Emergent gravitational dynamics from relativistic Bose-Einstein condensate

Alessio Belenchia
SISSA, International School for Advanced Studies
INFN, Sezione di Trieste

Conceptual and Technical Challenges for Quantum Gravity

Based on arXiv:1407.7896, work in collaboration with Stefano Liberati and Arif Mohd

Rome, 8 September 2014
Different hints to the fact that GR is a low energy hydrodynamics of some more fundamental constituent:

- Non-renormalizability: said to us that GR is an EFT at low energy (long wavelength) as well as hydrodynamics
- Black Hole thermodynamics and the thermodynamics of spacetime: Einstein equation as an equation of state [T.Jacobson, PRL (’95)]

Maybe try to quantize the metric and connection forms will give us the analogous of phonons and not the atoms of the underline theory.

Analogue Models for Gravity: gives a useful tool and toy models to tackle the problem of emergence from an underline substratum in condensed matter systems (usually experimentally testable)
Different hints to the fact that GR is a low energy **hydrodynamics** of some more fundamental constituent:

- Non-renormalizability: said to us that GR is an EFT at low energy (long wavelength) as well as hydrodynamics
- Black Hole thermodynamics and the thermodynamics of spacetime: Einstein equation as an equation of state [T. Jacobson, PRL (’95)]

Maybe try to quantize the metric and connection forms will give us the analogous of **phonons** and not the **atoms** of the underline theory.

Analogue Models for Gravity: gives a useful tool and toy models to tackle the problem of emergence from an underline substratum in condensed matter systems (usually experimentally testable)
Different hints to the fact that GR is a low energy hydrodynamics of some more fundamental constituent:

- Non-renormalizability: said to us that GR is an EFT at low energy (long wavelength) as well as hydrodynamics
- Black Hole thermodynamics and the thermodynamics of spacetime: Einstein equation as an equation of state [T. Jacobson, PRL (‘95)]

Maybe try to quantize the metric and connection forms will give us the analogous of phonons and not the atoms of the underline theory.

Analogue Models for Gravity: gives a useful tool and toy models to tackle the problem of emergence from an underline substratum in condensed matter systems (usually experimentally testable)
Analogue models

Analogue Model: condensed matter systems\(^1\) that present kinematical and/or dynamical features analogue to gravitational theories [C.Barcelo, S.Liberati, M.Visser, Living Rev.Rel.(’11)]

Particular attention is given to BEC-based analogue models since they are quantum (macroscopic) systems!

Most analogue models offer an analogue for kinematic features of gravity theories that permit to test general features of QFT in CS

- Hawking radiation [W. G. Unruh, PRL (’81)]
- Cosmological Particle production [C.Barcelo, S.Liberati, M.Visser, PRA(2003)]
- Super-radiance [M.Richartz *et al* 2013 Class. Quantum Grav.]

- **Good:** kinematic features are independent from the particular dynamics
- **Not (so) good:** dynamical feature are essential in order to study the nature of spacetime

THEN

Try to find some analogue model that can mimic the dynamic of (some) gravity theory ⇒ not an easy task, one model for **Newtonian-like** dynamics in BEC system [F.Girelli, S.Liberati, L.Sindoni, PRD(2008)]

\(^1\)There are also purely theoretical models that in spite of don’t be condensed matter systems are full fledged analogue models
Analogue models

Analogue Model: condensed matter systems\(^1\) that present kinematical and/or dynamical features analogue to gravitational theories [C.Barcelo, S.Liberati, M.Visser, Living Rev.Rel.(’11)]

Particular attention is given to BEC-based analogue models since they are quantum (macroscopic) systems!

Most analogue models offer an analogue for **kinematic** features of gravity theories that permit to test general features of QFT in CS

- **Hawking radiation** [W. G. Unruh, PRL (’81)]
- **Cosmological Particle production** [C.Barcelo, S.Liberati, M.Visser, PRA(2003)]
- **Super-radiance** [M.Richartz et al 2013 Class. Quantum Grav.]

- **Good:** kinematic features are independent from the particular dynamics
- **Not (so) good:** dynamical feature are essential in order to study the nature of spacetime

THEN

Try to find some analogue model that can mimic the **dynamic** of (some) gravity theory ⇒ not an easy task, one model for **Newtonian-like** dynamics in BEC system [F.Girelli, S.Liberati, L.Sindoni, PRD(2008)]

\(^1\)There are also purely theoretical models that in spite of don’t be condensed matter systems are full fledged analogue models
Analogue models

Analogue Model: condensed matter systems\(^1\) that present kinematical and/or dynamical features analogue to gravitational theories [C.Barcelo, S.Liberati, M.Visser, Living Rev.Rel.(‘11)]

Particular attention is given to BEC-based analogue models since they are quantum (macroscopic) systems!

Most analogue models offer an analogue for **kinematic** features of gravity theories that permit to test general features of QFT in CS

- Hawking radiation [W. G. Unruh, PRL (‘81)]
- Cosmological Particle production [C.Barcelo, S.Liberati, M.Visser, PRA(2003)]
- Super-radiance [M.Richartz et al 2013 Class. Quantum Grav.]

- **Good:** kinematic features are independent from the particular dynamics
- **Not (so) good:** dynamical feature are essential in order to study the nature of spacetime

THEN

Try to find some analogue model that can mimic the **dynamic** of (some) gravity theory ⇒ not an easy task, one model for **Newtonian-like** dynamics in BEC system [F.Girelli, S.Liberati, L.Sindoni, PRD(2008)]

\(^1\)There are also purely theoretical models that in spite of don’t be condensed matter systems are full fledged analogue models
Analogue models

Analogue Model: condensed matter systems\(^1\) that present kinematical and/or dynamical features analogue to gravitational theories [C.Barcelo, S.Liberati, M.Visser, Living Rev.Rel. (‘11)]

Particular attention is given to BEC-based analogue models since they are quantum (macroscopic) systems!

Most analogue models offer an analogue for **kinematic** features of gravity theories that permit to test general features of QFT in CS

- Hawking radiation [W. G. Unruh, PRL (‘81)]
- Cosmological Particle production [C.Barcelo, S.Liberati, M.Visser, PRA(2003)]
- Super-radiance [M.Richartz *et al* 2013 Class. Quantum Grav.]

Good: kinematic features are independent from the particular dynamics

Not (so) good: dynamical feature are essential in order to study the nature of spacetime

THEN

Try to find some analogue model that can mimic the **dynamic** of (some) gravity theory \(\Rightarrow\) not an easy task, one model for **Newtonian-like** dynamics in BEC system [F.Girelli, S.Liberati, L.Sindoni, PRD(2008)]

\(^1\)There are also purely theoretical models that in spite of don’t be condensed matter systems are full fledged analogue models
In BEC based Analogue models for gravity the order parameter gives rise to an effective metric that is felt by the linearized perturbations:

- Split the field in order parameter plus linear perturbations
- Use Madelung representation for the order parameter (condensate wave function)
- Hydrodynamic form of Gross-Pitaevskii(GP) equation \Rightarrow hydrodynamics (continuity+Euler) of an irrotational fluid plus a quantum potential self-interaction term
- In the low momentum limit the linearized perturbations feels an acoustic effective metric

Quasi-particles behave as massless minimally coupled scalar field on a curved effective Lorentzian metric, i.e. the so called acoustic metric.

In general there are LIV terms in the dispersion relation of the quasi-particles that are negligible only in the low momentum limit.
BEC Analogue Models Vademecum

In BEC based Analogue models for gravity the order parameter gives rise to an effective metric that is felt by the linearized perturbations

- Split the field in order parameter plus linear perturbations
- Use Madelung representation for the order parameter (condensate wave function)
- Hydrodynamic form of Gross-Pitaevskii(GP) equation \Rightarrow hydrodynamics (continuity+Euler) of an irrotational fluid plus a quantum potential self-interaction term
- In the low momentum limit the linearized perturbations feels an acoustic effective metric

Quasi-particles behave as massless minimally coupled scalar field on a curved effective Lorentzian metric, i.e. the so called acoustic metric

In general there are LIV terms in the dispersion relation of the quasi-particles that are negligible only in the low momentum limit
BEC Analogue Models Vademecum

In BEC based Analogue models for gravity the order parameter gives rise to an effective metric that is felt by the linearized perturbations

- Split the field in order parameter plus linear perturbations
- Use Madelung representation for the order parameter (condensate wave function)
- Hydrodynamic form of Gross-Pitaevskii (GP) equation \Rightarrow hydrodynamics (continuity+Euler) of an irrotational fluid plus a quantum potential self-interaction term
- In the low momentum limit the linearized perturbations feels an acoustic effective metric

Quasi-particles behave as massless minimally coupled scalar field on a curved effective Lorentzian metric, i.e. the so called acoustic metric

In general there are LIV terms in the dispersion relation of the quasi-particles that are negligible only in the low momentum limit
Relativistic BEC I

A non-relativistic BEC can be shown to give us:

1. A relativistic wave equation for perturbations, i.e. analogue kinematic features
2. A non-relativistic Poisson equation considering the back-reaction of perturbations on the background condensate that play the role of source of the emergent gravitational field [F.Girelli, S.Liberati, L.Sindoni, PRD(2008)]

One can try to see what happen considering relativistic BEC [S.Fagnocchi et al., New J. Phys.(2010)]

1. Good analogue system for kinematic properties: quasi-particles moves on an acoustic metric in the low momentum limit
2. The acoustic metric is the same as in a relativistic irrotational barotropic fluid [M. Visser, C. Molina-Paris, New J.Phys. 12 (2010)]
3. The dispersion relation shows LIV due to interpolation between two different relativity group (different limit speeds)
4. It is possible to obtain an analogue of Nordström gravity, that is a scalar gravity theory [AB, A.Mohd, S.Liberati, gr-qc:1407.7896]
Relativistic BEC I

A non-relativistic BEC can be shown to give us:

1. A relativistic wave equation for perturbations, i.e. analogue **kinematic features**
2. A non-relativistic **Poisson equation** considering the back-reaction of perturbations on the background condensate that play the role of source of the emergent gravitational field [F. Girelli, S. Liberati, L. Sindoni, PRD(2008)]

One can try to see what happen considering relativistic BEC [S. Fagnocchi et al., New J. Phys.(2010)]

4. **Good** analogue system for kinematic properties: quasi-particles moves on an **acoustic metric** in the low momentum limit
5. The acoustic metric is the same as in a **relativistic irrotational barotropic fluid** [M. Visser, C. Molina-Paris, New J. Phys. 12 (2010)]
6. The dispersion relation shows LIV due to interpolation between two different relativity group (different limit speeds)
7. It is possible to obtain an analogue of **Nordström gravity**, that is a scalar gravity theory [AB, A. Mohd, S. Liberati, gr-qc:1407.7896]
Relativistic BEC II

BEC (and superfluidity) can be described in a completely relativistic framework. We consider a weakly interacting $\lambda \phi^4$ complex scalar field theory in grand canonical formalism.

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\dot{\phi}_1^2 + \dot{\phi}_2^2 + (\vec{\nabla} \phi_1)^2 + (\vec{\nabla} \phi_2)^2 \right) + i \mu (\phi_2 \dot{\phi}_1 - \phi_1 \dot{\phi}_2) + V(\phi)$$

$$V(\phi) = \frac{1}{2} (m^2 - \mu^2)(\phi_1^2 + \phi_2^2) + \frac{\lambda}{4} (\phi_1^2 + \phi_2^2)^2$$

$$T_c = \frac{3}{\lambda} \left(\mu^2 - m^2 \right)$$

Note: condensation can happen at finite temperature also in the massless limit.

After a field redefinition: $\phi \rightarrow \varphi e^{i\mu t}$ we ended with the starting equation of [S.Fagnocchi et al., New J. Phys.(2010)]

$$\left(\Box - m^2 \right) \varphi - 2\lambda |\varphi|^2 \varphi = 0$$

In the following we will assume that a condensate is actually present and we have a non-zero chemical potential.
BEC (and superfluidity) can be described in a completely relativistic framework.

We consider a weakly interacting $\lambda \phi^4$ complex scalar field theory in grand canonical formalism.

Effective Lagrangian and Critical Temperature [J. I. Kapusta, Phys.Rev. D24, 426 (1981)]

\[
\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\dot{\phi}_1^2 + \dot{\phi}_2^2 + (\vec{\nabla} \phi_1)^2 + (\vec{\nabla} \phi_2)^2 \right) + i\mu (\phi_2 \dot{\phi}_1 - \phi_1 \dot{\phi}_2) + V(\phi)
\]

\[
V(\phi) = \frac{1}{2} (m^2 - \mu^2)(\phi_1^2 + \phi_2^2) + \frac{\lambda}{4}(\phi_1^2 + \phi_2^2)^2
\]

\[
T_c = \frac{3}{\lambda} \left(\mu^2 - m^2 \right)
\]

Note: condensation can happen at finite temperature also in the massless limit.

After a field redefinition: $\phi \rightarrow \varphi e^{i\mu t}$ we ended with the starting equation of

[S.Fagnocchi et al., New J. Phys.(2010)]

\[
\left(\Box - m^2 \right) \varphi - 2\lambda |\varphi|^2 \varphi = 0
\]

In the following we will assume that a condensate is actually present and we have a non-zero chemical potential.
Relativistic BEC II

BEC (and superfluidity) can be described in a completely relativistic framework. We consider a weakly interacting $\lambda\varphi^4$ complex scalar field theory in grand canonical formalism.

Effective Lagrangian and Critical Temperature

[J. I. Kapusta, Phys.Rev. D24, 426 (1981)]

\[
\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\dot{\phi}_1^2 + \dot{\phi}_2^2 + (\vec{\nabla}\phi_1)^2 + (\vec{\nabla}\phi_2)^2 \right) + i\mu(\phi_2\dot{\phi}_1 - \phi_1\dot{\phi}_2) + V(\phi)
\]

\[
V(\phi) = \frac{1}{2}(m^2 - \mu^2)(\phi_1^2 + \phi_2^2) + \frac{\lambda}{4}(\phi_1^2 + \phi_2^2)^2
\]

\[
T_c = \frac{3}{\lambda} \left(\mu^2 - m^2 \right)
\]

Note: condensation can happen at finite temperature also in the massless limit.

After a field redefinition: $\phi \rightarrow \varphi e^{i\mu t}$ we ended with the starting equation of

[S.Fagnocchi et al., New J. Phys.(2010)]

\[
(\Box - m^2)\varphi - 2\lambda|\varphi|^2\varphi = 0
\]

In the following we will assume that a condensate is actually present and we have a non-zero chemical potential.
In the general case we can follow the *vademecum*:

1. Splitting in order parameter plus *fractional* perturbations: \(\varphi = \varphi_0 (1 + \psi) \)
2. Using Madelung representation to obtain the background equation plus back-reaction as in non-relativistic BEC
3. Equation for perturbations:

\[
\Box \psi + 2 \eta^{\mu\nu} (\partial_\mu \ln \varphi_0) \partial_\nu \psi - |\varphi_0|^2 (\psi + \psi^\dagger) = 0
\]

4. Low momentum limit:

\[
\Box g \psi = 0
\]

The effective metric that the perturbations feel is the so called acoustic metric:

\[
g_{\mu\nu} = \rho \frac{c}{c_s} \left[\eta_{\mu\nu} + \left(1 - \frac{c_s^2}{c^2} \right) \frac{\nu_\mu \nu_\nu}{c^2} \right]
\]
rBEC Analogue Model: general case

In the general case we can follow the vademecum:

1. Splitting in order parameter plus fractional perturbations: \(\varphi = \varphi_0 (1 + \psi) \)
2. Using Madelung representation to obtain the background equation plus back-reaction as in non-relativistic BEC
3. Equation for perturbations:
 \[
 \square \psi + 2 \eta^{\mu \nu} (\partial_\mu \ln \varphi_0) \partial_\nu \psi - |\varphi_0|^2 (\psi + \psi^\dagger) = 0
 \]
4. Low momentum limit:
 \[
 \square_g \psi = 0
 \]

The effective metric that the perturbations feel is the so called acoustic metric:

Acoustic metric

\[
\mathcal{g}_{\mu \nu} = \rho \frac{c}{c_s} \left[\eta_{\mu \nu} + \left(1 - \frac{c_s^2}{c^2} \right) \frac{\nu_\mu \nu_\nu}{c^2} \right]
\]
Nordström (Analogue) Gravity from RBEC I

\[
\left(\Box - m^2\right) \varphi - 2\lambda |\varphi|^2 \varphi = 0
\]

- Mean field plus (fractional) fluctuations splitting: \(\varphi = \varphi_0 (1 + \psi_1 + i\psi_2) \)
- Assume the order parameter to be real: \(\varphi_0 \in \mathbb{R} \)

Relativistic GP equation + back-reaction

\[
(\Box - m^2) \varphi_0 - 2\lambda \varphi_0^3 - 2\lambda \varphi_0^3 \left[3 \langle \psi_1^2 \rangle + \langle \psi_2^2 \rangle \right] = 0
\]

- Equation of motion of the (linear, fractional) perturbations

\[
\Box \psi_1 + 2\eta^{\mu \nu} \partial_\mu (\ln \varphi_0) \partial_\nu \psi_1 - 4\lambda \varphi_0^2 \psi_1 = 0
\]

\[
\Box \psi_2 + 2\eta^{\mu \nu} \partial_\mu (\ln \varphi_0) \partial_\nu \psi_2 = 0
\]
Nordström (Analogue) Gravity from RBEC I

\[
(\Box - m^2) \varphi - 2\lambda |\varphi|^2 \varphi = 0
\]

- Mean field plus (fractional) fluctuations splitting: \(\varphi = \varphi_0 (1 + \psi_1 + i\psi_2) \)
- Assume the order parameter to be real: \(\varphi_0 \in \mathbb{R} \)

Relativistic GP equation+back-reaction

\[
(\Box - m^2) \varphi_0 - 2\lambda \varphi_0^3 - 2\lambda \varphi_0^3 \left[3 \langle \psi_1^2 \rangle + \langle \psi_2^2 \rangle \right] = 0
\]

- Equation of motion of the (linear, fractional) perturbations

\[
\Box \psi_1 + 2\eta^{\mu\nu} \partial_\mu (\ln \varphi_0) \partial_\nu \psi_1 - 4\lambda \varphi_0^2 \psi_1 = 0
\]

\[
\Box \psi_2 + 2\eta^{\mu\nu} \partial_\mu (\ln \varphi_0) \partial_\nu \psi_2 = 0
\]
Nordström (Analogue) Gravity from RBEC II

- For $g_{\mu\nu} = \varphi_0^2 \eta_{\mu\nu}$
 \[
 \Box_g f = \frac{1}{\varphi_0^2} \Box + \frac{2}{\varphi_0^2} \eta^{\mu\nu} \partial_\mu (\ln \varphi_0) \partial_\nu f
 \]

- The perturbations feel an effective curved (conformally flat) metric
 \[
 \Box_g \psi_1 - 4\lambda \psi_1 = 0 \quad \Box_g \psi_2 = 0
 \]

- Ricci scalar for the conformal metric:
 \[
 R_g \equiv -6 \frac{\Box \varphi_0}{\varphi_0^3}
 \]

- The GP equation can be rewritten in a (almost) geometrical form
 \[
 R_g + 6 \frac{m^2}{\varphi_0^2} + 12\lambda = -12\lambda \left[3 \langle \psi_1^2 \rangle + \langle \psi_2^2 \rangle \right]
 \]

- Taking the massless limit one recover something similar to the Einstein-Fokker equation describing Nordström gravity $R + \Lambda = 24\pi \frac{G_N}{c^4} T$
Nordström (Analogue) Gravity from RBEC II

- For $g_{\mu\nu} = \varphi_0^2 \eta_{\mu\nu}$
 \[
 \Box_g f = \frac{1}{\varphi_0^2} \Box + \frac{2}{\varphi_0^2} \eta^{\mu\nu} \partial_\mu (\ln \varphi_0) \partial_\nu f
 \]

- The perturbations feel an effective curved (conformally flat) metric
 \[
 \Box_g \psi_1 - 4\lambda \psi_1 = 0 \quad \Box_g \psi_2 = 0
 \]

- Ricci scalar for the conformal metric:
 \[
 R_g \equiv -6 \frac{\Box \varphi_0}{\varphi_0^3}
 \]

- The GP equation can be rewritten in a (almost) geometrical form
 \[
 R_g + 6 \frac{m^2}{\varphi_0^2} + 12\lambda = -12\lambda \left[3 \langle \psi_1^2 \rangle + \langle \psi_2^2 \rangle \right]
 \]

- Taking the massless limit one recover something similar to the Einstein-Fokker equation describing Nordström gravity $R + \Lambda = 24\pi \frac{G_N}{c^4} T$
Nordström (Analogue) Gravity from RBEC III

- The action of the system can be recast in a geometrical form.
- From that we can obtain the trace of the Stress Energy tensor of the perturbations

\[T_{\mu\nu} \equiv -\frac{1}{\sqrt{-g}} \frac{\delta (\sqrt{-g}L_2)}{\delta g^{\mu\nu}} \]

- Matching it with the RHS of the geometrical equation we can determine the expression for the emergent Newton constant.

\[R + \Lambda = 24\pi \frac{G_N^{\text{eff}}}{c^4} \langle T \rangle \]

where

\[\Lambda = 12\lambda \frac{\mu^2}{\hbar c}, \]

\[G_N^{\text{eff}} = \hbar c^5 / (4\pi \mu^2) \]
Nordström (Analogue) Gravity from RBEC III

- The action of the system can be recast in a geometrical form
- From that we can obtain the trace of the Stress Energy tensor of the perturbations

\[T_{\mu\nu} \equiv -\frac{1}{\sqrt{-g}} \frac{\delta (\sqrt{-g} L_2)}{\delta g^{\mu\nu}} \]

- Matching it with the RHS of the geometrical equation we can determine the expression for the emergent Newton constant

Analogue Nordström gravity

\[R + \Lambda = 24\pi \frac{G^\text{eff}}{c^4} \langle T \rangle \]

where

\[\Lambda = 12\lambda \frac{\mu^2}{\hbar c}, \]

\[G^\text{eff}_N = \hbar c^5 / (4\pi \mu^2) \]
Summary

- rBEC as Analogue Model also for the **dynamics** of Gravity Theories as in the non-relativistic case
- It can be obtain an analogue of **Nordström (scalar) theory of gravity** from a peculiar corner of the general case
- Emergence of Nordström gravity expected due to d.o.f. of the model
- More general Lagrangian are needed for more **realistic models**
- The $\lambda\phi^4$ interaction gives rise to a cosmological constant such that
 \[
 \frac{\epsilon_\Lambda}{\epsilon_p} \approx \frac{3\lambda\hbar c}{4\pi^2}
 \]
- Emergence of a (more as possible) general covariant dynamics for the background given the back-reaction of the perturbations in the limit in which LIV are tuned to vanish
- **Proof of concept** that is possible to have an emergent fully LI system \(^2\)
- Possible interesting **toy model** for geometrogenesis and/or nature of spacetime singularities in emergent gravity scenarios

\(^2\) At least at the level of linear perturbations