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1 De�nitions and notations

Let M be a smooth n-dimensional manifold and denote by TM =

S

q2M

T

q

M ,

dimTM = 2n the tangent bundle of M . Let

� =

[

q2M

�

q

; �

q

2 T

q

M

be a vetor distribution of a onstant rank k on M : dim�

q

= k for all q 2M .

De�nition 1 The distribution � is alled integrable if at any point q 2M there

exists an immersed sub-manifold N

q

�M suh that �

q̂

= T

q̂

N

q

for any q̂ 2 N

q

.

The distribution � is alled ompletely non-holonomi if it is not tangent to any

sub-manifold N �M .

If k = 1, then � de�nes a presribed single diretion at any point q ofM . By

existene and uniqueness theorem for systems of ordinary di�erential equations

at any point q 2M there is a single trajetory passing in this diretion, thus the

distribution � is integrable. The �rst nontrivial situation ours when k = 2.

Already in this ase a generi distribution is ompletely non-holonomi. Let us

disuss in more detail.

Let us onsider two omplete vetor �elds f

1

; f

2

2 TM suh that �

q

=

spanff

1

(q); f

2

(q)g at any q 2 M . These vetor �elds de�ne a pair of ODE on

M :

_q = f

i

(q); i = 1; 2:

Denote by e

tf

i

: M 7!M the ow degenerated by f

i

on M . By de�nition,

d

dt

e

tf

i

(q) = f

i

(e

tf

i

(q)):

Fix some q

0

2 M and t 2 R. Consider a trajetory whih starts at q

0

and

onsists of four piees of duration t eah and suh that the whole trajetory is

organized as follows: �rst we follow the integral urve of f

1

starting at q

0

, then

1
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Figure 1: The Lie braket of the �elds f

1

and f

2

we swith the diretion to f

2

, and �nally we ome bak following �f

1

and �f

2

subsequently. In suh a way we ome to the point

q

1

= e

�tf

2

Æ e

�tf

1

Æ e

tf

2

Æ e

tf

1

(q

0

) = q

0

+ t

2

�

f

1

Æ f

2

� f

2

Æ f

1

�

(q

0

) + o(t

2

):

It not hard to see that in general q

1

6= q

0

and q

1

= q

0

only if the vetor �elds

f

1

and f

2

ommute, i.e., if the di�erential operator [f

1

; f

2

℄ = f

1

Æ f

2

� f

2

Æ f

1

,

alled the Lie braket of the �elds f

1

and f

2

, is zero.

That is, the Lie braket is a kind of measure of the non-integrability of the

vetor distribution �.

Using the oordinate representation of the �elds f

1

; f

2

in some loal oordi-

nates on M one an see that the Lie braket of a pair a vetor �elds is a �rst

order di�erential operator:

f

1

=

n

X

i=1

a

i

�

�q

i

; f

2

=

n

X

i=1

b

i

�

�q

i

;

[f

1

; f

2

℄ =

n

X

i;j=1

�

a

j

�b

i

�q

j

� b

j

�a

i

�q

j

�

�

�q

i

=

df

2

dq

f

1

�

df

1

dq

f

2

;

i.e., it is again a vetor �eld. Iterating this proedure one an onstrut the

vetor �elds [f

1

; [f

1

; f

2

℄℄, [f

2

; [f

1

; f

2

℄℄ and so on.

The importane of the ommutation properties of vetor �elds spanning the

distribution � is shown by the following theorem. Denote

�

m

= [�;�

m�1

℄; �

1

= �; m = 1; : : : :

Theorem 1 (Rashevski-Chow) If for any q 2 M there exists an integer

m

q

2 N suh that �

m

q

q

= T

q

M , then the distribution � is ompletely non-

holonomi and any two points of M an be onneted by a path tangent to � at

2



any point. The integer m

q

is alled the degree of non-holonomy at q.

Let h�; �i

q

be an inner produt on �

q

. By de�nition, for any vetor v 2 �

q

we have jvj =

p

hv; vi

q

. The following funtion

Æ(q

0

; q

1

) = inf

n

1

Z

0

j _(t)jdt;  : [0; 1℄ 7!M; _(t) 2 �

(t)

o

; q

0

; q

1

2M

is alled the Sub-Riemannian or Carnot-Carath�eodory distane on M . By the

Rashevski-Chow theorem, if the distribution � is ompletely non-holonomi,

then Æ(q

0

; q

1

) < +1 for any q

0

; q

1

2M .

2 Isoperimetri problem on the plane

Let R

2

= fx = (x

1

; x

2

)g and onsider a 1-form � = a

1

dx

1

+ a

2

dx

2

, where a

1

and a

2

are two smooth funtions on M . We want to �nd

(1) inf

n

1

Z

0

j _x(t)jdt : x(0) = x

0

; x(1) = x

1

suh that

Z

x(�)

� =

1

Z

0

a(x(t)) _x

1

(t) + a

2

(x(t)) _x

2

(t)dt = onst = y

1

o

Let us formulate this problem as the problem of minimizing of the Sub-

Riemannian distane. First of all we onsider the extended state spae M =

R

3

= fq = (x; y); x 2 R

2

; y 2 Rg. The oordinate y is the urrent value of the

ost funtion. Denote

�

q

= span

8

<

:

0

�

1

0

a

1

(q)

1

A

;

0

�

0

1

a

2

(q)

1

A

9

=

;

;

and set

�

�

�

�

�

�

0

�

v

1

v

2

a

1

(q)v

1

+ a

2

(q)v

2

1

A

�

�

�

�

�

�

=

�

(v

1

)

2

+ (v

2

)

2

�

1=2

:

Then we an rewrite problem (1) as follows:

inf

n

1

Z

0

j _(t)jdt;  : [0; 1℄ 7!M; s:t _(t) 2 �

(t)

; (0) =

�

x

0

0

�

; (1) =

�

x

1

y

1

�

o

:
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Figure 2: Paths onneting two points

Exerise 1 Let

f

1

=

0

�

1

0

a

1

1

A

; f

2

=

0

�

1

0

a

2

1

A

:

Show that

f

1

^ f

2

^ [f

1

; f

2

℄ 6= 0 () d� 6= 0:

Example 1 (Charged partile in the magneti �eld on the plane) The isoperi-

metri problem is equivalent to the Least Ation Priniple of Classial Mehan-

is applied to the plane motion of the harged partile in the magneti �led

on the plane. Indeed, let b : R

2

7! R be the url of the vetor potential of

the magneti �eld, and let x = (x

1

; x

2

) 2 R

2

be the oordinate of a harged

partile of unit mass. Then j�x(t)j = jb(x)j, where  2 R is a salar onstant,

and d� = b(x)dx

1

^ dx

2

. We are interested in the trajetories x(t) suh that

b(x(t)) � 0. More preisely, we would like to understand whether these traje-

tories ould be the minimizers of the isoperimetri problem

3

.

Assume that db 6= 0 and onsider a smooth urve 

0

= b

�1

(0). Let  be

another trajetory of the partile with the same terminal points: (0) = 

0

(0),

(1) = 

0

(1), and let � be the domain enlosed between the urves  and 

0

(see Fig.1, a)). We have

(2)

Z

(�)

��

Z



0

(�)

� =

Z

�

d� =

Z

�

b(x)dx

1

^ dx

2

> 0:

This argument works also if the urves  and 

0

have some intermediate inter-

setion points (Fig.1, b)), but it fails if one of this urves has self-intersetions

(Fig.1, )). In the latter ase one an hoose (t) suh that the integral in (2)

beomes zero. Therefore, 

0

is not isolated in the H

1

-topology, though it is

always a loal minimizer (the proof of this fat is rather deliate, below we will

state a general result).

Exerise 2 Consider the ase b(x) = x

1

x

2

. Here b

�1

(0) onsists if the oor-

dinate axes and db

�

�

0

= 0. Let 

0

= (0; �) and 

1

= (�; 0). Show that the

trajetory that pass through the origin is not a minimizer.

3

This question was studied by R. Montgomery
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Figure 3: Example of an alternative path

(Hint: Consider the path ̂, whih ontains a irle loop of radius Æ, as at shown

in Fig. 2 Then � = D

0

[D

2

,

Z

�

x

1

x

2

dx

1

dx

2

=

Z

D

0

x

1

x

2

dx

1

dx

2

+

Z

D

1

x

1

x

2

dx

1

dx

2

:

Show that

Z

D

0

x

1

x

2

dx

1

dx

2

� "

4

;

Z

D

1

x

1

x

2

dx

1

dx

2

� Æ

3

;

so that by an aurate hoie of " and Æ one an make the right-hand side of (2)

to be zero while the length of the new urve will be shorter than the length of

the broken line passing through the origin.)

Open problem Does there always exist a smooth minimizer?

3 Singular urves

Let us ome bak to the general situation. For the moment we assume

M = R

n

; �

q

= spanff

1

(q); : : : ; f

k

(q)g; q 2M; k < n:

Denote


 =

n

(�) : [0; 1℄ 7!M; s:t  2 H

1

([0; 1℄;R

n

); _(�) 2 �

(�)

o

:

Sine _(t) 2 �

(t)

for any t 2 [0; 1℄ we have

_(t) =

k

X

i=1

u

i

(t)f

i

((t)):

We assume that the oordinate funtions u

i

(�) 2 L

2

([0; 1℄) so that for any �xed

initial data (0) = 

0

we have (�) � (

0

; u(�)), where u = (u

1

; : : : ; u

k

). Hene


 ' R

n

� L

k

2

([0; 1℄).

5



In the ase of an arbitrary smooth manifold M the spae 
 is a Hilbert

manifold modeled on R

n

� L

k

2

([0; 1℄).

Let 

0

2 
 be a �xed urve. Along this urve we have

�



0

(t)

= spanff

t

1

(

0

(t)); : : : ; f

t

k

(

0

(t))g;

where ff

t

i

g

k

i=1

is a basis of vetor �elds possibly depending on t, whih is well

de�ned along the urve 

0

. For any urve (�) 2 
, whih is uniformly lose to



0

, we have

_(t) =

k

X

i=1

u

i

(t)f

t

i

((t)):

De�nition 2

� : 
 7!M �M : �((�)) =

�

(0); (1)

�

:

The mapping � is well de�ned C

1

-mapping from the Hilbert manifold 
 to the

spae of terminal points. The ritial points of � are alled singular urves or

abnormal geodesis.

Remark The onstant urves (t) = onst are automatially ritial points of

�.

Our next goal will be to haraterize the singular urves.

3.1 The Lagrange multipliers method

Let F

t

: (�) 7! (t) denote the evaluation mapping assoiated to the urve

(�). Then �((�)) = (F

0

; F

1

). By the lassial Lagrange multipliers rule if the

urve (�) 2 
 is a singular trajetory then there exists a non-trivial pair of

o-vetors (�

0

; �

1

), �

i

2 T

�

(�)

M , i = 1; 2 suh that

�

0

D



F

0

= �

1

D



F

1

:

It turns out that any piee of a singular trajetory is singular. More preisely,

we have the following lemma:

Lemma 2 If  is a singular trajetory, then for any t 2 [0; 1℄ it is a ritial

point for the pair (F

0

; F

t

).

Proof Let us use the speial oordinates in 
 de�ned above

4

: along (�) we

hoose the frame of vetor �elds ff

t

i

g

k

i=1

suh that for any q

t

2 O

(t)

(3) _q

t

=

k

X

i=1

u

i

(t)f

t

i

(q

t

);

4

We would like to stress out that we do not require any oordinates on M .
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�

q

t

= spanff

t

1

(q

t

); : : : ; f

t

k

(q

t

)g:

Admissible trajetories are solutions of ontrol system (3) with

u(�) = (u

1

(�); : : : ; u

k

(�)) 2 L

k

2

([0; 1℄)

being ontrol funtions. Denote by u



the ontrol, whih generates the singular

trajetory . Loally we have the following splitting


 =M � L

k

2

([0; 1℄) =

�

(q

t

; u(�)) : q

t

2 O

(t)

; u(�) 2 L

k

2

([0; 1℄) : u(�) 2 O

u



	

:

Let us �rst show that �

0

uniquely de�nes �

t

. Indeed, it there would be two

o-vetors �

t

and

^

�

t

suh that �

0

D



F

0

= �

t

D



F

t

and �

0

D



F

0

=

^

�

t

D



F

t

, then

(�

t

�

^

�

t

)D



F

t

= 0, whih is not possible beause F

t

is a submersion.

Let us hoose some spei� ontrol ~u(�) and onsider the orresponding urve

_(�) =

k

X

i=1

~u

i

(�)f

�

i

((�)); t � � � 1:

Denote by

P

t;�

: O

(t)

7! O

(�)

the ow that transforms the neighborhood of (t) into the neighborhood of (�).

By de�nition,

�

��

P

t;�

(q) =

k

X

i=1

~u

i

(�)f

�

i

�

P

t;�

(q)

�

; P

t;t

(q) = q:

Let




t

() =

n

q(�) 2 
 : q(�) 2 P

t;�

(q(t)); t � � � 1

o

:

If the urve  is a ritial point for the pair (F

0

; F

1

), then it is ritial for

(F

0

; F

1

)

�

�




t

()

. Essentially we have

F

1

�

�




t

()

= P

t;1

Æ F

t

;

where P

t;1

is a �xed di�eomorphism that does not depend on the urve any

more!

Let us ompute the restrition of D



F

1

to 


t

(). We have

�

0

D



F

0

= �

1

P

t;1�

D



F

t

; 8t:

On the other hand, by de�nition of the adjoint mapping,

(4) �

t

= �

1

P

t;1�

= P

�

t;1

�

1

:

Thus

�

0

D



F

0

= �

t

D



F

t

7



whih proves the lemma.

Observe that for any t

(5) h�

t

;�

(t)

i = 0:

It is not hard to show now that onditions (4) and (5) are suÆient to hara-

terize the Lagrange multipliers.

De�nition 3 A urve t 7! �

t

, satisfying (4) and (5), is alled the singular

extremal.

3.2 Hamiltonian setting

Here we reall briey some lassial fats of Hamiltonian Dynamis. Denote by

� : T

�

M 7!M

the anonial projetion of the otangent bundle onto its base manifold. The

linear mapping

�

�

: T

�

(T

�

M) 7! T

�(�)

M

is the di�erential of the projetor �. Let

s

�

: T

�

(T

�

M) 7! R; � 2 T

�

M

be a one form on T

�

M suh that

s

�

= � Æ �

�

:

This form is alled the tautologial or Liouville form. Its di�erential � = ds is a

non-degenerate losed 2-form and it de�nes the anonial sympleti struture

on T

�

M .

In what follows we will all the smooth funtions on T

�

M Hamiltonians. To

any Hamiltonian h 2 C

1

(T

�

M) there orresponds a unique vetor �eld

~

h on

T

�

M , alled the Hamiltonian vetor �eld assoiated to the Hamiltonian h:

d

�

h = �(�;

~

h(�)); � 2 T

�

M:

If x

1

; : : : ; x

n

are some loal oordinates on M , then � =

n

P

i=1

�

i

dx

i

, where

(�; x) are the anonial oordinates on T

�

M . In these oordinates the Liouville

form and the sympleti struture have the following anonial representation:

ds

(�;x)

=

n

X

i=1

�

i

dx

i

; � =

n

X

i=1

d�

i

^ dx

i

:

8



The Hamiltonian system

_

� =

~

h(�) de�ned by the vetor �eld

~

h reads:

8

>

<

>

:

_

�

i

= �

�h

�x

i

_x

i

=

�h

��

i

i = 1; : : : ; n:

We an apply the Hamiltonian language to the desription of singular ex-

tremals. Let us onsider the urve �

t

= P

�

t;1

�

1

. By de�nition this urve is the lift-

ing of some urve\downstairs" onM : q(t) = �(P

�

t;1

�

1

) suh that _q(t) = f

t

(q(t)).

The ow P

t;1

: q(t) 7! q(1) is a Hamiltonian ow orresponding to the Hamil-

tonian

h

t

= h�; f

t

(�(�))i

In other words, �

t

= P

�

t;1

�

1

if and only if it satis�es the Hamiltonian equation

_

�

t

=

~

h

t

(�

t

) and _x = f

t

(x), where x(t) = �(�

t

).

Let

�

?

=

�

� 2 T

�

M : h�;�

�(�)

i = 0

	

be the annihilator of the distribution �.

Proposition 3 The urve t 7! �

t

2 �

?

is a singular extremal if and only if

�(

_

�

t

; T

�(t)

�

?

) = 0;

or, equivalently, if and only if

_

� 2 Ker�

�

�

�

?

:

Proof For simpliity we assume that the vetor �elds f

i

t

are autonomous.

Let � = ff

1

; : : : ; f

k

g, u 2 R

2n

and f

u

=

k

P

i=1

u

i

f

i

. Denote by

h

i

(�) = h�; f

i

(�(�))i

the Hamiltonians assoiated to the vetor �elds f

i

. Take some � 2 �

?

and let

� 2 T

�

(T

�

M). We laim that �(�; T

�

�

?

) = 0 if and only if � =

k

P

i=1

u

i

~

h

i

(�).

Indeed, by de�nition we have

(6) �(T

�

�

?

;

~

h

i

(�)) = hd

�

h

i

; T

�

�

?

i:

On the other hand, h

i

are onstant on �

?

:

�

?

= f� : h

i

(�) = 0; i = 1; : : : ; kg :

9



Hene the right hand side of (6) is zero. So there exists u(t) suh that

_

� =

k

P

i=1

u

i

(t)

~

h

i

(�). But as we have already seen, this is possible if and only if �

t

=

P

�

t;1

�

1

, where the ow P

t;1

is generated by _q =

k

P

i=1

u

i

(t)f

i

(q).

Example 2 (Co-dimension one distribution)

Let ! be a 1-form on M suh that

�

q

= fv 2 T

q

M : h!

q

; vi = 0g ; q 2M:

Then

�

?

q

= fu!

q

; u 2 Rg :

We have

s

�

�

�

?

= u!;

�

�

�

�

?

= d(u!) = du ^ ! + u d!:

Sine Ker (du ^ !) = � it follows that

_

� 2 Ker�

�

�

�

?

q

if and only if

_

� 2 Ker d!

�

�

�

q

.

If the manifold M is of even dimension, i.e. if n = 2m for some m 2 N, then

�

�

�

�

?

has a kernel and hene through eah point ofM passes a singular extremal.

Moreover, in this ase singular extremals foliate �

?

.

In the ase n = 2m+1 the 2-form d! an be non-degenerate. For example, if

! is a ontat form, then Kerd!

�

�

�

= ;, i.e. there are no non-onstant singular

extremals and hene no non-onstant singular trajetories.

Let us onsider in detail the ase of lowest possible dimension n = 3. Let !

be a generi 1-form on M . In loal oordinates we have

! ^ d! = b(x)dx

1

^ dx

2

^ dx

3

:

If b(x) 6= 0 then ! ^ d! 6= 0 and ! is a ontat form and vie versa.

Assume now that b

�1

(0) is a smooth 2-dimensional manifold.

5

Out of b

�1

(0)

there are no singular trajetories. The singular trajetories are the leaves of the

line distribution Tb

�1

(0) \ �. In general this foliation may have singularities

of two types: saddle points or foi. Notie that any smooth peae of a singular

trajetory out of singularities is a strong minimizer for any Sub-Riemannian

distane.

Example 3 (2-dimensional distribution in R

n

)

5

This manifold is alled the Martinet surfae.

10



Figure 4: Martinet surfae

Assume

�

q

= ff

1

(q); f

2

(q)g ; q 2M:

Then dim�

?

= 2n� 2. Let

h

i

(�) = h�; f

i

(q)i; i = 1; 2;

h(�) = u

1

h

1

(�) + u

2

h

2

(�):

The urve t 7! �

t

is a singular extremal if and only if

_

�

t

= u

1

(t)

~

h

1

(�

t

) + u

2

(t)

~

h

2

(�

t

); and h

1

(�

t

) = h

2

(�

t

) = 0:

Here the last ondition means that �

t

2 �

?

. The vetor-funtion u = (u

1

; u

2

)

is the unknown variable of the problem. Denote

fh

i

; h

j

g(�) = h�; [f

i

; f

j

℄(q)i = h

ij

:

We have

d

dt

h

1

(�

t

) = u

1

(t) fh

1

; h

1

g(�

t

)

| {z }

=0

+u

2

(t)fh

2

; h

1

g(�

t

) = u

2

(t)h

12

(�

t

) = 0:

Similarly

u

1

(t)h

12

(�

t

) = 0:

Thus we obtain the following system:

�

h

12

(�

t

) = 0

h

1

(�

t

) = h

2

(�

t

) = 0

11



Di�erentiating again we get

u

1

(t)h

112

(�

t

) + u

2

(t)h

212

(�

t

) = 0

Then if h

112

(�

t

) 6= 0 and h

221

(�

t

) 6= 0 we get

�

u

1

(t) = h

221

(�

t

)

u

2

(t) = h

112

(�

t

)

up to a multiplier. Hene the singular extremals satisfy the following ODE:

(7)

_

�

t

= h

221

(�

t

)

~

h

1

(�

t

) + h

112

(�

t

)

~

h

2

(�

t

):

Exerise 3 Show that the sub-manifold f� : h

1

(�) = h

2

(�) = h

12

(�) = 0g is

invariant with respet to the ow generated by (7).

4 Properties of singular extremals

In this setion onsider the general situation: dimM = n, � � TM and

�

q

= spanff

1

(q); : : : ; f

k

(q)g; q 2M:

As we have already seen, in the ase k = n�1 the situation depends on whether

the integer n is even or odd. If k = 2, then generially through every q 2 M

we have the (n � 4)-dimensional family of abnormal geodesis. For instane,

for (2; 4) ase we have exatly one geodesi through eah point (see Example 6

below). In the ase of a (2; 5)-distribution at any q 2M there is a one-parametri

family of abnormal geodesis, whose veloities overs �

q

.

4.1 Rigidity

De�nition 4 Denote


 =

�

(�) : [0; 1℄ 7!M; _(t) 2 �

(t)

	

:

and onsider the map

� : (�) 7! ((0); (1)):

We say that the urve  is rigid if and only if �

�1

((0; (1))) is isolated in

W

1;1

-topology in 
.

In other words, if  is rigid we annot deform it keeping �xed the end-points.

The ondition for  to be a ritial point of � is the neessary ondition for

rigidity.

Above we have de�ned � = (F

0

; F

1

), where F

0

, F

1

are submersions. So,

instead of � we an onsider the mapping F = F

1

j

F

�1

0

(q

0

). Note that the seond

variations of � and F oinide. From now on we will work with the map

F : (�) 7! (1); (0) = q

0

;

12



with q

0

�xed. We an write

_(t) =

k

X

i=1

u

i

(t)f

i

((t)):

As soon as the basis ff

i

g

k

i=1

is hosen, the ontrol funtions u

i

, i = 1; : : : ; k

are the oordinates of F

�1

0

. By �xing u

i

(t), i = 1; : : : ; k and perturbing initial

onditions we produe the ow

P

t;1

def

= P

t

: O

(t)

7! O

(1)

generated by the non-autonomous vetor �eld

f

u(t)

(q) =

k

X

i=1

u

i

(t)f

i

(q):

Exerise 4 Show that D



F (v(�)) =

1

R

0

P

t�

f

v(t)

dt ((1)):

Denote g

t

v

= P

t�

f

v

. We have

D



F (v(�)) =

1

Z

0

g

t

v(t)

dt:

If we hoose v(�) suh that

1

R

0

g

t

v(t)

dt((1)) = 0, then

D

2



F (v(�)) =

1

Z

0

�

1

Z

0

g

�

v(�)

d�; g

t

v(t)

�

dt((1)):

We omit the details of this alulation here. The interested reader an �nd them

in [1℄.

Sine  is a ritial point the di�erential D



Fv is not onto, i.e., if

ImD



F = span

n

g

t

v

; t 2 [0; 1℄; v 2 R

k

o

;

then there exists �

1

2 T

�

(1)

M suh that

h�

1

; g

t

v

i = 0; h�

1

; P

t�

f

v

i = 0;

whih implies

(8) hP

�

t

�

1

; f

v

i = 0:
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Denote �

t

= P

�

t

�

1

. Then (8) beomes

h�

t

; f

v

i = 0:

Consider now the following quadrati form:

(9) �

1

D

2



F (v) =

*

�

1

;

1

Z

0

�

t

Z

0

g

�

v(�)

d�; g

t

v(t)

�

dt

+

; v 2 KerD



F:

De�nition 5 The index of the extremal t 7! �

t

is the Morse index of the

quadrati form (9)

6

ind(�

t

)

def

= ind

�

�

1

D

2



F

�

:

De�nition 6

orank(�

t

)

def

= odim

�

span

�

g

t

v

; t 2 [0; 1℄; v 2 R

k

	

�

:

The following two theorems illustrate the relation of the index of the ex-

tremals and the rigidity of the orresponding abnormal trajetories. We omit

the proofs here.

Theorem 4 If  is rigid, then its lift is an abnormal extremal �

t

2 T

�

(t)

M suh

that

ind(�

t

) < orank(�

t

):

Theorem 5 (Neessary and suÆient onditions for the �niteness of index) If

ind(�) < +1, then

h�

t

; [f

v

1

; f

v

2

℄i((t)) = 0 (Goh ondition)

and for all v 2 R

k

h�

t

; [[f

u

; f

v

℄; f

v

℄i((t)) � 0; t 2 [0; 1℄: (generalized Legendre ondition)

In addition, if

h�

t

; [[f

u(t)

; f

v

℄; f

v

℄℄((t)) � jvj

2

8v ? u(t) (strong generalized Legendre

ondition);

then

ind(�

t

) < +1:

We remark that just �niteness of the index is not enough for rigidity. Never-

theless, the strong generalized Legendre ondition implies that the small enough

piees of  are rigid and they are strong length minimizers for any Sub-Riemannian

distane (i.e., loal minima in the C

0

topology).

6

i.e., the maximal dimension the subspaes where the quadrati form �

1

D

2



F is negative

de�nite.
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4.2 Conjugate points

The points (0) and (1) are alled onjugate if there exists a C

1

-small per-

turbation of � suh that �

t

remains a singular extremal assoiated to the same

singular trajetory of the same orank and satisfying Goh and strong generalized

Legendre onditions, but the index hanges.

Theorem 6 If t 7! �

t

is suh that (0) and (1) are not onjugate and suh

that ind(�

t

) = 0, then the urve (t) = �(�

t

) is rigid and it is a strong length

minimizer for any metri.

De�nition 7 The singular extremal t 7! �

t

is sharp if its index is �nite.

Example 4 Let � 2 TM , and denote

�

2

q

= span f[f

i

; f

j

℄(q); f

i

; f

j

2 �g ; q 2M:

From the Goh ondition it follows that if the extremal � is sharp, it must

annihilate �

2

. Therefore if �

2

= TM , then there are not sharp extremals.

Example 5 (Carnot groups) Assume dim�

q

= k. The following situations are

possible:

i) if n � k+(k�1)

2

, then a generi Carnot group does not admit sharp extremals;

ii) if n > k+(k� 1)

2

, then there exists an open set of Carnot groups admitting

sharp extremals;

iii) if n >> k + (k � 1)

2

, then a generi Carnot group admits sharp extremals.

Note that if k = 2 and �

t

is a singular extremal, then the Goh ondition is

satis�ed automatially. Indeed,

�

�t

h�

t

; f

v

i = 0;

and hene

h�

t

; [f

u(t)

; f

v

℄i = 0:

Example 6 (k = 2, generi germs of the distribution �)

i) If n = 3, then �

2

q

= T

q

M and this situation is not of interest for us.

ii) Assume n = 4, dim�

2

q

= 3 and dim�

3

q

= 4. Suh a distribution is alled the

Engel distribution. Let � = spanff

1

; f

2

g and onsider the Lie braket [v

1

f

1

+

v

2

f

2

;�

2

℄. There exists a unique vetor �eld u

1

f

1

+ u

2

f

2

(singular diretion)

suh that

[u

1

f

1

+ u

2

f

2

;�

2

℄ 2 �

2

:
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Therefore there is exatly one singular trajetory passing through every point

of M . Without loss of generality we an assume that u

1

f

1

+ u

2

f

2

= f

1

. Then

[f

1

;�

2

℄ 2 �

2

. We have

e

tf

1

�

f

1

= f

1

; e

tf

1

�

�

2

= �

2

; e

tf

1

�

� 6= �:

Therefore the distribution e

tf

1

�

� \rotates" around the diretion of f

1

in �

2

.

The points q

0

and e

tf

1

are onjugate if and only if e

tf

1

�

� = �, i.e. the time t

orresponds to a omplete revolution of e

tf

1

�

�. The index of a singular extremal

then equal to the number of omplete revolutions.

Remark Let �(q

1

; q

0

) denote the Carnot-Carath�eodory distane between points

q

1

and q

0

. Consider the sphere

S

q

0

(r) = fq 2M : �(q; q

0

) � rg;

where r is suÆiently small. If  is a singular geodesi starting at q

0

and

(1) 2 S

q

0

(l()), then the distane � is not C

1

and d

(1)

� is not de�ned. If the

strong generalized Legendre ondition holds, then (1) belongs to the losure of

the ut-lous of q

0

.

Referenes

[1℄ A. A. Agrahev, Yu. L. Sahkov Control Theory from the Geometri View-

point. Berlin, Springer-Verlag 2004

[2℄ A. A. Agrahev On the equivalene of di�erent types of loal minima in

sub-Riemannian problems. Pro. 37th Conferene on Deision and Control,

1998, pp. 2240-2243

[3℄ A. A. Agrahev Compatness for sub-Riemannian length-minimizers and

sub-analytiity. Rend.Semin.Mat. Torino, 1998, v.56, pp.1-12

[4℄ A. A. Agrahev, B. Bonnard, M. Chyba, I. Kupka Sub-Riemannian sphere

in Martinet at ase. ESAIM: J. Control, Optimization and Calulus of

Variations, 1997, v.2, pp.337-448

[5℄ A. A. Agrahev, J.-P. Gauthier On subanalytiity of Carnot-Caratheodory

distanes. Annales de l'Institut Henry Poinar/'e - Analyse non lin/'eaire,

2001, v.18, pp. 359-382

[6℄ A. A. Agrahev, A. V. Saryhev Strong minimality of abnormal geodesis

for 2-distributions. J. Dynamial and Control Systems, 1995, v.1, pp.139-

176

[7℄ A. A. Agrahev, A. V. Saryhev Abnormal sub-Riemannian geodesis:

Morse index and rigidity. Annales de l'Institut Henry Poinar/'e - Anal-

yse non lin/'eaire, 1996, v.13, pp. 635-690

16



[8℄ A. A. Agrahev, A. V. Saryhev Sub-Riemannian metris: minimality of

abnormal geodesis versus subanaliity. ESAIM: J. Control, Optimization

and Calulus of Variations, 1999, v.4, pp.377-403

[9℄ R. Bryant, L. Hsu Rigid trajetories of rank 2 distributions. Invent.Math.,

1993, v.114, pp.435-461

[10℄ A. V. Dmitruk Quadrati suÆient onditions for strong minimality of ab-

normal sub-Riemannian geodesis. Russian Journal of Math. Ph., 1999, v.6,

pp.363-372

[11℄ W. S. Liu, H. J. Sussmamm.Shortest paths for sub-Riemannian metris on

rank-2 distributions. Memoirs of AMS, 1995, v.118, N. 569

[12℄ R. Montgomery A tour of subriemannian geometries, their geodesis and

appliations. AMS, 2002

[13℄ I. Zelenko Non-regular abnormal extremals for 2-distributions: existene,

seond variation and rigidity. J. Dynamial and Control Systems, 1999, v.5,

pp.347-383

17


