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Plan of the talk

Aim
Present some applications of Optimal Transport to geometric
inequalities for smooth/non-smooth manifolds.

Plan

I General overview on Optimal Transport

I Theory of Curvature-Dimension condition

I Functional Inequalities: Levy-Gromov isoperimetric inequality



Optimal Transport: Formulation

How to minimise total transport cost? (Monge 1781, Kantorovich
1942)

Rn
x Rn

y

y = T (x)

cost c(x , y)

f2(y)

f1(x)

If
∫
f1 =

∫
f2, T is a transport map from f1 to f2 iff for any A ⊂ Rn∫

A
f2(x) dx =

∫
T−1(A)

f1(x) dx , i .e. T](f1 dx) = f2 dx ,

Given a cost fuction c(x , y), the total transport cost of T is

C (T ) =

∫
Rn

c(x ,T (x))f1(x) dx .
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Optimal Transport: Monge problem

Monge Optimal transport problem minimize

T →
∫
Rn

c(x ,T (x))f1(x)dx , T transport map from f1 to f2.

Main issues with the minimization problem

I T is (smooth) transport map iff f2(T (x))| detDT (x)| = f1(x).
Highly non-linear constrain.

I The set of transport maps is not closed in any reasonable
topology.

I Replace f1, f2 with any µ1, µ2 ∈ P(Rn) to obtain the general
Monge problem: the set of transport maps can be empty.

 Kantorovich relaxation rewrite the total transportation cost∫
Rn

c(x ,T (x))µ1(dx) =

∫
Rn×Rn

c(x , y)((id ,T )]µ1)(dxdy)
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Optimal Transport: Monge-Kantorovich problem

A transport map T seen as a measure on its graph (id ,T )]µ1
becomes a transport plan

Π(µ1, µ2) = {π ∈ P(Rn × Rn) : (Pi )]π = µi , i = 1, 2}.

Rn

Rn

µ1

µ2

T

Rn

Rn

µ1

µ2

π

Set of transport plans is weakly closed and convex.
Monge-Kantorovich problem minimize the linear functional

Π(µ1, µ2) 3 π 7→
∫
Rn×Rn

c(x , y)π(dxdy).

If c : Rn × Rn → [0,∞) is l.s.c., existence of a solution.
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Optimal Transport: Solutions for d2 and d

Structure of optimal plans is obtained via classical duality theory.

I X = Mn Riem. mfld c = d2
g (Brenier, McCann, Gangbo).

Given µ1 = f1dvolg and any µ2, ∃! optimal transport map

T (x) = expx(−∇ψ(x)), ψ : Mn → R, d2
g − concave,

ψcc = ψ where ψc(y) = infx∈M
d2
g (x ,y)

2 − ψ(x).

I X = Mn Riem. mfld c = dg (Feldman, McCann).

Given µ1, µ2 there exists u : X → R 1-Lipschitz function so that

π optimal ⇐⇒ π({(x , y) : u(x)− u(y) = dg (x , y)}) = 1.

Optimal path for c = dg are along steepest descent of u.
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Optimal Transport: cost function c

Flexible problem, has found applications in many fields (different
choices of c).

I Analysis and PDEs: Gradient flows, JKO scheme.
Monge-Ampere equation (c(x , y) = |x − y |2).

I Physics: Random matching problem (sqrd Eucl. dist.),
Density Functional Theory (Coulomb cost), Einstein equation
of general relativity (Lorentzian cost function).

I Geometry of metric spaces: new class of metric spaces by
Lott-Sturm-Villani verifying Ric ≥ K and dim ≤ N in a
synthetic sense, called CD(K ,N).

I Data science and Economy: Entropic regularisation (Sinkhorn,
Shrodinger problem), mixed problems (Hellinger-Kantorovich).
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Geometry of metric spaces: basics

Let (Mn, g) be an n-dimensional Riemannian manifold. Denote
Sec the sectional curvature and Ric the Ricci curvature.

I For K ∈ R we write Sec ≥ K (resp.≤ K ) if for every p ∈ M
and every 2-dim plane Π ⊂ TpM it holds Secp(Π) ≥ K (resp.
≤ K ).

I Ricp : TpM × TpM → R is a quadratic form. We write
Ric ≥ K (resp. ≤ K ) if the quadratic form Ricp − Kgp is
non-negative (resp. non-positive) definite at every p ∈ M.

Examples

I n-dimensional euclidean space: Sec ≡ 0,Ric ≡ 0.

I n-dimensional round sphere of radius 1: Sec ≡ 1,Ric ≡ n − 1.

I n-dimensional hyperbolic space: Sec ≡ −1,Ric ≡ −(n − 1).

Natural question (M, g) smooth Riem. manifold. Assume some
upper/lower bounds on Sec or on Ric ; what can we say on (M, g)?
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Basics on comparison geometry

I Upper/Lower bounds on the Sec are strong assumptions with
strong implications (definition of Alexandrov spaces: non
smooth spaces with upper/lower bounds on Sec).

I Upper bounds on the Ricci curvature are very (too) weak
assumption for geometric conclusions. Lokhamp Theorem:
any closed mfld of dim ≥ 3 carries a metric with negative Ric .

Lower bounds on the Ric natural framework for comparison geom.

I Bishop-Gromov volume comparison: If Ric ≥ 0 then for all
x ∈ M R → volg (BR(x))/ωNR

N is monotone non-increasing

I Laplacian comparison,

I Cheeger-Gromoll splitting,

I Levy-Gromov isoperimetric inequality

I ...
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Origin of the topic: motivation

Gromov in the ’80ies:

I notion of convergence for Riemannian manifolds:
Gromov-Hausdorff convergence (for non-compact manifolds,
more convenient a pointed version, called pointed
Gromov-Hausdorff convergence ∼ GH-convergence of metric
balls of every fixed radius).

I A sequence of Riemannian n-dimensional manifolds satisfying
a uniform Ricci curvature lower bound is pre-compact, i.e. it
converges up to subsequences to a possibly non-smooth limit
space (called, from now on, Ricci limit space)

Big Question what about the compactification of the space of
Riem. mfld with Ricci curvature bounded below (by, say, −1)?

Hope useful also to establish properties for smooth manifolds.
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Origin of the topic: extrinsic Vs intrinsic

Cheeger-Colding 1997-2000: three fundamental works on the
structure of Ricci limit spaces.
Non-intrinsic point of view consider the non-smooth space arising
as limits of smooth objects. Dichotomy collapsing (loss of dim in
the limit)-non collapsing. Very powerful for local struct. properties.

Analogy Define W 1,2 as completion of C∞ endwed with W 1,2-dist.

W 1,2 can be defined also in completely intrinsic way without
passing via approximations (very convenient for doing calculus of
variations).

Role of OT define in an intrisic-axiomatic way a non-smooth space
with Ricci curvature bounded below by K and dimension bounded
above by N (containing ricci limits no matter if collapsed or not).

=⇒ Weak version of a Riemannian manifold with Ric ≥ K .
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Optimal Transport: Cornerstone

Interplay of Optimal Transport, entropy and curvature

I Ricci curvature in terms of geodesic convexity of entropy
along L2 Optimal Transport, c(x , y) = d2

g (x , y) (Lott-Villani,
Sturm ’06)

ρ0 ρ1/2
ρ1

t

Ent(ρ) =
∫
ρ(x) log ρ(x)dx

0 1/2 1

Giving: Ric ≥ K if and only if Hess Ent ≥ K .

I LSV theory: new approach to non-smooth metric spaces
Examples: manifolds with Ric ≥ K , Alexandrov spaces,
normed and Finsler spaces, limits of those spaces
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