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Plan of the talk

Aim
Present some applications of Optimal Transport to geometric
inequalities for smooth/non-smooth manifolds.

Plan

» General overview on Optimal Transport
» Theory of Curvature-Dimension condition

» Functional Inequalities: Levy-Gromov isoperimetric inequality



Optimal Transport: Formulation
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1942)
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Optimal Transport: Formulation

How to minimise total transport cost? (Monge 1781, Kantorovich
1942)

y = T(x) f(y)

cost c(x,y)
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X y
If [fi=[f, Tisa transport map from f; to f, iff for any A C R”
/ f(x)dx = / fi(x)dx, i.e. Ty(fdx)=fdx,
A T-1(A)
Given a cost fuction c(x,y), the total transport cost of T is

c(Tm)= /n c(x, T(x))A(x) dx.
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» T is (smooth) transport map iff f(T(x))|det DT (x)| = f(x).
Highly non-linear constrain.
» The set of transport maps is not closed in any reasonable
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> Replace f1, f, with any p1, u2 € P(R") to obtain the general
Monge problem: the set of transport maps can be empty.



Optimal Transport: Monge problem

Monge Optimal transport problem minimize

T— c(x, T(x))f(x)dx, T transport map from f; to f,.
Rn

Main issues with the minimization problem
» T is (smooth) transport map iff f(T(x))|det DT (x)| = f(x).
Highly non-linear constrain.
» The set of transport maps is not closed in any reasonable
topology.

> Replace f1, f, with any p1, u2 € P(R") to obtain the general
Monge problem: the set of transport maps can be empty.

~ Kantorovich relaxation rewrite the total transportation cost

[ e TeMsta) = [ clxap)((id. Thm)(ebay)
Rn RnxRn
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Optimal Transport: Monge-Kantorovich problem

A transport map T seen as a measure on its graph (id, T);u1
becomes a transport plan

M(p1, p2) = {m € PR" x R"): (Pi)ym = i, i =1,2}.
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Set of transport plans is weakly closed and convex.
Monge-Kantorovich problem minimize the linear functional

M(pa, p2) > m = c(x, y)m(dxdy).
RAXR"

If c:R" x R" — [0,00) is |.s.c., existence of a solution.
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Structure of optimal plans is obtained via classical duality theory.
» X = M" Riem. mfld ¢ = d2 (Brenier, McCann, Gangbo).
Given p1 = fidvoly and any pp, 3! optimal transport map

T(x) = exp (—=V¥(x)), ¢ :M" =R, d; — concave,
05 = 1 where $°(y) = infuem 457 — u(x).

» X = M" Riem. mfld ¢ = d, (Feldman, McCann).

Given pq, i there exists u : X — R 1-Lipschitz function so that

7 optimal <= 7({(x,y): u(x) —u(y) = dg(x,y)}) = 1.

Optimal path for ¢ = d, are along steepest descent of u.
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Optimal Transport: cost function ¢

Flexible problem, has found applications in many fields (different
choices of ¢).

» Analysis and PDEs: Gradient flows, JKO scheme.
Monge-Ampere equation (c(x,y) = |x — y|?).

» Physics: Random matching problem (sqrd Eucl. dist.),
Density Functional Theory (Coulomb cost), Einstein equation
of general relativity (Lorentzian cost function).

» Geometry of metric spaces: new class of metric spaces by
Lott-Sturm-Villani verifying Ric > K and dim < N in a
synthetic sense, called CD(K, N).

» Data science and Economy: Entropic regularisation (Sinkhorn,
Shrodinger problem), mixed problems (Hellinger-Kantorovich).



Geometry of metric spaces: basics

Let (M", g) be an n-dimensional Riemannian manifold. Denote
Sec the sectional curvature and Ric the Ricci curvature.
» For K € R we write Sec > K (resp.< K) if for every p € M
and every 2-dim plane [1 C T,M it holds Sec,(I1) > K (resp.
< K).
» Ricp: ToM x ToM — R is a quadratic form. We write
Ric > K (resp. < K) if the quadratic form Ric, — Kg, is
non-negative (resp. non-positive) definite at every p € M.
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Geometry of metric spaces: basics

Let (M", g) be an n-dimensional Riemannian manifold. Denote
Sec the sectional curvature and Ric the Ricci curvature.

» For K € R we write Sec > K (resp.< K) if for every p € M
and every 2-dim plane [1 C T,M it holds Sec,(I1) > K (resp.
< K).
» Ricp: ToM x ToM — R is a quadratic form. We write
Ric > K (resp. < K) if the quadratic form Ric, — Kg, is
non-negative (resp. non-positive) definite at every p € M.
Examples
» n-dimensional euclidean space: Sec = 0, Ric = 0.
» n-dimensional round sphere of radius 1: Sec =1,Ric=n— 1.
» n-dimensional hyperbolic space: Sec = —1, Ric = —(n — 1).
Natural question (M, g) smooth Riem. manifold. Assume some
upper/lower bounds on Sec or on Ric; what can we say on (M, g)?



Basics on comparison geometry

» Upper/Lower bounds on the Sec are strong assumptions with
strong implications (definition of Alexandrov spaces: non
smooth spaces with upper/lower bounds on Sec).

» Upper bounds on the Ricci curvature are very (too) weak
assumption for geometric conclusions. Lokhamp Theorem:
any closed mfld of dim > 3 carries a metric with negative Ric.
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» Upper/Lower bounds on the Sec are strong assumptions with
strong implications (definition of Alexandrov spaces: non
smooth spaces with upper/lower bounds on Sec).

» Upper bounds on the Ricci curvature are very (too) weak
assumption for geometric conclusions. Lokhamp Theorem:
any closed mfld of dim > 3 carries a metric with negative Ric.

Lower bounds on the Ric natural framework for comparison geom.

» Bishop-Gromov volume comparison: If Ric > 0 then for all
x € M R — volg(Bg(x))/wnR" is monotone non-increasing

v

Laplacian comparison,

v

Cheeger-Gromoll splitting,

v

Levy-Gromov isoperimetric inequality
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Gromov in the '80ies:

> notion of convergence for Riemannian manifolds:
Gromov-Hausdorff convergence (for non-compact manifolds,
more convenient a pointed version, called pointed
Gromov-Hausdorff convergence ~ GH-convergence of metric
balls of every fixed radius).

» A sequence of Riemannian n-dimensional manifolds satisfying
a uniform Ricci curvature lower bound is pre-compact, i.e. it
converges up to subsequences to a possibly non-smooth limit
space (called, from now on, Ricci limit space)

Big Question what about the compactification of the space of
Riem. mfld with Ricci curvature bounded below (by, say, —1)?

Hope useful also to establish properties for smooth manifolds.



Origin of the topic: extrinsic Vs intrinsic

Cheeger-Colding 1997-2000: three fundamental works on the
structure of Ricci limit spaces.

Non-intrinsic point of view consider the non-smooth space arising
as limits of smooth objects. Dichotomy collapsing (loss of dim in
the limit)-non collapsing. Very powerful for local struct. properties.

Analogy Define W12 as completion of C> endwed with W12-dist.



Origin of the topic: extrinsic Vs intrinsic

Cheeger-Colding 1997-2000: three fundamental works on the
structure of Ricci limit spaces.

Non-intrinsic point of view consider the non-smooth space arising
as limits of smooth objects. Dichotomy collapsing (loss of dim in
the limit)-non collapsing. Very powerful for local struct. properties.

Analogy Define W12 as completion of C> endwed with W12-dist.

W12 can be defined also in completely intrinsic way without
passing via approximations (very convenient for doing calculus of
variations).

Role of OT define in an intrisic-axiomatic way a non-smooth space
with Ricci curvature bounded below by K and dimension bounded
above by N (containing ricci limits no matter if collapsed or not).

—— Weak version of a Riemannian manifold with Ric > K.
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Optimal Transport: Cornerstone

Interplay of Optimal Transport, entropy and curvature

» Ricci curvature in terms of geodesic convexity of entropy
along L2 Optimal Transport, c(x,y) = d2(x,y) (Lott-Villani,

Sturm 06) Ent(p) = [ p(x) log p(x)x

Po P12 P1 0 1/2 1
Giving: Ric > K if and only if Hess Ent > K.

» LSV theory: new approach to non-smooth metric spaces
Examples: manifolds with Ric > K, Alexandrov spaces,
normed and Finsler spaces, limits of those spaces



