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The MSSM: definition and analysis

• Electroweak symmetry breaking

• Spectrum

• Phenomenology

Beyond the MSSM
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Supersymmetry: 
fermions ↔ bosons



Motivations

Phenomenological

• Solves the hierarchy problem

• Precisely predicts gauge coupling unification

• Provides a natural DM candidate (needs RP)

• See below...

Theoretical

• Unification of fermions and bosons

• Local supersymmetry = supergravity + crucial in string theory

• Completes the list of possible symmetries of S (under hypotheses)

• Powerful technical tool
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Beyond the Standard Model
Experimental “problems” of the SM:

• Gravity
• Dark matter
• Baryon asymmetry
Experimental hints of physics beyond the SM

• Neutrino masses
• Quantum number unification
Theoretical puzzles of the SM:

• <H> << MPl
• Family replication
• Small Yukawa couplings, pattern of masses and mixings
• Gauge group, anomaly cancellation, charge quantization, quantum numbers
Theoretical problems of the SM:

• Hierarchy or Naturalness problem
• Cosmological constant problem
• Strong CP problem
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The hierarchy problem as a handle on new physics

The SM is an effective theory valid below a cut-off QNP 

Where is QNP? Which physics at QNP?

The main guideline is still provided by the naturalness 
argument (hierarchy problem)

Which arises if the Higgs exists as a fundamental 
interacting scalar up to QNP and QNP » mh
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More on renormalizability and naturalness

 

Renormalization:

The naturalness problem arises if Q corresponds to a physical threshold

(renormalizability might not be a fundamental property of 4D QFT)
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Note that it is crucial that the coupling are exactly equal. Supersymmetry 
breaking, if it is not to spoil the solution of the hierarchy problem should 
maintain this equality

How supersymmetry solves the hierarchy problem
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Figure 7.1: A contour map of the Higgs potential, for a typical case with tan β ≈ − cot α ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
Oscillations along the shallow direction, with H0

u/H0
d ≈ 10, correspond to the mass eigenstate h0, while

the orthogonal steeper direction corresponds to the mass eigenstate H0.
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Figure 7.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [165, 166].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [167]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u−vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tan β ≈ − cot α ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3

4π2
cos2α y2

t m
2
t ln

(
mt̃1

mt̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.
‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against

tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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How well supersymmetry solves the hierarchy problem: 
LEP and the residual hierarchy
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Figure 2: One-loop contributions to the Higgs boson (mass)2 in the Little Higgs model.

The quadratic divergences neatly cancel. The top sector contribution to the Higgs
(mass)2 is then given by

∆m2
h = −3

λ2
1λ

2
2f

2

8π2
log

Λ2

m2
T

= −3
λ2

tm
2
T

8π2
log

Λ2

m2
T

, (9)

where Λ ∼ 4πf is the strong interaction scale of the theory that gives rise to the
Goldstone bosons. In Little Higgs models, f is typically taken to be of order 1 TeV
(corresponding to Λ ∼ 10 TeV) to avoid fine tuning of the Higgs mass. As long as mT

is parametrically lower than Λ, the negative contribution to m2
h in Equation (9) could

be the dominant one and thus would provide the explanation for why electroweak
symmetry is broken. There are incalculable (quadratically divergent) two-loop con-
tributions to m2

h, which are the same order in λ1λ2, but these are not logarithmically
enhanced, and so are sub-dominant. The situation is that typically found in chiral
perturbation theory.

The cancellation of quadratic divergences in Equation (8) depends on the relation
of Equation (6), which can be rewritten as

mT

f
=

λ2
t + λ2

T

λT
. (10)

The relation (10) is a very interesting one. All of the four parameters in this equation
are in principle measurable. The top quark Yukawa coupling is known. The decay
constant f can be determined by measuring the properties of the heavy vector bosons
in the Little Higgs theory [25]. The mass and couplings of the heavy top quark will
be measured when this quark is observed, perhaps at the LHC. If the relation (10) is
shown to be valid, that will be strong evidence for the picture of electroweak symmetry
breaking given by the Little Higgs model.

6

QNP: Qstrong → f = global symmetry breaking scale 
(separate the top loop cutoff from Qstrong > 5 TeV)

Bounds on QNP from EWPT still worse than MSSM 
(unless T-parity is used), FT similar

No dramatic gain but interesting alternative 

[Arkani-Hamed Cohen Georgi 01, Arkani-Hamed Cohen Katz Nelson 02,  
Arkani-Hamed Cohen Katz Nelson Gregoire Wacker 02]



Warping and composite Higgs 
Breaking of Gbulk by bc’s:        
H = (A5)0, or Little Higgs + UV 
completion and solution of the 
hierarchy problem

mH protected from Qstrong by 5D 
gauge symmetry, or collective 
breaking

UV brane: elementary               
IR brane: composite (H, tR)

Qstrong > 5 TeV as usual            
mKK > TeV, watch Z → bb

Gauge coupling unification in a 
novel way (but limited 
calculability)
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Figure 1: A slice of AdS5: The Randall-Sundrum scenario.

the warped down scale

1

M2
5

Ψ̄iΨjΨ̄kΨl → 1

(M5e−πkR)2
Ψ̄iΨjΨ̄kΨl , (3)

1

M5
ννHH → 1

M5e−πkR
ννHH , (4)

where Ψi is a Standard Model fermion and ν is the neutrino. This leads to generic
problems with proton decay and FCNC effects, and also neutrino masses are no longer
consistent with experiment. Thus, while the hierarchy problem has been addressed
in the Higgs sector by a classical rescaling of the Higgs field, this has come at the
expense of introducing proton decay and FCNC problems from higher-dimension op-
erators that were sufficiently suppressed in the Standard Model.

• Exercise: The classical rescaling Φ → edΦπkRΦ where dΦ = 1(3
2) for scalars

(fermions), suffers from a quantum anomaly and leads to the addition of the La-
grangian term

δLanomaly = πkR
∑

i

β(gi)

4g3
i

Tr F 2
µν,i , (5)

where β(gi) is the β-function for the corresponding gauge couplings gi. Show that this
anomaly implies that quantum mass scales, such as the gauge coupling unification
scale MGUT , are also redshifted by an amount MGUT e−πkR.

Instead in the slice of AdS5 with the Standard Model fields confined on the IR brane
one has to resort to discrete symmetries to forbid the offending higher-dimension
operators. Of course it is not adequate just to forbid the leading higher-dimension

4
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Figure 2: The Standard Model in the warped five-dimensional bulk.

requires that lepton number is conserved on the UV brane. Instead in the “reversed”
scenario one can place the right (left) handed neutrino near the IR (UV) brane. In
this case even though lepton number is violated on the UV brane, the neutrinos will
still obtain naturally tiny Dirac masses [21].

3.2 Higher-dimension operators

Let us consider the following generic four-fermion operators which are relevant for
proton decay and K − K̄ mixing

∫
d4x

∫
dy

√
−g

1

M3
5

Ψ̄iΨjΨ̄kΨl ≡
∫

d4x
1

M2
4

Ψ̄(0)
i+ Ψ(0)

j+Ψ̄(0)
k+Ψ(0)

l+ , (38)

where the effective 4D mass scale M4 for 1/2 <∼ ci
<∼ 1 is approximately given by[11]

1

M2
4

% k

M3
5

e(4−ci−cj−ck−cl)πkR . (39)

If we want the suppression scale for higher-dimension proton decay operators to be
M4 ∼ MP then (39) requires ci % 1 assuming k ∼ M5 ∼ MP . Unfortunately for these
values of ci the corresponding Yukawa couplings would be too small. Nevertheless, the
values of c needed to explain the Yukawa coupling hierarchies still suppresses proton
decay by a mass scale larger than the TeV scale [11, 22]. Thus there is no need to
impose a discrete symmetry which forbids very large higher-dimension operators.

On the other hand the suppression scale for FCNC processes only needs to be
M4

>∼ 1000 TeV. This can easily be achieved for the values of c that are needed
to explain the Yukawa coupling hierarchies. In fact the FCNC constraints can be
used to obtain a lower bound on the Kaluza-Klein mass scale mKK . For example

12

mH ∼M5e
−πkR

k = curvature
[Contino Nomura Pomarol hep-ph/0306259   
Agashe Contino Pomarol hep-ph/0412089     

hep-ph/0605341]
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The cosmological constant problem 
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δm2
H ∝ Q2

SM → QSM ∼ mH δΛ ∝ Q4
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SUSY: δm2
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+ +
x x



η = diag(+---),  (σμ) = (1,σi),  ε =           , εαβ εβγ = δαγ

Ψ Dirac spinor ↔ ψ, ψc left-handed Weyl spinors:

ΨL,ΨR︸ ︷︷ ︸
(0,1/2)

+ΨR,ΨL︸ ︷︷ ︸
(1/2,0)

↔ ψ, ψc + ψ∗,ψ∗
c

Notations
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(
0 1
−1 0

)

Ψ1Ψ2 = ψc
1ψ2 + (ψ1ψ

c
2)

∗ Ψ1γ
µΨ2 = ψ†

1σ
µψ2 − (ψc

2)
†σµψc

1

(ψ1ψ2 = ψ2ψ1 = ψ1αεαβψ2β)

ΨL =
(

0
ψ

)
,ΨR =

(
ε ψ∗

c

0

)

Ψ =
(

ε ψ∗
c

ψ

)



From general principles to 
the most general 

renormalizable N=1 
supersymmetric lagrangian



The general supersymmetric algebra
G = set of symmetry generators G such that

• G S = S G

• G =                           on asymptotic states

• Spin statistics connection holds

THEN

G = B + F, where B ∋ B: b → b, f → f; F ∋ F: b → f, f → b

G is a graded Lie algebra: [B,B], {F,F} ⊆ B, [B,F] ⊆ F                                  

[[G1,G2]±,G3]± + [[G2,G3]±,G1]± ± [[G3,G1]±,G2]± = 0  “graded Jacobi identity”

Gi ∈ G bosonic or fermionic, “-” if two are fermions                           

[G1,G2]± = [G1,G2] if G1 or G2 bosonic, = {G1,G2} otherwise
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[Sohnius, Phys Rept 128 (1985)
Wess and Bagger, Supersymmetry 
and supergravity, Univ. Pr. (1992)

Martin, hep-ph/9709356
Nilles, Phys Rept 110 (1984)]

∫
dα dβ Gij(α, β)a†iαajβ

(a✝iα creates the particle i 
with quantum numbers α)

[Coleman Mandula, Phys Rev 159 (1967)
Haag Lopuszanski Sohniius, Nucl. Phys B88 (1975)]



B = Poincaré ⊕ Lint  generators: Pμ Lμν Br (hermitian)

U(a,L)✝Br U(a,L) = Br      (or [Pμ, Br] = [Lμν, Br] = 0)

Lint = compact semisimple ⊕ abelian

F = supersymmetry generators: Qiα, Qiα = (Qiα)✝

i = 1,…,N number of supersymmetries α = 1,2 left-handed Weyl index

U(a,L)✝ Qiα U(a,L) = Lαβ Qiβ 

U(g)✝ Qiα U(g) = R(g)ij Qjα

 

Zij ∈ Lint antisymmetric, [Zij, anything] = 0 (“central” charges)
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–

{Qiα, Q̄jβ} = 2 δijσ
µ
αβPµ {Qiα, Qjβ} = 2 εαβZij



Supersymmetry generators: b ↔ f; #b = #f

[P2, Qiα] = 0 ⇒ mb = mf :  supersymmetry must be broken

<Ω|H|Ω> ∝ ∑iα (|QiαΩ|2 + |QiαΩ|2) ≥ 0 : SSSB ⇔ vacuum energy > 0

N supersymmetries: massive 1P states have j ≥ N/2 

                        massless 1P states have |j| ≥ N/4 (if odd, N→N+1)

j ≤ 2 ⇒ N ≤ 8

j ≤ 1 ⇒ N ≤ 4

chiral gauge theory ⇒ N ≤ 1

18

Properties and N=1

–



N=1 supersymmetry algebra
G = Poincaré + Internal group generators + Qα, Qα 

Qα → Lαβ Qβ , [Pμ, Qα] = 0

Qα → eω Qα     (“R-symmetry”) or invariant under internal symmetries

 

1 particle supersymmetry multiplets:
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–

{Qα, Q̄β} = 2 σµ
αβPµ {Qα, Qβ} = 0

#B = #F 

j 1P multiplets

0 2 1

1/2 1 2 1

1 1 2 1

3/2 1 2

2 1

m ≠ 0

(j ≥ 1/2)

j

-1 1

-1/2 1 1

0 2

1/2 1 1

1 1

m = 0

(|j| ≥ 1/2)



j

0 2 1

1/2 1 2

1 1

j

-1 1

-1/2 1 1

0 2

1/2 1 1

1 1

(A, ψ, F)   “scalar” (“chiral”) multiplet
A, F complex scalars, ψ left-handed Weyl spinor
Off-shell real field DOFs: 4B+4F; on-shell: 2B+2F (F auxiliary)
[A] = 1, [ψ] = 3/2, [F] = 2

(vμ, λ, D)   massless “vector” (“real”) multiplet
vμ real vector, λ left-handed Weyl spinor, D real scalar
Off-shell real field DOFs: 4B+4F; on-shell: 2B+2F (D auxiliary)
[vμ] = 1, [λ] = 3/2, [D] = 2

(vμ, λ, χ, C, D, N)  massive vector multiplet
χ Weyl, C N complex scalars, D N auxiliary

Field multiplets
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m = 0

m ≠ 0



Renormalizable N=1 supersymmetric gauge theories

Specify the gauge group G

Specify the chiral superfield content Φi = (Ai, ψi, Fi) and the representation 
of G on them: g ∈ G: Φi → U(g)ij Φj 

Associate a massless vector superfield to each generator of G:                
tA ↔ (vAμ, λA, DA)    (λA, DA transform with the adjoint, vAμ as usual)

Specify a gauge invariant olomorphic function W(A): the superpotential   
[W] = 3: renormalizability ⇒ W =  (λijk/3)AiAjAk + (μij/2)AiAj + m2i Ai

21

F, D non-dynamical
[F] = [D] = 2

[In superfield formalism: 
W = W(ϕ), [θ] = -1/2
ϕ = A + √2 ψθ + Fθ2]

Lsusy = DµA†
iD

µAi + ψ†
i iσ

µDµψi + F †
i Fi

− 1
4
vµν

A vA
µν + λ†

AiσµDµλA +
1
2
D2

A

− 1
2
∂i∂jW (A)ψiψj − ∂iW (A)Fi + h.c.

−
(√

2gAA†
iT

ij
A λAψj + h.c.

)
− gAA†

iT
ij
A DAAj

+ gAξADA + θ term



Equations of motion for F, D:

Omitting FY and  θ term:

Continuous symmetries (commuting with gauge):
• commuting with supersymmetry: Q(A) = Q(ψ), Q(vμ) = Q(λ) = 0, Q(W) = 0
• R-symmetries: R(ψ) = R(A)-1, R(vμ) = 0, R(λ) = 1, R(W) = 2

Eliminating auxiliary fields
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F †
i = ∂iW (A) DA = gAA†

iT
ij
A Aj

Lsusy = Kinetic + gauge for Ai, ψi, vµ
A, λA

−
(

1
2
∂i∂jW (A)ψiψj +

√
2gAA†

iT
ij
A λAψj + h.c.

)
− V (A)

V (A) = F †
i Fi +

1
2
D2

A ≥ 0



Non renormalization theorem 
and the solution of the hierarchy problem

Second line in Lsusy does not get perturbative radiative corrections

First line does, but it is (logarithmic) wave function renormalization

Example: W ⊇ -μij AiAj ⇒ V ⊇ (μ✝μ)ij A✝iAj, quadratically divergent?

Interpretation: supersymmetry relates scalar masses to fermion masses, 
which are protected by chiral symmetry

23

+AjAi

ψh

ψk

λihk λ*jhk

From -(1/2)∂h∂kW(A) ψhψk 
W(A) ⊇ (λihk/3)AiAhAk

Ai Aj

Ak

λihk λ*jhk

From F✝hFh,  
F✝h = ∂hW(A)

+ gauge contributions

Ai Aj

Ah

Ak

λihpμ*pk

+

Proof at all orders uses superfields formalism 
or Seiberg argument (hep-ph/9309335)



Explicit (soft) supersymmetry breaking
me ≥ 100 GeV, not = 0.5 MeV
Most mechanisms of supersymmetry breaking take place at Q » TeV, give 
rise to effective, explicit, soft supersymmetry breaking terms at Q = TeV
“Soft” = do not give rise to quadratic divergences

• w(A) olomorphic, w = (aijk/3)AiAjAk + (b2ij/2)AiAj + c3i Ai 

• All terms in Lsoft proportional to a (supersymmetry breaking) mass scale
• (Mij)/2 ψiψj can be reabsorbed, w(A,A✝), MAi λAψi give quadratic 

divergences in the presence of gauge singlets (and very suppressed in 
explicit models)

Gaugino masses break R-symmetry

24

~

L = Lsusy + Lsoft

−Lsoft = m2
ijA

†
iAj +

(
MAB

2
λAλB + w(A) + h.c.

)
[Girardello Grisaru , NPB 194 (1982)]

Back



Spontaneous supersymmetry breaking (SSSB)
SSSB ⇔ V > 0 ⇔ F ≠ 0 or D ≠ 0

(if Vmin = 0, there could still be SSSB in false vacua)

SSSB should not couple to the SM fields at the renormalizable + tree level:

• Tr(M2s=0) - 2 Tr(M2s=1/2) + 3 Tr(M2s=1) = 0 (tree level, canonical kinetic term) 

• no gaugino masses

Typically: SSSB in hidden sector at QSSSB » TeV, communicated to the SM 
fields by “messengers” at Qmess » QSSSB (gravity, heavy charged fields, etc)

25

V (A) = F †
i Fi + 1

2D2
A ≥ 0

[Ferrara Girardello Palumbo, PRD20 (1979)]



The MSSM



The Minimal Supersymmetric Standard Model (MSSM)

“Minimal” = minimal number of fields

G = GSM = SU(3)cxSU(2)wxU(1)Y

Embedding of SM fields in                                                                   
(A,ψ) (chiral) or (vμ,λ) (vector)                                                           
multiplets:

• Gauge bosons ⊆ vector multiplets                                                                
(with gauginos)

• Fermions ⊆ chiral multiplets (with sfermions, s for “scalar”)

• Higgs ⊆ chiral multiplets (with Higgsinos)

lepton number conservation:
anomaly cancellation + fermion masses: 

27

[Martin, hep-ph/9709356; Drees Godbole Roy, Haber Kane, Phys Rept 117 (1985)]

SM gμ Wμ Bμ qi uci dci li eci h

SU(3)c 8 1 1 3 3 3 1 1 1

SU(2)w 1 3 1 2 1 1 2 1 2

U(1)Y 0 0 0 1/6 -2/3 1/3 -1/2 1 -1/2

– – 

gA
µ → ĝA ≡ (gA

µ , g̃A) (with “gluinos”)

W a
µ → Ŵ a ≡ (W a

µ , W̃ a) (with “Winos”)
Bµ → B̂ ≡ (Bµ, B̃) (with “Binos”)

li → l̂i ≡ (l̃i, li)
ec
i → êc

i ≡ (ẽc
i , e

c
i )

(with “sleptons”)

qi → q̂i ≡ (q̃i, qi)

uc
i → ûc

i ≡ (ũc
i , u

c
i )

dc
i → d̂c

i ≡ (d̃c
i , d

c
i )

(with “squarks”)

h != l̃i

h→ ĥu ≡ (hu, h̃u) + ĥd ≡ (hd, h̃d)

λUucq h∗ + λDdcq h→ λUucq hu + λDdcq hd



The MSSM superfield content

28

– – 

MSSM gμ Wμ Bμ qi uci dci li eci hu hd

SU(3)c 8 1 1 3 3 3 1 1 1 1

SU(2)w 1 3 1 2 1 1 2 1 2 2

U(1)Y 0 0 0 1/6 -2/3 1/3 -1/2 1 1/2 -1/2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 

vector chiral

“sparticles” , s for “supersymmetric” 

SM field content + gauginos, sfermions, Higgsinos (and 1 more Higgs doublet)



The most general renormalizable gauge invariant superpotential:

In the SM: L, B accidentally conserved (welcome)

In the MSSM: L, B accidentally conserved once matter parity (PM) or 
equivalently R-parity (PR or RP) is imposed

PM = +1 on hu, hd (scalar component ∈ SM)

RP = +1 on q, uc, dc, l, ec, hu, hd (SM fields)

SM Yukawas 
+ Higgs and Higgsino mass 
+ more interactions

L and B violation: 
proton decay, 
neutrino masses

The superpotential and R-parity

29

ˆ ˆ

PM = (-1)3(B-L) (remnant of B-L gauge symmetry?), commutes with SUSY

RP = (-1)3(B-L)+2s, discrete R-symmetry

PM = -1 on q, uc, dc, l, ec (fermion component ∈ SM)ˆ ˆ ˆ ˆ ˆ

RP = -1 on q, uc, dc, l, ec, hu, hd (supersymmetric partners)~ ~ ~ ~~ ~ ~

W = λU
ij û

c
i q̂j ĥu + λD

ij d̂
c
i q̂j ĥd + λE

ij ê
c
i l̂j ĥd + µ ĥuĥd

+ λ[ij]k l̂i l̂j ê
c
k + λ′

kji l̂iq̂j d̂
c
k + λ′′

i[jk]û
c
i d̂

c
j d̂

c
k + µ′

i l̂iĥu



Consequences of RP

Constrains the form of W, Lsoft (B, L accidentally conserved)

MSSM ≡ GSM + field content above + most general RP-invariant W, Lsoft

Sparticles are produced in pairs

The Lightest Supersymmetric Particle (LSP) is stable

RP = +1 and -1 fermions and scalars do not mix
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W = λU
ij û

c
i q̂j ĥu + λD

ij d̂
c
i q̂j ĥd + λE

ij ê
c
i l̂j ĥd + µ ĥuĥd

−Lsoft = AU
ij ũ

c
i q̃

jhu + AD
ij d̃

c
i q̃

jhd + AE
ij ẽ

c
i l̃

jhd + m2
udhuhd + h.c.

+ (m̃2
q)ij q̃

†
i q̃j + (m̃2

uc)ij(ũc
i )

†ũc
j + (m̃2

dc)ij(d̃c
i )

†d̃c
j + (m̃2

l )ij l̃
†
i l̃j

+ (m̃2
ec)ij(ẽc

i )
†ẽc

j + m2
hu

h†
uhu + m2

hd
h†

dhd

+
M3

2
g̃Ag̃A +

M2

2
W̃aW̃a +

M1

2
B̃B̃ + h.c.



Parameter counting
3 gauge couplings, quantum numbers, θQCD

Supersymmetric part: (3x18+2) - (9x5+2-5) = 14 = 9 fermion masses + 4 
CKM parameters + 1 Higgs/ino mass = SM - 1 (Higgs coupling predicted)

With Lsoft: [3x18+2 (W) + 3x2 (gaugino masses) + 3x18+2 (w) + 5x9+2 
(scalar masses)] - [9x5+2 (U(3)5xU(1)2) + 1 (R-symmetry) - 3 (B, L, Y)] = 120 
= SM + 105 = 14 + 3 gaugino masses + 3x6+3 sfermion masses + v, tanβ, mA 
+ 79 mixing and phases

Too large FCNC and CPV processes in most of the parameter space, e.g.:
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(a)

γ

e−µ− B̃

µ̃R ẽR

(b)

γ

e−µ−

W̃−

ν̃µ ν̃e

(c)

γ

e−µ− B̃

µ̃L ẽR

Figure 5.6: Some of the diagrams that contribute to the process µ− → e−γ in models with lepton
flavor-violating soft supersymmetry breaking parameters (indicated by ×). Diagrams (a), (b), and (c)
contribute to constraints on the off-diagonal elements of m2

e , m2
L, and ae, respectively.

in eq. (4.1). Each of m2
Q, m2

u, m2
d
, m2

L, m2
e is a 3 × 3 matrix in family space that can have complex

entries, but they must be hermitian so that the Lagrangian is real. (To avoid clutter, we do not put
tildes on the Q in m2

Q, etc.) Finally, in the last line of eq. (5.12) we have supersymmetry-breaking

contributions to the Higgs potential; m2
Hu

and m2
Hd

are squared-mass terms of the (m2)ji type, while b

is the only squared-mass term of the type bij in eq. (4.1) that can occur in the MSSM.§ As argued in
the Introduction, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (5.13)

m2
Q, m2

L, m2
u, m2

d
, m2

e , m2
Hu

, m2
Hd

, b ∼ m2
soft, (5.14)

with a characteristic mass scale msoft that is not much larger than 1000 GeV. The expression eq. (5.12)
is the most general soft supersymmetry-breaking Lagrangian of the form eq. (4.1) that is compatible
with gauge invariance and matter parity conservation in the MSSM.

Unlike the supersymmetry-preserving part of the Lagrangian, the above LMSSM
soft introduces many

new parameters that were not present in the ordinary Standard Model. A careful count [70] reveals
that there are 105 masses, phases and mixing angles in the MSSM Lagrangian that cannot be rotated
away by redefining the phases and flavor basis for the quark and lepton supermultiplets, and that
have no counterpart in the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as
opposed to supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

5.4 Hints of an Organizing Principle

Fortunately, there is already good experimental evidence that some powerful organizing principle must
govern the soft supersymmetry breaking Lagrangian. This is because most of the new parameters in
eq. (5.12) imply flavor mixing or CP violating processes of the types that are severely restricted by
experiment [71]-[96].

For example, suppose that m2
e is not diagonal in the basis (ẽR, µ̃R, τ̃R) of sleptons whose superpart-

ners are the right-handed parts of the Standard Model mass eigenstates e, µ, τ . In that case, slepton
mixing occurs, so the individual lepton numbers will not be conserved, even for processes that only
involve the sleptons as virtual particles. A particularly strong limit on this possibility comes from the
experimental bound on the process µ → eγ, which could arise from the one-loop diagram shown in
Figure 5.6a. The symbol “×” on the slepton line represents an insertion coming from −(m2

e)21µ̃∗
RẽR

in LMSSM
soft , and the slepton-bino vertices are determined by the weak hypercharge gauge coupling [see

Figures 3.3g,h and eq. (3.72)]. The result of calculating this diagram gives [73, 76], approximately,
§The parameter called b here is often seen elsewhere as Bµ or m2

12 or m2
3.
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The Constrained MSSM (CMSSM)

Assume that at some scale M0 » TeV the soft term satisfy:

• M1 = M2 = M3 ≡ M1/2 (universal gaugino masses)

• AU,D,E = A0 λU,D,E (A-term proportionality)  (also define m2ud = B0 μ)

• (m2q)ij = (m2u)ij = (m2d)ij = (m2l)ij = (m2e)ij = m20 δij (universal scalar masses)

Motivation:

• Benchmark model with few parameters and FCNCs under control

• Minimal supergravity (msugra) gives the CMSSM (with model-dependent 
A0-B0 relation)

Parameter counting: 106 → 4 dimensionful pars + 2 phases (no new mixing 
pars, all mixing can be expressed in terms of CKM: an example of Minimal 
Flavour violation)

32

~ ~ ~ ~ ~



Phase convention

R-symmetry: Lsusy invariant, R[λλ] = 2, R[W] = 2 ⇒ R[w] = 2

Peccey-Quinn: hu,d → hu,d eiα, PQ(ucqhu) = PQ(dcqhd) = PQ(eclhd) = 0

Standard phase convention: M1/2 > 0, B0μ = m2ud > 0, phases in μ, A0

also used in the MSSM (provided that the gaugino phases differ by π)

Constraints from EDMs: |sinφμ|, |sinφA| ≲ 10-2 (supersymmetric CP “problem”)

33

Complex soft 
parameters: μ M1/2 A0 B0μ

R-symmetry: μ M1/2 e2iω A0 e2iω B0μ e2iω

Peccei-Quinn 
symmetry μ e2iα M1/2 A0 B0μ e2iα

ˆ ˆ



CP-conserving CMSSM
Physical parameters (besides gauge, fermion masses and mixings)

-∞ < m20 < ∞, -∞ < A0 < ∞, |μ| > 0, M1/2 > 0, m2ud > 0, sign(μ) = ±1

Trade |μ| for MZ, m2ud for tanβ (see below):

-∞ < m20 < ∞, -∞ < A0 < ∞, M1/2 > 0, 0 ≤ β ≤ π/2, sign(μ) = ±1
Plots often in m0-M1/2 plane for fixed β, A0, sign(μ)
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Figure 1: Left: plot of 5σ reach in various inclusive channels for the mSUGRA model [2]. Right: plot of
5σ reach in jets+/ET channel for various assumptions on integrated luminosity [9].

squark masses should apply to any model in which they decay into an invisible and
relatively light LSP. If R parity is violated via χ̃0

1 → "+"−ν or qq̄", qq̄ν, the presence of
additional leptons makes the discovery easier. The most difficult case is R-violation via
χ̃0

1 → cds, giving multiple jets but no b jets. Detailed background studies are underway,
but probably one will have to rely on leptonic cascade decays for the discovery in this
scenario.

As shown above, SUSY is one of the best candidates for very early discovery at the
LHC, and the most model-independent signature is Jets+/ET . A concentrated experi-
mental effort will be needed to understand the sources of momentum imbalance in the
detector, and detailed studies are underway in ATLAS and CMS to develop appropriate
strategies. Two main sources of /ET in the detector are considered. On one side we have
real /ET from the production of neutrinos in Standard Model processes involving W and Z,
in particular (Z → νν)+jets, which can not be reduced by vetoing charged leptons in the
event, and t̄t production which has a high final-state jet multiplicity. The understanding
of these backgrounds requires the study of well-identified signatures, e.g. leptonic decays
of the Z and fully reconstructed t̄t events, which will be used to model the production
properties. A large statistics of these events will be needed in order to achieve an ac-
curate prediction of the /ET signal. It is thus very likely that the time needed to claim

Example:
CMS reach



Electroweak 
symmetry breaking 

(EWSB) in the MSSM



Issues:

1. V bounded from below?   (“UFB” directions)

2. <qi> = <uci> = <dci> = <li> = <eci> = 0?   (“CCB” (and L breaking) minima)

3. <hu>, <hd> preserve U(1)em ?

1. Not guaranteed. E.g. along

                              is unbounded from below unless

2. Not guaranteed. E.g. along

V(w) has a (deep) U(1)em minimum unless
                                 Analogously: 

3. Guaranteed (provided that 1. and 2. are fine) 

Electroweak symmetry breaking (EWSB) in the MSSM
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V = Vsusy + Vsoft = V (hu, hd, q̃i, ũ
c
i , d̃

c
i , l̃i, ẽ

c
i )

~ ~ ~~~

V = (m2
u + m2

d −m2
ud) w2

m2
u ≡ m2

hu
+ |µ|2

m2
d ≡ m2

hd
+ |µ|2〈hu〉 =

(
0
w

)
, 〈hd〉 =

(
w
0

)
,

〈
f̃
〉

= 0

〈hd〉 =
(

w
0

)
,

〈
l̃i
〉

=
(

0
w

)
, 〈ẽc

i 〉 = −we−φ(AE
ii), 〈else〉 = 0

m2
u + m2

d > m2
ud

|AE
ii |2 < 3λ2

ei

[
(m̃2

l )ii + (m̃2
ec)ii + m2

d

]

|AD
ii |2 < 3λ2

di

[
(m̃2

q)ii + (m̃2
dc)ii + m2

d

]

|AU
ii |2 < 3λ2

ui

[
(m̃2

q)ii + (m̃2
uc)ii + m2

u

]

Note: |A| ≲ λ m, A ≡ λ A ~ ˆ
Also: check positivity of mass eigenvalues



Assume <qi> = <uci> = <dci> = <li> = <eci> = 0. Then

Up to a gauge transformation:

χ ≠ 0 ⇔ U(1)em spontaneously broken

eiϕ ≠ ±1 ⇔ CP spontaneously broken

V minimum at χ = 0, eiϕ = 1 (for given vu,d)
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~ ~ ~~~

V =
g2 + g′2

8

(
h†

uhu − h†
dhd

)2
+

g2

2
∣∣h†

uhd

∣∣2 + |µ|2
(
h†

uhu + h†
dhd

)
from Lsusy

+ m2
hu

h†
uhu + m2

hd
h†

dhd + m2
ud (huhd + h.c.) from Lsoft

hu = vu

(
0
1

)
, hd = vde

iφ

(
cos χ
sinχ

)
vu,d > 0
0 ≤ χ ≤ π/2

hu = vu

(
0
1

)
, hd = vd

(
1
0

)
vu = v sinβ

vd = v cos β

v ! 174 GeV
0 ≤ β ≤ π/2



V(vu,vd) =

Quartic term dominates at large v, except for tanβ = 1 (vu = vd = v/√2), in 
which case:                                             . V bounded from below iff  

Local extrema: 
• v = 0, V = 0
• v ≠ 0: iff                     from                   : V = 

Bounds on β:
• λt Landau pole beyond MPl: tanβ ≳ 1 (see below)
• Higgs mass bound: tanβ ≳ 2 (see below)
• B-physics: tanβ ≲ 60
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m2
u ≡ m2

hu
+ |µ|2

m2
d ≡ m2

hd
+ |µ|2

V (v/
√

2, v/
√

2) = (m2
u + m2

d − 2m2
ud) v2/2

m2
u + m2

d ≥ 2m2
ud(≥ 0)

m2
um2

d ≤ (m2
ud)

2 vd∂dV − vu∂uV

vd∂uV + vu∂dV

g2 + g′2

4
v2 = −m2

u tan2 β −m2
d

tanβ2 − 1
=

M2
Z

2
sin 2β =

2m2
ud

m2
u + m2

d

β is given by 
the solution with 

tanβ ≷ 1 if m2d ≷ m2u

g2 + g′2

8
(
v2

u − v2
d

)2 + m2
uv2

u + m2
dv

2
d − 2m2

udvuvd

Radiative corrections
lower m2u more than m2d

− 4
g2 + g′2

(
m2

us2
β −m2

dc
2
β

)2



We typically need m2hu < 0

while m2hd, m2f > 0:

an accident?
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m2d

m2u

m2u m2d = (m2ud)2

m2u + m2d = 2m2ud

tanβ < 1

tanβ > 1

~



Soft terms generated at M0 » TeV      e.g. in sugra M0 = MPl

Rad corrs to soft terms enhanced by large logs:

RGEs: 

BTW:

M1 = M2 = M3 , g1 = g2 = g3 @ MGUT ⇒ M1 : M2 : M3 = g21 = g22 = g23
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Radiative EWSB

t =
1

(4π)2
log

M2
GUT

Q2
! 0.4

d

dt
m̃2

q3
=

16
3

g2
3M2

3 + 3g2
2M2

2 +
1
15

g2
1M2

1 − λ2
t

(
m̃2

q3
+ m̃2

tc + m̃2
hu

+ |Ât|2
)

d

dt
m̃2

tc =
16
3

g2
3M2

3 +
4
15

g2
1M2

1 − 2λ2
t

(
m̃2

q3
+ m̃2

tc + m̃2
hu

+ |Ât|2
)

d

dt
m2

hu
= 3g2

2M2
2 +

3
5
g2
1M2

1 − 3λ2
t

(
m̃2

q3
+ m̃2

tc + m̃2
hu

+ |Ât|2
)

d

dt
m2

others = only gauge terms

X

d

dt
g2

i = −big
4
i ,

d

dt
Mi = −big

2
i Mi ⇒

Mi(Q1)
Mi(Q2)

=
g2

i (Q1)
g2

i (Q2)

M1 : M2 : M3 ≈ 1 : 2 : 7

[Martin Vaughn, PRD50 (1994)
Barger Berger Ohmann, PRD49 (1994)]
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Fig. 1. An example of the running of the soft-supersymmetry breaking parameters
for αs(MZ) = 0.120, mt(mt) = 150 GeV, tan β = 10, m 1

2

= 250 GeV, m0 = 100

GeV, and AG = 0, where the superscript G denotes the GUT scale.

Fixed-point solutions to the RGE predict that the scale of the top-quark mass

is naturally large in SUSY-GUT models but depends on tan β. The prediction is

that[15]

mpole
t = (200 GeV) sin β . (12)

Note that the propagator-pole mass mpole
t is related to this running mass mt(mt)

by[23]

mpole
t = mt(mt)

[

1 +
4

3π
α3(mt)

]

. (13)

9

Barger Berger Ohmann, hep-ph/9311269



Fine-tuning in the MSSM
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δm2
h ∼

3GF√
2π2

m2
t Q

2
NP log

M2
Pl

Q2
NP

SUSY

–    <H> = 174 GeV

–    MPl

SM

E

δm2
h ∼

3GF√
2π2

m2
t Q

2
NP =






m2
h

(
QNP

0.5 TeV

)2

if mh = 115GeV

m2
h

(
QNP

2 TeV

)2

if mh = 250GeV

–    QNP = m~

unification
neutrino masses
baryogenesis

?

 

Large logs + color factors + lower bounds on gluinos and squarks:                      
A moderate (up to %) fine-tuning is required to obtain MZ = 91 GeV

M2
Z = −2

m2
hu

tan2 β −m2
hd

tan2 β − 1
− 2|µ|2 ≈ −2m2

hu
− 2|µ|2 (large tanβ)

≈ −2
(
m2

hu
(M0) + |µ|2

)
+ 2 δm2

hu

δm2
hu
!M2

Z



(114GeV)2 < m2
h < M2

Z cos2 2β +
3

4π2
h2

t m
2
t log

m̃2
t

m2
t

⇒ FT ∼ 50÷ 100

FT ≈ maximum contribution in […]     (+ possibly in tanβ and mt)

Benchmark points:

Direct lower limits on squark and gluinos

Indirect lower limit on the stop mass

M2
Z ≈ (91 GeV)2

[
m̃2

Q

(70GeV)2
− m̃2

H

(80 GeV)2
+

M2
1/2

(40GeV)2
− µ2

(70 GeV)2

]
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[De Roeck, Ellis, Gianotti, Moortgat, Olive, Pape]

[Kane, Lykken, Mrenna, Nelson, Wang, Wang]

M1/2 = (250 ÷ 1840) GeV : FT ! 40 ÷ 2000

m̃Q = (1500 ÷ 4300) GeV : FT ! 430 ÷ 3700 or M1/2 = 500GeV : FT ! 150

Mg̃ !







195GeV

260GeV

500GeV

⇒ FT !







3

6

20

mt̃ !







300GeV

260GeV

100GeV

⇒







25

10

50

mQ = mH: “focus point”~ ~



What is left?

Quantitative measure of naturalness 
nicely taking into account and 
combining all the considerations 
above

• Scan the relative sizes of SUSY 
parameters and the SM 
parameters in their ranges

• Set the overall scale of SUSY 
parameters from <H> = 174 GeV

• Calculate SUSY spectrum and 
compare with experiment

Few O(1%) of points satisfy all 
experimental constraints
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[Giusti R Strumia]



A comment on numerical scanning procedures

The FT problem typically introduces a bias in numerical scans of the MSSM 
parameter space

Physical parameters (besides gauge, fermion masses and mixings)

-∞ < m20 < ∞, -∞ < A0 < ∞, |μ| > 0, M1/2 > 0, m2ud > 0, sign(μ) = ±1

|μ| is traded for MZ, which means that the (necessary) cancellation is forced 
to take place between μ2 and all the rest in 

Example: LSP is rarely an Higgsino
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M2
Z = −2

m2
hu

tan2 β −m2
hd

tan2 β − 1
− 2|µ|2 ≈ −2m2

hu
− 2|µ|2 (large tanβ)

≈ −2
(
m2

hu
(M0) + |µ|2

)
+ 2 δm2

hu



Addressing the FT problem

Low M0

NMSSM

Supersymmetric Little Higgs

Sliding overall soft mass scale

Environment

Who cares?
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The particle spectrum 
of the MSSM



MSSM fields:

Mass matrices → masses + expressions in terms of mass eigenstates

Selection rules (after EWSB): spin, color, charge, RP

48

gµ Wµ Bµ g̃ W̃ B̃ qi uc
i dc

i li ec
i h̃u h̃d q̃i ũc

i d̃c
i l̃i ẽc

i hu hd



gAμ  Waμ  Bμ

Same as in the SM, with v2 = v2u + v2d 

49

Gauge bosons

L ⊇
∣∣(gW z

µTa + g′BµYu

)
〈hu〉

∣∣2 +
∣∣(gW z

µTa + g′BµYd

)
〈hd〉

∣∣2

M2
W =

g2

2
v2

gsg
A
µ TA + gW a

µTa + g′BµY

= gsg
A
µ TA+

g√
2
(W+

µ T+ + W−
µ T−) +

g

cW
Zµ(T3 − s2

W Q) + eAµQ

M2
Z =

g2 + g′2

2
v2



qi  uci  dci  li  eci

 

                 : mb « mt either because λb « λt (as in the SM)

              : λt(MGUT) < ∞ ⇒ tanβ ≳ 1 (depending on what goes on from MZ to MGUT) 

 

             appears in SM CC interactions, fermion-sfermion relative 
orientation appears in supersymmetric interactions

RP = 1 (SM) fermions
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or because tanβ » 1 (allows λb ~ λt, relevant for rad corrs, 
Yukawa unification (PQ symmetry?))

−L ⊇ λU
iju

c
iqjhu + λD

ijd
c
iqjhd + λE

ije
c
i ljhd →

mU = λUv sinβ

mD = λDv cos β

mE = λEv cos β

mU = UT
uc mdiag

U Uu

mD = UT
dc mdiag

D Ud

mE = UT
ec mdiag

E Ue

qi =
(

(U†
u)iju′

j

(U†
d)ijd′

j

)

li =
(

(U†
ν )ijν′

j

(U†
e )ije′

j

)

uc
i = (U†

uc)iju
c′

i

dc
i = (U†

dc)ijd
c′

i

ec
i = (U†

ec)ije
c′

i

mt

mb
=

λt

λb
tanβ

λt =
mt

v sinβ

V = UuU†
d



RP = -1 fermions (gauginos and Higgsinos)

gA  Wa  B  hu  hd 

 

gA  have mass M3

h+u W+ / h-d W- can mix (“charginos”)

h0u h0d W0 B can mix (“neutralinos”)
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~ ~ ~ ~ ~

h̃u =
(

h̃+
u

h̃0
u

)
h̃d =

(
h̃0

d

h̃−d

)
W̃± =

W̃1 ∓ iW̃2√
2

W̃ 0 = W̃ 3

~

~ ~ ~ ~

~ ~ ~ ~



Charginos:

e.g.

Neutralinos:
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MN =





M1 0 −
√

2MZsW cβ

√
2MZsW sβ

0 M2

√
2MZcW cβ −

√
2MZcW sβ

−
√

2MZsW cβ

√
2MZcW cβ 0 −|µ|eiφµ

√
2MZsW sβ −

√
2MZcW sβ −|µ|eiφµ 0





√
2MZcW cβ from

√
2h†

u(g
σa

2
W̃a + g′ 1

2
B̃)h̃u +

√
2h†

d(g
σa

2
W̃a − g′ 1

2
B̃)h̃d

−L ⊇
(
W̃− h̃−d

)
MC

(
W̃+

h̃+
u

)
+ h.c. MC =

(
M2

√
2MZcW sβ√

2MZcW cβ |µ|eiφµ

)

−L ⊇ 1
2

(
B̃ W̃ 3 h̃0

d h̃0
u

)
MN





B̃
W̃ 3

h̃0
d

h̃0
u



 + h.c.



Small v/Mi, v/|μ|:
• W+ W- → 1 Dirac spinor, mass M2

• h+u h-d → 1 Dirac spinor, mass |μ|
• h0u h0d → 1 Dirac spinor, mass |μ|
• B, W0 → 2 Majorana spinors, mass M1, M2

In general:
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(
χ−1
χ−2

)
= U

(
W̃−

h̃−d

) (
χ+

1

χ+
2

)
= V

(
W̃+

h̃+
d

)




χ0
1

χ0
2

χ0
3

χ0
4



 = N





B̃
W̃ 0

h̃0
d

h̃0
u





mass terms = Mχ+
i
χ+

i χ−i +
1
2
Mχ0

j
χ0

jχ
0
j + h.c. = Mχ±i

C̄iCi +
1
2
Mχ−j

N̄jNj

Ci =
(

εχ−i
∗

χ+
i

)
Ni =

(
εχ0

i
∗

χ0
i

)

MC = V T Mdiag
C U

MN = NT Mdiag
N N

(ordered by mass: Mi ≤ Mj if i < j)



Mχ± ≳ (90 - 105) GeV (depending on scenarios)

Mχ± > Q ⇒ M22 + μ2 > 2Q2+2QMW

The LSP can easily be in the neutralino/chargino sector

Composition of the lightest neutralino/chargino: 

• In the limit of small EWSB effects and assuming gaugino unification:        
χ01 mainly Bino if M1 ≲ μ, mainly Higgsino if M1 ≳ μ

• If M1 ≳ μ, EWSB and loop effects guarantee
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h̃u =
(

V †
2nχ+

n

N†
4mχ0

m

)
h̃d =

(
N†

3mχ0
m

U†
2nχ+

n

)

gsg̃
ATA + gW̃ aTa + g′B̃Y = gsg̃

ATA

+
g√
2
U†

1nχ−
n T− +

g√
2
V †

1nχ+
n T+ +

(
gN†

W3mT3 + g′N†
BmY

)
χ0

m

M±
χ1
≥M0

χ2



hu  hd  8 real dofs: 2x(Q=1) + 2x(Q=-1) + 2x(Q=0,CP+) + 2x(Q=0,CP-) 

3 massless Goldstones G+ G- G0 (CP-)

5 physical dofs: H+ H- A (CP-) ϕu ϕd (CP+)

V(hu, hd) breaks SU(2)wxU(1)Y, preserves U(1)em, CP
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RP = 1 scalars (Higgs sector)

(barring ϕμ,A effects
through loop corrections,

neglecting δCKM)

hu =




cβH+ + isβG+

vsβ +
φu − i(sβG0 + cβA)√

2



 hd =



vcβ +
φd + i(cβG0 − sβA)√

2
sβH− + icβG−







Masses: the 8x8 mass matrix decomposes into 

• a vanishing 3x3 block corresponding to the Goldstones G+ G- G0

• a mass term for H+H-:

• a mass term for A:

• a 2x2 mass matrix for ϕu ϕd: 

Decoupling limit: mA » v ⇔ mH± » v ⇔ mH » v (mh ~ v) α ≈ β-π/2

56

m2
A =

∂2VA

∂A2

∣∣∣
A=0

m2
H± =

∂2V±
∂H+∂H−

∣∣∣
H±=0

V± = V

((
cβH+

vsβ

)
,

(
vcβ

sβH−

))

−L ⊇ −1
2

(φu φd) M2
φ

(
φu

φd

)

M2
φ = R(α)

(
m2

H
m2

h

)
R(α)−1 m2

h < m2
H R(α) =

(
cα −sα

sα cα

)

φd = cαH − sαh

φu = cαh + sαH



m2h  m2H  m2H±  m2A  α  β  ↔  MSSM parameters

Decoupling limit: m2h ≈ M2Z cos22β

In general:

 

1-loop corrections (very basic approx):

• Lower limit on m2h  → lower limit on mt → lower limit on FT

• lower tanβ requires a larger correction (upper limit on mt → lower limit on tanβ)
• m2h > 115 GeV can be evaded in the MSSM but requires even more FT

57

In the MSSM

M2
φ =

(
m2

As2
β + M2

Zc2
β −sβcβ(m2

A + M2
Z)

−sβcβ(m2
A + M2

Z) m2
Ac2

β + M2
Zs2

β

)

m2
h,H =

1
2

[
M2

Z + m2
A ±

√
(M2

Z + m2
A)2 − 4M2

Zm2
A cos2 2β

]

tan 2α =
m2

A + M2
Z

m2
A −M2

Z

tan 2β

m2
A = m2

u + m2
d = m2

hu
+ m2

hd
+ 2|µ|2

m2
H± = m2

A + M2
W

( cos 2α =
M2

Z −m2
A

m2
H −m2

h

cos 2β

sin 2α = −M2
Z + m2

A

m2
H −m2

h

sin 2β

)

for m̃t ! 1-2 TeV

[Ellis Ridolfi Zwirner]

~

m2
h ≤M2

Z cos2 2β (tree level)

m2
h ! M2

Z cos2 2β +
3

4π2
h2

t m
2
t log

m̃2
t

m2
t

! 130 GeV



Radiative corrections to mh

Full 1-loop computation: Coleman-Weinberg potential + self-energy

Moderate tanβ: corrections dominated by top-stop sector

The stop mixing (At + μcotβ) has a significant impact on the results

              -enhanced contributions:

• consider the limit

• match the MSSM at Q > m with the SM at Q < m:

• compute leading-log corrections to the SM Higgs coupling

•
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log(m̃2
t /m2

t )

m̃2
t ! m2

t

m2
h = 2λh(mt)v2 = M2

Z cos2 2β + 12
h2

t

(4π)2
m2

t log
m̃2

t

m2
t

λh(mt) = λh(m̃t) + 6
h2

t

(4π)2
log

m̃2
t

m2
t





λh(m̃t) =

g2 + g′2

4
cos2 2β

ht = λt sinβ = mt/v

~ ~



RP = -1 scalars (squarks and sleptons)

                                                     

Possible mixing between

• SU(3)c triplets, Q=2/3 (up squarks): ui uci* 

• SU(3)c triplets, Q=-1/3 (down squarks): di dci* 

• SU(3)c singlets, Q=-1 (charged sleptons): ei eci* 

• SU(3)c singlets, Q=0 (sneutrinos): νi
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q̃i =
(

ũi

d̃i

)
ũc

i

d̃c
i

l̃i =
(

ν̃i

ẽi

)
ẽc
i q̃∗i =

(
ũ∗i
d̃∗i

)
ũc∗

i

d̃c∗
i

l̃∗i =
(

ν̃∗i
ẽ∗i

)
ẽc∗
i



Super-CKM basis: write the scalar mass matrices in the basis in flavour 
space in which the corresponding fermions are diagonal (U or D)
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m2
R ≡ (m2

c)
∗

−L =
(
ũ∗ ũc

)
M2

U

(
ũ

ũc∗

)
+

(
d̃∗ d̃c

)
M2

D

(
d̃i

d̃c∗
i

)
+

(
ẽ∗ ẽc

)
M2

E

(
ẽ

ẽc∗

)
+ ν̃∗M2

ν ν̃

AU,D,E ≡ λU,D,EÂU,D,E

M2
U =

(
m̃2

q + M†
UMU + M2

Zzuc2β1 −(Â†
U + µ cot β)M†

U

−MU (ÂU + µ∗ cot β) m̃2
uR

+ MUM†
U + M2

Zzucc2β1

)
=

(
LL LR
RL RR

)

M2
D =

(
m̃2

q + M†
DMD + M2

Zzdc2β1 −(Â†
D + µ tanβ)M†

D

−MD(ÂD + µ∗ tanβ) m̃2
dR

+ MDM†
D + M2

Zzdcc2β1

)

M2
E =

(
m̃2

l + M†
EME + M2

Zzec2β1 −(Â†
E + µ tanβ)M†

E

−ME(ÂE + µ∗ tanβ) m̃2
eR

+ MEM†
E + M2

Zzecc2β1

)

M2
ν = m̃2

l + M2
Zzνc2β1

zA ≡ t3(A)− sin2 θW q(A)



FCNC/sugra-inspired ansatz for colliders:                                 
(neglecting small off-diagonal entries, Vcb,ub)

I and II families up squarks:

III family (stops): 

Analogously in the D, E sectors. Relevant LR mixing in the third family only 
for large tanβ
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(m̃2
ij) =




m̃2

m̃2

m̃2
3





(
t̃1
t̃2

)
=

(
cθ sθ

−sθ cθ

) (
t̃L
t̃R

)

(
m̃2

q3
+ m2

t + zuc2βM2
Z −mt(At + µ cot β)

−mt(At + µ cot β) m̃2
uc

3
+ m2

t + zucc2βM2
Z

)

m̃2
u1,2

= m̃2
q + zuc2βM2

Z

m̃2
uc

1,2
= m̃2

uc + zucc2βM2
Z

0 ≤ θ ≤ π, m̃t1 < m̃t2



In general: 

                          = relative rotation between up quarks and squarks

                          enters supersymmetric gauge interactions and extra

                          Yukawa interactions (analogously in D, E, ν sectors)
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M2
U = U†

UM
2diag
U UU M2diag

U = (m̃2
UI

)6I=1

M2
D = U†

DM
2diag
D UD M2diag

D = (m̃2
DI

)6I=1

M2
E = U†

EM
2diag
E UE M2diag

E = (m̃2
EI

)6I=1

M2
ν = u†

ν M2diag
ν uν M2diag

ν = (m̃2
νi

)3i=1

WU ≡
(

Uu

U∗
uc

)
U†

U

q̃i =
(

(U†
U )iJ ŨJ

(U†
D)iJD̃J

)
ũc∗

i = (U†
U )(i+3)J ŨJ

d̃c∗
i = (U†

D)(i+3)JD̃J
l̃i =

(
(u†

ν)ij ν̃j

(U†
E)iJ ẼJ

)
ẽc∗
i = (U†

E)(i+3)J ẼJ



Interactions and 
phenomenology



Lsusy = Kinetic + gauge for Ai, ψi, vµ
A, λA

−
(

1
2
∂i∂jW (A)ψiψj +

√
2gAA†

iT
ij
A λAψj + h.c.

)
− V (A)

V (A) = F †
i Fi +

1
2
D2

A ≥ 0
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W = λU
ij û

c
i q̂j ĥu + λD

ij d̂
c
i q̂j ĥd + λE

ij ê
c
i l̂j ĥd + µ ĥuĥd

−Lsoft = AU
ij ũ

c
i q̃

jhu + AD
ij d̃

c
i q̃

jhd + AE
ij ẽ

c
i l̃

jhd + m2
udhuhd + h.c.

+ (m̃2
q)ij q̃

†
i q̃j + (m̃2

uc)ij(ũc
i )

†ũc
j + (m̃2

dc)ij(d̃c
i )

†d̃c
j + (m̃2

l )ij l̃
†
i l̃j

+ (m̃2
ec)ij(ẽc

i )
†ẽc

j + m2
hu

h†
uhu + m2

hd
h†

dhd

+
M3

2
g̃Ag̃A +

M2

2
W̃aW̃a +

M1

2
B̃B̃ + h.c.

L = Lsusy + Lsoft

−Lsoft = m2
ijA

†
iAj +

(
MAB

2
λAλB + w(A) + h.c.

)

+ express fields in terms of mass eigenstate



⊇ g

cW
zh0

u

(
N1h0

u
N∗

1h0
u
−N1h0

d
N∗

1h0
d

)
χ0

1
†
σµχ0

1Zµ

=
g

cW
zh0

u

(
N1h0

u
N∗

1h0
u
−N1h0

d
N∗

1h0
d

)
N1LγµN1LZµ

Assume the LSP is the lightest neutralino 

The detection process proceeds through h (spin independent) or Zμ (spin 
dependent) exchange

          from

note: the coupling vanishes in the small v/M limit 

              from 

note: the coupling vanishes in the small v/M limit 
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Example: dark matter detection

h†
u

(
gW̃ a σa

2
+ g′B̃

1
2

)
h̃u + h†

d

(
gW̃ a σa

2
− g′B̃

1
2

)
h̃d + h.c.

⊇ hχ0
1χ

0
1

[
cα

(
g t3(h0

u)N∗
1W̃ 0 + g′y(h0

u)N∗
1B̃

)
Ñ∗

1h̃0
u
− sα

(
g t3(h0

d)N
∗
1W̃ 0 + g′y(h0

d)N
∗
1B̃

)
Ñ∗

1h̃0
d

]
h χ0

1χ
0
1

χ0
1
†
σµχ0

1Zµ h̃†
uiσµDµh̃u + h̃†

diσ
µDµh̃d + W̃ †iσµDµW̃ + B̃†iσµDµB̃

Ψ1Ψ2 = ψc
1ψ2 + (ψ1ψ

c
2)

∗ Ψ1γ
µΨ2 = ψ†

1σ
µψ2 − (ψc

2)
†σµψc

1

[
Dµ ⊇

g

cW

(
T3 − s2

W Y
)
Zµ

]



Dark matter abundance
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FIG. 1. Contours of constant LSP mass mχ in GeV in the (m0,M1/2) plane for A0 = 0, µ > 0,
mt = 174 GeV, and two representative values of tan β. The green shaded regions are excluded by

the requirement that the LSP be neutral (left) and by the chargino mass limit of 95 GeV (bottom
and right). We have also delineated the regions with potentially interesting values of the LSP relic
abundance: 0.025 ≤ Ωχh2 ≤ 1 (yellow) and 0.1 ≤ Ωχh2 ≤ 0.3 (light blue). In the black region,

|2mχ − mh| < 5 GeV, and neutralino annihilation is enhanced by a Higgs resonance.

FIG. 2. Contours of constant gaugino fraction Rχ in percent, for the same values of the pa-

rameters as in Fig. 1.

Neutralinos annihilate through a variety of channels. The three leading processes are
shown in Fig. 3. (Note that co-annihilation, while potentially important in determining
relic densities in the early universe, is negligible now.) Annihilation into gauge bosons is of
particular importance, as these processes lead to more energetic and striking signals. The
WW cross section relies on Wχχ±

i interactions. The only such couplings allowed by gauge
invariance are WH̃0H̃± and WW̃ 0W̃±. However, as noted above, gaugino mass unification

7

[Feng Matchev Wilczek, hep-ph/0008115]



Example: supersymmetric contributions to εK

εK: CP-violation in K0(ds) - K0(ds) oscillations

Induced by 

SM interactions only contribute to C1Q1, supersymmetry to all
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– ––

H ⊇ CiQi Qi ∼ (s†d)2

Q1 = (s̄αγµPLdα)(s̄βγµPLdβ) Q6 = Q̃1 = Q1|L↔R

Q2 = (s̄αPLdα)(s̄βPLdβ) Q7 = Q̃2 = Q2|L↔R

Q3 = (s̄αPLdβ)(s̄βPLdα) Q8 = Q̃3 = Q3|L↔R

Q4 = (s̄αPLdα)(s̄βPRdβ)
Q5 = (s̄αPLdβ)(s̄βPRdα)

d

s

s

d

g̃A

g̃B

ŨI ŨJ

W+

W+

ujui

d

s

s

d

+ another diagram
+ chargino and neutralino exchange
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−L ⊇
√

2gsq̃
†
i g̃

A λA

2
qi −

√
2gs(d̃c

i )
†g̃A λT

A

2
dc

i + h.c.

=
√

2gsW†
DJdL

i
D̃†

J

λA

2
dig̃

A −
√

2gsW†
DJdR

i
D̃†

J

λA

2
(
dc

i g̃
A
)∗

+ h.c.

=
√

2gsD̃
†
J

λA

2
G

A
(
W†

DJdL
i
PL +W†

DJdR
i
PR

)
ψd

Ψ1Ψ2 = ψc
1ψ2 + (ψ1ψ

c
2)

∗ Ψ1γ
µΨ2 = ψ†

1σ
µψ2 − (ψc

2)
†σµψc

1
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Gauge coupling unification

SU(3) SU(2) U(1)

Li 1 2 -1/2

eci 1 1 1

Qi 3 2 1/6

uci 3* 1 1/3

dci 3* 1 -2/3

Y
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Gauge coupling unification

SU(3) SU(2) U(1)

Li 1 2 -1/2

eci 1 1 1

Qi 3 2 1/6

uci 3* 1 1/3

dci 3* 1 -2/3

Y

SO(10)

16



69

Gauge coupling unification

SU(3) SU(2) U(1)

Li 1 2 -1/2

eci 1 1 1

Qi 3 2 1/6

uci 3* 1 1/3

dci 3* 1 -2/3

Y

SO(10)

16
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Gauge coupling unification

SU(3) SU(2) U(1)

Li 1 2 -1/2

eci 1 1 1

Qi 3 2 1/6

uci 3* 1 1/3

dci 3* 1 -2/3

Y

SO(10)

16
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4π
dα−1

i

d log(M2/Q2)
= bi

Tr(TATB) =
N3

2
δAB N3 ≥ 0 integer

Tr(tatb) =
N2

2
δab N2 ≥ 0 integer

Tr(Y2) =
N1

6
N1 ≥ 0 integer (from SU(5) multiplets)

b3 = −7 +
N3

3

b2 = −

19

6
+

N2

3

b1 =
41

10
+

N1

15
(SU(5) norm.)

(only fermions; with scalars: N → Nf+Ns/4) 



The μ-problem

100 GeV ≲ μ ≲ TeV

As the soft supersymmetry breaking parameters: why?

• μ is actually a supersymmetry-breaking parameter (Giudice-Masiero)

• μ = <S>, <S> induced by supersymmetry breaking (NMSSM)
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W = λU
ij û

c
i q̂j ĥu + λD

ij d̂
c
i q̂j ĥd + λE

ij ê
c
i l̂j ĥd + µ ĥuĥd

−Lsoft = AU
ij ũ

c
i q̃

jhu + AD
ij d̃

c
i q̃

jhd + AE
ij ẽ

c
i l̃

jhd + m2
udhuhd + h.c.

+ (m̃2
q)ij q̃

†
i q̃j + (m̃2

uc)ij(ũc
i )

†ũc
j + (m̃2

dc)ij(d̃c
i )

†d̃c
j + (m̃2

l )ij l̃
†
i l̃j

+ (m̃2
ec)ij(ẽc

i )
†ẽc

j + m2
hu

h†
uhu + m2

hd
h†

dhd

+
M3

2
g̃Ag̃A +

M2

2
W̃aW̃a +

M1

2
B̃B̃ + h.c.

Reminder



Minimal extension: λSHuHd (with no μHuHd because of symmetries)

• harmless (unification OK)

• welcome (μ = λ<S> ≈ susy scale)

Spectrum: h H → h1 h2 h3, A → a1 a2, N1…N4 → N0 N1…N4

Help with FT from                                                            :

•                                                    (λ bound by Landau poles)

•                     through invisible decays h → aa (ma protected by PQ, R)

Persistent FT from

• direct bounds on SUSY partners

• arranging the invisible decay [Shuster Toro hep-ph/0512189]

Signatures:

Beyond MSSM: xMSSM
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Invisible Higgs decays: h → aa → 4X  [No loose theorem? Ellwanger Gunion Hugonie Moretti hep-ph/0401228, ...]

3leptons → multileptons from additional steps in chargino/neutralino decays
• C1+N2 and then 
• N2 → N1+2l → N0+4l (if N0 is lightest and mainly singlino)
• C1 → N0+l+ν (5l overall) or even C1 → N1+l+ν  → N0+3l+ν (7l overall)

Deviation from MSSM coupling relations: VVh = VHA = sin2(α-β), VVH = VhA 
= cos2(α-β) (optimistic)

Z’ if μ is protected by a gauge symmetry
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[Barger Langacker Lee Shaughnessy hep-ph/0603247]



[Pomarol Quiros hep-ph/9806263
Barbieri Hall Nomura hep-ph/0011311]

Other variations on the MSSM
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Other variations on the MSSM
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–    f: SU(3)
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Issues

• Potentially > 100 parameters (CMSSM)

• FCNCs and CP-violation in particular EDMs                                   
(SUSY breaking mechanism, symmetries)

• Proton decay from dimension 5 operators                                           
(non minimal models)

• Gravitino and moduli problem (low reheating T)

• Fine-tuning (NMSSM)

Successes of the MSSM
• Gauge coupling unification

• Natural dark matter candidate (with R-parity)
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Dark matter still motivates NP at the TeV scale

–    Qcutoff

NP

DM + unif

–    QNP

[Arkani-Hamed Dimopoulos 04,       
Giudice R 04,                                

Arkani-Hamed Dimopoulos Giudice R 04]



DM: μ < 1.2 TeV (M1 < M2), mostly Bino favourable for LHC

No bounds from EWPTs

mH < 170 GeV, in terms of of m, tanβ

Long-lived gluino R-hadrons (charged: slow, highly ionizing 
track; neutral: missing energy, mild hadronic activity; 
actually: Energy, charge, Baryon-number exchange)       
LHC sensitivity up to (1-2.5) TeV

(quasi-stable coloured particles also e.g stop in some 5D 
SUSY models or in MSSM with fine-tuned mt ≈ MN1)

Wilder: stopping gluinos (1-2 jets in any direction from 
denser parts of the detector + m.e.), displaced vertexes 
(low m), charge flips

–    SUSY + R

Split Supersymmetry
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Squarks 
Sleptons 
Heavy H

Gauginos 
Higgsinos

–    SUSY

~

[Kilian Plehn Richardson Schmidt hep-ph/0408088, 
Hewett Lillie Masip Rizzo hep-ph/0408248,      

Kraan Hansen Nevski hep-ex/0511014]
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