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Abstract

Floer homology is a good example of homological invariants living
in the infinite dimension. We suggest a way to construct this kind of
invariants using only soft essentially finite-dimensional tools; no hard
analysis or PDE is involved. This work is partially inspired by the M.
Gromov’s survey “Soft and hard symplectic geometry” at ICM-86.

1 Introduction

Floer homology (see [4, 5]) is a good example of homological invariant, which
lives in the infinite dimension. It is not completely homotopy invariant1, but
it survives a class of “compact homotopies” that are close enough to finite-
dimensional perturbations.

Classical construction of Floer homology and similar invariants involves
hard analysis and elliptic systems of PDEs. This is a beautiful theory but
it is technically heavy and rather restrictive; we cannot go beyond a limited
number of situations where good elliptic systems are available.

In this expository paper, partially motivated by the well-known M. Gro-
mov’s survey [3], we suggest a soft and essentially finite-dimensional ap-
proach to the Floer-type homological invariants. We use finite-dimensional
subspaces of an auxiliary Banach space for finite-dimensional approxima-
tions of the original big object. The role of this Banach space is similar to
the role of the events space in the Kolmogorov’s foundation of Probabilities
Theory.

In our study, the infinite dimension and infinite size remain only potential
infinities. We deal with very big but still finite-dimensional and compact
objects, the dimension and size are just big parameters. The “Infinity” is
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1indeed, infinite dimension implies an infinite freedom :-)
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treated as a singularity and we study asymptotics of usual finite-dimensional
homological invariants at this singularity.

Let me describe a toy example, the Leray–Schauder degree. Let B be an
infinite-dimensional separable Banach space and S ⊂ B the unite sphere in
B. Let E = {E ⊂ B : dimE <∞} be the ordered by the inclusion directed
set of finite-dimensional subspaces of B. Given E ∈ E , the intersection
E ∩ S is a (dimE − 1)-dimensional sphere. In particular, the homology
group Hi(dimE−1)(S ∩ E) equals Z for i = 0, 1 and equals 0 for other i; it
depends only on i and does not depend on E. We set:

Gi(S) = Hi(dimE−1)(S ∩ E)

and call Gi(S) the Leray–Schauder homology of S. Recall that S is con-
tractible and Hi(S) = 0, ∀i 6= 0.

Now let ϕ : S → B be a compact map such that x+ ϕ(x) 6= 0, ∀x ∈ S.
For any ε > 0, there exist a ε-close to ϕ finite-dimensional map ϕε : S → Eε,
where Eε ∈ E . If ε is small enough, then x+ϕε(x) 6= 0, ∀x ∈ S, that allows
us to define a map:

Φε
E : S ∩ E → S ∩ E, Φε

E(x) =
x+ ϕε(x)

|x+ ϕε(x)|
,

for any E ⊃ Eε. The degree of this map d = deg(Φε
E) does not depend on

E and is the same for all sufficiently good approximations ϕε. This is the
Leray–Schauder degree.

The degree is defined by the homomorphism

Φε
E∗ : HdimE−1(S ∩ E)→ HdimE−1(S ∩ E), Φε

E∗(c) = cd,

for any c ∈ HdimE−1(S ∩ E) = Z. Since this homomorphism does not de-
pend on ε and E (for small enough ε and big enough E), we may interpret
it as a homomorphism Φ∗ : G1(S) → G1(S), where Φ = I+ϕ

|I+ϕ| . This homo-
morphism survives homotopies ϕt, 0 ≤ t ≤ 1, where all ϕt are compact and
x+ ϕt(x) 6= 0, ∀x ∈ S.

In the next section we give our soft construction of Floer homology and
in Section 3 we explain, why it works. In Section 4 we briefly study another
example, inspired by the sub-Riemannian geometry. This example demon-
strates a much more interesting asymptotic behavior of the homology than
in the usual Floer case. We conclude with a draft of general construction
that can be adapted to many different situations.

In what follows, the definitions and statements are precise while the
proofs are only sketched.
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2 Floer Homology

We consider a compact smooth manifold M endowed with a symplectic
structure σ. Let M̃ be the universal covering of M and σ̃ the pullback of σ
to M̃ ; we assume that σ̃ is an exact form: σ̃ = ds.

We denote by Ω the space of contractible closed curves in M of class
H1. In other words, Ω consists of contractible maps γ : S1 → M , where γ
is differentiable almost everywhere with the derivative of class L2. The lifts
of γ ∈ Ω to M̃ are closed curves and we use the same symbol γ for any lift
of this curve to M̃ .

Let ht : M → R, t ∈ S1, be a measurable bounded with respect to t ∈ S1

family of smooth functions on M . We are going to study the functionals
ϕh : Ω→ R defined by the formula

ϕh(γ) =

∫
S1

s(γ̇(t))− ht(γ(t)) dt.

Note that
∫
S1〈s, γ̇(t)〉 dt =

∫
Γ σ for any film Γ such that γ = ∂Γ and this

integral does not depend on the choice of the lift of γ to M̃ . Given c ∈ R,
we denote by Ωc

h the Lebesgue set of ϕh:

Ωc
h = {γ ∈ Ω : ϕh(γ) ≤ c}

We use some auxiliary objects. The homology invariants will be con-
structed with a help of these objects but do not depend on their choice.
Namely, we assume that M is equipped with a Riemannian structure 〈·, ·〉
adapted to the symplectic structure, i. e. σ(ξ, η) = 〈Jξ, η〉, ξ, η ∈ TM,
where J : TM → TM is a quasi-complex structure, J2 = −I.

Moreover, we fix generators X1, . . . , Xl of the C∞(M)-module VecM of
all smooth vector fields on M and define a linear map Xq : Cl → TqM by
the formula

Xqu =

l∑
j=1

vjXj(q) + wjJXj(q),

where u = (u1, . . . , ul), uj = vj + iwj ∈ C, j = 1, . . . , l. We assume that
〈·, ·〉|TqM , q ∈M, is the image of the standard Euclidean structure on Cl by
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the linear map Xq; in other words,

〈ξ, ξ〉 = min{|u|2 : u ∈ Cl, ξ = Xqu}.

A simple model example is an even-dimensional torus with a constant
sympletic structure, flat Riemannian metric and constant vector fields
X1, . . . , Xl. Needless to say that, in general, if M is not parallelizable,
number l is greater than dimM . Anyway, the described auxiliary objects
always exist and can be easily built.

Let W be the space of all curves in M of class H1 parameterized by the
segment [0, 1]. We fix a parametrisation of S1 by [0, 1]; then Ω ⊂W .

We define the map φ : M × L2([0, 1];Cl)→ W as follows. Given q ∈M
and u(·) ∈ L2([0, 1];Cl) the curve γ(·) = φ(q, u(·)) is the solution of the
ordinary differential equation

γ̇(t) = Xγ(t)u(t), 0 ≤ t ≤ 1,

with the initial condition γ(0) = q. It is important for us that weak conver-
gence of a sequence un ∈ L2([0, 1];Cl) to u (un ⇀ u as n→∞) and conver-
gence of qn ∈M to q imply uniform convergence of φ(qn, un) to φ(q, u).

We also set φt(q, u) = (q, φ(q, u)(t)) and thus define the map
φt : M × L2([0, 1];Rl) → M × M . It is easy to see that φt is a smooth
map and φt is a submersion for 0 < t ≤ 1.

The differential of φt is a linear operator D(q,u)φt : TqM×L2([0, 1];Cl)→
TqM × TqM . It is important for us that convergence qn → q and weak
convergence un ⇀ u as n → ∞ imply convergence D(qn,un)φt → D(q,u)φt
in the operator norm. It follows immediately from the standard ODE’s
“variations formula” for the differental of φt and the uniform convergence
φ(qn, un)→ φ(q, u).

Given a subspace E ⊂ L2([0, 1];C), we set El = E×· · ·×E ⊂ L2([0, 1];Cl).

Lemma 1. 0 < t ≤ 1, r > 0, and Br =
{
u ∈ L2([0, 1];Cl) : ‖u‖ < r

}
. Then

there exists a finite-dimensional subspace Er ⊂ L2([0, 1];C) such that for
any subspace E ⊃ Er the map φt

∣∣
M×(El∩Br) has no critical points.

Proof. For any (q, u) ∈M×L2([0, 1];Cl) there exists a finite-dimensional
subspace E(q,u) such that the restriction of D(q,u)φt to the subspace

TqM × El(q, u) is surjective; simply because φt is a submersion and M
is finite-dimensional.

Moreover, we can take E(q′,u′) = E(q,u) for all q′ close to q and u′ close
to u in the weak topology. Hence, due to the compactness of M and weak
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compactness of B̄r, we may assume that #{E(q,u) : q ∈ M, u ∈ Br} < ∞.
Then Er =

∑
(q,u)∈M×Br

E(q,u) is the desired space. �

If E satisfies conditions of Lemma 1, then

Ur(E)
.
= {(q, u) ∈M × (Br ∩ El) : φt(q, u) = (q, q)} (1)

is a smooth submanifold of M×El of dimension dimEl and φ(Ur(E
l)) ⊂ Ω.

In the next construction, we prefer to treat S1 in the intrinsic way as an
Abelian Lie group equipped with the Haar measure dθ rather than directly
parameterize it by a segment. Let q ∈ M , we denote by bq a symmetric
bilinear form on the space H1(S1;TqM) defined by the formula:

bq(ξ, η) =

∫
S1

σ(ξ(θ), η̇(θ)) dθ, ξ, η ∈ H1(S1;TqM).

A vector-function η ∈ H1(S1;TqM) belongs to the kernel of bq if and only
if η is constant, i. e. η(θ) ≡ η(0). Indeed, if η̇ 6= 0, then

bq(Jη̇, η) = −
∫
S1

〈η̇(θ), η̇(θ)〉 dθ < 0. (2)

So, if η̇ ∈ H1(S1;TqM), then η is not in the kernel; otherwise, we approxi-
mate η̇ by a smooth function in the norm L2 and plug-in the approximating
function in (2) instead of η̇.

We denote by ı : H1(S1;TqM) → H1(S1;TqM) the involution defined
by the formula (ıξ)(θ) = ξ(−θ). Then

bq(ıξ, ıη) = −bq(ξ, η), ξ, η ∈ H1(S1;TqM). (3)

Let E be a finite-dimensional subspace of L2([0, 1];C) and

E0 =
{
υ ∈ E :

∫ 1
0 υ(t) dt = 0

}
. We set:

Xq(E) =

{
θ : 7→ ξ0 +

∫ θ

0
Xqu(t) dt : ξ0 ∈ TqM, u(·) ∈ El0

}
⊂ H1(S1;TqM).

We say that E is well-balanced if ıE = E and ker bq|Xq(E) = ker bq.

Lemma 2. Any finite-dimensional subspace of L2([0, 1];C) is contained in
a well-balanced subspace.

Indeed, we can always add to E a big enough finite-dimensional space of
trigonometric polynomials to guarantee that for the enlarged space Ê and
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any nonconstant η ∈ Xq(Ê) there exists ξ ∈ Xq(Ê) that is not orthogonal to
η̇ in L2(S1;TqM).

Let E be the directed set of well-balanced subspaces ordered by the
inclusion, the E- lim of a generalized sequence indexed by the elements of E
is defined in a usual way.

We are now ready to formulate the main result. Let E ∈ E , c > 0, and
r > 0. We consider relative homology groups

Gi(E; c, r)
.
= Hi

(
φ(Ur(E)) ∩ Ωc

h, φ(Ur(E)) ∩ Ω−ch
)
,

i = 0, 1, 2, . . ..
Let r̄ > r and r̄r : Gi(E; c, r) → Gi(E; c, r̄) be the homology homomor-

phisms induced by the inclusions

φ(Ur(E)) ∩ Ω±ch ⊂ φ(Ur̄(E)) ∩ Ω±ch .

Theorem 1. There exist

lim
c→∞

lim
r→∞

lim
r̄→∞

E- lim r̄r
(
Gi+dE (E; c, r)

) ∼= Hi(M),

where dE = 1
2(dimE − 1) dimM .

Remark. Actually, the families under the limits stabilize; a little bit
more precise statement is as follows. For any big enough c > 0 there exist
r(c) > 0, r̄(c, r) > r(c), and E(c, r, r̄) ∈ E such that for any r > r(c), r̄ >
r̄(c, r) and well-balanced E ⊃ E(c, r, r̄) we have:

r̄r (Gi+dE (E; c, r)) ∼= Hi(M).

The limit in Theorem 1 is a soft construction of Floer homology. It im-
plies Morse inequalities for the functional ϕh, which we are going to describe
now.

Let γ ∈ Ω and ξ a vector field along γ; then

dγϕh(ξ) =

∫ 1

0
σ(ξ(t), γ̇(t))− dγ(0)ht(ξ(t) dt =

∫ 1

0
〈−Jγ̇(t)−∇γ(t)ht, ξ(t)〉 dt.

To get this formula, it is sufficient to consider a very narrow film obtained
by the translation of γ in the direction of ξ and apply the Stokes formula to
the integral of s over the boundary of the film.

Hence γ is a critical point of ϕh if and only if γ̇ = J∇γht, 0 ≤ t ≤ 1.

Note that J∇ht = ~ht, where ~ht is the Hamiltonian vector field associated
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to the function ht on the symplectic manifold M , i. e. σ(·,~ht) = dht(·). We
obtain that critical points of ϕht are exactly periodic solutions of period 1
of the time-varying Hamiltonian system

γ̇(t) = ~ht(γ(t)), 0 ≤ t ≤ 1. (4)

A similar trick allows to easily compute the Hessian of ϕh at a critical
point γ. We take one more vector field η along γ, move our narrow film a
little bit in the direction of η, and apply the Stocks formula to the integral
of σ over the boundary of the obtained thin 3-dimensional body. We have:

d2
γϕh(ξ, η) =

∫ 1

0
σ(η(t), ξ̇(t))− d2

γ(t)ht(η(t), ξ(t)) dt.

It follows that the field ξ belongs to the kernel of d2
γϕh if and only if ξ is a

periodic solution with period 1 of of the linearization of system (4) along γ.
Let P t : M →M be the flow on M generated by system (4),

∂P t

∂t
= ~ht(P

t(q)), P 0(q) = q, q ∈M.

A curve γ(t) = P t(γ(0)), 0 ≤ t ≤ 1, is a critical point of ϕh if and only
if γ(0) is a fixed point of P 1. The linearization of P 1 at γ(0) is a linear
operator P 1

∗ γ(0) : Tγ(0)M → Tγ(0)M .
We say that γ is a non-degenerate 1-periodic solution of system (4)

if det(P 1
∗ γ(0) − I) 6= 0. According to the implicit function theorem, non-

degenerate 1-periodic solutions are isolated. Moreover, as we have seen, a
1-periodic solution γ of system (4) (a critical point of ϕh) is non-degenerate
if and only if kerD2

γϕh = 0.
The next step is to associate an index i(γ) ∈ Z to any non-degenerate 1-

periodic solution of system (4). To do that we need some general properties
of symmetric bilinear forms. Let b be a continuous symmetric bilinear form
on a Hilbert space H and F ⊂ H be a closed subspace. We set

F⊥b = {x ∈ H : Q(x, F ) = 0},

the orthogonal complement to F with respect to the form b; then F ∩F⊥b =
ker(b|F ).

Let F ⊂ H be a finite codimension subspace such that b|F is nondegen-
erate2, then F⊥b is finite dimensional and the signature sgn(b

∣∣
F⊥b

) ∈ Z is
well-defined. Recall that the signature of a symmetric bilinear form is the
difference between the positive and negative inertia indices.

2We say that a bilinear form b : H → H∗ is non-degenerate if b is invertible.
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Lemma 3. Let b0, b1 be symmetric bilinear forms on H, bs = sb1 +(1−s)b0,
and F, F̂ ⊂ H, finite codimension subspaces such that bs|F and bs|F̂ are non-
degenerate for any s ∈ [0, 1]. Then

sgn(b1
∣∣
F
⊥b1

)− sgn(b0
∣∣
F
⊥b0

) = sgn(b1
∣∣
F̂
⊥b1

)− sgn(b0
∣∣
F̂
⊥b0

).

Proof. Step 1. Let F0 ⊂ F be a subspace of finite codimension such
that bs|F0 is non-degenerate for any s from a subsegment [α, β] ⊂ [0, 1].
Then

sgn(bβ
∣∣
F
⊥bβ
0

)− sgn(bα
∣∣
F
⊥bα
0

) = sgn(bβ
∣∣
F
⊥bβ

)− sgn(bα
∣∣
F⊥bα

).

Indeed, F
⊥bs
0 = F

⊥bs
0 ∩ F ⊕ F⊥bs and bs

∣∣
F
⊥bs
0 ∩F

is a non-degenerate form

for any s ∈ [α, β]. Hence sgn(bs
∣∣
F
⊥bs
0 ∩F

) does not depend on s ∈ [α, β]. On

the other hand,

sgn(bs
∣∣
F
⊥bs
0

) = sgn(bs
∣∣
F
⊥bs
0 ∩F

) + sgn
(
bs
∣∣
F⊥bs

)
.

Step 2. The subspace F ∩ F̂ has a finite codimension in H. Moreover,
ker(bs|F∩F̂ ) are finite dimensional, 0 ≤ s ≤ 1. Let Fs ⊂ F ∩ F̂ be a compli-

ment to ker(bs|F∩F̂ ) in F ∩ F̂ ; then bs′ |Fs is non degenerate for all s′ ∈ Os,
where Os is a neighborhood of s in [0, 1]. We can cover [0, 1] by a finite
number of such neighborhoods and apply Step 1. �

Lemma 3 allows us to define

bsgn(b1)− sgn(b0)c .= sgn(b1
∣∣
F
⊥b1

)− sgn(b0
∣∣
F
⊥b0

);

the defined quantity depends only on b1 and b0 and not on the choice of the
subspace F . Note that only the difference of the signatures is well-defined;
each of the forms b0, b1 may have infinite inertia indices.

Now consider symmetric bilinear form d2
γϕh. The variables for this form

are vector fields along γ. The bundle TM |γ is trivializable since γ is con-
tractible. Hence one can find an orthonormal basis of Vj ,Wj , 1 ≤ j ≤ dimM

2
of TM |γ , where J has a canonical form: JVj = Wj , JWj = −Vj . Let
dimM = 2n; written in the good basis, d2ϕh turns into a symmetric bilin-
ear form on H1(S1;Cn) and it has the following expression:

d2
γϕh(ξ, η) =

∫ 1

0
〈iη(t), ξ̇(t)〉 − 〈Rtξ(t), η(t)〉 dt. (5)
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Here n = dimM
2 and Rt is a real symmetric operator on Cn with the 2n×2n-

matrix

{
d2
γ(t)

ht(Vj ,Vk) d2
γ(t)

ht(Vj ,Wk)

d2
γ(t)

ht(Wj ,Vk) d2
γ(t)

ht(Wj ,Wj)

}n
j,k=1

.

Recall that d
dt sends the space Hs(S1;Cn) in Hs−1(S1;Cn), and

∫ 1
0 〈·, ·〉 dt

is a non-degenerate pairing of Hs(S1;Cn) and H−s(S1;Cn). It follows that

form (5) can be continuously extended to the space H
1
2 (S1;Cn).

From now on we assume that ξ, η ∈ H
1
2 (S1;Cn). Note that

d2
γϕ0 − d2

γϕh =

∫ 1

0
〈Rt·, ·〉 dt

is a compact form on H
1
2 (S1;Cn). Now we analyse the form d2

γϕ0

Write the Fourier expansions:

ξ(t) =

+∞∑
k=−∞

ei2πktξk, η(t) =
+∞∑

k=−∞
ei2πktηk.

We set: ξ+(t) =
+∞∑
k=1

ei2πktξk, ξ−(t) =
−1∑

k=−∞
ei2πktξk and similarly for

η+, η−. Then

d2
γϕ0(ξ, η) =

+∞∑
k=1

2πk(〈ηk, ξ̄k〉 − 〈η−k, ξ̄−k〉) = 〈ξ+, η+〉 1
2
− 〈ξ−, η−〉 1

2
,

where 〈·, ·〉 1
2

is the Hilbert inner product of H
1
2 (S1;Cn) (the real part of the

Hermitian product).

We have: H
1
2 (S1;Cn) = H+ ⊕ Cn ⊕ H−, where H± = {ξ± : ξ ∈

H
1
2 (S1;Cn)}. Let s ∈ [0, 1]; the restriction of the form d2

γϕsh to H± can be
written as follows:

d2
γϕsh(ξ±, ηpm) = ±〈ξ± + sA±ξ±, η±〉,

where A± : H± → H± is a compact symmetric operator
Let F± ⊂ H± be the orthogonal complement to the linear hull of all

eigenvectors of A± corresponding to the eigenvalues that are smaller or equal

than −1. Then F = F+⊕F− is a finite codimension subspace of H
1
2 (S1;Cn)

and the restriction of the form d2
γϕsh to F is non-degenerate. So we are in

the conditions of Lemma 3 and we set:

ih(γ) =
1

2
bsgn(d2

γϕ0)− sgn(d2
γϕh)c. (6)
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Let βj(M) be the Betti number of M of the dimension j (rank of the
j’s homology group of M with coefficients in a preliminary chosen field) and
Ch be the set of all periodic trajectories of system (4) with period 1. If all
1-periodic trajectories are non-degenerate, then Ch is a finite set.

Theorem 2 (Morse inequalities). Assume that all 1-periodic trajectories of
system (4) are non-degenerate. Then, for any k ∈ Z, the following inequality
holds: ∑

j≤k
(−1)k−jβj(M) ≤

∑
{γ∈Ch:ih(γ)≤k}

(−1)k−ih(γ).

We have d2
γ(t)h(η, ξ) = 〈η,Rtξ〉, η, ξ ∈ Tγ(t)M . The linearization of

system (4) has a form ξ̇ = JRtξ. Let t 7→ ξ(t) be a solution to this equation,
then ξ(t) = P t∗γ(0)ξ(0), 0 ≤ t ≤ 1. In what follows, we assume that vector
bundle TM |γ is trivialized and treat this differential equation as a linear
Hamiltonian system in a fixed symplectic space Tγ(0)M . We also write TγM
and P t∗γ instead of Tγ(0)M and P t∗γ(0) in order to simplify notations a little
bit. Our next goal is to give an effective formula for index (6) in terms of
the linear symplectic transformations P t∗γ : TγM → TγM . We do it under a
mild regularity assumption.

Let Σ, σ be a symplectic space, Π ⊂ Σ a Lagrange subspace, and L(Σ)
the Lagrange Grassmannian (the manifold of all Lagrange subspaces of Σ).
Then

MΠ = {Λ ∈ L(Σ) : Λ ∩Π 6= 0}

is a codimension 1 cycle in L(Σ). Let Λ(t) ∈ L(Σ), t0 ≤ t ≤ t1, be a curve in
L(Σ) such that Λ(t0)∩Π = Λ(t0)∩Π = 0. Recall that the Maslov µΠ(Λ(·))
of the curve Λ(·) with respect to Π is the intersection number of Λ(·) and
MΠ, see [7] for details.

Now consider symplectic space Σ×Σ andowed with the symplectic struc-
ture (−σ) ⊕ σ. Given a linear symplectic transformation Q : Σ → Σ, its
graph ΓQ = {(ξ,Qξ) : ξ ∈ Σ} is a Lagrange subspace of Σ×Σ. In particular,
ΓI is the diagonal of Σ×Σ. Let Q(t), t0 ≤ t ≤ t1, be a curve in the symplec-
tic group such that the maps Q(t0) − I and Q(t1) − I are non-degenerate.
The Maslov index of Q(·) is just the Maslov index of the curve ΓQ(·) with
respect to the diagonal,

µ(Q(·)) .
= µΓI (ΓQ(·)).

Theorem 3. Assume that det
(∫ 1

0 Rt dt
)
6= 0. Take ε > 0 and consider a

curve Φε in the symplectic group defined on the segment [−ε, 1] according to
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the rule:

Φε(t) =

{
etJ

∫ 1
0 Rτ dτ , if −ε ≤ t < 0;

P t∗γ , if 0 ≤ t ≤ 1.

Then ih(γ) = µ(Φε), for any small enough ε.

We can make this formula even more explicit assuming more regularity.
Indeed, µ is an intersection number and we can simply count the intersection
points. In particular, we assume that Rt continuously depends on t ∈ [0, 1]
and introduce subspaces Kt = {ξ ∈ TγM : Rtξ = ξ} ⊂ TγM. We also
denote by R̄t the quadratic form on TγM defined by the formula: R̄(ξ) =
〈Rtξ, ξ〉, ξ ∈ TγM .

Main regularity assumption is as follows: for any t ∈ [0, 1], if Kt 6= 0,
then R̄t

∣∣
Kt

is a non-degenerate quadratic form. I emphasize that we require

non-degeneracy of the restriction of the form R̄t to the subspace Kt and do
not care about properties of R̄t on whole space TγM . In principle, the form
R̄t could be non-degenerate on TγM and be identical 0 on Kt. Under this
assumption, the points t ∈ [0, 1] such that Kt 6= 0 are isolated.

Corollary 1. Under just imposed assumptions, the following equality holds:

ih(γ) =
∑

0<t<1

sgn
(
R̄t
∣∣
Kt

)
+

1

2

(
sgn(R0) + sgn

(∫ 1

0
Rt dt

))
.

3 Sketch of Proofs

The proof of Theorem 1 is divided in two parts. First we show that for
any pair of time-varying Hamiltonians h0

t , h
1
t and any big enough c > 0

(how big, depends on our Hamiltonians) there exist r(c) > 0, r̄(c, r) >
r(c), E(c, r, r̄) ∈ E such that for any r > r(c), r̄ > r̄(c, r) and E ⊃ E(c, r, r̄)
the groups r̄r (Gi+dE (E; c, r)) corresponding to h0 and h1 are naturally iso-
morphic. At this point we do not even need the subspace E to be well-
balanced.

In the second part of the proof, we show that r̄r (Gi+dE (E; c, r)) =
Hi(M), if h = 0. Here it is essential that E is well-balanced.

So we start from the choice of c. Let us consider the family of time-
varying Hamiltonians hτt = τh1

t +(1−τ)h0
t , τ, t ∈ [0, 1]. The correspondent

Hamiltonian fields ~hτt are uniformly bounded, hence there exists c > 0 such
that all critical points of ϕhτ belong to the interior of ϕ−1

hτ ([−c, c]), 0 ≤ τ ≤ t.
If Ω would be a compact finite-dimensional manifold, then we could easily

demonstrate homotopy equivalence of the pairs
(
Ωc
h0
,Ω−ch0

)
and

(
Ωc
h1
,Ω−ch1

)
.
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Indeed, the flow on Ω generated by a vector field fτ such that

∂ϕhτ

∂τ
+ dγϕhτ (fτ (γ)) ≤ 0, ∀γ ∈ ϕ−1(±c), 0 ≤ τ ≤ 1, (1)

provides the desired homotopy equivalence.
Unfortunately, Ω is noncompact and infinite-dimensional. Still Ω and

the differential of ϕh are good enough to guarantee the existence of a finite-
dimensional substitute that provides the required weaker equivalence. I am
going to explain how it works.

First of all, ∂ϕhτ
∂τ = ϕh1 − ϕh0 is uniformly bounded. Moreover, the

gradient of ϕh in the L2-norm has a form: ∇γϕh = −Jγ̇ −∇γh. Since any
bound on the L2-norm of γ̇ implies a bound on |ϕh|, we obtain that ∇γϕh
is separated from 0 on ϕ−1

h (±c) if c is sufficiently big. Hence we can find
an open set of uniformly bounded in the L2-norm by a constant ρ(c) vector
fields that satisfy inequality (1).

Now we take r > 0, r̄ = r + 2ρ(c) and a finite-dimensional space Elr̄
guaranteed by Lemma 1. The weak continuity of the differential of ϕh ◦ φ
and weak compactness of Br̄ imply the existence of a finite-dimensional
space El ⊃ Elr̄ and a field fτ on M × Br̄, which takes values in TM × El,
has the L2-norm bounded by 2ρ(c), and such that

∂(ϕhτ ◦ φ)

∂τ
+ d(q,u)(ϕhτ ◦ φ)(fτ (q, u)) < 0,

∀(q, u) ∈ Ur̄(E) ∩ (ϕhτ ◦ φ)−1(±c), 0 ≤ τ ≤ 1.

The field fτ is tangent to the finite-dimensional submanifold Ur̄(E
l).

Moreover, starting in Ur(E
l) trajectories of this vector field stay inside

Ur̄(E
l) and thus well-defined on the whole segment [0, 1]. This allows us

to control the homology homomorphism induced by the imbedding Ur(E) ⊂
Ur̄(E).

Moreover, φ−1(γ) is an affine subspace of γ(0) × L2([0, 1];Cl) for any
γ ∈ Ω. Hence φ−1(γ) ∩ Ur̄(E) and φ−1(γ) ∩ Ur(E) are convex subsets of
γ(0) × El (actually, balls) and φ induces the homotopy equivalence of the
spaces Ur(E) ∩ φ−1(Ω±chτ ) and Ur̄(E) ∩ φ−1(Ω±chτ ) on there images. This is
actually all we need to complete the first part of the proof of Theorem 1.

Now consider the case h = 0. Critical points of ϕ0 are exactly constant
curves γ(t) ≡ q, q ∈ M . In other words, critical points form a smooth
manifold M . The Hessian of ϕ0 at q is just the quadratic form bq from
Section 2. As we know, the restriction of this form to a complement to the
tangent space to M has zero kernel. If Ω would be finite-dimensional and

12



ϕ−1
0 ([−c, c]) compact we could say that ϕ0 is a “Morse–Bott” function and

conclude that Hk(Ω
c
0,Ω

−c
0 ) = Hk−ı(M), where ı is the negative inertia index

of bq, see [8].
Unfortunately, our objects are infinite-dimensional and noncompact.

Moreover, both positive and negative inertia indices of bq are infinite. Still,
as in the first part of the proof, an appropriate finite-dimensional substitute
provides all we need.

Given r > 0 and a sufficiently big well-balanced spaced E, let us restrict
ϕ0 to φ(Ur(E

l)) and first study this restriction in a neighborhood of the
manifold M of constant curves. Let ψ = ϕ0

∣∣
φ(Ur(El))

and q ∈ M ; the

Hessian of ψ at q is nondegenerate on the complement to the tangent space
to M and its positive end negative inertia indices are equal. In particular,
both inertia indices are equal to 1

2

(
dim(φ(Ur(E

l)
)
−dimM) and there exist

a neighborhood of M in φ(Ur(E
l)) that does not contain other critical points

of ψ.
We need and we have a stronger property: there exists a neighborhood

O of M in Ω such that any finite-dimensional subspace of L2([0, 1];C) is
contained in a well-balanced subspace E such that the restriction of φ0 to
φ(Ur(E

l)) ∩ O) has only constant critical points3. Indeed, ∇γϕ0 = −Jγ̇
almost linearly depends on γ̇ for γ close to the constants and the estimates
used to justify Lemma 2 (see, in particular, formula (2.2)) give also a low
bound |∇γψ| ≥ ε‖γ̇‖ that is uniform with respect to E.

Out of a neighborhood O, the norm of ∇γϕ0 has a uniform low bound,

hence the norm of the gradient-like vector field ∇ϕ0

‖∇ϕ0‖2 has an upper bound

ρ̂ and we take r̄ = r+ 3cρ̂. Then we find a finite-dimensional approximation
g of the field − ∇(ϕ0◦φ)

‖∇(ϕ0◦φ)‖2 on (M × Br̄) ∩ φ−1(Ω) whose norm is bounded

by 3
2 ρ̂ and such that 〈∇(ϕ0 ◦ φ), g〉 < −2

3 , similarly to what we did in the
first part of the proof. Finally, we restrict everything to a finite-dimensional
manifold Ur̄(E); then any starting in Ur(E)) ∩ φ−1(Ωc

0) trajectory of the
field g reaches either φ−1(O) or φ−1(Ω−c0 ), and this is actually all we need
to control homology groups r̄r

(
Gi(E; c, r)

)
.

Now turn to Theorem 2. We have some freedom in the choice of the gen-
erators X1, . . . , Xl of VecM and we are going to adapt them to the periodic
trajectories γ ∈ Ch. Namely, we may assume that first dimM generators
give a basis of the bundle TM |γ adapted to the quasi-complex structure J |γ .
In other words, we may assume that d2

γϕh has a form (2.5), where only the
“compact part” Rt depends on γ ∈ Ch, Rt = Rγt .

3Here “constants” means “constant curves”.
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The proof proceeds similarly to the proof of the second part of Theo-
rem 1. We take r > 0 big enough and assume that the well-balanced space
E is such that φ(Ur(E

l)) contains Ch and all kernels of the bilinear forms

d2
γϕh(ξ, η) =

∫ 1

0
〈iη(t), ξ̇(t)〉 − s〈Rγt ξ(t), η(t)〉 dt, 0 ≤ s ≤ 1, γ ∈ Ch. (2)

Moreover, we take E sufficiently big and well-balanced to guarantee that
ϕh
∣∣
φ(Ur̄(El))

does not have critical points out of Ch and that the Hessian

of ϕh
∣∣
φ(Ur̄(El))

at any γ ∈ Ch is non-degenerate. Then negative inertia

index of the Hessian equals 1
2 dimφ(Ur(E

l)) + ıh(γ) and homology groupes
r̄r
(
Gi(E; c, r)

)
are controlled by these indices and a gradient-like vector field.

Theorem 3. To compute the index ıh(γ) we have to count, according the
multiplicities and signs, the passing through zero eigenvalues of the family
of quadratic forms (2). A field ξ ∈ TγM belongs to the kernel of the form
(2) if and only if it is a 1-periodic solution of the linear Hamiltonian system
ξ̇ = sJRγt ξ. We consider linear symplectic transformations

Qt(s) : ξ(0) 7→ ξ(t), ξ(0) ∈ TγM,

where ξ̇(t) = sJRγt ξ(t), 0 ≤ t ≤ 1, and set Q(s)
.
= Q1(s).

We see that ξ belongs to the kernel of the form (2) if and only if
Q(s)ξ(0) = ξ(0); in other words, if and only if ξ(0) ∈ ΓQ(s) ∩ ΓI (nota-
tions of Section 2, just before Theorem 3). The contribution of Q(s) to the
intersection number µ(Q(·)) is equal to the one-half of the signature of the
quadratic form

ξ(0) 7→
〈
Jξ(0),

∂Q

∂s
ξ(0)

〉
, ξ(0) ∈ {ξ ∈ TγM : ξ = Q(s)ξ},

if this quadratic form is non-degenerate. Let ξ(t) = Qt(s)ξ(0) We have:〈
Jξ(0),

∂Q(s)

∂s
ξ(0)

〉
=
〈
Jξ(1),

∂Q(s)

∂s
ξ(0)

〉
=

∫ 1

0

〈
Jξ̇(t),

∂Qt(s)

∂s
ξ(0)

〉
+
〈
Jξ(t),

∂2Qt(s)

∂t∂s
ξ(0)

〉
dt =∫ 1

0
−
〈
Rγt ξ(t),

∂Qt(s)

∂s
ξ(0)

〉
+
〈
ξ(t), Rγt

∂Qt(s)

∂s
ξ(0)

〉
+ 〈ξ(t), Rγt ξ(t)〉 dt

=

∫ 1

0
〈ξ(t), Rγt ξ(t)〉 dt.
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On the other hand, according to the standard perturbations theory, the
derivative with respect to s of the passing through zero eigenvalue of the
form (2) is equal to

∂

∂s

∫ 1

0
〈iξ(t), ξ̇(t)〉 − s〈Rγt ξ(t), ξ(t)〉 dt = −

∫ 1

0
〈ξ(t), Rγt ξ(t)〉 dt.

The formulas for ıh(γ) and µ(Q(·)) match! We actually got these formulas
under a transversality assumption but we can drop this assumption due
to the homotopy invariance of the intersection number. We also have:
Q0(s) = Qt(0) = I, s, t ∈ [0, 1]; hence the curve s 7→ Qs) = Q1(s) in
the symplectic group is homotopic to the curve t 7→ Qt(1) = P t∗γ that is
presented in Theorem 3, and the Maslov index is homotopy invariant. Ad-
ditional “boundary” terms appear because both curves treated as curves
in the Lagrange Grassmannian of the symplectic space Σ × Σ start at the
diagonal and the intersection number has to be adjusted according to that.

4 Step Two Carnot Groups

In this section we describe an example of an asymptotics of Betti numbers
that is much more interesting than in the Floer case and is explicitly com-
puted. This calculation was inspired by the joint work with A. Lerario and
A. Gentile [1], see also [2, 6]. A motivation, applications and proofs will
appear in the forthcoming paper.

A step two Carnot Lie algebra g is a graduated nilpotent Lie algebra with
two levels generated by the first level and with a fixed Euclidean structure
on the first level. The correspondent simply connected Lie group G = eg is
called a step two Carnot group. We have: g = V ⊕W, [V, V ] = W, [g,W ] =
0. The Euclidean inner product on V is denoted by 〈·, ·〉 and the norm by
| · |. To any ω ∈W ∗ we associate an operator Aω ∈ so(V ) by the formula:

〈Aωξ, η〉 = 〈ω, [ξ, η]〉, ξ, η ∈ V. (1)

It is easy to see that ω 7→ Aω, ω ∈W ∗ is an injective linear map. Moreover,
any injective linear map from W ∗ to so(V ) defines a structure of step two
Carnot Lie algebra on the space V ⊕W by the same formula read in the
opposite direction. We see that step two Carnot Lie algebras are in the
one-to-one correspondence with linear systems of anti-symmetric operators.

Any subspace of Lie algebra forms a left-invariant vector distribution on
the Lie group. We are interested in the distribution on the group G formed
by V . A class H1 curve γ : [0, 1] → G is called horizontal if γ̇() ∈ Vγ(t) for
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a. e. t ∈ [0, 1]. Any two points of G can be connected by a horizontal curve;
it follows from the fact that V generates Lie algebra g.

Minimum of the lengths of horizontal curves connecting two given points
in G is the sub-Riemannian or Carnot–Karatheodory distance between the
points. Step two Carnot groups are rather simple and symmetric models of
sub-Riemannian spaces that are not Riemannian.

The following multiplication in V ×W gives a simple realization of G
with the origin in V ×W as the unit element:

(v1, w1) · (v2, w2) =

(
v1 + v2, w1 + w2 +

1

2
[v1, v2]

)
.

The Lie algebra is realized by left-invariant vector fields:

(v, w) 7→
(
v + ξ, w + η +

1

2
[v, ξ]

)
, (v, w) ∈ G, ξ ⊕ η ∈ V ⊕W = g,

such a field belongs to the horizontal distribution if and only if η = 0.
Starting from the origin horizontal curves are determined by their pro-

jection to the first level and have a form:

γ(t) =

(
ξ(t),

1

2

∫ t

0
[ξ(t), ξ̇(t)] dt

)
, 0 ≤ t ≤ 1,

where ξ(·) ∈ H1([0, 1];U), ξ(0) = 0. The sub-Riemannian length of γ is
equal to

∫ 1
0 |ξ̇(t)| dt. For the same reason as in the Riemannian geometry,

it is convenient to substitute the length by the essentially equivalent to the
length functional, the action c

∫ 1
0 |ξ̇(t)|

2 dt, where c is a normalizing constant.
For us it is convenient to take c = 1

4π and we set:

ϕ(ξ) =
1

4π

∫ 1

0
|ξ̇(t)|2 dt.

We focus on the horizontal curves corresponding to closed cures ξ; they
connect the origin with the second level. Given w ∈ W \ 0, let Ωw be the
space of horizontal curves connecting (0, 0) with (0, w); then

Ωw =

{
ξ ∈ H1([0, 1];V ) : ξ(0) = ξ(1) = 0,

1

2

∫ 1

0
[ξ(t), ξ̇(t)] dt = w

}
.

For any s > 0, we set: Ωs
w = {ξ ∈ Ωw : ϕ(ξ) ≤ s}. Note that central

reflection ξ 7→ −ξ preserves Ωs
w.

16



Let E ⊂ H1([0, 1];V ) be a finite-dimensional subspace and
Ē =

(
E \ 0

)
/
(
ξ ∼ (−ξ)

)
its projectivization, Ē is homotopy equivalent

to RPdimE−1. We set Esw = Ωs
w ∩ E and denote by Ēsw the image of Esw

under the factorization ξ ∼ (−ξ).
We consider the homology H·(Ē

s
w;Z2) and its image in H·(Ē;Z2) by the

homomorphism induced by the imbedding Ēsw ⊂ Ē. We have:

rank
(
Hi(Ē

s
w;Z2)

)
= βi(Ē

s
w) + %i(Ē

s
w),

where βi(Ē
s
w) is rank of the kernel of the homomorphism from Hi(Ē

s
w;Z2)

to Hi(Ē;Z2) induced by the imbedding Ēsw ⊂ Ē and %i(Ē
s
w) is the rank of

the image of this homomorphism, %i(Ē
s
w) ∈ {0, 1}.

For given w,E, s, we introduce two positive atomic measures on the
half-line R+, the “Betti distributions”:

b(Ēsw)
.
=
∑
i∈Z+

1

s
βi(Ē

s
q)δ i

s
, r(Ēsw)

.
=
∑
i∈Z+

1

s
%i(Ē

s
q)δ i

s
.

Assume that dimW = 2 and let E be the directed set of all finite-
dimensional subspaces of the Hilbert space H1([0, 1]);V ). It appears that
there exist limits of these families of measures

lim
s→∞

E- lim b(Ēsw), lim
s→∞

E- lim r(Ēsw)

in the weak topology. Moreover, the limiting measures are absolutely con-
tinuous with explicitly computed densities.

Some notations. Let α : ∆ → R be an absolutely continuous function
defined on an interval ∆. We denote by |dα| a positive measure on ∆ such
that |dα|(S) =

∫
S

∣∣dα
dt

∣∣ dt, S ⊂ ∆. Note that the measure |dα| depends only
on the function α and not on the choice of the parameter on the interval.

The introduced in (1) operators Aω, ω ∈ W ∗, are anti-symmetric and
have purely imaginary eigenvalues. Let 0 ≤ α1(ω) ≤ · · · ≤ αm(ω) are such
that ±iαj , j = 1, . . . ,m, are all eigenvalues of Aω counted according the
multiplicities; then ω 7→ αj(ω) are Lipschitz functions. Let W̄ ∗ = (W \
0)/
(
w ∼ cw,∀c 6= 0

)
be the projectivization of W ∗, W̄ ∗ = RP1.

Given w ∈W \ 0, we take the line w⊥ ∈W ∗ and consider the affine line

`w = W̄ ∗ \ w̄⊥ ⊂ W̄ ∗.

Moreover, we define functions

λwj : `w → R+, j = 1, . . . ,m, φw : `w → R+
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by the formulas:

λwj (ω̄) =
αj(ω)

〈ω,w〉
, φw(ω̄) =

m∑
j=1

λwj (ω̄).

In particular, φw∗ transforms measures on `w into measures on R+. The
Euclidean measure on R+ is denoted by dt; if S ⊂ R+, then χSdt is the
product of dt and the characteristic function of S.

For simplicity, we compute the limits of the Betti distributions only
under a generic assumption on the Carnot group.

Theorem 4. Assume that there exists ω ∈W ∗ such that the matrix Aω has
simple spectrum. Then, for any w ∈ W \ 0, there exist the following limits
in the weak topology of the space of positive measures on R+:

bw = lim
s→∞

E- lim b(Ēsw), rw = lim
s→∞

E- lim r(Ēsw).

Moreover,

bw = φw∗

( m∑
j=1

|dλwj |
)
, rw = χ[0,minφw]dt.

Remark. The internal sequences actually stabilize: there exists E(s) ∈
E such that b(Ēsw) = b(Ē(s)sw) and r(Ēsw) = r(Ē(s)sw) for any E ⊃ E(s). An
interesting feature of the Betti measures bw and rw is their sensitivity to the
endpoint w that reflects well the anisotropy of the space of horizontal curves
already at the homological level, even if the spaces Ωw are all contractible.

5 Conclusion

We conclude with a draft of general scheme for a soft construction of Floer-
type asymptotic homologies. The object to study is a Banach manifold Ω
equipped with a growing family of closed subsets Ωs, s ∈ R. Auxiliary
objects are a Banach space B and a submersion Φ : U → Ω, where U ⊂ B
is a finite codimension submanifold of B. Moreover, U is equipped with an
ordered by the inclusion directed and exhausting family V of open bounded
subsets and B is endowed by an ordered by the inclusion directed family E
of finite dimensional subspaces such that

⋃
E∈E

E = B.

Given E ∈ E , V ∈ V, s ∈ R, we consider the relative homology groups:

Gi(E, V, s)
.
= Hi

(
Ωs ∩ Φ(E ∩ V ),Ω−s ∩ Φ(E ∩ V )

)
.
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Moreover, for V,W ∈ V, V ⊂W, we denote by

WV : Gi(E, V, s)→ Gi(E,W, s)

the homology homomorphism induced by the inclusion V ⊂ W and denote
by VV the directed subfamily: VV

.
= {W ∈ V : W ⊃ V }.

Finally, we select normalizing quantities ri(E, s), ρi(E, s) ∈ R+ and
build atomic measures:

b(E, V,W, s) =
∑
i∈Z+

ρi(E, s)rank
(
WV Gi(E, V, s)

)
δri(E,s)

in such a way that their exist a limit:

b = lim
s→∞

V- limVV - lim E- lim b(E, V,W, s).

We treat this limit as an asymptotic distribution of Betti numbers.
Some of ingredients may be superfluous. In the Leray–Schauder case we

take a single limit (variables s ∈ R and V,W ∈ V are absent) and in the
two step Carnot group case we take the double one (variables V,W ∈ V
are absent). Of course, the equivariant version is also available if there is
a natural group action; in the Carnot group case we used the involution
ξ 7→ (−ξ).
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