)$, then the relation (4.31) takes the form

$$
\left(\begin{array}{cccccc}
b_{1} & a_{1} & 0 & \ldots & 0 & 0 \\
a_{1} & b_{2} & a_{2} & & 0 & 0 \\
0 & a_{2} & b_{3} & & & 0 \\
& & & & & \\
\cdots & & & \cdots & & \cdots \\
0 & & & & b_{n-1} & a_{n-1} \\
0 & & & & a_{n-1} & b_{n}
\end{array}\right)\left(\begin{array}{c}
p_{0}\left(\lambda_{j}\right) \\
p_{1}\left(\lambda_{j}\right) \\
p_{2}\left(\lambda_{j}\right) \\
\\
\cdots \\
\\
p_{n-2}\left(\lambda_{j}\right) \\
p_{n-1}\left(\lambda_{j}\right)
\end{array}\right)=\lambda_{j}\left(\begin{array}{c}
p_{0}\left(\lambda_{j}\right) \\
p_{1}\left(\lambda_{j}\right) \\
p_{2}\left(\lambda_{j}\right) \\
\\
\cdots \\
\\
p_{n-2}\left(\lambda_{j}\right) \\
p_{n-1}\left(\lambda_{j}\right)
\end{array}\right)
$$

The above equality says that the zeros of $p_{n}(\lambda)$ are the eigenvalues of L defined in (4.5) and therefore, by lemma 4.2 , its eigenvalues are distinct and real. The eigenvector relative to the eigenvalue λ_{j} is given by $\left(p_{0}\left(\lambda_{j}\right), p_{1}\left(\lambda_{j}\right), \ldots, p_{n-1}\left(\lambda_{j}\right)\right)^{t}$.

Remark 4.12 From the construction of this section and the relation (4.19), in order to solve the Toda lattice equations, given the Lax matrix $L(0)$ at time $t=0$, it is sufficient to determine its eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and the first entry of the eigenvectors $u_{1 j}(0)$, $j=1, \ldots, n$ and then construct the measure

$$
d \mu(\lambda)=\sum_{j=1}^{n} u_{1 j}(0)^{2} e^{2 \lambda_{j} t} \delta\left(\lambda-\lambda_{j}\right) d \lambda
$$

where $\delta(\lambda)$ is the Dirac delta function. Given the measure $d \mu(\lambda)$ the solution of the Toda lattice equation is obtained from (4.20), (4.29) and (4.27).

Lemma 4.13 The zeros of the polynomial $p_{n}(\lambda)$ and $p_{n+1}(\lambda)$ interlace, i.e. between any two zeros of $p_{n}(\lambda)$ lies exactly one root of $p_{n+1}(\lambda)$.

Proof. Let us consider the sum

$$
\begin{aligned}
& (\mu-\lambda) \sum_{j=0}^{n} p_{j}(\lambda) p_{j}(\mu)=\sum_{j=0}^{n}\left[\left(a_{j+1} p_{j+1}(\mu)+b_{j+1} p_{j}(\mu)+a_{j} p_{j-1}(\mu)\right) p_{j}(\lambda)\right. \\
& \left.\quad-\left(a_{j+1} p_{j+1}(\lambda)+b_{j+1} p_{j}(\lambda)+a_{j} p_{j-1}(\lambda)\right) p_{j}(\mu)\right] \\
& =\sum_{j=0}^{n}\left[a _ { j } \left(p_{j}(\lambda) p_{j-1}(\mu)-p_{j-1}(\lambda) p_{j}(\mu)-a_{j+1}\left(p_{j+1}(\lambda) p_{j}(\mu)-p_{j}(\lambda) p_{j+1}(\mu)\right)\right.\right. \\
& =-a_{n+1}\left(p_{n+1}(\lambda) p_{n}(\mu)-p_{n}(\lambda) p_{n+1}(\mu)\right),
\end{aligned}
$$

so that

$$
\begin{align*}
\sum_{j=0}^{n} p_{j}(\lambda)^{2} & =-a_{n+1} \lim _{\mu \rightarrow \lambda} \frac{1}{\mu-\lambda}\left(p_{n+1}(\lambda) p_{n}(\mu)-p_{n}(\lambda) p_{n+1}(\mu)\right) \tag{4.37}\\
& =-a_{n+1}\left(p_{n+1}(\lambda) p_{n}^{\prime}(\lambda)-p_{n}(\lambda) p_{n+1}^{\prime}(\lambda)\right)>0,
\end{align*}
$$

where ' means derivative with respect to λ. If λ_{j} and λ_{j+1} are consecutive zeros of $p_{n}(\lambda)$ then from the above relation

$$
p_{n+1}\left(\lambda_{j}\right) p_{n}^{\prime}\left(\lambda_{j}\right)<0 \text { and } p_{n+1}\left(\lambda_{j+1}\right) p_{n}^{\prime}\left(\lambda_{j+1}\right)<0
$$

because a_{n+1} is positive. Therefore, since $p_{n}^{\prime}\left(\lambda_{j}\right)$ and $p_{n}^{\prime}\left(\lambda_{j+1}\right)$ have opposite sign, then $p_{n+1}(\lambda)$ must have a zero between λ_{j} and λ_{j+1}.

5 Jacobi Operators

Let us consider the space $l(\mathbb{Z}, \mathbb{C})$ of sequences $f=\left(f_{n}\right)_{n \in \mathbb{Z}}$ taking values in the complex numbers \mathbb{C}. In the rest we will drop the dependence on \mathbb{C} and keep $\ell(\mathbb{Z})$. One can define a norm

$$
\begin{gathered}
\ell^{p}(\mathbb{Z})=\left\{f \in \ell(\mathbb{Z})| | \sum_{n \in \mathbb{Z}}\left|f_{n}\right|^{p}<\infty\right\}, \quad 1 \leq p<\infty \\
\ell^{\infty}(\mathbb{Z})=\left\{f \in \ell(\mathbb{Z})| | \sup _{n \in \mathbb{Z}}\left|f_{n}\right|<\infty\right\}
\end{gathered}
$$

Clearly $\ell^{2}(\mathbb{Z})$ is a Hilbert space. On $\ell(\mathbb{Z})$ we define the endomorphism

$$
\begin{aligned}
\ell(\mathbb{Z}) & \rightarrow \ell(\mathbb{Z}) \\
f & \rightarrow L f
\end{aligned}
$$

where L is uniquely determined by its matrix entries $L(m, n)_{m, n \in \mathbb{Z}}$. The order of L is the the smallest nonnegative integer $N=N_{+}+N_{-}$such that $L(m, n)=0$ for all m and n with $m-n>N_{+}$or $n-m>N_{-}$.

Let $a, b \in \ell(\mathbb{Z})$ be two real valued sequences satisfying $a_{n} \in \mathbb{R}^{+}$and $b_{n} \in \mathbb{R}$. We define the second order symmetric operator L as

$$
(L f)_{n}=a_{n} f_{n+1}+b_{n} f_{n}+a_{n-1} f_{n-1}
$$

which is associated with the tridiagonal matrix

$$
\left(\begin{array}{cccccc}
\ddots & \ddots & \ddots & & & \\
a_{n-2} & b_{n-1} & a_{n-1} & & & \\
& a_{n-1} & b_{n} & a_{n} & & \\
& & a_{n} & b_{n+1} & a_{n+1} & \\
& & & \ddots & \ddots & \ddots
\end{array}\right)
$$

Let us consider the Jacobi difference equation

$$
\begin{equation*}
L f=z f, \quad z \in \mathbb{Z}, \quad f \in \ell(\mathbb{Z}) \tag{5.1}
\end{equation*}
$$

If $a(n) \neq 0$ the solution is uniquely determined by the two values $f_{n_{0}}$ and $f_{n_{0}+1}$. Therefore one can find exactly two linearly independent solutions to the above equation. We define the discrete Wronkstian

$$
\begin{equation*}
W_{n}(f, g)=a_{n}\left(f_{n} g_{n+1}-f_{n+1} g_{n}\right) \tag{5.2}
\end{equation*}
$$

It is easy to check that if f and g satisfy (5.1) then the Wronkstian does not depend on n. Let us introduce a fundamental solutions of (5.1) normalised

$$
\begin{align*}
& c\left(z, n_{0}, n_{0}\right)=1, \quad s\left(z, n_{0}, n_{0}\right)=0 \tag{5.3}\\
& c\left(z, n_{0}+1, n_{0}\right)=0, \quad s\left(z, n_{0}+1, n_{0}\right)=1
\end{align*}
$$

where later on, we will omit the dependence on the base point n_{0}. Since the Wronkstian does not depend on n one has

$$
W_{n}\left(c\left(z, n, n_{0}\right), s\left(z, n, n_{0}\right)\right)=a_{n_{0}} .
$$

Any solution of the equation (5.1) can be represented in the form

$$
u_{n}=u_{n_{0}} c\left(z, n, n_{0}\right)+u_{n_{0}+1} s\left(z, n, n_{0}\right) .
$$

Using (5.1) one can write

$$
\binom{u_{n}}{u_{n+1}}=\left(\begin{array}{cc}
0 & 1 \tag{5.4}\\
-\frac{a_{n-1}}{a_{n}} & \frac{z-b_{n}}{a_{n}}
\end{array}\right)\binom{u_{n-1}}{u_{n}}
$$

so that we define $U\left(z, n, n_{0}\right)$ as

$$
U\left(z, n, n_{0}\right)=\left(\begin{array}{cc}
0 & 1 \\
-\frac{a_{n-1}}{a_{n}} & \frac{z-b_{n}}{a_{n}}
\end{array}\right) .
$$

Then from the above one can define

$$
\begin{equation*}
\binom{u_{n}}{u_{n+1}} \tag{5.5}
\end{equation*}
$$

References

[1] A. Cannas da Silva, A. Weinstein, Geometric models for noncommutative algebras, Amer. Math. Soc. 1999 (Berkeley Mathematics Lecture Notes).
[2] B. Dubrovin Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov - Witten invariants. Preprint arXiv:math/0108160.
[3] B. Dubrovin Istituzioni di Fisica Matematica http://people.sissa.it/~ dubrovin
[4] J.P. Dufour, N.T. Zung, Normal forms of Poisson structures. Lectures on Poisson geometry, 109-169, Geom. Topol. Monogr., 17, Geom. Topol. Publ., Coventry, 2011.
[5] H. Flaschka, The Toda lattice. I. Existence of integrals, Phys. Rev. B 9, (1974) 1924 - 1925.
[6] R.L. Fernandes,On the master symmetries and bi-Hamiltonian structure of the Toda lattice. J. Phys. A 26 (1993), no. 15, 3797-3803.
[7] V. L. Ginzburg, Momentum mappings and Poisson cohomology, Internat. J. Math. 7 (1996), no. 3, 329-358.
[8] Y. Kodama, K. McLaughlin Explicit integration of the full Symmetric Today Hierarchy and the sorting problem, Lett. Math Physics 37, (1996) 37-47.
[9] Y. Kosmann-Schwarzbach and F. Magri Lax - Nijenhuis operators for integrable systems, J. Math. Phys. 37, 6173 (1996).
[10] A. Lichnerowicz, Les variètès de Poisson et leurs algébres de Lie associées, J. Differential Geometry 12 (1977), 253-300.
[11] F. Magri, ÔÔA simple model of the integrable Hamiltonian equation, J. Math. Phys. 19, (1978) 1156-1162.
[12] H. McKean, Compatible brackets in Hamiltonian mechanics, In: "Important development in soliton theory", 344-354, A.S. Fokas, V.E. Zakharov eds., Springer Series in Nonlinear dynamics, 1993.
[13] A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain ten- sor fields, Indag. Math. 17 (1955), 390-403.
[14] J. A. Schouten, Uber Differentialkonkomitanten zweier kontravarianter Gró§en, Indag. Math. 2 (1940), 449-452.
J. A. Schouten, On the differential operators of first order in tensor calculus, Convegno Int. Geom. Diff. Italia, 1953, Ed. Cremonese, Roma, 1954, pp. 1-7.

