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Introduction

This book concerns a fresh development of the eternal idea of the distance as the length of a shortest
path. In Euclidean geometry, shortest paths are segments of straight lines that satisfy all classical
axioms. In the Riemannian world, Euclidean geometry is just one of a huge amount of possibilities.
However, each of these possibilities is well approximated by Euclidean geometry at very small scale.
In other words, Euclidean geometry is treated as geometry of initial velocities of the paths starting
from a fixed point of the Riemannian space rather than the geometry of the space itself.

The Riemannian construction was based on the previous study of smooth surfaces in the Eu-
clidean space undertaken by Gauss. The distance between two points on the surface is the length
of a shortest path on the surface connecting the points. Initial velocities of smooth curves starting
from a fixed point on the surface form a tangent plane to the surface, that is an Euclidean plane.
Tangent planes at two different points are isometric, but neighborhoods of the points on the surface
are not locally isometric in general; certainly not if the Gaussian curvature of the surface is different
at the two points.

Riemann generalized Gauss’ construction to higher dimensions and realized that it can be
done in an intrinsic way; you do not need an ambient Fuclidean space to measure the length of
curves. Indeed, to measure the length of a curve it is sufficient to know the Euclidean length
of its velocities. A Riemannian space is a smooth manifold whose tangent spaces are endowed
with Euclidean structures; each tangent space is equipped with its own Euclidean structure that
smoothly depends on the point where the tangent space is attached.

For a habitant sitting at a point of the Riemannian space, tangent vectors give directions where
to move or, more generally, to send and receive information. He measures lengths of vectors, and
angles between vectors attached at the same point, according to the Euclidean rules, and this is
essentially all what he can do. The point is that our habitant can, in principle, completely recover
the geometry of the space by performing these simple measurements along different curves.

In the sub-Riemannian space we cannot move, receive and send information in all directions.
There are restictions (imposed by the God, the moral imperative, the government, or simply a
physical law). A sub-Riemannian space is a smooth manifold with a fixed admissible subspace in
any tangent space where admissible subspaces are equipped with Euclidean structures. Admissible
paths are those curves whose velocities are admissible. The distance between two points is the
infimum of the length of admissible paths connecting the points. It is assumed that any pair of
points in the same connected component of the manifold can be connected by at least an admissible
path. The last assumption might look strange at a first glance, but it is not. The admissible
subspace depends on the point where it is attached, and our assumption is satisfied for a more or
less general smooth dependence on the point; better to say that it is not satisfied only for very
special families of admissible subspaces.

Let us describe a simple model. Let our manifold be R? with coordinates z,, z. We consider

11



the differential 1-form w = dz + %(a;dy — ydr). Then dw = dz A dy is the pullback on R? of the
area form on the zy-plane. In this model the subspace of admissible velocities at the point (z,y, 2)
is assumed to be the kernel of the form w. In other words, a curve t — (x(t),y(t),2(t)) is an
admissible path if and only if () = 5 (y(t)&(t) — z(£)y(t)).

The length of an admissible tangent vector (&, 7, 2) is defined to be (32 +g)2)%, that is the length
of the projection of the vector to the zy-plane. We see that any smooth planar curve (x(t),y(t))
has a unique admissible lift (x(t),y(t), 2(t)) in R3, where:

A0 =5 [ aoh6e) syt ds.

If 2(0) = y(0) = 0, then z(¢) is the signed area of the domain bounded by the curve and the segment
connecting (0,0) with (z(t),y(t)). By construction, the sub-Riemannian length of the admissible
curve in R? is equal to the Euclidean length of its projection to the plane.

We see that sub-Riemannian shortest paths are lifts to R3 of the solutions to the classical Dido
isoperimetric problem: find a shortest planar curve among those connecting (0, 0) with (z1, 1) and
such that the signed area of the domain bounded by the curve and the segment joining (0,0) and
(z1,y1) is equal to z1 (see Figure [).

z ((t), (1), 2(t))

Figure 1: The Dido problem

Solutions of the Dido problem are arcs of circles and their lifts to R? are spirals where z(t) is
the area of the piece of disc cut by the hord connecting (0,0) with (z(t),y(t)).

A piece of such a spiral is a shortest admissible path between its endpoints while the planar
projection of this piece is an arc of the circle. The spiral ceases to be a shortest path when its
planar projection starts to run the circle for the second time, i.e. when the spiral starts its second
turn. Sub-Riemannian balls centered at the origin for this model look like apples with singularities
at the poles (see Figure [3)).

Singularities are points on the sphere connected with the center by more than one shortest
path. The dilation (z,y,z2) — (rz,ry,r2z) transforms the ball of radius 1 into the ball of radius
r. In particular, arbitrary small balls have singularities. This is always the case when admissible
subspaces are proper subspaces.

Another important symmetry connects balls with different centers. Indeed, the product opera-
tion

. 1
(x,y,2)- (2',y,2) = (w +2 y+y, 2+ + §(wy’ — x’y)>

12



u

Figure 2: Solutions to the Dido problem

Figure 3: The Heisenberg sub-Riemannian sphere

turns R? into a group, the Heisenberg group. The origin in R? is the unit element of this group. It
is easy to see that left translations of the group transform admissible curves into admissible ones
and preserve the sub-Riemannian length. Hence left translations transform balls in balls of the
same radius. A detailed description of this example and other models of sub-Riemannian spaces is
done in Section ?? and Chapter

Actually, even this simplest model tells us something about life in a sub-Riemannian space. Here
we deal with planar curves but, in fact, operate in the three-dimensional space. Sub-Riemannian
spaces always have a kind of hidden extra dimension. A good and not yet exploited source for mystic
speculations but also for theoretical physicists who are always searching new crazy formalizations.
In mechanics, this is a natural geometry for systems with nonholonomic constraints like skates,
wheels, rolling balls, bearings etc. This kind of geometry could also serve to model social behavior
that allows to increase the level of freedom without violation of a restrictive legal system.

Anyway, in this book we perform a purely mathematical study of sub-Riemannian spaces to
provide an appropriate formalization ready for all eventual applications. Riemannian spaces appear
as a very special case. Of course, we are not the first to study the sub-Riemannian stuff. There is
a broad literature even if there are few experts who could claim that sub-Riemannian geometry is
his main field of expertise. Important motivations come from CR geometry, hyperbolic geometry,
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analysis of hypoelliptic operators, and some other domains. Our first motivation was control theory:
length minimizing is a nice class of optimal control problems.

Indeed, one can find a control theory spirit in our treatment of the subject. First of all, we
include admissible paths in admissible flows that are flows generated by vector fields whose values
in all points belong to admissible subspaces. The passage from admissible subspaces attached at
different points of the manifold to a globally defined space of admissible vector fields makes the
structure more flexible and well-adapted to algebraic manipulations. We pick generators f1,..., fx
of the space of admissible fields, and this allows us to describe all admissible paths as solutions
to time-varying ordinary differential equations of the form: ¢(t) = Zle u;(t) fi(q(t)). Different
admissible paths correspond to the choice of different control functions u;(-) and initial points ¢(0)
while the vector fields f; are fixed at the very beginning.

We also use a Hamiltonian approach supported by the Pontryagin maximum principle to char-
acterize shortest paths. Few words about the Hamiltonian approach: sub-Riemannian geodesics
are admissible paths whose sufficiently small pieces are length-minimizers, i.e. the length of such
a piece is equal to the distance between its endpoints. In the Riemannian setting, any geodesic is
uniquely determined by its velocity at the initial point ¢q. In the general sub-Riemannian situation
we have much more geodesics based at the the point ¢ than admissible velocities at q. Indeed, every
point in a neighborhood of ¢ can be connected with ¢ by a length-minimizer, while the dimension
of the admissible velocities subspace at ¢ is usually smaller than the dimension of the manifold.

What is a natural parametrization of the space of geodesics? To understand this question, we
adapt a classical “trajectory — wave front” duality. Given a length-parameterized geodesic t — 7(t),
we expect that the values at a fixed time ¢ of geodesics starting at v(0) and close to v fill a piece
of a smooth hypersurface (see Figure [d]). For small ¢ this hypersurface is a piece of the sphere of
radius ¢, while in general it is only a piece of the “wave front”.

p(t)

7(0)

Figure 4: The “wave front” and the “impulse”

Moreover, we expect that 4(t) is transversal to this hypersurface. It is not always the case but
this is true for a generic geodesic.

The “impulse” p(t) € T. ,’Yk(t)M is the covector orthogonal to the “wave front” and normalized by
the condition (p(t),%(t)) = 1. The curve t — (p(t),7(t)) in the cotangent bundle T*M satisfies a
Hamiltonian system. This is exactly what happens in rational mechanics or geometric optics.

The sub-Riemannian Hamiltonian H : T*M — R is defined by the formula H(p,q) = %(p, v)2,
where p € T/M, and v € T;M is an admissible velocity of length 1 that maximizes the inner
product of p with admissible velocities of length 1 at ¢ € M.

Any smooth function on the cotangent bundle defines a Hamiltonian vector field and such a
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field generates a Hamiltonian flow. The Hamiltonian flow on T*M associated to H is the sub-
Riemannian geodesic flow. The Riemannian geodesic flow is just a special case.

As we mentioned, in general, the construction described above cannot be applied to all geodesics:
the so-called abnormal geodesics are missed. An abnormal geodesic v(t) also possesses its “impulse”
p(t)eT :( t)M but this impulse belongs to the orthogonal complement to the subspace of admissible
velocities and does not satisfy the above Hamiltonian system. Geodesics that are trajectories of the
geodesic flow are called normal. Actually, abnormal geodesics belong to the closure of the space of
the normal ones, and elementary symplectic geometry provides a uniform characterization of the
impulses for both classes of geodesics. Such a characterization is, in fact, a very special case of the
Pontryagin maximum principle.

Recall that all velocities are admissible in the Riemannian case, and the Euclidean structure on
the tangent bundle induces the identification of tangent vectors and covectors, i.e. of the velocities
and impulses. We should however remember that this identification depends on the metric. One
can think to a sub-Riemannian metric as the limit of a family of Riemannian metrics when the
length of forbidden velocities tends to infinity, while the length of admissible velocities remains
untouched.

It is easy to see that the Riemannian Hamiltonians defined by such a family converge with all
derivatives to the sub-Riemannian Hamiltonian. Hence the Riemannian geodesics with a prescribed
initial impulse converge to the sub-Riemannian geodesic with the same initial impulse. On the other
hand, we cannot expect any reasonable convergence for the family of Riemannian geodesics with
a prescribed initial velocity: those with forbidden initial velocities disappear at the limit while
geodesics with admissible initial velocities multiply.

Outline of the book

We start in Chapter [lfrom surfaces in R3 that is the beginning of everything in differential geometry
and also a starting point of the story told in this book. There are not yet Hamiltonians here, but a
control flavor is already present. The presentation is elementary and self-contained. A student in
applied mathematics or analysis who missed the geometry of surfaces at the university or simply
is not satisfied by his understanding of these classical ideas, might find it useful to read just this
chapter even if he does not plan to study the rest of the book.

In Chapter[2] we recall some basic properties of vector fields and vector bundles. Sub-Riemannian
structures are defined in Chapter Bl where we also prove three fundamental facts: the finiteness and
the continuity of the sub-Riemannian distance; the existence of length-minimizers; the infinitesimal
characterization of geodesics. The first is the classical Chow-Rashevski theorem, the second and the
third one are simplified versions of the Filippov existence theorem and the Pontryagin maximum
principle.

In Chapter [4, we introduce the symplectic language. We define the geodesic Hamiltonian flow,
we consider an interesting class of three-dimensional problems and we prove a general sufficient
condition for length-minimality of normal trajectories. Chapter [l is devoted to applications to
integrable Hamiltonian systems. We explain the construction of the action-angle coordinates and
we describe classical examples of integrable geodesic flows, such as the geodesic flow on ellipsoids.

Chapters [MHEl form a first part of the book where we do not use any tool from functional
analysis. In fact, even the knowledge of the Lebesgue integration and elementary real analysis are
not essential with a unique exception of the existence theorem in Section B3l In all other places
the reader can substitute terms “Lipschitz” and “absolutely continuous” by “piecewise C'” and
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“measurable” by “piecewise continuous” without a loss for the understanding.

We start to use some basic functional analysis in Chapter [6l In this chapter, we give elements
of an operator calculus that simplifies and clarifies calculations with non-stationary flows, their
variations and compositions. In Chapter [7l, we give a brief introduction to the Lie group theory.
Lie groups are introduced as subgroups of the groups of diffeomorphisms of a manifold M induced
by a family of vector fields whose Lie algebra is finite dimensional. Then we study left-invariant
sub-Riemannian structures and their geodesics.

In Chapter B we interpret the “impulses” as Lagrange multipliers for constrained optimization
problems and apply this point of view to the sub-Riemannian case. We also introduce the sub-
Riemannian exponential map and we study cut and conjugate points.

In Chapter @ we consider two-dimensional sub-Riemannian metrics; such a metric differs from a
Riemannian one only along a one-dimensional submanifold. We describe in details the model space
of this geometry, known as the Grushin plane, and we discuss several properties in the generic case,
among which a Gauss-Bonnet like theorem.

In Chapter [I0, we construct the nonholonomic tangent space at a point ¢ of the manifold: a
first quasi-homogeneous approximation of the space if you observe and exploit it from ¢ by means
of admissible paths. In general, such a tangent space is a homogeneous space of a nilpotent Lie
group equipped with an invariant vector distribution; its structure may depend on the point where
the tangent space is attached. At generic points, this is a nilpotent Lie group endowed with a
left-invariant vector distribution. The construction of the nonholonomic tangent space does not
need a metric; if we take into account the metric, we obtain the Gromov—Hausdorff tangent to the
sub-Riemannian metric space. Useful “ball-box” estimates of small balls follow automatically.

In Chapter[IT], we study general analytic properties of the sub-Riemannian distance as a function
of points of the manifold. It is shown that the distance is smooth on an open dense subset and is
semi-concave out of the points connected by abnormal length-minimizers. Moreover, generic sphere
is a Lipschitz submanifold if we remove these bad points.

In Chapter [2] we turn to abnormal geodesics, which provide the deepest singularities of the
distance. Abnormal geodesics are critical points of the endpoint map defined on the space of
admissible paths, and the main tool for their study is the Hessian of the endpoint map. Chapter [13]
is devoted to the explicit calculation of the sub-Riemannian distance for model spaces.

This is the end of the second part of the book; next few chapters are devoted to the curvature
and its applications. Let ® : T*M — T*M, for t € R, be a sub-Riemannian geodesic flow.
Submanifolds ®*(T*M), ¢ € M, form a fibration of T*M. Given A € T*M, let J)(t) C Tx(T*M)
be the tangent space to the leaf of this fibration.

Recall that ® is a Hamiltonian flow and T;M are Lagrangian submanifolds; hence the leaves
of our fibrations are Lagrangian submanifolds and J () is a Lagrangian subspace of the symplectic
space T)\(T*M).

In other words, Jy(t) belongs to the Lagrangian Grassmannian of T\(7T*M), and t — Jy(t) is
a curve in the Lagrangian Grassmannian, a Jacobi curve of the sub-Riemannian structure. The
curvature of the sub-Riemannian space at A is simply the “curvature” of this curve in the Lagrangian
Grassmannian.

Chapter [I4] is devoted to the elementary differential geometry of curves in the Lagrangian
Grassmannian. In Chapter we apply this geometry to Jacobi curves, that are curves in the
Lagrange Grassmannian representing Jacobi fields.
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The language of Jacobi curves is translated to the traditional language in the Riemannian
case in Chapter We recover the Levi Civita connection and the Riemannian curvature and
demonstrate their symplectic meaning. In Chapter [[7l we explicitly compute the sub-Riemannian
curvature for contact three-dimensional spaces and we show how the curvature invariants appear
in the classification of sub-Riemannian left-invariant structures on 3D Lie groups. In the next
Chapter [I8 we study the small distance asymptotics of the expowhree-dimensional contact case
and see how the structure of the conjugate locus is encoded in the curvature.

Chapter [[9 we address the problem of defining a canonical volume in sub-Riemannian geometry.
We introduce the Popp volume, that is a canonical volume that is smooth for equiregular sub-
Riemannian manifold, and study its basic properties.

In the last Chapter 20] we define the sub-Riemannian Laplace operator, the canonical volume
form, and compute the density of the sub-Riemannian Hausdorff measure. We conclude with a
discussion of the sub-Riemannian heat equation and an explicit formula for the heat kernel in the
three-dimensional Heisenberg case.

We finish here this introduction into the Introduction...We hope that the reader won’t be
bored; comments to the chapters contain suggestions for further reading

IThis research has been supported by the European Research Council, ERC StG 2009 “GeCoMethods”, contract
number 239748 and by the ANR project SRGI “Sub-Riemannian Geometry and Interactions”, contract number
ANR-15-CE40-0018.
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Chapter 1

Geometry of surfaces in R’

In this preliminary chapter we study the geometry of smooth two dimensional surfaces in R? as a
“heating problem” and we recover some classical results.

In the fist part of the chapter we consider surfaces in R? endowed with the standard Euclidean
product, which we denote by (-|-). In the second part we study surfaces in the Minskowski space,
that is R? endowed with a sign-indefinite inner product, which we denote by (-|-),

Definition 1.1. A surface of R? is a subset M C R3? such that for every ¢ € M there exists a
neighborhood U C R? of ¢ and a smooth function a : U — R such that UNM = a~*(0) and Va # 0
on UNM.

1.1 Geodesics and optimality

Let M C R3 be a surface and 7 : [0,7] — M be a smooth curve in M. The length of v is defined as

T
o) = /O () lde. (1.1)

where ||v|| = /(v |v) denotes the norm of a vector in R3.

Remark 1.2. Notice that the definition of length in (L.IJ) is invariant by reparametrizations of the
curve. Indeed let ¢ : [0,7"] — [0,T] be a monotone smooth function. Define ~,, : [0,7'] — M by
Yo := 7 0 ¢. Using the change of variables t = ¢(s), one gets

T

T’ T’
() = /O s (5)1ds = /0 14 (e(s)lllp(s)lds = /0 148t = ().

The definition of length can be extended to piecewise smooth curves on M, by adding the length
of every smooth piece of ~.

When the curve v is parametrized in such a way that ||¥(¢)|| = ¢ for some ¢ > 0 we say that ~
has constant speed. If moreover ¢ = 1 we say that ~ is parametrized by length.
The distance between two points p,q € M is the infimum of length of curves that join p to ¢

d(p, q) = inf{l(~y), v : [0, T] — M piecewise smooth, v(0) = p,y(T) = q}. (1.2)

Now we focus on length-minimizers, i.e., piece-wise smooth curves that realize the distance between
their endpoints: £(v) = d(y(0),~v(T)).
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Figure 1.1: A smooth minimizer

Exercise 1.3. Prove that, if v : [0,7] — M is a length-minimizer, then the curve 7|y, ;, is also a
length-minimizer, for all 0 < t; < to < T

The following proposition characterizes smooth minimizers. We prove later that all minimizers
are smooth (cf. Corollary [L.15]).

Proposition 1.4. Let v : [0,7] — M be a smooth minimizer parametrized by length. Then
A(t) L TyyM for all t € [0,T].

Proof. Consider a smooth non-autonomous vector field (t,q) — fi(q) € TyM that extends the
tangent vector to vy in a neighborhood W of the graph of the curve {(¢,7(t)) € R x M}, i.e.

fiv@®) =~@)  and  |flg)| =1, V(tq) €W

Let now (t,q) — ¢:(q) € Ty;M be a smooth non-autonomous vector field such that f;(¢) and g:(q)
define a local orthonormal frame in the following sense

(fe(@) | 9¢(q)) =0, lae @l =1,  V(t.g)eW.

Piecewise smooth curves parametrized by length on M are solutions of the following ordinary
differential equation

&(t) = cosu(t) fe(x(t)) + sinu(t)ge(z(t)), (1.3)

for some initial condition z(0) = ¢ and some piecewise continuous function u(t), which we call
control. The curve ~ is the solution to (3] associated with the control w(t) = 0 and initial
condition (0).

Let us consider the family of controls

0, t<
um(t):{s t>: 0<7<T, seR (1.4)

and denote by z, s(t) the solution of (L3]) that corresponds to the control u, s(t) and with initial
condition z, 4(0) = v(0).
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Lemma 1.5. For every 71, 79,t € [0,T] the following vectors are linearly dependent

0 0

s s:OxTLS(t) Ds SZOxTz,S(t) (1.5)

Proof. By Exercice [L3 is not restrictive to assume ¢t = T. Fix 0 < 71 < 79 < T and consider the
family of curves ¢(t; hi, ha) solutions of (3] associated with controls
0, te [0, 1 [,
Uhy,h2 (t) = h17 te [7—177—2[7
h1 4+ ho, tE[Tg,T—i—E[,

where hj, hy belong to a neighborhood of 0 and ¢ is small enough (to guarantee the existence of
the trajectory). Notice that ¢ is smooth in a neighborhood of (¢, hi,hs) = (7,0,0) and

¢ )
ahz (hl,hg):O 83

2 o(T),  i=1,2.
s=0

By contradiction assume that the vectors in (L5]) are linearly independent. Then g—(ﬁ is invertible

and the classical implicit function theorem applied to the map (¢, hy, ho) — &(t; h1, ha) at the point
(T,0,0) implies that there exists 6 > 0 such that

Vte|lT =6, T+4d[, Fhi,ha, st @t hy, ha) =(T),

In particular there exists a curve with unit speed joining v(0) and v(7') in time ¢t < T', which gives
a contradiction, since v is a minimizer. ]

Lemma 1.6. For every 7,t € [0,T] the following identity holds

0
0s
Proof. If t < 7, then by construction (cf. (I4])) the first vector is zero since there is no variation
w.r.t. s and the conclusion follows. Let us now assume that ¢ > 7. Again, by Remark [I.3] it is
sufficient to prove the statement at t = T. Let us write the Taylor expansion of 9(t) = 2 Zr (1)

— Osls=0
in a right neighborhood of t = 7. Observe that, for ¢t > 7

ral®) | 300)) 0. (16)

s=0

Er,s = coS(S) fe(xrs) +sin(s)gi(xrs).

Hence

S 1’7-78(7') =0, w(T) = % T 5(7') = g'r(xr,s(T))'
s=0

7-7
s=0

Then, for t > 7, we have
P(t) = (t = 7)gr (75(7)) + O((t = 7)?). (1.7)
For 7 sufficiently close to T', one can take ¢ = T in (7). Passing to the limit for 7 — T one gets

)
T —10s

xT,S(T) ‘:% gT(’Y(T))

s=0

Now, by Lemma all vectors in left hand side are parallel among them, hence they are parallel
to gr(y(T)). The lemma is proved since 4(T") = fr(v(T')) and fr and gr are orthogonal. O
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Now we end the proposition by showing that 4(t) L T, M. Notice that this is equivalent to
show

G@ 1 f(v(@0)) = () | 9:((2))) = 0. (1.8)

Recall that (§(t) | %(t)) = 1. Differentiating this identity one gets

d

0=— (17 =263 13®),

which shows that %(t) is orthogonal to fi(y(t)). Next, differentiating (I.6]) with respect to ¢, we

havel for ¢ £T
0 . . 0
(.70 [10)+ (5

Now, from (&, 4(t)|Z,s(t)) = 1 one gets

<%@A0

Evaluating at s = 0, using that = (t) = v(t), one has

9
s s=0

Zr.s(t) ' 7(t)> =0, for t # 7.
Hence, by (L.9), it follows that
0 .
<83 zr (1) ‘ ’y(t)> =0,

which, by continuity, holds for every ¢ € [0,T]. Using that 5% |8 oZTr,s(t) is parallel to g;(v(t)) (see
proof of Lemma [[26]), it follows that (g:(v(¢)) | 5(¢)) = O

e8| () = (19)

s=0

j:T,S(t)> =0, for t # .

s=0

Definition 1.7. A smooth curve v : [0, 7] — M parametrized with constant speed is called geodesic
if it satisfies
F(t) L TyyM, vVt e [0,T]. (1.10)

Proposition [[.4] says that a smooth curve that minimizes the length is a geodesic.

Now we get an explicit characterization of geodesics when the manifold M is globally defined

as the zero level of a smooth function. In other words there exists a smooth function a : R® — R
such that

M =a"1(0), and Va # 0 on M. (1.11)

Remark 1.8. Recall that for all ¢ € M it holds Vg a L T, M. Indeed, for every ¢ € M and v € T; M,
let v : [0,7] — M be a smooth curve on M such that v(0) = ¢ and ¥(0) = v. By definition of M
one has a(y(t)) = 0. Differentiating this identity with respect to ¢ at t = 0 one gets (Vya|v) =

Proposition 1.9. A smooth curve v : [0,T] — M is a geodesic if and only if it satisfies, in matriz

notation: ’ )T( ) ) ®
. Y V Y(t

where V,%(t)a 1s the Hessian matriz of a.

notice that - s is smooth on the set [0, 7]\ {7}.
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Proof. Differentiating the equality <V,Y(t)a ‘ "y(t)> = 0 we get, in matrix notation:

"Y(t)T(V%,(t)a)"Y(t) + ’?(t)TV,Y(t)a =0.

By definition of geodesic there exists a function b(¢) such that

’7(75) = b(t)Vw) a.

Hence we get
30T (T2 4 0) (1) + b(1) [0l = 0,
from which (IL12) follows. O

Remark 1.10. Notice that formula ([LI2]) is always true locally since, by definition of surface, the
assumptions (LIT]) are always satisfied locally.
1.1.1 Existence and minimizing properties of geodesics

As a direct consequence of Proposition one gets the following existence and uniqueness theorem
for geodesics.

Corollary 1.11. Let g € M and v € T,M. There ezists a unique geodesic 7y : [0,] — M, fore >0
small enough, such that v(0) = ¢ and ¥(0) = v.

Proof. By Proposition [L9] geodesics satisfy a second order ODE, hence they are smooth curves,
characterized by ther initial position and velocity. O

To end this section we show that small pieces of geodesics are always global minimizers.
Theorem 1.12. Let v: [0,7] — M be a geodesic. For every T € [0,T] there exists € > 0 such that
(Z) /7|[T,T+€] IS G MANUMIZET, 1.€. d(’}/(T),’}/(T + 5)) = £(7|[T,7+6}))

(i5) V|ir,r4e] is the unique minimizers joining (1) and (7 + ¢€) in the class of piecewise smooth
curves, up to reparametrization.

Proof. Without loss of generality let us assume that 7 = 0 and that v is length parametrized.
Consider a length-parametrized curve v on M such that «(0) = v(0) and &(0) L 4(0) and denote
by (t,s) — x4(t) the smooth variation of geodesics such that z(t) = v(¢) and (see also Figure [[.2])

¥(s)

z5(0) = a(s), 5(0) L &
The map v : (¢,s) — zs(t) is a local diffeomorphism near (0,0). Indeed the partial derivatives

) (1.13)
i _9
Ot li=s=0 Ot

oY 0

t=0 -7 95 lt=s=0 _ 0s 25(0) = &(0),

s=0

are linearly independent. Thus ¢ maps a neighborhood U of (0,0) on a neighborhood W of ~(0).
We now consider the function ¢ and the vector field X defined on W

@ xs(t) = t,
X :xs(t) — ds(t).
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Figure 1.2: Proof of Theorem [[.12]

Lemma 1.13. V. ¢ = X(q) for every g € W.

Proof of Lemma[1.13. We first show that the two vectors are parallel, and then that they actually
coincide. To show that they are parallel, first notice that V¢ is orthogonal to its level set {t =
const}, hence

<sz(t)¢‘ %:Es(t)> = 0, V(t, S) eU. (1.14)

<%x8<t>

Computing the derivative with respect to ¢ of the left hand side of (LI5]) one gets

<%$S(t) a';s(t)> + <%xs(t) i’s(t)>=

which is identically zero. Indeed the first term is zero because @4(t) has unit speed and the second
one vanishes because of (ILI0). Hence, the left hand side of (ILI%]) is constant and coincides with
its value at t = 0, which is zero by the orthogonality assumption (L.I3]).

By ([I4) and (II5]) one gets that V¢ is parallel to X. Actually they coincide since

Now, let us show that

is(t)> 0, V(ts) el (1.15)

(Vo] X) = %qb(:ns(t)) _1

O

Now consider € > 0 small enough such that |j o is contained in W and take a piecewise smooth
and length parametrized curve ¢ : [0,&'] — M contained in W and joining 7(0) to y(g). Let us
show that ~ is shorter than c¢. First notice that

{(Vp,e) = € = d(7(e)) = ¢(e(e"))
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Using that ¢(¢(0)) = ¢(7(0)) = 0 and that ¢(c) = &’ we have that

/

°d

(Ve = b(c(e”)) — ¢(c(0)) = ; Z0c(t))dt (1.16)

!

_ /0 T (Vo)) | () dt
_ /0 (X(c(t)) | () dit < & = £(c), (1.17)

The last inequality follows from the Cauchy-Schwartz inequality

(X(e®) () < [|X(c@)lllle®] =1 (1.18)

which holds at every smooth point of ¢(t). In addition, equality in (LI8]) holds if and only if
¢(t) = X(c(t)) (at the smooth points of ¢). Hence we get that £(c) = £(7|,)) if and only if c
coincides with 7|(g -

Now let us show that there exists € < ¢ such that ’y][o,g—} is a global minimizer among all piecewise
smooth curves joining v(0) to v(£). It is enough to take & < dist(v(0), 0W). Every curve that escape
from W has length greater than &. U

From Theorem [[.12]it follows

Corollary 1.14. Any minimizer of the distance (in the class of piecewise smooth curves) is a
geodesic, and hence smooth.

1.1.2 Absolutely continuous curves

Notice that formula (II) defines the length of a curve even in the class of absolutely continuous
ones, if one understands the integral in the Lebesgue sense.

In this setting, in the proof of Theorem [[.12] one can assume that the curve c¢ is actually
absolutely continuous. This proves that small pieces of geodesics are minimizers also in the class
of absolutely continuous curves on M. Morever, this proves the following.

Corollary 1.15. Any minimizer of the distance (in the class of absolutely continuous curves) is a
geodesic, and hence smooth.

1.2 Parallel transport

In this section we want to introduce the notion of parallel transport, which let us to define the
main geometric invariant of a surface: the Gaussian curvature.

Let us consider a curve v : [0,7] — M and a vector § € T, M. We want to define the
parallel transport of ¢ along . Heuristically, it is a curve £(t) € TypyM such that the vectors
{&(t),t € ]0,T)} are all “parallel”.

Remark 1.16. If M = R? C R? is the set {z = 0} we can canonically identify every tangent space
TypyM with R? so that every tangent vector £(t) belong to the same vector spaceld In this case,

parallel simply means & (t) = 0 as an element of R3. This is not the case if M is a manifold because
tangent spaces at different points are different.

2The canonical isomorphism R? ~ T,R? is written explicitly as follows: y — % { ot + 1y
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Definition 1.17. Let v : [0,7] — M be a smooth curve. A smooth curve of tangent vectors
§(t) € Ty M is said to be parallel if £(t) L T, M.

Assume now that M is the zero level of a smooth function a : R?* — R as in (LII). We have
the following description:

Proposition 1.18. A smooth curve of tangent vectors {(t) defined along v : [0,T] — M s parallel
if and only if it satisfies

ﬁ(t)T(V,%(t)a)g(t) v
IVomal?  7O%

£(t) = — vt e[0,T]. (1.19)

].Droof. As in Remark [L.8 §(t) € Ty, M implies <Vy(t)a,§(t)> = 0. Moreover, by assumption

t) = aft a for some smooth runction . 1th analogous computations as in the proot o
&(t) ()Vw(t) f h f i With log i in th f of
Proposition [[.9 we get that

()T (V3 @) (t) + at) [V @al® = 0,
from which the statement follows. O

Remark 1.19. Notice that, since (IL53]) is a first order linear ODE with respect to &, for a given
curve v : [0,7] — M and initial datum v € Ty )yM, there is a unique parallel curve of tangent
vectors {(t) € T, ;)M along ~y such that £(0) = v. Since (L53)) is a linear ODE, the operator that
associates with every initial condition £(0) the final vector £(t) is a linear operator, which is called
parallel transport.

Next we state a key property of the parallel transport.

Proposition 1.20. The parallel transport preserves the inner product. In other words, if £(t),n(t)
are two parallel curves of tangent vectors along v, then we have

%({(t) In(t)) =0,  Vte[0,T]. (1.20)

Proof. From the fact that &(t),n(t) € Ty )M and é(t), n(t) LTy M one immediately gets

% (@) In(0)) = €@ (D) + (€@) |9(1)) = 0. O

The notion of parallel transport permits to give a new characterization of geodesics. Indeed, by
definition

Corollary 1.21. A smooth curve v : [0,T] — M is a geodesic if and only if ¥ is parallel along ~.
In the following we assume that M is oriented.

Definition 1.22. The spherical bundle SM on M is the disjoint union of all unit tangent vectors
to M:
SM = | | S;M,  SgM ={veT,M€|v| =1} (1.21)
qeEM
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SM is a smooth manifold of dimension 3. Moreover it has the structure of fiber bundle with
base manifold M, typical fiber S', and canonical projection

m:SM — M, n(v)=q if veT,M.

Remark 1.23. Since every vector in the fiber S;M has norm one, we can parametrize every v &
S,M by an angular coordinate § € S through an orthonormal frame {e1(q),e2(q)} for S,M, i.e.
v = cos(f)ei(q) + sin(f)ea(q).

The choice of a positively oriented orthonormal frame {e;(q),e2(q)} corresponds to fix the
element in the fiber corresponding to # = 0. Hence, the choice of such an orthonormal frame at
every point ¢ induces coordinates on SM of the form (¢, 0 + ¢(q)), where p € C*°(M).

Given an element & € S;M we can complete it to an orthonormal frame (£,7,v) of R? in the
following unique way:

(i) n € T, M is orthogonal to £ and (&, n) is positively oriented (w.r.t. the orientation of M),
(ii) v L T,M and (&,m,v) is positively oriented (w.r.t. the orientation of R3).

Let t = &(t) € Sy M be a smooth curve of unit tangent vectors along 7 : [0,7] — M. Define

n(t),v(t) € TyyM as above. Since t + {(t) has constant speed, one has {(t) L £(t) and we can
write

E(t) = ue()n(t) + ve (v (t).
In particular this shows that every element of T¢SM, written in the basis (£,7,v), has zero com-
ponent along &.

Definition 1.24. The Levi-Civita connection on M is the 1-form w € A'(SM) defined by
we : TeSM — R, we(2) = us, (1.22)
where z = u,n + v,v and (§,n,v) is the orthonormal frame defined above.

Notice that w change sign if we change the orientation of M.

Lemma 1.25. A curve of unit tangent vectors £(t) is parallel if and only if we(§(t)) = 0.

Proof. By definition &(t) is parallel if and only if £(¢) is orthogonal to TypyM, i.e., collinear to
v(t). O

In particular, a curve parametrized by length ~ : [0,7] — M is a geodesic if and only if
wy ) (3(t)) =0, vVt el0,T]. (1.23)
Proposition 1.26. The Levi-Civita connection w € AY(SM) satisfies:
(i) there exist two smooth functions ay,as : M — R such that
w=dl + a1 (z1,x2)dr1 + az(x1,x2)dxs, (1.24)

where (x1,2,0) is a system of coordinates on SM.
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(ii) dw = 7*Q, where Q2 is a 2-form defined on M and 7w : SM — M s the canonical projection.

Proof. (i) Fix a system of coordinates (x1,z2,6) on SM and consider the vector field 9/06 on SM.
Let us show that 3
Z) =1
”<w>

Indeed consider a curve t — £(t) of unit tangent vector at a fixed point which describes a rotation
in a single fibre. As a curve on SM, the velocity of this curve is exactly its orthogonal vector, i.e.
£(t) = n(t) and the equality above follows from the definition of w. By construction, w is invariant
by rotations, hence the coefficients a; = w(9/0z;) do not depend on the variable 6.

(7i) Follows directly from expression ([.24]) noticing that dw depends only on z1, xs. O

Remark 1.27. Notice that the functions a1, as in ([[.24]) are not invariant by change of coordinates
on the fiber. Indeed the transformation 6 — 0+ ¢ (21, xz2) induces df — df + (0y, p)dx1 + (O3, p)dz2
which gives a; — a; + 0y, for i =1,2.

By definition w is an intrinsic 1-form on SM. Its differential, by property (ii) of Proposition
[L55 is the pull-back of an intrinsic 2-form on M, that in general is not exact.

Definition 1.28. The area form dV on a surface M is the differential two form that on every

tangent space to the manifold agrees with the volume induced by the inner product. In other

words, for every positively oriented orthonormal frame e;, ey of T, M, one has dV (eq,e2) = 1.
Given a set I' C M its area is the quantity |I'| = [ dV.

Since any 2-form on M is proportional to the area form dV, it makes sense to give the following
definition:

Definition 1.29. The Gaussian curvature of M is the function k : M — R defined by the equality
Q= —kdV. (1.25)

Note that x does not depend on the orientation of M, since both {2 and dV change sign if we reverse
the orientation. Moreover the area 2-form dV on the surface depends only on the metric structure
on the surface.

1.3 Gauss-Bonnet Theorems

In this section we will prove both the local and the global version of the Gauss-Bonnet theorem. A
strong consequence of these results is the celebrated Gauss’” Theorema Egregium which says that
the Gaussian curvature of a surface is independent on its embedding in R3.

Definition 1.30. Let v : [0,7] — M be a smooth curve parametrized by length. The geodesic
curvature of v is defined as

pr(8) = wi (5(1)). (1.26)
Notice that if v is a geodesic, then p,(t) = 0 for every t € [0,7]. The geodesic curvature
measures how much a curve is far from being a geodesic.

Remark 1.31. The geodesic curvature changes sign if we move along the curve in the opposite
direction. Moreover, if M = R?, it coincides with the usual notion of curvature of a planar curve.
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1.3.1 Gauss-Bonnet theorem: local version

Definition 1.32. A curvilinear polygon I' on an oriented surface M is the image of a closed polygon
in R? under a diffeomorphism. We assume that 0T is oriented consistently with the orientation of
M. In the following we represent OI' = U™ ,7;(I;) where v; : I; — M, for i = 1,...,m, are smooth
curves parametrized by length, with orientation consistent with dI'. We denote by «; the external
angles at the points where 9T is not C! (see Figure [[3).

Figure 1.3: A curvilinear polygon

Notice that a curvilinear polygon is homeomorphic to a disk.

Theorem 1.33 (Gauss-Bonnet, local version). Let ' be a curvilinear polygon on an oriented surface

M. Then we have
/ kdV + Z/ P (t)dt + Z a; = 2. (1.27)
r i=1 /1 =1

Proof. (i) Case OI' is smooth.
In this case I' is the image of the unit (closed) ball By, centered in the origin of R?, under a
diffeomorphism
FZBl—>M, P:F(Bl).

In what follows we denote by v : I — M the curve such that v(I) = OI'. We consider on B
the vector field V(x) = 210, — x205, which has an isolated zero at the origin and whose flow is
a rotation around zero. Denote by X := F,V the induced vector field on M with critical point

q = F(0).
For € small enough, we define (cf. Figure [L4])
I.:=T\ F(B.), and A = 0F(B.),

where B, is the ball of radius € centered in zero in R%2. We have 0I'; = A, U 9. Define the map

¢:Te = SM,  ¢(q) =
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Y
Bl \ Be M
Figure 1.4: The map F
First notice that
/ do = / 0= / a= [ « (1.28)
o(e) #(Te) m(¢(Ts)) L.

where we used the fact that 7(¢(I'c)) = I'e. Then let us compute the integral of the curvature x
onI'.

[owtv=-[o=-] a (by (L29)
£ € ¢(FE)
= — / w, (by Stokes Theorem)
9¢(T'c)
= / w— / w, (since 0¢(T';) = ¢p(A:) U ¢(IT)) (1.29)
d(Ae) ¢(r)

Notice that in the third equality we used the fact that the induced orientation on 9¢(T';) gives
opposite orientation on the two terms. Let us treat separately these two terms. The first one, by
Proposition [[.55] can be written as

/ W= / do +/ a1 (z1,x2)dzy + az(zq,x2)dry (1.30)
d(Ae) ?(Ae) $(Ae)

The first element of (I30]) is equal to 27 since we integrate the 1-form df on a closed curve. The
second element of (L30), for € — 0, satisfies

< CU($(AL)) — 0, (1.31)

/ al(azl,xg)dxl +a2(1’1,x2)d£2
#(Ae)

Indeed the functions a; are smooth (hence bounded on compact sets) and the length of ¢(A.) goes
to zero for ¢ — 0.
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Let us now consider the second term of (29]). Since ¢(d') is parametrized by the curve
t— 4(t) (as a curve on SM), we have

| w= [wnGoni= [ o0
$(aT) I I
Concluding we have from (L.29)

/ kdV =1lim [ kdV =271 — /pfy(t)dt,
r I

e—0 Te

that is (L27) in the smooth case (i.e. when «; = 0 for all 7).
(7i) Case OI' non smooth.

We reduce to the previous case with a sequence of polygons I';, such that 0I';, is smooth and I';,
approximates I' in a “smooth” way. In particular, we assume that 0I',, coincides with OI' excepts
in neighborhoods U;, for i = 1,...,m, of each point g; where 91" is not smooth, in such a way that
the curve o\™ that parametrize (O, \ OI') N U; satisfies £(o]") < 1/n.

i
If we apply the statement of the Theorem for the smooth case to I',, we have

/ kdV + /py(n) (t)dt = 2,

where ’y(") is the curve that parametrizes 0I'),. Since I',, tends to I' as n — oo, then

lim rdV = / rdV.
r

n—o0 T
n

We are left to prove that

m m
lim_ / Py (t)dt = /1 (1)t + > ai (1.32)
i=1"1i i=1
For every n, let us split the curve (™ as the union of the smooth curves o

??7. Then . .
/p,y(n) (t)dt = Z/p_y_(n) (t)dt—i—Z/pJ(n) (t)dt.
i=1 ‘ i=1 ’
(n)

Since the curve v, tends to «y; for n — oo one has

and ’y(")

; as in Figure

n—oo

lim P (t)dt = /p%(t)dt.

Moreover, with analogous computations of part (i) of the proof
/pggn) (t)dt = / w = / - do + al(xl,azg)dazl + ag(azl,xg)dxg
: $(a™) (o)
and one has, using that €(¢(0§n))) =0
/ do — «;, / a1 (z1,x9)dry + ag(xy,x2)dry — 0.
é(of") o(o{") e
Then (I32) follows. U
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An important corollary is obtained by applying the Gauss-Bonnet Theorem to geodesic triangles.
A geodesic triangle T is a curvilinear polygon with m = 3 edges and such that every smooth piece
of boundary ~; is a geodesic. For a geodesic triangle T' we denote by A; := m — ¢ its internal angles.

Corollary 1.34. Let T' be a geodesic triangle and A;(T) its internal angles. Then
AT -

|T|—0 T

Proof. Fix a geodesic triangle T'. Using that the geodesic curvature of 7; vanishes, the local version
of Gauss-Bonnet Theorem ([.27)) can be rewritten as

3
> A= 77+/de (1.33)
i=1 r

Dividing for |T'| and passing to the limit for |T'| — 0 in the class of geodesic triangles containing ¢
one obtains o

k(q) = lim — [ kdV = lim > A(T) -7
iT1—0 |T| Jr IT[=0 IT]

1.3.2 Gauss-Bonnet theorem: global version

Now we state the global version of the Gauss-Bonnet theorem. In other words we want to generalize
([L27)) to the case when I is a region of M not necessarily homeomorphic to the disk, see for instance
Figure As we will see that the result depends on the Euler characteristic x(I") of this region.

In what follows, by a triangulation of M we mean a decomposition of M into curvilinear polygons
(see Definition [[32]). Notice that every compact surface admits a triangulation@

Definition 1.35. Let M C R? be a compact oriented surface with boundary M (possibly with
angles). Consider a triangulation of M. We define the Fuler characteristic of M as

X(M) = ngy —n1 + no, (1.34)
where n; is the number of i-dimensional faces in the triangulation.

The Euler characteristic can be defined for every region I' of M in the same way. Here, by a
region I' on a surface M, we mean a closed domain of the manifold with piecewise smooth boundary.

Remark 1.36. The Euler characteristic is well-defined. Indeed one can show that the quantity
(L34) is invariant for refinement of a triangulation, since every at every step of the refinement
the alternating sum does not change. Moreover, given two different triangulations of the same
region, there always exists a triangulation that is a refinement of both of them. This shows that
the quantity (L.34]) is independent on the triangulation.

Example 1.37. For a compact connected orientable surface M, of genus g (i.e., a surface that
topologically is a sphere with g handles) one has x(M,) = 2 — 2g. For instance one has x(5?) = 2,
x(T?) = 0, where T? is the torus. Notice also that x(B;) = 1, where By is the closed unit disk in
R2.

3Formally, a triangulation of a topological space M is a simplicial complex K, homeomorphic to M, together with
a homeomorphism h: K — M.
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Following the notation introduced in the previous section, for a given region I', we assume that
OI' is oriented consistently with the orientation of M and OI' = U ,~;(I;) where ; : I; — M, for
i=1,...,m, are smooth curves parametrized by length (with orientation consistent with 0I"). We
denote by a; the external angles at the points where OI' is not C! (see Figure [LT)).

Figure 1.5: Gauss-Bonnet Theorem

Theorem 1.38 (Gauss-Bonnet, global version). Let ' be a region of a surface on a compact
oriented surface M. Then

/1“ kdV + ; /IZ P (t)dt + ; a; = 2mx(T). (1.35)

Proof. As in the proof of the local version of the Gauss-Bonnet theorem we consider two cases:
(i) Case OI' smooth (in particular c; = 0 for all 7).
Consider a triangulation of I and let {I'j,j = 1,...,n2} be the corresponding subdivision of I' in

curvilinear polygons. We denote by {7,9 )} the smooth curves parametrized by length whose image

are the edges of I'; and by and 9,(5 ) the external angles of I';. We assume that all orientations
are chosen accordingly to the orientation of M. Applying Theorem [[33] to every I'; and summing

w.r.t. 7 we get
n2
()

J=1

RdV + > / P (D)dE + 3 9}3)) = 27y, (1.36)
k k

j
We have that
n9 m
Z/F kdV = /F/{dV, Z/pﬁéj) (t)dt = Z/p%.(t)dt. (1.37)
j=1v"1 J,k i=1
The second equality is a consequence of the fact that every edge of the decomposition that does
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not belong to JI" appears twice in the sum, with opposite sign. It remains to check that

S0 = 2n(ny — ny), (1.38)
.k

Let us denote by N the total number of angles in the sum of the left hand side of (38]). After
reindexing we have to check that

N
Z 9,, = 271'(711 — n()). (139)
v=1

Denote by ng the number of vertexes that belong to dT' and with nf := ng — ng. Similarly we

define n? and n!. We have the following relations:
(i) N =2n! +n,

(ii) ng = n?,

Claim (i) follows from the fact that every curvilinear polygon with n edges has n angles, but
the internal edges are counted twice since each of them appears in two polygons. Claim (ii) is a
consequence of the fact that OI' is the union of closed curves. If we denote by A := m — 6, the
internal angles, we have

N N
d 8, =Nr—> A, (1.40)
v=1 v=1

Moreover the sum of the internal angles is equal to m for a boundary vertex, and to 27 for an
internal one. Hence one gets

N
Z A, = 2rnd + 7nd, (1.41)
v=1

Combining (40), (I41) and (i) one has

v
Z 6, = 2n! + n)r — 2nd + nd)mw
i=1

Using (ii) one finally gets (L.39).

(ii) Case OI' non-smooth.
We consider a decomposition of I' into curvilinear polygons whose edges intersect the boundary in
the smooth part (this is always possible). The proof is identical to the smooth case up to formula
(C37). Now, instead of (I.39]), we have to check that

N m
> 0, = o +2m(ng —ny), (1.42)
v=1 i=1

Now (L42)) can be rewritten as
Z 9,, = 271'(711 — no),

v¢A

where A is the set of indices whose corresponding angles are non smooth points of JI'.
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Consider now a new region f, obtained by smoothing the edges of I', together with the decom-
position induced by T' (see Figure [LH]). Denote by ny and ny the number of edges and vertexes of
the decomposition of I'. Notice that {0,,v ¢ A} is exactly the set of all angles of the decomposition
of . Moreover 7] — ng = n1 — Ng, since ng = ng +m and ny = Ny + m, where m is the number of
non-smooth points. Hence, by part (i) of the proof:

Z 9,, = 27‘((%1 — ﬁo) = 27‘(’(77,1 — no).
v¢A

Corollary 1.39. Let M be a compact oriented surface without boundary. Then
/ kdV = 2mx(M). (1.43)
M

1.3.3 Consequences of the Gauss-Bonnet Theorems

Definition 1.40. Let M, M’ be two surfaces in R3. A smooth map ¢ : R — R3 is called an
isometry between M and M’ if $(M) = M’ and for every ¢ € M it satisfies

(v]w) = (Dgp(v) | Dgop(w)) , Vo, we T,M. (1.44)

If the property (L44)) is satisfied by a map defined locally in a neighborhood of every point ¢ of
M, then it is called a local isometry.

Two surfaces M and M’ are said to be isometric (resp. locally isometric) if there exists an
isometry (resp. local isometry) between M and M’. Notice that the restriction ¢ of a global
isometry ® of R3 to a surface M C R? always defines an isometry between M and M’ = ¢(M).

From (I44) it follows that an isometry preserves the angles between vectors and, a fortiori, the
length of a curve and the distance between two points.

Corollary [[L34] and the fact that the angles and the volumes are preserved by isometries, one
obtains that the Gaussian curvature is invariant by local isometries, in the following sense.

Corollary 1.41 (Gauss’s Theorema Egregium). Assume ¢ is a local isometry between M and M’,
then for every ¢ € M one has k(q) = k'(6(q)), where k (resp. ') is the Gaussian curvature of M
(resp. M').

This Theorem says that the Gaussian curvature x depends only on the metric structure on M
and not on the specific fact that the surface is embedded in R3 with the induced inner product.

Corollary 1.42. Let M be surface and q € M. If k(q) # 0 then M is not locally isometric to R?
in a neighborhood of q.

Exercise 1.43. Prove that a surface M is locally isometric to the Euclidean plane R? around a
point ¢ € M if and only if there exists a coordinate system (x1,x2) in a neighborhood U of ¢ € M
such that the vectors 0., and 0y, have unit length and are everywhere orthonormal.

As a converse of Corollary [[.42] we have the following.
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Theorem 1.44. Assume that k = 0 in a neighborhood of a point ¢ € M. Then M 1is locally
Euclidean (i.e., locally isometric to R?) around q.

Proof. From our assumptions we have, in a neighborhood U of ¢:
Q=rdV =0.
Hence dw = 7*Q) = 0. From its explicit expression
w=db + a1 (x1, x2)dz1 + as(r1, x2)dxs,

it follows that the 1-form ajdzi + asdzs is locally exact, i.e. there exists a neighborhood W of g,
W C U, and a function ¢ : W — R such that aq(x1,x2)dz1 + as(x1,x2)dxe = dé. Hence

w=d(0 + ¢(x1,22)).

Thus we can define a new angular coordinate on SM, which we still denote by 6, in such a way
that (see also Remark [[.27))
w =d6b. (1.45)

Now, let 7 be a length parametrized geodesic, i.e. ws ) (5(t)) = 0. Using the the angular coordinate
0 just defined on the fibers of SM, the curve t + (t) € S, M is written as ¢ + 0(t). Using

(L45), we have then
0= w;

s (1) = dO(3(1)) = 6(1).

In other words the angular coordinate of a geodesic v is constant.

We want to construct Cartesian coordinates in a neighborhood U of ¢q. Consider the two length
parametrized geodesics vy, and 72 starting from ¢ and such that 6;(0) = 0, 62(0) = 7/2. Define
them to be the x1-axes and xo-axes of our coordinate system, respectively.

Then, for each point ¢’ € U consider the two geodesics starting from ¢’ and satisfying 6;(0) = 0
and 62(0) = m/2. We assign coordinates (r1,x2) to each point ¢’ in U by considering the length
parameter of the geodesic projection of ¢’ on 41 and 72 (See Figure [L6]). Notice that the family of
geodesics constructed in this way, and parametrized by ¢’ € U, are mutually orthogonal at every
point.

By construction, in this coordinate system the vectors 9., and 0,, have length one (being the
tangent vectors to length parametrized geodesics) and are everywhere mutually orthogonal. Hence
the theorem follows from Exercise O

1.3.4 The Gauss map

We end this section with a geometric characterization of the Gaussian curvature of a manifold M,
using the Gauss map.

Definition 1.45. Let M be an oriented surface. We define the Gauss map associated to M as
N : M — S2, q— Vg, (1.46)

where v, € 52 C R? denotes the external unit normal vector to M at g.
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Figure 1.6: Proof of Theorem [[.441

Let us consider the differential of the Gauss map at the point ¢
DN : T,M = Ty S® = T,M

where an element tangent to the sphere S? at A/(q), being orthogonal to A'(q), is identified with a
tangent vector to M at q.

Theorem 1.46. We have that k(q) = det(DgN).
Before proving this theorem we prove an important property of the Gauss map.

Lemma 1.47. For every q € M, the differential DeN of the Gauss map is a symmetric operator,
i.e.,

(DN(©) |m) = (€| DN (), V& m € TyM. (1.47)

Proof. We prove the statement locally, i.e., for a manifold M parametrized by a function ¢ :
R? — M. In this case T,M = Im D, ¢, where ¢(u) = ¢q. Let v,w € R? such that £ = D,¢(v) and
n = Dyé(w). Since N'(q) € T,M~ we have (N(q) | 7) = (N(q) | Dud(w)) = 0. Taking the derivative
in the direction of £ one gets

(DN(€) [m) + (N(q) | Dig(v,w)) = 0,
where D2¢ is a bilinear symmetric map. Now (L47) follows exchanging the role of v and w. O

Proof of Theorem [1.46 We will use Cartan’s moving frame method. Let £ € SM and denote with

(61(5)’62(5)763(5))7 e SM — ng

the orthonormal basis attached at £ and constructed in Section Let us compute the differentials
of these vectors in the ambient space R® and write them as a linear combination (with 1-form as
coefficients) of the vectors e;

3
deei(n) = Z(‘*’S)U(”) e; (&), wij € NLSM, n € TSM.

Jj=1
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Dropping £ and 5 from the notation one gets the relation
3
de; = Zwij €5, wij € AISM
j=1

Since for each ¢ the basis (e1(§),e2(§), e3(§)) is orthonormal (hence can be seen as an element of
SO(3)) its derivative is expressed through a skew-symmentric matrix (i.e., w;; = —wj;) and one
gets the equations

de; = wiges + wizes,
dea = —wi2e1 + wozes, (1.48)

des = —wi3e1 — wazea.
Let us now prove the following identity
w13 A weg = dwis. (1.49)
Indeed, differentiating the first equation in (L48]) one gets, using that d? = 0,

0= d2€1 = dwiges + wio A des + dwiszes + w1z A deg

= (dwi2 — w1z A wag)ea + (dwiz — wiz A wag)es,

which implies in particular (.49]).
The statement of the theorem can be rewritten as an identity between 2-forms as follows

det(D N)dV = kdV.
Applying 7 to both sides one gets
¥ (det(DgN)dV) = 1*kdV = dw (1.50)

where w is the Levi-Civita connection. Let us show that (I50) is equivalent to (L.49).

Indeed by construction wis computes the coefficient of the derivative of the first vector of the
orthonormal basis along the second one, hence wjs = w (see also Definition [[54]). It remains to
show that

w13 A\ wo3z = ﬁ*(det(DqN)dV) = det(DW(f)./\/’)ﬂ'*dV

Since e3 = N om, where m: SM — M is the canonical projection, one has
Dq/\/ O Ty = deg — —W1i13€1 — W23€9

The proof is completed by the following

Exercise 1.48. Let V be a 2-dimensional Euclidean vector space and eq, es an orthonormal basis.
Let F': V — V a linear map and write F' = Fiey + Fhes, where F; : V — R are linear functionals.
Prove that Fy A Fo = (det F')dV, where dV is the area form induced by the inner product.

O
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Remark 1.49. Lemma [[.47 allows us to define the principal curvatures of M at the point ¢ as the
two real eigenvalues ki (q), k2(g) of the map D N. In particular

k(q) = k1(q)ka2(q),  q€ M.

The principal curvatures can be geometrically interpreted as the maximum and the minimum of
curvature of sections of M with orthogonal planes.

Notice moreover that, using the Gauss-Bonnet theorem, one can relate then degree of the map
N with the Euler characteristic of M as follows

1.4 Surfaces in R? with the Minkowski inner product

The theory and the results obtained in this chapter can be adapted to the case when M C R? is
a surface in the Minkowski 3-space, that is R? endowed with the hyperbolic (or Minkowski-type)
inner product

(q1,G2), = 172 + Y12 — 2122 (1.51)
Here g; = (4,yi,%) for i = 1,2, are two points in R®. When (g, q), > 0, we denote by g, =
(q, q>}/ ? the norm induced by the inner product (CEID).

For the metric structure to be defined on M, we require that the restriction of the inner product
(L5I) to the tangent space to M is positive definite at every point. Indeed, under this assumption,
the inner product (L5]]) can be used to define the length of a tangent vector to the surface (which
is non-negative). Thus one can introduce the length of (piecewise) smooth curves on M and its
distance by the same formulas as in Section [[LTl These surfaces are also called space-like surfaces
in the Minkovski space.

The structure of the inner product impose some condition on the structure of space-like surfaces,
as the following exercice shows.

Exercise 1.50. Let M be a space-like surface in R? endowed with the inner product (L51)).
(i) Show that if v € T; M is a non zero vector that is orthogonal to T, M, then (v,v), < 0.
(ii) Prove that, if M is compact, then OM = ().

(iii) Show that restriction to M of the projection 7(x,y,z) = (x,y) onto the zy-plane is a local
diffeomorphism.

(iv) Show that M is locally a graph on the plane {z = 0}.

The results obtained in the previous sections for surfaces embedded in R? can be recovered for
space-like surfaces by simply adapting all formulas to their “hyperbolic” counterpart. For instance,
geodesics are defined as curves of unit speed whose second derivative is orthogonal, with respect to
(1), to the tangent space to M.

For a smooth function a : R* — R, its hyperbolic gradient Vga is defined as

da Oda Oda
h —_— _ —_ _
Vg = <8:17’8y’ 8z>
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If we assume that M = a~1(0) is a regular level set of a smooth function a : R® — R. If y(¢) is a
curve contained in M, i.e. a(y(t)) = 0, one has the identity

0= <Vz(t)a"'y(t)>h.

The same computation shows that Vz(t)a is orthogonal to the level sets of a, where orthogo-
nal always means with respect to (-|-),. In particular, if M = a~!(0) is space-like, one has
(Vqa,Vqa), <O0.

Exercise 1.51. Let 7 be a geodesic on M = a~1(0). Show that v satisfies the equation (in matrix
notation)

f'y(t)T(ng(t)a)"y(t) h
IVhgalz 7O

5(t) = — Viel0,T). (1.52)

where V,%(t)a is the (classical) matrix of second derivatives of ol

Given a smooth curve v : [0,7] — M on a surface M, a smooth curve of tangent vectors
£(t) € Ty )yM is said to be parallel if §(t) L T M, with respect to the hyperbolic inner product.
It is then straightforward to check that, if M is the zero level of a smooth function a : R? — R,
then &(t) is parallel along v if and only if it satisfies

ﬁ(t)T(V,%(t)a)g(t) h o
IVhgaly 70O

Et) = — vt e [0,T). (1.53)

By definition a smooth curve « : [0,7] — M is a geodesic if and only if 4 is parallel along ~.

Remark 1.52. As for surfaces in the Euclidean space, given curve v : [0,7] — M and initial datum
v € TyyM, there is a unique parallel curve of tangent vectors £(t) € T, M along 7 such that
€(0) = v. Moreover the operator £(0) — () is a linear operator, which the parallel transport of v
along .

Exercise 1.53. Show that if £(¢),n(t) are two parallel curves of tangent vectors along -, then we

have
SO, =0, vienT) (159

Assume that M is oriented. Given an element § € S;M we can complete it to an orthonormal
frame (£,7,v) of R? in the following unique way:

(i) n € T,M is orthogonal to { with respect to (-|-), and (£,n) is positively oriented (w.r.t. the
orientation of M),

(i) v L T,M with respect to (-|-), and (§,n,v) is positively oriented (w.r.t. the orientation of
R3).

For a smooth curve of unit tangent vectors §(t) € S, ;)M along a curve 7 : [0,7] — M we define
n(t),v(t) € TyuyM and we can write

E(t) = ug(t)n(t) +ve(t)r().

“otherwise one can write the numerator of (L52) as <Vi’(]z)"y(t) ‘ f’y(t)>h7 where Vi’(,;) is the hyperbolic Hessian.
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Definition 1.54. The hyperbolic Levi-Civita connection on M is the 1-form w € A1(SM) defined
by
we : TeSM — R, we(2) = Uz, (1.55)

where z = u,n + v,v and (§,n,v) is the orthonormal frame defined above.

It is again easy to check that a curve of unit tangent vectors § (t) is parallel if and only if
we() (§(t)) = 0 and a curve parametrized by length 7 : [0,T] — M is a geodesic if and only if

wy)(3(t)) =0, Vtel0,T]. (1.56)
Exercise 1.55. Prove that the hyperbolic Levi Civita connection w € A'(SM) satisfies:
(i) there exist two smooth functions a;,as : M — R such that
w=dl + a1 (z1,x2)dr1 + az(x1,x2)dxs, (1.57)
where (21,2, 0) is a system of coordinates on SM.
(ii) dw = 7*Q, where Q is a 2-form defined on M and 7 : SM — M is the canonical projection.

Again one can introduce the area form dV on M induced by the inner product and it makes
sense to give the following definition:

Definition 1.56. The Gaussian curvature of a surface M in the Minkowski 3-space is the function
k: M — R defined by the equality
Q= —kdV. (1.58)

By reasoning as in the Euclidean case, one can define the geodesic curvature of a curve and
prove the analogue of the Gauss-Bonnet theorem in this context. As a consequence one gets that
the Gaussian curvature is again invariant under isometries of M and hence is an intrinsic quantity
that depends only on the metric properties of the surface and not on the fact that its metric is
obtained as the restriction of some metric defined in the ambient space.

Finally one can define the hyperbolic Gauss map

Definition 1.57. Let M be an oriented surface. We define the Gauss map
N:M— H?  qe oy, (1.59)

where v, € H 2 C RR3 denotes the external unit normal vector to M at ¢, with respect to the
Minkovsky inner product.

Let us now consider the differential of the Gauss map at the point g:
DN : TyM — Ty H? ~ T,M

where an element tangent to the hyperbolic plane H? at N(q), being orthogonal to N'(q), is iden-
tified with a tangent vector to M at q.

Theorem 1.58. The differential of the Gauss map DN is symmetric, and k(q) = det(DgN').
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1.5 Model spaces of constant curvature

In this section we briefly discuss surfaces embedded in R? (with Euclidean or Lorentzian inner
product) that have constant Gaussian curvature, playing the role of model spaces. For each model
we are interested in describing geodesics and, more generally, curves of constant geodesic curvature.
These results will be useful in the study of sub-Riemannian model spaces in dimension three (cf.
Chapter [7).

Assume that the surface M has constant Gaussian curvature k € R. We already know that x
is a metric invariant of the surface, i.e., it does not depend on the embedding of the surface in R3.
We will distinguish the following three cases:

(i) k= 0: this is the flat model of the classical Euclidean plane,

(ii) & > 0: these corresponds to the case of the sphere,

(iii) k < 0: these corresponds to the hyperbolic plane.
We will briefly discuss the cases (i), since it is trivial, and study in some more detail the cases (ii)
and (iii) of spherical and hyperbolic geometry.
1.5.1 Zero curvature: the Euclidean plane
The Euclidean plane can be realized as the surface of R? defined by the zero level set of the function

a:R3 5 R, a(z,y,z) = z.

It is an easy exercise, applying the results of the previous sections, to show that the curvature
of this surface is zero (the Gauss map is constant) and to characterize geodesics and curves with
constant curvature.

Exercise 1.59. Prove that geodesics on the Euclidean plane are lines. Moreover, show that curves
with constant curvature ¢ # 0 are circles of radius 1/c.

1.5.2 Positive curvature: the sphere

Let us consider the sphere S? of radius 7 as the surface of R? defined as the zero level set of the
function
S2=a710),  alz,y,2) =24+ P+ 22—t (1.60)

If we denote, as usual, with (- |-) the Euclidean inner product in R3, S? can be viewed also as the
set of points ¢ = (z,y, z) whose Euclidean norm is constant

Sr={qeR’| (qlq) =}.

The Gauss map associated with this surface can be easily computed since its is explicitly given by

N 572, — 52, N(q) = %q, (1.61)

It follows immediately by (L69) that the Gaussian curvature of the sphere is k = 1/r2 at every
point ¢ € S2. Let us now recover the structure of geodesics and constant geodesic curvature curves

on the sphere.

42



Proposition 1.60. Let v : [0,T] — S? be a curve with constant geodesic curvature equal to ¢ € R.
For every vector w € R3 the function a(t) = ((t) |w) is a solution of the differential equation

alt) + <c2 + T—12> at) =0

Proof. Without loss of generality, we can assume that v is parametrized by unit speed. Differen-
tiating twice the equality a(+(t)) = 0, where a is the function defined in (L68]), we get (in matrix
notation):

(O (V2 )3 (t) + 3 Vpa =0.
Moreover, since ||¥(t)|| is constant and « has constant geodesic curvature equal to ¢, there exists a
function b(t) such that
A(t) = b(t)Vyya + en(t) (1.62)
where c is the geodesic curvature of the curve and 7(t) = 4(t)* is the vector orthogonal to #4(t) in

Tyt S? (defined in such a way that §(t) and 7(t) is a positively oriented frame). Reasoning as in

the proof of Proposition and noticing that V., a is proportional to the vector v(t), one can
compute b(t) and obtains that 7 satisfies the differential equation

(1) = ——g1 (1) + en(r). (163
Lemma 1.61. 7(t) = —c¥(t)

Proof of Lemma[1.61l The curve n(t) has constant norm, hence 7(t) is orthogonal to n(¢). Recall
that the triple (v(¢),5(t),n(t)) defines an orthogonal frame at every point. Differentiating the
identity (n(t)|~(t)) = 0 with respect to ¢t one has

0= (@) [7(#) + () [(2) = (i(t) |7(2)) -

Hence 7(t) has nonvanishing component only along (¢). Differentiating the identity (n(t) |¥(t)) =0
one obtains

0= (&) [Y®) + (&) |5()) = ((t) | (2)) + ¢
where we used (LG3]). Hence n(t) = (n(t) | ¥(¢)) ¥(t) = —cy(t). O

Next we compute the derivatives of the function « as follows

&() = (1) [w) =~ (D) |0} + ¢ (n(8) | ) (164
Using Lemma [[BI] we have
(t) =~ (5(0) | w) + e (1)) (1.65)
010 - G0 ) = (5 +¢) ald, (1.66)
which ends the proof of the Proposition 0

43



Corollary 1.62. Constant geodesic curvature curves are contained in the intersection of S? with
an affine plane of R3. In particular, geodesics are contained in the intersection of S* with planes
passing through the origin, i.e., great circles.

Proof. Let us fix a vector w € R? that is orthogonal to %(0) and #4(0). Let us then prove that
a(t) == (¥(t)|w) = 0 for all t € [0,T]. By Proposition [L60, the function a(t) is a solution of the
Cauchy problem

{d(t) + (s + alt) = 0 1.67)
a(0) =a(0) =0
Since (L67) admits the unique solution «(t) = 0 for all ¢.

If the curve is a geodesic, then ¢ = 0 and the geodesic equation is written as (t) = —v(¢t).
Then consider the function I'(t) := (y(¢) | w), where w is chosen as before. T'(t) is constant since
['(t) = aft) = 0. In fact T'(t) is identically zero since T'(0) = (y(0)|w) = — (5(0)|w) = 0, by
the assumption on w. This proves that the curve v is contained in a plane passing through the
origin. ]

Remark 1.63. Curves with constant geodesic curvatures on the spheres are circles obtained as the
intersection of the sphere with an affine plane. Moreover all these curves can be also characterized
in the following two ways:

(i) curves that have constant distance from a geodesic (equidistant curves),

(ii) boundary of metric balls (spheres).

1.5.3 Negative curvature: the hyperbolic plane

The negative constant curvature model is the hyperbolic plane H? obtained as the surface of R?,
endowed with the hyperbolic metric, defined as the zero level set of the function

a(z,y,z) = 2% +y* — 22+ (1.68)

Indeed this surface is a two-fold hyperboloid, so we restrict our attention to the set of points
H?2 =a"10)Nn{z>0}.

In analogy with the positive constant curvature model (which is the set of points in R? whose
euclidean norm is constant) the negative constant curvature can be seen as the set of points whose
hyperbolic norm is constant in R?. In other words

HY ={q=(z,y,2) € R*||lall}; = —r*} N {z > 0}.

The hyperbolic Gauss map associated with this surface can be easily computed since its is explicitly
given by

N :H? - H?, N(q) = %vqa, (1.69)

Exercise 1.64. Prove that the Gaussian curvature of H? is k = —1/r? at every point q € H?.

We can now discuss the structure of geodesics and constant geodesic curvature curves on the
hyperbolic space. With start with a result than can be proved in an analogous way to Proposition
1L.60I
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Proposition 1.65. Let vy : [0,T] — H2 be a curve with constant geodesic curvature equal to ¢ € R.
For every vector w € R3 the function a(t) = (¥(t) |w),, is a solution of the differential equation

a(t) + <c2 - %) a(t) = 0. (1.70)

As for the sphere, this result implies immediately the following corollary.

Corollary 1.66. Constant geodesic curvature curves on H? are contained in the intersection of
H? with affine planes of R3. In particular, geodesics are contained in the intersection of H? with
planes passing through the origin.

Exercise 1.67. Prove Proposition [L.65] and Corollary [L.66]

Geodesics on H? are hyperbolas, obtained as intersections of the hyperboloid with plane passing
through the origin. The classification of constant geodesic curvature curves is in fact more rich. The
sections of the hyperboloid with affine planes can have different shapes depending on the Fuclidean
orthogonal vector to the plane: they are circles when it has negative hyperbolic length, hyperbolas
when it has positive hyperbolic length or parabolas when it has length zero (that is it belong to
the 22 +y% — 22 = 0).

These distinctions reflects in the value of the geodesic curvature. Indeed, as the form of (L70])
also suggest, the value ¢ = % is a threshold and we have the following situation:

(i) if 0 < ¢ < 1/r, then the curve is an hyperbola,
(i) if ¢ = 1/r, then the curve is a parabola,
(iii) if ¢ > 1/r, then the curve is a circle.

This is not the only interesting feature of this classification. Indeed curves of type (i) are equidistant
curves while curves of type (iii) are boundary of balls, i.e., spheres, in the hyperbolic plane. Finally,
curves of type (ii) are also called horocycles (cf. Remark [[L63] for the difference with respect to the
case of the positive constant curvature model).
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Chapter 2

Vector fields

In this chapter we collect some basic definitions of differential geometry, in order to recall some
useful results and to fix the notation. We assume the reader to be familiar with the definitions of
smooth manifold and smooth map between manifolds.

2.1 Differential equations on smooth manifolds

In what follows I denotes an interval of R containing 0 in its interior.

2.1.1 Tangent vectors and vector fields

Let M be a smooth n-dimensional manifold and ~1,7v : I — M two smooth curves based at
g = 71(0) = 72(0) € M. We say that v and 7, are equivalent if they have the same 1-st order
Taylor polynomial in some (or, equivalently, in every) coordinate chart. This defines an equivalence
relation on the space of smooth curves based at q.

Definition 2.1. Let M be a smooth n-dimensional manifold and let v : I — M be a smooth curve
such that v(0) = ¢ € M. Its tangent vector at ¢ = v(0), denoted by

d

E t:O’Y(t% or ’Y(O)v (2'1)

is the equivalence class in the space of all smooth curves in M such that v(0) = q.

It is easy to check, using the chain rule, that this definition is well-posed (i.e., it does not depend
on the representative curve).

Definition 2.2. Let M be a smooth n-dimensional manifold. The tangent space to M at a point
q € M is the set

d
T,M := {% v(t), v: I — M smooth, v(0) = Q}-

It is a standard fact that 7, M has a natural structure of n-dimensional vector space, where n =
dim M.

t=0
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Definition 2.3. A smooth vector field on a smooth manifold M is a smooth map
X :q— X(q) € T;M,

that associates to every point g in M a tangent vector at g. We denote by Vec(M) the set of smooth
vector fields on M.

In coordinates we can write X =" | X i(az)%, and the vector field is smooth if its components

X'(x) are smooth functions. The value of a vector field X at a point ¢ is denoted in what follows
both with X (¢q) and X|q.

Definition 2.4. Let M be a smooth manifold and X € Vec(M). The equation
¢=X(q), qeM, (2.2)

is called an ordinary differential equation (or ODE) on M. A solution of (Z2]) is a smooth curve
~v:J — M, where J C R is an open interval, such that

W) = X(4(),  Vted. (2.3)
We also say that - is an integral curve of the vector field X.

A standard theorem on ODE ensures that, for every initial condition, there exists a unique
integral curve of a smooth vector field, defined on some open interval.

Theorem 2.5. Let X € Vec(M) and consider the Cauchy problem
(2.4)

For any point qo € M there exists § > 0 and a solution v : (—0,0) = M of (2.4), denoted by
v(t;90). Moreover the map (t,q) — (t;q) is smooth on a neighborhood of (0,qo).

The solution is unique in the following sense: if there exists two solutions ~; : I1 — M and
vo : Iy — M of (24]) defined on two different intervals I, Is containing zero, then ~;(t) = y2(t) for
every t € Iy N Is. This permits to introduce the notion of mazimal solution of (2.4]), that is the
unique solution of (Z4)) that is not extendable to a larger interval J containing I.

If the maximal solution of (24]) is defined on a bounded interval I = (a,b), then the solution
leaves every compact K of M in a finite time tx < b.

A vector field X € Vec(M) is called complete if, for every gy € M, the maximal solution ~(¢; qo)
of the equation (2.2]) is defined on I = R.

Remark 2.6. The classical theory of ODE ensure completeness of the vector field X € Vec(M) in
the following cases:

(i) M is a compact manifold (or more generally X has compact support in M),
(i) M =R"™ and X is sub-linear, i.e. there exists C,Cy > 0 such that
| X (x)| < Ci|z| + Cq, VreR"

where | - | denotes the Euclidean norm in R".
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When we are interested in the behavior of the trajectories of a vector field X € Vec(M) in a
compact subset K of M, the assumption of completeness is not restrictive.

Indeed consider an open neighborhood Ox of a compact K with compact closure Ox in M.
There exists a smooth cut-off function a : M — R that is identically 1 on K, and that vanishes out
of Og. Then the vector field aX is complete, since it has compact support in M. Moreover, the
vector fields X and aX coincide on K, hence their integral curves coincide on K too.

2.1.2 Flow of a vector field
Given a complete vector field X € Vec(M) we can consider the family of maps

¢ M — M, oi(q) = v(t;9), teR. (2.5)

where 7(t; q) is the integral curve of X starting at ¢ when ¢ = 0. By Theorem it follows that
the map
¢o:Rx M — M, o(t,q) = ¢e(q),

is smooth in both variables and the family {¢;, t € R} is a one parametric subgroup of Diff(M),
namely, it satisfies the following identities:

¢o = 1Id,
$rods =0 = duis,  VHSER, (2.6)
(¢)~" = o4, VteR,
Moreover, by construction, we have
0
%EQ) = X(¢e(q),  ¢ola) =¢q, Yqe M. (2.7)

The family of maps ¢; defined by (23] is called the flow generated by X. For the flow ¢; of a
vector field X it is convenient to use the exponential notation ¢; := e!X, for every t € R. Using
this notation, the group properties (2.6]) take the form:

eOX =1d, etX ° esX — esX ° etX — e(t—i—s)X7 (etX)—l — e—tX7 (28)
d
SN (@)= XN (), Vae M (2.9)
Remark 2.7. When X (xz) = Az is a linear vector field on R™, where A is a n X n matrix, the

corresponding flow ¢; is the matrix exponential ¢;(x) = et4z.

2.1.3 Vector fields as operators on functions

A vector field X € Vec(M) induces an action on the algebra C°°(M) of the smooth functions on
M, defined as follows

X :C®(M)— C®(M), a— Xa, a€C™®(M), (2.10)
where J
(Xa)(g) = t_oa(etx(q)), g€ M. (2.11)

In other words X differentiates the function a along its integral curves.
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Remark 2.8. Let us denote a; := aoe!™. The map t — a; is smooth and from (ZIT)) it immediately
follows that Xa represents the first order term in the expansion of a; when ¢t — 0:

a; = a+tXa+ O(t?).

Exercise 2.9. Let a € C®°(M) and X € Vec(M), and denote a; = a o e"X. Prove the following
formulas

d

Eat = XCLt, (212)
t2 t3 tk
a :a+tXa+§X2a+§X3a+...+EXka+O(tk+1). (2.13)

It is easy to see also that the following Leibnitz rule is satisfied
X(ab) = (Xa)b+ a(XD), Va,be C®(M), (2.14)

that means that X, as an operator on functions, is a derivation of the algebra C°(M).

Remark 2.10. Notice that, in coordinates, if « € C*(M) and X = ), X,-(x)a%i then Xa =

> X,-(a:)g—ﬁi. In particular, when X is applied to the coordinate functions a;(x) = z; then Xa; =
X;, which shows that a vector field is completely characterized by its action on functions.

Exercise 2.11. Let f1,..., fx € C®°(M) and assume that N = {f; = ... = fry =0} C M is a
smooth submanifold. Show that X € Vec(M) is tangent to N, i.e., X(¢) € T,N for all ¢ € N, if
and only if X fi(¢) =0 for every g€ N and i =1,...,k.

2.1.4 Nonautonomous vector fields

Definition 2.12. A nonautonomous vector field is family of vector fields {X;}er such that the
map X (t,q) = X;(q) satisfies the following properties

(C1) X (-, q) is measurable for every fixed ¢ € M,
(C2) X(t,-) is smooth for every fixed ¢ € R,

(C3) for every system of coordinates defined in an open set  C M and every compact K C € and
compact interval I C R there exists L> functions ¢(t), k(t) such that

X2l <), [XE2) - XEYI <k@lz—yll, V() ty) e Ix K

Notice that conditions (C1) and (C2) are equivalent to require that for every smooth function
a € C*°(M) the real function (¢, q) — X;al, defined on R x M is measurable in ¢t and smooth in q.

Remark 2.13. In these lecture notes we are mainly interested in nonautonomous vector fields of the

following form

Xi(q) =) _ui(t)filq) (2.15)

i=1
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where u; are L* functions and f; are smooth vector fields on M. For this class of nonautonomous
vector fields assumptions (C1)-(C2) are trivially satisfied. For what concerns (C3), by the smooth-
ness of f; for every compact set K C £ we can find two positive constants Ck, L such that for all
i=1,...,mand j=1,...,n we have

Ih@l<Cr |52

(m)” < Lk, Vo e K,

J

and one gets for all (¢,z),(t,y) € I x K

IX@ )l < Cr Y lu®)l, X (Ee) = Xyl < Lie Yy [wi®)] - |z — yll- (2.16)
i—1 i=1

The existence and uniqueness of integral curves of a nonautonomous vector field is guaranteed
by the following theorem (see [34]).

Theorem 2.14 (Carathéodory theorem). Assume that the nonautonomous vector field {X;}ier
satisfies (C1)-(C3). Then the Cauchy problem

{qm = X(t.q(1)) (2.17)

q(to) = qo

has a unique solution y(t;to,qo) defined on an open interval I containing ty such that (2.I7) is
satisfied for almost every t € I and y(to;to,q0) = qo- Moreover the map (t,qo0) — (t;to,qo) is
Lipschitz with respect to t and smooth with respect to qq.

Let us assume now that the equation (2.14]) is complete, i.e., for all t) € R and ¢9 € M the
solution v(t;to,qo) is defined on I = R. Let us denote P +(q) = ~(t;to,q). The family of maps
{P, s}t,ser where P, : M — M is the (nonautonomous) flow generated by X;. It satisfies

80Py, . 09X

5 0@ = 5o (6 Po(@0) Po @)

Moreover the following algebraic identities are satisfied

Pt7t = Id7
Pt27t3 © Ptth = Ptl,t37 vt17t27t3 € Ra (218)
(Ptl,tz)_l = Py 11 Vit €R,

Conversely, with every family of smooth diffeomorphism P, : M — M satisfying the relations
[218), that is called a flow on M, one can associate its infinitesimal generator X, as follows:

Xi(q) = as Prits(q), Vqge M. (2.19)
s=0

The following lemma characterizes flows whose infinitesimal generator is autonomous.

Lemma 2.15. Let {P; s}t ser be a family of smooth diffeomorphisms satisfying (ZI8]). Its infinites-
tmal generator is an autonomous vector field if and only if

P(]’t o P07s = PO,t—i—sa Vt,s € R.
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2.2 Differential of a smooth map

A smooth map between manifolds induces a map between the corresponding tangent spaces.

Definition 2.16. Let ¢ : M — N a smooth map between smooth manifolds and ¢ € M. The
differential of ¢ at the point ¢ is the linear map

Ps,q - TqM — Tp(q)N, (2.20)
defined as follows:
=21 w), i =2 @), a=0)
Px,q ey t:o(p v s ey t:ofy ,  q@=79U).

It is easily checked that this definition depends only on the equivalence class of ~.

Figure 2.1: Differential of a map ¢ : M — N

The differential ¢, , of a smooth map ¢ : M — N, also called its pushforward, is sometimes
denoted by the symbols Dy or dyp (see Figure 2.2)).

Exercise 2.17. Let ¢ : M — N, ¢ : N — @Q be smooth maps between manifolds. Prove that the
differential of the composition 1) o ¢ : M — @ satisfies (¢ 0 ¢)x = Vs 0 @x.

As we said, a smooth map induces a transformation of tangent vectors. If we deal with diffeo-
morphisms, we can also pushforward a vector field.

Definition 2.18. Let X € Vec(M) and ¢ : M — N be a diffecomorphism. The pushforward
v« X € Vec(N) is the vector field on N defined by

(@ X)(p(9)) == pu(X(9)),  Vge M. (2.21)
When P € Diff(M) is a diffecomorphism on M, we can rewrite the identity ([2:21]) as

(PX)(q) = P(X(P7H(q)), YageM. (2.22)
Notice that, in general, if ¢ is a smooth map, the pushforward of a vector field is not well-defined.

Remark 2.19. From this definition it follows the useful formula for X,Y € Vec(M)

d s _
(eiXY)‘q =X (Y‘e,tx(q)) = szoetX oe’Y oe ().
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If P € Diff(M) and X € Vec(M), then P, X is, by construction, the vector field whose integral
curves are the image under P of integral curves of X. The following lemma shows how it acts as
operator on functions.

Lemma 2.20. Let P € Diff (M), X € Vec(M) and a € C*(M) then
X = poelXopl, (2.23)
(P.X)a = (X(aoP))oP L (2.24)
Proof. From the formula

d _ -
| Poe™oP g = P(X(P7H(q) = (P.X)(q),

t=0
it follows that t ++ P o e!™ o P71(g) is an integral curve of P, X, from which (Z2.23]) follows. To
prove (2.24)) let us compute

d
(P.X)a|, = | a(e™¥(q).
|q dt |
Using (2.23)) this is equal to
d tX (p—1 d tX (p—1 -1
—| a(P(e” (P (q) = —| (aoP)(e (P (q) = (X(aoP))oP "
dt|,_, dt|,_,
O
As a consequence of Lemma one gets the following formula: for every X,Y € Vec(M)
(eXY)a =Y (aoe™)oe X, (2.25)

2.3 Lie brackets

In this section we introduce a fundamental notion for sub-Riemannian geometry, the Lie bracket of
two vector fields X and Y. Geometrically it is defined as the infinitesimal version of the pushforward
of the second vector field along the flow of the first one. As expalined below, it measures how much
Y is modified by the flow of X.

Definition 2.21. Let X,Y € Vec(M). We define their Lie bracket as the vector field

e; Y. (2.26)

Remark 2.22. The geometric meaning of the Lie bracket can be understood by writing explicitly

[X,Y]| _ O] oxy 29

— | —_ —tX 9
T Ot|,_y " a ot

Y =
tzoe* ( |etX(q)) asat

e X oY 0t (g). (2.27)
t=5=0

Proposition 2.23. As derivations on functions, one has the identity

[X,Y]=XY - YX. (2.28)
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Proof. By definition of Lie bracket we have [X,Y]a = % ‘ —olex tXY)a. Hence we have to compute
the first order term in the expansion, with respect to ¢, of the map

t = (e;™Y)a.
Using formula ([2.25]) we have
(e ¥Y)a =Y (aoe ) oelX,
By Remark 2.8 we have aoe ' =a —t Xa+ O(t?), hence
(e YV)a=Y(a—tXa+O(?)) e
= (Ya—tYXa+ O(t?)) o e,
Denoting b = Ya — tY Xa + O(t?), by = bo X, and using again the expansion above we get
(e Y)a=(Ya—tYXa+O®F)) +tX(Ya—tYXa+ O(t?)) + Ot?)
=Ya+tXY = YX)a+ O(t).
that proves that the first order term with respect to ¢ in the expansion is (XY — Y X)a. O
Proposition 2.23] shows that (Vec(M),[-,+]) is a Lie algebra.
Exercise 2.24. Prove the coordinate expression of the Lie bracket: let

- ) 8
X:;Xia—xi, Y:Zlyj%j,

]:
be two vector fields in R™. Show that

N Y 0X;\ 0

i,j=1

Next we prove that every diffeomorphism induces a Lie algebra homomorphism on Vec(M).
Proposition 2.25. Let P € Diff(M). Then P is a Lie algebra homomorphism of Vec(M), i.e.,
P, [X,Y] = [P.X, P.Y], VX,Y € Vec(M).

Proof. We show that the two terms are equal as derivations on functions. Let a € C*(M),
preliminarly we see, using (2.24)), that

P.X(P,Ya) = P,X(Y(ao P)o P71)
=X(Y(aoP)oP toP)o P!
= X(Y(aoP))o P!,
and using twice this property and (2.28))
[P,X,P.Y]a=P.X(P,Ya) — P,Y (P, Xa)

= XY(aoP)oP™ ' —YX(aoP)o P!

= (XY -YX)(aoP)o P!

= P,[X,Y]a.
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To end this section, we show that the Lie bracket of two vector fields is zero (i.e., they commute
as operator on functions) if and only if their flows commute.

Proposition 2.26. Let X, Y € Vec(M). The following properties are equivalent:
(1) [X,Y] =0,
(ii) e oe’Y =eY oetX, Vit seR.
Proof. We start the proof with the following claim
X,Y]=0 = ¥y =Y, VteR. (2.29)

To prove (2.29) let us show that [X,Y] = 4 ‘tzoe;tXY = 0 implies that $e;*¥Y =0 for all t € R.
Indeed we have

ie*_tXY — i 6;(t+€)XY — i *—tXe*—EXY
dt de |, de |,
d
— e*—tX_ e*_EXY — e*—tX [X, Y] _ 0’
de |,

which proves ([2:29]).
(i)=(ii). Fix t € R. Let us show that ¢, := e7*X 0e*¥ 0e!¥ is the flow generated by Y. Indeed

we have

9 _ 9 —tX (s+e)Y | tX
—¢s=—-—| € " oe oe
s Oe
e=0
9 —tX &Y X —tX _ sY X
= a— e o e oe oe oe oe
e
e=0

=e;*Yop, =Y o0¢,.

where in the last equality we used ([2.29). Using uniqueness of the flow generated by a vector field
we get

e oeY o =Y, Vi seR,

which is equivalent to (i7).
(ii)=-(i). For every function a € C*° we have

0? 0?
XYa= sY tX — tX sY —YXa.
N TE T 950t li—smo” = ¢ °F ¢
Then (7) follows from (2:28]). O

Exercise 2.27. Let X, Y € Vec(M) and ¢ € M. Consider the curve on M
’Y(t) — e—tY o e—tX o etY o etX(q)'
Prove that the tangent vector to the curve ¢t — y(v/t) at t = 0 is [X, Y](q).
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Exercise 2.28. Let X,Y € Vec(M). Using the semigroup property of the flow, prove that

%e;tX Y = e, [X,Y] (2.30)
Deduce the following expansion
_ 1" n
e XY = ZO —(ad X)"Y (2.31)
2 t3

=¥ X, Y]+ S0 YT+ S I Y

Exercise 2.29. Let X,Y € Vec(M) and a € C*°(M). Prove the following Leibnitz rule for the
Lie bracket:
[X,aY] =a[X, Y]+ (Xa)Y.

Exercise 2.30. Let X,Y,Z € Vec(M). Prove that the Lie bracket satisfies the Jacobi identity:
X[V, Z]] + [, [2, X)) + [2, [X, Y]] = 0. (2.32)
Hint: Differentiate the identity e!X[Y, Z] = [e!XY, !X Z] with respect to t.

Exercise 2.31. Let M be a smooth n-dimensional manifold and X7, ..., X,, be linearly independent
vector fields in a neighborhood of a point ¢y € M. Prove that the map

¥R = M, V(t,. .. ty) =1%o oetnXn(gy)

is a local diffeomorphism at 0. Moreover we have, denoting t = (t1,...,ty),
0 X
8_:5/}(t) =elX1o o ei”lX”lXi(T/)(t))
(]
Deduce that, when [X;, X;] = 0 for every i,j = 1,...,n, one has

9

S (0) = Xi(w(t).

2.4 Frobenius theorem

In this section we prove Frobenius theorem about vector distributions.

Definition 2.32. Let M be a smooth manifold. A wector distribution D of rank m on M is a
family of vector subspaces D, C T; M where dim D, = m for every gq.

A vector distribution D is said to be smooth if, for every point gy € M, there exists a neighbor-
hood O, of gp and a family of vector fields X7, ..., X,, such that

D, =span{Xi1(q),...,Xm(q)}, Vq € Oy. (2.33)
Definition 2.33. A smooth vector distribution D (of rank m) on M is said to be involutive if
there exists a local basis of vector fields X1, ..., X,, satisfying ([2.33])) and smooth functions afj on
M such that .
1Xo, Xel = af;X;,  Vik=1,...,m. (2.34)
j=1
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Exercise 2.34. Prove that a smooth vector distribution D is involutive if and only if for every
local basis of vector fields X7, ..., X,, satisfying (2.33]) there exist smooth functions a . such that

(Z34)) holds.

Definition 2.35. A smooth vector distribution D on M is said to be flat if for every point ¢g € M
there exists a diffeomorphism ¢ : Oy, — R™ such that ¢, 4(Dy) = R™ x {0} for all g € Oy,.

Theorem 2.36 (Frobenius Theorem). A smooth distribution is involutive if and only if it is flat.

Proof. The statement is local, hence it is sufficient to prove the statement on a neighborhood of
every point gy € M.

(). Assume first that the distribution is flat. Then there exists a diffeomorphism ¢ : Oy, — R"
such that Dy = ¢, J(R™ x {0}). It follows that for all ¢ € Oy, we have

0
Dq :Span{Xl(q)v"'7Xm(Q)}7 Xl(q) = *;aﬂf
and we have for i,k =1,...,m
4|0 0
0] = [ o | = 008 | =

(ii). Let us now prove that if D is involutive then it is flat. As before it is not restrictive to
work on a neighborhood where

D, =span{Xi1(q),...,Xm(q)}, Vq € Oy. (2.35)
and (2.34)) are satisfied. We first need a lemma.
Lemma 2.37. For every k =1,...,m we have eX*D=D.
Proof of Lemma [2.37 Let us define the time dependent vector fields
V() = el X,
Using (2.34]) and (2.30)) we compute
VE@) = 50X, X,] = Zeth ( a¥; ) - iag(t)yf(t)
j=1

where we set afj(t) = a’f] o e Xk, Denote by A¥(t) = (afj(t))gf;-zl and consider the unique solution

k() = (’yf](t))f;:l to the matrix Cauchy problem

k() = A@)r*k),  TF0) =1 (2.36)
Then we have .
YA =Y A5 YF0)
j=1
that implies, for every i,k =1,...,m

m
e Xk X, = Z ’yfj (t)X;
i=1

which proves the claim. O
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We can now end the proof of Theorem Complete the family X1,...,X,, to a basis of the
tangent space
TqM = Span{Xl(Q)a cee 7Xm(Q)7 Zm-i—l(Q)a ) Zn(Q)}

in a neighborhood of gy and set ¢ : R™ — M defined by
V1, sty Smals .- 5n) = €150 0 o elm&m o gSma1Zmit o o e5nZn(g)

By construction v is a local diffeomorphism at (t,s) = (0,0) and for (¢,s) close to (0,0) we have
that (cf. Exercice 2.31))
O

——(t,5) = M o 0 i X (Y(t, 5)),
ot;
for every i = 1,...,m. These vectors are linearly independent and, thanks to Lemma 237 belong
to D. Hence
D, = 1, span 9 92 =(t,s)
q — *p atl"“’atm ) q_ ) )
and the claim is proved. O

2.5 Cotangent space

In this section we introduce tangent covectors, that are linear functionals on the tangent space.
The space of all covectors at a point ¢ € M, called cotangent space is, in algebraic terms, simply
the dual space to the tangent space.

Definition 2.38. Let M be a n-dimensional smooth manifold. The cotangent space at a point
q € M is the set
TyM = (T,M)* = {\: T;M — R, \ linear}.

If A€ T;M and v € T, M, we will denote by (\,v) := A(v) the action of the covector A on the
vector v.

As we have seen, the differential of a smooth map yields a linear map between tangent spaces.
The dual of the differential gives a linear map between cotangent spaces.

Definition 2.39. Let ¢ : M — N be a smooth map and ¢ € M. The pullback of ¢ at point ¢(q),
where ¢ € M, is the map
o* T;(q)N — T, M, A=t

defined by duality in the following way
(PN, v) = (A, puv) Vo eTyM, YA€ T, M.

Example 2.40. Let a : M — R be a smooth function and ¢ € M. The differential dya of the
function a at the point ¢ € M, defined through the formula

d

(dqa,v) == pr i

a(v(t)), veT,M, (2.37)

where 7 is any smooth curve such that v(0) = ¢ and ¥(0) = v, is an element of T, M, since (Z37))
is linear with respect to v.
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Definition 2.41. A differential 1-form on a smooth manifold M is a smooth map
w:g—w(q) €Ty M,

that associates with every point ¢ in M a cotangent vector at ¢. We denote by A'(M) the set of
differential forms on M.

Since differential forms are dual objects to vector fields, it is well defined the action of w € A*M
on X € Vec(M) pointwise, defining a function on M.

(w, X) g (wlq), X(q)) - (2.38)

The differential form w is smooth if and only if, for every smooth vector field X € Vec(M), the
function (w, X) € C*°(M)

Definition 2.42. Let ¢ : M — N be a smooth map and a : N — R be a smooth function. The
pullback ©*a is the smooth function on M defined by

(¥"a)(q) = alp(a)), g€ M.
In particular, if 7 : T*M — M is the canonical projection and a € C*°(M), then
(ma)(A) = a(m(N)), AeT*M,

which is constant on fibers.

2.6 Vector bundles

Heuristically, a smooth vector bundle on a manifold M, is a smooth family of vector spaces
parametrized by points in M.

Definition 2.43. Let M be a n-dimensional manifold. A smooth vector bundle of rank k over M
is a smooth manifold £ with a surjective smooth map 7 : £ — M such that

(i) the set E, :=n1(q), the fiber of E at g, is a k-dimensional vector space,

1) for every ¢ € M there exist a neighborhood O, of ¢ and a linear-on-fibers diffeomorphism
q
(called local trivialization) v : 7= 1(0,) — Oy x R such that the following diagram commutes

70, —= 0, x RF (2.39)

R

Oq

The space E is called total space and M is the base of the vector bundle. We will refer at 7 as the
canonical projection and rank E will denote the rank of the bundle.
Remark 2.44. A vector bundle E, as a smooth manifold, has dimension
dim £ =dim M + rank E =n + k.
In the case when there exists a global trivialization map, i.e. one can choose a local trivialization

with Oy = M for all ¢ € M, then E is diffeomorphic to M x R* and we say that F is trivializable.
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Example 2.45. For any smooth n-dimensional manifold M, the tangent bundle T M, defined as
the disjoint union of the tangent spaces at all points of M,

™ = | J T,M,
qeEM

has a natural structure of 2n-dimensional smooth manifold, equipped with the vector bundle struc-
ture (of rank n) induced by the canonical projection map

m:TM — M, n(v) =q if veT,M.
In the same way one can consider the cotangent bundle T* M, defined as

"M = | T;M.
qeEM

Again, it is a 2n-dimensional manifold, and the canonical projection map
m:T*M — M, m(A)=q if ANeT;M,
endows T* M with a structure of rank n vector bundle.

Let O C M be a coordinate neighborhood and denote by

¢:0_>an QS(Q):(ﬂfl,...,ZEn),

a local coordinate system. The differentials of the coordinate functions

da:,-| i1=1,...,n, qe o0,

q7

form a basis of the cotangent space T, M. The dual basis in the tangent space Ty M is defined by
the vectors

0 .
oz, qGTqM, 1=1,...,n, qe 0, (2.40)
doe 2N Z 6 ij=1....m (2.41)
Haxj — U9 J=1,...,n. .

Thus any tangent vector v € T, M and any covector A € T'M can be decomposed in these basis

v:;vi% )\:;pidiﬂi‘q,

q
and the maps
Yive (X1, Ty V1, e s, Up)y VA= (T, Ty DLy s Pr)s (2.42)

define local coordinates on T'M and T™* M respectively, which we call canonical coordinates induced
by the coordinates 1 on M.
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Definition 2.46. A morphism f: E — E’ between two vector bundles E, E’ on the base M (also
called a bundle map) is a smooth map such that the following diagram is commutative

E—L.p (2.43)

N

M

where f is linear on fibers. Here m and 7’ denote the canonical projections.

Definition 2.47. Let 7 : £ — M be a smooth vector bundle over M. A local section of E is a
smooth ma 0:AC M — FE satisfying moo = Id 4, where A is an open set of M. In other words
o(q) belongs to E, for each ¢ € A, smoothly with respect to ¢. If o is defined on all M it is said to
be a global section.

Example 2.48. Let 7 : E — M be a smooth vector bundle over M. The zero section of E is the
global section

(:M—E, ((g=0€kE, VqeM.

We will denote by My :=((M) C E.

Remark 2.49. Notice that smooth vector fields and smooth differential forms are, by definition,
sections of the vector bundles T'M and T*M respectively.

We end this section with some classical construction on vector bundles.
Definition 2.50. Let ¢ : M — N be a smooth map between smooth manifolds and F be a vector

bundle on N, with fibers {Ey,¢" € N}. The induced bundle (or pullback bundle) ¢*E is a vector
bundle on the base M defined by

¢*E :={(q,v)|q € M,v € E,q} CMxE.
Notice that rank p*E = rank E/, hence dim ¢*F = dim M + rank F.

Example 2.51. (i). Let M be a smooth manifold and 7'M its tangent bundle, endowed with an
Euclidean structure. The spherical bundle SM is the vector subbundle of T'M defined as follows

SM = | S;M,  S;M={veT,M||=1}
qeM

(i7). Let E,E’ be two vector bundles over a smooth manifold M. The direct sum E @ E' is the
vector bundle over M defined by

(E®E'),:=E,; & E,,.

Thetre smooth means as a map between manifolds.
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2.7 Submersions and level sets of smooth maps

If p: M — N is a smooth map, we define the rank of ¢ at ¢ € M to be the rank of the linear map
Ouq » TgM — Ty N. 1t is of course just the rank of the matrix of partial derivatives of ¢ in any
coordinate chart, or the dimension of im (s 4) C Ty,(q)N. If ¢ has the same rank k at every point,
we say o has constant rank, and write rank ¢ = k.

An immersion is a smooth map ¢ : M — N with the property that ¢, is injective at each point
(or equivalently rank ¢ = dim M). Similarly, a submersion is a smooth map ¢ : M — N such that
@« 18 surjective at each point (equivalently, rank ¢ = dim N).

Theorem 2.52 (Rank Theorem). Suppose M and N are smooth manifolds of dimensions m and
n, respectively, and ¢ : M — N 1is a smooth map with constant rank k in a neighborhood of ¢ € M.
Then there exist coordinates (x1,...,xy,) centered at q and (y1,...,yn) centered at p(q) in which
@ has the following coordinate representation:

o1, .y xm) = (21,...,2,0,...,0). (2.44)

Remark 2.53. The previous theorem can be rephrased in the following way. Let ¢ : M — N be a
smooth map between two smooth manifolds. Then the following are equivalent:

(i) ¢ has constant rank in a neighborhood of ¢ € M.

(ii) There exist coordinates near ¢ € M and ¢(q) € N in which the coordinate representation of
@ is linear.

In the case of a submersion, from Theorem [2.52] one can deduce the following result.

Corollary 2.54. Assume @ : M — N is a smooth submersion at q. Then ¢ admits a local right
inverse at p(q). Moreover ¢ is open at q. More precisely it exist € > 0 and C' > 0 such that

Buo(C7'r) C(By(r)),  Vreloe), (2.45)
where the balls in (2.45]) are considered with respect to some Euclidean norm in a coordinate chart.

Remark 2.55. The constant C' appearing in (2.45]) is related to the norm of the differential of the
local right inverse, computed with respect to the chosen Euclidean norm in the coordinate chart.
When ¢ is a diffeomorphism, C' is a bound on the norm of the differential of the inverse of . This
recover the classical quantitative statement of the inverse function theorem.

Using these results, one can give some general criteria for level sets of smooth maps (or smooth
functions) to be submanifolds.

Theorem 2.56 (Constant Rank Level Set Theorem). Let M and N be smooth manifolds, and let
©: M — N be a smooth map with constant rank k. Each level set o~ (y), for y € N is a closed
embedded submanifold of codimension k in M.

Remark 2.57. It is worth to specify the following two important sub cases of Theorem [2.50]

(a) If ¢ : M — N is a submersion at every q € ¢~ !(y) for some y € N, then »~!(y) is a closed
embedded submanifold whose codimension is equal to the dimension of N.
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(b) If a: M — R is a smooth function such that dya # 0 for every q € a=!(c), where ¢ € R, then
the level set a~!(c) is a smooth hypersurface of M

Exercise 2.58. Let a : M — R be a smooth function. Assume that ¢ € R is a regular value of
a, i.e., dya # 0 for every ¢ € a='(c). Then N, = a~!(c) = {qg € M |a(q) = ¢} C M is a smooth
submanifold. Prove that for every ¢ € N,

TyN. =kerd,a = {v € T,M | (dya,v) = 0}.

Bibliographical notes

The material presented in this chapter is classical and covered by many textbook in differential
geometry, as for instance in [28], [73] [46] [92].

Theorem 214 is a well-known theorem in ODE. The statement presented here can be deduced
from [35, Theorem 2.1.1, Exercice 2.4]. The functions c(t), k(t) appearing in (C3) are assumed to
be L>, that is stronger than L' (on compact intervals). This stronger assumptions imply that the
solution is not only absolutely continuous with respect to t, but also locally Lipschitz.
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Chapter 3

Sub-Riemannian structures

3.1 Basic definitions

In this section we introduce a definition of sub-Riemannian structure which is quite general. In-
deed, this definition includes all the classical notions of Riemannian structure, constant-rank sub-
Riemannian structure, rank-varying sub-Riemannian structure, almost-Riemannian structure etc.

Definition 3.1. Let M be a smooth manifold and let F C Vec(M) be a family of smooth vector
fields. The Lie algebra generated by F is the smallest sub-algebra of Vec(M) containing F, namely

Lie F := span{[X1,...,[X;-1,X;]],X; € F,j € N}. (3.1)
We will say that F is bracket-generating (or that satisfies the Hormander condition) if
Lie,F :={X(q),X € Lie F} =T;M, Vqe M.
Moreover, for s € N, we define
Lie®F :=span{[X1,..., [ X1, X;]], Xs € F,j < s} (3.2)
We say that the family F has step s at ¢ if s € N is the minimal integer satisfying
Liey F := {X(q), X € Lie’F} =T, M,

Notice that, in general, the step may depend on the point on M and s = s(¢q) can be unbounded
on M even for bracket-generating structures.

Definition 3.2. Let M be a connected smooth manifold. A sub-Riemannian structure on M is a
pair (U, f) where:

(i) U is an Euclidean bundle with base M and Euclidean fiber Uy, i.e., for every ¢ € M, U, is a
vector space equipped with a scalar product (- |-),, smooth with respect to ¢. For u € U, we
denote the norm of u as |u|?> = (u|u),.

(ii) f : U — TM is a smooth map that is a morphism of vector bundles, i.e. the following
diagram is commutative (here 7y : U — M and 7 : TM — M are the canonical projections)

u—Lorm (3.3)

RN

M
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and f is linear on fibers.

(iii) The set of horizontal vector fields D := {f(o)|o : M — U smooth section}, is a bracket-
generating family of vector fields. We call step of the sub-Riemannian structure at q the step
of D.

When the vector bundle U admits a global trivialization we say that (U, f) is a free sub-Riemannian
structure.

A smooth manifold endowed with a sub-Riemannian structure (i.e., the triple (M, U, f)) is
called a sub-Riemannian manifold. When the map f : U — T'M is fiberwise surjective, (M, U, f)
is called a Riemannian manifold (cf. Exercise 3.23]).

Definition 3.3. Let (M, U, f) be a sub-Riemannian manifold. The distribution is the family of
subspaces
{Dy}qems where D, := f(Uy) C T, M.

We call k(q) := dimD, the rank of the sub-Riemannian structure at ¢ € M. We say that the
sub-Riemannian structure (U, f) on M has constant rank if k(q) is constant. Otherwise we say
that the sub-Riemannian structure is rank-varying.

The set of horizontal vector fields D C Vec(M) has the structure of a finitely generated C*°(M)-
module, whose elements are vector fields tangent to the distribution at each point, i.e.

Dy = {X(9)| X € D}.
The rank of a sub-Riemannian structure (M, U, f) satisfies

k(q) <m, where m = rank U, (3.4)
k(q) <n, where n = dim M. (3.5)

In what follows we denote points in U as pairs (q,u), where ¢ € M is an element of the base
and u € Uy is an element of the fiber. Following this notation we can write the value of f at this
point as

flau)  or fu(a)
We prefer the second notation to stress that, for each ¢ € M, f,(q) is a vector in T, M.

Definition 3.4. A Lipschitz curve « : [0,7] — M is said to be admissible (or horizontal) for a
sub-Riemannian structure if there exists a measurable and essentially bounded function

w:t €[0,T] = u(t) € Uyy), (3.6)

called the control function, such that
A(t) = fF(y(t),u(t)), for a.e. t € [0,T]. (3.7)
In this case we say that u(-) is a control corresponding to 7. Notice that different controls could

correspond to the same trajectory (see Figure B.1).
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Figure 3.1: A horizontal curve

Remark 3.5. Once we have chosen a local trivialization O, x R™ for the vector bundle U, where
O, is a neighborhood of a point ¢ € M, we can choose a basis in the fibers and the map f is
written f(q,u) = Y i u;fi(¢), where m is the rank of U. In this trivialization, a Lipschitz curve
~v:10,T] — M is admissible if there exists u = (uq,...,uy) € L>®([0,T],R™) such that

() =Y wi(t)fi(y(t)),  forae. te[0,T]. (3.8)
=1

Thanks to this local characterization and Theorem 214] for each initial condition ¢ € M and
u € L*®([0,T],R™) it follows that there exists an admissible curve 7, defined on a sufficiently small
interval, such that u is the control associated with v and v(0) = ¢.

Remark 3.6. Notice that, for a curve to be admissible, it is not sufficient to satisfy (t) € D for
almost every ¢t € [0,7]. Take for instance the two free sub-Riemannian structures on R? having
rank two and defined by

f(IE,y,’LLl,’LLQ) = (x7y7u17u2$)7 f/(ZE,y,’Lbl,’LLQ) = ($7y7u17u2$2)' (39)

and let D and D’ the corresponding moduli of horizontal vector fields. It is easily seen that the
curve 7 : [—1,1] = R?, ~(t) = (£,t?) satisfies §(t) € D) and §(t) € Di/(t) for every t € [—1,1].

Moreover, 7 is admissible for f, since its corresponding control is (uj,u2) = (1,2) for a.e.
t € [—1,1], but it is not admissible for f’, since its corresponding control is uniquely determined as
(u1(t),ua2(t)) = (1,2/t) for a.e. t € [—1,1], which is not essentially bounded.

This example shows that, for two different sub-Riemannian structures (U, f) and (U’, ') on
the same manifold M, one can have D, = Dj, for every q € M, but D # D’. Notice, however, that
if the distribution has constant rank one has D, = D(’Z for every ¢ € M if and only if D =D'.
3.1.1 The minimal control and the length of an admissible curve

We start by defining the sub-Riemannian norm for vectors that belong to the distribution.

Definition 3.7. Let v € D,. We define the sub-Riemannian norm of v as follows

|lv|| :=min{|u|, w € Uy, s.t. v= f(q,u)}. (3.10)
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Notice that since f is linear with respect to u, the minimum in (BI0]) is always attained at a unique
point. Indeed the condition f(g,-) = v defines an affine subspace of U, (which is nonempty since
v € Dy) and the minimum in (3I0) is uniquely attained at the orthogonal projection of the origin
onto this subspace (see Figure B.2]).

U2

N

Figure 3.2: The norm of a vector v for f(x,uy,us) = uy + us

Exercise 3.8. Show that || - || is a norm in D,. Moreover prove that it satisfies the parallelogram
law, i.e., it is induced by a scalar product (- |-) ¢ o0 Dy, that can be recovered by the polarization
identity

1 1
(vlw), = Z\|v—|—w||2 —ZHv—sz, v,w € Dy. (3.11)
Exercise 3.9. Let uy,...,u, € U, be an orthonormal basis for U,. Define v; = f(¢,u;). Show
that if f(q,-) is injective then vy, ..., vy, is an orthonormal basis for D,.

An admissible curve 7 : [0,7] — M is Lipschitz, hence differentiable at almost every point.
Hence it is well defined the unique control ¢ — u*(t) associated with v and realizing the minimum

in (3.10).
Definition 3.10. Given an admissible curve v : [0,T] — M, we define
uw*(t) == argmin {|u|, u € Uy s.t. A(t) = f(y(t),u)}. (3.12)

for all differentiability point of v. We say that the control u* is the minimal control associated
with ~.

We stress that «*(t) is pointwise defined for a.e. t € [0,7]. The proof of the following crucial
Lemma is postponed to the Section

Lemma 3.11. Let v : [0,T7] — M be an admissible curve. Then its minimal control u*(-) is
measurable and essentially bounded on [0,T].
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Remark 3.12. If the admissible curve v : [0,7] — M is differentiable, its minimal control is defined
everywhere on [0, 7. Nevertheless, it could be not continuous, in general.
Consider, as in Remark [3.6] the free sub-Riemannian structure on R?

f(x7y7u17u2) - (‘Tuyaul7u2x)7 (313)

and let 7 : [—1,1] — R? defined by v(t) = (¢,¢?). Its minimal control u*(t) satisfies (u}(t), u}(t)) =
(1,2) when t # 0, while (u](0),u3(0)) = (1,0), hence is not continuous.

Thanks to Lemma B.11] we are allowed to introduce the following definition.

Definition 3.13. Let v : [0,7] — M be an admissible curve. We define the sub-Riemannian length
of v as

T
aw:4|wmw (3.14)

We say that v is length-parametrized (or arclength parametrized) if |5 (t)|| = 1 for a.e. t € [0,T].
Notice that for a length-parametrized curve we have that ¢(y) = T.

Formula (B14]) says that the length of an admissible curve is the integral of the norm of its
minimal control.

T
() = / [ (1) dt. (3.15)
0
In particular any admissible curve has finite length.
Lemma 3.14. The length of an admissible curve is invariant by Lipschitz reparametrization.

Proof. Let v :[0,T] — M be an admissible curve and ¢ : [0,7'] — [0, 7] a Lipschitz reparametriza-
tion, i.e., a Lipschitz and monotone surjective map. Consider the reparametrized curve

Yo 1 [0, T = M, =700

First observe that v, is a composition of Lipschitz functions, hence Lipschitz. Moreover 7, is
admissible since, by the linearity of f, it has minimal control (u* o p)¢$ € L°°, where u* is the
minimal control of . Using the change of variables t = ¢(s), one gets

T’ T’ T T
wmzé mwwwzé WW@NﬂW@=A!M®W=A\MMW=KW (3.16)
]

Lemma 3.15. Every admissible curve of positive length is a Lipschitz reparametrization of a length-
parametrized admissible one.

Proof. Let ¢ : [0,T] — M be an admissible curve with minimal control u*. Consider the Lipschitz
monotone function ¢ : [0,7] — [0, £(¢))] defined by

ww:Lhmﬁm
69



Notice that if p(t1) = ¢(t2), the monotonicity of ¢ ensures 1(t1) = 1(t2). Hence we are allowed to
define v : [0,4(¢))] — M by

~v(s) :=(t), if s = p(t) for some t € [0,T].

In other words, it holds ¥ = vy o ¢. To show that ~ is Lipschitz let us first show that there exists
a constant C' > 0 such that, for every tg,¢; € [0,7] one has, in some local coordinates (where | - |
denotes the Euclidean norm in coordinates)

t1
[¥(t1) —d(to)| < C [ Ju*(7)ldr.
to
m 1/2
Indeed fix K C M a compact set such that ¢([0,7]) C K and set C := max <Z ]fz(a:)]2> .
S
i=1
Then

0 =1
t m m

< / S )| S £ () 2t
to i=1 i=1

<o [

Hence if s1 = ¢(t1) and sop = ¢(ty) one has

t1

[7(s1) = v(s0)| = [¥(t1) — ¥ (to)] < C |u*(7)|dT = Cls1 — s0],

to

which proves that v is Lipschitz. It particular 4(s) exists for a.e. s € [0,£(¢))].
We are going to prove that v is admissible and its minimal control has norm one. Define for
every s such that s = ¢(t), ¢(t) exists and ¢(t) # 0, the control

By Exercise [3.16] the control v is defined for a.e. s. Moreover, by construction, |v(s)| =1 for a.e. s
and v is the minimal control associated with ~. O

Exercise 3.16. Show that for a Lipschitz and monotone function ¢ : [0,7] — R, the Lebesgue
measure of the set {s € R|s = ¢(t), o(t) exists, H(t) = 0} is zero.

By the previous discussion, in what follows, it will be often convenient to assume that admissible
curves are length-parametrized (or parametrized such that ||§(¢)|| is constant).
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3.1.2 Equivalence of sub-Riemannian structures

In this section we introduce the notion of equivalence for sub-Riemannian structures on the same
base manifold M and the notion of isometry between sub-Riemannian manifolds.

Definition 3.17. Let (U, f), (U, f/) be two sub-Riemannian structures on a smooth manifold M.
They are said to be equivalent if the following conditions are satisfied

(i) there exist an Euclidean bundle V and two surjective vector bundle morphisms p : V. — U
and p’ : V — U’ such that the following diagram is commutative
U (3.17)

V% XTM
N

(ii) the projections p, p’ are compatible with the scalar product, i.e., it holds

u}, Yue U,
u'}, Vu' e U,

|u| = min{[v], p(v)

|| = min{|v], p'(v)

Remark 3.18. If (U, f) and (U’, f’) are equivalent sub-Riemannian structures on M, then:
(a) the distributions D, and Dj defined by f and f’ coincide, since f(U,) = f'(Uy) for all ¢ € M.

(b) for each w € D, we have ||w| = ||w|', where || - || and || - ||" are the norms are induced by
(U, f) and (U, f’) respectively.

In particular the length of an admissible curve for two equivalent sub-Riemannian structures is the
same.

Remark 3.19. Notice that (i) is satisfied (with the vector bundle V possibly non Euclidean) if and
only if the two moduli of horizontal vector fields D and D’ defined by U and U’ are equal (cf.
Definition [3.2]).

Definition 3.20. Let M be a sub-Riemannian manifold. We define the minimal bundle rank of
M as the infimum of rank of bundles that induce equivalent structures on M. Given q¢ € M the
local minimal bundle rank of M at ¢ is the minimal bundle rank of the structure restricted on a
sufficiently small neighborhood O, of q.

Exercise 3.21. Prove that the free sub-Riemannian structure on R? defined by f : R? x R? — TR?
defined by

[z, y,ur,ug,u3) = (2, Y, u1, ugx + uzy)

has non constant local minimal bundle rank.

For equivalence classes of sub-Riemannian structures we introduce the following definition.
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Definition 3.22. Two equivalent classes of sub-Riemannian manifolds are said to be isometric
if there exist two representatives (M, U, f),(M’,U’, '), a diffeomorphism ¢ : M — M’ and an
isomorphis of Euclidean bundles 1 : U — U’ such that the following diagram is commutative

u—Lorm (3.18)

g

U/%/TM/
f

3.1.3 Examples

Our definition of sub-Riemannian manifold is quite general. In the following we list some classical
geometric structures which are included in our setting.

1. Riemannian structures.
Classically a Riemannian manifold is defined as a pair (M, (-|-)), where M is a smooth
manifold and (-|-) ¢ 1s a family of scalar product on TyM, smoothly depending on ¢ € M.
This definition is included in Definition by taking U = T'M endowed with the Euclidean
structure induced by (-|-) and f: TM — TM the identity map.

Exercise 3.23. Show that every Riemannian manifold in the sense of Definition [.2]is indeed
equivalent to a Riemannian structure in the classical sense above (cf. Exercise B.8]).

2. Constant rank sub-Riemannian structures.
Classically a constant rank sub-Riemannian manifold is a triple (M, D, (-|-)), where D is a
vector subbundle of TM and (- |-) o 1s a family of scalar product on Dy, smoothly depending
on g € M. This definition is included in Definition by taking U = D, endowed with its
Euclidean structure, and f : D < T'M the canonical inclusion.

3. Almost-Riemannian structures.
An almost-Riemannian structure on M is a sub-Riemannian structure (U, f) on M such that
its local minimal bundle rank is equal to the dimension of the manifold, at every point.

4. Free sub-Riemannian structures.
Let U = M x R™ be the trivial Euclidean bundle of rank m on M. A point in U can be
written as (q,u), where ¢ € M and u = (uq,...,uy) € R™.

If we denote by {e1,...,e,} an orthonormal basis of R™, then we can define globally m
smooth vector fields on M by f;(q) := f(q,e;) for i =1,...,m. Then we have

flgu) = f <q, Zum) =Y wifila), qe€M (3.19)
i=1 =1

In this case, the problem of finding an admissible curve joining two fixed points qg,q1 € M

Ysomorphism of bundles in the broad sense, it is fiberwise but is not obliged to map a fiber in the same fiber.

72



and with minimal length is rewritten as the optimal control problem

() = D uilt) fi((1))
i=1

., —
/ |u(t)|dt — min (3.20)
0
7(0) = q0, Y(T) =
For a free sub-Riemannian structure, the set of vector fields f1,..., f;, build as above is called

a generating family. Notice that, in general, a generating family is not orthonormal when f
is not injective.

5. Surfaces in R? as free sub-Riemannian structures
Due to topological constraints, in general it not possible to regard a surface of R? (with
the induced metric) as a free sub-Riemannian structure of rank 2, i.e., defined by a pair of
globally defined orthonormal vector fields. However, it is always possible to regard it as a
free sub-Riemannian structure of rank 3.

Indeed, for an embedded surface M in R3, consider the trivial Euclidean bundle U = M x R3,
where points are denoted as usual (g,u), with u € R3, ¢ € M, and the map

f:U—>TM, flg,u) = 7qu(u) e T,M. (3.21)

where 7TqL ‘R3 — TyM C R3 is the orthogonal projection.

Notice that f is a surjective bundle map and the set of vector fields {7qu (0z), w;(ay), 7-(0,)}
is a generating family for this structure.

Exercise 3.24. Show that (U, f) defined in (8:21)) is equivalent to the Riemannian structure
on M induced by the embedding in R3.

3.1.4 Every sub-Riemannian structure is equivalent to a free one

The purpose of this section is to show that every sub-Riemannian structure (U, f) on M is equiva-
lent to a sub-Riemannian structure (U’, f’) where U’ is a trivial bundle with sufficiently big rank.

Lemma 3.25. Let M be a n-dimensional smooth manifold and 7 : E — M a smooth vector bundle
of rank m. Then, there exists a vector bundle my : EFy — M with rank Ey < 2n + m such that
E & Ey is a trivial vector bundle.

Proof. Remember that E, as a smooth manifold, has dimension
dim F = dim M +rank E =n+m.

Consider the map ¢ : M — FE which embeds M into the vector bundle E as the zero section
My = i(M). If we denote with Ty F := i*(TE) the pullback vector bundle, i.e., the restriction of
TE to the section My, we have the isomorphism (as vector bundles on M)

TywE ~ E@®TM. (3.22)
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Eq. (322)) is a consequence of the fact that the tangent to every fibre F,, being a vector space, is
canonically isomorphic to its tangent space T}, F, so that

TWE=T,E,®T,M ~ E, ® T, M, Vqe M.
By Whitney theorem we have a (nonlinear on fibers, in general) immersion
U:E—RY, U, :TyE Cc TE — TR,

for N = 2(n+m), and W, is injective as bundle map, i.e., Ths E is a sub-bundle of TRY ~ RN xR,
Thus we can choose as a complement E’, the orthogonal bundle (on the base M) with respect to
the Euclidean metric in RV, i.e.

E' = U Etll’ Etlz = (T,E; & TqM)l,
qeEM

and considering Ey := Ty E ® E’ we have that Ej is trivial since its fibers are sum of orthogonal

complements and by ([B.22]) we are done.
U

Corollary 3.26. Every sub-Riemannian structure (U, f) on M is equivalent to a sub-Riemannian
structure (U, f) where U is a trivial bundle.

Proof. By Lemma there exists a vector bundle U’ such that the direct sum U := U @ U’ is
a trivial bundle. Endow U’ with any metric structure ¢’. Define a metric on U in such a way
that g(u +u',v +v') = g(u,v) 4+ ¢'(v/, ') on each fiber U, = U, & U;. Notice that U, and U, are
orthogonal subspace of U, with respect to g.

Let us define the sub-Riemannian structure (U, f) on M by

f:U=TM,  f:=fop,

where p; : U® U’ — U denotes the projection on the first factor. By construction, the diagram

2N

UaU M
PN
U

is commutative. Moreover condition (ii) of Definition B.I7 is satisfied since for every @ = u + o/,
with u € U, and o' € U}, we have |a|* = |uf* + [u/|?, hence |u| = min{|a|, p1 (@) = u}. O

(3.23)

Since every sub-Riemannian structure is equivalent to a free one, in what follows we can assume
that there exists a global generating family, i.e., a family of fi,..., f,, of vector fields globally
defined on M such that every admissible curve of the sub-Riemannian structure satisfies

m

() =D wi(t) fi(v(t)), (3.24)

i=1
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Moreover, by the classical Gram-Schmidt procedure, we can assume that f; are the image of an
orthonormal frame defined on the fiber. (cf. Example [ of Section B.I1.3])
Under these assumptions the length of an admissible curve  is given by

T T m
()= [ o= [\ 3w,
=1

where u*(t) is the minimal control associated with ~.
Notice that Corollary B.26] implies that the modulus of horizontal vector fields D is globally
generated by f1,..., fm-

Remark 3.27. The integral curve y(t) = e'/i, defined on [0,T], of an element f; of a generating
family F = {f1,..., fm} is admissible and ¢(y) < T. If F = {f1,..., fm} are linearly independent
then they are an orthonormal frame and ¢(vy) = T

Exercise 3.28. Consider a sub-Riemannian structure (U, f) over M. Let m = rank(U) and
hmax = max{h(q) : ¢ € M} < m where h(q) is the local minimal bundle rank at g. Prove that
there exists a sub-Riemannian structure (U, f) equivalent to (U, f) such that rank(U) = hpax.

3.1.5 Proto sub-Riemannian structures

Sometimes can be useful to consider structures that satisfy only property (i) and (ii) of Definition
B2 but that are not bracket generating. In what follows we call these structures proto sub-
Riemannian structures.

The typical example is the following: assume that the family of horizontal vector fields D
satisfies

(i) [D,D] C D,
(ii) dim D, does not depend on g € M.

In this case the manifold M is foliated by integral manifolds of the distribution, and each of them
is endowed with a Riemannian structure.

3.2 Sub-Riemannian distance and Chow-Rashevskii theorem

In this section we introduce the sub-Riemannian distance between two points as the infimum of
the length of admissible curves joining them.

Recall that, in the definition of sub-Riemannian manifold, M is assumed to be connected.
Moreover, thanks to the construction of Section B.1.4] in what follows we can assume that the sub-
Riemannian structure is free, with generating family 7 = {fi,..., fin}. Notice that, by definition,
F is assumed to be bracket generating.

Definition 3.29. Let M be a sub-Riemannian manifold and ¢g,q1 € M. The sub-Riemannian
distance (or Carnot-Caratheodory distance) between go and g is

d(qo, q1) = inf{¢(y) |y : [0,T] — M admissible, v(0) = qo, ¥(T) = a1}, (3.25)
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One of the purpose of this section is to show that, thanks to the bracket generating condition,
(©.1)) is well-defined, namely for every qo,q1 € M, there exists an admissible curve that joins gy to
q1, hence d(qo,q1) < +oo.

Theorem 3.30 (Chow-Raschevskii). Let M be a sub-Riemannian manifold. Then
(i) (M,d) is a metric space,
(ii) the topology induced by (M,d) is equivalent to the manifold topology.

In particular, d : M x M — R is continuous.

In what follows B(gq,r) (sometimes denoted also B,(g)) is the (open) sub-Riemannian ball of
radius r and center ¢

B(q,r):={q' € M|d(q,q") <r}.

The rest of this section is devoted to the proof of Theorem [3.30l To prove it, we have to show that
d is actually a distance, i.e.,

(a) 0 <d(qo,q1) < +oo for all go,q1 € M,
(b) d(qo,q1) = 0 if and only if go = g1,
(c) d(qo0,q1) = d(g1,0) and d(qo, g2) < d(qo,q1) + d(q1, g2) for all qo,q1,92 € M,
and the equivalence between the metric and the manifold topology: for every go € M we have
(d) for every € > 0 there exists a neighborhood Oy, of gp such that O, C B(qo,¢),

(e) for every neighborhood Oy, of o there exists § > 0 such that B(go,d) C Og,.

3.2.1 Proof of Chow-Raschevskii theorem

The symmetry of d is a direct consequence of the fact that if v : [0,7] — M is admissible,
then the curve 4 : [0,7] — M defined by 5(t) = v(T — t) is admissible and ¢(5) = £(vy). The
triangular inequality follows from the fact that, given two admissible curves v; : [0,77] — M and
v : [0, 5] — M such that v1(T1) = 72(0), their concatenation

m(), t € [0,T],

(3.26)
’72(t — Tl), t e [Tl,Tl + Tg].

7:[07T1 +T2]_>M7 /7(75):{
is still admissible. These two arguments prove item (c).
We divide the rest of the proof of the Theorem in the following steps.

S1. We prove that, for every qo € M, there exists a neighborhood O, of g such that d(qo, ) is
finite and continuous in Ogy,. This proves (d).

S2. We prove that d is finite on M x M. This proves (a).
S3. We prove (b) and (e).

To prove Step 1 we first need the following lemmas:
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Lemma 3.31. Let N C M be a submanifold and F C Vec(M) be a family of vector fields tangent
to N, i.e., X(q) € TyN, for every g € N and X € F. Then for all ¢ € N we have Lie,F C T,N.
In particular dim Lie, 7 < dim N.

Proof. Let X € F. As a consequence of the local existence and uniqueness of the two Cauchy
problems

i=X(q), qeM, and ¢=X|y(@), qeN,
q(0) = qo, qo € N. q(0) = qo, qo € N.

it follows that X (q) € N for every ¢ € N and ¢ small enough. This property, together with the
definition of Lie bracket (see formula (2.27])) implies that, if X, Y are tangent to N, the vector field
[X,Y] is tangent to N as well. Iterating this argument we get that Lie,F C T;N for every ¢ € N,
from which the conclusion follows. O

Lemma 3.32. Let M be an n-dimensional sub-Riemannian manifold with generating family F =
{fi,---, fm}. For every qo € M and every neighborhood V of the origin in R™ there exist § =
(81,...,8,) €V, and a choice of n vector fields fi,,..., fi, € F, such that 5 is a regqular point of
the map

Y :R" — M, U(s1,...,8,) = efin o0 estfin (gp).

Remark 3.33. Notice that, if Dy, # T, M, then s = 0 cannot be a regular point of the map .
Indeed, for s = 0, the image of the differential of 1 at 0 is span, {f;;,j =1,...,n} C Dy, and the
differential of ¥ cannot be surjective.

We stress that, in the choice of f;,,..., fi, € F, a vector field can appear more than once, as
for instance in the case m < n.

Proof of Lemma [3.33. We prove the lemma by steps.

1. There exists a vector field f;, € F such that f;,(qo) # 0, otherwise all vector fields in F vanish
at go and dim Lieg, F = 0, which contradicts the bracket generating condition. Then, for |s]
small enough, the map

b1 2 51— e (qp),

is a local diffeomorphism onto its image ;. If dim M = 1 the Lemma is proved.

2. Assume dim M > 2. Then there exist t1 € R, with |t}| small enough, and f;, € F such that,
if we denote by ¢ = €'t/ (qo), the vector fi,(q1) is not tangent to ¥;. Otherwise, by Lemma
B.31], dim Lie,F = 1, which contradicts the bracket generating condition. Then the map

ba - (51,82) > 52Tz 0 51 (gp),

is a local diffeomorphism near (#],0) onto its image 9. Indeed the vectors

9¢2
951 |(11.0)

96

T, %,
R

= fi,(q1),

are linearly independent by construction. If dim M = 2 the Lemma is proved.
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3. Assume dim M > 3. Then there exist ¢, ¢2, with [t — t}| and |t3| small enough, and f;, € F
such that, if g5 = et3fiz o etafir (go) we have that f;,(g2) is not tangent to ¥5. Otherwise, by
Lemma [3.31] dim Liey, D = 2, which contradicts the bracket generating condition. Then the
map

B3 1 (51,5, 83) > €313 0 €922 0 €511 (gp),

is a local diffeomorphism near (t%, £3,0). Indeed the vectors

O3

b
(13.12.0) 952

96

a¢3
eT, X
) 1 q2+2

(t3,13.,0) 933 |(11,42,0)

= fi3(q2)7

are linearly independent since the last one is transversal to 77,2 by construction, while the
first two are linearly independent since ¢3(s1, s2,0) = ¢2(s1, s2) and ¢ is a local diffeomor-
phisms at (t3,¢2) which is close to (t1,0).

Repeating the same argument n times (with n = dim M), the lemma is proved. O

Proof of Step 1. Thanks to Lemma there exists a neighborhood V C V of 3 such that Y is
a diffeomorphism from V' to P(V), see Figure B3l We stress that in general go = ¢(0) does not
belong to ¥(V), cf. Remark [3.33]

Y

/\ W
1%

\S)

)

Figure 3.3: Proof of Lemma [3.32]

To build a local diffeomorphism whose image contains gg, we consider the map (here s = (51,...,5,))

~

z/b\: R™ — M, Y(S1,...y8n) = e 1fit oo nlin o(S1,...,Sn),

which has the following property: 1)/[)\ is a diffeomorphism from a neighborhood of 5 € V| that we
still denote V, to a neighborhood of 12(?9\) = qo.

Fix now ¢ > 0 and apply the construction above where V' is the neighborhood of the origin in
R™ defined by V = {s € R" | >, |si| < ¢}. Let us show that the claim of Step 1 holds with

Ogo = (V). Indeed, for every g € (V), let s = (s1,...,sy) such that ¢ = ¢(s), and denote by ~
the admissible curve joining gg to ¢, built by 2n-pieces, as in Figure [3.4
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Figure 3.4: The map 1Z

In other words ~ is the concatenation of integral curves of the vector fields f;;, i.e., admissible

curves of the form ¢ — ¢'/is (¢) defined on some interval [0, 7], whose length is less or equal than T
(cf. Remark B27). Since s,5 € V C V, it follows that:

d(qo,q) < () < [s1l+ ...+ [snl + [51] + ... 4 [Sn] < 26,
which ends the proof of Step 1. O

Proof of Step 2. To prove that d is finite on M x M let us consider the equivalence classes of points
in M with respect to the relation

q1 ~ q2 if d(ql, QQ) < +00. (327)

From the triangular inequality and the proof of Step 1, it follows that each equivalence class is open.
Moreover, by definition, the equivalence classes are disjoint and nonempty. Since M is connected,
it cannot be the union of open disjoint and nonempty subsets. It follows that there exists only one
equivalence class. O

Lemma 3.34. Let g € M and K C M a compact set with qo € int K. Then there exists dx > 0
such that every admissible curve vy starting from qo and with () < 0k is contained in K.

Proof. Without loss of generality we can assume that K is contained in a coordinate chart of M,
where we denote by | - | the Euclidean norm in the coordinate chart. Let us define

m 1/2
Ci = max <§:; |fz-(x)|2) (3.28)

and fix 0 > 0 such that dist(go, 0K) > Ckdx (here dist is the Euclidean distance, in coordinates).
Let us show that for any admissible curve 7 : [0,7] — M such that (0) = gp and () < 0x
we have v([0,7]) C K. Indeed, if this is not true, there exists an admissible curve 7 : [0,7] — M
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with £(y) < 0k and t* :=sup{t € [0,T] : v([0,¢]) C K}, with ¢t* <T. Then

[y(#*) = ~(0)] S/O Iﬁ(t)ldtﬁ/o Do lui () fil(2))] dt (3.29)
i=1

< [ [ laoR | S (3:30)
0 =0 =0

m

t*
<Ok / S ur(t)2dt < Crel(y) (3.31)
0 i=0
< Ckég < diSt(qO, E?K) (332)
which contradicts the fact that, at t*, the curve v leaves the compact K. Thus t* =1T. O

Proof of Step 3. Let us prove that Lemma [B.34] implies property (b). Indeed the only nontrivial
implication is that d(qo, q1) > 0 whenever gy # ¢;. To prove this, fix a compact neighborhood K of
qo such that ¢; ¢ K. By Lemma B.34] each admissible curve joining go and ¢; has length greater
than dx, hence d(qo,q1) > 0x > 0.

Let us now prove property (e). Fix ¢ > 0 and a compact neighborhood K of gg. Define Cx
and 0k as in Lemma [3:34] and set 6 := min{dx,e/Cr}. Let us show that |¢ — ¢o| < € whenever
d(qo,q) < 9, where again | - | is the Euclidean norm in a coordinate chart.

Consider a minimizing sequence =, : [0,7] — M of admissible trajectories joining gy and ¢ such
that ¢(y,) — d(qo,q) for n — co. Without loss of generality, we can assume that £(,) < ¢ for all
n. By Lemma B.34], ,([0,7]) C K for all n.

We can repeat estimates (8.29)-(3.31]) proving that |¢ — qo| = [V (T) — 1(0)| < Ckl(7y) for all
n. Passing to the limit for n — oo, one gets

l¢ — qo|l < Ckd(qo,q) < Ckd <e. (3.33)
]

Corollary 3.35. The metric space (M, d)_is locally compact, i.e., for any q € M there exists € > 0
such that the closed sub-Riemannian ball B(q,r) is compact for all 0 <r < e.

Proof. By the continuity of d, the set B(q,r) = {d(q,-) < r} is closed for all ¢ € M and r > 0.
Moreover the sub-Riemannian metric d induces the manifold topology on M. Hence, for radius small
enough, the sub-Riemannian ball is bounded. Thus small sub-Riemannian balls are compact. [
3.3 Existence of length-minimizers

In this section we want to discuss the existence of length-minimizers.

Definition 3.36. Let v : [0,7] — M be an admissible curve. We say that ~ is a length-minimizer
if it minimizes the length among admissible curves with same endpoints, i.e., £(7y) = d(v(0),(T)).
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Remark 3.37. Notice that the existence length-minimizers between two points is not guaranteed
in general, as it happens for two points in M = R?\ {0} (endowed with the Euclidean distance)
that are symmetric with respect to the origin. On the other hand, when length-minimizers exist
between two fixed points, they may not be unique, as it happens for two antipodal points on the
sphere S2.

We now show a general semicontinuity property of the length functional.

Theorem 3.38. Let 7, : [0,T] — M be a sequence of admissible curves on M such that v, — =y
uniformly on [0,T]. Then
l(y) < lini)inf L(yn)- (3.34)

If moreover liminf,, o (v,) < 400, then 7y is also admissible.

Proof. Let L := liminf,, o l(7,). If L = +oo the inequality (334)) is true, thus we can assume
L < +00 and choose a subsequence, still denoted by the same symbol, such that ¢(~,) — L.

Fix § > 0. It is not restrictive to assume that, for n large enough, ¢(7,,) < L+ 4§ and, by uniform
convergence, that the image of 7, are all contained in a common compact set K. Now we divide
the proof into two steps

(i). We first prove that statement assuming that all v, are parametrized with constant speed
on the interval [0,1]. Under this assumption we have that 4, (t) € V,, () for a.e. t, where

Vo={ful@)Jul <L+6} CT,M,  fulg) =D uifi(q).
=1

Notice that V is convex for every g € M, thanks to the linearity of f in u. Let us prove that ~ is
admissible and satisfies ¢(y) < L + §. Once this is done, since ¢ is arbitrary, this implies ¢(v) < L,

that is (3.34)).

Writing in local coordinates, we have for every ¢ > 0

1 t+e

2049 =3(0) = 2 [ fuyiOnr))dr € conv{V,, oy, € [t + €]} (335)

Next we want to estimate the right hand side of (3.35)) uniformly with respect to n. For n > ng
sufficiently large, we have |y, (t) — v(t)| < & (by uniform convergence) and an estimate similar to

B31)) gives for 7 € [t,t + €]
n(t) = (7] < / " nls)lds < Cx(L + 8)e. (3.36)

where C is the constant ([B.28)) defined by the compact K. Hence we deduce for every 7 € [t,t+ €]
and every n > ng

[ (T) = 7 (O)] < [ (t) = W(T)] + [y (t) — (1) < C, (3.37)

where C” is independent on n and e. From the estimate ([8.37) and the equivalence of the manifold
and metric topology we have that, for all 7 € [t, + €] and n > ng, V(7)) € By (re), with 7. — 0
when € — 0. In particular

conv{V,, (), T € [t,t + €]} Cconv{Vy, q¢ € Byy)(re)} (3.38)

81



Plugging (338) in (335 and passing to the limit for n — oo we get finally to

Z(2(t+€) = 1(8)) € conv{Vy, € By (o)} (339)

Assume now that ¢ € [0, 1] is a differentiability point of v. Then the limit of the left hand side in
[B.39) for e — 0 exists and gives ¥(t) € conv V ;) = V (). For every differentiability point ¢ we
can thus define the unique u*(t) satisfying 4(t) = f(v(t),u*(t)) and |u*(t)| = ||¥(¢)||. Using the
argument contained in Appendix it follows that w*(¢) is measurable in ¢t. Moreover |u*(t)] is
essentially bounded since, by construction, |u*(t)| < L+ ¢ for a.e. t € [0,T]. Hence 7 is admissible.
Moreover £(y) < L + § since +y is defined on the interval [0, 1].

(ii)) When =, : [0,7] — M is an arbitrary sequence converging uniformly to -, let us consider
the family 7, : [0,1] — M such that 7, is parametrized by constant speed on [0,1] (cf. Lemma

B.I5). In particular

_ 1 v
= Teoen enl) = g [ hun(e)lds

To prove the statement it is enough to prove that 7, — ¥ where 7 is some reparametrization of 7,
since length is invariant by reparametrization. Reasoning as in the proof of part (i) one gets

’%n(sl) - %(80)\ < CK(L + 5)’31 - 30‘

then we can apply the Ascoli-Arzela theorem on the reparametrized sequence and we get that a sub-
sequence is uniformly convergent to a curve, that is necessarily a curve v whose +y is a reparametriza-
tion. U

Corollary 3.39. Let v, be a sequence of length-minimizers on M such that v, — v uniformly.
Then v is a length-minimizer.

Proof. Since the length is invariant under reparametrization, it is not restrictive to assume that
all curves 7, and ~ are parametrized on [0,1]. Since 7, is a length-minimizer one has ¢(~v,) =
d(vn(0),v,(1)). By uniform convergence =, (t) — ~(t) for every t € [0,1] and, by continuity of the
distance and semicontinuity of the length

() < lim inf £(y,) = lim inf d(3,(0), 7 (1)) = d(3(0), (1)),

n—oo

that implies that ¢(y) = d(v(0),~v(1)), i.e., v is a length-minimizer. O

The semicontinuity of the length implies the existence of minimizers, under a natural compact-
ness assumption on the space.

Theorem 3.40 (Existence of minimizers). Let M be a sub-Riemannian manifold and qo € M.
Assume that the ball By, (r) is compact, for some r > 0. Then for all ¢ € By, (r) there exists a
length minimizer joining qo and q1, i.e., we have

d(qo,q1) = min{l(7) |y : [0,7] — M admissible,(0) = qo,v(T) = q1}.

Proof. Fix q1 € By, (r) and consider a minimizing sequence 7, : [0,1] — M of admissible trajecto-
ries, parametrized with constant speed, joining go and ¢; and such that ¢(~,,) — d(qo,q1)-
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Since d(qo,q1) < r, we have £(~,) < r for all n > ng large enough, hence we can assume without
loss of generality that the image of ~,, is contained in the common compact K = B, (r) for all n.
In particular, the same argument leading to (3:36]) shows that for all n > ng

Y () = ()] < / [n(s)lds < Crrlt —7|, Vi, 7€0,1]. (3.40)

where C'x depends only on K. In other words, all trajectories in the sequence {7, },ecn are Lipschitz
with the same Lipschitz constant. Thus the sequence is equicontinuous and uniformly bounded.
By the classical Ascoli-Arzela Theorem there exist a subsequence of 7, which we still denote by
the same symbol, and a Lipschitz curve v : [0,7] — M such that ,, — « uniformly. By Theorem
[B38] the curve v satisfies £(y) < liminf ¢(,) = d(qo, q1), that implies ¢(v) = d(qo, q1)- O

Remark 3.41. Assume that B(q,rg) is compact for some rg > 0. Then for every 0 < r < 7 we
have that B(q,r) is compact also, being a closed subset of a compact set B(q, ro).
Combining Theorem [B.40] and Corollary 3.35] one gets the following corollary.

Corollary 3.42. Let qo € M. There exists € > 0 such that for every q1 € By, (c) there exists a
minimizing curve joining qo and q1.

3.3.1 On the completeness of the sub-Riemannian distance

We provide here a characterization of metric completeness of a sub-Riemannian space. We start
by proving a preliminary lemma.

Lemma 3.43. Let M be a sub-Riemannian manifold. For every e >0 and x € M we have

Blz,r+e)= |J B(,e). (3.41)
yEB(z,r)

Proof. The inclusion D is a direct consequence of the triangle inequality.

Let us prove the inclusion C. Fix y € B(x,r + ¢) \ B(z,e). Then there exists a length-
parameterized curve 7y connecting x with y such that ¢(y) =t + e where 0 <t < r. Let ¢’ € (t,7);
then y(t') € B(z,r) and y € B(y(t'),¢). O

Proposition 3.44. Let M be a sub-Riemannian manifold. Then the three following properties are
equivalent:

(i) (M,d) is complete,
(ii) B(z,r) is compact for every x € M and r > 0,
(iii) there exists € > 0 such that B(x,¢) is compact for every x € M.

Proof. (iii) implies (i). Let us prove that every Cauchy sequence {x,} in M is convergent. Fix
e > 0 satisfying the assumption. Since {z,} is Cauchy there exists N € N such that one has
d(xp,zm) < ¢ for all n,m > N.

In particular, by choosing m = N, for all n > N one has that z,, € B(zy,¢), that is compact
by assumption. Hence {zy, }n>n is Cauchy and admits a convergent subsequence, that implies that
the whole sequence {x,} in M is convergent.
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(ii) implies (iii). This is trivial.
(i) implies (ii). Assume now that (M,d) is complete. Fix z € M and define

A:={r>0|B(z,r) is compact }, R :=sup A. (3.42)

Since the topology of (M, d) is locally compact then A # () and R > 0. First we prove that A is
open and then we prove that R = +00. Notice in particular that this proves that A =]0, +o0[ since,
by Remark B41] r € A implies |0, r[C A.

(ii.a) It is enough to show that, if r € A, then there exists § > 0 such that r 4+ ¢ € A. For each
y € B(x,7r) there exists r(y) < ¢ small enough such that B(y,r(y)) is compact. We have

B(z,r)c |J Blyry)
yEB(z,T’)

By compactness of B(x,r) there exists a finite number of points {y;}Y, in B(z,r) such that (denote
ri = 1(yi))

N
U B yurz

Moreover, there exists § > 0 such that the set of points B(x,r+6) = {y € M |dist(y, B(z,r)) < 6},
where the equality is given by Lemma [3.43] satisfies

N
:1:7"—1—5 U (yi,7s)-

This proves that r 4+ § € A, since a finite union of compact sets is compact.

(ii.b) Assume by contradiction that R < +o0o and let us prove that B := B(z, R) is compact.
Since B is a closed set, it is enough to show that it is totally bounded, i.e. it admits an e-nett] for
every € > 0. Fix ¢ > 0 and consider an (¢/3)-net S for the ball B’ = B(z, R — ¢/3), that exists by
compactness. By Lemma [3.43] one has for every y € B that dist(y, B’) < £/3. Then it is easy to
show that

dist(y, S) < dist(y, B') +¢/3 < ¢,

that is .S is an e-net for B and B is compact.
This shows that if R < +o00, then R € A. Hence (ii.a) implies that R + 0 € A for some ¢ > 0,
contradicting the fact that R is a sup. Hence R = +o0. O

Remark 3.45. Notice that only in the “(i) implies (ii)” part of the statement we used that the
distance is sub-Riemannian. Actually the same statement, together with Lemma [B.43] remains
true in the more general context of length metric space, see [38, Ch. 2].

For the relation with geodesic completeness of the sub-Riemannian manifold, see Section

Corollary 3.46. Let (M,d) be a complete sub-Riemannian manifold. Then for every qo,q1 € M
there exists a length minimizer joining qo and q.

2an e-net S for a set B in a metric space is a finite set of points S = {zz}fil such that for every y € B one has
dist(y, S) < € (or, equivalently, for every y € B there exists ¢ such that d(y, z;) < €).
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3.3.2 Lipschitz curves with respect to d vs admissible curves

The goal of this section is to prove that continous curves that are Lipschitz with respect to sub-
Riemannian distance are exactly admissible curves.

Proposition 3.47. Let v :[0,T] — M be a continuous curve. Then v is Lipschitz with respect to
the sub-Riemannian distance if and only if v is admissible.

Proof. (i). Assume ~ is admissible and leu u be a control associated with «. By definition w is
essentially bounded. Then

d(1(1),7(5)) < ls)) < / u(r)ldr < CJt — 8|,

for some constant C' > 0. Then ~ is Lipschitz with respect to the sub-Riemannian distance.
(ii). Conversely assume that v is Lipschitz with respect to the sub-Riemannian distance, with
Lipschitz constant L > 0, meaning that

d(y(t),y(s)) < Lt —s|,  Vt,s€[0,T). (3.43)

Repeating arguments contained in the proof of Lemma [3:34] we have that for a compact neighbor-
hood K C M of ~([0,T]) there exists Cx > 0 such that

y(#) = ()] < Crd(y(t),7(s)), (3.44)

for every t, s close enough, where |- | denotes the Euclidean norm in coordinates. Combining (3:43])
and ([B:44]) it follows that + is Lipschitz in charts and ~ is differentiable almost everywhere by
Rademacher theorem.

Let us prove that v is admissile. Consider the partition o,, = {t;,,}?_, of the interval [0, T] into
2" intervals of length T'/2", namely ¢;,, := /2" for i = 1,...,2". By compactness of small balls
and compactness of [0, 7] for n large enough there exists a minimizer joining (¢ ) and y(ti+1,n)
fori=1,...,2" — 1.

Denote by 7, the curve defined by the concatenation of minimizers joining v(t;,) and y(tit+1.)
fori=1,...,2" — 1. Thanks to (8.43]) we have the uniform bound on the length

on

271/ 27L

L

Un) =D d(y(tin), Y(tiv1n) < Lltim — tivim] < o <L (3.45)
=1 i=1 i=1

Moreover, by construction, -y, converge uniformly to v when n — oo. By Theorem B.38 v is
admissible and ¢(y) < L. O

Exercise 3.48. Let v : [0,7] — M be an admissible curve. For every ¢ € [0,7] let us define,

whenever it exists, the limit
_d(y(t+¢),7(t))
vy(t) == glir(l] ] .

(3.46)

(i) Prove that v,(t) exist for a.e. ¢ € [0,7].

(i) Prove that v (t) = ||§(t)|| = |u*(t)| for a.e. t € [0,T7.
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Hint: fix a dense set {zp nen in ¥([0,7]). Consider the functions ¢, (t) = d(y(t),z,). Prove that
¢y, is Lipschitz for every n and vy (t) = sup,, |¢n(t)| for a.e t € [0,T].

Exercise 3.49. Let 7 : [0,7] — M be an admissible curve. Prove that
((~) = sup {Z dy(t), Y (ti1)) 1 0=ty < t1 < ... <tp_y <ty = T} . (3.47)
i=1

3.3.3 Continuity of d with respect to the sub-Riemannian structure

In this section, for m € N we define the space S, of free and complete sub-Riemannian structures
f:R™x M — TM of rank m.

The space S, is naturally endowed with the C%-topology as follows: embed M into RY, for
some N € N, thanks to Whitney theorem. Given f, f': R™ x M — TM, and K C M compact, we
define

£ = fllo,x = sup{|f'(¢,v) — f(g,v)| : g € K, o] <1}

The family of seminorms || - ||o,x induces a topology on S,, with countable local bases of neigh-
borhood as follows: take an increasing family of compact sets {K, }nen invading M, ie., K, C
K11 C M for every n € N and M = UpenKay.

For every f € S,,, a countable local base of neighborhood of f is given by

1
Uf,n = {f/ c Sm : Hf/ — f”07Kn < E} s n € N. (348)

Exercise 3.50. (i) Prove that (8.48)) defines a basis for a topology. (ii) Prove that this topology
does not depend on the immersion of M into RY.

For f € S,,, we denote by d the sub-Riemannian distance on M associated with f.

Theorem 3.51. Let qo,q1 € M. The function disty, 4, : Sm — R defined by f — ds(qo,q1) is
continuous in the C° topology.

Proof. Let us prove separately the lower and the upper semi-continuity.

(i). Fix f € Sy, and 0 < 7 < df(qo,q1). To prove lower semi-continuity we show that there exist
e > 0 such that r < dy(qo,q1) for any sub-Riemannian structure f’ with || f’ — fllo.x < ¢ for a
suitable choice of K.

Let By, (r) be the ball of radius  and centered at gg, with respect to the sub-Riemannian
structure defined by f. By completeness, this is a precompact set and by construction we have
q1 ¢ By, (7). Let O D By, (r) be an open neighbourhood of this ball in M such that ¢; ¢ O. To
prove the claim it is sufficient to show that for ¢ small enough the ball By (r) of radius r and
centered at gg defined by the sub-Riemannian structure f’ is also contained in O.

Given u € L*([0,1];R™), let us denote by v¢(t;u) the solution of the equation ¢ = f(q,u) with
initial condition ¢(0) = go. Let K be a compact containing O and let a : M — R be a smooth
cut-off function with compact support on K, satisfying 0 < a < 1 and a|p = 1. By compactness,
there exists C' > 0 such that

la(d) f(d',v) —a(q)f(q,v)| <C|d —ql, Vg, € M, |v]| <1 (3.49)
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Given f': R™ x M — T M a complete sub-Riemannian structure, we set:

Ou(t) := [Vap (t;u) — Yar (t;w)|.

Combining the definition of §,(¢) and (3.49]) one gets

t t
5ult) < c/au(s) ds + [laf — af\|0,K/|u(s)|ds, 0<t<1. (3.50)
0 0

Using that ||af' —af|lo.x < ||f'— fllo,x and the Gronwall lemma, the inequality (3.50]) implies that
for any sub-Riemannian structure f’ with || f" — fllo.x <€

8u(t) < €l = flloxllulloe < eeful o0

Choosing € small enough we have that v,z (t; u) belongs to O for every control u such that |ju| g~ <
r. In particular, since a = 1 on O, we have v,/ (t;u) = vy (t;u) for every ¢t € [0,1] and the ball
By, (r) C O, as claimed.

(ii). The upper semi-continuity is valid even without completeness of the sub-Riemannian struc-
tures. Fix 7 > df(qo,q1) and let us show that r > d(qo,q1) for any sub-Riemannian structure f’
that is C%-close to f.

Fix v € L*([0,1];R™) such that v¢(1;u) = g1, with |Jul|p~ = 7’ < r. Notice that |u|p: <
||u||pee. Consider the local diffeomorphism (here, as usual, n = dim M) and

~

P (81,00, 8n) e oo eTSnin o etnfin oo el (qp),

constructed as in the proof of the Chow—Rashevskii theorem, associated to the base point ¢; and
defined for |s| < e. Fix € > 0 small enough so that length of all admissible curves involved in the
construction is smaller then r — 7.

Moreover, if f’is C-close to f, then the map

—~

O (81, 8n) e ho.oe il oetnlin 0.0 (v (1))

is uniformly close to zﬁ The map 1[/ is a map that is C? close to a local diffeomorphism, hence its
image contains the point g1, as a consequence of Lemma [3.52] This implies that we can connect gg
with ¢; by an admissible curve of the structure f’ that is shorter than r. O

In the next lemma we use the notation B(0,7) = {z € R" | |z| < r}.

Lemma 3.52. Let F': R™ — R" be a continous map such that F(x) = x+ G(x), with G continuous
and ||Gllo < e. Then the image of F' contains the ball B(0,¢).

Proof. Fix y € B(0,¢) and let us prove that there exists  such that F(z) = 2 4+ G(z) = y. This is
equivalent to prove that there exists x € R™ such that = = y — G(x), i.e., the map ® : R" — R"
with ®(z) = y — G(x) has a fixed point. But ® is continuous and ®(B(0,2¢)) C B(0, 2¢) so, from
the Brower fixed point theorem, it has a fixed point. O
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3.4 Pontryagin extremals

In this section we want to give necessary conditions to characterize length-minimizer trajectories.
To begin with, we would like to motivate our Hamiltonian approach that we develop in the sequel.

In classical Riemannian geometry length-minimizer trajectories satisfy a necessary condition
given by a second order differential equation in M, which can be reduced to a first-order differential
equation in T'M. Hence the set of all length-minimizers is contained in the set of extremals, i.e.,
trajectories that satisfy the necessary condition, that are be parametrized by initial position and
velocity.

In our setting (which includes Riemannian and sub-Riemannian geometry) we cannot use the
initial velocity to parametrize length-minimizer trajectories. This can be easily understood by a
dimensional argument. If the rank of the sub-Riemannian structure is smaller than the dimension
of the manifold, the initial velocity 4/(0) of an admissible curve v(t) starting from ¢g, belongs to the
proper subspace Dy, of the tangent space T, M. Hence the set of admissible velocities form a set
whose dimension is smaller than the dimension of M, even if, by the Chow and Filippov theorems,
length-minimizer trajectories starting from a point gy cover a full neighborhood of ¢q.

The right approach is to parametrize length-minimizers by their initial point and an initial
covector Ao € Ty M, which can be thought as the linear form annihilating the “front”, i.e., the set
{740 (€) | 7go 1s a length-minimizer starting from go} on the corresponding length-minimizer trajec-
tory for € — 0.

The next theorem gives the necessary condition satisfied by length-minimizers in sub-Riemannian
geometry. Curves satisfying this condition are called Pontryagin extremals. The proof the following
theorem is given in the next section.

Theorem 3.53 (Characterization of Pontryagin extremals). Let v : [0,T] — M be an admissible
curve which is a length-minimizer, parametrized by constant speed. Let u(-) be the corresponding
minimal control, i.e., for a.e. t € [0,T]

m T
J(t) =D wWOf(v(1), () :/0 [a(t)]dt = d(v(0),~(T)),

i=1

with [u(t)| constant a.e. on [0,T]. Denote with Py, the ﬂouﬁ of the nonautonomous vector field
Jawy = Zle u;(t) fi- Then there exists Ao € T;(O)M such that defining

A(t) == (Po)* Mo A(t) € T2y M, (3.51)
we have that one of the following conditions is satisfied:
(N) wi(t) = (A(t), fily(1)), Vi=1,....m,
(A) 0= (\(t), fi(y(2))), Vi=1,...,m.
Moreover in case (A) one has \g # 0.

Notice that, by definition, the curve A(¢) is Lipschitz continuous. Moreover the conditions (N)
and (A) are mutually exclusive, unless u(t) = 0 for a.e. ¢ € [0,T], i.e., 7y is the trivial trajectory.

3Py,¢(x) is defined for ¢t € [0, 7] and z in a neighborhood of ~(0)
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Definition 3.54. Let vy : [0,7] — M be an admissible curve with minimal control @ € L*°([0, T],R™).
Fix Ao € T7 ) M \ {0}, and define A(¢) by (B.51).

- If \(¢) satisfies () then it is called normal extremal (and ~(t) a normal extremal trajectory).

- If A(t) satisfies (A) then it is called abnormal extremal (and ~y(t) a abnormal extremal trajec-
tory).

Remark 3.55. If the sub-Riemannian structure is not Riemannian at gy, namely if

Dy, = spang {1, -, fm} # Ty M,

then the trivial trajectory, corresponding to u(t) = 0, is always normal and abnormal.

Notice that even a nontrivial admissible trajectory v can be both normal and abnormal, since
there may exist two different lifts A(¢), N'(¢) € T3 ;yM, such that A(t) satisfies (IV) and N (¢) satisfies
(A).

Remark 3.56. In the Riemannian case there are no abnormal extremals. Indeed, since the map f
is fiberwise surjective, we can always find m vector fields fi,..., fi, on M such that

Spanqo{fla e 7fm} = Tq0M7
and (A) would imply that (\g,v) = 0, for all v € T, M, that gives the contradiction Ag = 0.

Exercise 3.57. Prove that condition (N) of Theorem B.51] implies that the minimal control w(t)
is smooth. In particular normal extremals are smooth.

At this level it seems not obvious how to use Theorem [B.53] to find the explicit expression of
extremals for a given problem. In the next chapter we provide another formulation of Theorem
[B.53] which gives Pontryagin extremals as solutions of a Hamiltonian system.

The rest of this section is devoted to the proof of Theorem B.53l

3.4.1 The energy functional

Let v : [0,7] — M be an admissible curve. We define the energy functional J on the space of
Lipschitz curves on M as follows

T
10 =3 [ P

Notice that J(v) < 400 for every admissible curve 7.

Remark 3.58. While ¢ is invariant by reparametrization (see Remark B.I4), J is not. Indeed
consider, for every o > 0, the reparametrized curve

Yo : [0,T/a] = M, Ya(t) = y(at).

Using that 4, (t) = a¥(at), we have

1 T/« ‘ ) 1 T/« - )
T =5 [ e@lFa =5 [ a?tan i = a 1),

Thus, if the final time is not fixed, the infimum of J, among admissible curves joining two fixed
points, is always zero.
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The following lemma relates minimizers of J with fixed final time with minimizers of /.

Lemma 3.59. Fiz T' > 0 and let €y, 4, be the set of admissible curves joining qo,q1 € M. An
admissible curve v : [0,T] — M is a minimizer of J on Qg 4, if and only if it is a minimizer of ¢
on Qqy.q. and has constant speed.

Proof. Applying the Cauchy-Schwarz inequality

<ATf@M@MQQEaATﬂﬂ%h[fgaFﬁ, 552

with f(t) = ||¥(¢)| and g(t) = 1 we get
0(y)* < 2J(y)T. (3.53)

Moreover in ([3.52]) equality holds if and only if f is proportional to g, i.e., ||¥(¢)|| = const. in (B53).
Since, by Lemma B.I5], every curve is a Lipschitz reparametrization of a length-parametrized one,

the minima of J are attained at admissible curves with constant speed, and the statement follows.
O

3.4.2 Proof of Theorem [3.53

By Lemma [3.59] we can assume that 7 is a minimizer of the functional J among admissible curves
joining go = v(0) and ¢; = y(7T') in fixed time T' > 0. In particular, if we define the functional

~ 1 (T

T()) =5 [ lut)Pa, (354)
0

on the space of controls u(-) € L>°([0,T],R™), the minimal control () of + is a minimizer for the

energy functional J

J(@(-)) < J(u(-)), VueL=([0,T],R™),
where trajectories corresponding to u(:) join go,q1 € M. In the following we denote the functional
J by J.
Consider now a variation u(-) = u(-) +v(+) of the control u(-), and its associated trajectory q(t),
solution of the equation

q(t) = fuw(a(®),  4¢(0) = g, (3.55)

Recall that Py denotes the local flow associated with the optimal control @(-) and that (t) =
Po+(qo) is the optimal admissible curve. We stress that in general, for ¢ different from g, the curve
t — Py +(q) is not optimal. Let us introduce the curve z(t) defined by the identity

q(t) = Pou(x(t))- (3.56)

In other words z(t) = Pftl (q(t)) is obtained by applying the inverse of the flow of @(+) to the solution
associated with the new control u(-) (see Figure B.5]). Notice that if v(-) = 0, then x(t) = qo.
The next step is to write the ODE satisfied by x(t). Differentiating (B.50) we get

q(t) = faw(a(t) + (Po.0)«( (1)) (3.57)
= faw (Po.s(2(t))) + (Fo,0)«(£(t)) (3.58)
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Figure 3.5: The trajectories ¢(t), associated with u(-) =@(-) 4+ v(-), and the corresponding x(t).

and using that ¢(t) = fyu@)(q(t)) = fu@)(FPo(2(t))) we can invert (3.58]) with respect to #(t) and
rewrite it as follows

B(t) = (P )e [((fuqe) — faw) (Pog((t)))]
= (B Uutey — Frtw >} (2(1))
= —(PO_t )« fu(t —u(t

= |(r;, )nah<» (8.59)
= (P, 1) fory we finally obtain by ([B.59) the

If we define the nonautonomous vector field g’ o(t)
following Cauchy problem for z(t)

#(t) = gy (1),  2(0) = qo. (3.60)

Notice that the vector field ¢! is linear with respect to v, since f,, is linear with respect to u. Now
we fix the control v(t) and consider the map

J(T@ + sv)

seRe <x(T;U+sv)

)E}RXM

where x(T;u + sv) denote the solution at time T of (B.60]), starting from gy, corresponding to
control u(-) + sv(+), and J(u + sv) is the associated cost.

Lemma 3.60. There exists A € (R ® Ty, M)*, with A # 0, such that for all v € L ([0, T],R™)
<5\’ <8J(u&—: sv) 0z(T;u + sv) _0>> o (3.61)

s=0 ds
Proof of Lemma [F.60. We argue by contradiction: assume that (3.61]) is not true, then there exist
v, - .., Uy € L([0,T],R™) such that the vectors in R & T, M

0J(u + sv) 0J (@ + svy)
0s s=0 Os s=0
.. 3.62
9z(T;u + svp) ’ " 0x(T;u + svy,) (3:62)
0s s=0 Os s=0
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are linearly independent. Let us then consider the map

T+ 2o sivi) ) . (3.63)

d:R"™ 5 Rx M, B(sg,...,5,) = B
o(Tiu+ Y0 Sivi)

By differentiability properties of solution of smooth ODEs with respect to parameters, the map
(B:63)) is smooth in a neighborhood of s = 0. Moreover, since the vectors ([8.62)) are the components
of the differential of ® and they are independent, then the inverse function theorem implies that ®
is a local diffeomorphism sending a neighborhood of s = 0 in R™*! in a neighborhood of (J(w), qo)
in R x M. As a result we can find v(-) = ), s;v;(-) such that (see also Figure 3.4.2))

z(T;u + v) = qo, J(@ +v) < J(@).
In other words the curve ¢ — q(t; @ + v) joins ¢(0;u + v) = qo to
J
7

x(T,w)

q(T5w+v) = Por(z(Tiu+v)) = Por(qo) = a1,
with a cost smaller that the cost of v(t) = ¢(¢; ), which is a contradiction O

Remark 3.61. Notice that if E\ satisfies (B.61]), then for every a € R, with a # 0, a\ satisfies ([B.61])
too. Thus we can normalize A to be (=1, o) or (0, Ag), with Ag € Ty M, and Ag # 0 in the second
case (since A is not zero).

Condition (B.61) implies that there exists Ao € T;; M such that one of the following identities
is satisfied for all v € L*°([0,T],R™):

0J(u + sv) B 0x(T;u + sv)
0s s=0 N <)\0, 0s s=0/" (364)
B Ox(T;u + sv)
0= <)\0, as s:0> . (3.65)

with A\g # 0 in the second case (cf. Remark B.61]). To end the proof we have to show that identities
(B64) and ([B.65]) are equivalent to conditions (N) and (A) of Theorem [3.53] Let us show that

OJ(u + sv) / Z W(£)oi (1) dt, (3.66)
8:1:(T;6U8+ sv) B :/0 gy (o)t = / D) fi)(qo)vs (t)dt. (3.67)



The identity ([B3.66]) follows from the definition of J
1 /7
J(@+ sv) = 3 / @+ sv|2dt. (3.68)
0

Eq. (B:67) can be proved in coordinates. Indeed by (B.60) and the linearity of g, with respect to v
we have

T
z(T;u+ sv) = qo + S/ gf)(t) (x(t;w + sv))dt,
0

and differentiating with respect to s at s = 0 one gets ([B.67).
Let us show that ([B.64)) is equivalent to (N) of Theorem B.53l Similarly, one gets that (3.65) is

equivalent to (A). Using ([B.60) and (3.67]), equation (3.64]) is rewritten as

/ Zuz vi(t)dt = / Z Mo, ((Po ) fi)(ao) ) vi(t)dt
- /0 S 0. fiG0) wlo)r, (3.69)
i=1
where we used, for every i = 1,...,m, the identities

(0, (B3 £@0) ) = (o, (B ) fi1(1))) = (P Mo, £i(v(1)) ) = (A®), £i(1(1)))

Since v;(+) € L*>([0,T],R™) are arbitrary, we get w;(t) = (A(t), fi(7(¢))) for a.e. t € [0,T].

3.5 Appendix: Measurability of the minimal control

In this appendix we prove a technical lemma about measurability of solutions to a class of mini-
mization problems. This lemma when specified to the sub-Riemannian context, implies that the
minimal control associated with an admissible curve is measurable.

3.5.1 Main lemma

Let us fix an interval I = [a,b] C R and a compact set U C R™. Consider two functions g : I xU —
R™ v : I — R" such that

(M1) g(-,u) is measurable in ¢ for every fixed u € U,

(M2) g¢(t,-) is continuous in u for every fixed t € I,

(M3) v(t) is measurable with respect to .

Moreover we assume that

(M4) for every fixed t € I, the problem min{|u| : g(t,u) = v(t),u € U} has a unique solution.

Let us denote by u*(t) the solution of (M4) for a fixed ¢ € I.
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Lemma 3.62. Under assumptions (M1)-(M}), the function t — |u*(t)| is measurable on I.

Proof. Denote ¢(t) := |u*(t)|. To prove the lemma we show that for every fixed r > 0 the set
A={tel:p(t)<r}
is measurable in R. By our assumptions
A={tel:3ueUst |[u <rg(t,u) =v(t)}

Let us fix r > 0 and a countable dense set {u;};cn in the ball of radius r in U. Let show that

A=) A=) U 4in (3.70)

neN neN €N
=A,

where
Aip={tel:|g(t,u)—v(t) <1/n}

Notice that the set A; , is measurable by construction and if (I7I2]) is true, A is also measurable.

C inclusion. Let t € A. This means that there exists @ € U such that |u| < r and g(t,u) = v(t).
Since g is continuous with respect to u and {u; };en is a dense, for each n we can find u;, such that
lg(t,u;, ) —v(t)| < 1/n, that is t € A, for all n.

D inclusion. Assume ¢ € (), .y An. Then for every n there exists i, such that the corresponding
w;, satisfies |g(t,u;,) — v(t)] < 1/n. From the sequence w;,, by compactness, it is possible to
extract a convergent susequence u;, — @. By continuity of g with respect to u one easily gets that
g(t,u) =v(t). That is t € A. O

Next we exploit the fact that the scalar function (t) := |u*(t)| is measurable to show that the
vector function u*(¢) is measurable.

Lemma 3.63. Under assumptions (M1)-(M4), the vector function t — u*(t) is measurable on I.

Proof. Tt is sufficient to prove that, for every closed ball O in R™ the set
B:={tel:u"(t) € O}
is measurable. Since the minimum in (M4) is uniquely determined, this set is equal to
B={tel:3uecO st |ul=p),q(t,u) =uv(t)}.

Let us fix the ball O and a countable dense set {u;};eny in O. Let show that

B=()Bn=() Bim (3.71)

neN neN ieN
———
=B,

where
Bip:={tel: |u| <o(t)+1/n,|g(t,u)—v(t)] <1/n;}
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Notice that the set B;,, is measurable by construction and if ([B7I]) is true, B is also measurable.

C inclusion. Let ¢ € B. This means that there exists « € O such that |u| = ¢(t) and
g(t,u) = v(t). Since g is continuous with respect to u and {u; }ien is a dense in O, for each n we
can find wu;, such that |g(¢,u;, ) —v(t)| < 1/n and |u;, | < ¢(t) + 1/n, that is t € B, for all n.

D inclusion. Assume t € (), oy Bn. Then for every n it is possible to find i, such that the
corresponding w;,, satisfies |g(¢,u;,) — v(t)| < 1/n and |u;,| < ¢(t) + 1/n. From the sequence u;,,
by compactness of the closed ball O, it is possible to extract a convergent susequence w;, — @. By
continuity of f in u one easily gets that g(¢t,u) = v(t). Moreover |u| < ¢(t). Hence |u| = ¢(t).
That is t € B. O

3.5.2 Proof of Lemma [3.11]

Consider an admissible curve 7 : [0,7] — M. Since measurability is a local property it is not
restrictive to assume M = R™. Moreover, by Lemma BI85, we can assume that + is length-
parametrized so that its minimal control belong to the compact set U = {|u| < 1}. Define g :
[0,7] x U — R™ and v : [0,7] — R™ by

g(t,u) = f(’Y(t%u)v U(t) = ’Y(t)

Assumptions (M1)-(M4) are satisfied. Indeed (M1)-(M3) follow from the fact that g(¢,u) is linear
with respect to u and measurable in ¢t. Moreover (M4) is also satisfied by linearity with respect to
u of f. Applying Lemma [3.63] one gets that the minimal control u*(¢) is measurable in ¢.

3.6 Appendix: Lipschitz vs absolutely continuous admissible curves

In these lecture notes sub-Riemannian geometry is developed in the framework of Lipschitz admissi-
ble curves (that correspond to the choice of L* controls). However, the theory can be equivalently
developed in the framework of H' admissible curves (corresponding to L? controls) or in the frame-
work of absolutely continuous admissible curves (corresponding to L' controls).

Definition 3.64. An absolutely continuous curve « : [0,7] — M is said to be AC-admissible if
there exists an L' function u : t € [0,7] — u(t) € U, such that §(t) = f(v(t),u(t)), for a.e.
t € [0, 7). We define H'-admissible curves similarly.

Being the set of absolutely continuous curve bigger than the set of Lipschitz ones, one could
expect that the sub-Riemannian distance between two points is smaller when computed among all
absolutely continuous admissible curves. However this is not the case thanks to the invariance by
reparametrization. Indeed Lemmas B.I4] and can be rewritten in the absolutely continuous
framework in the following form.

Lemma 3.65. The length of an AC-admissible curve is invariant by AC reparametrization.

Lemma 3.66. Any AC-admissible curve of positive length is a AC reparametrization of a length-
parametrized admissible one.
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The proof of Lemma differs from the one of Lemma 314 only by the fact that, if u* € L!
is the minimal control of v then (u* o ¢)¢ is the minimal control associated with v o . Moreover
(u* o @) € L', using the monotonicity of . Under these assumptions the change of variables
formula (B.16]) still holds.

The proof of Lemma [3.66] is unchanged. Notice that the statement of Exercise remains true
if we replace Lipschitz with absolutely continuous. We stress that the curve « built in the proof is
Lipschitz (since it is length-parametrized).

As a consequence of these results, if we define

dac(qo, q1) = inf{(y) [~ : [0,T] = M AC-admissible, ¥(0) = qo, ¥(T) = a1}, (3.72)
we have the following proposition.

Proposition 3.67. dac(qo,q1) = d(qo, q1)

Since L%([0,T]) < L'([0,T]), Lemmas [3.65] and Proposition B.67] are valid also in the
framework of admissible curves associated with L2 controls.
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Chapter 4

Characterization and local minimality
of Pontryagin extremals

This chapter is devoted to the study of geometric properties of Pontryagin extremals. To this
purpose we first rewrite Theorem B.53] in a more geometric setting, which permits to write a
differential equation in T*M satisfied by Pontryagin extremals and to show that they do not
depend on the choice of a generating family. Finally we prove that small pieces of normal extremal
trajectories are length-minimizers.

To this aim, all along this chapter we develop the language of symplectic geometry, starting by
the key concept of Poisson bracket.

4.1 Geometric characterization of Pontryagin extremals

In the previous chapter we proved that if v : [0,7] — M is a length minimizer on a sub-Riemannian
manifold, associated with a control u(-), then there exists Ao € T;(O)M such that defining

At) = (Po ), At) € THy M, (4.1)
one of the following conditions is satisfied:
(N) wilt) = (A®), (1), Vi=1,...,m,
(A) 0= (MO, HiGE), Yi=l...om, Ao £0.
Here Py denotes the flow associated with the nonautonomous vector field fu(t) = Zfll u;(t) fi and
(Po )" : Ty M — T (M. (4.2)

is the induced flow on the cotangent space.

The goal of this section is to characterize the curve (A1l as the integral curve of a suitable
(non-autonomous) vector field on T*M. To this purpose, we start by showing that a vector field
on T*M is completely characterized by its action on functions that are affine on fibers. To fix the
ideas, we first focus on the case in which FPy; : M — M is the flow associated with an autonomous
vector field X € Vec(M), namely Py; = e'X.
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4.1.1 Lifting a vector field from M to T*M

We start by some preliminary considerations on the algebraic structure of smooth functions on
T*M. As usual 7 : T*M — M denotes the canonical projection.

Functions in C*°(M) are in a one-to-one correspondence with functions in C°° (7% M) that are
constant on fibers via the map a — 7m*a = a ox. In other words we have the isomorphism of
algebras

C®(M) =~ CX(T*M) = {r*a|a € C®(M)} C C°(T*M). (4.3)

In what follows, with abuse of notation, we often identify the function 7*a € C°°(T*M) with the
function a € C*°(M).

In a similar way smooth vector fields on M are in a one-to-one correspondence with smooth
functions in C°°(T*M) that are linear on fibers via the map Y — ay, where ay(\) := (A, Y (q))
and g = 7(A).

Vec(M) ~ Ceo(T*M) = {ay | Y € Vec(M)} C C°(T*M). (4.4)

Notice that this is an isomorphism as modules over C*°(M). Indeed, as Vec(M) is a module over
C>®(M), we have that Cgs(T*M) is a module over C*(M) as well. For any o € C*°(M) and
ax € Cpo(T*M) their product is defined as aax = (7*a)ax = aax € CRL(T*M).

Definition 4.1. We say that a function a € C°°(T* M) is affine on fibers if there exist two functions
a € CH(T*M) and ax € CgL(T*M) such that a = a4+ ax. In other words

a(A) = alg) + (X X(q)),  qa=7().

We denote by Cgi(1™ M) the set of affine function on fibers.

Remark 4.2. Linear and affine functions on T*M are particularly important since they reflects the
linear structure of the cotangent bundle. In particular every vector field on T*M, as a derivation
of C*°(T*M), is completely characterized by its action on affine functions,

Indeed for a vector field V' € Vec(T*M) and f € C°°(T*M), one has that

VHW =G| 0= hf VO, AeTM (4.5)

which depends only on the differential of f at the point A. Hence, for each fixed A\ € T*M,
to compute (LE) one can replace the function f with any affine function whose differential at A
coincide with dy f. Notice that such a function is not unique.

Let us now consider the infinitesimal generator of the flow (7 1) = (e7*X)*. Since it satisfies
the group law

(e—tX)* ° (e—sX)* _ (e—(t-i—s)X)* Vt, s €R,

by Lemma its infinitesimal generator is an autonomous vector field Vx on T*M. In other
words we have (e*X)* = e!VX for all t.

Let us then compute the right hand side of (43 when V = Vx and f is either a function
constant on fibers or a function linear on fibers.
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The action of Vx on functions that are constant on fibers, of the form g o7 with 8 € C*(M),
coincides with the action of X. Indeed we have for all A € T*M

N fom((e X)) = 2

=0 dt

s B (@) = (XB)@. = (). (4.6

t=0

For what concerns the action of Vx on functions that are linear on fibers, of the form ay(\) =
(\,Y(q)), we have for all A\ € T*M

i a e—tX *\ :i X A
gt N =g (AT )
:% (A (e5Y)(9) = (A [X,Y](9) (4.7)
t=0
:CL[Xy]()\).

Hence, by linearity, one gets that the action of Vx on functions of C;‘%(T *M) is given by
Vx(B+ay)=XB+axy) (4.8)

As explained in Remark £.2] formula (4.8]) characterizes completely the generator Vx of ( Otl)*.
To find its explicit form we introduce the notion of Poisson bracket.

4.1.2 The Poisson bracket

The purpose of this section is to introduce an operation {-,-} on C°°(T*M), called Poisson bracket.
First we introduce it in Cgy (T M), where it reflects the Lie bracket of vector fields in Vec(A), seen

as elements of Cg;(T*M). Then it is uniquely extended to Cgg(T*M) and C*°(T* M) by requiring

that it is a derivation of the algebra C°°(T* M) in each argument.
More precisely we start by the following definition.

Definition 4.3. Let ax,ay € C,(T*M) be associated with vector fields X,Y € Vec(M). Their
Poisson bracket is defined by

{ax,ay} = aixy), (4.9)

where ajx y) is the function in Cg5 (T M) associated with the vector field [X,Y].

lin

Remark 4.4. Recall that the Lie bracket is a bilinear, skew-symmetric map defined on Vec(M),
that satisfies the Leibnitz rule for X, Y € Vec(M):

[X,aY]=a[X, Y]+ (Xa)Y, Vae C®(M). (4.10)
As a consequence, the Poisson bracket is bilinear, skew-symmetric and satisfies the following relation
{ax,aay} ={ax, a0y} = ajx ov) = aaxy) + (Xa)ay, Vae C®(M). (4.11)

Notice that this relation makes sense since the product between o € Co3(T*M ) and ax € CR(T*M)

lin
belong to CgY(T*M), namely aax = aax.

Next, we extend this definition on the whole C*°(T*M).
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Proposition 4.5. There exists a unique bilinear and skew-simmetric map
{,}:C®(T*"M) x C*(T*M) — C*(T*M)
that extends [E9) on C°(T*M), and that is a derivation in each argument, i.e. it satisfies
{a,bc} ={a,b}c+ {a,c}b, Va,b,c e C(T*M). (4.12)
We call this operation the Poisson bracket on C*°(T*M).

Proof. We start by proving that, as a consequence of the requirement that {-,-} is a derivation in
each argument, it is uniquely extended to C’%‘;(T *M).

By linearity and skew-symmetry we are reduced to compute Poisson brackets of kind {ax,a}
and {a, 8}, where ax € CRY(T*M) and «, 3 € Coy(T*M). Using that aqy = aay and ([£I2) one
gets

{ax,aay} ={ax,xay}

=afax,ay} + {ax,atay. (4.13)

Comparing (&11) and (I3 one gets
{ax,a} = Xa (4.14)

Next, using (£12) and ([ZI4), one has
{aay, B} = {aay, B} = o{ay, B} + {a, B}ay (4.15)
=aYp +{«a,f}lay. (4.16)

Using again (£.I4]) one also has {aqy, S} = oY 3, hence {a, 5} = 0.
Combining the previous formulas one obtains the following expression for the Poisson bracket
between two affine functions on T* M

{ax + a,ay + B} = axy) + XB - Ya. (4.17)

From the explicit formula (4.I7) it is easy to see that the Poisson bracket computed at a fixed
A € T*M depends only on the differential of the two functions ax + a and ay + 3 at A.

Next we extend this definition to C°°(T*M) in such a way that it is still a derivation. For
frg € C®°(T*M) we define

{f:a}x = {agx agata (4.18)

where af ) and a, ) are two functions in C’%‘;(T*M) such that dy f = dx(as) and dyg = dx(ag ).

Remark 4.6. The definition [.I8) is well posed, since if we take two different affine functions ay »
and a’y , their difference satisfy dy(asx —a’;\) = da(ayx) — dx(a),) = 0, hence by bilinearity of
the Poisson bracket

{agx, agatin = {afr agatln

Let us now compute the coordinate expression of the Poisson bracket. In canonical coordinates
(p,x) in T*M, if

- 0 - 0

)
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we have
n n
z) =Y pXi(x), ay(p,z) =) pYi(a)
i=1 =1
and, denoting f = ax + @, g = ay + 3 we have

{f.9} :a[XY] +XB-Ya
- ZPJ < za—Y, Y;'an> —l—X,-% _}/;8_04

byt Ox; Op; Op;
oy, o8 0X;, oa
= X; -Y; .
z;l ( 3Pi> <p] Ox; * 5Pi>
Z af dg f 9g

8]9@ 0x; 85171 apz

From these computations we get the formula for Poisson brackets of two functions a,b € C*°(T* M)

da Ob  Oa 0b s

The explicit formula (£.I9) shows that the extension of the Poisson bracket to C°° (T M) is still a
derivation. O

Remark 4.7. We stress that the value {a,b}|) at a point A € T*M depends only on dya and dyb.
Hence the Poisson bracket computed at the point A € T*M can be seen as a skew-symmetric and
nondegenerate bilinear form

{ I :TX(T*M) x TX(T*M) — R.
Exercise 4.8. Let f = (fi,...,fx) : T"M — RF, g : T*M — R and ¢ : R* — R be smooth
functions. Denote by ¢ := @ o f. Prove that

k
fora} =3 S—Jf{fi,g}. (4.20)
i=1 7t

4.1.3 Hamiltonian vector fields

By construction, the linear operator defined by
a:C®(T*M)— C>®(T*"M) a(b) :=={a,b} (4.21)
is a derivation of the algebra C'*°(T™M), therefore can be identified with an element of Vec(T*M).

Definition 4.9. The vector field @ on T*M defined by (£2]]) is called the Hamiltonian vector field
associated with the smooth function a € C*(T*M).
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From (ATI9) we can easily write the coordinate expression of @ for any arbitrary function a €
C®(T*M)
0

- Z opi axl 8:EZ op;i’ (122

The following proposition gives the explicit form of the vector field V on T* M generating the flow
(Pos )"

Proposition 4.10. Let X € Vec(M) be complete and let Pyt = e!X . The flow on T*M defined by
(Poftl)* = (e7¥)* is generated by the Hamiltonian vector field dx, where ax(\) = (X, X(q)) and
qg=m(N).

Proof. To prove that the generator V of (PO_’tl)* coincides with the vector field dx it is sufficient to
show that their action is the same. Indeed, by definition of Hamiltonian vector field, we have

ix(a) ={ax,a} = Xa
ix(ay) = {ax,ay} = a;xy).
Hence this action coincides with the action of V as in (A6l and (&.17). O

Remark 4.11. In coordinates (p, z) if the vector field X is written X = 37" | XL 52 then ax(p,x) =
>, piX; and the Hamitonian vector field dx is written as follows

DN BN} oy

Notice that the projection of dx onto M coincides with X itself, i.e., m.(dx) = X.

This construction can be extended to the case of nonautonomous vector fields.

Proposition 4.12. Let X; be a nonautonomous vector field and denote by Py, the flow of X; on
M. Then the nonautonomous vector field on T* M

Vi = a—XZ’ aXt(/\) = </\,Xt(Q)>,

is the generator of the flow (Poftl)*.

4.2 The symplectic structure

In this section we introduce the symplectic structure of T* M following the classical construction. In
subsection [4.2.1] we show that the symplectic form can be interpreted as the “dual” of the Poisson
bracket, in a suitable sense.

Definition 4.13. The tautological (or Liouville) 1-form s € A*(T*M) is defined as follows:
st A sy eIy (T*M), (sx,w) = (A, maw), VYAXeT*M, weT\(T"M),
where 7 : T*M — M denotes the canonical projection.
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The name “tautological” comes from its expression in coordinates. Recall that, given a system
of coordinates = = (z1,...,x,) on M, canonical coordinates (p,z) on T*M are coordinates for
which every element A € T*M is written as follows

i=1

For every w € T\(T*M) we have the following

- 0 0 - 0
wzzaif+ﬁia—% = W*WZZZ;&'@—%,

hence we get

(sx,w) = (A, maw) = > pifi = > pi (dwi,w) = <Zpid$z‘,w> :
i=1 i=1 i=1

In other words the coordinate expression of the Liouville form s at the point A coincides with the
one of A itself, namely

S\ = Zpidxi. (4.24)
i=1

Exercise 4.14. Let s € A'(T*M) be the tautological form. Prove that
whs = w, Vwe AY(M).
(Recall that a 1-form w is a section of T*M, i.e. a map w: M — T*M such that 7 ow = idyy).

Definition 4.15. The differential of the tautological 1-form o := ds € A?(T*M) is called the
canonical symplectic structure on T M.

By construction o is a closed 2-form on 7% M. Moreover its expression in canonical coordinates
(p, x) shows immediately that is a nondegenerate two form

n
o= dp; \d;. (4.25)
i=1
Remark 4.16 (The symplectic form in non-canonical coordinates). Given a basis of 1-forms wy, ... ,wy,

in A'(M), one can build coordinates on the fibers of T*M as follows.

Every A € T*M can be written uniquely as A = > | hjw;. Thus h; become coordinates on the
fibers. Notice that these coordinates are not related to any choice of coordinates on the manifold,
as the p were. By definition, in these coordinates, we have

s = Z h;w;, oc=ds = Z dh; N\ w; + h;dw;. (4.26)
i=1 i=1

Notice that, with respect to ([4.25)) in the expression of o an extra term appears since, in general,
the 1-forms w; are not closed.
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4.2.1 The symplectic form vs the Poisson bracket

Let V be a finite dimensional vector space and V* denotes its dual (i.e. the space of linear forms
on V). By classical linear algebra arguments one has the following identifications

{ non degenerate } N {linear invertible maps} - { non degenerate } (4.27)

bilinear forms on V V - V* bilinear forms on V*

Indeed to every bilinear form B : V x V — R we can associate a linear map L : V — V* defined
by L(v) = B(v,-). On the other hand, given a linear map L : V' — V* we can associate with it
a bilinear map B : V x V — R defined by B(v,w) = (L(v),w), where (-,-) denotes as usual the
pairing between a vector space and its dual. Moreover B is non-degenerate if and only if the map
B(v,-) is an isomorphism for every v € V, that is if and only if L is invertible.

The previous argument shows how to identify a bilinear form on B on V with an invertible
linear map L from V to V*. Applying the same reasoning to the linear map L~! one obtain a
bilinear map on V*.

Exercise 4.17. (a). Let h € C(T*M). Prove that the Hamiltonian vector field h € Vec(T*M)
satisfies the following identity

o(- h(N) =dyh,  VAeT*M.

(b). Prove that, for every A € T*M the bilinear forms o) on T)\(T*M) and {-,-}» on T5(T*M) (cf.
Remark [£.7]) are dual under the identification (£.27]). In particular show that

—.

{a,b} = @(b) = (db,@) = 0(a@,b),  Va,be CX(T*M). (4.28)

Remark 4.18. Notice that o is nondegenerate, which means that the map w — o,(-,w) defines a
linear isomorphism between the vector spaces T)\(T*M) and T} (T*M). Hence h is the vector field
canonically associated by the symplectic structure with the differential dh. For this reason h is also
called symplectic gradient of h.

From formula (4.25]) we have that in canonical coordinates (p,x) the Hamiltonian vector filed
associated with A is expressed as follows

B Z oh &  oh 0
8]9@ 0x; 85171 apz

and the Hamiltonian system A = h()\) is rewritten as

i'_ah

Z_api .
_'__8h , 1=1,...,n.
pi = oz,

We conclude this section with two classical but rather important results:

Proposition 4.19. A function a € C>®°(T*M) is a constant of the motion of the Hamiltonian
system associated with h € C*°(T*M) if and only if {h,a} = 0.
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Proof. Let us consider a solution A(t) = etﬁ(/\o) of the Hamiltonian system associated with &, with
Ao € T*M. From (4.28]), we have the following formula for the derivative of the function a along
the solution

d

70 @) = {h, a}(A®))- (4.29)
It is then easy to see that {h,a} = 0 if and only if the derivative of the function a along the flow
vanishes for all ¢, that is a is constant. O

The skew-simmetry of the Poisson brackets immediately implies the following corollary.

Corollary 4.20. A function h € C*°(T*M) is a constant of the motion of the Hamiltonian system
defined by h.

4.3 Characterization of normal and abnormal extremals

Now we can rewrite Theorem [B.53] using the symplectic language developed in the last section.
Given a sub-Riemannian structure on M with generating family {f1,..., f;}, and define the
fiberwise linear functions on 7" M associated with these vector fields

hi :T*M =R, hi(\):=(\filg), i=1,....,m.

Theorem 4.21 (Hamiltonian characterization of Pontryagin extremals). Let v : [0,T] — M be
an admissible curve which is a length-minimizer, parametrized by constant speed. Let u(-) be the
corresponding minimal control. Then there exists a Lipschitz curve A(t) € T;(t)M such that

At) = Zm(t)ﬁi(/\(t)), a.e. t€0,T], (4.30)

and one of the following conditions is satisfied:
(N) hi(A1)) =T;(t), i=1,...,m, Vt,
(A) hi(\(t)) =0, i=1,...,m, Yt
Moreover in case (A) one has \(t) # 0 for all t € [0,T].

Proof. The statement is a rephrasing of Theorem B.53, obtained by combining Proposition A.10]
and Exercise 4.12] O

Notice that Theorem [4.2]] says that normal and abnormal extremals appear as solution of an
Hamiltonian system. Nevertheless, this Hamiltonian system is non autonomous and depends on
the trajectory itself by the presence of the control u(t) associated with the extremal trajectory.

Moreover, the actual formulation of Theorem F2T] for the necessary condition for optimality
still does not clarify if the extremals depend on the generating family {fi,..., f,,} for the sub-
Riemannian structure. The rest of the section is devoted to the geometric intrinsic description of
normal and abnormal extremals.
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4.3.1 Normal extremals

In this section we show that normal extremals are characterized as solutions of a smooth au-
tonomous Hamiltonian system on 7% M, where the Hamiltonian H is a function that encodes all
the informations on the sub-Riemannian structure.

Definition 4.22. Let M be a sub-Riemannian manifold. The sub-Riemannian Hamiltonian is the
function on T*M defined as follows

1

H:T*M - R,  H(\) = max (()\, fulq)) — —\uP) . qg=7(\). (4.31)
uelUy 2

Proposition 4.23. The sub-Riemannian Hamiltonian H is smooth and quadratic on fibers. More-

over, for every generating family { f1,..., fm} of the sub-Riemannian structure, the sub-Riemannian

Hamiltonian H is written as follows

[

52 N fil@)?, XNeTyM, q=m()). (4.32)
=1

Proof. In terms of a generating family {fi,..., f;n}, the sub-Riemannian Hamiltonian (£3T]) is

written as fOHOWS
max § i i — = g us . 4.33
A uER™ < i A f ) ( )

Differentiating (4.33]) with respect to wu;, one gets that the maximum in the r.h.s. is attained at
u; = (\, fi(q)), from which formula (432 follows. The fact that H is smooth and quadratic on
fibers then easily follows from (£32). O

Exercise 4.24. Prove that two equivalent sub-Riemannian structures (U, f) and (U’, f’) on a
manifold M define the same Hamiltonian.

Exercise 4.25. Consider the sub-Riemannian Hamiltonian H : T*M — R. Denote by H,
T;M — R its restriction on fiber and fix A € T;'M. The differential dyH, : T;M — R is a linear
form, hence it can be canonically identified with an element of T, M.

(i) Prove that dyH, € D, for all A € Ty M.

(ii) Prove that ||dyH,||> = 2H()).

Hint: use that, if f1,..., fi, is a generating frame, then
d\Hy =Y (), filg)) fila)-
i=1

Theorem 4.26. Every normal extremal is a solution of the Hamiltonian system A(t) = H(A(t)).
In particular, every normal extremal trajectory is smooth.
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Proof. Denoting, as usual, h;(\) = (A, fi(q)) for i = 1,...,m, the functions linear on fibers associ-
= 2h,~ﬁi (see (AI2), it follows that

w»L

ated with a generating family and using the 1dent1ty h:

(2

_EZ: Z

3

l\?)—‘

In particular, since along a normal extremal h;(\(¢)) = @;(¢) by condition (N) of Theorem [£2T],
one gets

HA®) = > hANO)s(A®) = Y wl(t)hs (A1) O
i=1 i=1

Remark 4.27. In canonical coordinates A\ = (p,x) in T*M, H is quadratic with respect to p and

1 m
5 Z p7 z
i=1
The Hamiltonian system associated with H, in these coordinates, is written as follows

. OH m
=5, = iz (p fil@) fil@)

§= =50 = =S i) . Daifa)

From here it is easy to see that if A\(¢) = (p(t),z(t)) is a solution of (4.34)) then also the rescaled
extremal a\(at) = (ap(at), z(at)) is a solution of the same Hamiltonian system, for every a > 0.

\)

(4.34)

Lemma 4.28. Let A\(t) be an integral curve of the Hamiltonian vector field H and ~(t) = w(\(t))
be the corresponding normal extremal trajectory. Then for all t € [0,T] one has

SISO = HO@).

Proof. Fix a generating frame fi,..., fi,. Since A(¢) is a solution of the Hamiltonian system we
have -
(1) =D 0, fi(r(®) fir(8) (4.35)
i=1

hence w;(t) = (A(t), fi(y(t)) defines a control for the curve ~. This control is indeed the minimal
one as it follows from Exercice and

SIAOI? = Zuz = 230 L A = HOW) (4.36)

= =1
O

Remark 4.29. Notice that from (435) it follows that if v(¢) is a normal extremal trajectory asso-
ciated with initial covector A\g € Ty M it follows that

=" (o, filao)) filgo)- (4.37)
i=1
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Corollary 4.30. A normal extremal trajectory is parametrized by constant speed. In particular it
is length parametrized if and only if its extremal lift is contained in the level set H~1(1/2).

Proof. The fact that H is constant along A(t), easily implies by (&36) that ||%(¢)||? is constant.
Moreover one easily gets that ||¥(¢)|| = 1 if and only if H(A(t)) = 1/2.

Finally, by Remark .27, all normal extremal trajectories are reparametrization of length
parametrized ones. O

Let A(t) be a normal extremal such that A\(0) = Ao € T;; M. The corresponding normal extremal
trajectory y(t) = m(A(t)) can be written in the exponential notation

(t) = 7o e (A).

By Corollary B30l length-parametrized normal extremal trajectories corresponds to the choice of
o € H71(1/2).

We end this section by characterizing normal extremal trajectory as characteristic curves of the
canonical symplectic form contained in the level sets of H.

Definition 4.31. Let M be a smooth manifold and Q@ € A¥M a 2-form. A Lipschitz curve
v :[0,T] — M is a characteristic curve for § if for almost every ¢ € [0,77] it holds

A(t) € ker Q’Y(t)’ (i.e. Qﬁ/(t) (A(t),-) =0) (4.38)
Notice that this notion is independent on the parametrization of the curve.

Proposition 4.32. Let H be the sub-Riemannian Hamiltonian and assume that ¢ > 0 is a reqular
value of H. Then a Lipschitz curve v is a characteristic curve for 0|H71(C) if and only if it is the
reparametrization of a normal extremal on H~'(c).

Proof. Recall that if ¢ is a regular value of H, then the set H~'(c) is a smooth (2n — 1)-dimensional
manifold in 7*M (notice that by Sard Theorem almost every ¢ > 0 is regular value for H).

For every A € H™!(c) let us denote by E) = TyH 1(c) its tangent space at this point. Notice
that, by construction, F) is an hyperplane (i.e., dim E)\ = 2n—1) and dAH‘EA = 0. The restriction
o|g-1(c) is computed by o)|g,, for each A € H1(c).

One one hand ker o, |g, is non trivial since the dimension of E} is odd. On the other hand the
symplectic 2-form o is nondegenerate on T*M, hence the dimension of ker o |g, cannot be greater
than one. It follows that dimker oy|g, = 1.

We are left to show that ker oy |g, = H(\). Assume that ker oxlE, = RE, for some & € T (T*M).
By construction, E) coincides with the skew-orthogonal to £, namely

B\ =& ={w e T\(T*M)) | or(& w) = 0}

Since, by skew-symmetry, o (§, &) = 0, it follows that £ € E\. Moreover, by definition of Hamilto-
nian vector field o(-, H) = dH, hence for the restriction to E) one has

ox( HN)|p, = daH|p, =0. O

Exercise 4.33. Prove that if two smooth Hamiltonians hy, ho : T*M — R define the same level
set, i.e. B ={h; =c1} = {ha = ¢z} for some c1, c2 € R, then their Hamiltonian flow hq, hy coincide
on FE, up to reparametrization.
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Exercise 4.34. The sub-Riemannian Hamiltonian H encodes all the information about the sub-
Riemannian structure.

(a) Prove that a vector v € T,M is sub-unit, i.e., it satisfies v € D, and ||v|| < 1 if and only if
1 *
§|<)\,v>|2 <H(\), VXeTIM.

(b) Show that this implies the following characterization for the sub-Riemannian Hamiltonian

1
HQ) =A%, A= sup [(\ ).
2 vEDg,|v|=1

When the structure is Riemannian, H is the “inverse” norm defined on the cotangent space.

4.3.2 Abnormal extremals

In this section we provide a geometric characterization of abnormal extremals. Even if for abnor-
mal extremals it is not possible to determine a priori their regularity, we show that they can be
characterized as characteristic curves of the symplectic form. This gives an unified point of view of
both class of extremals.

We recall that an abnormal extremal is a non zero solution of the following equations

A®) =D w®hi(A®),  hi(A®) =0, i=1,...,m.
i=1

where {f1,..., fm} is a generating family for the sub-Riemannian structure and hq,...,h,, are
the corresponding functions on T*M linear on fibers. In particular every abnormal extremal is
contained in the set

HY0)={\eT*M| (\ fi(q))=0,i=1,...,m, ¢ =71(\)}. (4.39)
where H denotes the sub-Riemannian Hamiltonian (4.32]).

Proposition 4.35. Let H be the sub-Riemannian Hamiltonian and assume that H=1(0) is a smooth
manifold. Then a Lipschitz curve v is a characteristic curve for 0|H71(0) if and only if it is the
reparametrization of a abnormal extremal on H~1(0).

Proof. In this proof we denote for simplicity N := H~1(0) € T*M. For every A € N we have the
identity
ker oy|y = TAN* = span{h;(\)|i = 1,...,m}. (4.40)

Indeed, from the definition of IV, it follows that
TN = {w S T)\(T*M) | <d>\hi, w) =0,2=1,... ,m}
= {w e T\(T*M)|o(w,hi(\) =0,i=1,...,m}
= span{h;(\) [i =1,...,m}*.

109



and ([@40) follows by taking the skew-orthogonal on both sides. Thus w € T\H ~1(0) if and only if
w is a linear combination of the vectors h;(\). This implies that A(¢) is a characteristic curve for
|10y if and only if there exists controls u;(-) for i = 1,...,m such that

At) = ui(®)hi(A()). O (4.41)
=1

Notice that 0 is never a regular value of H. Nevertheless, the following exercise shows that the
assumption of Proposition [4.35]is always satisfied in the case of a regular sub-Riemannian structure.

Exercise 4.36. Assume that the sub-Riemannian structure is regular, namely the following as-
sumption holds
dim D, = dimspan,{ fi,..., fm} = const. (4.42)

Then prove that the set H~1(0) defined by (#39)) is a smooth submanifold of 7% M.

Remark 4.37. From Proposition d.35] it follows that abnormal extremals do not depend on the
sub-Riemannian metric, but only on the distribution. Indeed the set H~1(0) is characterized as
the annihilator D+ of the distribution

HN0)={AeT*M| (\,v) =0, Vv € Dy} =D C T*M.

Here the orthogonal is meant in the duality sense.

Under the regularity assumption (£742]) we can select (at least locally) a basis of 1-forms
w1, . ..,wn for the dual of the distribution

1 .
D, = span{wi(q) |1 =1,...,m}, (4.43)

Let us complete this set of 1-forms to a basis wy, . .., w, of T*M and consider the induced coordinates
hi,...,hy, as defined in Remark[4.T6l In these coordinates the restriction of the symplectic structure
D+ to is expressed as follows

m
olpr = d(slpL) =Y dhi A w; + hidw;, (4.44)
i=1
We stress that the restriction o|p. can be written only in terms of the elements wy,...,w,, (and

not of a full basis of 1-forms) since the differential d commutes with the restriction.

4.3.3 Example: codimension one distribution and contact distributions

Let M be a n-dimensional manifold endowed with a constant rank distribution D of codimension
one, i.e., dimD, = n —1 for every ¢ € M. In this case D and D+ are sub-bundles of TM and T*M
respectively and their dimension, as smooth manifolds, are
dim D = dim M + rankD = 2n — 1,
dim D+ = dim M + rank D+ =n + 1.
Since the symplectic form o is skew-symmetric, a dimensional argument implies that for n even,

the restriction o|p1 has always a nontrivial kernel. Hence there always exist characteristic curves
of o|p1, that correspond to reparametrized abnormal extremals by Proposition [£.35]
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Let us consider in more detail the case n = 3. Assume that there exists a one form w € A*(M)
such that D = kerw (this is not restrictive for a local description). Consider a basis of one forms
wp, w1, ws such that wy := w and the coordinates hg, hi, he associated to these forms (see Remark

[4.16). By (£44)
o|lpL = dhy Aw ~+ ho dw, (4.45)

and we can easily compute (recall that D+ is 4-dimensional)
o ANolpr = 2hydho Aw A dw. (4.46)

Lemma 4.38. Let N be a smooth 2k-dimensional manifold and Q@ € A2M. Then Q is nondegen-
erate on N if and only if \FQ # ol

Definition 4.39. Let M be a three dimensional manifold. We say that a constant rank distribution
D =kerw on M of corank one is a contact distribution if w A dw # 0.

For a three dimensional manifold M endowed with a distribution D = kerw we define the
Martinet set as

M= {qgeM|(wAdw)|g =0} C M.

Corollary 4.40. Under the previous assumptions all nontrivial abnormal extremal trajectories are
contained in the Martinet set M. In particular, if the structure is contact, there are no nontrivial
abnormal extremal trajectories.

Proof. By Proposition .35 any abnormal extremal A(t) is a characteristic curve of o|p.. By Lemma
o|py is degenerate if and only if o A o|p1 = 0, which is in turn equivalent to w A dw = 0
thanks to ([@.46]) (notice that dhg and w A dw are independent since they depend on coordinates on
the fibers and on the manifold, respectively).

This shows that, if (¢) is an abnormal trajectory and A(t) is the associated abnormal extremal,
then A(t) is a characteristic curve of o|p. if and only if (w A dw)|y ) = 0, that is y(¢) € M. By
definition of 9N it follows that, if D is contact, then 9N is empty. O

Remark 4.41. Since M is three dimensional, we can write w A dw = adV where a € C*°(M) and
dV is some smooth volume form on M, i.e., a never vanishing 3-form on M.

In particular the Martinet set is 9 = a~'(0) and the distribution is contact if and only if
the function a is never vanishing. When 0 is a regular value of a, the set a=1(0) defines a two
dimensional surface on M, called the Martinet surface. Notice that this condition is satisfied for a
generic choice of the (one form defining the) distribution.

Abnormal extremal trajectories are the horizontal curves that are contained in the Martinet
surface. When 2 is smooth, the intersection of the tangent bundle to the surface 9t and the
2-dimensional distribution of admissible velocities defines, generically, a line field on 9t. Abnormal
extremal trajectories coincide with the integral curves of this line field, up to a reparametrization.

'Here A*FQ=QA...AQ.
—_———
k
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4.4 Examples

4.4.1 2D Riemannian Geometry

Let M be a 2-dimensional manifold and fi, fo € Vec(M) a local orthonormal frame for the Rieman-
nian structure. The problem of finding length-minimizers on M could be described as the optimal
control problem

q(t) = ui(t) f1(q(t)) +u2(t) f2(q(t)),

where length and energy are expressed as

T 1 T
) = [ V@, I =g [ @0+ w?) d.

Geodesics are projections of integral curves of the sub-Riemannian Hamiltonian in 7% M
1 .
H(}A) = §(hl(>\)2 +ha (N2, h(N) = (A file), i= 1,2

Since the vector fields f; and f2 are linearly independent, the functions (hq, hy) defines a system of
coordinates on fibers of 7*M. In what follows it is convenient to use (g, hi, he) as coordinates on
T*M (even if coordinates on the manifold are not necessarily fixed).

Let us start by showing that there are no abnormal extremals. Indeed if A(¢) is an abnormal
extremal and 7(t) is the associated abnormal trajectory we have

), L(v(#)) = A®), f200(1)) =0, Vi €[0,T], (4.47)

that implies that A(¢) = 0 for all ¢t € [0,7] since {f1, fo} is a basis of the tangent space at every
point. This is a contradiction since A(t) # 0 by Theorem B.53]

Suppose now that A(¢) is a normal extremal. Then u;(t) = h;(A(t)) and the equation on the
base is

4= h1f1(q) + hafa(q). (4.48)

For the equation on the fiber we have (remember that along solutions @ = {H, a})

{iu = {H,h} = —{h1, ha}hs (4.49)

ho = {H,ha} = {h1,ha}hi.
From here one can see directly that H is constant along solutions. Indeed
H = hlill + hgilQ =0.

If we require that extremals are parametrized by arclength uy(t)? + us(t)? = 1 for a.e. t € [0,T],
we have

HOW) == < BOW0)+hA0) = 1.

It is then convenient to restrict to the spherical cotangent bundle S*M (see Example 2.51]) of
coordinates (g, 0), by setting
h1 = cos@, ho = sin 6.
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Let aj, a2 € C*°(M) be such that
[f1, fo] = a1f1 + azfa. (4.50)

Since {hy,ho}(X) = (A, [f1, f2]), we have {hi,ho} = a1hy + ashe and equations (7.28]) and (4.57])
are rewritten in (6, q) coordinates

{9 = a1(q) cos 0 + a(q) sin 6 (4.51)

G = cosBf1(q) + sinffa(q)

In other words we are saying that an arc-length parametrized curve on M (i.e. a curve which
satisfies the second equation) is a geodesic if and only if it satisfies the first. Heuristically this
suggests that the quantity

0 — ai(q) cos 8 — az(q)sin,

has some relation with the geodesic curvature on M.
Let 1, pio the dual frame of f1, fo (so that dV = uj A u2) and consider the Hamiltonian field in
these coordinates

—

H = cosff +sinffo + (a1 cos 6 + ag sin 0)0y. (4.52)

The Levi-Civita connection on M is expressed by some coefficients (see Chapter 77)
w = df + by + bapa,
where b; = b;(¢). On the other hand geodesics are projections of integral curves of H so that
(w,ﬁ) =0 = by =—a1, by=—as.
In particular if we apply w = df — ajp1 — agps to a generic curve (not necessarily a geodesic)
A\ = cosOf; +sinfs + 00y,
which projects on v we find geodesic curvature
kig(7) = 6 — a1(q) cos B — az(q) sin 6,
as we infer above. To end this section we prove a useful formula for the Gaussian curvature of M

Corollary 4.42. If k denotes the Gaussian curvature of M we have

k= fi(a2) — fa(a1) — a% — a%.

Proof. From (L58]) we have dw = —kdV where dV = pq A ug is the Riemannian volume form. On
the other hand, using the following identities

dp; = —aipn A po, da; = fi(ai)p + folai)pz, i=1,2.
we can compute

dw = —day N py — dag N po — ardpy — agdps
= —(fi(a2) — folar) — af — a3)p1 A po.
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4.4.2 Isoperimetric problem
Let M be a 2-dimensional orientable Riemannian manifold and v its Riemannian volume form. Fix

a smooth one-form A € A'M and ¢ € R.

Problem 1. Fix ¢ € R and ¢g,q1 € M. Find, whenever it exists, the solution to

min {£0) 5(0) = 0.7(T) = o / a-ch. (453)

Remark 4.43. Minimizers depend only on dA, i.e., if we add an exact term to A we will find same
minima for the problem (with a different value of ¢).

Problem 1 can be reformulated as a sub-Riemannian problem on the extended manifold

M = M xR,

in the sense that solutions of the problem (53] turns to be length minimizers for a suitable
sub-Riemannian structure on M, that we are going to construct.
To every curve v on M satisfying v(0) = qo and v(T') = ¢; we can associate the function

z(t) = /V[O,t] A= /Ot A(¥(s))ds.

The curve £(t) = (y(t), 2(t)) defined on M satisfies w(£(t)) = 0 where w = dz — A is a one form on
M, since

Equivalently, £(t) € Dg) where D = kerw. We define a metric on D by defining the norm of
a vector v € D as the Riemannian norm of its projection 7,v on M, where 7 : M — M is the
canonical projection on the first factor. This endows M with a sub-Riemannian structure.

If we fix a local orthonormal frame fi, fo for M, the pair (y(t), z(t)) satisfies

<Z> = uy <<A{}1>> + ug <<A{2f2>> . (4.54)

Hence the two vector fields on M

Fi=fi+(A )0, F=fi+(4f)0.,
defines an orthonormal frame for the metric defined above on D = span(F}, F»). Problem 1 is then

equivalent to the following:

Problem 2. Fix ¢ € R and qg,q; € M. Find, whenever it exists, the solution to

min {£(€) : £(0) = (40, 0), £(T) = (a1,),(t) € Degyy } - (4.55)

Notice that, by construction, D is a distribution of constant rank (equal to 2) but is not
necessarily bracket-generating. Let us now compute normal and abnormal extremals associated
to the sub-Riemannian structure just introduced on M. In what follows we denote with h;(\) =

(A, Fi(q)) the Hamiltonians linear on fibers of T*M.
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Normal extremals

Equations of normal extremals are projections of integral curves of the sub-Riemannian Hamiltonian

in T"M )
HQ) =5 () +h30N), (V) =\ file), i=12

Let us introduce Fy = 9, and ho(\) = (A, Fy(q)). Since Fy, F» and Fj are linearly independent,
then (h1, ha, ho) defines a system of coordinates on fibers of T*M. In what follows it is convenient
to use (g, hi, he, hg) as coordinates on T*M.

For a normal extremal we have u;(t) = h;(A(¢)) for ¢ = 1,2 and the equation on the base is

£ = hFy (&) + haFa(§). (4.56)
For the equation on the fibers we have (remember that along solutions @ = {H, a})

hy = {H,h1} = —{hy, ha}hs
ho ={H, ha} = {h1,ha}hi. (4.57)
ho ={H,ho} =0

If we require that extremals are parametrized by arclength we can restrict to the cylinder of the
cotangent bundle T*M defined by

h1 = cos@, ho = sin 6.

Let aj, a2 € C°°(M) be such that
[f1, fo] = a1f1 + azfo. (4.58)

Then

[F1, Fo] = [f1 + (A, f1) 0, f2 + (4, f2) 0.]
= [f1, fo] + (f1 (A, f2) — f2 (A, f1))0:
(by @.58) = a1(F1 — (A, f1)) + a2(F2 — (A, f2)) + fi (A, f2) — f2 (A, f1))0;
= a1 Fy + aoFs + dA(f1, f2)0..

where in the last equality we use Cartan formula (cf. (@77) for a proof). Let i, po be the dual
forms to fi and fs. Then v = p; A pe and we can write dA = bug A pe, for a suitable function
b e C°°(M). In this case

[Fl,Fg] = a1 F1 + asFy + b0,.

and
{hl, hQ} = <)\, [Fl, F2]> = a1hy + ashg + bhy. (4.59)

With computations analogous to the 2D case we obtain the Hamiltonian system associated to H
in the (q,6, ho) coordinates

€ =cosOF|(§) +sinOFy(&)
0 = ay cosf + as sin @ + bhg (4.60)
ho =0
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In other words if ¢(t) = 7(£(t)) is the projection of a normal extremal path on M (here 7 : M — M),
its geodesic curvature

ro(q(t)) = 8(t) — ar(g(t)) cos B(t) — az(g(t)) sin 6(t) (4.61)

satisfies
rig(q(t)) = blq(t))ho. (4.62)

Namely, projections on M of normal extremal paths are curves with geodesic curvature proportional
to the function b at every point. The case b equal to constant is treated in the example of Section

443l

Abnormal extremals
We prove the following characterization of abnormal extremal
Lemma 4.44. Abnormal extremal trajectories are contained in the Martinet set M = {b = 0}.

Proof. Assume that A(t) is an abnormal extremal whose projection is a curve £(t) = m(\(¢)) that
is not reduced to a point. Then we have

hi(A@®) = (A@®), Fr(€(®))) =0, ha(A(t)) = (A(®), F2(6(1)) =0, Vi€ [0, T],  (4.63)

We can differentiate the two equalities with respect to ¢ € [0,7] and we get

Ly (A1) = usft) (i ha} ey = 0
%hz()\(t)) = —uy(t){h1,ha}r\@) =0

Since the pair (u1(t),ua(t)) # (0,0) we have that {h1, ha}|y¢) = 0 that implies
0= (). [Fr, PaJ(E(1)) = bE)ho, (4.64)

where in the last equality we used (4.59) and the fact that hq(A(t)) = ha(A(t)) = 0. Recall that
ho # 0 otherwise the covector is identically zero (that is not possible for abnormals), then b(£(t)) = 0
for all ¢t € [0,T]. O

The last result shows that abnormal extremal trajectories are forced to live in connected com-
ponents of b=1(0).

Exercise 4.45. Prove that the set b=1(0) is independent on the Riemannian metric chosen on M
(and the corresponding sub-Riemannian metric defined on D).

4.4.3 Heisenberg group

The Heisenberg group is a basic example in sub-Riemannian geometry. It is the sub-Riemannian
structure defined by the isoperimetric problem in M = R? = {(z,y)} endowed with its Euclidean
scalar product and the 1-form (cf. previous section)

A= %(azdy — ydzx).
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Notice that dA = dx A dy defines the area form on R?, hence b = 1 in this case. On the extended
manifold M = R3 = {(z,y,2)} the one-form w is written as

1
w=dz— §(xdy — ydz)

Following the notation of the previous paragraph we can choose as an orthonormal frame for R?
the frame f; = 0, and fy = 0,. This induced the choice

Flzam—%az, Fy=0,+20..

l\’JIH

for the orthonormal frame on D = ker w. Notice that [Fy, F»] = 0,, that implies that D is bracket-
generating at every point. Defining Fy = 0, and h; = (A, Fi(q)) for i = 0,1,2, the Hamiltonians
linear on fibers of T*M, we have

{h17 hQ} = h07
hence the equation ([A.60]) for normal extremals become
G = cosOFi(q) + sinOF(q)
6 = ho (4.65)
ho =0

It follows that the two last equation can be immediately solved

0(t) = 6o + hot
{ho(t) " (4.66)
Moreover
{hl(t) = c9s(00 + hot) (4.67)
ha(t) = sin(fy + hot)

From these formulas and the explicit expression of F; and F5 it is immediate to recover the normal
extremal trajectories starting from the origin (z¢g = yo = 20 = 0) in the case hg # 0

1 1
x(t) = h—(sin((% + hot) — sin(6p)) y(t) = h—(cos((% + hot) — cos(6p)) (4.68)
0 0
and the vertical coordinate z is computed as the integral
t
() = 5 [ @0/(©) = (0’ W)t = 5z (ot = sin(hat)
2 Jo 2hg

When hg = 0 the curve is simply a straight line
x(t) = sin(y)t y(t) = cos(bp)t z(t) =0 (4.69)

Notice that, as we know from the results of the previous paragraph, normal extremal trajectories
are curves whose projection on R? = {(x,y)} has constant geodesic curvature, i.e., straight lines
or circles on R? (that correspond to horizontal lines and helix on M). There are no non trivial
abnormal geodesics since b = 1.

Remark 4.46. This sub-Riemannian structure on R? is called Heisenberg group since it can be seen
as a left-invariant structure on a Lie group, as explained in Section
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4.5 Lie derivative

In this section we extend the notion of Lie derivative, already introduced for vector fields in Section
B2 to differential forms. Recall that if X, Y € Vec(M) are two vector fields we define

LxY =[X,Y]= 4 e XY,

If P: M — M is a diffeomorphism we can consider the pullback P* : TI’;( q)M — T;M and extend
its action to k-forms. Let w € A*M, we define P*w € A*M in the following way:

(P*w)q(fl,...,fk) = wp(q)(P*fl,...,P*fk), q € M, fz S TqM. (470)

It is an easy check that this operation is linear and satisfies the two following properties

P*(wl AN wg) = P*w1 A P*wo, (4.71)
P*od=doP". (4.72)

Definition 4.47. Let X € Vec(M) and w € A¥M, where k > 0. We define the Lie derivative of w

with respect to X as

Lx:A*M — AKM, Lxw= % (e w. (4.73)
t=0

When k& = 0 this definition recovers the Lie derivative of smooth functions Lx f = X f, for
f e C>®(M). From (£LTT) and (£72), we easily deduce the following properties of the Lie derivative:

(i) Lx(w) Awg) = (ﬁxwl) A wa + wi A (,Cxwg),
(ii) ,CXOd:dO,Cx.

The first of these properties can be also expressed by saying that Lx is a derivation of the exterior
algebra of k-forms.

The Lie derivative combines together a k-form and a vector field defining a new k-form. A second
way of combining these two object is to define their inner product, by defining a (k — 1)-form.

Definition 4.48. Let X € Vec(M) and w € A¥M, with k > 1. We define the inner product of w
and X as the operator ix : A*M — A*=1M, where we set

(in)(Yl,...,Yk_l) = w(X,Yl,...,Yk_l), Y, EVGC(M). (4.74)
One can show that the operator ix is an anti-derivation, in the following sense:
ix(wl VAN (,UQ) = (inl) N wog + (—1)k1w1 VAN (ixwg), w; € AkiM, 1=1,2. (475)

We end this section proving two classical formulas linking together these notions, and usually
referred as Cartan’s formulas.

Proposition 4.49 (Cartan’s formula). The following identity holds true
Lx =ixod+doix. (4.76)
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Proof. Define Dx :=ix od+ doix. It is easy to check that Dx is a derivation on the algebra of
k-forms, since ix and d are anti-derivations. Let us show that Dx commutes with d. Indeed, using
that d? = 0, one gets

doDx =doixod=Dx od.

Since any k-form can be expressed in coordinates as w = Y wj, 4, dx;, ...dx;,, it is sufficient to
prove that Lx coincide with Dx on functions. This last property is easily checked by

Dx [ =ix(df) +d(ix f) = (df,X) = Xf = Lx [. [
———
=0
Corollary 4.50. Let X,Y € Vec(M) and w € A'M, then
dw(X,Y) =X (w,Y) - Y (w,X) — (w,[X,Y]). (4.77)
Proof. On one hand Definition [.47] implies, by Leibnitz rule

d .
<£vay>q = a <(etX) W,Y>q
t=0

_d tX
- a —0 <w,e* Y>etX(q)
=X <W7Y> - (wv [Xv Y]> :

On the other hand, Cartan’s formula (L70]) gives

(Lxw,Y) = (ix(dw),Y) + (d(ixw),Y)
=dw(X,Y)+Y (w, X).

Comparing the two identities one gets ([E77)). O

4.6 Symplectic geometry

In this section we generalize some of the constructions we considered on the cotangent bundle T M
to the case of a general symplectic manifold.

Definition 4.51. A symplectic manifold (N, o) is a smooth manifold N endowed with a closed,
non degenerate 2-form o € A%2(N). A symplectomorphism of N is a diffeomorphism ¢ : N — N
such that ¢*c = o.

Notice that a symplectic manifold N is necessarily even-dimensional. We stress that, in general,
the symplectic form o is not exact, as in the case of N = T*M.

The symplectic structure on a symplectic manifold N permits us to define the Hamiltonian
vector field h € Vec(N) associated with a function h € C*®(N) by the formula ipo = —dh, or

—

equivalently o (-, h) = dh.

Proposition 4.52. A diffeomorphism ¢ : N — N is a symplectomorphism if and only if for every
h € C*®(N):
(6 ) =ho. (4.78)
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Proof. Assume that ¢ is a symplectomorphism, namely ¢*c = 0. More precisely, this means that
for every A € N and every v,w € T\IN one has

ox(v,w) = (¢* o)A (v, w) = oy(r) (Bsv, Psw),

where the second equality is the definition of ¢*o. If we apply the above equality at w = ¢ 15, one
gets, for every A € N and v € Th\N

UA(Ua (b*_l}_i) = ((25*0'))\('0, (b*_l}_i) = 0p(N) ((b*'l], ﬁ)
= (dgonh: duv) = (¢"dyryh,v) -
= (d(h o ¢),v)

This shows that oy (-, ¢5 15) = d(ho¢@), that is (478]). The converse implication follows analogously.
O

Next we want to characterize those vector fields whose flow generates a one-parametric family
of symplectomorphisms.

Lemma 4.53. Let X € Vec(N) be a complete vector field on a symplectic manifold (N,o). The
following properties are equivalent

(i) (e"X)*o = o for every t € R,
(ii) Lxo =0,

(iii) ixo is a closed 1-form on N.

Proof. By the group property e(t+5)X = ¢tX o ¢5X gne has the following identity for every ¢ € R:
i(etX)*O_:i (etX)*(esX)*O_:(etX)*ﬁxo_
dt ds|,_, '

This proves the equivalence between (i) and (ii), since the map (e*X)* is invertible for every ¢ € R.
Recall now that the symplectic form o is, by definition, a closed form. Then do = 0 and
Cartan’s formula ([A76]) reads as follows

Lxo =d(ixo) +ix(do) =d(ixo),
which proves the the equivalence between (ii) and (iii). O
Corollary 4.54. The flow of a Hamiltonian vector field defines a flow of symplectomorphisms.

Proof. This is a direct consequence of the fact that, for an Hamitonian vector field ﬁ, one has
izo = —dh. Hence i;o is a cloded form (actually exact) and property (iii) of Lemma 453 holds. [

Notice that the converse of Corollary d.54]is true when N is simply connected, since in this case
every closed form is exact.

Definition 4.55. Let (IV,0) be a symplectic manifold and a,b € C°°(N). The Poisson bracket

-,

between a and b is defined as {a,b} = o(d,b).
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We end this section by collecting some properties of the Poisson bracket that follow from the
previous results.

Proposition 4.56. The Poisson bracket satisfies the identities
(i) {a,b} o ={aop,bo o}, Va,b € C*®°(N),V¢ € Sympl(N),
(ii) {a,{b,c}} +{c.{a,b}} +{b,{c,a}} =0,  Va,b,c e C=(N).

Proof. Property (i) follows from (@18). Property (ii) follows by considering ¢ = '€ in (i), for some
c € C®(N),. and computing the derivative with respect to ¢t at t = 0. O

Corollary 4.57. For every a,b € C*°(N) we have

{0} = [@,B]. (4.79)

Proof. Property (ii) of Proposition [L.56] can be rewritten, by skew-symmetry of the Poisson bracket,

as follows
{{CL, b}7 C} = {CL, {b7 C}} - {b7 {CL, C}} (480)
Using that {a,b} = o(@,b) = @b one rewrite ([@R0) as

mc = d(bc) — b(ac) = [a, ble. O

Remark 4.58. Property (ii) of Proposition .56l says that {a, -} is a derivation of the algebra C*°(N).
Moreover, the space C*°(N) endowed with {-,-} as a product is a Lie algebra isomorphic to a sub-

algebra of Vec(N). Indeed, by (4.79]), the correspondence a +— @ is a Lie algebra homomorphism
between C*°(N) and Vec(N).

4.7 Local minimality of normal trajectories

In this section we prove a fundamental result about local optimality of normal trajectories. More
precisely we show small pieces of a normal trajectory are length minimizers.

4.7.1 The Poincaré-Cartan one form

Fix a smooth function a € C°°(M) and consider the smooth submanifold of T*M defined by the
graph of its differential
Lo={dgalqe M} CT*M. (4.81)

Notice that the restriction of the canonical projection 7 : T*M — M to L defines a diffeomorphism
between Ly and M, hence dim £y = n. Assume that the Hamiltonian flow is complete and consider
the image of £y under the Hamiltonian flow

Loo=eA(Ly),  telo,T] (4.82)
Define the (n + 1)-dimensional manifold with boundary in R x T*M as follows

L={(t,\) ERXT*M|NELs,0<t<T} (4.83)
—{(t, e )g) e R x T*M | X\ € Lo, 0 <t <T}. (4.84)

121



Finally, let us introduce the Poincaré-Cartan 1-form on T*M x R ~ T*(M x R) defined by
s — Hdt € AY(T*M x R)

where s € A'(T*M) denotes, as usual, the tautological 1-form of T*M. We start by proving a
preliminary lemma.

Lemma 4.59. s|z, = d(ao7)|g,

Proof. By definition of tautological 1-form sy(w) = (A, maw), for every w € Th(T*M). If X € Ly
then A\ = dya, where ¢ = w(X). Hence for every w € T)\(T*M)

52(10) = (A mow) = {dya, mew) = (" dya,w) = (dg(a o m), w) o
Proposition 4.60. The I-form (s — Hdt)|. is exact.

Proof. We divide the proof in two steps: (i) we show that the restriction of the Poincare-Cartan
1-form (s — Hdt)|. is closed and (ii) that it is exact.
(i). To prove that the 1-form is closed we need to show that the differential

d(s — Hdt) = o — dH A dt, (4.85)

vanishes when applied to every pair of tangent vectors to L. Since, for each t € [0, 7], the set L;
has codimension 1 in £, there are only two possibilities for the choice of the two tangent vectors:

(a) both vectors are tangent to L, for some ¢ € [0,T].
(b) one vector is tangent to £; while the second one is transversal.

Case (a). Since both tangent vectors are tangent to Ly, it is enough to show that the restriction of
the one form o — dH A dt to L; is zero. First let us notice that dt vanishes when applied to tangent

vectors to Ly, thus ¢ — dH A dt|z, = o|r,. Moreover, since by definition £; = e/ (L) one has

ol = Oleen g,

= (etH)*O-|E0 = 0|£0 = d8|£0 = dz(a o 7T)|£0 =0.
where in the last line we used Lemmal[4.59and the fact that (etﬁ )*o = o, since etfl is an Hamiltonian
flow and thus preserves the symplectic form.
Case (b). The manifold £ is, by construction, the image of the smooth mapping

—

U [0,T] x Lo — [0,T] xT*M,  W(t,\) — (t,eHN),

Thus a tangent vector to £ that is transversal to £; can be obtained by differentiating the map ¥

with respect to t:

ov 0 =
E(t, /\) = E + H(/\) S T(t)\)ﬁ. (486)

It is then sufficient to show that the vector (4.86]) is in the kernel of the two form o — dH A dt. In
other words we have to prove

iy, (0 — dH N dt) = 0. (4.87)
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The last equality is a consequence of the following identities
iﬁaza(ﬁ,-):—dH, ig,0 =0,
ig(dH Ndt) = (igdH) Ndt —dH A (izdt) =0,
——

=0 =0
ig,(dH N dt) = (ig,dH) Ndt — dH A (ig,dt) = —dH.
=0 =1

where we used that i zdH = dH(H)={H,H} = 0.
(ii). Next we show that the form s — Hdt|, is exact. To this aim we have to prove that, for
every closed curve I' in £ one has

/ s—Hdt =0. (4.88)
Every curve I' in £ can be written as follovl;s
U:[0,7] = £, DT(s)=(t(s),e!®HN(s)),  where \(s) € Lo.
Moreover, it is easy to see that the continuous map defined by
K:[0,T)xL£— L, K(rtefx)) = (t—r et )\

defines an homotopy of £ such that K(0, (¢, etﬁ/\o)) = (¢, etﬁ)\o) and K(t, (t,etﬁ/\o)) = (0, \g)-
Then the curve I" is homotopic to the curve T'g(s) = (0, A(s)). Since the 1-form s — Hdt is closed,
the integral is invariant under homotopy, namely

/S—Hdt:/ s — Hdt.
I To

Moreover, the integral over I'y is computed as follows (recall that T'y C Ly and dt = 0 on Ly):

/S—Hdt:/ s = d(aom) =0,
To T'o T'o

where we used Lemma [4.59] and the fact that the integral of an exact form over a closed curve is
zero. Then (4.88]) follows. O

4.7.2 Normal trajectories are geodesics

Now we are ready to prove a sufficient condition that ensures the optimality of small pieces of normal
trajectories. As a corollary we will get that small pieces of normal trajectories are geodesics.
Recall that normal trajectories for the problem

= fula) = uifi(g), (4.89)
i=1
where f1,..., i, is a generating family for the sub-Riemannian structure are projections of integral
curves of the Hamiltonian vector fields associated with the sub-Riemannian Hamiltonian
A = HA®), (e M) =T (), (4.90)
V() =m(A®)),  te[0,T] (4.91)
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where

HO) =y { O 1@ = 5l | = 530 00 @) (1.92)
=1

u€lUy

Recall that, given a smooth function a € C°°(M), we can consider the image of its differential
Ly and its evolution £; under the Hamiltonian flow associated to H as is (481 and (4.82)).

Theorem 4.61. Assume that there exists a € C°°(M) such that the restriction of the projection
7|z, is a diffeomorphism for every t € [0,T]. Then for any Ao € Lo the normal geodesic

7)) =moe (), teloT), (4.93)
18 a strict length-minimizer among all admissible curves v with the same boundary conditions.

Proof. Let ~(t) be an admissible trajectory, different from 7(t), associated with the control u(t)
and such that v(0) = 7(0) and v(T') = 7(T'). We denote by u(t) the control associated with the
curve 7(t).

By assumption, for every ¢ € [0,T] the map =|z, : £L; — M is a local diffeomorphism, thus the
trajectory (t) can be uniquely lifted to a smooth curve A(t) € £;. Notice that the corresponding
curves I' and T in £ defined by

D) = (L AW),  T() = (6.30)) (4.94)

have the same boundary conditions, since for ¢ = 0 and ¢t = T they project to the same base point
on M and their lift is uniquely determined by the diffeomorphisms 7|z, and 7|z, respectively.
Recall now that, by definition of the sub-Riemannian Hamiltonian, we have

H(A(t)) = (A®), fuwy(¥(1))) — %Iu(t)lz, V(1) = (D)), (4.95)

where A(t) is a lift of the trajectory 7(¢) associated with a control u(t). Moreover, the equality
holds in (4.95)) if and only if A(¢) is a solution of the Hamiltonian system A\(t) = H(\(t)). For this
reason we have the relations

HON) > (M0, Fui ((0) — lu(t) (196)

H(A(t)) = (A(®), fay (7(1))) — %Iﬂ(t)lz- (4.97)

since A(t) is a solution of the Hamiltonian equation by assumptions, while A(t) is not. Indeed
A(t) and \(t) have the same initial condition, hence, by uniqueness of the solution of the Cauchy
problem, it follows that A(£) = H(A(t)) if and only if A(t) = X(t), that implies that 5(t) = (¢).

Let us then show that the energy associated with the curve = is bigger than the one of the curve
7. Actually we prove the following chain of (in)equalities

1 (T 1 (T
—/ |ﬂ(t)|2dt:/s—Hdt:/s—Hdt< —/ lu(t) 2dt, (4.98)
2 Jo T r 2 Jo

where I' and T are the curves in £ defined in (£94]).
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By Lemma E60, the 1-form s — Hdt is exact. Then the integral over the closed curve I' UT

vanishes, and one gets
/S—Hdt:/s—Hdt.
T r

The last inequality in (£.98]) can be proved as follows
T
s Hat= " x0.50) - HO®)e
I 0

T

= [ 00 i 09) — H®)a
T

< [ 00 g o) = (N0 Fuy(0(0) = )P ) @ 499

1 T
:—/ymmwt
2 Jo

where we used (£96]). A similar computation, using ([£97]), gives

1 T
/s—Hﬁ:§/|mm%t (4.100)
0

T

that ends the proof of (£.98]). O

As a corollary we state a local version of the same theorem, that can be proved by adapting
the above technique.

Corollary 4.62. Assume that there exists a € C*°(M) and neighborhoods 0 of ¥(t), such that
moet o dalo, : Qo — 4 is a diffeomorphism for every t € [0,T]. Then ([@33) is a strict
length-minimizer among all admissible trajectories ~v with same boundary conditions and such that
v(t) € Q for allt € 0,T).

We are in position to prove that small pieces of normal trajectories are global length-minimizers.

Theorem 4.63. Let v : [0,T7] — M be a sub-Riemannian normal trajectory. Then for every
T € [0,T] there exists € > 0 such that

(i) Yjrr4e) s a length-minimizer, i.e., d(y(T), Y (T +€)) = £(V|j7,r4e))-

() YV|jr,r+e) @5 the unique length-minimizer joining v(7) and (7 +¢€), up to reparametrization.

Proof. Without loss of generality we can assume that the curve is parametrized by length and prove
the theorem for 7 = 0. Let (¢) be a normal extremal trajectory, such that y(t) = w(e‘H ()\g)), for
t €10,7]. Consider a smooth function a € C*° (M) such that d,a = A\g and let £; be the family of
submanifold of T*M associated with this function by (48] and (&82]). By construction, for the
extremal lift associated with v one has A(t) = e'!()\g) € L, for all t. Moreover the projection 7T| Lo
is a diffeomorphism, since L is a section of T M.

Fix a compact K C M containing the curve v and consider the restriction m; i : £y ﬂﬂ'_l(K ) —
K of the map 7r| L, By continuity there exists ¢y = to(K) such that m  is a diffeomorphism, for
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all 0 <t < tg. Let us now denote dx > 0 the constant defined in Lemma B34 such that every curve
starting from 7(0) and leaving K is necessary longer than 0.

Then, defining e = ¢(K) := min{dx,to(K)}, we have that the curve v[j is contained in K
and is shorter than any other curve contained in K with the same boundary condition by Corollary
(applied to € = K for all ¢ € [0,T]). Moreover £(v|j,]) = € since 7 is length parametrized,
hence it is shorter than any admissible curve that is not contained in K. Thus [ is a global
minimizer. Moreover it is unique up to reparametrization by uniqueness of the solution of the
Hamiltonian equation (see proof of Theorem [£.61]). O

Remark 4.64. When Dy, = T, M, as it is the case for a Riemannian structure, the level set of the
Hamiltonian

(H =1/2} = {\ € T,, M|H(\) = 1/2},

is diffeomorphic to an ellipsoid, hence compact. Under this assumption, for each \g € {H = 1/2},
the corresponding geodesic (t) = m(e!()\g)) is optimal up to a time € = £()\g), with \g belonging
to a compact set. It follows that it is possible to find a common ¢ > 0 (depending only on ¢p) such
that each normal trajectory with base point ¢g is optimal on the interval [0, £].

It can be proved that this is false as soon as Dy, # Ty, M. Indeed in this case, for every ¢ > 0
there exists a normal extremal path that lose optimality in time e, see Theorem I12.17]

Bibliographical notes

The Hamiltonian approach to sub-Riemannian geometry is nowadays classical. However the con-
struction of the symplectic structure, obtained by extending the Poisson bracket from the space of
affine functions, is not standard and is inspired by [?].

Historically, in the setting of PDE, the sub-Riemannian distance (also called Carnot-Carathéodory
distance) is introduced by means of sub-unit curves, see for instance [45] and references therein.
The link between the two definition is clarified in Exercice 4341

The proof that normal extremal are geodesics is an adaptation of a more general condition for
optimality given in [8] for a more general class of problems. This is inspired by the classical idea
of “fields of extremals” in classical Calculus of Variation.
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Chapter 5

Integrable systems

In this chapter we present some applications of the Hamiltonian formalism developed in the previous
chapter. In particular we give a proof the well-known Arnold-Liouville’s Theorem and, as an
application, we study the complete integrability of the geodesic flow on a special class of Riemannian
manifolds.

More examples of sub-Riemannian completely integrable systems, together with a proof that
all left-invariant sub-Riemannian geodesic flows on 3D Lie groups are completely integrable, are
presented in Chapter [I31

5.1 Reduction of Hamiltonian systems with symmetries

Recall that a symplectic manifold (N,o) is a smooth manifold wendowed with a closed non-
degenerate two-form o (cf. Section [L.0]). Fix a smooth Hamiltonian h : N — R.

Definition 5.1. A first integral for the Hamiltonian system defined by h is any smooth function
g : N — R such that {h,g} = 0.

Recall that by definition {h, g} = h(g) = —F(h), hence, if g is a first integral for the Hamiltonian
system defined by h, we have

%h oet =0, (5.1)

namely, h is preserved along the flow of §.

We want to show that the existence of a first integral for the Hamiltonian flow generated by
h permits to define a reduction of the symplectic space and to reduce to 2n — 2 dimensions. The
construction of the reduction is local, in general.

Fix a regular level set Ny, = {x € N | g(x) = ¢} of the function g. This means that d,g # 0
for every z € N, .. Fix a point zg in the level set and a neighborhood U of x( such that g(z) # 0
for x € U. Notice that this is possible since d,,g = o (-, §(x0)) with d,,g # 0 and o non-degenerate.
By continuity this holds in a neighborhood U.

The set N, . has the structure of smooth manifold of dimension 2n — 1. Being odd dimensional,
the restriction of the symplectic form to the tangent space to its tangent space T, N, . is necessarily
degenerate, and its kernel is one dimensional. Indeed, following the same arguments as in the proof
of Proposition [4.32] we have that

kero|r,N,. = G(z)
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and integral curves of G are tangent to the level set IV, .. This is saying that the flow of g is well
defined on the level set.
Consider then the quotient

N/w:={x €UNNy. |21~ x2if 29 = eI(11),5 € R, Ute[o,s]etg(azl) cU}.

In other words N/. is the set of orbits of the one parametric group {e*9},cr contained in the fixed
level set N, . of g (and not leaving U). Under our assumptions, the quotient has the structure of
smooth manifold of dimension 2n —2. To build a chart close to a point [x¢] € N/ (with zg € Ny )
it is enough to find an hypersurface N;c C Ny, passing through zo and transversal to the orbit
itself, namely

TpgNg,c = T:CON;,C @ gl(zo)

Then local coordinates on Ny ., which has dimension 2n — 2, induces local coordinates on N/...
The construction of the above quotient is classical (see for instance [9]). The restriction of the
symplectic structure o to the quotient N/ is necessarily non-degenerate (since o is non-degenerate
on the whole space N), hence gives to N/ the structure of symplectic space.
Coming back to the original Hamiltonian A in involution with g, we have that h is indeed well
defined on the quotient. Indeed since {h,g} = 0 we have, for every t,s such that the terms are

defined:

€8§O etﬁ — etﬁ o esg'
and & induces a well defined Hamiltonian flow on N /~. In particular every function f on N that
commutes with g, thanks to (5.]), is constant along the trajectories of g, hence defines a function

on the quotient N/..

Exercise 5.2. Prove that given fi, fo € C°°(N) such that {f1,9} = {f2,9} = 0, one has that
{{f1, f2},9} = 0. Deduce that the Poisson bracket defined on N descends to a well-defined Poisson
bracket defined on the quotient N/. with C*°(N/.) ~{f € C*(N) |{f,g} = 0}.

We end this section by showing that the construction of the space of orbits of an (Hamiltonian)
vector field is in general only local as the following classical example shows.

Example 5.3. Consider the toru T2 ~ [0,1]% /=, endowed with the canonical symplectic structure
o = dp A dx and the Hamitonian g(z,p) = —ax + p. The vector field g is written as follows

oy 210 090 0 o
Ny - Opdxr Oxdp Ox op’
whose trajectories are given by

x(t) =xo+t,  p(t)=po+at

It is well known that, for o € R\ Q, then every trajectory is an immersed one dimensional subman-
ifold of T2 that is dense in 7. Hence the space of orbits (quotient with respect to the equivalence
relation) has globally even no structure of topological manifold (the quotient topology is not Haus-
dorff).

The next subsection describes an explicit situation where the symplectic reduction is globally
defined.

Lwith the equivalence relation (x,0) = (x,1) and (0,p) = (1,p).
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5.1.1 Example of symplectic reduction: the space of affine lines in R"

In this section we consider an important example of symplectic reduction, that is going to be used
in what follows.

Let us consider the symplectic manifold N = T*R™ = R™ x R" with coordinates (p, z) € R" x R"
and canonical symplectic form

n
g = Z dpi VAN d.’L’Z
i=1
Define the Hamiltonian g : R?® — R given by
1
9(w.p) = 5|pl*.
We want to prove the following result.

Proposition 5.4. For every ¢ > 0 the level set N, . of g is globally diffeomorphic to R™ x S™~1,
and its symplectic reduction N/~ is a smooth (symplectic) manifold of dimension 2n — 2 globally
diffeomorphic to the space of affine lines in R™.

Proof. For every ¢ > 0 then we have that the level set
Nye={(z,p) : g(a,p) = ¢} = {(z,p) : |p* = 2¢},

is a smooth hypersurface of R?" of dimension 2n — 1, indeed globally diffeomorphic to R” x S,
The Hamiltonian system for § is easily solved for every initial condition (z(0),p(0)) = (xo, po)

jj_@(:p ) =

“aop PP . {w<t>=xo+tpo 52)
._ Oy -~ p(t) = po ’

p= —ax(:v,p)—o

and its flow is globally defined, described by a straight line contained in the space Ny . (notice that
c > 0 implies pg # 0). Hence it is clear that the quotient N/. of Ny . with respect to orbits of the
Hamiltonian vector field g is the space of affine lines of R™ and is globally defined. The proof is
completed by Proposition O

Proposition 5.5. The set A(n) of affine lines in R™ has the structure of smooth (symplectic)
manifold of dimension 2n — 2.

Proof. We first fix some notation: denote by H; := {x; = 0} C R the i-th coordinate hyperplane
and by U;" = S"' N {x; > 0} an open subset of the sphere S"~!, for every i = 1,...,n.

We define an open cover on A(n) in the following way: consider the open sets W; C A(n) of
affine lines L of R™ that are not parallel to the hyperplane H;. Then for every line L € W; there
exists a unique z € H; and © € U;" such that L = {Z +tv | t € R}. Then, for i = 1,...,n, we
define the coordinate chart

¢ Wy — H; x U, ¢i(L) = (z,0).

Using the standard identification H; ~ R"~! and the stereographic projection W; ~ R"~! we build
coordinate maps ¢; : W; — R*» 2 fori=1,...,n. ]

Exercise 5.6. Check that {W;};=1 ., is an open cover of A(n), and that the change of coordinates
¢; o qﬁj_l : R?"=2 5 R?"=2 is smooth for every i,j =1,...,n.
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5.2 Riemannian geodesic low on hypersurfaces

In this section we want to show that the Riemannian geodesic flow on an hypersurface of R™, that
is an Hamiltonian flow on a 2n — 2 dimension, can be seen as the restriction of the Hamiltonian
flow of R?" to the (reduced) symplectic space of affine lines in R” (cf. Section [E.1.T]).

5.2.1 Geodesics on hypersurfaces

Let us consider now a smooth function a : R®™ — R and consider the family of hypersurfaces defined
by the level sets of a

M, :=a"*(c) C R, c is a regular value of a,

endowed with the Riemannian structure induced by the ambient space R". Recall that, by classical
Sard’s Lemma for almost every ¢ € R, ¢ is a regular value for a (in particular, M, is a smooth
submanifold of codimension one in R™).

An adaptation of the arguments of Proposition [[.4] in Chapter [Il one can prove the following
characterization of geodesics on a hypersurface M..

Proposition 5.7. Let v : [0,T7] — M be a smooth minimizer parametrized by length. Then
A(t) LTy M.

Exercise 5.8. Prove Proposition (.71

5.2.2 Riemannian geodesic flow and symplectic reduction

For a large class of functions a, we will find an Hamiltonian, defined on the ambient space T*R",
whose (reparametrized) flow generates the geodesic flow when restricted to each level set M.
Consider the standard symplectic structure on T*R"™

n
T*R" =R" x R" = {(z,p) | z,p € R"}, J:dei/\dl’i,
i=1
For x,p € R™ we will denote by x + Rp the line {z +tp |t € R} C R" .
Assumption. We assume that the function a : R™ — R satisfies the following assumptions:
(A1) the restriction of a : R™ — R to every affine line is strictly convex,
(A2) a(xr) — +oo when || — +o0.

Under assumptions (A1)-(A2), the restriction of the function a to each affine line in R™ always
attains a minimum and we can define the Hamiltonian

h:R" x R" = R, h(z,p) = Igéi[él a(z +tp). (5.3)
By definition, the function h is constant on every affine line in R™. If we define

g:R"xXR" = R, g(x,p) = %]p\? (5.4)
this implies the following (cf. proof of Proposition [5.4)).
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Lemma 5.9. The Hamiltonian h is constant along the flow of g, i.e., {h,g} = 0.

We can then apply the symplectic reduction technique explained in Section (.1t the flow of h
induced a well defined flow on the reduced symplectic space of dimension 2n — 2 of affine lines in
R™ (cf. Section B.I.T). We want to interpret this flow of affine lines as a flow on the level set M,
and to show that this is actually the Riemannian geodesic flow.

For every z,p € R" let us define the functions

s:R" xR" - R, E:R" xR" - R",
defined as follows
(a) s(x,p) is the point at which the scalar function t — a(x + tp) attains its minimum,

(b) &(x,p) =z + s(z,p)p.

Notice that, by construction, we have h(x,p) = a({(x,p)) for every z,p € R™.
The first observation is that the line x 4+ Rp is tangent at &(z,p) to the level set a~'(c), with
¢ :=a({(z,p)). Indeed combining (a) and (b) we have
d
(Vea|p) = pn a(x + tp) =0, (5.5)
t=s(z,p)

where (- |-) denotes the scalar product in R"™.

The following proposition says that if we follow the motion of the affine lines x(t) + Rp(t) along
the flow (z(t), p(t)) of h, then the family of lines stay tangent to a fixed quadric and the point of
tangency describes a geodesic on it.

Proposition 5.10. Let (x(t),p(t)), for t € [0,T], be a trajectory of the Hamiltonian vector field h
associated with (53]). Then the function

t = &(t) == &(x(t), p(t)) € RY, (5.6)
(i) is contained in a fized level set M. = a=1(c), for some c € R,
(ii) is a geodesic on M.

Proof. Property (i) is a simple consequence of Corollary .20}, since every function is constant along
the flow of its Hamiltonian vector field. Indeed by construction h(x,p) = a(&(x,p)) and, denoting
by (x(t),p(t)) the Hamiltonian flow, one gets

a(§(t)) = a(§(z(t),p(t))) = h(x(t),p(t)) = const,
i.e., the curve {(t) is contained on a level set of a. Moreover by definition of £(¢) we have (cf. (5.5]))
<V§(t)a ‘ p(t)> = 0, Vt. (57)

The Hamiltonian system associated with h reads

{w) = s(t)Vea (5.8)
p(t) = =Vepa
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that immediately implies @(t)+s(¢)p(t) = 0. Thus computing the derivative of {(t) = x(t)+s(t)p(t)
one gets ]

§(t) = 3(t)p(t),
it follows that & (t) is parallel to p(t). Notice that s = s(t) is a well defined parameter on the curve
&(t). Indeed computing the derivative with respect to ¢ in (5.7]) we have that

3() (2 an(t) | (1)) = [Veal* = 0.
and the strict convexity of a implies <V§(t)ap(t) ‘ p(t)> # 0 and

S(f) = [Vewal® '
v (V2ar®) | p(0)) 7

In particular p(t) denotes the velocity of the curve £(t), when reparametrized with the parameter
s = s(t), since |p(t)| = 1 implies |£(t)] = 5(¢).

Finally, the second derivative of the reparametrized £(s) is p(s) and, since p(s) is parallel to
Vesya = 0 by (B.8), the second derivative £(s) (i.e., the curve & reparametrized by the length) is
orthogonal to the level set, i.e., s — £(s) is a geodesic on the level set.

]

Remark 5.11. Thus we can visualize the solutions of & as a motion of lines: the lines move in
such a way to be tangent to one and the same geodesic. The tangency point x on the line moves
perpendicular to this line in this process. We will also refer to this flow as the “line flow” associated
with a.

To end this section let us prove the following result, that will be used later in Section
Consider two functions a, b : R" — R satisfying our assumptions (A1)-(A2). Following our notation,
we set

h(z,p) = a(§(x,p)),  &(x,p) =z + s(z,p)p
g(z,p) = b(n(z,p)),  nlz,p) =z +7(z,p)p

where s(x,p) and 7(z, p) are defined as above, and &, 7 denote the tangency point of the line z+Rp
with the level set of a and b respectively. The following proposition computes the Poisson bracket
of these Hamiltonian functions

Proposition 5.12. Under the previous assumptions
{hog} = (s —7) (Vea | Vyb). (5.9)
Proof. The coordinate expression of the Poisson bracket (£I9]) can be rewritten as
{h. g} = (Vph|Vag) = (Vah|Vyg), (5.10)
and using equation (B8] for both h and g one gets
{hg} = (s — ) (Vea| V,b). (5.11)
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5.3 Sub-Riemannian structures with symmetries
Recall that, for a sub-Riemannian manifold, we denote by H the sub-Riemannian Hamiltonian.

Definition 5.13. We say that a complete smooth vector field X € Vec(M) is a Killing vector field
if it generates a one parametric flow of isometries, i.e. € : M — M is an isometry for all ¢t € R.

For every X € Vec(M), we can define the function hx € C*°(T*M) linear on fibers associated
with X by hx(X) = (X, X(q)), where ¢ = w(A).

The following lemma shows that X is a Killing vector field if and only if hx commutes with the
sub-Riemannian Hamiltonian H.

Lemma 5.14. Let M be a sub- Riemannian manifold and H the sub-Riemannian Hamiltonian.
For a vector field X € Vec(M) is a Killing vector field if and only if {H,hx} = 0.

Proof. A vector field X generates isometries if and only if, by definition, the differential of its
flow X : T,M — T,ix (M preserves the sub-Riemannian distribution and the norm on it, ie.
etXv € Dyix (g for every v € Dy and letXv|| = |jv||. By definition of H, this is equivalent to the
identity

H((X)*N)=H(\), VYAeT*M. (5.12)

On the other hand Proposition EI0 implies that (e!X)* = etﬁx, where hx is the Hamiltonian linear
on fibers related to X. Differentiating (5.12]) with respect to t we find the equivalence

Hoe™ =H & hyH=0 < {Hhx}=0.
O

In other words, with every l-parametric group of isometries of M we can associate an Hamil-
tonian in involution with H. Let us show two classical examples where we have a sub-Riemannian
structure with symmetries.

Example 5.15 (Revolution surfaces in R3). Let M be a 2-dimensional revolution surface in R3.
Since the rotation around the revolution axis preserves the Riemannian structure, by definition,
we have that the Hamiltonian generated by this flow and the Riemannian Hamiltonian H are in
involution.

Example 5.16 (Isoperimetric sub-Riemannian problem). Let us consider a sub-Riemannian struc-
ture associated with an isoperimetric problem defined on a 2-dimensional revolution surface M (see
Section 4.4.2]). The sub-Riemannian structure on M x R is determined by the function b € C*°(M)
satisfying dA = bdV, where A € A'(M) is the 1-form defining the isoperimetric problem and dV is
the volume form on M.

(i) By construction the problem is invariant by translation along the z-axis

(ii) If, moreover, both M and b are rotational invariant we find a first integral of the geodesic
flow as in the previous example
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5.4 Completely integrable systems

Let M be an n-dimensional smooth manifold and assume that there exist n independent Hamilto-
nians in involution in T* M, i.e. a set of n smooth functions

h; : T*"M — R, i=1,...,n,
{hi,h;} =0,  i,j=1,...,n. (5.13)
such that the differentials dyhq,...,dyh, of the functions are independent on an open dense set of

point A € T*M.
Let us consider the vector valued map, called moment map, defined by

h:T*M — R, h=(hi,...,hy).

Definition 5.17. Under the assumptions (5.13]), then we say that the map h is completely in-
tegrable. The same terminology applies to any of the Hamiltonian system defined by one of the
Hamiltonian h;, for ¢ =1,...,n.

Lemma 5.18. Assume that h is completely integrable and ¢ € R™ be a reqular value of h. Then
the set h='(c) is a n-dimensional submanifold in T*M and we have

Tah~1(c) = span{hi(A), ..., ha(N)}, VYA eh™(c). (5.14)

Proof. Since c is a regular value of h, by Remark the set h~!(c) is a submanifold of dimension
n in T*M. In particular dim T\h~1(c) = n for every A € h=1(c). Moreover, by Exercise 211}, each
vector field k; is tangent to h~!(c), since l_iihj = {hi, hj} = 0 by assumption. To prove (5.14) it is
then enough to show that these vector fields are linearly independent.
Since c is a regular value of h, the differentials of the functions h; are linearly independent on
h=Y(c), namely
dimspan{dyhi,...,dxhn} =n, YA€ h (c). (5.15)

Moreover the symplectic form ¢ on T*M induces for all X an isomorphism T)(T*M) — T5(T*M)
defined by w — o) (-, w). By nondegeneracy of the symplectic form, this implies that

dimspan{hi(\),...,hn(\)} =n, VA€ h™(c). (5.16)
hence they form a basis for T\h™!(c). O

Remark 5.19. Notice that the symplectic form vanishes on T: M\~ !(c). Indeed this is a consequence
of the fact that o(hs, hj) = {hi,hj} =0foralli,j=1,...,n.

In what follows we denote by N, = h~!(c) the level set of h. If h=!(c) is not connected, N, will
denote a connected component of h=*(c).

Proposition 5.20. Assume that the vector fields h; are complete and define the map

U R" 5 DIff(N,),  W(si,...,sn) =0, oeonhin o (5.17)

For every A\ € N,, the map Uy : R™ — N, defined by ¥,(s) := ¥(s)\ defines a transitive action of
R™ onto N.,.
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Proof. The complete integrability assumption together with Corollary 57 implies that the flows
of h; and h; commute for every i,j = 1,...,n since

[hi, hj] = {hi,hﬁ = 0.

By Proposition [2.26] this is equivalent to

— — — —

ethioe™i = e™hi o ethi, Vi, T eR. (5.18)

Thus, for every A, the map W) is a smooth local diffeomorphism between at each point. Indeed,
using (5.I8]), one has (cf. also Exercice [2.31))

ov

5 (UA(s)) = hi(Wp(s)), i=1,....n,

and the partial derivatives are linearly independent at each point of IN..
Since the vector fields are complete by assumption, we can compute for every s, s’ € R"

U(s+s') =1t o | o lontsn)hin
_ eslﬁl ° es’lﬁl o.. .0 esnfzn ° es’nﬁn
. . . -
=efthio | oeinfn g esihio  oeSnhn (by I8))

= U(s) o W(s),

which proves that ¥ is a group action. Denote, for every point A € N, its orbit under the group
action, namely

Oy =imV¥), = {\IJ)\(S) ’ s € Rn}
Exercise 5.21. Using the fact that V. is connected, prove that ) = N, for every A € N..

Hence the map W) is surjective, but in general it is not injective (as for instance in the case
when M is compact). As a consequence we consider the stabiliser Sy of the point A, i.e. the set

Sy={s € R" | Uy(s) = A},
Exercise 5.22. Prove that S) is a discretdg subgroup of R”, independent on A € N,.
Then the proof of Proposition [5.20] is completed by the next lemma.

Lemma 5.23. Let G be a non trivial discrete subgroup of R™. Then there exist k € N with
1<k<nanduv,...,vp € R such that

k
G = {Zmivi, m; € Z} .

i=1

2Recall that a subgroup G of R™ is discrete if and only if for every g € G there exist an open set U C R™ containing
g and such that UNG = {g}.
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Proof. We prove the claim by induction on the dimension n of the ambient space R".

(i). Let n = 1. Since G is a discrete subgroup of R, then there exists an element e; # 0 closest
to the origin 0 € R. We claim that G = Zv; = {mwv1, m € Z}. By contradiction assume that there
exists an element f € G such that mv; < f < (m + 1)v; for some m € Z. Then f := f — mu;
belong to GG and is closer to the origin with respect to v, that is a contradiction.

(ii). Assume the statement is true for n — 1 and let us prove it for n. The discreteness of G
guarantees the existence of an element v; € G, closest to the origin. Moreover one can prove that
G1 := G NRw; is a subgroup and, as in part (i) of the proof, that

G1:=GnNRv = Zv,.
If G = G; then the theorem is proved with £ = 1. Otherwise one can consider the quotient G/Gj.

Exercise 5.24. (i). Prove that there exists a nonzero element ve € G/G; that minimize the
distance to the line £ = Rv; in R™.
(ii). Show that there exists a neighborhood of the line ¢ that does not contain elements of G/Gj.

By Exercise 524 the quotient group G /G is a discrete subgroup in R”/¢ ~ R"~!. Hence, by

the induction step there exists vo, ..., v; such that
k
G/G1: {mei, miGZ}. O
i=2

O

Corollary 5.25. The connected manifold N, is diffeomorphic to T* x R** for some 0 < k < n,
where T* denotes the k-dimensional torus. Fiz coordinates 6 € T x R"™% with (61,...,0;) € T*
and (Ox11,...,0,) € R*F then we have

hi = bij(c)ds,, (5.19)

for some constants b;;(c) independent on A € N,.

Proof. Fix ¢ € R™ and a point A € N.. Let us consider the elements vq,...,v; € R™ generators
of the stabiliser Sy (independent on A) given by Lemma [5.23] and complete it to a global basis
v1,...,0U,. Denote by ei,...,e, the canonical basis of R” and by B : R” — R" any isomorphism
such that Be; = v; for i =1,...,n. We stress again that B does not depend on A € N, and is thus
a function of ¢ only.

Then clearly the map Bo W) : R™ — N, is a local diffeomorphism and, due to the fact that S
is the stabiliser of W), descends to a well-defined map on the quotient

BoW,:TF xR - N,

that is a global diffeomorphism. Introduce the coordinates (61, ...,6,) in R™ induced by the choice
of the basis vy, ..., v,.
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Since (01,...,0,) are obtained by (si,...,s,) by a linear change of coordinates on each level
set, the vector fields h; are constant in the s coordinates (indeed h; = Js,) we have and the basis
09, ,-..,0p, can be expressed as follows

hi =05, = Y _bij (), (5.20)
j=1

where b;; are the coefficients of the operator B, depending only on ¢ (i.e., are constant on each level
set Ne). O

Remark 5.26. In general, due to the fact that the level set N, is not compact, the set (¢, 6) do not
define local coordinates on T*M. If we assume that (c,6) define a set of local coordinates, then
the Hamiltonian system defined by h; takes the form (on the whole space T*M)

¢=0 . i=1,....n (5.21)
0 = bij(c)

Notice that, as soon as (¢, 8) define local coordinates, the coordinate set (61, ..., 6,,) are not uniquely
defined. In particular, every transformation of the kind 6; — 6; + 1¥;(c) still defines a set of
cylindirical coordinates on each level set. The choice of the functions v;(c) corresponds to the
choice of the initial value of #; at a point (for every choice of ¢). However, the vector fields dp, are
independent on this choice.

5.5 Arnold-Liouville theorem

In this section we consider in detail the case when the level set of a completely integrable system
defined by
h:T"M — R", h=(hi,...,hy),

are compact. More precisely we assume that for all values of ¢ € R the level set h=!(c) is a smooth
compact and connected manifold. From Proposition [5.20] and the fact that 7% x R** is compact
if and only if £ = n we have the following corollary.

Corollary 5.27. If N. is compact, then N, ~T".
Fix A € N, and introduce the diffeomorphism
F.:T" — N, Fc(91, - ,Qn) = \I/)\(Ql + 277, ...,0, + 27TZ).

Next we want to analyze the dependence of this construction with respect to ¢. Fix ¢ € R and
consider a neighborhood O of the submanifold Nz in the cotangent space T*M. Being Nz compact,
in O we have a foliation of invariant tori N, for ¢ close to ¢. In other words (cy,..., ¢y, 601,...,0)
is a well defined coordinate set on O.

Theorem 5.28 (Arnold-Liouville). Let us consider a moment map h : T*M — R™ associated with
a completely integrable system such that every level set N, is compact and connected. Then for
every ¢ € R there exists a neighborhood O of Nz and a change of coordinates

(Cl,...,cn,el,...,en) — (Il,...,[n,gﬁl,...,tpn) (5.22)
such that
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(i) I = ®oh, where ® : h(O) — R™ is a diffeomorphism,

(it) o =3%_, dI; ANdp;.

Definition 5.29. The coordinates (I, ) defined in Theorem are called action-angle coordi-
nates.

Proof of Theorem [5.28. In this proof we will use the following notation: for ¢ = (c1,...,¢,) € R™,
j=1,...,n and € > 0 we set

(a) & :=(c1,...,¢j+¢&...,cp) ER,

(b) 7i(c) as the closed curve in the torus N, parametrized by the i-th angular coordinate 6;,
namely
vi(e) = A{Fe(01,...,0; +7,...,0,) € N. | T €0, 27]}.

(c) C’ij ° denotes the cylinder defined by the union of curves v;(c¢’7), for 0 < 7 < ¢.

Let us first define the coordinates I; = I;(c1, ..., ¢,) by the formula

where s is the tautological 1-form on T*M. Being o|y, = 0, by Stokes Theorem the variable I;
depends only on the homotopy class of ’y,ﬁ
Let us compute the Jacobian of the change of variables.

Ol (c) = iﬁ / s — / s
acj 27 Oe e=0 vi(che) vi(c)

10 /
= —— s
27 Oe e=0 aclj)s

= %% / o (where o = ds)
T e=0JCP¢

10 /Cﬁf /
=—— 0 (0O, Op,)db;dr

27 Oe e=0J¢j i (¢357) ’

1
= 0 (0, , 0p,)db;.

27 e

Using that 9y, = 7, b (c)ﬁj (see (5.20)) (where b are the entries of the inverse matrix of b;;)
one gets

o(-,0,) = Y b7 (c)dh;. (5.23)
Jj=1

3Hence, in principle, we are free to choose any basis 71, . .., vn for the fundamental group of T".

138



Moreover dh; = dc; since they define the same coordinate set. Hence

oI, 1 o
() = — b*(c)dey, O, ) db;
acj 2m vi(c) ]gzz:l
1 -
- — b (¢)db;
270 Jyie)
=bY(c)

Combining the last identity with (5.23]) one gets
O'(', 892) = d[l

In particular this implies that the symplectic form has the following expression in the coordinates

(1,0)

o= a;(IdL; AdI; + Y dI; A db;. (5.24)
ij=1 i=1

where the smooth functions a;; depends only on the action variables, since the symplectic form o
and the term )", dI; A df; are closed form. Moreover it is easy to see that the first term of (5.24])

can be rewritten as
Z aij(I)dIZ- A d]j =d <Z 52(1)> Adl;,

ij=1 i=1
and o can be rewritten as .
o= dI; Ad(6; — Bi(I)).
i=1
The proof is completed by setting ¢; := 6; — 8;(I). O

Remark 5.30. This proves that there exists a regular foliation of the phase space by invariant
manifolds, that are actually tori, such that the Hamiltonian vector fields associated to the invariants
of the foliation span the tangent distribution.

There then exist, as mentioned above, special sets of canonical coordinates on the phase space
such that the invariant tori are the level sets of the action variables, and the angle variables are the
natural periodic coordinates on the torus. The motion on the invariant tori, expressed in terms of
these canonical coordinates, is linear in the angle variables.

Indeed, since the h; are functions on I variables only, we have

n
=S Mg
— ol;
In other words, the Hamiltonian system defined by h; in the angle-action coordinate (I, ¢) is written

as follows
oh; 0 . Oh;

— =0, ;= I).

i LA )
This explains also why this property is called complete integrability. The Hamitonian equation in
these coordinates can indeed be solved explicitly.

s

(5.25)
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5.6 Geodesic flows on quadrics

In this chapter we prove that the geodesic flow on an ellipsoid (and, as a consequence, on quadrics)
is completely integrable. More precisely we consider the particular case when the function a is
a quadratic polynomial, i.e. every level set of our function is a quadric in R™. The presentation
follows the arguments of Moser [80].

Definition 5.31. Let A be an n X n non degenerate symmetrix matrix. The quadric Q associated
to A is the set
Q={zecR" (A z,z) =1}. (5.26)

For simplicity we deal with the case when A has simple distinct eigenvalues a; < ... < .
Define, for every A that is not an eigenvalue of A,

ax(z) = (A= A"z, z), Q) ={zx € R", a)(x) =1}.
If A =diag(aq,...,q,) is a diagonal matrix then (5.26]) reads
= R™ =1
Q={z eR", Z:; =
and Q) represents the family quadrics that are confocal to Q
n 2

sz{xeR", Za-x—/\:1}’ VAER\A,

1=1

where A = {aq,...,a,} denotes the set of eigenvalues of A. Note that Q) is an ellipsoid only if
A < aq, while @) = () when \ > a,.

Note. In what follows by a “generic” point x for A we mean a point x that does not belong to
any proper invariant subspace of A. In the diagonal case it is equivalent to say that z = (x1,...,2,),
with z; # 0 for every i = 1,... n.

Exercise 5.32. Denote by A, := (A — MI)~!. Prove the two following formulas:
(i) KAr =43,
(ii) A)\ — AM = (,u — )\)A)\Au.

Lemma 5.33. Let © € R™ be a generic point for A and let {Qx}xen be the family of confocal
quadrics. Then there exists exactly n distinct real numbers Ay, ..., Ay in R\ A such that z € Qj,
for every i =1,...,n,. Moreover the quadrics Q), are pairwise orthoghonal at the point x.

Proof. For a fixed x, the function A — ay(z) = (Ayx, z) satisfies in R\ A

dax
O\
as follows from part (i) of Exercise and the fact that A (hence A)) is self-adjoint. Thus ay(z) is

monotone increasing as a function of A, and takes values from —oo to +o0 in each interval |a;, aj11]
contained between two eigenvalues of A. This implies that, for a fixed z, there exist exactly n values

(z) = ( %\x,x> = |Ayz|?> >0, where Ay = (A- D)7,

140



AL, ..., Ap such that ay,(z) = 1 (that means x € Q,,). Next, using part (ii) of Exercise (also
known as resolvent formula) we can compute, for two distinct values A\; # \; and € 9y, N Q A
<an)\i, an)\j> =4 <A>\ix, A,\jx>
=4 <A,\iA,\j:17, :17>

4
= Ay — (A, =
>\j _>\z(< )\zx7x> < )\nyx>) 07

where again we used the fact that Ay is selfadjoint and (Ayz,z) =1 for all \. O
Now we define the family of Hamiltonians associated with the family of confocal quadrics

hx(z,p) = mtin a)(z + tp) = ax(éa(z, p)), (5.27)

Remark 5.34. Notice that the minimum in (5.27) is attained at a unique point, and the function
a) satisfies the assumptions (A1)-(A2) introduced in Section ??, only if the corresponding quadric
is an ellipsoid.

In what follows we generalize the considerations to all quadrics associated to A € R\ A. Indeed
we can still define the hamiltonian h) as the value of the function a) at its critical point along an
affine line (hence defining h) as an Hamiltonian on the set of affine lines as well).

Now we prove another interesting “orthogonality” property of the family. We show that if two
confocal quadrics are tangent to the same line, then their gradient are orthogonal at the tangency
points.

Proposition 5.35. Assume that two confocal quadrics are tangent to a given line, i.e. there exist
xz,y € R" such that

ax(§x) = au(§y),  where  Hi=a+tp, L=+t
Then (Ve ax, Ve, a,) = 0. In particular {hy,h,} = 0.

Proof. The condition that the quadric Q) is tangent to the line z + Ry at &) is expressed by the
following two equality

(Ax&ny) =0, (A &) =1 (5.28)

and an analogue relations is valid for Q,. Notice than from (5.28]) one also gets (A\&), &) =
(A&, 6\) = 1. Then, with the same computation as before using (5.32))

<V§Aa’>\7 vﬁuau> =4(Axén, Au€u>

=4 <A)\A,u£)\7 £H>

4

m(<f4>\5>ufu> - <Au5m£>\>) =0,

This implies also {hy, h,} = 0, thanks to Proposition .12 O
Proposition 5.36. A generic line in R™ is tangent to n — 1 quadrics of a confocal family.
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Proof. Write R" = L@ L+ where L = x+Rp and L* is the orthogonal hyperplane (passing through
x). Consider the orthogonal projection 7 : R” — L* in the direction of L. The following exercise
shows that the projection of a confocal family of quadrics in R™ is a confocal family of quadrics on
Lt

Exercise 5.37. (i). Show that the map z — af(z) := (A\(z + t\p), z + t\p) is a quadratic form
and that p € ker a’)’\. In particular this implies that aﬁ is well defined on the quotient R™/Rp.
(ii). Prove that {a}}, is a family of confocal quadric on the factor space (in n — 1 variables).

Applying then Lemma B33 to the family {a}}) we get that, for a generic choice of x, there
exists n — 1 quadrics passing through the point on the plane where the line is projected, i.e. the
line z + Rp is tangent to n — 1 confocal quadrics of the family {ay}x. O

Remark 5.38. Notice that this proves that every generic line in R" is associated with an orthonormal
frame of R™, being all the normal vectors to the n — 1 quadrics given by Proposition [5.36] mutually
orthogonal and orthogonal to the line itself.

Theorem 5.39. The geodesic flow on an ellipsoid is completely integrable. In particular, the
tangents of any geodesics on an ellipsoid are tangent to the same set of its confocal quadrics, i.e.
independently on the point on the geodesic.

Proof. We want to show that the functions A\i(x,p), ..., A\p—1(x,p) (as functions defined on the set
of lines in R™) that assign to each line z + Rp in R™ the n — 1 values of A such that the line is
tangent to Oy are independent and in involution.

First notice that each level set A\;(x, p) = ¢ coincide with the level set h. = 1. Hence, by Exercise
[433] the two functions defines the same Hamiltonian flow on this level set (up to reparametrization).
We are then reduced to prove that the functions he,,...,h., , are independent and in involution,
which is a consequence of Proposition

Since the lines that are tangent to a geodesic on the ellipsoid Q) form an integral curve of
the Hamiltoian flow of the associated function hy, and all the Poisson brackets with the other
Hamiltonians are zero, it follows that the line remains tangent to the same set of n—1 quadrics. [

Bibliographical notes

The notion of complete integrability introduced here is the classical one given by Liouville and
Arnold [9]. Sometimes, complete integrability of a dynamical system is also referred to systems
whose solution can be reduced to a sequence of quadratures. This means that, even if the solution
is implicitly given by some inverse function or integrals, one does not need to solve any differential
equation. Notice that by Theorem complete integrability implies integrability by quadratures
(see also Remark [5.30]).

The complete integrability of the geodesic flow on the triaxial ellipsoid was established by Jacobi
in 1838. Jacobi integrated the geodesic flow by separation of variables, see [65]. The appropriate
coordinates are called the elliptic coordinates, and this approach works in any dimension. Here we
give a different derivation, essentially due to Moser [80], as an application of the theory developed
in the first sections of the chapter. For further discussions on the geodesic flow on the ellipsoids or
quadrics, one can see [79, [10] [72].
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Chapter 6

Chronological calculus

In this chapter we develop a language, called chronological calculus, that will allow us to work in
an efficient way with flows of nonautonomous vector fields.

6.1 Motivation

Classical formulas from calculus that are valid in R™ are often no more meaningful on a smooth
manifold, unless one consider them as written in coordinates.

Let us consider for instance a smooth curve v : [0,7] — R™. The fundamental theorem of
calculus states that, for every t € [0,7], one has

A(t) = 1(0) + /0 i(s) ds. (6.1)

Formula (6.I) has no meaning a priori if v takes values on a smooth manifold M. Indeed, if
v :[0,T] — M, then 4(s) € T, (syM and one should integrate a family of tangent vectors belonging
to different tangent spaces. Moreover, since M has no affine space structure, one should explain
what is the sum of a point on M with a tangent vector.

Saying that formula (G.I)) is meaningful in coordinates means that, once we identify an open
set U on M with R™ through a coordinate map ¢ : U C M — R”™ (a set of n independent scalar
functions ¢ = (¢1,...,¢,)), we reduce (6.1)) to n scalar identities.

In fact, it is not necessary to choose a specific set of coordinate functions to let (G.I) have a
meaning. The basic idea behind the formalism we introduce in this chapter is that formula (6.1)
has a meaning along any scalar function, treating this function as the object where the formula is
“evaluated”.

More formally, let us fix a smooth curve « : [0,7] — M and a smooth function a : M — R and
let us apply the fundamental theorem of calculus to the scalar function a o~ : [0,7] — R. We get,
for every t € [0, 7] the following identity

a(4(t)) = a(~(0)) + /0 (1, 4(s)) ds (6.2)

Formula (6.2)) is meaningful even if we are on a manifold since it is a scalar identity. The integrand
is the duality product between d, s a € T;‘(S)M and (s) € Ty M.
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If we think to a point on M as acting on a function by evaluating the function at that point,
and to a tangent vector as acting on a function by differentiating in the direction of the vector,
then we can think to (€2) as formula (6.I) when “evaluated at a” , or at (6.2]) as the coordinate
version of (6.1]). If we choose as a the functions ¢; for ¢ = 1,...,n we are writing the coordinate
version of the identity in the classical sense.

In what follows we develop in a formal way this flexible language that has the advantage of
computing things “as in coordinates” keeping track the geometric meaning of the object we are
dealing with.

6.2 Duality

The basic idea behind this formal construction is to replace nonlinear objects defined on the man-
ifold M with their linear counterpart, when interpreted as maps on the space C°°(M) of smooth
functions on M.

We recall that the set C°°(M) of smooth functions on M is an R-algebra with the usual operation
of pointwise addition and multiplication

(a+b)(q) = alg) +b(q),
(Aa)(q) = Nal(q), a,be C*(M), A e R,
(a-b)(q) = a(q)b(q).

Any point ¢ € M can be interpreted as the “evaluation” linear functional
qg:C®(M) =R, q(a) :== a(q).
For every q € M, the functional ¢ is a homomorphism of algebras, i.e., it satisfies
qla-b) = q(a)q(b).
A diffeomorphism P € Diff (M) can be thought as the “change of variables” linear operator
P C®(M) — C®(M), P(a) := a(P(q)).

which is an automorphism of the algebra C*°(M).

Remark 6.1. One can prove that for every nontrivial homomorphism of algebras ¢ : C*°(M) — R
there exists ¢ € M such that ¢ = q. Analogously, for every automorphism of algebras ® : C*°(M) —
C>(M), there exists a diffeomorphism P € Diff(M) such that P = ®. A proof of these facts is
contained in [8, Appendix A].

Next we want to characterize tangent vectors as functionals on C*°(M). As explained in Chapter
2, a tangent vector v € T, M defines in a natural way the derivation in the direction of v, i.e. the
functional

v:C®(M) — R, v(a) = (dqa,v),

that satisfies the Leibnitz rule
v(a-b) =v(a)b(q) + a(q)v(b), Va,be C®(M).
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If v € T, M is the tangent vector of a curve g(t) such that ¢(0) = ¢, it is also natural to check

the identity as operators
d

dt,_q
Indeed, it is sufficient to differentiate at ¢ = 0 the following identity

q(t)(a-b) = q(t)a - q(t)b.

In the same spirit, a vector field X € Vec(M) is characterized, as a derivation of C*°(M) (cf. again
the discussion in Chapter [), as the infinitesimal version of a flow (i.e., family of diffeomorphisms
smooth w.r.t t) P, € Diff (M). Indeed if we set

0=

q(t) : C>(M) — R. (6.3)

v-2 B C®(M) — C=(M),
dt|—o

X
we find that X satisfies (see (Z14))
X(ab) = X(a)b+aX(b), Va,be C®M).

6.2.1 On the notation

In the following we will identify any object with its dual interpretation as operator on functions and
stop to use a different notation for the same object when acting on the space of smooth functions.

If P is a diffeomorphism on M and g is a point on M the point P(g) is simply represented by
the usual composition o P of the corresponding linear operator.

Thus, when using the operator notation, composition works in the opposite side. To simplify
the notation in what follows we will remove the “hat” identifying an object with its dual, but use
the symbol o to denote the composition of these object, so that P(q) will be go P.

Analogously, the composition X o P of a vector field X and a diffeomorphism P will denote the
linear operator a — X (a o P).

6.3 Topology on the set of smooth functions

We introduce the standard topology on the space C°°(M). Denote by Xi,...,X, a family of
globally defined vector fields such that

span{Xy,..., X, }, = T,M, Vqe M.
For « € N and K C M compact, define the following seminorms of a function f € C*°(M)

£ lloc = sup{|(X, - e Xiy f)(@)) : L < iy <70 < £ < 0}
qe ’

The family of seminorms || - ||o,x induces a topology on C°(M) with countable local bases of
neighborhood as follows: take an increasing family of compact sets {K,}nen invading M, i.e.,
K, C K41 C M for every n € N and M = UpenK,. For every f € C°°(M), a countable local
base of neighborhood of f is given by

1
Ufn = {geCOO(M) N = 9gllnk, < E}’ n € N. (6.4)
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Exercise 6.2. (i). Prove that (G4 defines a basis for a topology. (ii) Prove that this topology
does not depend neither on the family of vector fields Xi,..., X, generating the tangent space to
M nor on the family of compact sets { K, }nen invading M.

This topology turns C*°(M) into a Fréchet space, i.e., a complete, metrizable, locally convex
topological vector space, see [62, Chapter 2].

Remark 6.3. In differential topology this is also called weak topology on C'*°(M), in contrast with
the strong (or Whitney) topology that can be defined on C°°(M). The two topology coincide when
the manifold M is compact. For more details about different topologies on the spaces C*(M, N)
of C* maps among two smooth manifolds M and N one can see, for instance, [62, Chapter 2].

Example 6.4. Prove that, given a diffeomorphism P € Diff(M) and o € N, there exists a constant
Cq,p > 0 such that for all f € C°°(M) one has

HPf”a,K < Ca7P”f”a7p(K), VK C M.

In other words the diffeomorphism P, when interpreted as a linear operator on C*°(M), is
continuous in the Whitnhey topology. One can then define its seminorm

[Plla.x = sup{[[Pfllo.x : |flla,p(re) < 1}-

Similarly, given a smooth vector field X on M, one defines its seminorms by
[ XNl == sup{[[ X flloic : [l f a1, < 1}

6.3.1 Family of functionals and operators

Once the structure of a Fréchet space on C°°(M) is given, one can define regularity properties
of family of functions in C*°(M). In particular continuous and differentiable families of functions
t — a; are defined in a standard way. Moreover, we say that the family ¢ — a; € C°°(M) defined
on an interval [tg,t1] is

e measurable, if the map ¢ — a4(q) is measurable on [tg, 1] for every ¢ € M

e locally integrable, if

t1
/ gl scdt < oo,
t

0

for every a € N and K C M compact.

e absolutely continuous, if there exists a locally integrable family of functions b; such that

t
ar = ay, +/ bsds.
t

0

e Lipschitz, if
||at - asHa,K < Cs,K|t - 8|7

for every a € N and K C M compact.
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Analogous regularity property for a family of linear functionals (or linear operators) on C*°(M)
are then naturally defined in a weak sense: we say that a family of operators ¢t — A; is continuos
(differentiable, etc.) if the map t — Aa has the same property for every a € C*°(M).

We define a non-autonomous vector field as a family of vector fields X; that is locally bounded.
A non-autonomous flow is a family of diffeomorphisms P; that is absolutely continuous. Hence,
for any non-autonomous vector field X, the family of functions ¢t — X;a is locally integrable for
any a € C°°(M). Similarly, for any non-autonomous flow P; the family of functions t — a o P; is
absolutely continuous for any a € C*°(M).

Integrals of measurable locally integrable families, and derivative of differentiable families are
also defined in the weak sense: for instance, if X; denotes some locally integrable family of vector

fields we denote . .
/ Xsds: a|—>/ Xsads
0 0
d d

EXt Da E(Xta)

One can show that if A; and B; are continuous families of operators on C>°(M) wich are differ-
entiable at some tg, then the family A; o B; is differentiable at ty, and satisfies the Leibnitz rule
d

d
(At © Bt) = - At o Bt + At O — Bt . (65)
dt t=to ’ ’ dt t=to

The same result holds true for the composition of functionals with operators. For a proof of the
last fact one can see [8, Chapter 2 and Appendix A].

4
dt

t=to

6.4 Operator ODE and Volterra expansion

Consider a nonautonomous vector field X; and the corresponding nonautonomous ODE

Sa()=Xla),  a€M. (6.

Using the notation introduced in the previous section we can rewrite (6.6) in the following way

d

Salt) = at) o X, (67)

Indeed assume that ¢(t) satisfies (6.6]) and let a € C°°(M). Using “hat” notation of Section

(0) a = 500 = Sala(0) = (dyya X:(a(0) = (R a(0) = @)« K. (69

As discussed in Chapter 2 the solution to the nonautonomous ODE (6.6]) defines a flow, i.e., family
of diffeomorphisms, P ;.
Lemma 6.5. The flow Ps; defined by (6.10) satisfies the operator differential equation

%Ps,t = P10 Xy, P, =1d. (6.9)
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Proof. Fix a point gy € M and denote by ¢(t) the solution of the Cauchy problem (6.6]) with initial
condition ¢(s) = go. By the very definition of P,; we have that ¢(t) = P;+(qo), which rewrites as
Q(t) =4qo°© Ps,t- O

Definition 6.6. We call P, ; the right chronological exponential and use the notation

t
P, = &P / X, dr. (6.10)

Notice that the arrow in the notation recalls in which “position” the vector field appears when
differentiating the flow (cf. (G.9).

6.4.1 Volterra expansion

In the following discussion we set for simplicity the initial time s = 0. In this case we use the short
notation P := Fy;.
The operator differential equation (6.9) rewrites as

P=PoX
Pt (6.11)
Py=1d
and can be rewritten as an integral operator equation as follows
t
P =1d+ / P, o X.ds (6.12)
0

Replacing iteratively P, in the right hand side of (6.12)) with the equation (6.12)) itself, we have
t S1
P, :Id—l—/ <Id—|—/ PS2®X52d82> @Xsldsl
0 0

t
:Id+/ X.ds + // P,, 0 Xy, 0 X, ds1dss
0

0<s2<s1<t

N-1
:Id—l-z / XskG---GXsldkS—i—RN

k=1 g<g <. <si<t

where the remainder term is defined as follows

Ry := // Py oXgpo - 0X,dVs

0<sny<..<s1<t

Formally, letting NV — oo and assuming that Ry — 0, we can write the flow P, as the chronological

series o
Id—l—Z/---/Xsk@---@Xsldks (6.13)
k=1 Ag(t)

where Ap(t) = {(s1,...,51) € R¥|0 < s < ... < 51 <t} denotes the k-dimensional symplex.
A discussion about the convergence of the series is contained in Section [6.Al
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Remark 6.7. If we write expansion (6.13]) when X; = X is an autonomous vector field, we find that
the chronological exponential coincides with the exponential of the vector field

t 0
(ﬁ/ de:ld%—Z/---/Xe--- o X d¥s
0 k=1 k

Z vol(Ag(t) = k:'Xk etX,
k=0 k=0

since vol(Ag(t)) = t¥/k!. In the nonautonomous case for different time X, and X, might not
commute, hence the order in which the vector fields appears in the composition is crucial. The
arrow in the notation recalls in which “direction” the parameters are increasing.

Exercise 6.8. Prove that in general, for a nonautonomous vector field X, one has

t
&b / X,ds # elo Xsds, (6.14)
0

Prove that if [X;, X;] = 0 for all ¢,7 € R then the equality holds in (6.14))

Proposition 6.9. Assume that P, satisfies (6.11) and consider the inverse flow Q; = (P;)~!
Then Q satisfies the Cauchy problem

{Qt = —X;0Qy, (6.15)

Qo = Id.

Proof. From the definition of inverse flow we have the identity P; e Q; = Id, for every t € R.
Differentiating and using the Leibnitz rule one obtains

0Q¢+P,oQy =0. (6.16)

Using (6.17) then we get ‘
PtGXtGQt"i'Pt@Qt:O (617)
Multiplying both sides by Q¢ on the left, one gets (G.I5]). O

The solution to the problem (6.I5]) will be denoted by the left chronological exponential

Q. ::%/0 (—X,)ds. (6.18)

Repeating analogous reasoning, we find the formal expansion

ﬁo/( ds~Id+Z/ / (—Xa)o o (= Xy)d"s.

k=1 o< <..<si<t

The difference with respect to the right chronological exponential is in the order of composition.
Again, the arrow over the exponential says in which direction the time increases and in which
position the vector field appears when differentiating the flow.
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We can summarize all the properties of the chronological exponential as follows

d t t

E@/ Xsds:(ﬁ/ Xds o X, (6.19)
0 0

d t t

%«%/ Xsd.s:XtG%/ Xds, (6.20)
0 0

(&ﬁ/ot Xsds>_1 :&p/ot(—Xs)ds. (6.21)

6.4.2 Adjoint representation

Now we can study the action of diffeomorphisms on vectors and vector fields. Let v € T, M and
P € Diff (M). We claim that, as functionals on C*°(M), we have

Puv=voeP.

Indeed consider a curve ¢(t) such that ¢(0) = v and compute

(Paa =G| alPla(t) - (&

q(t)> © Pa=vo Pa
t=0

Recall that, if X € Vec(M) is a vector field we have P, X ‘q = P.(X| poi (q)). In a similar way we
will find an expression for P,X as derivation of C*(M)

PX=PloXoP (6.22)

Remark 6.10. We can reinterpret the pushforward of a vector field in a totally algebraic way in the
space of linear operator on C*°(M). Indeed

P.X = (AdPV)X, (6.23)

where
AdP: X —»PoXoP™ !, VX e Vec(M)
is the adjoint action of P on the space of vector ﬁeldsEI.

Assume now that P, = éxp fot Xds. We try to characterize the flow Ad P, by looking for the
ODE it satisfies. Applying to a vector field Y we have

dt T dt
=P oXioYoP '+ PoYo(-Xy)o P!
:PtG(XtGY—YGXt)GPt_l
= (Ad P)[ Xy, Y]
= (Ad P)(ad Xy)Y

<1Ad Pt> y -4 (AdP)Y = %(Pt oY o P71

where

ad X : Y = [X, Y],

this is the differential of the conjugation Q@ — P o Q © P~ Q € Diff(M)
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is the adjoint action on the Lie algebra of vector fields.
In other words we proved that Ad P; is a solution to the differential equation

Ay = Ay ead Xy, Ay = 1d.

Thus it can be expressed as chronological exponential and we have the identity

Ad <exﬁ /Ot Xsds> :@/Ot ad X,ds. (6.24)

Notice that combining (6.24]) with (6:23)) in the case of an autonomous vector field one gets
etX = gtadX (6.25)
Exercise 6.11. Prove that, if [X;,Y] =0 for all ¢, then (AdP,)Y =Y.
Remark 6.12. More explicitly we can write the following formal expansion
(AdP)Y ~Y + f: . / (Xo, sy [ Xy, [ Xy, YV]|dFs, (6.26)
k=10<s, <. <s1<t

which generalizes the formula (2.31). Indeed if P, = X is the flow associated with an autonomous
vector field we get

(Ade)Y =,y =y + 3
k=1

tk

XL XY

~Y +t[X,Y] + g[X, (X, Y]] + o(t?)

Exercise 6.13. Prove the following using operator notation:

1. Show that ad is the infinitesimal version of the operator Ad, i.e. if P; is a flow generated by
the vector field X € Vec(M) then

dt t=0

2. Show that, if P € Diff(M), then P, preserves Lie brackets, i.e. P[X,Y]| = [P. X, P.Y].

3. Show that the Jacobi identity in Vec(M) is the infinitesimal version of the identity proved in
2. (Hint. use P; = e!?)

Exercise 6.14. Prove the following change of variables formula for a nonautonomous flow:
t t
Po e?fo/ Xdso P71 = eTf)/ (Ad P) X ds. (6.27)
0 0
Notice that for an autonomous vector field this identity reduces to (2:23)).
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6.5 Variations Formulae

Consider the following ODE
¢ = X¢(q) +Yi(q) (6.28)

where Y} is thought as a perturbation term of the equation (6.6]). We want to describe the solution
to the perturbed equation (6.28]) as the perturbation of the solution of the original one.

Proposition 6.15. Let Xy, Y; be two nonautonomous vector fields. Then

e?ﬁ/ot(xs +Y,)ds = e?ﬁ/ot <e?15 /0 adXTd7-> stsee?ﬁ/ot X,ds (6.29)
= &xp /Ot(Ad P,)Y,dso P, (6.30)

where P, = @fg Xsds denotes the flow of the original vector field.

Proof. Our goal is to find a flow R; such that

t
Q; = e?ﬁ/ (Xs+Y,)ds =R, o P, (6.31)
0
By definition of right chronological exponential we have
Qr=Qio (X +Y)) (6.32)
On the other hand, from (6.31]), we also have

Qi=RioP+ Riob
=RioP+ RioPoX,
=RioP +QioX, (6.33)

Comparing ([6.32) and (6.33)), one gets
QoY = Rt o Py
and the ODE satisfied by R, is

Ry=QoYio P!
— Ryo (AdR)Y,

Since Ry = Id we find that R; is a chronological exponential and
t t
e?ﬁ/ (X, +Y.)ds :@/ (Ad P,)Yuds o P,
0 0
which is (630). Plugging (6.24]) in (630]) one gets (6.29)). O

Exercise 6.16. Prove the following versions of the variation formula:
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(7) For every non autonomous vector fields X;,Y; on M
5341&+&@@:&$A%@@@&§[<a§[%m&m>n@ (6.34)
(77) For every autonomous vector fields X,Y € Vec(M) prove that
tXHY) — & /Ot 21Xy dso et = exp /Ot e;XYds o et (6.35)
::Jxeéﬁéété&*”dXYds (6.36)

6.A Estimates and Volterra expansion

In this section we discuss the convergence of the Volterra expansion

Id+§:/i~/X%®'~eXﬁfs (6.37)
k=1 Ag(t)

where Ag(t) = {(s1,...,5:) € R¥|0 < s, < ... < 51 < t} denotes the k-dimensional symplex.
Recall that if X; = X is autonomous then the series (6.37)) simplifies in
X (6.38)
k=0

We prove the following result, saying that in general, if the vector field is not zero, the chronological
exponential is never convergent on the whole space C*°(M).

Proposition 6.17. Let X be a nonzero smooth vector field. Then there exists a € C*°(M) such
that the Volterra expansion

HX a (6.39)
k=0

s not convergent at some point q € M.

Proof. Fix a point ¢ € M such that X(¢q) # 0 and consider a smooth coordinate chart around ¢
such that X is rectified in this chart. We are then reduced to prove the statement in the case when
X = 0, in R™. Fix an arbitrary sequence (¢, )nen and let f : I — R defined in a neighborhood I of
0 such that () (0) = ¢y, for every n € N. The existence of such a function is guaranteed by Lemma
Then define a(z) = f(21), where z = (z1,2’) € R™. In this case X*a(q) = 0% f(0) = ¢; and

k
k=0 k=0
which is not convergent for a suitable choice of the sequence (¢, )nen. O

Lemma 6.18 (Borel lemma). Let (¢,)nen be a real sequence. Then there exist a C*° function
f: 1 — R defined in a neighborhood I of 0 such that f(")(O) = ¢, for everyn € N.
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Proof. Fix a C° bump function ¢ : R — R with compact support and such that ¢(0) = 1 and
#Y)(0) = 0 for every j > 1. Then set

gr(x) = %x’“qﬁ <§> (6.41)

Notice that g,gj)(O) = 0jxc, where 0} is the Kronecker symbol, and |g,(€j)(x)| < C’j7k€§_j for every
x € R and some constant Cj > 0. Then choose ¢, > 0 in such a way that

(@) <279, Vj<k-1VzeR, (6.42)

and define the function

f@):=> gr(x). (6.43)
k=0

The series (6.43]) converges uniformly with all the derivatives by (6.42]) and, by differentiating under
the sum, one obtains

@) =Y gl @. 90 =Y g0 =a;
k=0 k=0

O

Even if in general the Volterra expansion is not convergent, it gives a good approximation of
the chronological exponential. More precisely, if we denote by

N-1
Sn(t) :=1d+ Z /"'/Xske @Xsldks
k=1 Ag(t)

the N-th partial sum, we have the following estimate.

Theorem 6.19. For everyt >0, a, N € N, K C M compact, we have

H <exﬁ /Ot X,ds — SN(t)> a

for some K' compact set containing K and some constant C = Cy, v g > 0.

C o ! N
< N'eCfO ||Xs||a,K/dS </ HXSHOH-N—LK,dS> Ha”a—l—N,Kla (644)
. 0

o, K

The proof of this result is postponed to Appendix [6.Bl Let us specify this estimate for a non

autonomous vector field of the form .

Xt == Z ul(t)XZ

i=1
where X1, ..., X,, are smooth vector fields on M and u € L%([0, T],R™).

Theorem 6.20. For every t > 0, o, N € N, K C M compact, we have (denoting ||uli; =
w21 (f0,4,m))

C
< ﬁec”“”“HUIIftllaHaw,K' (6.45)
o, K

H <<ﬁ/0 ;ui(t)Xi - SN(t)> a

for some K' compact set containing K and some constant C' = Cq N,k > 0.
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Proof. 1t follows from the previous theorem and from the fact that for a vector field of the form
X =3, ui(t)X; we have the estimate

t
/0 1 X larcrds < lall ot go.0.2m) (6.46)

Indeed we have for every f such that ||f| o415 <1 that

ZUZ(S)XZ]C < sup Xil O .- ®Xz'1 (Z UZ(S)XZf)' (647)
i=1 ok TR i=1
< sup D fui(s)| X, © o Xy o Xaf | <D Jui(s)] (6.48)
e i=1

O

To complete the discussion, let us describe a special case when the Volterra expansion is actually
convergent. One can prove the following convergence result.

Proposition 6.21. Let X; be a nonautonomous vector field, locally bounded w.r.t. t € I. Assume
that there exists a Banach space (L,|| - ||) € C*°(M) such that

(a) Xia € L for alla € L and allt € I
(b) sup{||Xia| :a € L,|ja]| <Lt €I} <0

Then the Volterra expansion ([6.37) converges on L for everyt € I.

Proof. We can bound the general term of the sum with respect to the norm || - || of L
[ [xae o oxgadis| < [ [l 1xaldts o] (6.49)
Ag(t) Ag(t)

- ( /0 t ||Xsuds>k lal (6.50)

then the norm of the k-th term of the Volterra expansion is bounded above by the exponential
series, and the Volterra expansion converges on L uniformly. O

Remark 6.22. The assumption in the theorem is satisfied in particular for a linear vector field X
on M =R" and L C C*(R") the set of linear functions.

If M, the vector field X; and the function a are real analytic, then it can be proved that the
Volterra expansion is convergent for small time. For a precise statement seet [5].
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6.B Remainder term of the Volterra expansion

In this Appendix we prove Theorem [6.19] We start with the following key result.

Proposition 6.23. Let X; be a complete non autonomous vector field and denote by P; s its flow.
Then for every t > 0, a € N and K C M compact, there exists K' compact containing K and
C > 0 such that

I1Posalla,c < Celo Xellwrcrds|lq] e (6.:51)

Proof. Define the compact set

K= | Ros(K),
s€[0,t]

and the real function

| Pot flla, i
I fllar1, ¢,

mw:am{

fGCmMHJNmmm#U} (6.52)

Notice that the function S is measurable in ¢ since the supremum in the right hand side can be
taken over an arbitrary countable dense subset of C*°(M). We have the following lemma, whose
proof is postponed at the end of the proof of the proposition.

Lemma 6.24. For everyt >0, a € N and K C M compact, there exists C > 0 such that

1Potfllax < CBONSfllavk,s V€ CT(M). (6.53)

Let us now consider the identity
t
Pya=a+ / Py so Xsads
0
which implies
¢
[Pocallar < llalla,x +/ [1Po,s © Xsalla,kds.
0
Appying Lemma [6.24] with f = X a we get

t
1P0,¢0llov1c < ll@llarc + 0/ B[ Xsalla . ds
0

t
= Halla,KJrCllaHaH,Kt/ B Xsllo i, ds
0

where we used that K, C K; for s € [0,¢], hence || - ||a,x, < || - |la,k,- Dividing by |la|la+1,x, and
using [lalla, < lallasii, we get

1Po.0alla, x

t
§1+0/B@W&M&®
Tallor.rc .

By definition ([652]) of the function 8 we have the inequality
t
8O <1+C [ )X,k (6:54)
0
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that by Gronwall inequality implies
5@) < ecf(f [ Xslla, i ds (6.55)

and ([6.51) follows combining the last inequality and (6.53) choosing f equal to a and for every
compact set K’ containing K;. O

Now we complete the proof of the main result, namely Theorem [6.19] Recall that we can write

t
aﬁ/ Xods — Sy (t) = // Posy ©Xey © o0 0 Xgds
0

0<sny<...<s1<t

hence

|

Applying Proposition [6.23] to the function X, © --- © X, a one obtains

<eﬁ% /0 "Xads— SN(t)> a

((ﬁ /Ot X ds — SN(t)> a

// |1 Posy © Xsy© - - @XslaHa’KdS

<
a, K
’ 0<sn<...<s1<¢

|

for some compact K’ containing K. Now let us estimate the integral

< Celt 1 Xsllarcds // 1Xgy o - © Xyall, o ds  (6.56)

K
“ 0<5N<... <51 <t

| Xsy @ - QXS1aHa7K’ ds (6.57)
0<sny<..<s1<t

< [ Wl

0<sny<...<s1<t

XsN,lHaJFLK/'“ © HX51HQ+N—1,Kf HCLHaJ,-N,K’ ds (6.58)

< Ha||a+N,K' ||XSNHa+N—1,K' | Xsnoa Ha+N—1,K' e HXSl”oHrN—l,K’ ds

0<sny<...<s1<t

(6.59)
1 ([ N
< Jallay i 3 ( AR ds> (6.60)
"\Jo
and combining this inequality with (6.56]) we are done.

Proof of Lemma [6-Z7) By Whitney theorem it is not restrictive to assume that M is a submanifold
of R" for some n. We still denote by {X;}i=1 ., the vector fields (now defined on R") spanning
the tangent space to M.

Notice that if || f||a,x, = 0 then also ||Py¢f|la,x = 0 and the identity is satisfied, hence we can
assume ||f|o kx, # 0. Fix a point gy € K where the supremum in

1Po1fllare = sup{|(Xiy o -0 Xy o Poaf)@)] : 1 <25 <m0 < £< o}
qe ’
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is attained (the existence guaranteed by compactness of K') and let py be the polynomial in R™ and
of degree < « that coincides with the Taylor polynomial of degree a of f at ¢ = Py +(go). Then by
construction we have

1 Po,ef e < N Poupsllasc IPslasgr < N1f llov e (6.61)

Moreover in the finite-dimensional space of polynomials in R” of degree < « all norms are equivalent
then there exist C' > 0 such that
IPflloi: < Cllpflleng: (6.62)

Combining (6.61)) and (6.62) with [|pf|la,x, = ||Pfllas+1,k, (since ps is a polynomial of degree o)
and the definition of 5, we have

| Po,t.fllo 56 < [ P0,tPfll 0, < CHPo,tPfHa,K < Cllpo,tPfHa,K < CH).
||f||a,Kt ||pr0£,IIt ||pf||a,Kt ||pf||0£+1,Kt
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Chapter 7

Lie groups and left-invariant
sub-Riemannian structures

In this chapter we study normal Pontryagin extremals on left-invariant sub-Riemannian structures
on a Lie groups G. Such a structures provide most of the examples in which normal Pontryagin
extremal can be computed explicitly in terms of elementary functions.

We introduce a Lie groups as a sub-group of the group of diffeomorphisms of a manifold M
induced by a family of vector fields whose Lie algebra is finite dimensional.

We then define left-invariant sub-Riemannian structures. Such structures are always constant
rank and, if they are of rank k, they can be generated by exactly k linearly independent vector
fields defined globally. On such a structure we have always global existence of minimizers.

We then discuss Hamiltonian systems on Lie groups with left-invariant Hamiltonians. Such
Hamiltonian systems are particularly simple since their tangent and cotangent bundles are always
trivial. They have always a certain number of constant of the motion that for systems on a Lie
group of dimension 3 are sufficient for the complete integrability.

We study in details some classes of systems in which one can obtain the explicit expression of
normal Pontryagin extremals.

7.1 Sub-groups of Diff(M) generated by a finite dimensional Lie
algebra of vector fields

Let M be a smooth manifold of dimension n and let L C Vec(M) be a finite-dimensional Lie algebra
of vector fields of dimension dim L = £. Assume that all elements of L are complete vector fields.
The set

G:={eXo...0e®|keN Xy,..., X, € L} C Diff(M), (7.1)

that has a natural structure of subgroup of the group of diffeomorphisms of M, where the group
law is given by the composition. We want to prove the following result.

Theorem 7.1. The group G can be endowed with a structure of connected smooth manifold of
dimension £ = dim L. Moreover the group multiplication and the inversion are smooth with respect
to the differentiable structure.
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To prove this theorem, we build the differentiable structure on G by explicitly defining charts.
To this aim, for all P € G let us consider the map

dp:L -G, ®p(X)=Poer.
Proposition 7.2. The following properties holds true:
(i) there exists U C L neighborhood of 0 such that ® p|y is invertible on its image, for all P € G,
(i1) for all P' € ®p(U) there exists V- C U neighborhood of 0 such that ®p:/(V) C ®p(U).

Thanks to the previous result, one can introduce the following basis of neighborhoodsEI on G:
B={®p(W)|Pcg, W CUO0ecW}. (7.2)

where U is determined as in (i) of Proposition Part (ii) of Proposition ensures that (7.2))
satisfies the axioms of a basis for generates a unique topology on G. Indeed it is sufficient to apply
it twice to show that if ®p(W)N®p/(W') # () then there exists Q € Pp(W)NPp/(W') and V C U
with 0 € V such that (I)Q(V) C q)p(W) N q)p/(W,).

Once the topology generated by B is introduced the map ®p|y is automatically an homeo-
morphism, and this proves that G is a topological group, i.e., a group that is also a topological
manifold such that the multiplication and the inversion are continuous with respect to the topo-
logical structure. Indeed it can be shown that, if ®p(W) N ®p/(W’) # B, then the change of chart
<I>]_31 N®p - WNW — W N W is smooth with respect to the smooth structure defined on the
vector space L (cf. Exercice [[.10). Hence G has the structure of smooth manifold.

7.1.1 Proof of Proposition

To prove this theorem we use a reduction to a finite dimensional setting, by evaluating elements of
G, that are diffeomorphisms of M, on a special set of £ points, where ¢ is the dimension of L.
To identify this set of points, we first need a general lemma.

Lemma 7.3. For every k € N and Iy, ..., F : R™ — R" family of linearly independent functions,
there exist x1,...,x € R™ such that the vectors

(E(xl),Fi(xQ),...,E(xk))7 izl,...,k:
are linearly independent as elements of (R™)F =R™ x ... x R,

Proof. We prove the statement by induction on k.

(i). Since F} is not the zero function then there exists 1 € R™ such that Fj(z;1) # 0.

(ii). Assume that the statement is true for every set of k linearly independent functions and
consider a family Fi,..., Fiy1 of linearly independent functions. Let x1,...,z; to be the set of

'Recall that a collection B of subset of a set X is a basis for a (unique) topology on X if and only if
(a) Upes = X,
(b) for all By, B2 € B with B1 N By # () there exists nonempty Bs € B such that Bs C B1 N Ba.
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points obtained by applying the inductive step to the family F},..., Fy. If the claim is not true for

k + 1, it means that for every & € R™ there exists a non zero vector (¢1(Z),...,cg+1(Z)) such that
k+1 k+1
> (@) Fi(E) =0, c(B)Fi(z;) =0,  j=1,...,k, (7.3)
=1 i=1
By definition of x1,...,x; we have that cxy1(Z) # 0, otherwise we get a contradiction with the
inductive assumption. Hence we can assume c;11(Z) = —1 and rewrite equation (73] as
> (@) Fi(x;) = Foaa(zy),  j=1,....k (7.4)
i=1

ZCZ(@E@) = Fi1(2), (7.5)

=1

Treating (4] as a linear equation in the variables ¢q, ..., ¢, its matrix of coefficients has rank k
by assumption, hence its solution (that exists) is unique and independent on Z. Let us denote it

by (c1,...,ck). Then (TH) gives
k
S GF(T) = Foa ()
i=1
for every arbitrary & € R™, which is in contradiction with the fact that Fi,..., Fy41 is a linearly
independent family of functions. O
As an immediate consequence of the previous lemma one obtains the following property.

Proposition 7.4. Let X1,..., Xy be a basis of L. Then there exists q1,...,q0 € M such that the
vectors

(Xi(q), - -+ Xi(qe)), i=1,...,¢,

are linearly independent as elements of Ty, M x ... x Ty, M.

In the rest of this section, the points g¢i,...,q, are determined as in Proposition [7.4l The
following proposition defines the neighborhood U that appears in the statement of Proposition

Proposition 7.5. There exists a neighborhood of the origin U C L such that the map
¢:U =M, o(X) = (X (q),-...e¥ (@) € M,
s an tmmersion at the origing

Proof. 1t is enough to show that the rank of ¢, is equal to . Computing the partial derivatives at
0 € L of ¢ in the directions X1, ..., X, we have

o d £X; tX; :
_ 2 (q1), €Ki () = (Xi(q),- - Xi(ap)), 1,0
ox, V=g tzo(e (1), e (@) = (Xi(qr) (a0)) i ¢
and these are linearly independent as elements of Ty, M X ... x T,,M by Lemma [7.4 O

2here MY =M x ... x M.
N—_——

£ times
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We are now going to study L seen as a Lie algebra of vector fields on M*. Given k € N, we can
give Vec(MF*) = Vec(M)* the structure of a Lie algebra as follows:

(X1, X3, (Ye, . Y] = (XL, - (X i)

Lemma 7.6. For every k € N the map i : L — Vec(M)¥ defined by i(X) = (X,...,X) defines an
involutive distribution on MF.

Proof. Tt follows from the identity [i(X),i(Y)] = i([X, Y]), since
(X,....X),(,....Y)] = ([X,Y],...,[X,Y]). O
Lemma 7.7. If P € G then P,L = L.
Proof. Let us first prove that P,L C L for every P € G. Since elements in G are written as
P=eX10o... 0%k, X; €L
it is enough to show that for every X,Y € L we have that XY € L. By (6.25]) we have the identity
Xy = ¢ad Xy,

The Volterra exponential series of —ad X converges, since L is a finite dimensional space. The N-th
term of the sum

(DR
Y+) o (ad )Y,
k=1 ’

belongs to L for each N € N, since L is a Lie algebra. Hence one can pass to the limit for N — oo
and e 24Xy ¢ L. This proves that P,L C L. Actually P,L = L since P,L is a Lie algebra and
dim P,L = dim L, since P is a diffeomorphism. U

For every P € G we introduce
¢p: U — M, ¢p=Pog
or, more explicitly
¢p(X) = (PoeX(qr),...,Poe¥(q)), XeU.

Thanks to Proposition it follows that ¢p is an immersion at zero for all P € G, since it is a
composition of an immersion with a diffeomorphism.

Proposition 7.8. For all P € G we have that ¢p(U) belongs to the integral manifold in M* of the
foliation defined by L (seen as distribution in Vec(M)*) passing through the point (P(q1), ..., P(q)) €
M*. Moreover for every P € G, ¢pp(U) belongs to the same leaf of the foliation.

Proof. The Lie algebra L, seen as a distribution in Vec(M)’, is involutive. Thus it generates a
foliation by Frobenius theorem. The leaf of the foliation passing through (qi,...,q¢) (that has
dimension /) has the expression

A ~

N:{(P(ql)v"'vp((u))|P:eXIO"'OXk7k7€N7X17"'7Xk6L}7
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while for each P € G,
op(U) ={(PoeX(q1),...,PoeX(q) | P€G,X €U C L},

hence for each P € G we have that ¢p(U) C N. The image ¢p(U) is an immersed submanifold
of dimension ¢ that is tangent to L thanks to Lemma [(7] and passes through the point ¢p(0) =

(P(q1), -, P(q)) € M.
O

Remark 7.9. The previous result implies that for every (qi,...,q;) € ¢p(U) N ¢p/(U) there exists
uniques X, X' € U such that

(PoeX(q1),...,PoeX(q))= (P oeX(q),....P oeX (q)) = (d},....,q)). (7.6)

In other words we are saying that the two diffeomorphisms P o eX and P’ o eX" coincides when
evaluated on the set of points {q1,...,q¢}.

Exercise 7.10. Prove that the maps that associates X — X' defined in (Z.6]) is smooth.

The argument that is developed in the next section shows that actually, not only one has the
identity (Z6)), but also P oeX = P’ oeX’ as diffeomorphisms.
7.1.2 Passage to infinite dimension

In what follows, to study elements of G as diffeomorphisms and not only as acting on a finite set
of points, we use the following idea: we study diffeomorphisms on a set of £ + 1 points, where the
first one is “free”.

Fix ¢ € M. Let us introduce

5: U— MZ+17 E(X) = (eX(q)veX(q1)7' .. 7€X(q€)) € Mé-"_l‘
Moreover, we define for every P € G
ép: U — ML Op(X)=(PoeX(q),PoeX(q),...,PoeX(q)) e M

The following Proposition can be proved following the same arguments as the one of Proposition

8

Proposition 7.11. Fiz ¢ € M. For all P € G we have that ¢p(U) is an integral manifold of
dimension € in M1 of a foliation defined by L (seen as distribution in Vec(M)™1) and passing
through the point (P(q), P(q1),...,P(q)) € M. Moreover, for every P € G, ¢p(U) belong to
the same leaf of the foliation.

Notice that if 7 : M1 — M* denotes the projection 7(qo,q1,...,q) = (q1,...,q) that forgets
about the first element we have ¢ = 7o ¢ and ¢pp = mo ¢pp. Notice that by construction

™1 ¢p(U) = ¢p(U) (7.7)

is a diffeomorphism for every choice of P (in particular it is one-to-one).
We can now prove the main result.
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Proof of Proposition[T.3. (i). It is enough to show that ®p is injective on its image. In other words
we have to show that, if PoeX = PoeY for some X,Y € U, then X =Y. The assumption implies
that

¢p(X) = (Poe*(qr),...,PoeX(q)) = (Poe  (q1),...,Poe (q)) = ¢p(Y)

hence by invertibility of ¢p on U we have that X =Y.
(ii). Recall that, by construction, one has the following relation between ®p and its finite-
dimensional representation ¢p

op(W) ={(Q(q1),..., Q) : R € @p(W)}, W CU

For every V C U, with 0 € V, one has that ¢p/(V) and ¢p(U) are integral submanifold of M*
belonging to the same leaf of the foliation, thanks to Proposition [.8

Since by assumption P’ € ®p(U), it follows that the intersection ¢p:/ (V) N ¢pp(U) is open and
non empty in M* and contains the point (P'(q1), ..., P'(q;)). We can then choose V small enough
such that ¢p/(V) C ¢op(U).

This inclusion of the finite-dimensional images implies the following: for every X’ € V there
exists a unique element X € U such that P’ o eX’ = P o eX when evaluated on the special set of
points, namely

(PoeX(q),...,PoeX(q) = (P oeX (q1),....,P oeX (q0)). (7.8)

To complete the proof it is enough to show that P’ o eX "=PoeX at every point.

_To tEis aim fix an arbitrary ¢ € M and let us consider the extEnded ﬁniﬁe—dimensional maps
¢p and ¢ps. Let us firs prove that, for V' defined as before, one has ¢p/(V) C ¢p(U) (indepedently
on q). Assume that ¢p(U) \ ¢p/(V) # (), then we have

m(0p (V) = 7(dp (V) N op(U)) Un(@p(U) \ ¢p/(V)) (7.9)
= ¢p (V) Un(¢p(U)\ dpi(V)) (7.10)

This gives a contradiction since on one hand the left-hand is connected thanks to (Z.1) (for P = P'),
while on the other hand it is written as a union of nonempty disjoint sets.
This implies in particular: for every X’ € V' UW there exists a unique element X € U (a priori

dependent on ¢) such that P’ o eX’ = P oeX when evaluated at {q,q1,...,q}, namely
(Po e)?(q), Po ei(ql), ...,Po e)?(qz)) = (P oeX(q), P oeX (q1),...,P o™ (q)). (7.11)

Combining (T.8)) with (ZII]) one obtains

~

¢P(X) = (P © eX(q1)7 s 7P © eX(qf)) = (P © eX(q1)7 s 7P © eX(qf)) = ¢P(X)
By invertibility of ¢p on U, it follows that X=X , independently on ¢. Thus by (7Z1I]) and the
arbitrarity of ¢ we have P’ o eX/(q) = PoeX(q) for every g, for every fixed X’ € V, as claimed.

O
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7.2 Lie groups and Lie algebras

Definition 7.12. A Lie group is a group G that has a structure of smooth manifold such that the

group multiplication
GxG— G, (g, h) — gh

and inversion

G — G, gb—)g_l

are smooth with respect to the differentiable structure of G.

We denote by Ly : G — G and Ry : G — G the left and right multiplication respectively
Ly(h) = gh, Ry(h) = hg.

Notice that Ly and Ry are diffeomorphisms of G' for every g € G. Moreover Ly o Ry = Ry o Ly for
every g,q' € G.

Definition 7.13. A vector field X on a Lie group G is said to be left-invariant (resp. right-
invariant) if it satisfies (Lg)«X = X (resp. (Ry)«X = X) for every g € G.

Remark 7.14. Every left-invariant vector field X on a Lie group G its uniquely identified with its
value at the origin 1 of the Lie group. Indeed if X is left-invariant, it satisfies the relation

X(g) = L X (1). (7.12)

On the other hand a vector field defined by the formula X(g) = Lg.v for some v € T1G, is
left-invariant.

Notice that left-invariant vector fields are always complete.

Definition 7.15. The Lie algebra associated with a Lie group G is the Lie algebra g of its left-
invariant vector fields.

By Remark [[.14] the Lie algebra g associated with a Lie group G is a finite dimensional Lie
algebra, that is isomorphic to T7G as vector space. Hence g endows T71G with the structure of Lie
algebra. In particular dimg = dimG. Given a basis ey, ..., e, of T1G we will often consider the
induced basis of g given by

Xi(g) = (Lg)«éi, i=1,...,n.

When it is convenient we identify g with 771G and a left invariant vector field X with its value at
the origin X (1).

Definition 7.16. Given a Lie group G and its Lie algebra g the group exponential map is the map
exp: 1hG — G, exp(X) = X (1). (7.13)

It is important to remember that in general the exponential map (TI3]) is not surjective.

If G; and G4 are Lie groups, then a Lie group homomorphism ¢ : G1 — G5 is a smooth map
such that f(gh) = f(g)f(h) for every g,h € G1. Two Lie groups are said to be isomorphic if there
exist a diffeomorphism ¢ : G; — G that is also a Lie group homomorphism.

Two Lie groups G1 and G are said locally isomorphic if there exists neighborhoods U C G4
and V' C Gy of the identity element and a diffeomorphism f : U — V such that f(gh) = f(g)f(h)
for every g, h € U such that gh € U.
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Exercise 7.17 (Third theorem of Lie). Let G; be a Lie group with Lie algebra L;, for i = 1, 2.
Prove that an isomorphism between Lie algebras ¢ : L1 — Lo induces a local isomorphism of
groups.

(Hint: Prove that the set (X,i(X)) is a subalgebra L of the Lie algebra of the product group
product G; X Gs. Build the group G C G x G associated with this and then show that the two
projections p; : G1 x G — G; define py o (p1|g) ™! : G1 — G2 a local isomorphism of groups.)

7.2.1 Lie groups as group of diffeomorphisms

In Section [Z.I] we have proved that given a manifold M and a finite dimensional Lie algebra L
of vector fields, the subgroup of Diff(M) generated by these vector fields has a structure of finite
dimensional differentiable manifold for which the groups operations are smooth. We call such a
subgroup G-I, By Definition we have

Proposition 7.18. G is a Lie group.

We now want to prove a converse statement for connected group, i.e., every connetected Lie
group is isomorphic to a subgroup of the group of the diffeomorphisms of a manifold generated by
a finite dimensional Lie algebra of vector fields. Indeed this is true with M = G and L being the
Lie algebra of left invariant vector fields on GG. More precisely we have the following.

Theorem 7.19. Let G a connected Lie group and L the Lie algebra of left invariant vector fields.
Then G is isomorphic to GGl

To prove Theorem [[.T9] we give first the following definition.

Definition 7.20. Let G be a Lie group and let us define the group of its right translations as
Gr ={Ry | g € G}. On GR we give consider the group structure given by the operation (notice
the inverse order)

Ry, - Ry, == Ry, 0 Ry, .
Then we need the following simple facts.
Lemma 7.21. G is isomorphic Gg.

Proof. Clearly the map ¢ : ¢ — R, is a diffeomorphism. That is a group homomorphism follows
from the fact that Ry, g,h = h(g192) = (R, o R4, )h. Hence

$(9192) = Rgyg, = Rg, © Ry, = Ry, - Ry,.
O

Similarly one obtains that a Lie group G is isomorphic to the group G, = {L, | g € G} of left
translations on G endowed with the group low given by the standard composition.

Lemma 7.22. The flow of a left invariant vector fields on a Lie group G commutes with left
translations.
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Proof. If ¢ is a diffeomorphism and X a vector field we have that (see Lemma [2.20])
el X — o etX o gL,
Composing on the right with ¢, we have
X o= o etX.

Now taking ¢ = L, for some g, X a left invariant vector field and using that L, X = X, we have
that
etLg*X o Lg — Lg ° etX — Lg ° etLg*X.

The conclusion follows from the arbitrarity of g. O
A similar statement holds for right invariant vector fields.

Lemma 7.23. Let G be a Lie group. A diffeomorphism on G is a right translation if and only if
it commutes with all left translations.

Proof. Let P be the diffeomorphism. If P is a right translation then it commutes with left trans-
lation since for every g,hi,he € G, we have Ly, Rp,,g = h1ghe = Rp,Lp,g. To prove the opposite,
let us define g = P(1). For every h € H, we have

P(h) = P(Lp1) = LpP(1) = Lpg = hg
hence P = R,. O

Remark 7.24. By Lemma [[.22] and Lemma [.23] we have that the flow of a left-invariant vector field
is a right translation.

Proof of Theorem [7.19. By Lemma[T.Z], it remains to prove that G&* is isomorphic to G. Indeed
we are going to prove that G&F = Gp.

To prove that G%L C GR observe that every element of GGL s a composition of the flow of left
invariant vector fields and hence it is a right translation.

To prove that G& = Gg, observe that by the argument above G is a subgroup of Gg.
Moreover since dim(G%") = dim(Gg). Tt follows that G&¥ contains an open neighborhood of the
identity. The conclusion of the Theorem is then a consequence of the following Lemma.

Lemma 7.25. Let G be a connected Lie group. If H is a subgroup of G containing an open
neighborhood of the identity then H = G.

Proof. Since by hypothesis H is nonempty and open it remains to prove that H is closed.
To this purpose observe that if g € G\ H, then gH is disjoint from H (otherwise there exists
u € H such that gu € H which implies that guu™' = g € H). Hence

G\H= | gH.
g¢H

Since each set gH is open, it follows that G\ H is open and hence that H is closed.
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7.2.2 Matrix Lie groups and the matrix notation

A very important example of Lie group is the group of all invertible n x n real matrices, with
respect to the matrix multiplication

GL(n) = {M € R™" | det(M) # 0}.

Similarly one define
GL(n,C) ={M € C™" | det(M) # 0}.

Exercise 7.26. Prove that GL(n,C) is connected while GL(n) is not. Prove that the Lie algebra
of GL(n) (resp. GL(n,C)) is gl(n) = {M € R"*"} (resp. gl(n,C) = {M € C"*"}).

Definition 7.27. A group of matrices is a sub group of GL(n) or of GL(n,C).

Remark 7.28. The Lie algebra of a sub-group of GL(n) (resp. GL(n,C)) is a sub-algebra of gl(n)
(resp. gl(n,C)).

Group of matrices that we are going to meet along the book are
e The special linear group
SL(n) ={M € R™" | det(M) = 1},
whose Lie algebra is si(n) = {M € R™*" | trace(M) = 0}.
e The orthogonal group and the special orthogonal group

O(n) = {M e R | MMT = 1},
SO(n) = {M ¢ R | MMT = 1,det(M) = 1}, (7.14)

for both the Lie algebra is so(n) = {M € R™" | M = —M7}. SO(n) is the connected
component of O(n) to the identity.

e The special unitary group
SU(n) ={M e C"™ | MM =1},

where M is the transpose of the complex conjugate of M. The Lie algebra of SU(n) is
su(n) ={M e CV" | M = —M'}.

e The group of (positively oriented) Euclidean transformations of R

| R € SO(n), ai,...,a, €R

The name of this group comes from the fact that if we represent a point of R" as a vector
(1,...,%p,1) then the action of a matrix of SE(n) produces a rotation and a translation.
The Lie algebra of SE(n) is
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Exercise 7.29. Prove that o(3) and su(2) are isomorphic as Lie algebras.
Lemma 7.30. On group of matrices a left invariant vector field X = Ly A = gA, A € T1G.

Proof. By using the expression in coordinates Ly : h — Y, girhi; we have that

O(girhis
(LgsA)ij = Z %Alm = Z 9ikOk1Ojm Aim = ZgikAkj
I,m,k im l,m,k k

Similarly one obtains that for R, A = Ag for every A € T1G.

Remark 7.31. Notice that the for a left invariant vector field on a group of matrix X (g) = gA, the
integral curve of X satisfying ¢(0) = go is g(t) = goe** where e is the standard matrix exponential.
Hence the integral curve of a left invariant vector field, at a given ¢, is a right translation. This is
indeed a general fact as explained in the next section.

Exercise 7.32. (i). Let X(g) = gA and Y (g9) = ¢gB be two left invariant vector on a group of

matrices. Prove that
[X,Y](9) = g(AB — BA) = g[A, B].

(Hint: use the expression in coordinates X;; = >, giAr; and Yi; = >, giBij, [X,Y]i; =
Y, 0X;;
2ok <59ka Xt — 591@; Ykl) )
(ii). Prove that for right invariant vector fields X (g) = Ag and Y (g) = Bg we have

[Xv Y](g) = _[Av B]g

Notation. For a left-invariant vector fields on a group of matrices it is often convenient to use
the abuse of notation X (g) = gX. This formula clarify well the identification of g with 73 G. Here
X(-)egand X € T1G.
On the matrix notation
Given a vector field X on a manifold, one can consider

e its integral curve on M, i.e., the solutions to ¢ = X(q),

e the equation for the flow of X, i.e., P, = P, o X.

Let us write these equations for a left invariant vector field X on a Lie group G,

g=X(g),
P,=PoX.

These two equations are indeed the same equation because:
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o the flow of a left invariant vector field is a right translation (see Remark [.24));

e an element g of a Lie group GG can be interpreted both as a point on GG seen as a manifold
or as a diffeomorphism over GG, once that G is identified with the group of right translations
Gr.

This fact is particularly evident when written for left invariant vector fields on group of matrices.
In this case the two equations take exactly the same form

g=g9X
P=PoX

In the following we take advantage of this fact to simplify the notation. We sometimes eliminate
the use of the symbols Ly and Lg.: we write a left invariant vector field in the form X(g) = ¢X,
thinking to gX as to the matrix product when we are working with Lie groups of matrices (and
in this case we think to X € T1G), or as the composition of the left translation g with the left
invariant vector field X otherwise (and in this case we think to X € g).

7.2.3 Bi-invariant pseudo-metrics

Recall that a pseudo-Riemannian metric is a family of non-degenerate, symmetric metric bilinear
form on each tangent space smoothly depending on the point.

Since a Lie group G is a smooth manifold as well as a group, it is natural to introduce the class
of pseudo-Riemannian metric that respects the group structure of G.

Definition 7.33. Let (-|-) be a pseudo-Riemannian metric on G. It is said to be left-invariant if
(v]w) = (Lgwv | Lgsw) , Vo,weThG,g € G.

Similarly, (-|-) is a right-invariant metric if
(v]w) = (Rgv | Rgsw) , Vo,weT1G,g € G.

A bi-invariant metric is a pseudo-Riemannian metric that is at the same time left and right-
invariant.

Exercise 7.34. Prove that for a bi-invariant pseudo-metric we have the following
(X, Y]|2)=(X|[Y,Z]), VXY Zeg (7.15)

Definition 7.35. A Lie algebra g is said to be compact if it admits a positive definite bi-invariant
pseudo-metric (hence a bi-invariant Riemannian metric).

One can prove that the Lie algebra of a compact Lie group is compact in the sense above. See
for instance [16].
Next we define the natural adjoint action of G onto g.

Definition 7.36. For every g € G, the conjugation C, : G — G, is the map
Cy=Ry,10L,,  Cy(h) =ghg".
The adjoint action Ad,: g — g is defined as Ad ; = Cj, namely
Ady(X) = Ry1,Lg X = Rj-1, X, X €g.
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In matrix notation
Ad,(X)=gXg', X eTQG.

Recall that, given x € g, its adjoint representation adx : g — g is given by ad z(y) = [z, y].
Definition 7.37. The Killing form on a Lie algebra g is the symmetric bilinear form
K:gxg—R, K(z,y) = trace(ad x o ad y) (7.16)
Exercise 7.38. Prove that the Killing form has the associativity property
K([z,y],2) = K(z, [y, 2]). (7.17)
Exercise 7.39. Prove that the Killing form of a nilpotent Lie algebra is identically zero.
Definition 7.40. A Lie algebra is said to be semisimple if the Killing form is non-degenerate.

Exercise 7.41. Prove that for semisimple Lie algebras, the Killing form is a bi-invariant pseudo-
metric. Prove that for compact semisimple Lie algebras the Killing form is negative definite.

From the algebraic viewpoint a semisimple Lie algebra can be equivalently defined as a a Lie
algebra g satisfying [g, g] = g. See for instance [16].

7.2.4 The Levi-Malcev decomposition

A very important result in the theory of Lie algebras (see for instance [43, Ch. 4, Sect. 4, Thm. 4])
states that every Lie algebra can be decomposed as

g=1t35, (7.18)
where

e tis the so called radical, i.e., the maximal solvable ideal of g. A solvable Lie algebra is defined
in the following way. An ideal of a Lie algebra [ is a subspace i such that [[,i] C i. Given a
Lie algebra [ define the sequence of ideals [0 = [, [(1) = [(O) (@] (1) = [((*) ((M)] The
Lie algebra [ is said to be solvable if there exists n such that (™ = 0.

e 5 is a semisimple sub-algebra.

e The symbol 3 indicates the semidirect sum of two Lie algebras defined in the following way.
Let T and M two Lie algebras and D the homomorphism of M into the set of linear operators
in the vector space T such that every operator D(X) is a derivation of 7. The Lie algebra
T » M is the vector space T'® M with a Lie algebra structure given by using the given Lie
brackets of T" and M in each subspace and for the Lie brackets between the two subspaces
we set

[X,Y] = D(X)Y, XeMYEe€eT.
Exercise 7.42. Prove that T'®» M is a well defined Lie algebra.
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Product of Lie groups

Given two Lie groups G1 and G their direct product is the Lie groups that one obtains taking as
manifold G x Go with the multiplication rule

(91, 92), (h1,h2) € G1 x G2 — (g1h1, 92h2) € G1 x Ga.

One immediately verify that if g, and g, are the Lie algebras of G; and Gg, the Lie algebra of
G1 x Gy is g1 @ g2. In g, @ g2 we have that [g1, g2] = 0.

7.3 Trivialization of TG and TG

Lemma 7.43. The tangent bundle TG of a Lie group G is trivializable

Proof. Recall that the tangent bundle TM of a smooth manifold M is trivializable if and only if
there exists a basis of globally defined independent vector fields. In the case of the tangent bundle
TG of a Lie group G we can build a global family of independent vector field by fixing a basis
e1,...,e, of T1G and consider the induced left-invariant vector fields given by

Xi(g) = (Lg)«ei, 1=1,...,n,
that are linearly independent by construction. .

We have then an isomorphism between TG and G x T1G. This isomorphism is is given by

L1, that is acting in the following way

TG > (g,v) — (9,v) € G x TG,

where v = L1, v.

g
Notice that given two left invariant vector fields X (g) = Lg«v and Y (g) = Lgwpr where v, €

T1G, we have
(X, Y](g) = Lg«[v, 1]

The isomorphism between T'G and G x T1G extend to the dual. Hence T*G is isomorphic to
G x TG, the isomorphism being given by Ly, i.e.

T°G > (g,p) = (9,§) € G x T; G,

where § = Lgp.
Notice that without an additional notion of scalar product, the Lie algebra structure on 177G
induced by g does not induce a Lie algebra structure on 7T7G.

In the following it is often convenient to make computations in G x T7G and G' x T} G instead
than T'G and T*G. It is then useful to recall that if v = Ly, € T,G and p = L;,lg € T,G, then

<pvv>g = <£7 V>]1'
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7.4 Left-invariant sub-Riemannian structures

A left-invariant sub-Riemannian structure is a constant rank sub-Riemannian structure (G, D, (- | -))
(cf. Section B.I1.3] Example 2) where

e (G is a Lie group of dimensione n;

e the distribution is left-invariant, i.e., D(g) = Lg.d, where d is a subspace of TjG. Moreover
we assume that the distribution is Lie bracket generating or equivalently that the smallest
Lie sub-algebra of g containing D is g itself;

e (-|-) is a scalar product on D(g) that is left-invariant, i.e., if v = Ly and w = Lgp with
v, € d we have (v|w), = (v|u); .

Remark 7.44. Left-invariant sub-Riemannian structure are by construction free and constant rank.
If D has dimension m < n then the local minimum bundle rank is constantly equal to m (cf.

Definition [3.20]).

Given a left-invariant sub-Riemannian structure we can always find m linearly independent
vectors eq, ..., e, in T3 G such that

(i) D(g9) = {> it uiLgse; | ut, ... upm € R}
(11) <€Z' ‘ €j>]1 = (52]

The problem of finding the shortest curve connecting two points g1, g2 € G can then be formulated
as the optimal control problem

V(t) = 27;1 ui(t)Lg*ei
fOT VYo, ui(t)? dt — min (7.19)

7(0) = g1, T) = g2,

Exercise 7.45. (i). Prove that if ¢ € G and 7 : [0,7] — G is an horizontal curve, then the
left-translated curve «, := L4 07y is also horizontal and £(v,) = (7).
(ii). Prove that d(Lgh1, Lgha) = d(h1, h) for every g, hi, ho € G. Deduce that for every g,h € G
and r > 0 one has
Ly(B(h,1)) = Blgh.).

Existence of minimizers
Proposition [3.44] immediately implies the following.

Corollary 7.46. Any left-invariant sub-Riemannian structure on a Lie group G is complete.

Proof. By Proposition small balls are compact. Hence there exists € > 0 such that the
ball B(1,¢) is compact, where 1 is the identity of G. By left-invariance (cf. Exercice [7.45])
B(g,e) = Ly(B(1,¢)) is compact for every g € G, independently on . By Proposition [3.44]
the sub-Riemannian structure is complete. O
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7.5 Carnot groups of step 2

The Heisenberg sub-Riemannian structure that we studied in Section £.4.3] as an isoperimetric
problem is indeed a left-invariant sub-Riemannian structure on the group G' = R? endowed with
the product

1
(x,y,2) - (2,9 ,7) = <:B +a2 y+y, 2+ 2+ 5(:131/ - x’y)> -

Such a group is called the Heisenberg group.

Exercise 7.47. Prove that the Lie algebra of the Heisenberg group can be written as g = g1 @ go
where x
g1 = Span{ax - %8278@/ + 582'}7 and go = Span{az}’

Notice that we have the commutation relations [g1, g1] = g2 and [g1, go] = 0.

In this section we focus on Carnot groups of step 2, which are natural generalization of the
Heisenberg group, namely Lie groups G on R™ such that its Lie algebra g satisfies

g = g1 D g2, [91,91] = 92, (91, 92] = [92,92] = 0. (7.20)

G is endowed by the left-invariant sub-Riemannian structure induced by the choice of a scalar
product (-|-) on the distribution g, that is bracket-generating of step 2 thanks to (Z.20]). Notice
that g is a nilpotent Lie algebra and that we have the inequality
k(k+1
ng%, k=dimg;, n=dimg.
We say that g is a Carnot algebra of step 2.
Let us now choose a basis of left-invariant vector fields (on R") of g such that

g1 :Span{Xla"'uXk}7 go = Span{Y17”’7Yn—k}7

where {X1,..., X;} define an orthonormal frame for (-|-) on the distribution g;. Such a basis will
be referred also as an adapted basis. We can write the commutation relations:

n—k h .. h h
(Xi, X5l =>0-1 ciiYn, i,j=1,....k where ¢} =—c},

(7.21)
(X, Y] =[Y;,Ya] =0, i=1,....k, jh=1,...,n—k
Define the the n — k skew-symmetric matrices Cj, = (c?j), for h=1,...,n — k. We stress that
since the vector fields are left-invariant, then the structure functions ¢l are constant.
Given an adapted basis, we can associate with the family of matrices {Cy,...,C,_} the sub-
space
C =span{Cy,...,Ch_i} C so(g1) (7.22)

of skew-symmetric operators on g; that are represented by linear combination of this family of
matrices.

Proposition 7.48 (2-step Carnot algebras and subspaces of so(g1)). For a given a 2-step Carnot
algebra g, the subspace C C so(gy) is independent on the choice of the adapted basis on g
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Proof. Assume that we fix another adapted basis

g1 :span{X{,...,X,/g}, go = Span{Yl/,...,Y,;_k}.

where {X{,..., X} } is orthonormal for the inner prodict. Then there exists A = (a;;) an orthogonal
matrix and B = (by;) an invertible matrix such that

k n—k
=> a; X5, Yi=) bl
j=1 =1

A direct computation shows that, denoting B~! = (b™), we have

k k n—=k
Z a;naji[Xp, Xi] = Z ainaj Z cnYr (7.23)
h,l=1 r=1

hl=1
n—k [n—k k
= Z Z Z ainajicpb™ | Y, (7.24)
s=1 r=1 h,l=
it follows that i
CL=> b (AC,A") (7.25)
h=1

Recall that two matrices C' and C” represents the same element of so(g;) with respect to the two
basis if and only if ¢/ = ACA*. Then formula (7.25)) implies that elements of C’ are written as
linear combination of elements of C that represents the same linear operator, as claimed. ]

Remark 7.49. We have the following basis-independent interpretation of Proposition [[.48 The Lie
bracket defines a well-defined skew-symmetric bilinear map

[] s g1 X g1 — go.

If we compose this map with an element { € g5 we get a skew-symmetric bilinear form [-,-]¢ :=
ol g1 x g1 — R. For every £ € g5 the map [-,-]¢ can be identified with an element of so(g1),
thanks to the inner product on g;.

Hence with every Carnot algebra of step 2 we can associate a well-defined linear map

U gy — so(gn)
The subspace C introduced in (7.22)) coincides with im ¥ C so(g1).

Definition 7.50. Two Carnot algebras g and g’ are isomorphic if there exists a Lie algebra iso-
morphism ¢ : g — g’ such that ¢|g, : g1 — g} preserves the scalar products, i.e.,

(@(v) [ d(w)) = (v|w),  Vvweag.
Following the same arguments one can prove the following result

Corollary 7.51. The set of equivalence classes of 2-step Carnot algebras (with respect to isomor-
phisms) on g = g1 @ go is in one-to-one correspondence with the set of subspaces of so(g1).
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7.5.1 Pontryagin extremals for 2-step Carnot groups

Let us fix a 2-step Carnot group G and let g its associated Lie algebra.
A basis of a Lie algebra of vector fields on R"® = R¥ @ R"* (using coordinates g = (z,2) €
R* @ R"*) and satisfying ([3.11)) is given by

k n—k
X; = axz 222%%8% i=1,...,k, (7.26)
7j=1/4=1
z,- 9 (=1,....,n—k (7.27)
Z_&zg’ =1,..., . .

The group G is R” = R¥ @ R"* endowed with the group law
/ / / / 1 /
(x,2) = (2',2") = <x—|—a:,z+z +§Cx-a:>

where we denoted for the (n — k)-tuple C' = (C1,...,C,_k) of k x k matrices, the product
Cx- -2 =(Ciax-a',...,Chpz-2') e R"F

and x - 2’ denotes the Euclidean inner product in RF.
Let us introduce the following coordinates on T*G

hi(A) = (X, Xi(9)), we(A) = (A, Ze(9))

Since the vector fields {X,..., Xk, Z1,...,Z,_} are linearly independent, the functions (h;,wy)
defines a system of coordinates on fibers of 7*G. In what follows it is convenient to use (z,y, h, w)
as coordinates on T*G.

Geodesics are projections of integral curves of the sub-Riemannian Hamiltonian in T*G

1 k
252}%2
i=1

Suppose now that A(t) = (z(t),y(t), h(t),w(t)) is a normal Pontryagin extremal. Then w;(t) =
hi(A(t)) and the equation on the base is

k
=" hiXig). (7.28)
i=1
that rewrites as
b= D
N (7.29)
Zh = — QZZQIZ]h‘T]

For the equations on the fiber we have (remember that along solutions @ = {H,a})

hi = {H7 hl} == Z?:l{h“hj}hj == ?z_lk E? 1 Z]h we (7.30)
wy = {H,wp} = 0.
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H is constant along solutions and if we require that extremals are parametrized by arclength. From
(T30) we easily get that wy, is constant and the vector h = (hy,...,h;) € RF satisfies the linear
equation

n—k
h=-Quh,  Qu=> wCy
(=1

where we recall that the vector w = (wy,...,w,_g) is constant. It follows that
h(t) = e 5 h(0)
and

x(t) = z(0) —I—/O e h(0)ds

Notice that the vertical coordinates z can be always recovered, once h(t) and z(t) are computed,
by a simple integration.

Proposition 7.52. The projection x(t) on the layer gy ~ R¥ of a Pontryagin extremal such that
x(0) = 0 is the image of the origin through a one-parametric group of isometries of RF.

Proof. The action of a l-parametric group of isometries can be recovered by exponentiating an
element of its Lie algebra (cf. Exercice[7.53]). This reduces to compute the solution of the differential
equation

T=Ax+b

where A is skew-symmetric and b € RF. Its flow is given by

t
b (Z) = etz + / e*Abds
0

and it is easy to see that the projection z(¢) on the layer g; ~ R* of a Pontryagin extremal satisfies
this equation with z = 2(0) =0, A = —Q,, and b = h(0). O

Exercise 7.53. (i). Show that the group of (positively oriented) affine isometries on R™ can be
identified with the matrix group

SE(n) = {(z\g i) ,M € SO(n),c € R”},

through the identification of an element x € R™ with the vector <1

x> in R**1,
(ii). Prove that the Lie algebra of SE(n) is given by

se(n) = {(‘g 8) LA € so(n),be ]R”} .

(iii). Prove the following formula for the exponential of an element of the Lie algebra

A D\ _ (e [T esMbds
(1o o)) = (o 27™):
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Heisenberg group

The simplest example of 2-step Carnot group is the Heisenberg group, whose Lie algebra g has
dimension 3. It can be realized in R? by the left invariant vector fields

Y= 90 27702 27 Ory | 27102 9z’

satisfying the relation [X7, Xo] = Z. In this case the set of matrices representing the Lie bracket is
reduced to a single matrix C', namely
0 1
- (%)

and the projection z(t) on the layer g; ~ R¥ of a Pontryagin extremal starting from the origin

satisfies the equation
t
0 —ws
x(t) —/0 exp (ws 0 )h(O)ds

¢ 0 —ws ds — 1 sin(wt) cos(wt) — 1
0 FPlws 0 T w - cos(wt) +1  sin(wt)
and choosing h(0) = (—sinf,cosd) € S, we get
h(t) = cos(wt) —sin(wt)\ (—sinf\ [—sin(wt+ 0)
~ \sin(wt)  cos(wt) cosf )\ cos(wt+6)

o(t) = 1 ( sin(wt) cos(wt) —1> (- sin9> 1 <cos(wt+9)—cose>

—cos(wt) +1  sin(wt) cos 6 w \ sin(wt + 60) —sin 6

Computing

This recovers the formulas already computed in Section 4.3l Notice that the z component is
recovered simply by integrating the last equation, that in this case gives

1
Z= 5(—]113}2 + th’l)

t
2(t) = 2i sin(ws + 0)(sin(ws + 0) — sin 0) + cos(ws + 6)(cos(ws + 6) — cos O)ds

wJo
I I
=55 ; 1 — sin(ws + 6) sin @ — cos(ws + 0) cos Ods = %0 /0 1 — cos(ws)ds

= ﬁ(wt — sin(wt)).

Analogous computation are performed for higher dimensional Heisenberg groups in Section [I3.1l
7.6 Left-invariant Hamiltonian systems on Lie groups

In this section we study Hamiltonian systems non necessarily coming from a sub-Riemnnian prob-
lem.
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Figure 7.1: The set of end points of length 1 Pontryagin extremals for the 3D Heisenberg group.
Notice the singularities accumulating at the origin.

7.6.1 Vertical coordinates in TG and T*G

Thanks to the isomorphism between TG and G x T1G, a bases {ey,...,e,} of T1G induces global
coordinates on T'G. Indeed a base of TyG is Ly.er,. .., Lgce, and every element (g,v) of TG can
be written as

(97 U) = (gv Z UiLg*ei)'
i=1

The coordinates vy, ... v, are called the vertical coordinates in TG and they are also coordinates in
the vertical part of Gx Ty G. Indeed if (g,v) = (g, Y 1, v'Lgse;) € TG, then the corresponding point
in G x ThG is (g,€) = (g, >, v'e;) hence, in coordinates, both are representedby (g, v1, ..., vp).

If {e7,... e} is the dual base in T}G to {ei,... ey}, ie., (e, e;) = d;j, then every element
(g,p) of T*G can be written as

(gvp) = (gv Z th;_1€:)
i=1
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The coordinates hy, ... h, are called vertical coordinates in T*G. For the same reason as above, in
vertical coordinates (g, hq,...,hy,) represents both a point in 7*G and the corresponding point in
G x T}G.

In other words, when using vertical coordinates it is not important to distinguish if we are
working in TG or G x T} G (the same holds for T*G or G x T} G).

Remark 7.54. Notice that if X;(g) = Lg«e; then

hi(p, 9) = (p, Xi(9)),

hence h; are the functions linear on fibers associated with X;. Moreover if make the change of
variable (p, g) — (£, g) where p(§, g) = Lz,lf where £ € T} G, we have that h; becomes independent
from g. Indeed we can write

hi(p(§7g)7g) = <§7 ei>]l-

The vertical coordinates hq,...,h, are functions on T*G hence we can compute their Poisson
bracket (cf. Section A.1.2])

{hi hy} = (p, [Xi, Xj1)g = (&, [eir €5])n- (7.31)
Remark 7.55. Note that the vertical coordinates h; are not induced by a system of coordinates
Z1,...,Z, on the base G (we have not fixed coordinates on G). If they were induced by coordinates

on G, we would have obtained zero in the right-hand side of (Z31)) since [0y, d,,] = 0.

7.6.2 Left-invariant Hamiltonians

Consider a Hamiltonian function H : 7*G — R. Thanks to the isomorphism between T*G and
G x T1G we can interpret it as a function on G x T} G, i.e., we can define

H(g,&) = H(g, L;-1€), H:GxT{G—R.

We say that H is left-invariant if H(g,&) is independent from g. For a left-invariant Hamiltonian
we call the corresponding H the trivialized Hamiltonian.
Equivalently we can use the following definition

Definition 7.56. A Hamiltonian H : T*G — R is said to be left-invariant if there exists a function
H : TG — R such that
H(g,p) = H(Lyp).

Hence a left invariant-Hamiltonian can be interpreted as a function on T7G.

Example 7.57. Given a set of left-invariant vector field fi(g9) = Lgw;, w; € ThG, i =1,...,m,
we have that H(g,p) = 2 57" 1 (p, fi(9))? is a left-invariant Hamiltonian. Indeed

which is independent from g.
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Remark 7.58. If we write p = >"_, h;L: €] then

H(g,Y Lihjel) = HLE S hiLiael) = H(Y hyel).

In other words in vertical coordinates hq, ... h,, we have for a left-invariant Hamiltonian
H(g,hl,...,hn) :H(hl,...,hn).

and we can identify H and H.

Remark 7.59. In the context of Lie groups, to write Hamiltonian equations is convenient avoiding
fixing coordinates on GG and use vertical coordinates on the fiber only. This permits to exploit
better the trivialization of T*G in G x T}G and the left invariance of H. Since vertical coordinates
h; do not come, in general, from coordinates on G, we do not have equations of the form &; = 0y, H
h; = —0,, H for a system of coordinates z1,...,z, on G.

Consider a left-invariant Hamiltonian in vertical coordinates H(g,hq,...,hy). Let us write the
vertical part of the Hamiltonian equations. We are going to see that this equation is particularly
simple. We have

hi = {H, h;}, i=1,...,n. (7.32)

Using Exercice [4.8 we have for i = 1,...,n,

H
{h],h} Z £ lej,el) = <§, gh ej, e > (7.33)
j=1

j= 1
Notice that since # is a function on the linear space T7G, then dH(hi, ..., hy) is an element of
T7*G =T1G. If we write an element of T7G as hie] +...+ hye;,, then an element of its tangent at
(h1,...,hy) is written as v1 0y, , . . . , U, Op,, With the identification 0y, = e due to the linear structure.

An element of its cotangent space T7*G at (hi, ..., hy) is then written as widhy + ... +wpdh, with
the identification dh; = (e])* = e; again due to the linear structure. Then

— oM " OH " OH
j=1 j=1 " j=1 "

Hence the vertical part of the Hamiltonian equations can be written as

hi = (&, [dH, ei])
= (£, (ad dH )e;)
= ((addH)"¢, €;) (7.35)

*

or more compactly recalling that & = Zf 1 hie,

£ = (ad dH)*¢. (7.36)
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For what concerns the horizontal part, let 8 € C*°(G), i.e., a function in C*°(T*@G) that is constant
on fibers. For every curve g(-) solution of the horizontal part of the Hamiltonian system on T*G
corresponding to H we have

d “~ OH
@) = Blowam) = 2 75 thi Bl

J=1

Now recalling that (cf. (@IT)) {(p, X(9)) +(9),(p,Y (9)) +B(9)} = (p, [X,Y](9)) + XB(g9) — Y a(g)
we have {h;, 8} = {(p, X}), 8} = X;B8 = (Lg«e;)B3. Hence

" OH " 9H
——(Lg«e;)8 = | Ly —e;i | B = Ly dH|
8h gx+J g 8}7,] J g

g(t) =1 9(t)

—6( (1) =

g(®) -

Since the function 3 is arbitrary we have
g = LgdH.
We have then proved the following
Proposition 7.60. Let H be a left invariant Hamiltonian on a Lie group G, i.e. H(g,p) = H(Lyp)

where (g,p) € T*G and H is a smooth function from T;G to R. Let dH be the differential of H
seen as an element of T1G. Then the Hamiltonian equations %(g,p) = H(g,p) are,

(ad dH)*¢ (7.37)

{ ) = LgdH
Here £ € TG and p(t) = L;,lg(t).

Notice that the second equation is decoupled from the first (it does not involve g).
When we have available a bi-invariant metric equation (7.36])) can be written in a simpler form.
Indeed in this case we can identify 737G with T7G via

EETIG +— M € TyG < (M|v) = (£,v), YveTG.

Using (736]) and (715, for every v € T1G let us compute

(G [0) = (Gv) = e dnye.o) = €. (adaryo) = (. [an ) = (01| a7, o)) = (M) o)

Hence the Hamiltonian equations for a left-invariant Hamiltonian, when we have a bi-invariant
peseudometric are:

{ g = LgxdH (7.38)

M _ [0 ).
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7.7 First integrals for Hamiltonian systems on Lie groups™
7.7.1 Integrability of left invariant sub-Riemannian structures on 3D Lie groups*

7.8 Normal Extremals for left-invariant sub-Riemannian struc-
tures

Consider a left-invariant sub-Riemannian structure of rank m (cf. (Z19)) for which an orthonormal
frame is given by a set of left-invariant vector fields X; = Lg.e;(g), ¢ = 1,...,m. The maximized
m

Hamiltonian is
Hip) = 3 0 Xi0)? = 33 . Lyees)
9,p) = 9 < - p, X = 1 gx€i)
1= 1=

N =

hence it is left invariant (cf. Example [[.57]). The corresponding trivialized Hamiltonian is

m
5 Z 67 eZ
=1

Now (£, e;) = hi(g,p) hence in vertical coordinates we have

N =

1
H(hl,...,hm):§Zh§.

7.8.1 Explicit expression of normal Pontryagin extremals in the d & s case

Explicit expressions of normal Pontryagin extremals can be obtained for left-invariant sub-Riemannain
structures when

e a bi-invariant pseudo-metric (- |-) on G is given;
e T1'G =d @ s where (-|-)|q is positive defined and s satisfies the following

i) s:=d" (where the orthogonality is taken with respect to (-|-));

ii) s is a sub-algebra;
e The distribution is d and the metric is (- | -)q.

We say that such a sub-Riemannian structure is of type d & s.

Remark 7.61. A classical example of such a d & s sub-Riemannian structure is provided by the
group of matrices SO(n) in which the distribution at the identity d is given by any codimension
one subspace of T7150(n) and the norm of a vector in d is the square root of the sum square of its
matrix elements.

Exercise 7.62. Prove that the distribution defined in Remark [7.61]is Lie bracket generating. Prove
that the metric induced by the norm defined above is induced (up to a negative proportionality
constant) by the Killing form.
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Let us write an element of v € T)G as v = z + y where x € d and y € s. Let eq,...¢e, be an
orthonormal frame for the structure. In this case if M = z + y is the element in T1 G corresponding
to & € TG via (-|-) we have

= (&, e;) = (M |e;) = ;.

Hence
1 n
=3 E h? = E 7 x\a: = —HxH2 (7.39)

Notice that (cf. (Z34)) dH = i, ah He = Z? 1 gz‘ e; = y ., xie; = x. Hence the vertical part
of the Hamiltonian equation dM /dt = [M dH] become

t+y=[r+y,x] =y (7.40)

Now for every v € s one has
([y, 2] |v) = (& [[y,v]) =0,

where we have used equation (T.I5]) and for the last equality that facts that
e [y,v] € s since s is a sub-algebra.
e d and s are orthogonal for (-|-).

We then conclude that [y, z] € d. Hence (7.40) become

T = [y, ]
y=20

Hence all y component are constant of the motion and we have

y(t) =yo
& = [yo, 2] = (adyo)z

The solution of the last equation is
z(t) = etdvog, (7.41)

Then for the horizontal part we have
§ = LgdM = Lyx(t) = Lye¥©z(0). (7.42)

Using the variation formula for smooth vector fields (cf. (6.35])),
t
gtV +X) — eﬁ/ Y Xds oY, (7.43)
0

we have that the solution of (T42]) starting from gy and corresponding to zg, yo isﬁ

g(0,y0; t) = goe!T0Tv0) e~ to (7.44)

3For a group of matrices: formula (Z4I)) reads as e zoe™ "0, while (T.42) is getVoxge 1Yo,
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The parameterization by arclength is obtained requiring H = 1/2. From (739) at t = 0 we
obtain that the normal Pontryagin extremals (7.44]) are parametrized by arclength when (z¢ | zo) =
o ” = 1.

The controls whose corresponding trajectories starting from gg are the normal Pontryagin ex-

tremals (7.44]) are

ui(t) = (p(t), Xi(g(t))) = hi(g(t), p(t)) = zi(t) = <etadyo$0

€i>, i:1,...,m.

Exercise 7.63. Study abnormal extremals for this problem.

7.8.2 Example: The d @ s problem on SO(3)
The Lie group SO(3) is the group of special orthogonal 3 x 3 real matrices

SO(3) = {g € Mat(3,R) | gg" =1d,det(g) = 1} .

To compute its Lie algebra, let us compute its tangent space at the identity. Consider a smooth
curve g : [0,e] = SO(3), such that g(0) = e. Computing the derivative in zero of both sides of the
equation g(t)g” (t) = e, we have §(0)g(0) + g(0)g” (0) = 0 from which we deduce g(0) = —g”(0).
Hence the Lie algebra of SO(3) is the space of skew symmetric 3 x 3 real matrices and it is usually
denoted by s0(3). In other words

0 —a b
s0(3) = a 0 —c | €Mat(3,R)
-b ¢ O
A basis of s0(3) is {e1, e, e3} where
0 0 O 0O 0 1 0 -1 0
el = 0 0 —1 |, e= 0O 0 0 |, e3= 1 0 O
01 O -1 0 0 0O 0 O
whose commutation relations are [e1,es] = es [e2,e3] = e [es,e1] = ea. For so0(3) the Killing

form is K(X,Y) = trace(XY') so, in particular, K(e;, e;) = —26;;. Hence

(1) = 5K ()

is a (positive definite) bi-invariant metric on so(3). If we define
d = span{ei, €2}, s =span{es}
and we provide d with the metric (-|-) |q we get a sub-Riemannian structre of type d & s.
Expression of normal Pontryagin extremals
Let us write an initial covector g + yo such that (zg|z¢) =1 in the following form

zo +yo = cos(f)ey +sin(f)eg + cez, e S, ceR.
—

x0 Yo
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Figure 7.2: The set of end points of Pontryagin extremals of length 1 for the d ®s sub-Riemannian
problem on SO(3). In the picture the x-axis is the element (g)o23, the z-axis is the element (g)i3,
the z-axis is the element (g)12. Notice the singularities accumulating at the origin. This picture
looks very similar to the one of the Heisenberg group (cf. Figure [[[T]). Indeed it is possible to prove
(cf. Chapter [I0) that the two pictures become more and more similar if one consider end points
of geodesics of length r» and makes r smaller and smaller. For r big the two pictures become very
different due to the different topology of R? and SO(3).

Using formula (7.44]), we have that the normal Pontryagin extremals starting from the identity are

g(e’ ¢ t) — 6(005(9)61+sin(0)eg+ce3)te—ce3t _ (745)

K cos(ct) + K2 cos(20 + ct) + Kscsin(ct)  Kisin(ct) + K2sin(20 + ct) — Ksccos(ct)  Kacos(f) + K3 sin(6)
— K sin(ct) + K2 sin(20 + ct) + Kaccos(ct) Ki cos(ct) — Ko cos(26 + ct) + Kscsin(ct) —Kscos(f) + Kasin(f)

cos(/1+c2t c?

K4 cos(0 + ct) — K3z sin(0 + ct) K3 cos(0 + ct) + Kasin(0 + ct) %

ith K — 1+(1+202)cos(\/1+c2t) K, — 1—cos(\/1+c2t) Ko — sin(\/l—l—czt) K, — c(l—cos(\/l—i-czt))
wi 1= 2(1+c2) B2 = Tange)y T T AT ™M T T e

The end point of all normal Pontryagin extremals for ¢ = 1 are plotted in Figure
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7.8.3 Further comments on the d @ s problem: SO(3) and SO, (2,1)

The group SO(3) acts on the sphere S? by isometries (in fact, by definition). We claim that the
induced action of SO(3) on the spherical bundle S S? (see Definition [[22)) is a free transitive action.
In other words, if #; € S?, and v; € T}, S? with |v;| = 1 for i = 1,2, then there exists a unique
g € SO(3) such that gy = 22, gv; = ve. Indeed, v is a tangent vector of length 1 at a point z € S?
if and only if {v,z} is a couple of mutually orthogonal vectors of length 1 in R3. Obviously, such a
couple can be transformed to any other couple of this type by a unique orthogonal transformation
of R? preserving the orientation.

Let ¢(t) be a geodesic for our sub-Riemannian structure on SO(3). Then g(t) (@) is a circle, a

curve of the constant geodesic curvature on the sphere. This is not occasional; if you think about it,
you see that this sub-Riemannian problem is similar to isoperimetric problems studied in Section
4.4.2)

Exercise 7.64. Show that the differential of the map

SO(3) — 52, g (g(%),g(é)) (7.46)

transforms the left-invariant distribution d into the kernel of the Levi-Civita connection (cf. Defi-
nition [[54) on S S2.

Let w be the Levi-Civita connection and 7 : S .S? — S? the standard projection; then m!kewg
is an isomorphism of kerwe onto TW(5)52, ¢ € §S% We can lift Riemannian structure on S2
by this isomorphism and obtain a sub-Riemannian structure on S S2. It is easy to see that the
diffeomorphism described in the exercise induces an isometry of this sub-Riemannian structure and
the “d @ s” structure on SO(3).

Recall that an isoperimetric problem on a Riemannian surface M is equivalent to a sub-
Riemannian problem on the trivial bundle R x M — M the problem is defined by a non-vanishing
differential 1-form w on R x M, where w is invariant under translations of R and ker w is transversal
to the fibers (see Section .4.2]). In this case, dw is the pullback of a 2-form on M. Moreover, the
2-form is the product of the area form and a function b on M, and normal geodesics are horizontal
lifts to R x M of the curves on M whose geodesic curvature is proportional to b.

Of course, one gets the same characteristic of normal geodesic if we consider the bundle S x
M — M instead of the bundle R x M — M and a non-vanishing form w on S x M that is invariant
under translations in the group S and whose kernel is transversal to the fibers. Moreover, we may

equally consider an only locally trivial bundle N S—1> M such that the group S! acts freely on
N and the orbits of this action are exactly the fibers of the bundle. Such a structure is called a
principal bundle with the structural group S'. An invariant under the action of S' non-vanishing
1-form on N whose kernel is transversal to the fibers is called a connection on the principal bundle.
The differential of the connection is the pullback of a 2-form on M that is called the curvature of
the connection.

Now consider the spherical bundle SM — M of a Riemannian surface. Rotations of the fibers
with a constant velocity introduce a structure of the principal bundle on SM, and the Levi-Civita
connection w is a connection on this principal bundle. The curvature of the Levi-Civita connection
equals the area form multiplied by the Gaussian curvature of the surface.

The sub-Riemannian structure defined by the Levi-Civita connection has a nice geometric in-
terpretation: horizontal curves are parallel transports of tangent vectors along curves in M and
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their length is just the length of these curves in M. Normal geodesics are parallel transports along
the curves whose geodesic curvature is proportional to the Gaussian curvature. As we explained,
in the case of M = S? we obtain an interpretation of the “d @ s” structure on SO(3).

Group SO(3) is the group of linear transformations of of R? that preserve the orientation and
Euclidean inner product. Similarly, we may consider the group SO, (2,1) of linear transformations
that preserve the orientation, the Minkowski inner product (-|-), and, moreover, preserve the
connected components of the hyperboloid defined by the equation (g|q), = —1 (see Section [L.4)).
The matrices

0 00 0 01 0 -1 0
fi=10 0 1}, fo=1(0 0 0}, fa=[1 0 0| =es3
010 1 00 0 0 0

form a basis of the Lie algebra of this group. This Lie algebra is denoted by so(2,1) and it is
isomorphic to s/(2). We set (X|Y) = —1trace(XY), a bi-invariant pseudo-metric on so(2,1). If we
define

d = span{fi, fo}, s =span{fs}

and we equip d with the metric (:|-)|q we obtain a sub-Riemannian structure of type d @ s.
The group SO(2,1) acts on the surface

H? ={(z,y,2) eR*: 22 =2 —y? =1, 2> 0}

in the Minkowski space by isometries (cf. Section [[L5.3]). Moreover, the induced action of SO(2,1)
on the spherical bundle SH? is a free transitive action

Exercise 7.65. Show that the differential of the map

SO,.(2,1) = H2, g+ (g@)g(é)) (7.47)

transforms the left-invariant distribution d into the kernel of the Levi-Civita connection on SHZ.

The transformation (7.47]) sends geodesics of the “d @ s” sub-Riemannian structure to the
parallel transports along the curves of constant geodesic curvature in H2. Recall that, when
considered as Riemannian surface, H? has constant Gaussian curvature equal to —1, this is a
model of the Lobachevsky hyperbolic plane.

The constructions described above have important multidimensional generalizations; some of
them will be discussed later in this chapter.

7.8.4 Explicit expression of normal Pontryagin extremals in the k & z case

Another case in which one can get an explicit expression of normal Pontryagin extremals is when

e G = Gy x G, where Gy has a compact algebra k and G, is abelian. In other words the Lie
algebra at the origin of G can be written as 731G = k & z where k is a compact subalgebra
and z is contained in the center of T1G, i.e., [v,y] = 0 for every v € T1G and y € z. In the
following we write an element of v € T1G as v = ¢ + y where z € k and y € z. Moreover we
assume that a bi-invariant metric (-|-), on k is given (this is always possible by definition of
compact Lie algebra);
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Figure 7.3: The k & z problem

e we assume that the distribution (that we assume to be Lie bracket generating) projects well
on k, that is if 7 : T3G — k is the canonical projection induced by the splitting, we have
7|p is 1:1 over k. Under this condition, there exists a linear operator A : k — z such that
d={z+ Az |z ek} Ckdz="T,G.

e we assume that the metric on d is induced by the projection, i.e.,
(wi [wa)g = (m(wr) [m(w2))y, for every wi,wy €d,
or equivalently that if v1,ve € d, v1 = (21, Az1), v2 = (22, Axsg) with x1, 29 € k, then

(vi |v2)g = (21| 22)y -
See Figure [.3]

Let us fix any scalar product on (-|-), on z and define the scalar product (-|-) on T3G by

(01 |ve) = (1| m2)y + (Y1 |Y2),, where vy =21 +y1, ve=1z2+yo.
Notice that if € k and y € z then (x|y) = 0.

Exercise 7.66. Prove that (-|-) is bi-invariant as a consequence of the bi-invariance of (-|-), and
of the fact that z is in the center of T7G.

The metric (-|-)7, ¢ is used to identify vectors and covectors, to use the simpler form (Z.38)
of the Hamiltonian equations for normal Pontryagin extremals. The resulting normal Pontryagin

extremals will be independent on the choice of the scalar product (- |-),.

Remark 7.67. An example of such a structure is provided by the problem of rolling without slipping
a sphere of radius 1 in R? on a plane. Its state is described by a point in R? giving the projection
of its center on the plane and by an element of SO(3) describing its orientation. Given an initial
and final position in SO(3) x R? one would like to roll the sphere on the plane in such a way that

the initial and final conditions are the given ones and fOT \/Z?ﬂ w;(t)? dt is minimal, where uy, us

and ug are the three controls corresponding to the rolling of the sphere along the two axes of the
plane and to the twist. See Figure [[.4l Why this problem gives rise to a k @ z sub-Riemannian
structure is described in detail in the next section.
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23 C Yz

zZ9

X € 50(3)
| /(21, ZQ)
<1
Figure 7.4: Rolling sphere with twisting.
Let us write the maximized Hamiltonian. Let eq,..., e, be an orthonormal frame for k. Then

an orthonormal frame for d is e; + Aeq, ..., e, + Ae,,. We have

Z p, g* ez+Aez)> .

=1

The corresponding trivialized Hamiltonian is

1m
H(E) =5 Y (& (ei+ 4ep))?, e T{G.
=1

\)

Now using the metric (-|-)y, ; we can identify 771G with TG and write § = x +y. Then

m

D=3 D ttyllet Ao =3 Y (@len + ly] de)?. (7.45)
=1 =1

Here we have used the the fact that z,e; € k and y, Ae; € z and we have used the orthogonality of
k and z with respect to (-|-). Now (y | Ae;) = (A*y|e;) = (A*y|e;)y, where A* is the adjoint of A.
Hence

[

?ﬂ%w=—§]®hw+¢“M%hV=%W+AWﬁ- (7.49)
1=1

\)

The vertical part of the Hamiltonian equations are (cf. the second equation of (38]) with M
replaced by x+y)
T+y=[r+y, dH]. (7.50)
The let us compute
dH =z + A*y+ Ax + AA™y
€k €z

Now since z is in the center, the second part of dH disappear in the commutator in (7.50]) and we
get
i+y=[z+y,z+ Ay = [z, A"y,
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from which we deduce
i = [z, Ay],
y=0.
Hence all y components are constant of the motion and we have

y(t) = yo
@ = [z, A"yo] = —[A"yo, 2] = —(ad (A"yo))z

The solution of the last equation is
x(t) = e (AT0) g (7.51)
For the horizontal part of the Hamiltonian equations we have
g(t) = LyaydH(z(t),y(t)) = Ly« (x(t) + A*yo + Ax(t) + AA™yo). (7.52)

ck €z

Using the fact that G = Gy x Gy, it is convenient to write an element of G as g = (g1, 92) where
g1 € Gk and g2 € G,. Then equation (Z52]) splits in the following way

g1 = Lg,+(2(t) + A%yo) (7.53)
g2 = Ax(t) + AAyo (7.54)

In the second equation we have used the fact that Lg,.(Ax(t) + AA*yy) = Ax(t) + AA*yp, since
we are in an Abelian group. Moreover if g(0) = (go1, go2), then for (T53)) and (Z53) we have the
initial conditions g1(0) = go1 and g2(0) = go2-

Let us solve (T.53). Using (7.51]) this equation is reduced to

n = Lgl*(e_tad(A*yo)l‘o—l-A*y(]) _ Lg1*e_tad(A*yo)(l‘0+A*y0)a (755)

where in the last formula we have used the fact that e~tad(A"%0) A%y — A*y,. Using the variation

formula (cf. ([6.35)),
t
etV +X) — @/ Y Xds oY, (7.56)
0
with Y — —A*yg and X — x¢ + A*yg, we get

g1(t) = goret Toet Ao, (7.57)
For (T54), using (7.51)) and using the fact that G, is Abelian, we have

t t
92(t) = goz + / (Ax(s) + AA*yo) ds = goz + / (Ae—sad (A7w0) 3 + AA*y0> ds. (7.58)
0 0

The parameterization by arclength is obtained requiring H = % From (749) we obtain that
the normal Pontryagin extremals are parametrized by arclength when (zg + A*yg|zo + A*yo) =
on + A*yo”2 =1.

The controls corresponding to the normal Pontryagin extremals (g1(t), g2(t) are (cf. Formula

[7.48]):
wit) = (z(t) + yo | €5 + Ae;) = (@(t) | e)+(yo | Aes) = (x(t) + A*yo | e;) = <e—tad (430) 20 4 A*yp ei> .

Exercise 7.68. Study abnormal extremals for this problem.
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7.9 Rolling spheres

7.9.1 (3,5) - Rolling sphere with twisting

Consider a sphere of radius 1 in R? rolling on a plane without slipping. At every time the state of
the system is described by a point on the plane (the projection of its center) and the orientation
of the sphere.

We represent a point on the plane as z = (z1,22) € R? and the orientation of the sphere by a
point X € SO(3) representing the orientation of an orthonormal frame attached to the sphere with
respect to the standard orthonormal frame in R3.

Let {e1,e2,e3} be the following basis of the Lie algebra so(3) of SO(3),

00 O 0 01 0 -1 0
egr=[10 0 -1 ], e= 0 00 ], es=1 0 0 |. (7.59)

01 0 -1 0 0 0 0 O
The condition that the sphere is rolling without slipping can be expressed by saying that the
only admissible trajectories in SO(3) x R? are the horizontal trajectories of the following control

system (here u;(-) € L*>®([0,T],R), for i = 1,2,3).

731 = U1 (t)
Z? = U2 (t) (760)
X = X(UQ(t)el — U (t)eg + u:;(t)eg).

The controls u;(-) and ug(+) correspond to the two rotations of the sphere that produce a movement
in the plane, while the control us(-) correponds to a twist of the sphere (that produces no movement
in the plane). See Figure [[.4l We would like to solve the following problem.

P: Given an initial and final position in SO(3) x R2, roll the sphere on the plane in such a way

that the initial and final conditions are the given ones and fOT zg’zl u;(t)? dt is minimal.

We have the following result.

Proposition 7.69. The projection on the plane (z1,z2) of normal Pontryagin extremals is (up to
time reparameterization) the set of sinusoids on the plane:

{( 201 > n < cos(ag) —sin(ap) ) < f(go,b,r,t) ) | ag, do € SV, b7 >0, 201,202 € R},

202 sin(ag)  cos(ag) t

where
[ bsin(rt+¢o) if r>0

To prove Proposition [7.69] we first prove that the problem define a k & z sub-Riemannian struc-
ture and then we study its normal Pontryagin extremals.

Claim. The problem above is a problem of type k & z.
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To prove the claim let us set G = SO(3) x R2. We have T1G = s0(3) ® R2. Now let f; = (1,0)7
and fo = (0,1)7 be the generators of R? and define

d = span{f; — ea, fo + e1,e3} C s0(3) X R2.

Given a vector v = uy (f1—e2)+ua(foter)+uses € d we define its norm as ||[v]| = /uf + uj + u3.
If 7 : 50(3) x R? — R? is the canonical projection, this norm coincide with the norm of [|7(v)|lso(3),
where || - [[5o(3) is the standard norm for which {ej,e2,e3} is an orthonormal frame. This norm
comes from a bi-invariant metric as explained in Section

The corresponding sub-Riemannian problem is then

9= g(u1(t)(fr — e2) +ua(t)(f2 + 1) + uzes), (7.61)
9(0) = g0, 9(T) = g1, (7.62)

3
> wi(t)?dt — min, (7.63)
=1

where go, g1 € SO(3) x R2. Writing elements in SO(3) x R? as pairs g = (X, z), this problem

become exactly (Z.60).
If we define the linear application A : s0(3) — R? via

Aey = fo, Aex = —f1, Ae3 =0,

we can write

d={z+ Az | x € s0(3)}.

Remark 7.70. Notice that if we write an element of s0(3) as x1e; + x2e2 + z3e3 and an element of
R? as y1fi1 + y2f2, we can think to A and to its adjoint A* as to the rectangular matrices

0 1
A:(? _01 8), A= -1 0
0 0

Notice that AA* = 1542 while A*A # 1343. From the expression of A* we also get
A*fl = —€9, A*fg = e€1. (764)

The problem P is then a k@ z problem with k = s0(3), z = R%. Moreover d, A and the bi-invariant
metric on k, are defined as above.

Geodesics

Geodesics are parametrized by arclength if we take xg € s0(3) and yo € R? satisfying
on + A*yoH = 1. (7.65)

Now writing yo = yo1.f1 + Yoz f2 and using (7.64]) we have

0 0 —vyon
A'yo = A% (yo1 f1 + yoo f2) = 0 0 —yoo
Yor Yoz O
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Hence writing o = zg1e1 + o262 + To3es, equation (.65 become

[(zo1 + yoz)e1 + (w02 — yo1)ea + zozes|| = 1.
It is then convenient to parametrize normal Pontryagin extremals with

yo1 €R, yo2 €R, 0 €0,7], ¢e€]|0,2n], (7.66)
taking

xo1 = —Yo2 + cos(#) cos(y) (7.67)
To2 = Yo1 + cos(f) sin(p) (7.68)
xo3 = sin(h) (7.69)

(7.70)

The z part of the geodesics is given by the formula (Z58), with go — (21, 22)7, i.e.,
21(t) _ 201 + ! (Ae—sad (A*yo)x + AA*y ) ds
22(1) 202 0 0 0 '

t
= < “o1 > +/ <Ae_s(A*y°)xoes(A*y°) + < Jo1 )) ds.
202 0 Yo2

If we fix yo1 = yo2 = 0, we get

(7.71)

z1(t) = zo1 — tcos(0) sin(ep),
29(t) = zp2 + t cos(f) cos(ip).

Otherwise if we set yo1 = rcos(a) and yp2 = rsin(a), we obtain for r # 0,

a(t) = z01—%(rt cos?(a) cos(8) sin() + sin(a) cos(a) cos(8) cos(¢)(sin(rt) — rt)+
sin(a) (sin(a) cos(6) sin() sin(rt) + sin(6) + sin(8)(— cos(rt)))),
(t) = z02+%(cos(9) (cos(¢p) (rtsin(a) + cos?(a) sin(rt)) + sin(a) cos(a) sin(g)(sin(rt) — rt)) —
cos(a) sin(8)(cos(rt) — 1).
that is a combination of sinus and cosinus. See Figure

Exercise 7.71. Prove that each trajectory (z1(t), 22(t)) is a rototranslation of a sinusoid and that
o determines its initial direction, r its frequence, 6 its amplitude and a its rotation on the plane.

The k part of the geodesics can be obtained with the formula

X(t) = et@oet Ao,
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Figure 7.5: A Pontryagin extremals for the rolling sphere with twist

7.9.2 (2,3,5) - Rolling without twisting

We now consider a sphere rolling on a plane without slipping and without twisting. Similarly
to what done in Section [7.9] the state space is the group G' = SO(3) x R? whose Lie algebra is
T1G = 50(3) x R? and the distribution is still defined by equation (Z61)) with the difference that
now we have ug = 0.

More precisely, the condition that the sphere is rolling without slipping and twisting can be
expressed by saying that the only admissible trajectories in SO(3) x R? are the horizontal trajectories
of the following control system

g=g(u1(t)(f1 — e2) + ua(t)(fo2 + e1)). (7.72)

Here f1, fo are the generators of R? and ey, ea, e3 are given by (Z.59). The controls uj(-) and ua(-)
belonging to L*([0,T],R) correspond to the rotations of the sphere along the z; and z9 axis.
The commutators among f1, fs,e1, €2, €3 are

[f1,f2] =0
[fiaej] = 07 1= 1727 ] = 172737 (773)
[e1,e2] =3, [ea,e3] = €1, [es,e1] = eo.

We would like to solve the following problem.

P: Given an initial and final position in SO(3) x R2, roll the sphere on the plane in such a way
that the initial and final conditions are the given ones and fOT \/2?21 u;(t)? dt is minimal.

Remark 7.72. Notice that solving problem P corresponds to find the shortest path on the plane such
that the sphere rolling along that path goes from the prescribed initial condition to the prescribed
final condition. See Figure (.0l).
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z3 U2
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zZ9

X € S0O(3)

/(21, z2) shortest path on the plane
21

Figure 7.6: The sub-Riemannian problem of rolling a sphere without slipping and twisting.

Contrarily to what happens to the problem of rolling a sphere with twisting (Section [.9.1]), this
time the problem is not of the form k 4+ z. Indeed the distribution is two dimensional while and
it is not projecting well on the compact sub-algebra so(3). We are going to use the general equations.

Normal extremals are solutions of the Hamiltonian system associated with the following Hamil-
tonian

1

H(g.p) = 5 (b Lo(f1 = €2))” + (b Lou(fa + 1))

The trivialized Hamiltonian is

HE) =5 (6 (-’ + (6 (h+e)?), €€TiC

It is convenient to use the following coordinates,
hf1:<£7fi>7 1=1,2, hej:<£7ej>7 J=12,3.

Notice that, using (T.73) we have

{hf17hf2} =&, [f1, fo]) =0
{hfwhej} = (¢, [fi,ejD =0, i=12, j=1,2,3,
{hel’ heQ} - <£’ [61, 62]> = <£’ €3> = hesv {h‘627 heg} = he17 {h637 he1} = heg.

Then ]
H =5 ((hyy = he;)” + (hp, + hey)?)

The Hamiltonian equations are
hfz = {H7 h‘f@}? Z = 17 27 hej - {Hy hej}, ] = 17 27 3 (774)

Let us start with the first one

n={H,hp}= Z {hfz,hfl}JrZ {helahfl}—o
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where we have used that hy, commutes (for the Poisson brackets) with everything. Similarly

hy, =0,
hel = (hf1 - h62)h63’

h62 = (hfz + hel)h‘637
heg = _hf1h61 - hf2h62'

Now if we consider normal Pontryagin extremals parametrized by length, i.e., if we work on the
level {H = 1/2} ~ S! x R3, it is convenient to use the coordinates 7, o, 6, ¢ defined by

hy =1 cos(a)

hy, = rsin(a)
hy, — hey, = cos(f + o),
hy, 4+ he, = sin(6 + ),

h

e = C.

Normal normal Pontryagin extremals starting from a given initial condition, are parametrized by
points in {H = 1/2}, i.e., by 6y € S, ¢y € R and (rp, ag) parametrizing R? in polar coordinates
(ro > 0,a € SY).

The Hamiltonian equations are then

r=0 = r=ry, (7.75)
a=0 = a=w, (7.76)
0 =c, (7.77)
¢ = —rosin(f). (7.78)

Once that equations (T77) and (Z78) are solved in function of the initial conditions (rg, 6o, co),
i.e., once that one gets 0(t; 19,0y, co), the controls are given by

uy(t;ro, 00, co, a0) = (&, f1 — e2) = hy, — he, = cos(0(t; 0,00, co) + ap)
uz(t;ro, 0o, co, an) = (&, fa +e1) = hy, + he, = sin(0(t;ro, 6o, co) + o). (7.79)

Once uq(-) and uy(-) are known, one can compute the corresponding trajectory by integrating
([T72]). However here we are only interesting to the planar part of the normal Pontryagin extremals
starting from zg; and zgs, that is given by

t t
21(¢; 6o, co, ap) = 201 +/ uy(s)ds = zo1 +/ cos(0(s; by, co) + ap)ds, (7.80)
0 0
t t
z9(t; 00, co, ) = 202 +/ ug(s)ds = zp2 +/ sin(6(s; 0p, co) + ag)ds. (7.81)
0 0
In the following we refer to (z1(+), 22(+)) as the z-geodesics.

Qualitative analysis of the trajectoris
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Equations (Z77) and (Z18]) are the equation of a planar pendulum of mass 1, length 1, where r
represent the gravity. These equations admits an explicit solution in terms of elliptic functions.
However their qualitative behaviour can be understood easily.

First notice that if we consider only z-geodesics starting from the origin and with z}(0) = 1
and 25(0) = 0, we can fix 201 = 202 = 0, ap = —6p. All other z-geodesics can be obtained by
rototranslations of these ones.

Equation (Z.77)) and (7.78]) admit a constant of the motion that up to a constant is the energy
of the pendulum:

1
H, = 502 — rgcos(f).

Fixed (79, cp), one compute H}, and the corresponding trajectory in the (6, c) plane should stay on
this set.
Now let us compute the curvature of the z-geodesics. We have

! /i
Z1Ro — Zok
172 271 /
K = = 0'(t;70,60,co) = c(t; 70,60, o).

()2 + (4)2)*?

Hence c is precisely the curvature of the z-geodesic. Inflection points of z-geodesics corresponds to
times in which ¢ changes sign.

The case ry = 0. In this case ¢ = 0 and 0(t) = 6y + cot. The z-geodesic is a circle (if ¢y # 0) or a
straight line (if ¢ = 0).

The case 9 > 0. The level sets of H}, are shown in Figure (7.8)). There are several types of
trajectories:

e H, > r(. In this case the pendulum is rotating and 6(-) is monotonic increasing (no inflection
points).

e H, =rg. We have two cases:

— If 6y # +7. The pendulum is on the separatrix. The z-geodesic has an inflection point
at infinity.

— If §p = £m. The pendulum stays at the unstable equilibrium (6,¢) = (£m,0). The
z-geodesic is a straight line.

e H, € (—rp,rp). In this case the pendulum is oscillating and 6(-) too. The z-geodesic present
inflection points. Such z-geodesics are called “inflectional”.

e H, = —ry. The pendulum stays at the stable equilibrium (8, c) = (0,0). The z-geodesic is a
straight line.

Evaluating when these normal Pontryagin extremals lose optimality is not an easy problem and
it is outside the purpose of this book. See the bibliographical note.

Exercise 7.73. Find all abnormal extremals for this problem.
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c
c=2rg
H, > g
H, =g
H,=0
H, =—-rg
0

Figure 7.7: Level set of the pendulum for ry # 0. The vertical line § = 7 is identified with the
veritical line § = —m. We have also indicated the direction of parameterization that one gets from
the equation § = ¢. Notice that the only critical points are (6, ¢) = (0,0) (stable equilibrium) and
(0,¢) = (m,0) (unstable equilibrium).
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H, =0

H, > rg > 0 non inflectional geodesics

Q)

p—’)"()>0

S

separatrice g 75 +7

unstable critical point (6y = %)

NN
o

—ro, 7o) inflectional geodesics

JUL
Co

= —rg stable critical point

Figure 7.8: z-geodesics. Notice the presence of a periodic trajectories.
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7.9.3 Euler’s “cvrvae elasticae”

The z-geodesics for the rolling ball withouting twisting are called Euler’s cvrvae elasticae, since
they are obtained via ((.80) and (Z.81)) from the solution of equations (7.75)), (7.70), (T.710), (T.78),
that are the same equation that one gets while looking for the configurations of an elastic rod on
the plane having a stationary point of elastic energy. See [47].

For convenience we re-write the equations here:

Z1 = cos(0 + ) (7.82)
Zo = sin(0 + ) (7.83)
0=c (7.84)
¢ = —rgsin(f) (7.85)

These equations contains several parameters: ro > 0, ap, and the initial conditions 0(0) = 6,
¢(0) = co, 21(0) = 201, 22(0) = zp2, having the following meaning;:

e (z01,202) is the starting point of the curba elastica;
e 0y + «ay is the starting angle of the curba elastica;

e 0y gives the “starting point” of the solution of the pendulum that it is used in the interval
[0, TY;

e 7o and co establish the gravity of the pendulum and the level of the Hamiltonian H},. This
has consequences on the type of curba elastica (inflection, non inflectional etc,...) and on
their “size” on the plane.

We have the following interesting characterization of cvrvae elasticae.

Proposition 7.74. The set of cvrvae elasticae coincides with the set of planar curves parametrized
by planar arclength for which the curvature is an affine function of the coordinates.

Proof. Let us make the following change of coordinates z1, 29 — x1,z2 where

(2)=(coten) e ) (),

Then equations (.82)—(7.85]) become

&1 = cos(h),
&9 = sin(h),
6=c,
¢ = —rpsin(6).
Hence
¢ = —rosin(f) = —rois.

Integrating we obtain
c(t) — co = —ro(z2(t) — 22(0)).
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Hence
c(t) = ¢co — ro(—sin(ag)z1 + cos(ag)z2) + ro(—sin(ag)zo1 + cos(ag)zo2) = ag + a121 + azze.

where
ag = ¢o + ro(—sin(ag)zo1 + cos(ap)zo2), a1 = rosin(ag), az = —rpcos(ap).

One immediately verify that the Jacobian of the transformation cg,rg, g — ag, a1, as is equal to
ro. However this singularity is only due to the choice of polar coordinates. O

Exercise 7.75. Consider the Engel sub-Riemannian problem, i.e. the sub-Riemannian structure
on R* for which an orthonormal frame is given by the vector fields

7t

2

Prove that the Lie algebra generated by X7 and X5 is finite dimensional. Using Theorem [7.1]deduce
that this problem define a sub-Riemannian structure on a Lie group. Find the group law. Study its
geodesics. Do the same for the Cartan sub-Riemannian problem, i.e. the sub-Riemannian structure
on R® for which an orthonormal frame is given by the vector fields

X; = aml, Xy = 6@ — :1318903 + au.

2
X
X1 = 8951, X2 = 8952 — xlc‘)xg + 718504 + xlxgc‘)xs.

7.9.4 Rolling spheres: further comments

A regular curve in the Fuclidean plane is an elastica if and only if its curvature is an affine function
of the coordinates. In other words, a plane curve is an elastica if and only if it is a geodesic of a
plane isoperimetric problem with an affine “magnetic field” (see Section [A.4.2]).

One can realize that the rolling without slipping or twisting problem looks somehow similar to
the isoperimetric one. The state space is R x R? for the isoperimetric problem and is SO(3) x R?
for the rolling problem. The horizontal distribution is a complement to the tangent space to R x -
and is invariant under translations of the additive group R for the isoperimetric problem; it is a
compliment to the tangent space to SO(3) x - and is invariant under (left) translations of the group
SO(3). The sub-Riemannian length is induced by the Riemannian length in R? for both problems.
The general framework that contains both problems as well as the problems discussed in Section
84l is as follows.

Let G be a Lie group. A principal bundle with a structure group G is a locally trivial bundle
N -5 M where the group G acts freely on IV and the orbits of this action are exactly the fibers of
the bundle. The typical example is the bundle of orthonormal frames on a Riemannian manifold
and traditionally a right action of G is considered. In the case of the bundle of oriented orthonormal
frames on an n-dimensional Riemannian manifold the structure group is SO(n); if (v1,...,vy) is a
frame and A = {a;;}]';_; € SO(n), then the action is defined as

n n
(U1, .. 0p) - A= E a,-lv,-,...,g ainv; | .
i=1 i=1

Let g be the Lie algebra of the group G. A connection on the principal bundle N S Misa
vector distribution on IV that is a complement to the tangent spaces to the fibers and is invariant
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under the action of G. Recall that right translations of the Lie group are generated by left-invariant
vector fields; hence the tangent space to the fiber at any point is naturally identified with g. Let
D, CTyN, q € N be a connection. We have T, N = g® Dy; a linear projection w, : T, N — g such
that kerw, = D, defines a non-degenerate G-invariant g-valued vector differential form w on N.

Of course, the construction can be inverted. According to another equivalent definition, a
connection on the principal bundle is a non-degenerate G-invariant g-valued differential form. The
kernel of such a form is the connection in the sense of the first definition.

Let 7 : N -5 M be the canonical projection to the base of the bundle and 7 : [0,1] — M be a
smooth curve. Given a point go € 7 1(7(0)) there exists a unique horizontal lift g of y(t) starting
at qo, i.e., ¢t € Dy,, 0 <t < 1. The point q; € 7~ (y(1)) is called the parallel transport of gy along
~. The parallel transport commutes with the action of GG thus the transport of a point determines
the transport of the whole fiber.

Assume that M is equipped with a Riemannian structure. The length-minimization problem
on the set of curves in M that provide a parallel transport from gy to the given point ¢; is a
isoholonomic problem. The two-dimensional isoperimetric problems, their modification considered
in Section [7.8.4], and the rolling without slipping or twisting problem are just very special cases.
Isoholonomic problems link sub-Riemannian geometry with numerous applications: dynamics of a
particle in a gauge field, optimal shape transformation, and many others.

Bibliographical notes

203



204



Chapter 8

End-point map and Exponential map

In Chapter @ we started to study necessary conditions for an horizontal trajectory to be a minimizer
of the sub-Riemannian length between two fixed points. By applying first order variations we found
two different class of candidates, namely normal and abnormal extremals. We also proved that
normal extremal trajectories are geodesics, i.e., short arcs realize the sub-Riemannian distance.

In this chapter we go further and we study second order conditions. To this purpose, we intro-
duce the end-point map E,, that associates to a control u the final point Eg,(u) of the admissible
trajectory associated to u and starting from ¢g. Then we treat the problem of minimizing the en-
ergy J of curves joining two fixed points qg,q1 € M as the problem of minimization with constraint

It is then natural to introduce Lagrange multipliers. First order conditions recover Pontryagin
extremals, while second order conditions give new information. This viewpoint permits to interpret
abnormal extremals as candidates for optimality that are critical points of the map E,, defining
the constraint.

In this chapter we take advantage of the invariance by reparametrization to assume all the
trajectories to be defined on the same interval I = [0, 1]. Also, since the energy of a curve coincides
with the L?-norm of the corresponding control, it is natural to take L2([0,1],R™) as class of
admissible controls (cf. the discussion in Section B.6). This is useful since L?([0,1],R™) has a
natural structure of Hilbert space.

8.1 The end-point map and its differential

Recall that every sub-Riemannian manifold (M, U, f) is equivalent to a free one, as explained in
Section [3.1.4l In this chapter we always assume that the sub-Riemannian structure is free of rank
m, i.e., U= M x R™. In the following {f1,..., fm} denotes a generating frame.

Fix gqo € M. Recall that, for every control u € L?([0,1],R™), the corresponding trajectory =,
is the unique solution of the Cauchy problem

J(t) =Y wit) i(v(1),  7(0) = qo. (8.2)
i=1

Let Uy, C L*([0,1],R™) the set of controls u such that the corresponding trajectory =, starting at
qo is defined on [0, 1].
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Figure 8.1: Differential of the end-point map

Exercise 8.1. (i). Prove that U,, is an open subset of L2([0, 1], R™).
(ii). Let ro > 0 such that the closure of the sub-Riemannian ball By, (ro) is compact (cf.
Corollary 3.35]), and denote by By2(rg) the ball of radius ro in L2. Prove that Bra(rg) C Uy,-

Definition 8.2. Let (M, U, f) be a free sub-Riemannian manifold of rank m and fix ¢o € M. The
end-point map based at qg is the map

Eqy : Ugy — M, Eqo(u) = u(1). (8.3)
where -, is the unique solution to the Cauchy problem (8.2]).

Remark 8.3. Similarly one can define the end-point map at time t € R based at gy that is denoted
by El : Ul — M and defined by the identity E! (u) := y,(t) defined on the set U, of controls u
for which the corresponding trajectory =, is defined on [0, t].

Now we prove that the end-point map is differentiable (and actually smooth) and we compute
its (Fréchet) differential.

Proposition 8.4. The end-point map Ey, is smooth on Uy, and for every u € Uy, we have
1
DBy : (0.1, R™) = T, )M, DyBy(v) = /0 (P, 0y (8.4)

for every v € L?([0,1],R™). Here P is the flow generated by u.

From the geometric viewpoint, the differential D, E, (v) computes the integral mean of the
vector field f,) defined by v along the trajectory 7, defined by u, where all the vectors are pushed
forward in the same tangent space T, 1) with P, (see FigureB.1l). We stress that, since Uy, is an
open set of L2([0, 1], R™), the differential is defined on the tangent space to Uy, that is L%([0, 1], R™).

Proof of Proposition [8.4). The end-point map from gqg is a map Ey, : Uy, — M. Instead of proving
the smoothness of the end-point map in coordinates (on M), we will evaluate the end point on a
function a : M — R and obtain ao E,, : U,, — R, adopting the viewpoint of chronological calculus.

Employing the notation f,(q) :== > ", u;fi(¢). the end-point map from gy can be rewritten as
the chronological exponential (cf. Chapter [6])

1
Egy(u) =qo© e@/o fu@y dt. (8.5)
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We will show that for every control @ in the set U, we can write a Taylor expansion around % and
control the rest at the corresponding order.

Step 1. Let us first show the Taylor expansion of E,, near the control « = 0. We remove the
subscript g and write

1
v) = exp /0 oty dt. (8.6)
splitting it into the sum of the two parts of the Volterra series
E(v(-)) = Sn(v) + By (v) (8.7)

where

N-1
’U) =1Id+ Z//fv(sk)Q va(Sl)dS
k=1

/ /POSNvasN 0 fusy)ds

An(1)

By linearity of f, with respect to v, the k-th term in the sum Sy is k-linear. Moreover, applying
Theorem [6.19] with ¢ = 1, there exists C' > 0 such that

C cl
1BN @)ally e < 72 0l lallatn.i (8.8)

We stress that the previous inequality holds (for suitable values of the constants) for every N € N,
and in the particular case when N = 2 gives

(st [ )

Since a is arbitrary, choosing @ = 0 and a compact set K containing the point ¢y one has, for v
sufficiently small

< Ce“l"l2 w[3 | all a1,k (8.9)
a, K

‘qu / Fowy(ao)dt| < CeClvl2 )3 (8.10)

the inequality being meaningful in coordinates. This says in particular that the end-point map is
differentiable at 4 = 0 and, since the map v +— fol fo()(qo)dt is linear and the right hand side is
o(|lv||2), computes its differential.

Step 2. To compute the Taylor expansion at an arbitrary point @ € Uy, let us consider the
expansion in a neighborhood of v = 0 of the map

1
v By (u+v) =qoo eXﬁ/ fatoypydt
0

Using the variation formula ([6.29]) one can write

1 1
=B /0 Fasoyodt = B /0 Fater + oyt
1 t 1
= &xpb / (@ / ad fﬂ(s)d8> Fo(rydt o XD / faqdt (8.11)
0 0 0
1
— & /0 (PE)Z fuwydt o PRy
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Indeed we have

Ey(u+v) = ngl(GgO (v)) = Ggo (v) o Poﬂ’l (8.12)

where Ggo is the map defined as follows

1
G (v) := go o &P /0 (B foy

Then, the expansion of (812]) near v = 0 is obtained by the Volterra expansion of the map Ggo
with respect to v. Using the same computations and estimate as above one obtains

1 1
DoGy (v) = qo @ /0 (P fodt = /0 (P37 o (qo)dt (8.13)

and, by composition,

1
Daliy(0) = (Fis). o Doy (v) = (P). | (P fuy ()t
1 —
- [ s aar

where we denote ¢; := Ey(u). O

Remark 8.5. Notice that the decomposition of the non autonomous flow associated with @ + v
into the one associated with @ and a correction term obtained via the variation formula in (8IT])
translates in “chronological terms” the change of variables argument used in the ODE proof of

Proposition B53] (cf. Section B.4.2).

8.2 Lagrange multipliers rule

Let U be an open set of an Hilbert space H, and let M be a smooth n-dimensional manifold.
Consider two smooth maps

v:U—R, F:U— M. (8.14)

In this section we discuss the Lagrange multipliers rule for the minimization of the function ¢ under
the constraint defined by F'. More precisely, we want to write necessary conditions satisfied by the
solutions of the problem

min (’D|F*1(q)’ q€ M. (8.15)

Theorem 8.6. Assume u € U is solution of the minimization problem ([8IH)). Then there exists a
covector (A\,v) € Ty M x R such that (\,v) # (0,0) and

ADyF +vDyp =0. (8.16)
Remark 8.7. Formula (8I6]) means that for every v € H one has
(A, DyF(v)) + vDyp(v) = 0.
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Proof. Let us prove that if u € U is solution of the minimization problem (8I5]), then w is a critical
point for the extended map ¥ : i/ — M x R defined by ¥(v) = (F(v), p(v)).

Indeed, if u is not a critical point for ¥, then D,V is surjective. By implicit function theorem,
this implies that W is locally surjective at u. In particular, for every neighborhood V of u it exists
v € V such that F(v) = F(u) = q and ¢(v) < ¢(u), that contradicts that u is a constrained
minimum.

Hence D,V = (D, F, Dyp) is not surjective and there exists a non zero covector (A, ) such that
ADF +vD,p=0. O

8.3 Pontryagin extremals via Lagrange multipliers

Applying the previous result to the case when F' = E,; is the end-point map and ¢ = J is the
sub-Riemannian energy, one obtains the following result.

Corollary 8.8. Assume that a control u € U is a solution of the minimization problem (8.1l), then
there exists (\,v) € Ty M x R such that (\,v) # (0,0) and

ADyEy, +vD,J = 0. (8.17)

Let us now prove that these necessary conditions are equivalent to those obtained in Chapter

A Recall that, since J(u) = 3|ul|2,, then Dy J(v) = (u,v)z2 and, identifying L*([0,1],R™) with
its dual, we have D, J = u.

Proposition 8.9. We have the following:

(N) (u(t), A(t)) is a normal extremal if and only if there exists \y € Ty, M, where q1 = Ego(u),
such that A(t) = (P)* 1 and u satisfies 81T) with (A\,v) = (A1, —1), namely

A DyEg = u. (8.18)

(A) (u(t), \(t)) is an abnormal extremal if and only if there exists \ € Ty M, where q1 = Ey,(u),
such that A(t) = (Pf4)* A1 and u satisfies 8IT) with (A, v) = (A\1,0), namely

M Dy By = 0. (8.19)

where in BIR) we identify u € L? with the element (u,-)r2 € (L?)'

Proof. Let us prove (N). The proof of (A) is similar.

Recall that the pair (u(t), A(t)) is a normal extremal if the curve A(t) satisfies A(t) = (P4 )*A(1)
(that is equivalent to say that A(¢) is a solution of the Hamiltonian system, cf. Chapterﬁl) and
(A(@), fi(v(1))) = u;(t) for every i = 1,...,m, where v(t) = w(A(t)).

Assume that u satisfies (8.I8]) for some Ay, let us prove that the curve defined by A(t) := (P4)*\1
is a normal extremal. Condition (8I8) means that for every v € L?([0,T],R™) we have

(M, DyEg(v)) = (u,v)2 (8.20)
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Using (8.4]), the left hand side is rewritten as follows

1 1
(A1, Dy Egy(v)) 2/ <>\1,(Rﬁ‘1)*fv(t)(m)>dt=/ (P AL, foy(v(2))) dt
0 0
1 1 m
:/ <)\(t)7fv(t)(7(t))>dt=/ D AW, L) vi(t)at,
0 0 =1

where we used that y(t) = (P#)""(q1). Then (B20) becomes

1 m
[ 0. sewnuna = [ S o (321)
=1

0 =1

and since v(t) is arbitrary, this implies (A(¢), fi(y(t))) = u;(t) for a.e. t € [0,1] and every i =
1,...,m. Following the same computations in the oppposite direction we have that if (u(t), A(¢))
is a normal extremal then the identity (8I8]) is satisfied. O

8.4 Ciritical points and second order conditions

In this chapter, we develop second order conditions for constrained critical points in the case in
which the constraint is regular. When applied to the sub-Riemannian case, this gives second order
conditions for normal extremals (that are not abnormal). Cf. also Section

In the following H always denote an Hilbert space. Recall that a smooth submanifold of H is
a subset V C H such that for every point v € V there is an open neighborhood Y of v in H and a
smooth diffeomorphism ¢ : ¥V — W to an open subset W C H such that ¢(VNY)=WnNU for U
a closed linear subspace of H.

We now recall the implicit function theorem in this setting.

Proposition 8.10 (Implicit function theorem). Let F' : H — M be a smooth map and fix g € M. If
F is a submersion at every u € F~Y(q), i.e., the Fréchet differential D F : H — T4 M is surjective
for every u € F~1(q), then F~Y(q) is a smooth submanifold whose codimension is equal to the
dimension of M. Moreover T,F~'(q) = ker D, F.

We now define critical points.

Definition 8.11. Let ¢ : H — R be a smooth function and N C H be a smooth submanifold.

Then u € N is called a critical point of @‘N if Dugp|T Ny =0

We start with a geometric version of the Lagrange multipliers rule, which caracterizes con-
strained critical points (not just minima). This construction is then used to develop a second order
analysis.

Proposition 8.12 (Lagrange multipliers rule). Let U be an open subset of H and assume that
u € U is a reqular point of F: U — M. Let q = F(u), then u is a critical point of <,0|F,1(q) if and
only if it exists X € Ty M such that

ADLF = Dyep. (8.22)
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Proof. Recall that the differential of F' is a well-defined map
D,F :T,U — T,M, q = F(u).

Since u is a regular point, D, F' is surjective and, by implicit function theorem, the level set V, :=
F~1(q) is a smooth submanifold (of codimension n = dim M), with u € V, and T,,V, = ker D, F.

Since w is a critical point of <p|v , by definition Du<p|T v, = Ducp‘kerD =0, 1le,
q uVq u
ker D, F' C ker Dy . (8.23)
Now consider the following diagram
T 2L M (8.24)
k
dyp
R

From (8.23)), using Exercice .13 it follows that there exists a linear map A : T,M — R (that means
A € Ty M) that makes the diagram (8.24]) commutative. O

Exercise 8.13. Let V be a separable Hilbert spaces and W be a finite-dimensional vector space.
Let G:V — W and ¢ : V — R two linear maps such that ker G C ker ¢. Then show that there
exists a linear map A : W — R such that Ao G = ¢.

Now we want to consider second order information at critical points. Recall that, for a function
@ : U — R defined on an open set U of an Hilbert space H, the first and second differential are
defined in the following way,

d ) 2
Du@(”) = 7 (,0(’LL + SU), DUQD(’U) = 73

5l 7 o(u + sv)

s=0

For a function F' : U — M whose target space is a manifold its first differential Dy, F" : H — T, ) M
is still well defined while the second differential D2 F' is meaningful only if we fix a set of coordinates
in the target space.

If V is a submanifold in H, the first differential of a smooth function % : V — R at a point

u € V is defined as

Dut: TV > R, Dyi(v) = L

Z| wluls),

s=0

where w : (—g,e) — V is a curve that satisfies w(0) = u, w(0) = v. If » = ¢y is the restriction of
a function ¢ : H — R defined globally on H, then D,¥ = D, |1,y coincides with the restriction of
the differential defined on the ambient space H. For the second differential things are more delicate.

Indeed the formula ,

vGTuVr—>d—

5 ) (5.25)

s=0

where w : (—g,e) — V is a curve that satisfies w(0) = u, w(0) = v, is a well-defined object (i.e.,
the right hand side depends only on v) only if u is a critical point of 1. Indeed, if this is not the
case, the quantity (8:25]) depends also on the second derivative of w, as it is easily checked.
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If u is a critical point of ¢ : V — R (i.e., Dy = 0) the second order differential (825) is a
well-defined quadratic form TV, that is called the Hessian of 1 at u:

2
Hess, v : T,V — R, v % P(w(s)) (8.26)
$71s=0

We stress that if ©) = |y is the restriction of a function ¢ : H — R defined globally on #, then the
Hessian of 1 at a critical point u does not coincide, in general, with the restriction of the second
differential of ¢ to the tangent space T, V.

Let us compute the Hessian of the restriction in the case when V = F~1(g) is a smooth sub-
manifold of H, and ¢ = <,0|F,1(q). Using that T,,F~'(¢q) = ker D, F, the Hessian is a well-defined
quadratic form

Hess,, <,0|F,1(q) :ker D, F — R

that is computed in terms of the second differentials of ¢ and F' as follows.

Proposition 8.14. For all v € ker D, F' we have
Hess, <,0|F,1(q) (v) = D p(v) — AD2F(v). (8.27)
where X\ is satisfies the identity X\ D, F' = Dy .

Remark 8.15. We stress again that in (8.27), while the left hand side is a well defined object, in
the right hand side D2y is well-defined thanks to the linear structure of H, while D2 F needs also
a choice of coordinates in the manifold M.

Proof of Proposition [§.1]} By assumption F~!(q) C U is a smooth submanifold in a Hilbert space.
Fix u € F~1(q) and consider a smooth path w(s) in U such that w(0) = u and w(s) € F~1(q) for
all s. Differentiating twice with respect to u, with respect to some local coordinates on M, we have

D, F(4) =0, (D2F(u),1) + D, F(ii) = 0. (8.28)
where we denoted by u = u(0) and i = 4(0). Analogous computations for ¢ gives

2
= 7| _ el
= <D5(p(ﬁ), Ql> + Duﬁp(u)
= (Dap(11), i) + ADy, F (i) (by A D, F = Dyp)
= (Dap(u), i) — MD2F(i),0)  (by (B28))

Hess,, cp‘F,l(q) ()

8.4.1 The manifold of Lagrange multipliers

As above, let us consider the two smooth maps ¢ : U4/ — R and F' : Y — M defined on an open set
U of an Hilbert space H.
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Definition 8.16. We say that a pair (u, \), with uw € U and X\ € T*M, is a Lagrange point for the
pair (F,p) if X € TI’;(U)M and Dy = AD,F. We denote the set of all Lagrange points by Cr,,.
More precisely

Cryp={(u,\) eU XxT*"M | F(u) =7m(N), Dyp = AD,F}. (8.29)

The set Cr,, is a well-defined subset of the vector bundle F*(T*M), that we recall is defined as
follows (cf. also Definition [2.50])

F*(T*M) = {(u,\) €U x T*M | F(u) = m(\)}. (8.30)

We now study the structure of the set Cr. It turns to be a smooth manifold under some
regularity conditions on the maps (F, ¢).

Definition 8.17. The pair (F, ) is said to be a Morse pair (or a Morse problem) if 0 is a regular
value for the smooth map

0: F*(T*M) > U* ~U,  (u,\)— Dyp— AD,F. (8.31)

Remark 8.18. Notice that, if M is a single point, then F' is the trivial map and with this definition
we have that (F, ) is a Morse pair if and only if ¢ is a Morse function. Indeed in this case D, F = 0,

and 0 is a critical value for @ if, by definition, the second differential D2y is non-degenerate.

Proposition 8.19. If (F, ) define a Morse problem, then CF, is a smooth manifold in F*(T*M).

Proof. To prove that Cp,, is a smooth manifold it is sufficient to notice that Cr, = 671(0) and,
by definition of Morse pair, 0 is a regular value of 8. The result follows from the version of the
implicit function theorem stated in Lemma [8.20) O

Lemma 8.20. Let N be a smooth manifold and H a Hilbert space. Consider a smooth map
f: N — H and assume that 0 is a regular value of f. Then f~1(0) is a smooth submanifold of N.

If the dimension of U, the target space of #, were finite, a simple dimensional argument would
permit to compute the dimension of Cp,, = 671(0) (as in Proposition BI0). In this case, since the
differential of @ is surjective we would have that

dim F*(T*M) — dim Cp, = dim U
so we could compute the dimension of Cr,

dim Cg, = dim F*(T*M) — dim U
= (dim U + rank T M) — dim U
=rankT*"M =n

However, in the case dim U = 400 the above argument is no more valid, and we need the explicit
expression of the differential of 6.

Proposition 8.21. Under the assumption of Proposition [8.19, then dim Cr, = dim M = n.
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Proof. To prove the statement, let us choose a set of coordinates A = (£, z) in T*M and describe
the set Cp, C F*(T*M) as follows

{DW —SDuF =0 (8.32)

Flu)==z

where here { is thought as a row vector. To compute dim CFr,,, it will be enough to compute the
dimension of its tangent space T(, ¢ )Cr at a every (u,&,x). The tangent space Tiuea)Cryp 18
described in coordinates by the set of points (u', &', 2") satisfying the equation

Dgcp(ul, ) - SDZF(’U,/, ) - S/DuF() =0 (8 33)
D,F(u')=2a '

Let us denote the linear map @ : U — U* ~ U defined by

Q(’LL/) = DZSD(U/7 ) - gDiF(u,7 )
Since @ is defined by second derivatives of the maps F' and ¢, it is a symmetric operator. on the
Hilbert space U.

The definition of Morse problem is immediately rewritten as follows: the pair (F,¢) defines a
Morse problem if and only if the following map is surjective.

O:UXR™ U ~U, O, &) =Q) — B(¢). (8.34)
where we denoted with B : R™ — U* ~ U the map
B(¢') = ' DuF().
Indeed the map O is exactly the first equation in ([833)). The dimension of CF,, coincides with

the dimension of ker ©. Indeed for each element (u,¢’) € ker © by setting 2’ = D, F(u') we find a
unique (v, &', 2") € T(y¢,2)CF,,- Since Q is self-adjoint, we have

U =kerQ & imQ, dim ker @ = codim im Q).
Using that © is surjective and dim(im B) < n we get that
dimker Q = codimim @ < dimim B < n,

is finite dimensional (in particular im @ is closed and U = ker Q @ im Q).
If we denote with me, : U — ker Q and 7y, : U — im Q) the orthogonal projection onto the two
subspaces, it is easy to see that

@(u',é') —0 {ﬂ'kengzo

Tim BE/ = Q’LL/

Moreover myer B : R™ — ker @ is a surjective map between finite-dimensional spaces (the surjectivity
is a consequence of the fact that © is surjective). In particular we have dimker (mxe, B) = n —
dim ker Q. Then we get the identity

dim ker © = dim ker @ + dim ker (mye; B) = dimker @ + (n — dimker Q) =n

since Ter B : R™ — ker @Q is a surjective map O

!if a submanifold C' of a manifold Z is described as the set {z € Z | ¥(z) = 0}, then its tangent space 7T.C at a
point z € C is described by the linear equation {z' € Z | D,¥(2') = 0}.
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The last characterization of Morse problem leads to a convenient criterion to check whether a
pair (F,¢) defines a Morse problem.

Lemma 8.22. The pair (F, @) defines a Morse problem if and only if
(i) im @ is closed,
(ii) ker @ Nker D, F = {0}.

Proof. Assume that (F, ¢) is a Morse problem. Then, following the lines of the proof of Proposition
R21] im @ has finite codimension, hence is closed, and (i) is proved. Moreover, since the problem
is Morse, then the image of the differential of the map (831) is surjective, i.e. if there exists w € U
that is orthogonal to im ©, namely

Q) w) — (§'DuF(),w) =0, V(& ),
then w = 0. Using that @ is self-adjoint we can rewrite the previous identity as
(', Q(w)) — (¢'DuF(),w) =0, V()
that is equivalent, since £, u’ are arbitrary, to
Q(w) =0 and D,F(w) = 0.
This proves (ii). The converse implications are proved in a similar way. O

Definition 8.23. Let N be a n-dimensional submanifold. An immersion F': N — T*M is said to
be a Lagrange immersion if F*o = 0, where o denotes the standard symplectic form on T M.

Let us consider now the projection map F.. : Cr, — T*M defined by :
Fo(u,\) = A.
Proposition 8.24. If the pair (F, ) defines a Morse problem, then F. is a Lagrange immersion.

Proof. First we prove that F. is an immersion and then that F o = 0.
(). Recall that F, : Cr, — T*M where

Cr = {(u,§, ) | equations (832) holds}
The differential D, x)Fe : T(y3)Cr,p — T\T*M is defined by the linearization of equations (8.32)
T Cryp = {(u,€,2") | equations (8.33) holds}
where
D(%)\)FC(U/, 5/7 33‘/) = (5/7 $l)
Now looking at (833]) it easily seen that
D Fe(u' € ,2") =0 if Q)= D,F(u)=0.

Since (F, ) defines a Morse problem we have by Lemma [8.22] that such a v’ does not exists. Hence
the differential is never zero and F, is an immersion.
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(77). We now show that Ffo = 0. Since o = ds is the differential of the tautological form s, and
FYo = dF} s since the pullback commutes with the differential, it is sufficient to show that Fs is
closed. Let us show the identity

Fis=D(po WM)‘CF,(P‘

By definition of the map Fr, the following diagram is commutative:

Crp —= T*M (8.35)

U

Moreover, notice that if ¢ : M — N is smooth and w € A'(IV), by definition of pull-back we have
(¢*w)q = wy(q) © Dy¢p. Hence

(F8) ) = sa 0 Dy xy Fe
= Aomp 0 Dy Fe (by definition sy = A o mps4)
=\ o Dy F omy, (by (833)
= Du(p o my) (by B.22))

O

Definition 8.25. The set Lz, C T*M of Lagrange multipliers associated with the pair (F,¢) is
the image of C'r, under the map F..

From Proposition 8.24] it follows that, if Lr, is a smooth manifold, then it is a Lagrangian
submanifold of T*M, i.e., oz, , = 0.
Collecting the results obtained above, we have the following proposition.

Proposition 8.26. Let (F,p) be a Morse pair and assume (u,\) is a Lagrange point such that u
is a reqular point for F, where F(u) = ¢ = w(\). The following properties are equivalent:

(i) Hessucp‘F,l(q) is degenerate,

(ii) (u,A) is a critical point for the map wo F, = F|CF,¢ :Cpyp — M,
Moreover, if L, is a submanifold, then (i) and (ii) are equivalent to
(1i3) A is a critical point for the map 7T|£FW :Lpy,— M.
Proof. In coordinates we have the following expression for the Hessian

Hessugo‘p,l(q) (v) = (Qv),v), Vv € ker D, F.

and @ is the linear operator associated to the bilinear form. Assume that Hess,, <p| F-1(q) is degen-

erate, i.e. there exists u’ € ker D, F' such that
(Qu',v) =0, Vv € ker D, F.
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In other words Q(u’) L ker D, F' that is equivalent to say that Q(u’) is a linear combination of the
row of the Jacobian matrix of F', namely

Qu) = &'DuF ("),

for some row vector &’. From equations (833) it follows immediately that (i) is equivalent to (i7).
The fact that, if Lr, is a submanifold, (i¢) is equivalent to (i) is obvious. O

8.5 Sub-Riemannian case

In this section we want to specify the theory that we developed in the previous ones to the case
of sub-Riemannian normal extremal. Hence, we will consider the action functional J defined by
J(u) = 3 fol |u(t)|?dt and we consider its critical points constrained to a regular level set of the
end-point map E, that means that we fix the final point of our trajectory (as usual we assume that
the starting point qq is fixed).

We already characterized critical points by means of Lagrange multipliers, now we want to
consider second order informations. We start by computing the Hessian of J ‘ E-1(q1)"

Lemma 8.27. Let q1 € M and (u,\) be a critical point of J‘E,l(ql). Then for every v € ker D, F

Hesqu‘E,l(ql)(v) = |Jvl|32 — </\,D5E(v)>, (8.36)
where
DEE@,0) =2 [ (P)efugo (Puo)-Fuco)an) d. (.37)
0<s<t<1

and P; s denotes the nonautonomous flow defined by the control u.

Proof. By Proposition B.14] we have
Hesqu‘E,l(ql)(v) = D2J - \D?E.
It is easy to compute derivatives of J. Indeed we can rewrite it as J(u) = & (u,u) 2, hence
D,J(v) = (u,v)r2, D2J(v) = (v,v)2 = ||v]3e, Vv € ker D, E

It remains to compute the second derivative of the end-point map. From the Volterra expansion
BI3) we get
DEE@.0) =200 [[ (Pt o (P fuodsds (5.39)
0<s<t<1

To end the proof we use the following lemma on chronological calculus, which we will use to
symmetrize the second derivative.

Lemma 8.28. Let X; be a nonautonomous vector field on M. Then

1 /! 1 1
/ Xsztdsdt:§/ Xsdse/ Xtdt+§ // (X, X;]dsdt. (8.39)
0 0

0<s<t<1 0<s<t<1
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Proof of the Lemma. We have

2 / Xs © Xtdsdt = // Xs © Xtdsdt + / Xs © Xtdsdt

0<s<t<1 0<s<t<1 0<s<t<1
— // Xt o] Xstdt + / Xt o] Xstdt
0<s<t<1 0<s<t<1

= / / X, o X,dsdt + / / [X,, X,]dsdt + / X, o X,dsdt

0<s<t<1 0<s<t<1 0<s<t<1

1,1
://XseXtdsdt+ // (X, X¢|dsdt
o Jo

0<s<t<1

1 1
= / Xydso / X;dt + // [Xs, Xt]dsdt.
0 0

0<s<t<1

Using Lemma [B:228 we obtain from (838

D2E(v,0) = 1 o2 / / (Par)o ooy (Pra)efoe)dsdt

0<s<t<1
where we used that fol(Pt,l)*fU(t)dt = (0 since v € ker D, E.

Proposition 8.29. The sub-Riemannian problem (E,J) is a Morse pair.

Proof. We use the characterization of Lemma We have to show that
im (Id — ADZE) is closed, ker (Id — AD2E) Nker (D,E) = 0.

Using the previous notation and defining ¢!, := (Py1)+fy, we can write
1
DyE(v) =q e / Toeydt
0

Moreover we have

<)\D5E(’L)),’L)> =2 // gf)(s) o gi(t)dsdt ©a

0<s<t<L1
= // gi(s) © gf}(t)dsdt o aQa + // gf}(t) © gi(s)dsdt o a
0<s<t<1 0<t<s<1

1 pt 1 1
s t t s
= 9uis) © I dsdt®a+/ / Gu(t) © Gu(s\dsdt o a
/0/0 (s) (t) o Ji (*) (s)

where a is any smooth function such that d, a = A.
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The kernel of the bilinear form is, by definition, the kernel of the symmetric linear operator
associated to it through the scalar product, i.e., the unique symmetric operator @) satisfying

1
(ADEE().0) = (Quo)sz = [ Qo)
Then it follows that

t 1
(Qu)(t) = </0 Io(s)ds ogt+4'o /t gi(s)ds> °a (8.45)

where ¢g' denotes the vector (gi,...,¢") and we recall that g = (P,1).f; fori =1,...,m. Let us
now prove the following technical lemma.

Lemma 8.30. Let us consider the linear operator A : L*([0,T],R™) — L?([0,T],R™) defined by

(Av)(t / K(t,s)v (8.46)

where K (t,5s) is a function in L?([0,T]?,R™). Then
(i) A=1—Q, where Q is a compact operator,
(i1) ker A = {0}.
Moreover, if K(t,s) = K(s,t) for all t,s, then A is a symmetric operator.
Proof. The fact that the integral operator @ : L([0,7],R™) — L*([0,7],R™) defined by

t
- / K(t, 5)o(s)ds (8.47)
0
is compact is classical (see for instance [6I, Chapter 6]). We then prove statement (ii) in two steps.

(a) we prove it for small T'. (b) we prove it for arbitrary 7.
(a). Fix T > 0 and consider a solution in L%([0,7],R™) to the equation

= /tK(t, s)u(s)ds, te€0,T]. (8.48)

We multiply ([848]) by v(t) and integrate over ¢ € [0, 7], obtaining

/ 2dt = //Kts o(t)dsdt

By applying twice the Cauchy-Schwartz identity, one obtains

/ )2dt < (/ / K(t,s)| dtds> v /OT v(t)2dt.

ol < KN ellvliZ.

or, equivalently

Since for T' — 0 we have || K|| 120,772, rm) — 0, this implies that v =0 on [0, 7.

(b). Consider a solution of the identity (8.48]) and define T* = sup{r > 0|v(t) = 0,¢ € [0, 7]}.
By part (a) one has T* > 0. Since the set X := {v € L?([0,T],R™)|v(t) = 0 a.e. on [0,T*]} is
preserved by A (namely A(X) C X) using again part (a) one obtains that v indeed vanishes on
[0, T* + €], for some € > 0, contradicting the fact that that 7™ is the supremum. O
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Let us go back to the proof of Proposition Since (845) is a compact integral operator,
then I — @ is Fredholm, and the closedness of im (I — @) follows from the fact that it is of finite
codimension. On the other hand, for every control v € ker D, E' we have the identity (cf. (84]))

t 1
qi° /0 Go(s)ds = —q1© /t To(s)ds

Hence we have that v belong to the intersection in (841]) if and only if it satisfies

(1= ADEE) o()(0) = o)+ [ [a. ] (a)ds

which has trivial kernel thanks to Lemma [8.30] O
Combining the last result with Proposition 8.24] we obtain the following corollary.

Corollary 8.31. The manifold of Lagrange multilpliers of the sub-Riemannian problem (E,J)

L.y = {M € T*M| X\ = e (Ng), No € T, M}

is a smooth n-dimensional submanifold of T* M.

8.6 Exponential map and Gauss’ Lemma

A key object in sub-Riemannian geometry is the exponential map, that is the map that parametrizes
normal extremals through their initial covectors.

Definition 8.32. Let go € M. The sub-Riemannian exponential map (based at qp) is the map
expy, + gy C Ty M — M, exp,,(Ao) =mo eﬁ()\o). (8.49)

defined on the domain %, of covectors such that the corresponding solution of the Hamiltonian
system is defined on the interval [0,1]. When there is no confusion on the base point, we might use
the simplified notation exp.

The homogeneity of the sub-Riemannian Hamiltonian H yields the following homogeneity prop-
erty of the flow associated with H.

Lemma 8.33. Let H be the sub-Riemannian Hamiltonian. Then, for every A € T*M

—

et (o)) = aetf ()), (8.50)
for any a > 0 and t > 0 such that both sides of the identity are defined.

Proof. By Remark we know that if A\(¢) = etfl (Ao) is a solution of the Hamiltonian system
associated with H, then also A, (t) := aX(at) is a solution. The identity (850) follows from the
uniqueness of the solution and the fact that A\, (0) = aA(0). O

The homogeneity property (850) permits to recover the whole extremal trajectory as the image
of the ray joining 0 to A in the fiber T;; M.
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Corollary 8.34. Let A(t), fort € [0,T], be the normal extremal that satisfies the initial condition
A(0) = Ao € T2 M.
Then the normal extremal path y(t) = w(\(t)) satisfies
Y(t) = expyy(tho),  t€[0,T]
Proof. Using (850) we get

expy, (tho) = 7 (th)) = (e (No)) = T(A(1)) = 7 (D).
]

Remark 8.35 (Unit speed normal extremals). Due to the homogeneity property one can introduce
the cylinder A4, of normalized covectors

Ay = {X € T M| HON) = 1/2},
and consider the following exponential map with two arguments
expy, : RT x Ay — M, exp(t, Ao) = exp,, (tAo)

In other words one restricts to length parametrized extremal paths, considering the time as an
extra variable. In what follows, with an abuse of notation, we set

expg0 (M) = equo(t)\o), Ao € Ay,
whenever the right hand side is defined.
Proposition 8.36. If the metric space (M,d) is complete, then oy, = T, M. Moreover, if there

are no strictly abnormal minimizers, the exponential map exp,, is surjecti;})e.

Proof. To prove that o7, = T;x M, it is enough to show that any normal extremal A(¢) starting from
Ao € Ty M with H(Ag) = 1/2 is defined for all t € R. Assume that the extremal A(t) is defined on
[0, T'[, and assume that it is not extendable to some interval [0, 7 +¢[. The projection v(t) = w(\(t))
defined on [0,77 is a curve with unit speed, thus for any sequence t; — T the sequence (7y(t;)); is
a Cauchy sequence on M since

d(y(t:),v(t5)) < |ti = t5]-

The sequence (y(t;)); is then convergent to a point g1 € M by completeness. Let us now consider
coordinates around the point ¢; and show that, in coordinates A(t) = (p(t),z(t)), the curve p(t) is
uniformly bounded. This gives a contradiction to the fact that A(¢) is not extendable. By Hamilton

equations (4.34])
p(t) = on (p(t),2(t)) = =D (1), fs(v(1)) (p(1), D fi(4(£))) -

Oz
i=1

Since HOA(®)) = 3 7%, (), fi(y(H)? = 1/2 then | (p(t), fi(v(1)) | < 1 for every i = 1,...,m.
Moreover by smoothness of f;, the derivatives | D, f;| < C are locally bounded in the neighborhood
and one gets the inequality

(1) < Clp(t)],
which by Gronwall’s lemma implies that |p(¢)| is uniformly bounded on a bounded interval. The

second part of the statement follows from the existence of minimizers, cf. Proposition B.44] and
Corollary [3.40] O
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Corollary 8.37. If the metric space (M,d) is complete, then every normal extremal trajectory is
extendable on [0, +ool.

We end this section by an Hamiltonianian version of the Gauss’ Lemma.

Proposition 8.38 (Cotangent Gauss’ Lemma). Fiz g9 € M. Let A\g € Ay, that is not a critical
point for exp, . Let U be a small neighborhood of Ao € Ay, and set F = exp, (U). Then

A1 = e (Xo) annihilates the tangent space Ty.7 to F at q := expy,(Xo).

Proof. 1t is enough to show that for every smooth variation n* € Ay, s € [0, 1], of initial covectors
such that n° = Ay we have
d
A1), —
(.5

Let n®(1) := eTﬁ(ns) and v%(t) = m(n°(t)) be the corresponding trajectory. Define the family of
controls u*(-) satisfying for a.e. 7 € [0, 1]

eXPy, (ns)> =0.
s=0

ui(r) == (n°(7), fi(y*(7))),  i=1,...,m, (8.51)
where f1, ..., fm denotes as usual a generating frame. By definition (8.51]) of u® we have exp, (7°) =
E4(u®) hence we can compute

d
t s t s
E szoequo (T, ) = % SZQEQO(U ) = DuEQO(U)7 (852)

where we denoted v := %L:Ous. Notice that v is orthogonal to u in L? since, by Lemma .28 the
map s — [|u®[|3, is constant. Thus we have

(MO ey ) = 0. Dk (0) = 0}z =0 (859

where the second identity follows from the normal condition (8I8]) and (R.52). O

Exercise 8.39. Deduce from Proposition (8.38]) and the homogeneity property of the Hamiltonian
that if \g € Ay, is not a critical point for expfm, then \; := et (o) annihilates the tangent space
Ty Ty to Fy = expl (U) at q; := expl, (Ao).

We end this section with an elementary but important observation on the behavior of the
exponential map in a neighborhood of zero.

Proposition 8.40. The sub-Riemannian exponential map expy, : Ty M — M is a local diffemor-
phism at 0 if and only if Dy, = Ty, M. More precisely im (Doexp,,) = Dy, .
Proof. Fix any element £ € Ty M. By definition of differential

d
equO(O +t) = —

7| et =¢(0). (8.54)

t=0

d
Doexp,, (&) = a

t=0
where 7¢ is the horizontal curve associated with initial covector § € Ty M. This proves that
im Dgexp,, = Dy,. To prove the equality let us notice that from (4.37) one has

4e(0) = > (€, filqo)) filqo)- (8.55)
i=1
Since £ € Ty M is arbitrary, the proof is completed. O
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In the Riemannian case exp,, gives local coordinates to M around g, being a diffeomorphism
of a small ball in T M onto a small geodesic ball in M, where geodesics are images of straight
lines in the cotangent space. Moreover there is a unique minimizer joining gg to every point of the
(sufficiently small) ball and the distance from gq is a smooth function in a neighborhood of ¢ itself.

This is no more true as soon as Dy, # T,, M and, as we will show in Corollary 1.8 and Theorem

[I2.17], singularities appear naturally.

8.7 Conjugate points

In this section we introduce conjugate points and we discuss a basic result on the structure of the
set of conjugate points along an extremal trajectory.

Definition 8.41. Fix gy € M. A point ¢ € M is conjugate to qo if there exists s > 0 and A\g € Ay,
such that ¢ = equo(s)\o) and s\ is a critical point of exp, .

In this case we say that q is conjugate to qo along (t) = exp, (tAo). Moreover we say
that ¢ is the first conjugate point to qo along ~y(t) = exp, (t)\) if ¢ = y(s) and s = inf{r >
0[7A is a critical point of exp, }.

We denote by Cong, the set of all first conjugate points to gp along some normal extremal
trajectory starting from go.

Remark 8.42. Notice that, given a normal extremal trajectory ~ : [0,1] — M defined by (t) =
exp,, (tAo), if v admits an abnormal lift, then (1) is conjugate to v(0). Indeed by definition
of abnormal, this means that the control u associated with v is a critical point for E,,, i.e.,
the differential D, E,, is not surjectuve. Since, by definition of the exponential map, one has
im D)y exp,, C im D, Ey,, it follows that Dy exp, is not surjective as well.

Since the restriction of an abnormal extremal is still abnormal, Remark [8.42] is saying that an
abnormal extremal is made of conjugate points. The following theorem discuss somehow a converse
statement.

Theorem 8.43. Let 7 : [0,7] — M be a normal extremal path. Assume that to > 0 is a limit of a
decreasing (resp. increasing) sequence of conjugate times. Then there exists € > 0 such that

(a) all points of the segment [to,t + €] (resp. [ty — €,to]) are conjugate,
(0) Yito,to+e] (18P Vto—e,t]) 8 an abnormal extremal path.

Proof. We shall consider only the case of a decreasing convergent sequence of conjugate times and
leave to the reader to make necessary modifications in the case of an increasing sequence.
Let (u(t),A(t)), 0 <t <T, be a normal extremal, where

() =7(A®), ¥ = fuly)
We set Py, = (ﬁ fg Ju(r) d7. We consider the maps
Fi: )\l—>7roP0*7toeﬁ(t)\)

defined on a neighborhood of Ag in Ty M, where go = 7(0). According to the construction, F;(A\;) =
Ao for all £. T claim that t € (0,7] is a conjugate time for v if and only if )\ is a critical point of
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the map F;. Indeed, according to the definition, ~(¢) is conjugate to (0) if and only if tAg is a

critical point of the map exp, = 7o et o g 1€ if TA(t)eH(Tq*OM) N T (T* M) # 0, and the
q
diffeomorphism Fy, transforms T )M into T, M.
As we know, (Fj,)™" = = &xp fo # dt, where h,(A) = (A, fu). The variations formula and

formula (4.64777) 1mply that the dependlng on t € [0,T] family of diffeomorphisms
Ao Py oef (i) = Py oef(N), AeT M,
is a time-varying Hamiltonian flow generated by the Hamiltonian g; : T*M — R defined by
= (H - hu(t)) o (Po*,t)_l

We have: g > 0 and g:(A\g) = 0. It follows that dy,g; = 0 and dio g: is a nonnegative quadratic
form on the symplectic space Ty, (7" M). We introduce the following notations:

* 3 1
So=T(T*M), I:=T\(TpM),  Q:= §d§Ogt. (8.56)

The linear Hamiltonian flow exp fg @T dr on ¥ is the linearization of the flow exp fg gr dt at the
equilibrium Xg. Moreover, v(t) is conjugate to «(0) if and only if

t
INJ,#0,  where J;:= eTf)/ Q- dr(11)
0

Recall that Lagrange subspaces of the 2n-dimensional symplectic space > are n-dimensional
subspaces on which the symplectic form o vanishes identically. In particular, II is a Lagrange
subspace. J; is also a Lagrange subspace because symplectic flows preserve the symplectic form. A
Darboux basis for X is a basis eq,...,en, f1,..., fn satisfying

olei, fj) = bij,  olfi, f;) = o(ei,e;) =0, i, j=1,....n (8.57)
We’ll need the following simple lemma:

Lemma 8.44. Let Ao, Ay be Lagrange subspaces of ¥, with dim(Ag N A1) = k. Then there exist
Darboux basis e1,...,en, f1,..., fn in X such that

Ap = span{ey,...,e,}, Aj; =span{ei,...,ex, €xr1+ for1,---r€n+ fn}
Proof. Consider any arbitrary basis e1, ..., e, of Ag satisfying
Ao N Ay =span{eq,...,ex}.
The nondegeneracy of o implies the existence of f; € ¥ such that
ole1, f1) =1, oles, f1) =---=o(en, f1) =0.
Chosen f1, the nondegeneracy of o implies the existence of fo € ¥ such that
o(ez, fa) = 1, o(f1, f2) = o(er, fo) = o(es, fo) = - = o(en, f2) = 0.
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Iterating one obtains fi,..., fi such that
oles, f;) = dij,  o(fi, fj) =ole, f;) =0, ,j=1,....k, l=k+1,...,n.
Let us introduce the space
F={velA :o(fi,v)=--=0(fn,v) =0}
By construction A; = I' @ (Ag N A;). The linear map ¥ : I' — R"~* defined by
U(v) := (0(ek+1,0), ..., 0(en, v)),

is invertible, hence there exist vji1,...,v, € I' such that o(e;,v;) = &, for i,j = k+1,...,n.
Setting f; :=v; —e;, for i =k +1,...,n, one obtains the Darboux basis e1,...,en, f1,..., fn. 0O

We apply the previous lemma to the pair of Lagrange subspaces II and J;,, working in the
coordinates (p,x) € R" x R™ induced by the Darboux basis. We have:

Jio = {(p,2) € R* xR™ | & = Sy},
where Sy, = <06“ Ino,k> is a nonnegative symmetric matrix.

The subspace of ¥ = {(p,z) € R" x R"} defined by the equation = = 0 is called vertical and the
one defined by the equation p = 0 is called horizontal. Any close to J;, n-dimensional subspace A is
transversal to the horizontal subspace and can be presented in the form A = {(p, Ap) : p € R"} for

some n X n-matrix A. Moreover, A is a Lagrange subspace if and only if A is a symmetric matrix.
Indeed,

o((p1, Ap1), (p2, Ap2)) = pl Apa — pi Apy = pl (A — A*)pa.

where v” denotes the transpose of a vector v. Let J; = {(p, S¢p) : p € R"} for ¢ close to tg; then S;
is a symmetric matrix smoothly depending on t. Moreover,

IInJ; ={(p,0) e R"" x R": S;p = 0}.
Lemma 8.45. For every p € R"™ one has pTStp > 0.

Proof. We keep symbol @); for the matrix of the quadratic form @; on X. Let ¢ — A; be a solution
of the equation \; = Q¢\¢; then

(M, Ae) = oA, Gide) = 2(Qihe, Ae) > 0.
We apply this inequality to A\ = (p¢, S¢pt) and obtain:
a((p, Sep), (p, Se) + (0, Sip)) = (p, Sep) > 0. O
Lemma 8.46. If S;,p =0 for some t; >ty and p € R™, then Sip =0, Vt € [to,t1].
Proof. This statement is an easy corollary of Lemma Indeed,
0 < (S,p,p) < (Sip,p) < (S, p,p) = 0.

Hence (Sp,p) = 0. Since p — (S;p, p) is a nonnegative quadratic form, we obtain that S;p =0. O
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Lemma implies claim (a) of the theorem (for a decreasing sequence). Let us prove claim
(b), whose proof is also based on Lemma [8.461

The fiber T M is a vector space, it is naturally identified with its tangent space II, and the
coordinates p € R" on II introduced above serve as coordinates on Ty M. The restriction of the

Hamiltonian g; to T, M has a form:

k
0ip) = 3 S0 (Po F)a0))” — (0, (P ) (a0)

i=1

Hence
k

> 0, (P i) (@) (8.58)

i=1

(Qi(p,0), (p,0)) =

N |

Moreover, if s — A\s = (ps,zs) is a solution of the system A= @TA, and zy = 0, then (p, i) =
{(p,0),Q¢(pt,0)), for all p € R™. In particular, under conditions of Lemma 846 we get:

<(pv 0)7Qt(ﬁt70)> = 07 le [t07t1]7
and, according to the identity (858]),
<ﬁv (P()_,tifl)(q(]» :07 1= 17"'7k7 te [t07t1]-

Let n(t) = (P(j"t)_l(ﬁ, qQ) € T3,y M. We obtain that (u(t),n(t)) for t € [to,t1] is an abnormal
extremal, thanks to characterization of Proposition [8.9] O

We deduce from Theorem B.43] the following important corollary.

Corollary 8.47. Let~y : [0,1] — M be a normal extremal trajectory that does not contain abnormal
segments. Define the set of conjugate times to zero

Te:={t > 0] ~(t) is conjugate to y(0)}.

Then the set T, is discrete.

8.8 Minimizing properties of extremal trajectories

In this section we study the relation between conjugate points and length-minimality properties of
extremal trajectories. The space of horizontal trajectories on M can be endowed with two different
topologies:

e the W2 topology, also called weak topology, that is the topology induced on the space of
horizontal trajectories by the L? norm on the space of controls,

e the C? topology, also called strong topology, that is the usual uniform topology on the space
of continuous curves on M.

The main result of this section is the following one.

Theorem 8.48. Let v : [0,1] — M be a normal extremal trajectory that does not contain abnormal
segments. Then,
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(1) te:=inf{t > 0| ~(t) is conjugate to v(0)} > 0.

(ii) for every T < t. the curve |, is a local length-minimizer in the W2 topology among
horizontal trajectories with same endpoints.

(iii) for every T > t. the curve ’y\[oﬂ is not a length-minimizer.

Remark 8.49. Notice that claim (i) of Theorem B4§ is a direct consequence of Corollary 47l
Nevertheless we will obtain in this section an independent proof. The proof of part (ii) and (iii)
need some preliminary results.

Some of these preliminary results holds true under weaker assumptions. For the sake of sim-
plicity in this section we state them for normal extremal trajectory that does not contain abnormal

segments. A discussion on the validity of these statements under different assumptions is contained
in Exercice R.54]

Given a normal extremal trajectory =, : [0,1] — M, let us denote by u®(t) := su(st) the
reparametrized control associated with the reparametrized trajectory v*(t) := v,(st), both defined
for t € [0,1]. Notice that if A is a Lagrange multiplier associated with u, then A\* = s(P;)\ €
T :u (S)M , 18 a Lagrange multiplier associated with u*.

The first result concerns the characterisation of conjugate points through the second variation
of the energy.

Proposition 8.50. Assume that v, : [0,1] — M contains no abnormal segments. Then ~,(s) is
conjugate to v, (0) if and only if HessusJ|E;1(Vs(l)) 1s a degenerate quadratic form.
0

Proof. Since the curve contains no abnormal segments, the control u® is a regular point for the
end-point map. Hence, thanks to Proposition combined with Proposition and Corollary
R3T] one has that ~,(s) is conjugate to v,(0) if and only if A\°* is a critical point of the exponential
map, that is equivalent to the fact that Hess,s J | Bl (v (1) is degenerate. O

The following lemma, studying the family of quadratic form s — Hess,,_ J | Bl (y2(1))? is crucial
0

1)
in what follows.

Lemma 8.51. Assume that a normal extremal trajectory -, : [0,1] — M contains no abnormal
segments. Define the function o : (0,1] — R as follows

a(s) := inf {H’UH%Q - </\5,D55Eq0(v)> | Jv]|22 = 1, v € ker DysEg} . (8.59)
Then « is continuous and has the following properties:
(a) a(0) :=limgga(s) =1;
(b) a(s) =0 implies that HessusJ‘E%l(vs(l)) is degenerate;
(¢) a is monotone decreasing;
(d) if a(5) =0 for some § > 0, then a(s) <0 for s > s.
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Proof of Lemma [851. Notice that one can write
[0]1Z2 = X* 0 Dy gy (v) = {(I = Qs)(v)[v) 12, (8.60)

where Qs : L?([0,1],R™) — L2(]0,1],R™) is a compact and symmetric operator thanks to Lemma
A compact symmetric operator on a Hilbert space is diagonalizable and the set of eigenvalues
is countable {fy, }nen, bounded, and can be ordered in such a way that p,, — 0 (see [71, IIT Thm.
6.26]). As a consequence, one can prove that the infimum in (8359 is attained.

Observe that since every restriction 7|, is not abnormal, the rank of Dy,sE, is maximal,
equal to n, for all s € (0,1]. Then, by Riesz representation Theorem, we find a continuous or-
thonormal basis {v] }ien for ker Dys E,, yielding a continuous one-parameter family of isometries
¢s : ker Dys E;, — H on a fixed Hilbert space H. Since also s — @, is continuous (in the norm
topology), we reduce (8.59) to

a(s) =1 —sup{(¢s 0 Qs 0 ¢; ' (w)w)y | w € H, |Jwl|p =1}, (8.61)

where the composition Q := ¢ 0 Qs o ¢3! is a continuous one-parameter family of symmetric and
compact operators on a fixed Hilbert space H. The supremum coincides with the largest eigenvalue
of @, which is well known to be continuous as a function of s if Q, is (see [71, V Thm. 4.10]).
This proves that « is continuous.

Let us recall that

DUSE‘]O(U) :/0 (P1571)*fv(t)|'yu(s)dt7 (862)
DEE(w0) = [ [(Pr)etuors (Pua)efuw ot (5.63)
0<7<t<s

By a rescaling one can see that

1
Dys Egy(v) = 3/0 (Pst,1)s fo(st) Iy (s)dt (8.64)
Disqu (Uy’U) = 32 // [(Psr,l)*fv(37)7 (PSt,l)*fv(st)]|'yu(s)d7—dt- (8‘65)
0<7<tL1

Taking the limit s — 0, one can show that Qs — 0, hence Qs — 0, proving (a).

To prove (b), notice that «(5) = 0 means that I — Qs > 0, and that there exists a sequence
Uy € ker Dyys By of controls with |jv,|| = 1 and such that [un |32 — (Qs(vn)|vp) 2 — 0 for n — oco.
Since the unit ball is weakly compact in L?, up to extraction of a sub-sequence, we have that vy,
is weakly convergent to some v. By compactness of Qs, we deduce that (Q5(0)|v);2 = 1. Since
o2, < 1, we have (I — Q5)(9)[v)z2 = 0. Being I — Q5 a bounded, non-negative symmetric
operator, and since ¥ # 0, this implies that I — Q)5 is degenerate.

Exercise 8.52. Let V be a vector space and Q : V x V — R be a quadratic form on V. Recall that
Q is degenerate if there exists a non-zero v € V such that Q(v,-) = 0. Prove that a non negative
quadratic form is degenerate if and only if there exists v such that Q(v,v) = 0.
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To prove (c) let us fix 0 < s < ¢’ <1 and v € ker Dys E,. Define

It follows that [[7]|3. = [[v|[3., © € ker D,v Ey, and D2, E,(v) = DiS,Ex(@). As a consequence,
a(s) > a(s).

To prove (d), assume by contradiction that there exists s; > 5§ such that a(s;) = 0. By
monotonicity of point (c), a(s) = 0 for every § < s < s;. This implies that every point in the image
of v|(s,s,] is conjugate to 7(0). Arguing as in the proof of Theorem [8.43] the segment |5 ,,) is also
abnormal, contradicting the assumption on ~. O

Proof of Theorem [8.48 Thanks to Lemma[8.5Tlthere exists € > 0 such that a(s) > 0 on the segment
[0,¢]. This implies that this segment does not contain conjugate points thanks to Proposition
This proves claim (i).

To prove claim (ii) notice that if ||y ;) does not contain conjugate points, by Proposition it
follows that Hessys J ! B-1(ys(1)) 1S BOR degenerate for every s € [0, 7], hence Hess,r.J ! E-1(y7(1)) >0
using items (b) and (c) of Lemma R5I]

Let 7 > t. and assume by contradiction that the trajectory is a length-minimizer. Then,
using the terminology of Lemma 851l one has a(t.) = 0 and a(7) < 0 thanks to properties (c)
and (d). This implies that the Hessian has a negative eigenvalue, hence we can find a variation
joining the same end-points and shorter than the original geodesic, contradicting the minimality
assumption. O

Remark 8.53. Notice that claim (i) of Theorem [R48lis also an immediate consequence of Corollary
RB47l However the previous argument gives another proof which is independent on the argument
contained in the proof of Theorem [B.43] in the previous section.

Exercise 8.54. Introduce the following definitions: a normal extremal trajectory ~ : [0,7] — M
is said to be

e left strongly normal, if for every s € (0,7] the curve 7/ 5 does not admit abnormal lifts.
e right strongly normal, if for every s € [0,T") the curve 7|, 77 does not admit abnormal lifts.
e strongly normal, if v is both left and right strongly normal.

Prove that a normal extremal trajectory v : [0,1] — M does not contain abnormal segments if and
only if ][ ] is strongly normal for every 7 € [0, 1].

Prove that Theorem R48] claim (i)-(ii), Proposition [R50, Lemma B.5T] claim (a)-(b)-(c), hold
under the weaker assumption that the normal extremal trajetory is left strongly normal.

8.8.1 Local length-minimality in the strong topology

A direct consequence of Theorem 848 proved in the previous section is the following.
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Corollary 8.55. Let~y : [0,1] — M be a normal extremal trajectory that does not contain abnormal
segments. Assume that the trajectory does not contain conjugate points. Then =y is a local miminum
for the length in the W2 topology in the space of admissible trajectories with the same endpoints.

The main goal of this section is to prove that indeed the same conclusion holds true in the
uniform topology. The proof of this result, which is based upon the arguments of Theorem E.61],
requires a preliminary discussion on the free endpoint problem.

Free initial point problem

In all our previous discussions the initial point gy € M has always been fixed from the very
beginning. Clearly, given a final point ¢; € M, if the initial point ¢y is not fixed the minimization
problem
min J (8.66)
qeMueE; Y(q1)

has only the trivial solution (g, u) = (¢1,0).

In this case it is meaningful to introduce a penalty function a € C*°(M) and consider the
minimization problem

min J(u) + a(q) (8.67)
geEMucE;  (q1)

Let us introduce the extendend end-point map
E:MxU— M, (q,u) — Ey(u),

where E,(u) is the end-point map based at g. Notice that E is trivially a submersion since for every
q € M one has E(q,0) = q. Moreover denoting F;’; the nonautonomous flow associated with u one
has

E|{qo}xu = Ego; E‘Mx{u} RARE (8.68)
The minimization problem (R.67]) is then rewritten as
min ¢ (8.69)

E=1(q1)

where ¢ : M x U — R is defined by ¢(q,u) := J(u) +|§3€% and choosing F' = E this constrained
minimization problem is of the type studied in Section

Notice that every level set E~1(qy) is regular since the map E is a submersion. The Lagrange
multiplier equation ([822]) is rewritten as follows: the point (go,u) € M x U is a critical point of
the problem (8.69]) if and only if there exists a Ay € T*M such that

)\1D( E= D(qo,u)(J +a) (8.70)

qo,u)

Since the differentials Dy, ,)E and D,
T4y M x U, and thanks to the identity

y(J +a) are defined on the product space T\g, )M x U =~

q0,u

D(qo,u)IE = (Dqum (P(?,l)*)’ D(qo,u)(‘] + a) = (DUJ7 dqoa)

2to be precise, here the problem is defined on a Hilber manifold and not on a subspace an Hilber space, but since
M is finite dimensional the theory applies with essentially no modifications.
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the equation (870) splits into the following system

MDyE, = DyJ = u,
M(Pg)« = dgoa

In other words, to every critical point of the problem (8.69) we can associate a normal extremal
A(t) = (Po )",
where the initial condition is defined by the function a by Ag = dy,a.

Proposition 8.56. A point (qo,u) € M x U is a critical point of the problem (8.69) if and only if
the corresponding horizontal trajectory ~v,(t) is a normal extremal trajectory associated with initial
covector \g = dgoa, namely y(t) = exp, (tdga) fort € [0,1].

We end this subsection with an analogous statement for the free endpoint problem, where one
does not restrict to a sublevel F~1(q1) but considers a penalty in the functional at the end-point.

Exercise 8.57. Fix ¢ € M and a € C*°(M). Prove that every critical point @ € U of the free
endpoint problem

2219 J(u) - a(EQO (u))’ (8'71)

we can associate a normal extremal trajectory satisfying

)\DQ—LF = u, A= dF(ﬂ)a.

Proof of local length-minimality in the strong topology

We can now prove the following result.

Proposition 8.58. Let v : [0,1] — M be a normal extremal trajectory that does not contain
abnormal segments. If v does not contain conjugate points, then it is a local miminum for the
length in the CY topology in the space of admissible trajectories with the same endpoints.

Proof. Assume that
vty =moe(N), NeT;M

We want to show that hypothesis of Theorem [.6]] are satisfied. We will use the following lemma,
which we prove at the end of the proposition.

Lemma 8.59. There exists a € C*°(M) such that

Ao = dy,a, Hess (4,0 +a E-1(12) > 0,

Moroever (E, J + a) is a Morse problem and
L, s1a) = {e"(dga), g € M}
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From this Lemma it follows that s)Ag is a regular point of the map 7 o H | Lo where as usual
Ly = {dsa,q € M} denotes the graph of the differential. Using the homogeneity property (8.50)
we can rewrite this saying that

WoeSﬁ‘co

is an immersion at g, Vs € [0,1],
In particular it is a local diffeomorphism. Hence we can apply the local version of Theorem[4.61l [
We end the section with the proof of the technical lemma.
Proof of Lemma[8.59. First we notice that
ker D4y ) B C TyoM @ L*([0,1],R™)

In particular
ker Dy E N (0® L*([0,1],R™)) = ker D, Ey,

Since there are no conjugate points, it follows that

qo,u)

H J = Hess,J >0 8.72
€ss(go,u)) @ boker Do ess ( )

Then it is sufficient to show that there exists a choice of the function a € C°°(M) such that the
Hessian is positive definite also in the complement. We define

Wy :={§®v € ker Dy o E | Hess(J + a)(§ ®v,0 © ker D, E) = 0}

q0,Us

Notice from (B72]) that, if there is some £ @ v € Wy, then £ # 0. Now we prove the existence of a
map Bs : T,M — L?([0,1],R™) such that

W, = {£® Bt | € € T,M}

Then we will have
ker D go.u)E = (0 @ ker Dy, F') + W.

Let us compute
Hess(J + a)(§ ® BL +0 0, @ BL+0Dv) =
= HessJ (v, v) + Hess(J + a) (€ ® Bs&, € ® Bsf)
= HessJ (v,v) + d*a(&, &) + Q(€)

where we used that mixed terms give no contribution and denote with Q(§) a quadratic form that
does not depend on second derivatives of a. In particular, since the first term is positive and does
not depend on £, we can choose a in such a way that it remains positive. O

Combining the results obtained in the previous sections we have the following result.

Theorem 8.60. Let v : [0,1] — M be a normal extremal trajectory that does not contain abnormal
segments.

(i) if v has no conjugate point then its a local length-minimizer in the C° topology in the space
of admissible trajectories with the same endpoints,

1) if v has at least a conjugate point then its not a local length-minimizer in the “ topology
i) if v has at least jugate point then its not a local length-minimizer in the W12 topol
in the space of admissible trajectories with the same endpoints.
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8.9 Compactness of length-minimizers

In this section we reinterpret in terms of the end-point map some results already obtained in
Section B3] in order to prove compactness of length-minimizers. For simplicity of presentation we
assume throughout this section that M is complete with respect to the sub-Riemannian distance.
Fix a point gy € M and denote by E,, : L?([0,1],R™) — M the end-point map. Notice that
E,, is globally defined thanks to the completeness assumption and Exercice Bl
Moreover, thanks to reparametrization, we assume that trajectories are parametrized by con-
stant speed on the interval [0, 1]. Notice that in this case if 7, is the horizontal curve corresponding

to a control u one has £(v,) = ||ul|;1 = ||ul|z2. Recall that
1 1 , 3
folly = [ utoiae. Julie = ([ o)
0 0
where | - | denotes the standard norm on R™.

Proposition 8.61. The end-point map Eg, : L*([0,1],R™) — M is weakly continuous, namely if
Uy, — u in the weak-L? topology then Egy(un) — Eg(u).

Proof. First notice that since u,, — w in the weak-L? topology then, there exists 79 > 0 such
that ||un||2 < ro. Denote by B the compact ball By, (o). The unique solution +, of the Cauchy
problem

() = funy(¥®), 7(0) =qo

satisfies the integral identity
¢
(O =0+ [ () (8.73)

Since ||luy|| < ro for every n, all trajectories 7, are contained in the compact ball B, they are
Lipschitzian with the same Lipchitz constant. In particular the set {7, }n,en has compact closure
in the space of continuous curves in M with respect to the C° topology.

Then, by compactness, there exists a convergent subsequence (which we still denote ~,,) and a
limit continuous curve - such that ~, — - uniformly. Let us show that - is the horizontal trajectory
associated to w.

Since u,, weakly converges to u we have that f, ) (. (t)) — ﬁ‘u(t) (7(t)), since this can be seen
as a product between strongly and weakly convergent sequences!d Passing to the limit for n — oo
in (B.73]), one finds that

t
10 =+ [ fuo )
namely that « is the trajectory associated to w. This completes the proof. O

Remark 8.62. Notice that in the proof one obtains the uniform convegence of trajectories and not
only of their end-points.

The previous proposition given another proof of the existence of minimizers, cf. Theorem [3.40
Corollary 8.63 (Existence of minimizers). Let M be a complete sub-Riemannian manifold and

qo € M. For every ¢ € M there exists u € L?([0,1],R™) such that the corresponding horizontal
trajectory 7, joins qo and q and is a minimizer, i.e., {(v,) = d(qo, q)-

Swriting the coordinate expression Y7 | uni fi (7n (t))-
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Proof. Consider a point ¢ in the compact ball B. Then take a minimizing sequence u, such
that Eq, (un) = ¢ and ||upl/2 — d(qo,q). The sequence (||uyl||z2), is bounded, hence by weak
compactness of balls in L? there exists a subsequence, still denoted by the same symbol, such that
up, — u for some u. By weak continuity Ey (u) = q. Moreover the semicontinuity of the L? norm
proves that u corresponds to a minimizer joining ¢g to g since

[ull 2 < Timinf |jun L2 = d(qo, ¢)-
n—oo
O

Definition 8.64. A control u is called a minimizer if it satisfies ||ul| ;2 = d(qo, Eq,(v)). We denote
by Mgy, C L%([0,1],R™) the set of all minimizing controls from g.

Theorem 8.65 (Compactness of minimizers). Let K C M be compact. The set of all minimal
controls associated with trajectories reaching K

Mg = {u € Mg, ‘ EQO(U) € K}r
is compact in the strong L? topology.

Proof. Consider a sequence (up)nen contained My . Since K is compact, the sequence of norms
(|lunllz2)nen is bounded. Since bounded sets in L? are weakly compact, up to extraction of a
subsequence, we can assume that u, — wu.

From Proposition 8611 it follows that Egy,(u,) — Eg4(u) in M and the continuity of the sub-
Riemannian distance implies that d(qo, Eq,(un)) — d(qo, Eq,(u)). Moreover since u,, € M we have
that ||u,| = d(qo, Fyg(un)) and by weak semicontinuity of the L? norm we get

Jull 2 < timind [luy | = = lim inf d(go, By (1)) = (g0, By (u). (8.74)

Since by definition of distance d(qo, Eqy(u)) < €(v4) < ||ullz2 we have that all inequalities are
equalities in (R74]), hence u is a minimizer and ||uy| 2 — ||ul/z2, which implies that uw, — u
strongly in L2 O

This implies the following continuity property.

Proposition 8.66. Let M be complete and assume that ¢ € M is reached by a unique minimizer
starting from qo associated with w. If u, is any sequence of minimizer controls such that Eqy(u,) —
q, then u, — w in the strong L? topology.

Proof. Fix an arbitrary subsequence uy, of the original sequence u,. Consider the compact set
K := {¢} in M. By construction ug, € Mg for all n € N. Hence ug, admit a convergent
subsequence uy, — u, for some control u € M. The trajectory corresponding to u is a minimizer
joining ¢o to ¢. Hence by uniqueness u = u.

This proves that every subsequence of u,, admits a subsequence converging to the same element
u. A general topological argument implies that the whole sequence u,, converges to . O

Remark 8.67. If M is not complete, all the results of this section holds true by restricting the
end-point map to a ball Bz2(rg) C L*([0,1],R™), where 79 > 0 is chosen in such a way that the
sub-Riemannian ball B, (ry) is compact. See also Exercice Bl
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8.10 Cut locus and global length-minimizers

In this section we discuss some global properties of length-minimizers. We assume throughout the
section that M is a complete sub-Riemannian manifold.

Definition 8.68. A horizontal trajectory « : [0,7] — M is called a geodesic if it is parametrized
by unit speed and for every ¢ € [0, 7] there exists ¢ > 0 such that 7|;_. ;4. realizes the distance
between its end-points.

A geodesic v : [0,7] — M is said to be maximal if it is not the restriction of a geodesic
7" [0,T'] = M to a smaller interval, meaning that v = +[p 7). In what follows when we speak
about a geodesic we always assume that it is maximal.

Recall that a normal extremal trajectory parametrized by unit speed is a geodesic by Theorem
1631 When M is complete, it is extendable to [0, +oo[ thanks to Corollary B.37]

Exercise 8.69. Let v be a geodesic. Introduce the set A = {t > 0 : v[jpy is length-minimizing}.
Prove that A is an interval either of the form (0, ] or (0, +00).

Definition 8.70. Let v be a geodesic and define
te :=sup{t > 0: 7[jo is length-minimizing}.

If t, < 400 we say that y(t.) is the cut point of v(0) along ~y. If t, = 400 we say that v has no cut
point. We denote by Cutg, the set of all cut points of geodesics starting from a point go € M.

Cut points along geodesics detect the segments on which they are global length-minimizer. The
following is the fundamental property of cut locus along normal extremal trajectories.

Theorem 8.71. Let M be a complete sub-Riemannian manifold and ~y : [0,T] — M be a normal
extremal trajectory that does not contain abnormal segments. Suppose that there exists ty € (0,T")
such that

(a) either v(ty) is the first conjugate point along ~y,
(b) or there exists a length-minimizer ¥ # ~y joining v(0) and y(to) with £(5) = £(V|[0,))-

then there exist t. € (0,to] such that y(ty) is the cut point along 7.
Conversely, if y(to) is the cut point from ~(0) along ~y, then either (a) or (b) are satisfied.

Proof. Let us first assume that there exists ¢ty > 0 such that (a) is satisfied and that the cut time
t. is strictly bigger than #o. This implies that 7|(,,] is @ minimizer contradicting Theorem [8.60,
claim (ii).

Assume now that assumption (b) is satisfied and there exists a minimizer ¥ # 7 such that
A(to) = 7(to). From this it follows that the concatenation of the two curves 7[(p 4, and 7|y, 1) is
also a length-minimizer, hence it satisfies the first-order necessary conditions. This would built two
different normal lifts of the normal extremal trajectory ’y\[tO,T], hence ’y][toﬂ would be an abnormal
segment, contradicting our assumption on .

Assume now that y(¢g) is the cut point from v(0) along v and that (a) does not hold, i.e., the
segment [0, tg] contains no conjugate points. Let us show that in this case (b) holds.

Fix a sequence t,, — tg such that t,, > tg for all n € N. Since the manifold is complete, for every
n € N there exists a length-minimizer ~,, joining v(0) to v(¢,), namely ¢(y,) = d(v(0),y(tn))-
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By compactness of minimizers there exists (up to extraction of a convergent subsequence) a
limit minimizer 4 such that v, — % uniformly, and the curve 7 joins v(0) and ~(¢.). Moreover
(A ljo,e)) = d((0),7(t+)) = £(Vljo,.)-

On the other hand, since the segment ||y ;,) contains no conjugate points, the curve v[j,, is a
local length-minimizer in the uniform Cjy topology. Thus 4 cannot be contained in a neighborhood
~ and necessarily 5 # ~, ending the proof.

O

Theorem 8.72. Let~ : [0,1] = M be a normal extremal trajectory that does not contain abnormal
segments. Assume that for some to € (0,1)

(i) Yjo,t0) 5 @ length-minimizer,

(ii) there exists a neighborhood U of v(to) such that there every points of U is reached by a unique
length-minimizer from ~(0), which is not abnormal.

Then ~(ty) is not conjugate to v(0). Moreover there exists € > 0 such that 7‘[07to+a] is a length-
minimizer.

Proof. Tt is enough to show that there exists € > 0 such that the segment [0, o+ ] does not contain
conjugate points. Indeed this fact, together with assumptions (i) and (ii), imply that the cut time
t, along y satisfies t, > tg+ €.

Fix a neighborhood U of v(to) and, for each ¢ € U, let us denote by u? (resp. v¢) the minimizing
control (resp. trajectory) joining v(0) to ¢. Thanks to Proposition [8.66] the map ¢ — w4 is continuous
in the L? topology.

Hence we can consider the family A of normal final covectors associated with u?, i.e., satisfying
the identity

N Dy F =uf, VqgeU.

By the smoothness of the end-point map Ey,, the map ¢ — DyqE,, is continuous and; moreover
D Eq, is surjective for every ¢ since the normal extremal trajectory associated with u? is not
abnormal. The adjoint map (D F)* : T,M — L?([0,1],R™) is then injective and A{ is the
unique solution to the linear equation (DyqF)*¢ = u? (unicity of covector is guaranteed since the
trajectory is strict abnormal by assumption (ii)). Since the coefficient of the linear equation are
continuous with respect to ¢, this implies that the map ®! : ¢ — A{ is continuous, as well as the
map ®° : ¢ — A{ that associates with every ¢ the initial covector A\§ of the trajectory joining go
with ¢, since ®%(q) = (P§})* o ®'(g).

Moreover, by construction, we have equo(CI)O(q)) = ¢ for every q € U, i.e, ®° is a right inverse

of the exponential map exp, . Thus the map @0 is injective on U and, by the invariance of domain

theorem, ®° is an open map and A := {®°(q) | ¢ € U} is an open set in T; M containing /\g(to).

Fix 09 > 0 small enough such that (1 +5))\g(t0) € A for 4] < dp. By homogeneity (1 +5))\g(t0) =
/\g((1+6)t0). This means that the unique minimizer joining go with v((1 + dg)to) is -y itself. Thus ~y
deos not contain conjugate points in the segment [0, ¢y + €] for every £ < dotp. O

We end this section by explicitly stating the converse of Theorem R.72], in the case when the
structure admits no abnormal minimizers.

Corollary 8.73. Assume that the sub-Riemannian structure admits no abnormal minimizer. Let
v :10,1] = M be a horizontal curve such that for some ty € (0,1)
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(i) Yjo,0) 5 @ length-minimizer,

(ii) v(to) is conjugate to v(0).
Then any neighborhood of v(tg) contains a point reached from v(0) by at least two length-minimizers.

Recall that, thanks to Theorem R.71] if the sub-Riemannian structure admits no abnormals,
points where geodesics lose global optimality can be of two types: (a) (first) conjugate points, or
(b) points reached by two minimizers.

Corollary R73] says that, if there are no abnormal minimizers, cut points of type (a) always
appears as accumulation points of those of type (b). Hence to compute the cut locus is is enough
to consider the closure of points reached by at least two length-minimizers.

8.11 An example: the first conjugate locus on perturbed sphere

In this section we prove that a C™ small perturbation of the standard metric on S? has a first
conjugate locus with at least 4 cusps. See Figure Recall that geodesics for the standard metric
on S? are great circles, and the first conjugate locus from a point gy coincides with its antipodal
point ¢p. Indeed all geodesics starting from gg meet and lose their local and global optimality at
Q-

Denote Hy the Hamiltonian associated with the standard metric on the sphere and let H be an
Hamiltonian associated with a Riemannian metric on S? such that H is sufficiently close to Hy,
with respect to the C'**° topology for smooth functions in T*M.

Fix a point ¢y € S?. Normal extremal trajectories starting from go and parametrized by
length (with respect to the Hamiltonian H) can be parametrized by covectors A € Ty M such that
H(\) =1/2. The set H~1(1/2) is diffeomorphic to a circle S* and can be parametrized by an angle
6. For a fixed initial condition \g = (qo, #), where g € M and § € S! we write

A(t) = e (xo) = (p(,6),7(t,)),
and we denote by exp = exp,, the exponential map based at go
€XPygq (t7 )\0) =To etH()‘O) = 7(t7 9)

For every initial condition § € S* denote by ¢.(f) the first conjugate time along (-, 0), i.e. t.(0) =
inf{7 > 0| ~(r,0) is conjugate to gy along ~(-,0)}.

Proposition 8.74. The first conjugate time t.(0) is characterized as follows

t.(0) = inf {t >0 ' ag’;p (t,0) = 0} . (8.75)
Proof. Conjugate points correspond to critical points of the exponential map, i.e., points exp(t,6)
such that
oexp oexp
k t,0 t,0)r =1. .
rouie { 2221,0), 22 1.0} (8.70)
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Notice that ag);p (t,0) =4(t,0) # 0. Let us show that condition (876]) occurs only if ag’;p (t,0) = 0.
Indeed, by Proposition B38| one has that

oexp B dexp B
<p7 8t (ta 9)> - 17 <p7 69 (t70)> - 07

thus, whenever 82’;13 (t,0) # 0, the two vectors appearing in (876]) are always linearly independent.
O
Lemma 8.75. The function 6 ~ t.(0) is C*.
Proof. By Proposition [B74] ¢.(6) is a solution to the equation (with respect to t)
dexp
—(t,0) =0. 8.77
2 (1,0) (5.77)
Let us first remark that, for the exponential map exp, associated with the Hamitonian H, we have
0expy 0 &expy 0
t.(6),0) = t.(6),0 .
Do 00).0) =0, ZEP00(9),0) % 0 (5.78)

where t2(6) is the first conjugate time with respect to the metric induced by Hy, as it is easily
checked.

Since H is close to Hy in the C*° topology, by continuity with respect to the data of solution
of ODEs, we have that exp is close to exp in the C*° topology too. Moreover the condition (878])
ensures the existence of a solution t.(#) of (877 that is close to t2(#). Hence we have that

0%exp
Seop (Le(0),0) # 0 (8.79)

By the implicit function the function 6 + t.(6) is C*. O

Let us introduce the function 8 : S — M defined by 5(0) = exp(t.(9),6). The first conjugate
locus, by definition, is the image of the map . The cuspidal point of the conjugate locus are
by definition those points where the function 6 — t.(6) change sign. By continuity (cf. proof of
Lemma B.75]) the map (3 takes value in a neighborhood of the point gy antipodal to gg. Let us take
stereographic coordinates around this point and consider 8 as a function from S! to R%. By the
chain rule and (8.77]), we have

5(6) = 1.0) 2P (1.(0),0) + oL (1(6),6) (5.50)
ot 00
=0
Let us define g, go : S — R? by g() := ag);p (tc(0),0) and go(0) := %(tg(@),@). The set

Co={pg(0)]0 € S*,p € [0, 1]}

)

By assumption the perturbation of the metric is small in the C°°-topology, hence

C={pg()6 € 5",pe0,1]}, (8.81)

is convex, since

remains convex.
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Theorem 8.76. The conjugate locus of the perturbed sphere has at least 4 cuspidal points.

Proof. Notice that the function 6 — t.(6) can change sign only an even number of times on
St =10,27]/ ~. Moreover

/27r t(0)dd = t.(2m) — t.(0) = 0. (8.82)
0

A function with zero integral mean on [0, 27| which is not identically zero has to change sign at
least twice on the interval. Notice also that

2 27
/O 1090 = [ 5(6)d0 = p(2r) — B(0) = 0. (.83)

0

Let us now assume by contradiction that the function 6 — ¢.(#) changes sign exactly twice at
61,05 € S*. Then, by convexity of C, there exists a covector n € (R?)* such that (n, g(#;)) = 0 for
i = 1,2 and such that ¢.(6) (n,g(8)) > 0 if 6 # 0; for i = 1,2. This implies in particular

<?7, /027T t/c(9)9(9)d9> = /027T £.(0) (n,g(6)) db # 0

which contradicts (8.33)). O

Remark 8.77. A careful analysis of the proof shows that the statement remains true if one considers
a small perturbation of the Hamiltonian (or equivalently, the metric) in the C* topology. Indeed
the key point is that g is close to gy in the C? topology, to preserve the convexity of the set C

defined by (B.ZT]).

The same argument can be applied for every arbitrary small C*° (and actually C*) perturbation
H of the Riemannian Hamiltonian Hj associated with the standard Riemannian structure on S2,
without requiring that H comes from a Riemannian metric.

TN o (<

Figure 8.2: Perturbed sphere or ellipsoid
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Chapter 9

2D-Almost-Riemannian Structures

Almost-Riemannian structures are examples of sub-Riemannian strucures such that the local min-
imum bundle rank (cf. Definition B:20]) is equal to the dimension of the manifold at each point (cf.
Section B.1.3]). They are the prototype of rank-varying sub-Riemannian structures. In this chapter
we study the 2-dimensional case, that is very simple since it is Riemannian almost everywhere (see
Theorem [0.19)), but presents already some interesting phenomena as for instance the presence of
sets of finite diameter but infinite area and the presence of conjugate points even when the curva-
ture is always negative (where it is defined). Also the Gauss-Bonnet theorem has a surprising form
in this context.

9.1 Basic definitions and properties

Thanks to Exercise [3.28 given a structure having constant local minimum bundle rank m one can
find an equivalent one having bundle rank m. In dimension 2, due to the Lie bracket generating
assumption, also the opposite holds true in the following sense: a structure having bundle rank 2
has local minimal bundle rank 2. Hence we can define a 2D-almost-Riemannian structure in the
following simpler way.

Definition 9.1. Let M be a 2-D connected smooth manifold. A 2D-almost- Riemannian structure
on M is a pair (U, f) where

e U is an Euclidean bundle over M of rank 2. We denote each fiber by Uy, the scalar product
on Uy by (-]+)q and the norm of u € Uy as |u| = y/(u|u),.

e f:U — TM is a smooth map that is a morphism of vector bundles i.e.,f(U,) C T, M and f
is linear on fibers.

e D={f(0)|o: M — U smooth section}, is a bracket-generating family of vector fields.
As for a general sub-Riemannian structure, we define:

o the distribution as D(q) = {X(q) | X € D} = f(U,) C T, M,

o the norm of a vector v € Dy as |[v|| :=min{|u|, u € U, s.t. v= f(q,u)}.
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e admissible curve as a Lipschitz curve v : [0,7] — M such that there exists a measurable
and essentially bounded function u : ¢ € [0,T] — u(t) € Uy, called control function, such
that 4(t) = f(v(t),u(t)), for a.e. t € [0,T]. Recall that there may be more than one control
corresponding to the same admissible curve.

e minimal control of an admissible curve v as u*(t) := argmin{|u|, u € U,y st. (t) =
f(y(t),u)} (for all differentiability point of v). Recall that the minimal control is measurable

(cf. Section B.5)

e (almost-Riemannian) length of an admissible curve v : [0,T] — M as £(y) := fOT I (t)]|dt =
T,
fo |u*(t)|dt.

e distance between two points gy, q1 € M as

d(qo, 1) = inf{l(y) [y : [0,T] = M admissible, ¥(0) = qo, ¥(T) = aq1}- (9.1)

Recall that thanks to the Lie-bracket generating condition, the Chow-Rashevskii Theorem [3.30]
guarantees that (M, d) is a metric space and that the topology induced by (M, d) is equivalent to
the manifold topology.

Definition 9.2. If (01,09) is an orthonormal frame for (-|-), on a local trivialization Q x R? of
U, an orthonormal frame for the 2D-almost-Riemannian structure on 2 is the pair of vector fields
(F1,F) := (f ooy, fooz). In Q x R? the map f can be written as f(q,u) = uiFi(q) + u2Fz(q).
When this can be done globally, we say that the 2D-almost-Riemannian structure is free.

In this chapter we do not work with an equivalent structure of higher bundle rank that is free.
Technically such a structure fits Definition (i.e., that local minimum bundle rank is equal to
the dimension of the manifold at each point) but not Definition We rather work with local
orthonormal frames that, as explained below, are orthonormal in the standard sense out of the
singular set.

This point of view permits to understand how global properties of U (as its orientability, its
topology) are transferred in properties of the almost-Riemannian structure.

Definition 9.3. A 2D-almost-Riemannian structure (U, f) over a 2D manifold M is said to be
orientable if U is orientable. It is said to be fully orientable if both U and M are orientable.
Remark 9.4. Free 2D almost-Riemannian structures are always orientable.

Given an orientable 2D almost-Riemannian structure, if {F}, F»} and {G1, G2} are two positive
oriented orthonormal frames defined respectively on two open subsets 2 and =, then on 2N Z there
exists a smooth function 6 : M — S' such that

( Gi(q) ) _ < cos(f(q))  sin(6(q)) > ( Fi(q) )
G2(q) —sin(f(q)) cos(6(q)) F(q)
As shown by the following examples, one can construct orientable 2D-almost-Riemannian structures

on non-orientable manifolds and viceversa.

An orientable 2D almost-Riemannian structure on the Klein bottle. Let M be the Klein
bottle seen as the square [—m, 7] x [—m, 7] with the identifications (x,—m) ~ (x,m), (—m,y) ~
(71', _y)

242



Let U = M x R? with the standard Euclidean metric and consider the morphism of vector
bundles given by

[:U=TM, f(x1,22,u1,u2) = (21,22, u1, uz sin(227)).
This structure is Lie bracket generating and the two vector fields
Fi(z1,22) = f(21,22,1,0) = (21,22, 1,0), Fa(w1,22) = (21, 72,0,sin(2z1)),

which are well defined on M, provide a global orthonormal frame. This structure is orientable since
U is trivial.

Exercise 9.5. Construct a non orientable almost-Riemannian structure on the 2D torus.

We now define Euler number of U that measures how far the vector bundle U is from the trivial
one.

Definition 9.6. Consider a 2D almost-Riemannian structure (U, f) on a 2D manifold M. The
Euler number of U, denoted by e(U) is the self-intersection number of M in U, where M is identified
with the zero section. To compute e(U), consider a smooth section o : M — U transverse to the
zero section. Then, by definition,

e(U)= Y ipo),

plo(p)=0

where i(p, o) = 1, respectively —1, if dyo : T,M — T, U preserves, respectively reverses, the
orientation. Notice that if we reverse the orientation on M or on U then e(U) changes sign.
Hence, the Euler number of an orientable vector bundle F is defined up to a sign, depending
on the orientations of both U and M. Since reversing the orientation on M also reverses the
orientation of TM, the Euler number of T'M is defined unambiguously and is equal to x (M), the
Euler characteristic of M.

Remark 9.7. Assume that ¢ € I'(F) has only isolated zeros, i.e.,the set {p | o(p) = 0} is finite.
Since U is endowed with a smooth scalar product (- |-), we can define ¢ : M\ {p | o(p) =0} — SU

by 6(q) = \/% (here SU denotes the spherical bundle of U). If o(p) = 0, then i(p,5) = i(p, o)

is equal to the degree of the map 0B — S! that associate with each ¢ € OB the value &(q), where
B is a neighborhood of p diffeomorphic to an open ball in R™ that does not contain any other zero
of 0.

Notice that if i(p, o) # 0, the limit lim,_,, 6(q) does not exist.

Remark 9.8. Notice that U is trivial if and only if e(U) = 0.

Remark 9.9. Consider a 2D-almost-Riemannian structure (U, f) on a 2D manifold M. Let o be a
section of U and z, the set of its zeros. As in Remark [0.7], define on M \ z, the normalization & of o
and let 6 (still defined on M\ z,) its orthogonal with respect to (-|-),. Then the original structure
is free when restricted to M \ z, and {5,571} is a global orthonormal frame for (-|-),. The global
orthonormal frame for the corresponding 2D-almost-Riemannian structure is then (f o &, f o 51).

Exercise 9.10. Consider a 2D-almost-Riemannian structure (U, f) on a 2D manifold M. Prove
that (U, f) is free when restricted to M \ {qo} where g is any point on M.
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Definition 9.11. The singular set Z of a 2D-almost-Riemannian structure (U, f) over a 2D man-
ifold M is the set of points ¢ of M such that f is not fiberwise surjective, i.e., such that the rank
of the distribution k(q) := dim(D,) is less than 2.

Notice if ¢ € Z then k(q) = 1. Indeed at ¢ we have k(¢) = 0 then the structure could not be
bracket generated at q.
Since outside the singular set Z, f is fiberwise surjective, we have the following

Proposition 9.12. A 2D-almost-Riemannian structure is Riemannian structure on M\ Z.

On Riemannian points, the Riemannian metric g is reconstructed with the polarization identity
(see Exercice[3.8]). We have that if v = v1 F1(¢)+v2F2(q) € ToM and w = w Fi(q)+waFa(q) € TyM
then

9q(v,w) = viwy + vows.

By construction, at Riemannian points, {F, F5} is an orthonormal frame in the usual sense
9¢(Fi(q), Fj(q)) = 6ij, 4,5 =1,2.

Exercise 9.13. Assume that in a local system of coordinates an orthonormal frame is given by

Fl Fl . Fl Fl
Fy = < Fiz >, Fy = < Fz2 ) andletF:(FZ-j)szl,gz < F% Fzz >

Prove that at Riemannian points the Riemannian metric is represented by the matrix g = *(F~1)F~1,
The following Proposition is very useful to study local properties of 2D-almost-Riemannian
structures

Proposition 9.14. For every point qy of M there exists a neighborhood € of this point and a
system of coordinates (x1,x2) in Q0 such that an orthonormal frame for the 2D-almost-Riemannian
structure can be written in Q as:

=0 ) 2=l ) )

where f: Q@ — R is a smooth function. Moreover
(i) the integral curves of Fy are normal Pontryagin extremals;

(ii) if the step of the structure at q is equal to s, we have 0y, f = 0 for r = 1,2,...,5 — 2 and
05 # 05
Remark 9.15. Notice that using the system of coordinates and the orthonormal frame given by
Proposition @.14] we have that ZNQ = {(z1,22) € Q | f(x1,22) = 0}.

Before proving Proposition [@.14], let us prove the following Lemma

Lemma 9.16. Consider a 2D-almost-Riemannian structure and let W be a smooth embedded one-
dimensional submanifold of M. Assume that W is transversal to the distribution D, i.e., such that
D(q) +T,W =T, M for every g € W. Then, for every g € W there exists an open neighborhood U
of q such that for every € > 0 small enough, the set

{¢ eU|d(¢", W) =e¢} (9-3)

18 a smooth embedded one-dimensional submanifold of U.
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w

normal Pontryagin extremals

Figure 9.1: Normal Pontryagin extremals starting from the singular set

Proof. Let H(XA) be sub-Riemannian Hamiltonian and consider a smooth regular parametrization
a — w(a) of W. Let a — X(a) € Ty(@yM be a smooth map satisfying H(M(a)) = 1/2 and
)\0(04) L Tw(a)W'

Let E(t,a) be the solution at time ¢ of the Hamiltonian system with Hamiltonian H and with
initial condition A(0) = Ag(«). Fix ¢ € W and define & by ¢ = w(&). Now let us prove that E(t, «)
is a local diffeomorphism around the point (0, @). To do so let us show that the two vectors

OF OE

v = %(0,07) and vy = W(O’d) (9.4)

are not parallel. On one hand, since v; is equal to ﬁ—’;’(d), then it spans 7;,W. On the other hand,
being H quadratic in A,

(ho(8),12) = (ho(a), 2 (h0(@))) = 2H (No(@)) = 1. (95)
Thus vy does not belong to the orthogonal to \g(@), that is, to T, V.

Therefore for a small enough neighborhood U of ¢, using the fact that small arcs of normal
extremal paths are minimizers, we have that for ¢ > 0 small enough, the set A = {¢ € U |
d(¢',W) = e} contains the intersection of U with the images of F(e, ) and E(—¢,-). By possibly
restricting U, we are in the situation of Figure and the set A coincides with the intersection of
U with the images of E(e,-) and E(—¢,-). O

Remark 9.17. Notice that in this proof we did not make any hypothesis on abnormal extremals. In
Section [0.1.3] we are going to see that for 2D almost-Riemannian structures there are no non trivial
abnormal extremals.

Proof of Proposition [9.1]] Following the notation of the proof of Lemma [0.16] let us take (¢, ) as
a system of coordinates on U and define the vector field F; by

Fl(t,a) = % (96)
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Notice that, by construction, for every ¢’ € U the vector X (¢’) belongs to D(¢’) and ||Fi(¢)]| = 1.
In the coordinates (t,«) we have F; = (1,0) and by construction its integral curves are normal
Pontryagin extremals. Let F, be a vector field on U such that (F, F,) is an orthonormal frame for
the 2D almost-Riemannian structure in U.

We claim that the first component of F5 is identically equal to zero. Indeed, were this not the
case, the norm of F} would not be equal to one.

We are left to prove B. We have

Fy =[P, B = < %f(ng) > (9.7)

and beside (O.7), the only brackets among Fj, F5 and F3 that could be different from zero are of
the form

x1,22)

[F3,...,[F3, F1], F1] = < 8§1f(0 > .

r times

Hence if the structure has step s at ¢ we have 9. f =0 forr =1,2,...,5 — 2 and 8;1_1f = 0. O

The form (9.2)) is very useful to express the Riemannian quantities on M \ Z. Indeed one has

Lemma 9.18. Assume that on an open set Q C M a system of coordinates (x1,x2) is fized and an
orthonormal frame for the 2D-almost-Riemannian is given in the form ([Q.2). Then on QN (M \ Z)
the Riemannian metric, the element of Riemannian area and the Gaussian curvatures are given by

1 0
o) = ( 0 f(ml:cz)3 > 7 %)
dA = ———dxid .
(Il,wg) |f($17$2)| xl x27 (9 9)

Hw1, 22)02 (w1, @2) — 2 (0, (w1, 22))°
f(z1,22)? '
Proof. Formula ([©.8)) is a direct consequence of (O.I]). Formula (9.9]) comes from the definition of

the Riemannian area dA(Fi, Fy) = 1 where {F, F5} is a local orthonormal frame. Formula (@.10])
comes from the formula

K(z1,22) = (9.10)

K(q) = —af — a3 + Fias — Foay
where a; and ay are the two functions defined by [Fy, Fy] = a1 F1 + aoF5 (see Corollary [d42]). O
Hence in a 2D-almost-Riemannian structure all Riemannian quantities explodes while approach-
ing to Z.
9.1.1 How big is the singular set?

A natural question is how big could be the singular set. The answer is given by the following
Lemma.

Theorem 9.19. Consider a system of coordinates (x1,x2) defined on an open set Q2 and let dzy dxs
be the corresponding Lebesgue measure. Then Z N2 has zero dxy dxy-measure.
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Proof. Without loss of generality we can assume that {2 has the following properties:

e it is the product of two non-empty intervals:

Q= (af,27) x (23, 27),

e on (2 we have an orthonormal frame of the form

Fi(q) = < (1) > B = < f(m?@) ) (9.11)

e on () the step of the structure is s € N.

If some of the properties above are not satisfied, one can prove the theorem on a countable union
of sets where the properties above hold.
Let 1z : Q — {0,1} be the characteristic function of Z. Using Fubini theorem,

zB zB
/ d:Eldl’Q = / 12(1’1,:172) dl‘ldiﬂg :/ ’ (/ ' 13(1’1,3)2)(13)1) dﬂ?Q.
ZNnQ Q x4 zf

1
B

We now prove that for every fixed s € (x?,xQB), we have f;j 1z(x1,Z2)dz; = 0 from which the
1

conclusion of the theorem follows.
Indeed B. of Proposition guarantees that there exists r < s — 1 such that 9y, f(x1,Z2) # 0

B
for every z1 € (z{',2P). Hence f(-, 2) has only isolated zeros and f;j 1z(x1,Z2)dx; = 0. O
1

Exercise 9.20. Show that from the proof of Theorem [0.19]it follows that the singular set is locally
the countable union of zero- and one-dimensional manifolds and hence that it is rectifiable.

9.1.2 Genuinely 2D-almost-Riemannian structures have always infinite area

Theorem 9.21. Let Q be a bounded open set such that QN Z # 0. Then

diam(Q2) < 400 and / dA = 400
o\Z

where diam(Q2) is the diameter of Q@ computed with respect to the almost-Riemannian distance and
dA is the Riemannian area associated with the almost-Riemannian structure on Q\ Z.

Proof. Take a point ¢g € 2\ Z and a system of coordinates (x1,z2) on a neighborhood Q¢ C € of
qo- Expanding § in Taylor series, we have

f(x1, 2) = a121 + agxe + O(x? + 23). (9.12)
According to (@.9)), the (almost-Riemannian) area of € is

1
——————dx1 dzs.
/Qo [f(21, z2)|

But the inverse of a function of the form (0.12]) is never integrable around the origin in the plane.
O
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9.1.3 Normal Pontryagin extremals

Since 2D almost Riemannian structures are particular cases of sub-Riemannian structures, there
are two kind of candidate optimal trajectories: normal and abnormal extremals. Normal extremals
are geodesics while abnormal extremals could or could not be geodesics. An important fact is the
following.

Theorem 9.22. For a 2D-almost-Riemannian structure, all abnormal extremal are trivial. More-
over a trivial trajectory v : la,b] — M, v(t) = qo is the projection of an abnormal extremal if and
only if qo € Z.

Proof. Tt is immediate to verify that if v(t) = gy € Z for every ¢ € [a, b] then v admits an abnormal
lift.

Let v : [a,b] — M, (a < b) be the projection of an abnormal extremal and let us prove that
v([a, b]) = qo for some ¢y € Z.

Let us first prove that v([a, b]) C Z. By contradiction assume that there exists ¢ €]a, b such that
v(t) ¢ Z. By continuity there exists a non trivial interval [c,d] Cla,b[ such that v([c,d]) N Z = 0.
Then 74 is a Riemannian geodesic and hence cannot be abnormal. Recall that if an arc of a
geodesic is not abnormal, then the geodesic if not abnormal too, hence it follows that + is not
abnormal. This contradicts the hypothesis that ~ is the projection of an abnormal extremal.

Let us fix a local system of coordinates such that an orthonormal frame is given in the form
[©@2]). If this is not possible globally on a neighborhood of 7([a,b]), one can repeat the proof on
different coordinate charts.

Let us write in coordinates v(t) = (71(¢),72(t)). We have different cases.

o If (71(t),12(t)) = (c1,c2) for every t € [a,b] we already know that v admits an abnormal lift.
e If ; is not constant and v2 = ¢ in [a, b], then 42 = 0 in [a, b] and Z contains a set of the type
Z ={(z1,¢) | 21 € [z1', 2P]} with 2! < 2P.

Hence f = 0 on Z. It follows that 0;,F = 0 on Z for every r = 1,2,.... A_S in the proof
of Theorem [9.19] it follows that all brackets between F} and F5 are zero on Z and that the
bracket generating condition is violated. Hence this case is not possible.

e There exists ¢ €]a, b[ such that 45(t) is defined and 45(¢) # 0. Now since

10 = ( ity )

for some v1,v9 € R, we have f(v(f)) # 0 and hence (t) ¢ Z violating the condition «([a,b]) C
Z for an abnormal extremal. Hence also this case is not possible.

O

Hence all non-trivial geodesics are normal and are projection on M of the solution of the
Hamiltonian system whose Hamiltonian is (cf. (£31]))

H:T*M —- R,  H()\) =max <</\, flq,u)) — %|u|2> . qg=m(\). (9.13)

u€lUy
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Locally, if an orthonormal frame {F, F»} is assigned, we have

=5 (W F@)? + 0 B@)?).

For a system of coordinates and a choice of an orthonormal frame as those of Proposition [0.14] we
have

H(A)

1
H(xy,29,p1,p2) = 3 (p? + P53 f(21,22)%) . (9.14)

As a consequence of the fact that all geodesics are projections of solutions of a smooth Hamiltonian
system and that our structure is Riemannian on M \ Z, we have

Proposition 9.23. In 2D almost-Riemannian geometry all geodesics are smooth and they coincide
with Riemannian geodesics on M\ Z.

The only particular property of geodesics in almost-Riemannian geometry is that on the singular
set their velocity is constrained to belong to the distribution (otherwise their length could not be
finite). All this is illustrated in the next section for the Grushin plane.

9.2 The Grushin plane

The Grushin plane is the simplest example of genuinely almost-Riemannian structure. It is the free
almost-Riemannain structure on R? for which a global orthonormal frame is given by

A=(b) m=(2)

In the sense of Definition @Il it can be seen as the pair (U, f) where U = R? x R? and

J((@1, @2), (U1, u2)) = (21, 72), (u1, ugw1)).
Here the singular set Z is the z9-axis and on R? \ Z the Riemannian metric, the Riemannian
area and the Gaussian curvature are given respectively by:

2
Ty

N dA ! dzxid K 2 (9.15)
= L, = 7 4x1 axg, =3 :
TN = o 7
Notice that the (almost-Riemannian) area of an open set intersecting the xs-axis is always infinite.

9.2.1 Normal Pontryagin extremals of the Grushin plane

In this section we recall how to compute the normal Pontryagin extremals for the Grushin plane,
with the purpose of stressing that they can cross the singular set with no singularities.
In this case the Hamiltonian (@.14)) is given by

1
H(z1,72,p1,p2) = 5(17% + zp3) (9.16)
and the corresponding Hamiltonian equations are:
i1 =p1, P1=—a1p}
B9 = 23pa, Pa =0 (9.17)

249



Figure 9.2: Normal Pontryagin extremals and the front for the Grushin plane, starting from the
singular set.

Normal Pontryagin extremals parameterized by arclength are projections on the (z1,z2) plane
of solutions of these equations, lying on the level set H = 1/2. We study the normal Pontryagin
extremals starting from: i) a point on Z, e.g. (0,0); ii) an ordinary point, e.g. (—1,0).

Case (z1(0),22(0)) = (0,0)

In this case the condition H(x1(0),22(0),p1(0),p2(0)) = 1/2 implies that we have two families of

normal Pontryagin extremals corresponding respectively to p;(0) = £1 and p2(0) =: a € R. Their
expression can be easily obtained and it is given by:

x1(t) = %, xo(t) =0, ifa=0
sin(at) 2at — sin(2at) (9.18)

z1(t) = + p— iEz(t):Ta if a#0
Some normal Pontryagin extremals are plotted in Figure together with the “front”, i.e., the
end point of all normal Pontryagin extremals at time ¢ = 1. Notice that normal Pontryagin

extremals start horizontally. The particular form of the front shows the presence of a conjugate
locus accumulating to the origin.

Case (21(0),22(0)) = (=1,0)
In this case the condition H (x1(0), x2(0), p1(0),p2(0)) = 1/2 becomes p}+p3 = 1 and it is convenient

to set p1 = cos(f), p2 = sin(f), 6 € S'. The expression of the normal Pontryagin extremals is given
by:

( xi(t)=t—1, z9(t) =0, if =0
x1(t) = —t —1, xzo(t) =0, ifg=m
in(f — tsin(6
o) = -5l
24 _ 2COS(9) + sin(20.—2(tes)in(0)) if 0 §é {0, 7T}
z2(t) = 4sin(0)
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Some normal Pontryagin extremals are plotted in Figure together with the “front” at time
t = 4.8. Notice that normal Pontryagin extremals pass horizontally through Z, with no singularities.
The particular form of the front shows the presence of a conjugate locus. Normal Pontryagin
extremals can have conjugate times only after intersecting Z. Before it is impossible since they are
Riemannian and the curvature is negative.

Figure 9.3: Normal Pontryagin extremals and the front for the Grushin plane, starting from a
Riemannian point.

9.3 Riemannian, Grushin and Martinet points

In 2D almost-Riemannian structures there are 3 kind of important points, namely Riemannian,
Grushin and Martinet points. As we are going to see in Section [0.4] these points are important
in the following sense: if a system has only this type of points, then this remains true also after a
small perturbation of the system. Moreover arbitrarily close to any system there is a system where
only these points are present.

First we study under which conditions Z has the structure of a 1D manifold. To this purpose
we are going to study Z as the set of zeros of a function.

Definition 9.24. Let {F}, F5} be a local orthonormal frame on an open set 2 and let w be a
volume form on 2. On  define the function ® = w(Fy, Fs).

Exercise 9.25. Prove that & is invariant by a positive oriented change of orthonormal frame
defined on the same open set €.

Since a volume form can be globally defined when M is orientable we have that ® can be globally
defined on fully orientable 2D almost-Riemannian structures (cf. Definition [0.3)), just defining it as
above on positive oriented orthonormal frames.
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For structure that are not fully orientable, ® can be defined only locally and up to a sign.
(notice however that |®| is always well defined). This is what should be taken in mind every time
that the function ® appears in the following.

If in a system of coordinates (x1,x3), we write

F} F)
F = ( F12 > . Fy= < F22 > , w(xy,x9) = h(x1, x2)dr1 A dXo
1 2

then

F}l F}
D(x1,x9) = h(x1,22)det < L 2 >

(z1,72)
Remark 9.26. For a system of coordinates and a choice of an orthonormal frame as those of Propo-
sition [0.14] and taking w = dxy A dzo, we have ®(z1,x2) = f(z1, z2).

The function ® permits to write,
Z={qe M| ®(q) =0}
We are now going to consider the following assumptions
HO,, If ®(qp) = 0 then d®(go) # 0.
HO The condition HOy, holds for every ¢o € M.

Exercise 9.27. Prove that the conditions above do not depend on the choice of the volume form
w.

By definition of submanifold we have

Proposition 9.28. Assume that HO holds. Then Z is a one dimensional embedded submanifold
of M.

As usual define Dy = D, D; 1 = D;+[D;, D;], for i > 1. We are now ready to define Riemannian,
Grushin and Martinet points.
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Grushin points Martinet point

Figure 9.4: Grushin and Martinet points

Definition 9.29. Consider a 2D-almost Riemannian structure. Fix gg € M.
o If Di(qo) = Ty, M (equivalently if go ¢ Z) we say that qp is a Riemannian point.
o If Di(qo) # Ty, M (equivalently if go € Z), HO,, holds then

— if Da(qo) = Ty M we say that g is a Grushin point.
— if Dy(qo) # T, M we say that qp is a Martinet point.

Remark 9.30. Hence under HO every point is either a Riemannian or a Grushin or a Martinet
point.

Exercise 9.31. By using the system of coordinate given by Proposition [9.14] prove the following:
(a) qo is a Grushin point if and only if g9 € Z and L, ®(qp) # 0 for v € D(q), ||v|| = 1.

(b) qo is a Martinet point if and only if gy € Z, d®(qo) # 0, and for v € D(qp), ||v]| = 1, we have
LU¢(Q0) = 0.

The following proposition describes properties of Grushin and Martinet points (see Figure [0.4]).
Proposition 9.32. We have the following:
(i) Z is an embedded 1D manifold around Grushin or Martinet points;
(11) if qo is a Grushin point then D(qo) is transversal to Ty, Z;
(111) if qo is a Martinet point then D(qo) is parallel to Ty, Z;
(iv) Martinet points are isolated.

Proof. We use the system of coordinates and an orthonormal frame as the one given by Proposition

{14, with go = (0,0),
=) = (),

If we take w = dx A dy, we have ® = §, d® = (0, f, O, f)-

To prove (i), it is sufficient to notice that by definition d® # 0 at Grushin and Martinet points.
To prove (ii), notice that D(go) = span(Fi(go)) = (1,0) while T,y Z = span{(—09,,f(q0), 0z, f(q0)) }
that are not parallel since 0, f(qo) # 0.
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To prove (iii), notice that D(qo) = span(Fi(qo)) = (1,0) while T;,, Z = span{(—0,,f,0)} since
the condition Da(qo) # Ty, M implies 0z, §(qo) = 0.

To prove (iv), simply observe that if Martinet points were accumulating at gg then at that point
we cold not have 8;1_1f # (0, where s is the step of the structure at qg. O
Examples

e All points on the zs-axis for the Grushin plane are Grushin points.

e The origin the following structure is the simplest example of Martinet point

1 0
n=(o) n=(lla)

e The origin for the following example

1 0
Fl‘(o) andF2—<x5—x%>’

is not a Martinet point since the condition d®(0,0) # 0 is not satisfied. Outside the origin
all points are either Riemannian or Grushin points, but at the origin Z is not a manifold.

e The z9-axis of the following example

1 0
ne(3) ()

is not made by Grushin points since D?((0,x2)) # T(o,s,)M and it is not made by Martinet
points since d®(0, x2) # 0 is not satisfied (althugh in this case Z is a manifold). In this case
D((0,x9)) is transversal to Z.

9.3.1 Normal forms*

Proposition 9.33. Let qy be a Riemannian, Grushin or a Martinet point. There exists a neigh-
borhood ) of qo and a system of coordinates (x1,x2) in  such that an orthonormal frame for the
2D-almost-Riemannian structure can be written in € as:

(NF1) if qo is a Riemannian point, then
Fi(z1,22) = (1,0),  Fy(z1,22) = (0,e?@1:72)),
(NF2) if qo is a Grushin point, then
Fi(z1,22) = (1,0), Fy(x1,29) = (0, ze?(®1:72))
(NF3) if qo is a Martinet point, then
Fi(zi,22) = (1,0),  Fy(zr,2) = (0, (w2 — af ()t 71:72)),

where ¢, & and 1p are smooth real-valued functions such that ¢(0,x2) = 0 and ¥(0) # 0. Moreover
s > 2 is an integer, that is the step of the structure at the Martinet point.

Proof. To be written. O
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9.4 Generic 2D-almost-Riemannian structures

Recall hypothesis HO,, and HO:
HO,, If ®(qp) = 0 then d®(go) # 0.
HO The condition HOy, holds for every ¢o € M.

Recall the HO is independent from the volume form used to define the function ®. We have
seen (cf. Remark [0.30]) that under hypothesis HO every point is either a Riemannian or a Grushin
or a Martinet point.

In this section we are going to prove that hypothesis HO holds for most of the systems. More
precisely we are going to prove that hypothesis HO is generic in the following sense.

Definition 9.34. Fix a rank 2 Euclidean bundle U over a 2D compact manifold M. Let F be the
set of all morphism of bundle from U to T'M such that (U, f), f € F is a 2D almost-Riemannian
structure. Endow F with the C' norm. We say that a subset of F is generic if it is open and dense
in F.

Theorem 9.35. Under the same hypothesis of Definition[9.34, let F C F the subset of morphisms
satisfying HO. Then F is generic.

Remark 9.36. In Theorem we have assumed that M is compact. A similar result holds also
in the case in which M is not compact. However, in the non compact case, one gets that F is
a countable union of open and dense subsets of F and one should use a suitable topology (the
Whitney one). In this book we have decided not to enter inside transversality theory and we have
provided a statement that can be proved easily via the Sard lemma.

9.4.1 Proof of the genericity result

Cover M with a finite number of compact coordinate neighborhood U;, ¢ = 1... N, in such a way
that an orthonormal frame for the 2-ARS in U; is given by

R = (g ). b= (o0 ) (9.19)

T1,T2)
Let us consider the following hypothesis
H; The condition HO,4, holds for every gg € U;.
Proposition 9.37. Let F; be the subset of F satisfying HO;. Then F; is generic.

Once Proposition is proved, the conclusion of Theorem follows immediately. Indeed F; is
open and dense in F and the open and dense set F := NI¥ ;| F; is made by systems satisfying HO in
all M.

Proof of Proposition [9.37. Since the map that to (F;,G;) associates ® is continuous in the
C'! topology, a small perturbation of F; and G; will induce a small perturbation of ®. Fixed g,
condition HO, is clearly open in the set of maps from f; to R for the C I topology. As a consequence
of the compactness of i;, condition HO; is open as well.

We are now going to prove that HO; is dense. To this purpose we construct an arbitrarily small
perturbation in the C! norm (Ff,G¢) of (F;, G;) for which HO; is satisfied.
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Lemma 9.38. For every e € R with || small enough there exists a perturbation (F7,G5) of (F;, G;)
such that ||Ff — Fi||cr < Ce, |G5 — Gil|cr < Ce (for some C > 0 independent from €) and on U;
we have &, = w(FF,G5) =P +¢;

Once Lemma [9.38] is proved, the density of F; follows easily. Indeed let now apply the Sard
Lemma to the C* function ® in ;. We have that the set

{c € R such that there exists g € U; such that ®(q) = ¢ and d®(q) = 0}
has measure zero. As a consequence, since ¢. = ® + ¢, we have that the set
{e € R such that there exists ¢ € U; such that ®.(q) = 0 and d®.(q) = 0}

has measure zero. It follows that, for almost every e, condition HO; is realized for (Ff,G%). ([l

Proof of Lemma[9.38. 1If in U; we write in coordinates
w = hi(z, zb)dxl A dah,

then
& = w(F, Gy) = hy(ah, (e, 3b).

Consider now a perturbation G5 of G; of the form

€ (0 ) 0

hi(x},xh

and let us define F; = F;. It follows that in 4;,

3

d. = w(FF,GS) = hy(x}, xh) <fz(:13’1,$§) + R
hi(x}, xh)

) = e o) e =
Notice that by construction Gf is close to G; in the C! norm. 0.

9.5 A Gauss-Bonnet theorem

For an compact orientable 2D-Riemannian manifold, the Gauss-Bonnet theorem asserts that the
integral of the curvature is a topological invariant that is the Euler characteristic of the manifold
(see Section [L3)).

This theorem admit an interesting generalization in the context of 2D almost-Riemannian struc-
tures that are fully orientable. This generalization is not trivial since one needs to integrate the
Gaussian curvature (that in general is diverging while approaching to the singular set) on the
manifold (that has always infinite volume).

This generalization holds under certain natural assumptions on the 2D almost-Riemannian
structure, namely we will assume

HG : The base manifold M is compact. The 2D almost-Riemannian structure is fully orientable,
HO holds and every point of Z is a Grushin point.
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The hypotheses that the structure is fully orientable is crucial and it is the almost-Riemannian
version of the classical orientability hypothesis that one need in Riemannian geometry. The
hypothesis HO is the basic hypothesis to have a reasonable description of the asymptotics of K in
a neighborhood of Z. The hypotesis that every point is a Grushin point is a technical hypothesis.
A version of a Gauss Bonnet Theorem in presence of Martinet points can also be written, but is
more technical and outside the purpose of this book.

With an argument similar to the one of the beginning of Section [0.4.1], one get

Theorem 9.39. Hypothesis HG is open in the set of smooth map f: U — TM endowed with C*
topology:

Clearly hypothesis HG is not dense since Martinet points do not disappear for small C' per-
turbations of the system.
It is important to notice that HG is not empty. Indeed we have

Lemma 9.40. Every oriented compact surface can be endowed with an oriented almost-Riemannian
structure satisfying the requirement that there are no Martinet points.

We are going to prove Lemma [9.40] in Section [0.5.2]

Definition 9.41. Consider a 2D almost-Riemannian structure (U, f) over a 2D manifold M and
assume that HG holds.

Let v a volume form for the Euclidean structure on U, i.e.,a never vanishing 2-form s.t.
v(o1,02) = 1 on every positive oriented local orthonormal frame for (-|-);. Let = be an orien-
tation on M. We define:

e The signed area form dA® on M as the two-form on M \ Z given by the pushforward of v
along f. Notice that the Riemannian area dA on M \ Z is the density associated with the
volume form dA?.

e M* ={qe M\ Z, s.t. the orientation given by dA3 and Z, are the same }
e M~ ={q€ M)\ Z, s.t. the orientation given by dA; and =, are opposite }.
Notice that given a measurable function h: Q C M*\ Z — R, we have
/ h dAs = :I:/ h dA (if it exists). (9.21)
Q Q
Definition 9.42. Under the same hypotheses of Definition [0.4T] define
o M.={q€ M |d(q,2) > e} where d(-,-) is the 2D-almost-Riemannian structure on M.
° ]\45i =M.NM=*
e Given a measurable function h: M \ Z — R, we say that it is AR-integrable if

lim [ hdA, (9.22)
e—0 M.

exists and is finite. In this case we denote such a limit by [ hdA;.

Remark 9.43. Notice that (0.22]) is equivalent to

lim ( / h dA — h dA)
e—0 M;ﬁ M7
Ye.,dAS(F1, F2) = aZ(F1, F») with a > 0
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Example: the Grushin sphere

The Grushin sphere is the free 2D-almost Riemannian structure on the sphere S? = {y? +y32 + yg =
1} for which an orthonormal frame is given by two orthogonal rotations for instance

0
Yi=| —ys3 (rotation along the y;-axis) (9.23)
Y2

—Ys3
Y, = 0 (rotation along the ys-axis) (9.24)

1

In this case Z = {y3 = 0, y} + y3 = 1}. Passing in spherical coordinates

y1 = cos(x) cos(¢)
Y2 = cos(x) sin(¢)
y3 = sin(x)

and letting

X1 = cos(¢p—7/2)Y1 +sin(¢p — 7/2)Ys
Xy = —sin(e —7/2)Y] + cos(¢p — 7/2)Ys

we get that an orthonormal frame is given by

Xl:(tanO@))’ XF(é)'

Notice that the singularity at = 7/2 is due to the spherical coordinates. Instead Z = {x = 0}.
In this case we have.

1 zdo, dAs:#dxAdqs, Jr—

A = ]tan(az)]d tan(z)

sin(x)?
The loci Z, M*, are illustrated in Figure

The main result of this section is the following.

Theorem 9.44. Consider a 2D-almost-Riemannian structure satisfying hypothesis HG. Let dA®
be the signed area form and K be the Riemannian curvature, both defined on M \ Z. Then K is
AR-integrable and we have

/ K dA® = (U)
where e(U) denotes the Euler number of E. Moreover we have
e(U) = x(M™) = x(M")
where x(M?*) denotes the Euler characteristic of M™*.
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Y2

Figure 9.5: The Grushin sphere

Notice that in the Riemannian case [ K dA® is the standard integral of the Riemannian curva-
ture and e(U) = x(M) since U = TM. Hence Theorem contains the classical Gauss-Bonnet
theorem.

In a sense, in Riemannian geometry the topology of the surface gives a constraint on the total
curvature, while in 2D almost-Riemannian geometry such constraints is determined by the topology
of the bundle U.

For a free almost-Riemannian structure we have that U is a rank 2 trivial bundle over M. As
a consequence we get that [ K dA® = 0, generalizing what happens on the torus.

We could interpret this result in the following way. Take a metric that is determined by a single
pair of vector fields. In the Riemannian context we are constrained to be parallelizable (i.e.,we are
constrained to be on the torus). In the AR context, M could be any compact orientable manifolds,
but the metric is constrained to be singular somehwere. In any case, the integral of the curvature
will be zero.

9.5.1 Proof of Theorem [9.44F

The proof is divided in two steps. First we prove that [ K dA* = x(M™)— x(M ™). Then we prove
that e(U) = x(M™) — x(M™)

Step 1

As a consequence of the compactness of M and of Lemma one has:

Lemma 9.45. Assume that HG holds. Then the set Z is the union of finitely many curves
diffeomorphic to S'. Moreover, there exists ey > 0 such that, for every 0 < € < &g, we have that
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OM. is smooth and the set M \ M. is diffeomorphic to Z x [0,1].

Under HG the almost-Riemannian structure can be described, around each point of Z, by a
normal form of type (NF2).

Take g as in the statement of Lemma For every ¢ € (0,&0), let M¥ = M* N M.. By
definition of dA; and M*,

KdA, :/ KdA — KdA.
M, M Mo

The Gauss-Bonnet formula asserts that for every compact oriented Riemannian manifold (NN, g)
with smooth boundary 0N, we have

/ KdA+ kgds = 2mx(N),
N ON

where K is the curvature of (NN, g), dA is the Riemannian density, k4 is the geodesic curvature of
ON (whose orientation is induced by the one of N), and ds is the length element.

Applying the Gauss-Bonnet formula to the Riemannian manifolds (M, g) and (M, g) (whose
boundary smoothness is guaranteed by Lemma [0.45]), we have

KdA, = 27T(X(Ma+) —x(M7)) — / kqyds + / kqds. (9.25)
M, oMF OMS

Thanks again to Lemma [0.45] y(MZF) = x(M*). We are left to prove that

lim ( /6 . kyds — /8 - kgds> —0. (9.26)

Fix ¢ € Z and a (NF2)-type local system of coordinates (z1,z2) in a neighborhood U, of q. We
can assume that Uy, is given, in the coordinates (x1,z2), by a rectangle [—a,a] x [=b,b], a,b > 0.
Assume that ¢ < a. Notice that Z N U, = {0} x [=b,b] and OM. NU,; = {—¢,e} x [=b,b].

We are going to prove that

/ kg ds = O(e). (9.27)
OM.NU,

260



Then ([©.26) follows from the compactness of Z. (Indeed, {—e} x [—b,b] and {e} x [—b,b], the
horizontal edges of Uy, are normal Pontryagin extremals minimizing the length from Z. Therefore,
Z can be covered by a finite number of neighborhoods of type U, whose pairwise intersections have
empty interior.)

Without loss of generality, we can assume that M+NU, = (0, a] x[—b,b]. Therefore, M induces
on M = {e} x[—b, b] a downwards orientation (see Figure[@.5.]). The curve s — c(s) = (e, x2(s))
satisfying

é(s) = —Fz(c(s)), ¢(0) = (&,0),

is an oriented parametrization by arclength of OM_, making a constant angle with Fj. Let (01, 62)
be the dual basis to (Fi, Fy) on U, N M7, i.e., 6 = dzq and 6y = xf16_¢(x17x2)dx2. According to
[?, Corollary 3, p. 389, Vol. II], the geodesics curvature of OM at ¢(s) is equal to A(¢(s)), where
A € AY(U,) is the unique one-form satisfying

doy =AN0y, dby=—-AN0O;.
A trivial computation shows that
A= le(xl_le_¢(x1’x2))dx2 .

Thus,
—1_—ao(c(s 1
K (e(s)) =~ (7 e~ ) (dra(Fa))(e(5)) = £ + Do b5, 2(5)).
Denote by Ly and Ls the lengths of, respectively, {¢} x [0,b] and {e} x [=b,0]. Then,

/aM;qu hycls = /_ LL kg(c(s))ds
-/ LL (2 +omote. () ds

= " (1 0 1 d
= » E+ x1¢(5,$2) W x2 ,

where the last equality is obtained taking o = x9(—s) as the new variable of integration.

We reason similarly on OM_ NUy,, on which M_ induces the upwards orientation. An orthonor-
mal frame on M~ N Uy, oriented consistently with M, is given by (Fi,—F3), whose dual basis is
(61, —02). The same computations as above lead to

b
1 1
/6M50Uq kgds = /_b <E - 8:01(;5(—5,3;2)) 7&‘6‘1’(_5@2)6&%2.

Fl(e,x2) = (1 + €0y, p(e, x2))e?E72), (9.28)

1 b
/ kqyds — / kyds = —2/ (F(g,22) — F(—¢,x2)) dxa.
M NU, AMI NU, € J-p

By Taylor expansion with respect to € we get

Define

Then

F(e,x0) — F(—¢e,29) = 20.F(0,23)e + O(e®) = O(£%)
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singular locu

where the last equality follows from the relation 9. F(0,z2) = 0 (see equation ([@.28])). Therefore,

/ kgds — / kqgds = O(e),
M NU, AMI NU,
and (9.27) is proved.

Step 2

The idea of the proof is to find a section o of SE with isolated singularities p1, ..., pm, such that
Z;nzli(pj,a) = x(MT) = x(M~) + 7(S). In the sequel, we consider Z to be oriented with the
orientation induced by M™. To be finished.

9.5.2 Construction of trivializable 2-ARSs with no tangency points

In this section we prove Lemma [3.40] by showing how to construct a trivializable 2-ARS with no
tangency points on every compact orientable two-dimensional manifold.

Without loss of generality we can assume M connected. For the torus, an example of such
structure is provided by the standard Riemannian one. The case of a connected sum of two tori
can be treated by gluing together two copies of the pair of vector fields F; and Fy represented in
Figure[0.5.21A, which are defined on a torus with a hole cut out. In the figure the torus is represented
as a square with the standard identifications on the boundary. The vector fields F} and F5 are
parallel on the boundary of the disk which has been cut out. Each vector field has exactly two
zeros and the distribution spanned by F} and F5 is transversal to the singular locus. Examples on
the connected sum of three or more tori can be constructed similarly by induction. The resulting
singular locus is represented in Figure [0.5.21B.

We are left to check the existence of a trivializable 2-ARS with no tangency points on a sphere. A
simple example can be found in the literature and arises from a model of control of quantum systems
(see [29, 30]). Let M be a sphere in R? centered at the origin and take F(x,y,2) = (y, —x,0),
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Integral Curves of X

Integral Curves of Y

Fy(x,y,z) = (0, z, —y) as orthonormal frame. Then F (respectively, F») is an infinitesimal rotation
around the third (respectively, first) axis. The singular locus is therefore given by the intersection
of the sphere with the plane {y = 0} and none of its points exhibit tangency (see Figure [0.5.2]).
Notice that hypothesis HG is satisfied.
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Chapter 10

Nonholonomic tangent space

In this chapter we introduce the notion of nonholomic tangent space, that can be regarded as the
“principal part” of the structure defined on the manifold by the distribution in a neighborhood of
a point. This notion is indeed independent on the inner product defined on the distribution.

When the distribution is endowed with an inner product, this process defines a metric tangent
space (in the sense of Gromov) to the sub-Riemannian structure, that is itself a sub-Riemannian
manifold. When the manifold is Riemannian one recovers on the tangent space the Euclidean
structure induced by the Riemannian metric at the point.

In the general case, the nonholonomic tangent space of a sub-Riemannian manifold at a point
is endowed with a structure of homogeneous space of Carnot group, defined as follows.

Definition 10.1 (Carnot Groups). A Carnot group G is a connected and simply connected Lie
group whose Lie algebra g admits a decomposition

§=01D0d...09 (10.1)

satisfying the following properties

[91792‘] = @gi+1, [glugT] 207 1= 17"'7T_ 1. (102)
The smallest integer r such that (I0.I))-([10.2]) are satisfied is called step of the Carnot group.

When the first layer g; of the Lie algebra g is endowed with an inner product, then G is
automatically endowed with a left-invariant sub-Riemannian structure (cf. Chapter [7), that is
bracket generating thanks to (I0.2)).

Notice that Carnot groups of step 2 as defined in Section are included in Definition [I0.11

Remark 10.2. Carnot groups are also known in the literature as homogeneous and stratified Lie
group. Indeed the Lie agebra g of a Carnot group G admits the stratification (I0.1]) and thanks to
the property (I0.2)) they posses a family {04 }aer of authomorphisms on g (called dilations) defined
by

T T
da(v) = Zo/fu,-, if v= Zvi, v; € -
i=1 i=1

Carnot groups play a crucial role in sub-Riemannian geometry : these are left-invariant sub-
Riemannian structure arising as metric tangent space of equiregular sub-Riemannian manifolds. In
this sense they play an analogous role of the Euclidean space in Riemannian geometry.
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In this chapter we give an intrinsic construction of the nonholonomic tangent space through the
theory of jets of curves and based on the notion of admissible variation, providing both a geometric
and an algebraic interpretation of this construction. We prove the existence of privileged coordi-
nates, i.e., special sets of coordinates where the nonholonomic tangent space writes conveniently to
perform computations.

Moreover this chapter contains also some fundamental distance estimates, known in the litera-
ture as the Ball-Box theorem, and a classification of nonholonomic tangent space in low dimension.

10.1 Jet spaces

In this chapter, given a point ¢ € M, the symbol {2, denotes the set of smooth curves v on M
defined on some open interval I containing 0 and based at ¢, that is 4(0) = ¢. In fact, we work
with germs of smooth curves at 0 and sometimes it will be convenient to think to those curves ~
to be defined on I = R.

Fix ¢ in M and a curve v € §2,. In every coordinate chart one can write the Taylor expansion
Y(t) = g+ 4(0)t + O(?). (10.3)

The tangent vector v € Ty M to v at t = 0 is by definition the equivalence class of curves in {2, such
that, in some coordinate chart, they have the same 1-st order Taylor polynomial. This requirement
indeed implies that the same is true for every coordinate chart, by the chain rule.

In the same spirit one can consider, given a smooth curve v € €}, its k-th order Taylor polyno-

mial at ¢
. . (k) t* k+1
v(t) = q+4(0)t + 7(0)5 +...+7 (O)E +O(t"), (10.4)

and define analogously an equivalence class on higher order Taylor polynomial.

Exercise 10.3. Let 7,7 € Q,. We say that v is equivalent up to order k at ¢ to 7/, writing
7y ~qk 7Y, if their Taylor polynomial at ¢ of order k coincide in some coordinate chart. Prove that
~q.k is a well-defined equivalence relation on the set of curves based at g.

Definition 10.4. Let k£ > 0 be an integer and ¢ € M. We define the set of k-th jets of curves
at point ¢ € M as the equivalence classes of (2, with respect to ~,;. We denote with va the
equivalence class of a curve v and with

Jé“M = {Jé“’y | v € Q).

Exercise 10.5. Prove that J[fM has the structure of smooth manifold and dim Jé‘CM = kn. Hint:
use the coordinates representation (I0.4]) and the fact that the k-th order Taylor polynomial is
characterized by the n-dimensional vectors 4% (0) for i = 1,...,k.

In the following we always assume that ¢ € M is fixed and when working in a coordinate chart
we always assume that ¢ = 0. Identifying the jet of a curve v € €, with its Taylor polynomial in
some coordinate chart, we can write (recall that v(0) = ¢ = 0)

k .

)t

Jir =210
i=1
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When k = 1, we have easily from the definition that JqlM = T,M. To study more in detail the
structure of jet space for k > 2, let us introduce the map which “forgets” the k-th derivative

k ; k—1 ;

_ ; tz ; tz

Oy_y:JeM — Ji M, T, <§ :7()(0)5> = ’y()(O)i—|.
i=1 ) i=1 ’

Proposition 10.6. Let k > 2. Then JfM is an affine bundle over Jg_lM with projection Hllj_l,
whose fibers are affine spaces over Ty M.

Proof. Fix an element j € J¥='M. The fiber (IIf_;)7(j) is the set of all k-jets with fixed (k—1)%"
jet equal to j. To show that it is an affine space over T, M it is enough to define the sum of a
tangent vector and a k"-jet, with (k — 1)*"-jet fixed, in such a way that the resulting k*"-jet has
the same (k — 1)%"-jet.

Let j = va be the k*-jet of a smooth curve in M and let v € T, M. Consider a smooth vector
field V' € Vec(M) such that V(¢) = v and define the sum

TEy = JE ), ) =V (1)) (10.5)

It is easy to see that, due to the presence of the factor t*, the (k — 1)** Taylor polynomial of  and
Y coincide. Indeed

TEEV (1) = Ty + 1V (g)

Hence the sum (I0.5) gives to (II¥_,)~1(j) the structure of affine space over T,M. Notice that this
definition does not depend on the representative curve v defining j. O

Roughly speaking, the fact that Jé‘CM is an affine bundle (and not a vector bundle) is saying
that one cannot complete in a canonical way a (k — 1)t-jet to a k'"-jet, i.e., we cannot fix an origin
in the fibers. On the other hand there exists a sort of “global” origin on the space J(;“M , that is
the jet of the constant curve equal to q.

Now we introduce dilations on jet spaces, analogous to homotheties in Euclidean spaces. This
is done via time rescaling.

Definition 10.7. Let o € R and define 7,(t) := 7y(at) for every ¢ such that the right hand side is
defined. Define the dilation of factor a on Jé‘cM as

So s JEM — JEM,  50(JEv) = JE(7a)-

One can check that this definition does not depend on the representative and, in coordinates,
it is written as a quasi-homogeneous multiplication

k k
ba (Z ti£i> = taig,
i=1 i=1

Next we extend the notion of jets also for vector fields. To start with we consider flows on the
manifold.

Definition 10.8. A flow on M is a family of diffeomorphisms P = {P; € Diff(M), ¢t € R} that is
smooth with respect to ¢ and such that Py = Id.
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Notice that we do not require the family to be a one parametric group (i.e., the group law
P, o Py = P, is not necessarily satisfied) and its infinitesimal generator is the nonautonomous
vector field

d
Xi=—| PyeoPl 10.6
t de | .y t+e © Ly ( )
The set of all flows on M is a group with the point-wise product, i.e., the product of the flows

P ={P} and Q = {Q.} is given by
(PoQ)i:=PoQy

The action of a flow (in the sense of Definition [[0.8]) on a smooth curve v is defined as

(Py)(t) := Fi(y(1)). (10.7)
Proposition 10.9. Let P be a smooth flow on M. Then P induces a well-defined map P : Jé‘CM —

Jé“M defined as follows
Pj = J¥(Py), if j=J. (10.8)

Moreover (P o Q)j = P(Qj) for every j € Jé‘CM

Proof. Notice that, since Fy = Id, then Py € ), for every v € Q4. By the chain rule, Jg(P’y)
depends only on first k derivatives of v at ¢, i.e., on va. Hence this action is well-behaved with
respect to equivalence relations ~j ,. The last part of the statement is an easy check and is left to
the reader. O

10.1.1 Jets of vector fields

As explained in Proposition [[0.9] a flow on M induces a diffeomeorphism in €2, and thus in the
space of jets JfM . In particular, given a vector field V' € Vec(M ), the flow associated with V| i.e.
the 1-parametric group Py = {e'V'}, acts on curves

(Pyy)(t) = e (1(1)),

and this action pass to the quotient on jets.

A vector field on a manifold is the infinitesimal generator of a family of diffeomorphism, hence
an element of Vec(Jé“M ) is the infinitesimal generator of a family of diffeomorphism of Jé‘CM .

A natural contstruction, given V' € Vec(M ), is to consider the 1-parametric group of flows (in-
dexed by s) defined by P = {e*®V'} and to define the k-th jet of the vector field as the infinitesimal
generator of this family of diffeomorphism of J(;“M .

Definition 10.10. For every V € Vec(M), the vector field JfV € Vec(Jé“M) is the smooth section

J(?V : J[fM — TJ(?M defined as follows
0 0
k koy . s(7hAY
VI = | RoU = g

Exercise 10.11. Prove the following formula for every V' € Vec(M)

_OJ[f (Y (v(1)))- (10.9)

"obd
k k
(JgV)(Jgv) = E dn
1

1=

V(v(®)),

t:O(

where V is identified with a vector function V : R™ — R"™ in coordinates.
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To end this section we study the interplay between dilations and jets of vector fields. Since d,
is a map on Jé‘cM its differential (0, )« acts on elements of Vec(J(fM ), and in particular on jets of
vector fields on M. Surprisingly, its action on these particular vector fields is linear with respect
to a.

Proposition 10.12. For every a € R and V € Vec(M) one has
(0a)«(JEV) = JE (V) = a JFV.
Proof. By definition of the differential of a map (see also Chapter [2)). we have

(- TV} = 51| TG0 dysala(0)

Ty (G €V ((t/a)))

75
0

& s=0
O JhetsV (1))
s s=0 !

_ 7k _ k
=J,;(@V) =aJ;V
U

Exercise 10.13 (1-jet of vector fields). Prove that JqlM = T, M. Moreover, if V € Vec(M) then
JqlV = V(q) is the constant vector field on the vector space T, M defined by the value of V" at q.

10.2 Admissible variations

The goal of this section is to define the appropriate notion of tangent vector, or more precisely to
define the “tangent structure” to a distribution at a point.

As usual, we assume that the distribution D associated with a structure (M, U, f) is defined by
a generating family {f1,..., fi} and admissible curves on M are maps 7 : [0,7] — M such that
there exists a control function v € L™ satisfying

F(t) = fuy(V(B) = D wi®) fily (1))
i=1

To build a notion of “tangent structure” as a first order approximation of the structure, thus
encoding informations about all directions, we cannot restrict to study family of admissible curves,
since these are all tangent to the distribution.

We shall reinterpret a “tangent vector” as the principal term of a “variation of a point”. To
give a precise meaning to this, we introduce the notion of smooth admissible variation.

Definition 10.14. A curve 7 : [0,7] — M in Q, is said a smooth admissible variation if there
exists a family of controls {u(t, s)}sc[o,-] such that

(i) u(t,-) is measurable and essentially bounded for all ¢ € [0, 7], uniformly in s € [0, 7],

(ii) (-, s) is smooth with bounded derivatives, for all s € [0, 7], uniformly in ¢ € [0, T],
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(iii) u(0,s) =0 for all s € [0, 7],
(iV) /7(75) = e?f) foT fu(t,s) (Q)ds‘

In other words «y is a smooth admissible variation (or, shortly, admissible variation) if it can be
parametrized as the final point of a smooth family of admissible curves.

Remark 10.15. Notice that from the property (iii) of the definition of admissible variation, we can
rewrite u(t, s) = tu(t, s) for some suitable family of controls @(t, s) that are still smooth with respect
to t but do not necessarily satisfy @(0,s) = 0.

The following example shows that admissible variations are not admissible curves, in general.

Example 10.16. Consider two vector fields X,Y € Vec(M) and the curve
0,7 =M,  Ayt)=e oMo 0 (g).

If we set f, := u1 X +u2Y and u: [0,7] x [0,4] — R? defined by

(t,0), if s € [0,1],
u(t,s) = (0,1), 1.f s€1,2],
(—t,0), if s € [2,3],
0,—1),  ifsel[3,4

It is easily seen that v is an admissible variation since

4
+(t) = &= /0 Futes) (@)ds

and it admits the expansion in coordinates v(t) = q + t?[X, Y](q) + o(t?).

Iterating the previous construction one can actually build smooth admissible variations whose
tangent vector at ¢ = 0 is any element in D, \Df]_l (cf. Lemmas [[034HI0.35] for a precise statement).

Proposition 10.17. FEquivalent distributions admits the same admissible variations. In partic-
ular the class of smooth admissible variation is independent on the inner product defined on the
distribution.

Proof. Recall that two distributions D, D’ are equivalent (see also Definitions [3.3] and B.17) if and
only if the corresponding modulus of horizontal vector fields are isomorphic where

D = span{ f(o), o smooth section of U}.

It is not restrictive to assume that D and D’ are finitely generated by fi,..., fm and fi,..., f/,
(we stress that a priori m # m/).

By definition, for any admissible variation (¢) there exists a family ¢(¢, s), for s € [0, 7], such
that v(t) = q(t,7) and q(t, s) solves

m

gty = ult. ) lat.s), s 0.7 (10.10)

1=1
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Assume that f{,..., f/ , is another set of local generators of the modulus. Then there exist functions
a;j € C®°(M) fori=1,...,mand j=1,...,m/, such that

q) :Zaij(q)f]'-(q), Vqge M, Vi=1,...,m. (10.11)

Next we prove that there exist a family wu(¢, s) of controls such that 7 is an admissible variation for
the frame f1,..., f/,. From (I0.II]) we get

Zu, (t,s)fi(q ZZ (t,s)aij(q)f;(q). (10.12)

Then we could define, through the solution ¢(t, s) of (I0.10), the new family of controls

m
:Zui(t7 S)aij(Q(t7 S))v J = 1,...,771/,

and we see from identities above that

s) =Y ujt,s)fj(q(t,;s)),  s€0,7]. (10.13)
j=1
Since the role of fi,..., fm and f{,..., f/, can be exchanged, this prove the equivalence. O

Assumption. In what follows D denotes a distribution associated with the datum (M, U, f).
Here the vector bundle U is not necessarily endowed with an Euclidean structure. We fix a point
q € M and we assume that the distribution on M is bracket generating of step k at the point g.

Definition 10.18. Let D be a bracket generating distribution on M. The set of admissible jets is
Jg M = {Jé“’y, v € Q4 is an admissible variation}
where k is the step of the distribution at ¢, i.e., Df; =T,M.

Next we want to introduce the nonholonomic tangent space in a coordinate-free way. In the
next section we will see how it can be described in some special set of coordinates.

Definition 10.19. Let D be a bracket generating distribution on M. The group of flows of
admissible variations is

Pl = {(ﬁ/ fu(t,s)ds, u(t,s) smooth Variation},
0
where the group structure on P7 is given by the following identity:

! T2 T1+T2
D [ Furds o [ fuseds =D [ fgds

where we set

(t ) Ul(t,S), OSSSTh
v(t,s) ==
' ug(t, s — 1), <5< 71+ 7.
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Remark 10.20. Any admissible variation is given by ~(t) = Pi(q) for some P € P/, where we
identify ¢ with the constant curve. Hence J,{ M is exactly the orbit of ¢ under the action of the
group Pf
_ k
JIM = {JF(P(q)) | P € PT}.

The nonholonomic tangent space will be defined as the quotient of P/ with respect to the action
of the subgroup of “slow flows”.

Definition 10.21. A smooth admissible variation u(t, s) for D is said to be a slow variation if

u(0,s) = %(0, s) =0, Vs e[0,7]. (10.14)

A flow associated with a slow variation is said to be purely slow. The subgroup of slow flows Pg is
the normal subgroup of P/ generated by flows associated with slow variations, namely

Pg = {(Pt)_l ©Qio P | P eP!, Q purely slow}. (10.15)

Remark 10.22. Notice that, by definition of slow variation and the linearity of f, a purely slow flow
Q¢ is associated with a family of control that can be written in the form w(¢,s) = tv(t, s), where
v(0,s) =0 (cf. also Remark [[0.T5]). Moreover we have

Q= e@/o fu(t,s)ds = e@/() ftv(t,s)ds = e@/o ZL/fv(t,s)ds'

Heuristically, a flow @ is purely slow if the first nonzero jet Jé’y of the trajectory v(t) = qo Qy
belongs to a subspace Dg, with j < i. In particular 4(0) = 0.

Being equivalent up to a slow flow defines an equivalence relation on the space of jets.

Exercise 10.23. Let j = va and 7' = va’ for some 7,7’ € Q,. Prove that
Tiy~ b, i A () = Py() (10.16)
for some slow flow P € 77({ is a well defined equivalence relation on J,{ M.
This permits us to introduce the main object of the section.
Definition 10.24. The nonholonomic tangent space quM is defined as
TIM = JIM/ ~
where ~ is the equivalence relation defined in (I0.16]).

Finally, every horizontal vector field induces a vector field on the noholonomic tangent space at
every point.

Proposition 10.25. Let D be a bracket-generating distribution on M of step k at q and X be
a horizontal vector field. Then the jet Jé“X is tangent to the submanifold JgM. Moreover Jé“X

induces a well defined vector field X on the nonhonolomic tangent space quM.
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Proof. By definition of J[fX , its action on a jet of an admissible variation Jé“’y is given by

UENI) = 5| PR = 5 T G0) (10.17

s=

It is easily seen that if (¢) is an admissible variation, then for every s the curve eV (y(t)) is an
admissible variation as well, thus J[fX is tangent to the submanifold J[{ M.

To prove that the action is well defined on the quotient, assume that v(t) ~ +/(t), i.e., 7/ (t) =
~(t) © Q¢ for a slow flow @ € Pg . Then we compute, using chronological notation

where @f = e X o Qpo e is a slow flow for every fixed s and smooth with respect to s. This
means that for every s we have e*X~(t) ~ e!*X+/(t) through a slow flow Q. Hence JgX defines a

vector field X on the quotient qu M. O

10.3 Nilpotent approximation and privileged coordinates

In this section we want to introduce some special set of coordinates in which we have a good
description of the nonholonomic tangent space qu M.
Consider some non negative integers ni,...,n; such that n = nq + ... + n; and the splitting

R"=R"@...pR", x=(x1,...,2k)

where z; = (z},...,2}") € R fori=1,... k.
The space Der(R") of all differential operators in R™ with smooth coefficients form an associative
algebra with composition of operators as multiplication. The differential operators with polynomial

coefficients form a subalgebra of this algebra with generators 1,7, aaj’ where i = 1,...,k; j =
Ty

1,...,n;. We define weights of generators as follows
v =0, vad) =i, v = ) =
=0, 1) =1, o) : .
(2
This defines by additivity the weight of any monomial

y <y1 . yaﬁﬁ.aq) _ iy(y,.) _ zﬁju(zj).

i=1 j=1

We say that a polynomial differential operator D is homogeneous if it is a sum of monomial terms
of the same weight. We stress that this definition depends on the coordinate set and the choice of
the weights.

Lemma 10.26. Let D1, Dy be two homogeneous differential operators. Then D1 o Do is homoge-
neous and
I/(D1 o Dg) = I/(Dl) + I/(DQ). (1018)
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Proof. By linearity, it is sufficent to check formula (I0.I8]) for monomials of the form

P :
Dl = 7, D2 = .Z"Z;
Ox;)
Then we have ,
j2
DyoDy = ogl? = z?—— 0,
J1 2 12 9 J1 Ji’
Ox;, Ox;; Oy
and formula (I0.I])) is easily checked in this case. O

A special case is when we consider first order differential operators, namely vector fields.

Corollary 10.27. If V},V, € Vec(R™) are homogeneous vector fields then [Vy,Va] is homogeneous
and v([V1, Va]) = v(V1) + v(V2).

With these properties we can define a filtration in the space of all smooth differential operators
Indeed we can write (in the multi-index notation)

D = Z‘Pa(x)@

Considering the Taylor expansion at 0 of every coefficient we can split D as a sum of its homogeneous
components

D =~ i D,

and define the filtration {FM}},cz of Der(R™) as follows
F) .= {D e Der(R"): DY =0,Yi <h}, hel

It is easy to see that it is a decreasing filtration, i.e., F" < F=1 for every h € Z. Moreover, if
we restrict our attention to vector fields, we get

VeVee(®R") = VOD=0 Vi<-m.

Indeed every monomial of a N*"-order differential operator has weight not smaller than —mN. In
other words we have

(i) Vec(R") c Fl=m),
(ii) V € Vec(R™) N F© implies V(0) = 0.

In particular every vector field that does not vanish at the origin belongs at least to F(—1). This
motivates the following definition.

Definition 10.28. (i). A system of coordinates near the point ¢ is said linearly adapted to the
flag Dy c D2 C ... C Dl if

D, =R"®...6R™, Vi=1,..., k. (10.19)

(ii). A system of coordinates near the point ¢ is said privileged if it is linearly adapted to the flag
and X € F1 for every X € D.
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Notice that condition (i) can always be satisfied after a suitable linear change of coordinates.
Condition (ii) says that each horizontal vector field has no homogeneous component of degree less
than —1.

Example 10.29 (On privileged coordinates). We discuss which coordinate systems are privileged
in the case k = 1,2, 3.

(i) For k =1 all sets of coordinates are privileged. In fact v(9;,) = —1 for all i easyly implies
Vec(M) c F&D,

(ii) For k = 2 all systems of coordinates that are linearly adapted to the flag are also privileged.
Indeed, we have v(d_ ;) = —1 and v(d_;) = —2. Thus a vector field belonging to F(=2\ F=1)

1 2
contains a monomial vector field of the kind Oxg, with constant coefficients. On the other

hand a vector field X € D cannot contain such a monomial since, by our assumption X (0) €
D} =R™.

(iii) For k = 3, let us show an example of coordinates that are linearly adapted but not privileged.
Consider the following set of vector fields in R? = R®&R & R

X1 =0y, + 2104, Xo = 2104,, X3 = 2904,
and set v(x;) = ¢ for i = 1,2,3. The nontrivial commutators between these vector fields are
[X1, X2] = Os,, [X2, X3] = 21045, [ X1, X2], X3] = Ous.
Then the flag (computed at = = 0) is given by
D} = span{9,, }, D2 = span{0y,, s, }, D3 = span{0y,, Oy, Oy }-

These coordinates are then linearly adapted to the flag but they are not privileged since
V(210,,) = —2, thus X; € FCD\ 7D,

The following theorem is the main result of this section and states the existence of privileged
coordinates.

Theorem 10.30. Let D be a bracket generating distribution on a smooth manifold M and g € M.
There always exists a system of privileged coordinates around q.

The proof of this theorem is postponed to Section [10.3.2]

10.3.1 Properties of privileged coordinates

We showed in Proposition that given a horizontal vector field X it induces a well defined
vector field X on the nonhonolomic tangent space qu M at q € M. The goal of this section is to
discuss the peculiar structure of the vector field X in privileged coordinates.

We start with a description of the space of jets J(;“M and the equivalence relation defining the

nonholonomic tangent space qu M.

Theorem 10.31. Let D be a bracket generating distribution on a smooth manifold M and g € M.
In privileged coordinates we have the following
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(i) JIM = {3F ¢ | & € DI} and dim JJ M = kny + (k — )no + ... + ny.
(13) Let ji,j2 € JJM. Then j1 ~ jo if and only if j1 — jo = Zle t'n;, where n; € Df]_l.
Proof of Theorem[10.31), Claim (i), part 1. We start by proving the following inclusion
k
JIM ¢ {Zti& | & € pg}. (10.20)
i=1

For any smooth variation y(t) = g o expb fOT fu(t,5)ds, we can write the Volterra expansion

k
~(t) = q_|_z // qefu(t,sﬂ ®... Gfu(t,si) dSl...dSi—l—O(tk+1). (10.21)
=1

0<s;<...<s1<71

Let us write (cf. Remark [[0.I5]) the controls wu(t, s;) = tu(t,s;) for some suitable families u(t, s;).
Then (I0.2T)) becomes, using the fact that f is linear in u, as follows

’y(t) :q+Zti // qefﬂ(t,s1)® Qfﬂ(t,si) dSl...dSi—l-O(tk+1). (10.22)
=1 o<si<. s

By definition of privileged coordinates we have fy s, € F (=1 for each 4, hence Jat,s;) € F =1 and

Fattsn) @ -+ © fagsy € FP (10.23)

Let us apply the differential operator (I0.23)) to a coordinate function xg, with a = 1,...,k and
B=1,...,n4. Since V(J}B) = a we have

fatts) © -+ © fagrspzh € FEH (10.24)

Therefore, for every a > 4, this function has positive weight and vanishes when evaluated at = = 0.
In privileged coordinates satisfying (I0.I9]), this says that, for every i = 1,...,k, the sum in
(I02T) up to the i"-term contains only element in D}. O

To prove the converse inclusion we have to show that, given arbitrary elements &; € Df] for
i=1,...,k, we can find a smooth variation that has these vectors as elements of its jet. The proof
is constructive and we start with some preliminary lemmas.

Lemma 10.32. Let m,n be two integers. Assume that we have two flows such that, as operators

P, =1d+ V" + O(t" ),
Qi = Id + W™ + O(t™).

Then P,Q:P7 Q" = 1d + [V, Wt tm 4 O(¢ntm+1).
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Proof. Define R(t,s) := PthPt_ngl. We are interested in the expansion of R(t,t) with respect to
t. Since Py = Qo = Id, we have R(0,s) = R(t,0) = Id, for every t,s € R. This implies that, when
writing the Taylor expansion of PthPt_lQ;l, only mixed derivatives in ¢ and s gives contribution.
Using that

Pl=1d—t"V+ 0™, Q7'=1d—t"W +0o@t™™).
one gets
Id + "V + O™ ™)) (Ad + s"W+O(s™ 1)) (Id — "V + O(t" ™)) (Id — s™W + O(s™ ™)) =
=Id+t"s"™ (VW — WV) + O™+
= Id + t"s™ [V, W] + O(t" ™)
and the lemma is proved. O

Exercise 10.33. Assume that the flow P; satisfies P, = Id + V" + O(t"*!). Show that the
nonautonomous vector field V; associated to P; satisfies V; = nt" =1V + O(t").

Lemma 10.34. For all iy,...,i, € {1,...,k} and | > h, there exists an admissible variation
u(t, s), depending only on the Lie bracket structure, such that

qe eﬁ /OT fugt,s)ds =g+ tl[fiu s i finll(@) + O(tl+1)' (10.25)

Proof. The lemma is proved by induction on h.
(i) For all i =1,...,k and | > 1 there exists an admissible variation u(t, s) such that

qo eTf)/ fu(t75)d8 =q+ tlfi(q) + O(tl+1).
0

In fact, it is sufficient to take u = (uy,...,u) such that u; = t! and u; = 0 for all j # 1.
(ii) For all 4,5 € {1,...,k} and [ > 2, we have to show that there exists an admissible variation
u(t, s) such that

goaxd /0 Futeords = a + 81fi. £)() + O+,

In fact, it is sufficient to apply Lemma [[0.32] where P; and ); are the flows generated by the
nonautonomous vector fields V; = ¢/~1 fi, and Wy = tf;,, respectively.
Iterating this argument the lemma is proved.
O

In other words we proved that every bracket monomial of degree ¢ can be presented as the i-th
term of a jet of some admissible variation. Now we prove that we can do the same for any linear
combination of such monomials (recall that D* is the linear span of all i-th order brackets).

Lemma 10.35. Let m = 7(fi1,..., fm) be a bracket polynomial of degree degm < I. There exists
an admissible variation u(t, s), depending only on the Lie bracket structure, such that

g0 /0 " Fuerds = 4+t (froe s fu)(@) + O(EH). (10.26)
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Proof. Let w(f1,...,fm) = Z;Vzl Vi(fi,..., fm) where V; are monomials. By our previous argu-
ment we can find v/ (¢, s), for s € [0,7;] such that

7
g0 D /0 Furtesyds = a -+ tVi(fi- . fu)(@) + O,

Then (I0.26)) is obtained choosing as u(t, s), where s € [0,7] and T := Zﬁvzl 7; the concatenation
of controls defined as follows

Jj—1 Jj—1 J
u(t,s) = u’ <t,s—2n), if ZTZ'SS<ZT7;, 1<j<N,
i=1 i=1 i=1

where the sum is understood to be zero for j = 1. O

Exercise 10.36. Complete the proof by showing that the flow associated with u has as main term
in the Taylor expansion Zj V; at order [. Then prove, by using a time rescaling argument, that
also any monomial of type aV for a € R can be presented in this way.

We are now in position to complete the proof of Claim (i) of Theorem [I0.31]
Proof of Theorem [10.31], Claim (i), part 2. We have to prove the remaining inclusion
k . .
{Z 16| & € Dg} c JIM. (10.27)
i=1

Let us consider a k-th jet j = Zle t'&;, with & € Dfl. We prove the statement by steps: at i-th
step we built an admissible variation whose i-th Taylor polynomial coincide with the one of j.

- Thanks to Lemma [[0.35] there exists a smooth admissible variation 7 (¢) such that

le(t) =qge° eﬁ/o fu(t,s)dsa ’Y(t) =&

Then we will have y1(t) = t& + t?n2 + O(t*) where 2 € D2 from the first part of the proof.

- Thanks to Lemma [[0.35] there exists a smooth admissible variation J5(¢) such that
Ya(t) = qo 6713/ foesyds,  Fa(t) = t2(& —m2) + O(t%)
0

Deﬁnin the product y2(t) := (72 * v1)(t) we have

Yo(t) = t& + t?ne + t2(& — mo) + t3n3 + O(t%)
= t& + t2 + 33 + O(tY)
where 13 € Dg’.

At every step we can correct the right term of the jet and after k steps we have the inclusion.

'we define the product of two curves v(t) = ¢ © P; and v/ (t) = q © P/ as follows: (v *7)(t) :==qo P, o P,.
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Proof of Theorem [I0.31), Claim (ii). We have to prove that

k
jreil e =Y tm,  meDi
i=1

(=). Assume that j ~ j', where j = Jé“’y =Y t¢ and j' = J(f’y’ = Y ti¢!. Then v = voQ, for
some slow flow Q; € 77(]; of the form

Qt:Q%Q QQ?7
Qi = PtZ @eﬁ/o ftvi(t,s)dse (Pti)—l,

for some P’ € P/ and some admissible variations v;(t, s), for i = 1,...,h. It is sufficient to prove
it for the case h = 1. By formula (6.27]) we have that

Qi=P 9@/ ftv(t,s)ds@Pt_l = @/ (Adpt)ftv(t,s)dsa
0 0

then by linearity of f we have

Q= @/ t(Ad Py) fo1,5)ds.
0

Now recall that P, = exp Jo Juw(t,0)d0 for some admissible variation w(t,0) and from (G.24)) we get

Qt = e?f)/o t e?f)/o\ adfw(t,@)de fv(t,s)ds'

Finally, if v(t) = g o expb fOT Ju(t,s)ds we can write

Y (t) = q@eﬁ%/ Jut,s)ds 96@/ ¢ 6713/ ad fu(t,0)d0 fuz,s)ds-
0 0 0

Expanding with respect to t we have Q; ~ (Id + Y t'V;) = Id + >_ t**1V; where V; is a bracket
polynomial of degree < i. Due to the presence of t it is easy to see that in the expansion of 7/ we
will find the same terms of « plus something that belong to D'~

(<). Assume now that j = J[fv =Yt and j' = J[f '= Yt with

k
j=i'=> tm,  mieDi
=1

We need to find a slow flow @; such that 4/ = v o Q. In other words it is sufficient to prove that
we can realize with a slow flow every jet of type Zle tin;, n; € Df]_l. To this purpose one just
adapts arguments from the proof of part (i), using the following crucial observation, which given
an adaptation of Lemma

Lemma 10.37. Let P;,Q; be two flows with P, € P/ and Q, € Pg (or P, € 77({ and Q; € Pf).
Then P,Q:P7'Q; ' e PJ.
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Proof. If Q; € 77({ then Q; = Pg . Moreover from the definition of 77({ we have that PtQtPt_l € Pg .
Hence also their composition is in 73(]; . O

O

We have the following corollary of Theorem [I0.31] part (i).

Corollary 10.38. In privileged coordinates (x1,...,xy) defined by the splitting R" = R™ @...OR"

we have
txy + O(t?)

2z + O(t?)

JIM =

; cm EeRM =1, kY. (10.28)

tk.a;k
Proof. Indeed we know that D = R™ @ ... ®R™ and writing
Ei=xig+ ...+ T, x;; € R
we have, expanding and collecting terms

k
Zti&' = té + 126 + ...+ the,
i1

=tr1y + t2(x271 + $272) +...+ tk(xm +...+ xhk)

= (t:l?l,l + t2$271 + ...+ tkl‘k71, t21172,2 + ...+ tkiltk,g, tkl‘k7k)
O

Corollary 10.39. The nonholonomic tangent space quM s a smooth manifold of dimension

dim quM = Zfiql) ni(q). In privileged coordinates we have
TIM = | rmeRY =1,k (10.29)
tkﬂjk
and dilations {04 }a>0 acts on quM i the following quasi-homogeneous way

ktk

Oa(txy,. .. ,tkznk) = (atxy,...,a"t"zy).

Proof. Tt follows directly from Corollary [[0.38] that two elements j and j’ can be written in coor-
dinates as

j = (tﬂj‘l + O(t2)7 t2$2 + O(t3)7 s 7tk$k)7
§' = (tyr + O(82), Pys + O(%), ..., t*yp).

Moreover, thanks to Theorem I0.31] claim (ii), we have that j ~ j' if and only if z; = y; for all
i=1,...,k O
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Remark 10.40. Notice that a polynomial differential operator homogeneous with respect to v (i.e.,
whose monomials are all of same weight) is homogeneous with respect to dilations ¢; : R” — R™
defined by

(5t(x1,...,a;k) = (txl,t2x2,...,thk), t> 0. (1030)
In particular for a homogeneous vector field X of weight & it holds 6, X = t~"X.
Now we can improve Proposition [[0.25] and see that actually the jet of a horizontal vector field

is a vector field on the tangent space and belongs to F(—1) (in privileged coordinates).

Lemma 10.41. Fiz a set of privileged coordinates. Let V. € FU | then the vector field Ve
Vec(T, qf M) induced on the nonhonolomic tangent space writes as follows

v1 () v1(z)
V= 02@ — V= 2@ (10.31)
vg(z) Uk ()

where U; 1is the homogeneous term of order i — 1 of v;.

Proof. Let V€ F(=Y and () be an admissible variation. When expressed in coordinates we have

v1 () tey + O(t?)
Vo va(x) (0) = 229 + O(t3)
Uk&x) tki;lk,

Thanks to Exercise [[0.11] the coordinate representation of (JfV)(JéW) is given as the k-th jet of
tV(v(t)). Hence we compute

toy (trg + O(t2), ..., thay)
tug(tzy + O(t2), ..., thay)

(JEV)(JEr) = : (10.32)
tup(tzy + O(2), ... tFxy)

Notice that V € F(—1) means exactly that decomposing V in coordinates as follows

0 ok D
V= Zvi(ﬂf)&pi = szf(l’)£7

i=1 i=1 j=1

every v; is a function of order > i —1, since v(9/ 83:? ) = —i. Let us denote with v; the homogeneous
part of v; of order i — 1. To compute the value of V then we have to restrict its action on admissible
variations from qu M, then evaluate and neglect the higher order part (that corresponds to the
projection on the factor space) in order to have

vi(tzy +O®t%),. .. tFay) =t 0w, ..., 21) + O(tY)
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and using identity [10.32] we have

tur(tey + O(t2), ..., thay) tor + O(t?)
tug(txy + O(t2), ... thay 205 + O(#3
LoV, = 2t (. ) . ° ) (10.33)
g M : :
tug(tzy + Ot?),. .. thay) th ), + O™+
from which (I0.37]) follows. O

Remark 10.42. Notice that, since v; is a homogeneous function of weight ¢ — 1, it depends only
on variables x1,...,x;_1 of weight equal of smaller than its weight. Hence V has the following
triangular form

Viz) = : (10.34)

Up(w1, ... 1)

A triangular vector field of the kind (10.34]) is complete and its flow can be easily computed by a
step by step substitution.
10.3.2 Existence of privileged coordinates: proof of Theorem [10.30l

Fix a generating frame {fi,..., f,} of the distribution D. Assume that D is bracket generating of
step k at the point ¢
D, CD.C...CDs=T,M. (10.35)

Denote by d; := dim Dg the dimension of the elements of the flag, for j =1,... k.

Definition 10.43. A set V4,...,V,, of n vector fields on M is said to be a privileged frame for D
at ¢ if it satisfies the following properties:

(a) V; = mi(f1,-.., fm), where 7; is some bracket polynomial, for i = 1,...,n,
(b) degm; < j for every i < dj,
(¢) D} = span{Vi(a),. ... Vi, (@)}, for j = 1,.... k.

A privileged frame can be constructed as follows: choose Vi,...,Vy among the vector fields
{fi,..., fm} in such a way that D, = span{Vi(q),..., V4, (¢)}, then fix Vg 41,...,Vy, among the
set {[fi, fj] 14,7 =1,...,m} in such a way that Dg = span{Vi(q), ..., Va,(q)}, and so on.

Remark 10.44. Given a privileged frame V7,...,V,, one can introduce on T;,; M the weight on the
coordinates (y1,...,y,) induced by the flag. In other words we write every element v in T, M along
the basis V1(q), ..., V,(q) and set

v=(Y1,.-.,Yn) = Zyivi(q), where v(y;) =w; =7 if dj_1 <i<d;
i=1

Identifying v € T, M with a constant vector field, it makes sense to consider the value of a polynomial
bracket X = 7(f1,..., fm) at the point ¢ and consider its weight v(X).
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Privileged coordinates are then easily build in terms of a privileged frame.
Theorem 10.45. Let Vi,...,V, be a privileged frame at q. Then the map
TR — M, U(sy,...,8,) =qoe Vo . oenVn, (10.36)
is a local diffeomorphism at s = 0 and its inverse W~ defines privileged coordinates around q.

Proof. The map ([0.46)) is a local diffeomorphism at s = 0 since

ov

95 = Vi(q), i=1,...,n (10.37)

s=0

and these vectors are linearly independent by property (c¢) of privileged frame. To complete the
proof we have to show that:

0 0

(i) \II*_I(DZ) :span{a—Sl,...,as—dj}, for every j =1,...,k,

(i) w;'f; € FO for every i = 1,.

Claim (i), that is ¥ defines linearly adapted coordinates, easily follows from property (c) of privi-
leged frame and (I0.37). On the other hand, claim (ii) is not trivial since requires the computation
of the differential of ¥ at every point, and not only at s = 0.

We prove the following preliminary result.

Lemma 10.46. Let X = n(f1,...,fm)(q) € Vec(TyM) be a bracket polynomial with v(X) < h.
Given a polynomial vector field on Ty M

= iy (ad Vi o -+ 0ad Vi, X)(g) (10.38)

there exists polynomials p;(y) € FWi=" fori=1,...,n such that

=> pilyVilg)
i=1

We stress that the weight of the polynomial p; in the previous Lemma is independent on the
degree of the polynomial vector field.

Proof of Lemma[10.46 It easily follows from definition of weights that
1
adVj, o - cadV; (X) € FOW, w=> w; +h.

By additivity, every term in the sum (I0.38) belongs to F(~"). Then if we rewrite the sum (I0.38)
in terms of the basis V;(q), for i = 1,...,n we have that every coefficient p;(y) must belong to
Fwi=h) “since v(Vi(q)) = w. O

The proof of existence of privileged coordinates is completed by the following proposition,
applied in the particula case h = 1.
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Proposition 10.47. Let X = «(f1,..., fm) be a bracket polynomial with v(X) < h and ¥ be the
map defined in (I04G). Then W;'X € F=h),

Proof. Writing the vector field ¥ 'X in coordinates
UolX = En:ai(s)i, (10.39)
" i—1 Osi

the statement is proved if we show that a; € F®@i=")  We compute the differential of ¥ (cf. also

Exercice 2.3T])

0 0 . .
*6_:8_ q@esl‘/l@...@e(sz'i‘a)vze,,,@esnvn
Si €le=0
=qo SV .. oesiVig v 0 eSit1Vitl o ... g esSnVn
=qo SVig oL gesnVn o gmsnVa g L. g e sitVitt Vo eSit1Vitl ¢ oL g esnVn
U(s)

In geometric notation we can write

0 Sit1Vi
\I,*_ — invn . *l+1 1+1‘/;; . 10.40
Bs;  © ‘ w(s) (10:40)

Remember that, as operator on functions, e = e=*24Y . This implies that in (II40) we have a
series of bracket polynomials. Applying ¥, to (I0.39]) one gets

n
X‘ = ) sV |, iiJeriJer ‘
) Z:; nlere o)

Now we apply e;*1V1 ... e *"V» to both sides to compute the vector field at the point ¢

. (10.41)

n
- - — —si—1Vi—
6*81V1_,_e*annX‘ :E :ai(s)e*m%,”e*sz 1Vi lvi
q - q
1=1

Rewriting the last identity in the basis Vi(q),. .., V,(q) we have

n

D bi(s)Vilg) = D ails)(Vilg) + @i(5)Vi(q)), (10.42)
i=1

ij=1

for some smooth functions b;, p;; such that ¢;;(0) = 0. Applying Lemma to X and Vj, for
i=1,...,n, we have
by € Fwimhl g € Flwimw),

On the other hand we can rewrite relation between coefficients as follows
B(s) = A(s)(I + ©(s)),
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where we denote B(s) = (bi(s),...,bn(s)), A(s) = (ai(s),...,an(s)) and ®(s) = (pi;(s))i;. Notice
that I + ®(s) is invertible. Thus we get

A(s) = B(s)(I + ®(s)) !
=Y (~1)P(BI)(s),
p=>0

and we observe that

(B)i = by € Fto=h),

(Bq>)2 = Zb](pjl c ]:(U)j_h-l-wi—wj') — ]:(wi—h)‘
j=1

Iterating the argument it follows that (B®?); € F (wi=h) for every p > 0. Hence a; € FWi=h) [
O

Remark 10.48. The previous proof can be rewritten in purely algebraic way through chronological
notation. In the above proof nothing changes if we consider some permutation o = (i1, ...,14,) of
(1,...,n) and work with the map

Uy (S1,...,80) = qoesinVino  oenVi,

We stress that, even if we are allowed to switch the position of the vector fields in the composition,
the coordinate s; has to correspond to the vector field V;, for i = 1,...,n.

We summarize the previous considerations in the next corollary.

Corollary 10.49. Let Vi,...,V,, be a privileged frame at q and o = (i1, ...,1,) a permutation of
{1,...,n}. Then the map

U, R" — M, Uo(S1,. .0, 8n) =qoesinVine  oenVi (10.43)
is a local diffeomorphism at s = 0 and its inverse U, defines privileged coordinates around q.

Remark 10.50. As a particular case of Corollary [[0.49] we can consider the coordinate map

TnVn o 11

D (r1,...,2y) > qoe .oe

Computing the differential ®, (cf. also Exercice 2.37]) it is easy to see that for every i =1,...,n

o'V = 0Oy, (10.44)
r1=-=x;—1=0
This implies in particular that for i = 1,...,d; we have in coordinates
Vi=0p,+ Y aij(x1,...,74,)0n,, (10.45)
j>di

for some functions a;; depending only on the coordinates of the first layer. Indeed the set of vector
fields {Vi}i=1,. 4, are chosen among fi,..., fm (generating D,) and have weight —1.

Exercise 10.51. Let Vi,...,V, be a privileged frame at ¢q. Prove that the map
U, :R" — M, Uy (sy,...,8n) = qoexi=1®Vi (10.46)

is a local diffeomorphism at s = 0 and its inverse \I’Irl defines privileged coordinates around gq.
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10.3.3 Nonholonomic tangent spaces in low dimension

In Riemannian geometry the above procedure becomes very easy since when £ = 1 we have that
JkM = T,M and moreover every admissible variation is an admissible trajectory. This implies
that if (M U, f) is a Riemannian manifold and X is a vector field on M, then the vector field
X induced on the tangent space T M =T, M is simply the constant vector field defined on 7, M
defined by the value of X at gq. Moreover, every local basis of the tangent space is a pr1v11eged
frame and defines privileged coordinates

As soon as the structure is not Riemannian, the structure of the noholonomic tangent space
can depend on the point ¢ and on the growth vector (dy,...,dg) of the distribution D at q. Let us
study the low dimensional cases.

If we consider regular sub-Riemannian distributions, namely when the dimension of D, is con-
stant with respect to ¢, then the simplest case is obtained in dimension n = 3 for a distribution of
rank 2. '

If the distribution is also equiregular, i.e, the dimension of all D} is constant with respect to g,
then the growth vector is necessarily (2,3) at every point. In this case the nonholonomic tangent
space is unique and given by the Heisenberg group.

Example 10.52 (Heisenberg group). Assume n = 3 and that growth vector is (2,3). Then we
consider coordinates (1, z2,r3) and weights (w1, ws, w3) = (1,1,2). Since we work locally around
the point ¢, it is not restrictive to assume that D is locally generated by two vector fields f1, fo and
that we can choose as a privileged frame

Vi=fi, Vo = fo, Vs = [f1, fal. (10.47)
Using privileged coordinates defined in Remark [0.50, we have that
f1 1‘17 Vo = f2 = 8952 + amlc‘)m, (10.48)

for some o« € R. On the other hand since

V3 = [f1, fa] = aOs, (10.49)

and V3(0) = 0y, from (10.44]) we get o« = 1. This gives the following normal form for the generating
frame of the nonholonomic tangent space

fl = 81‘17 f2 = 81‘2 + xla:c:;- (1050)
O

If we admit the regular distribution D of rank 2 in dimension n = 3 to be not equiregular, then
the growth vector can be of the form (2,...,2,3) at some singular points. In the simplest case, for
a growth vector (2,2,3), the nonholonomic tangent space is the Martinet space.

Example 10.53 (Martinet space). Assume n = 3 and that growth vector is (2,2,3). This means
that we have coordinates (1, z2,z3) with corresponding weights (w1, ws,ws) = (1,1, 3). Since we
work locally around the point ¢, it is not restrictive to assume that D is locally generated by two
vector fields fi, fo and that we can choose as a privileged frame

Vi = fi, Vo = fo, Va = [f1, [f1, fal]. (10.51)
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Indeed if the three vector fields above are not linearly independent then we can choose V3 =
[f2, [f2, f1]] and we reduce to the previous case by switching the role of f; and fo. Moreover denote
fu = u1f1 + usfy and consider the linear map

¢ :R> = T,M/Dy,  p(ur,u9) := [fu, [f1, foll(g) mod D,

Since ¢ is surjective (by bracket-generating assumption) and dim 7, M /D, = 1, then ker ¢ is one
dimensional. Thus, up to a rotation of constant angle of the generating frame f1, fo (which does
not change the value [fi, f2]), we can assume that fy € ker . In particular this implies

[f2. [f1, f2l] = 0. (10.52)

Using privileged coordinates defined in Remark [[0.50, we have that
Vl = fl = 85017 V2 = f2 = a:vz + xla($1,$2)ax3, (1053)

for some smooth function a(z1,z2). Since v(fz) = —1 then a(z1, z2) = axy + Bxo for some o, f € R
and we get the coordinate representation

f1 = 8901, f2 = 8902 + (Oé$% + ﬁZEll‘Q)amS. (10.54)

Since [f1, [f1, fo]] = 20y, the requirement V3|,—o = 0y, in (I0.5I) gives o = 1/2. Moreover for
this value o o we have [fa, [f1, f2]] = B0z, and the condition (I0.52]) gives 5 = 0. We have then the
normal form for the generating frame of the nonholonomic tangent space

1
fl - axu f2 - a:r:z + 51'%89:37 f3 = 89:3 (1055)

O

If we consider non regular distributions, then the simplest case is obtained as the nonholonomic
tangent space to a distribution D in dimension n = 2 in some singular point. Analogously to the
previous case the growth vector can be of the form (1,...,1,2) and the simplest case is obtained
when the growth vector is (1,2). In this case nonholonomic tangent space is the Grushin plane.

Example 10.54 (Grushin plane). Assume n = 2 and that growth vector is (1, 2). Then we consider
coordinates (z1,z2) and weights (w1, ws) = (1,2). Let {f1, fo} be a generating rame for D. It is
not restrictive to assume that

‘/1:.](.17 ‘/2:[.](.17.](‘2]
By properties of privileged coordinates defined in Remark [050, we have that

Vi =fi1 =0z, Vo = [f1, fo] = Ous.

Moreover fo should be a vector field of weight —1 that vanishes at z = 0 so it is necessarily of the
form

fo = ax10,,,

for some a € R. The condition [fi, fo] = J,, gives @ = 1 and we obtain the normal form for the
generating frame of the nonholonomic tangent space

fl = a(E17 f2 = $18x2- (1056)
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10.4 Metric meaning

In this section we study the interplay between the distance and the nonholonomic tangent space.
In other words we consider a sub-Riemannian manifold (M, U, f) and we want to understand what
is the metric structure which is naturally defined on the nonholonomic tangent space and in which
sense the latter gives a good approximation of the original structure in a neighborhood of a point.

To this aim, we start by exploring in more details, given a vector field V', in which sense the
vector field V' defined on qu M is an approximation of V.

Lemma 10.55. Let V be a horizontal vector field on M and let V be its nilpotent approrimation.
In privileged coordinates around q we have equality

61,V =V +eWe, (10.57)

where {64 }a>0 denotes the family of dilations defined in (I0.30) and W* depends smoothly on the
parameter €. In particular V' is characterized as follows

V =limes: V. (10.58)
e—0 €
Proof. Recall that in privileged coordinates any horizontal vector fields V' belongs to F -1 and V
is its homogeneous part of degree —1. Let us write V' =V + W and apply the dilation d1, to both
sides of the equality. We have

~ 1~
6LV =0V 48, W =V 45, (10.59)

where we used the homogeneity of 1% (cf. Remark [0.40). Noting that W € F©) hence setting
W¢ :=¢ed1, W we have that W* is smooth with respect to e and eW# — 0 for ¢ — 0. O

Geometrically this procedure means that if we consider a small neighborhood of the point ¢
and we make a nonisotropic dilation (with scaling related to the local structure of the Lie bracket)
then V catches the principal terms of V. This is a nonholonomic analogous of the linearization of
a vector filed in the Euclidean case.

10.4.1 Convergence of the sub-Riemannian distance and the Ball-Box theorem

Given a sub-Riemannian structure on M, with dim M = n, let us denote by {fi,..., fin} a gener-
ating frame and fix a point ¢ where the structure has step k.
Once we have fixed a privileged coordinate chart, we can treat the vector fields {fi,..., fi.} as

vector fields in R™, introduce the family of dilations {d4}a>0 defined in (I0.30]) and introduce the
vector fields
fi=¢ed1,fi 1=1,...,m. (10.60)

Thanks to Lemma we have that f5 — ﬁ for i = 1,...,m and we can define the sub-
Riemannian structure f¢ and fon R™ defined by the generating frames {ff, ..., f5,} and {fl, e fm}
respectively.

From the definition (I0.60) of the vector fields f7, it follows directly that the sub-Riemannian
distance defined by these vector fields is, up to a rescaling, the original sub-Riemannian distance
in the dilated coordinates. More precisely we have the following relation.
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Proposition 10.56. Let d° and d be the sub-Riemannian distances on R™ associated with the
sub-Riemannian structures f€ and f, respectively. Then for every x,y € R™ we have

d*(z,y) = éd(éa(a:),éa(y)). (10.61)

Proposition [10.56] is saying that d° is d when we “blow-up” the space near the point ¢ and
rescale the distances. This relations rewrites as follows in terms of balls.

Corollary 10.57. Let B(x,r) (resp. B¢(z,1)) be the sub-Riemannian ball with respect to the dis-
tance d (resp. d®). Then for every r > 0 and € > 0 one has

0:(B%(x,7)) = B(d.x,e7). (10.62)
In particular 6.(B%(0,1)) = B(0,¢) for every € > 0.

The previous results relates the original distance d with the approximating one d*. Next we
move to the convergence of d° for ¢ — 0.

We start from an auxiliary proposition, studying the convergence of the end-point maps. Denote
E? and E‘w the end-point map of the approximating frame and the nilpotent one based at a point
r € R™

Proposition 10.58. Let x € R™. Then ES — E, uniformly on balls in L*([0, 1], R¥).

Proof. Fix a control u € L*([0,1],R¥) and consider the solution z°(¢) and Z(t) of the two systems
E=Y w)fi@), &= w®)fi) (10.63)
i=1 i=1

with some fixed initial condition x(0) = z¢ € R". Using Lemma[[0.55] we write ff = fi+ eW?F and
the first equation in (I0.63]) becomes

g= > wit)fi(z) +e Y ui(t)Wi (). (10.64)
i=1 i=1
In the right hand side the term
Wi(x) =2y u;(t)Wi (), (10.65)
i=1

is a non-autonomous vector field smoothly depending on the parameter . Moreover Wf(xz) — 0
when ¢ — 0. From classical result in ODE theory (continuity with respect to parameters) it follows
that the solution x°(t) converges uniformly on [0,77] to the solution Z(¢). In particular the final
points converges and the convergence can be taken uniform Notice that, since nilpotent vector fields
are complete (cf. Remark [[0.42]), the solution Z(t) is defined for all ¢ € R. O

We notice that actually, thanks to the smoothness of the end-point map, the convergence in
Proposition holds in the C*° sense.

We now prove a key uniform Holder estimate (with respect to €) for the approximating sub-
Riemannian distance.
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Proposition 10.59. For every compact K C R"™ there exists €9, C > 0, depending on K, such that
& (z,y) < Clz —y|YF, Ve € (0,e0), Va,y € K. (10.66)
where k is the degree of nonholonomy of the sub-Riemannian structure.

Proof. Let 171, . V be a privileged frame for the nilpotent system f at the origin (cf Defini-
tion [[0.43]), such that Vi = 7 fi,.. fk) for some bracket polynomials 7;, where i = 1,...,n. By
construction we have

VA(0) A ... AV,(0) #0. (10.67)

By continuity, this implies that they are linearly independent also in a small neighborhood of the
origin and, thanks to quasi-homogeneity, this implies

Vitz) A ... AVp(2) #£0,  VzeR™ (10.68)

Let V& := m(f{,..., fi) denote vector fields defined by the same bracket polynomials, written in
terms of the vector fields of the approximating system. Fix a compact K C R™ and let g = o(K)
be chosen such that

Vi(@)A... AV () #0, Vee K, Ve <. (10.69)

Recall that by Lemma [[0.35] given a bracket polynomial 7;(g1,...,gx), with degm; = w;, there
exists an admissible variation w;(¢, s), depending only on 7;, such that

1
@/ gui(t,s)ds =1Id + twiﬂ'i(gl, o ,gk) + O(twﬁ-l)‘
0

If we apply this lemma for g; := f7 we find u;(t, s) such that

1
& / fiymyds = 1+ 19V O+ e >0,
0

where we recall w; = deg m;. Next we define the map for € > 0

1 1
D (ty,. .. ty,x) i= xee@/ S iy dso ... @6@/ £ 1w, L ds. (10.70)
o ui(ty 1.s) 0 un(ty "™ ,s)
Notice that we have the expansion
1 w;+1
x(ﬁ/ 5 i s = 2+ VE@) + O, (10.71)
0 Uq i ,S

In particular (I07T) is a C* map in a neighborhood of ¢ = 0 but, in general, it is not C2 as soon
as w; > 1.

From this observation it follows that ®° is C' as a function of ¢, being a composition of C!
maps. Clearly ®¢ is smooth as a function of . Combining the contributions of (I0.7I]) we obtain
the expansion

O (x5ty,. ..ty _$+Ztv5 )+ o(|t]), (10.72)
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This implies that the partial derivatives

0P
ati t=0

= Vi), (10.73)

are linearly independent at the origin thanks to (I0.69) and ®° is a local diffeomorphism at ¢ =
(t1,...,tn,) = 0. Applying classical Implicit Function Theorem (see Corollary 2.54]) we have that
there exists a constant ¢ > 0 satifying

B(z,cr) C ®°(z; B(0,1)), =€ K, (10.74)

where here B(x,r) denotes the ball in R™ and ¢ is independent of z, e and the parameter r is small
enough.

Let us denote now with F, the end-point map based at the point x € R™ (with analogous
meaning for ES, Ex), and with B the unit ball in L5[0,1].

We claim that (I0.74) implies that there exists a constant ¢’ such that for all » > 0 and € > 0
small enough

B(z,dr) C ES(rmB), (10.75)

Since t +— wu;(t,-) is a smooth map for every i, and u;(0,-) = 0 we have that there exist a

constant ¢; such that

t € B(0,r) = wu;(t,-) € ¢;rB, (10.76)

= u (/")) € ert/viB, (10.77)

for all » > 0 small enough. For such values of > 0 we have thanks to the inclusion (I0.75]) that
for every x,y € K such that |z — y| < ¢r then we have also d®(z,y) < r'/F. Here we used the fact
that d® is the infimum of norm of u such that ES(u) = y. From this it follows the inequality for

every z,y € K
1 1
d*(z,y) < ¢ ko —y[* (10.78)

O
We are now ready to prove the main result of this section.
Theorem 10.60. d° — Juniformly on compacts sets in R™ x R™,

Proof. By Proposition [10.59] it is sufficient to prove the pointwise convergence. We prove the
following inequalities

lim d(z,y) = d(z,y) (10.79)
e—0t
but (I0.79) is a consequence of Theorem [B.51] and the fact that the vector fields ff converge to ﬁ
thanks to Lemma O

Combining Proposition [[0.59] and Theorem [T0.60] we obtain the following corollary.

Corollary 10.61. For every compact K C R" there exists C' > 0, depending on K, such that
dz,y) < Clu—y['¥,  Vayek, (10.80)

where k is the degree of nonholonomy of the sub-Riemannian structure.
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The uniform convergence given in Theorem [I0.60] permits us to prove an important quantitative
estimate on the shape of sub-Riemannian balls. Let us introduce the box Box(g) of size ¢ > 0
defined, in privileged coordinates x = (z1,...,2;) € R @& ... ® R™ = R", as follows

Box(e) = {z € R": |z;| < e'yi=1,... k}. (10.81)
Theorem 10.62 (Ball-Box Theorem). There exists constants g > 0, and c¢1,co > 0 such that
c1Box(e) C B(x,e) C coBox(e), Ve <ep
where B(x,¢€) is the sub-Riemannian ball in privileged coordinates.

Notice that this statement is weaker with respect to Theorem [10.60]

Proof. We work in privileged coordinates (1, ... ,xk) eR™M@...oR"™ = R" where the base point
is identified with the origin. Consider the unit ball B(0, 1) for the nilpotent approximation and fix
two constants c1,co > 0 such that there exists a cube [—¢q, 1| C E(O, 1) C [—e2,c2]™. Thanks to
Theorem there exists ep > 0 such that for all ¢ < gy we have

[—Cl,cl]n (- Bs(O, 1) C [—CQ,CQ]n,

where B#(0,1) is the unit ball defined by the metric d°. Applying the dilation J. to all sets we get
that

55[—61,61]n C 5535(0, 1) C 55[—62, CQ]”

but for ¢ > 0 we have that J.[—c,¢]” = cBox(e). Moreover by definition of d® we have that
0:(B(0,1)) = B(0,¢) (cf. also Corollary I0.57)). O

10.5 Algebraic meaning

In this last section we discuss the algebraic structure induced on the nonholonomic tangent space
and in particular how one can recover it in purely algebraic terms from the data of the vector fields.

Recall that given a generating frame {fi,..., f;,} for the sub-Riemannian structure and a point
q € M, there are well defined vector field {fl, ceey fm} on the nilpotent tangent space T; qf M.

We start with a basic observation on the structure of the Lie algebra generated by {fl, e fm}

Proposition 10.63. The Lie algebra Lie{ﬁ, e ,fm} s a finite-dimensional nilpotent Lie algebra
of step k, where k is the nonholonomic degree of the sub-Riemannian structure at q.

Proof. Consider privileged coordinates in a neighborhood of the point q. Then ﬁ has weight —1
and is homogeneous with respect to the dilation {4 }a>0. Moreover, for any bracket monomial of
length j we have

V([ﬁ17 R [ﬁj717ﬁj]]) =—J

Since every vector field V satisfies v(V) > —k, it follows that every bracket of length j > k is
necessarily zero. O
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Consider now the Lie algebra of vector fields L := Lie{fl, e ,fm} This Lie algebra is finite-
dimensional and nilpotent thanks to Proposition I0.63l Denote by G the Lie group of associated
flows (cf. Section [7.])

G={efuo . o t; R jeN). (10.82)

endowed with the product ©. By construction this is a nilpotent Lie group, and Lie(G) = L.
The group G naturally acts on qu M = J[fM / ~. Denote by [j] € J[fM / ~ the equivalence class
of a jet j = J[fv € Jé“M . The action of an generator of G on qu M 1is defined follows

)= yeedh],  j= Tk~ e JEM. (10.83)

Notice that this is a right action. Let us denote by Gy the isotropy sub-group of the trivial element
of T, qf M under the action of G.

Collecting the results proved in Section [10.3] and in particular Theorem [I0.31] we have the
following result

Theorem 10.64. The nilpotent approrimation quM has the structure of a smooth manifold of
dimension dim quM = dim M, diffeomorphic to the homogeneous space G/Gy.

Remark 10.65. The diffeomorphism given by Theorem [10.64] was built explicitly thanks to privileged
coordinates in in Section T3l

Notice that indeed this could also be seen as a consequence of the theory of Lie groups. Indeed
it is not difficult to see that actually in the proof of Theorem [T0.3T] we proved that the action of
the Lie group G on qu M is transitive, hence qu M is diffeomorphic to the quotient of G with the
isotropy group of the identity, that is Gy. See for instance [73].

Next we give a purely algebraic interpretation of this construction at the level of Lie algebras.
Let us first recall some definitions.

Definition 10.66. The free associative algebra Ay, (or A(x1,...,2,)) generated by x1,..., Ty, is
the associative algebra of linear combinations of words of its generators, where the product of two
element is defined by juxtaposition.

The free Lie algebra Lie,, or Lie{x1,...,z,,} is the algebra of elements of A,,, where the product
of two elements z;, x; is defined by the commutator [z;, z;] = z;x; — z;x;.
The free nilpotent Lie algebra of step k on m generators, denoted Lieﬁ1 or Liek{:nl, SSRGS

the quotient Lieﬁ1 = Lie,, /Z¥**! of the free Lie algebra Lie,, by the ideal Z¥*! defined through the
iterative formula
' = Lie,y,, T/ = [T77Y, Liey,], j> 1.

Let Lieg{z1,...,zm} be the free Lie algebra nilpotent of step k generated by the elements
Z1,...,Tm. Notice when taking an element m € Lieg{x1,...,x,;} we can define a vector field
m(X1,...,Xm) replacing generators with vector fields X, ..., X,, (on R").

Definition 10.67. Given a sub-Riemannian structure defined by the generating frame {f1, ..., fin}
that is bracket generating of step k£ at a point ¢, we define the core algebra

Cy = {m € Liep{Xq,.... Xsn} | 7(f1,..., fm)(q) € Dgcgw_l}. (10.84)
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Exercise 10.68. (i) Prove that Cj is a subalgebra. (ii) Consider the subset
Ny = {m € Lieg{X1, ..., Xpu} | 7(f1, - -, fn)(x) € DIE™1 Vo € O,).
Prove that NN, is an ideal contained in Cj.

Denote by GF, the connected and simply connected Lie group generated by the free nilpotent
Lie algebra Lief, and exp : Lief, — GF its exponential map. Let C, = exp(C,).

Theorem 10.69. There exists a canonical isomorphism

¢:Gh/Cq— TIM.

Its differential ¢, sends generators Xi,..., X, to ﬁ, e ,fm.

Remark 10.70. The core algebra can be rewritten in privileged coordinates in terms of the nilpotentb
approximation of the generators as follows { f1, e fm} as follows:

Cq = {7‘(’ GLiek{Xl,.. Xk}’ﬂ'(fl,..., )( )—0}

Exercise 10.71 (Grushin plane). Let us analyze this algebraic construction in the case of the
simplest non-holonomic tangent space arising as the tangent space to a non-regular structure in
R?: the Grushin plane described in the Example 10,54l

We have shown that the nonholonomic tangent space has the following normal form

]?1 = a:cu ]?2 = xlaxg' (1085)

In these coordinates indeed the two vector fields have weight one and are homogeneous with respect
to the weights v(z1) = 1 and v(x2) = 2. In this case m = k = 2.
Since [f1, fo] =: f3 = Ox, it is easy to see that

Lie{f1, f2} = span{f1, fa, f3} (10.86)

On the other hand the core algebra at the origin Cp contains f2 since it has weight one but it
vanishes at zero (does not belong to D}), hence Cp = span{ fg}

10.5.1 The equiregular case

The last two statements concerns the case of a equiregular distribution. In this case one can show
that the subgroup Gy of G is trivial.

Proposition 10.72. Assume that the sub-Riemannian structure is equireqular, i.e., for everyi > 1
the integer d;(q) = dim Dé does not depend on q. Then Cy is an ideal. In particular quM s a Lie
group.

Proof. To prove that the core subalgebra C, is an ideal, it is sufficient to prove that X € C, implies
[fi, X] € C, for every i =1,...,m.

Thanks to the characterization (I0.84]), this is equivalent to prove the following claim: for
every X = 7(f1,..., fm) bracket polynomial of degree degm < h such that X(q) € Dg_l, we have
[fi, X](q) € Df]‘ for every i =1,...,m.
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Since the structure has constant growth vector, we can consider a frame Vi,...,V, that is
privileged at every point in neighborhood O, of ¢. In particular for every z € O, we have

D! = span{Vi(x),..., Vg (z)}. (10.87)

Let X = 7(f1,...,fm) be a bracket polynomial of degree degm < h. Then there exist smooth
functions a; such that

X(@)= ) a;()Vjx), VzeO, (10.88)

jiw;<h

Thanks to (I0.87), X (¢q) € D~ is equivalent to require that a;(g) = 0 for every j such that w; = h.
Let us compute

s X] = | fi D aiVi| = D ajlfi, Vil + filay)V. (10.89)

w;<h w;j<h

Evaluating (I0.89) at the point ¢ and using that a;(q) = 0 for every j such that w; = h, it follows

that [f;, X](q) € Dg for every ¢ = 1,...,m, that is our claim. O
Corollary 10.73. Assume that the sub-Riemannian structure is equiregular and {f1,..., fm} is a
generating frame. Then f1,..., fm are a basis of left-invariant vector fields on quM.

Proof. This is a consequence of the following two general facts: (i). given a right action of a Lie
group on a homogeneous space G/H, then a left-invariant vector fields on X induces a well-defined
vector field m.X on G/H through the projection 7 : G — G/H. (ii). if the Lie subgroup H is
normal and G/H is a Lie group, then 7, X is also left-invariant. O

Exercise 10.74. Prove the two statement contained in the proof of Corollary T0.73l

10.6 Carnot groups: normal forms in low dimension

In this section we provide normal forms for Carnot groups in dimension less or equal than 5. Recall
that Carnot groups arise as nonholonomic tangent spaces to equiregular sub-Riemannian structures.

For an equiregular sub-Riemannian structure the integer d; = dimel is independent on gq.
Denote by k the step of the sub-Riemannian structure, namely k is the smallest integer such that
dr, = dim M. The sequence of integers (di,...,dy) is called growth vector of the sub-Riemannian
structure.

Exercise 10.75. Prove that if the structure is equiregular of step k, then the sequence (di, ..., dy)
is strictly increasing. Hint: prove that if d; = d;;1 for some i < k, then d; = di = dim M,
contradicting the minimality of k.

From Exercice [10.75] it easily follows that the possibilities for the growth vector in dimension
less or equal than 5 are the following:

e (2,3), if dim(M) = 3,
e (2,3,4) and (3,4), if dim(M) = 4,
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e (2,3,4,5),(2,3,5),(3,4,5),(3,5) and (4,5), if dim(M) = 5.

The following theorem gives normal forms for Carnot groups of given growth vector in the prevuois
list. In every case but the last one, the normal form is unique.

Theorem 10.76. Let (M, U, f) be an equireqular sub-Riemannian manifold. Its nonholonomic
tangent space at a point is isomorphic to one of the following sub-Riemannian structures:

- (Heisenberg). If the growth vector is (2,3), then the orthonormal frame can be chosen as

fl = 6:817
f2 = a:cz +x181‘3'

- (Engel). If the growth vector is (2,3,4), then the orthonormal frame can be chosen as

fl = 81‘17
f2 = 8952 + xlam + a:la:g(‘)m.

- (Quasi-Heisenberg). If the growth vector is (3,4), then the orthonormal frame can be chosen

as
fl = 6:817
f2 = amg + x18$47
f3 = a{Eg'

- (Cartan rank 2). If the growth vector is (2,3,5), then the orthonormal frame can be chosen
as

fl - axu
1
fo = 0y + 2105 + 5:13%8“ + 21220, .

- (Goursat rank 2). If the growth vector is (2,3,4,5), then the orthonormal frame can be chosen
as

fl - 81‘17
1 2 1 3
fo= 8902 + xlamg + 53318934 + 6£E18x5.

- (Cartan rank 3). If the growth vector is (3,5), then the orthonormal frame can be chosen as

1
fl = aml - §x2am4,
1

f2 = a{Ez + 51:16.’24 - 5(1338;35,
1
f3 = 81,3 + 5%2(9505.
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- (Goursat rank 3). If the growth vector is (3,4,5), then the orthonormal frame can be chosen

as
1 1
J1= 0z — §w28x4 — gwwaaxg,,
1 1
f2 - amg + §x18x4 + 5:17%8%57
f3 = a{Eg'

- (Bi-Heisenberg). If the growth vector is (4,5), then there exists « € R such that the orthonor-
mal frame can be chosen as

1
= Ux; — 5 59
fl a:c 2%2895
1
f2 = amg + 5:1718%57
(6
— Uz — 5 59
f3 a:c 21’485(;
(6
f4 = ax4 + 51’38555.

Proof. Recall that given Xi,...,X,, a basis of a Lie algebra g. The coefficients cfj satisfying
(Xi, X5l =>", cijg are called structural constant of g.

To prove the theorem we will show that, for every choice of the growth vector, we can choose
an orthonormal basis of the Lie algebra such that the structural constants are uniquely determined
by the sub-Riemannian structure.

We give a sketch of the proof for the (3,4,5), (2,3,4,5) and (4,5) cases. The other cases can
be treated in a similar way.

Since we deal with sub-Riemannian structures (M, U, f) that are left-invariant on a nilpotent
Lie group, we can identify the distribution D with its value at the identity of the group Dy.

(a). Growth vector equal to (3,4,5). Let (M, U, f) be a nilpotent (3,4,5) sub-Riemannian
structure. Let {X7, X2, X3} be a basis for Dy, as a vector subspace of the Lie algebra. By our
assumption on the growth vector we know that

dim span{[X1, Xo], [X1, X3], [X2, X3]}/Do = 1. (10.90)
In other words, we can define the skew-simmetric bilinear map
®(-,-) : Dy x Dy — TyG /Dy, O (v,w) = [V,W](0) mod Dy (10.91)

where V, W are smooth vector fields such that V(0) = v and W(0) = w. The condition (10.90])
implies that there exists a one dimensional subspace in the kernel of this map, namely a non-zero
vector v such that ®(v,-) = 0. Let f3 be a vector in ker ® N Dy with norm one, and consider its
orthogonal subspace f3l C Dy with respect to the inner product on the distribution Dy. For every
positively oriented orthonormal basis {X1, Xa} on f3 it is easy to see that f; := [X7, X»] is well
defined, i.e., it does not depend on rotation of X7, Xy within fgl Then, reasoning as in the proof
of Example [[0.53] we can choose a rotation of the original orthonormal frame, denoted {f1, f2},
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such that [fo, f4] = 0. Defining f5 := [f1, fa], this gives a choice of a canonical basis {f1,..., f5}
for the Lie algebra where the only non trivial commutator relations are the following

[f1, fo] = fa, [f1, fa] = fs.

(b). Growth vector equal to (2,3,4,5). Let (M, U, f) be a nilpotent (3,4,5) sub-Riemannian
structure. Consider any orthonormal basis { X7, X2} for the two dimensional subspace Dy. By our
assumption on the growth vector we have that

dim span{ X1, Xs, [X71, Xo]} =3
dim Spa‘n{X17 X27 [X17 X2]7 [X17 [X17X2]]7 [X27 [Xlu XQ]]} =4. (1092)

As in part (a) of the proof, it is easy to see that there exists a suitable rotation of {X;, X3} on Dy,
which we denote {f1, fo}, such that [fo, [f1, fo]] = 0. Using the Jacobi identity we get

[f2, [f1, Uf1, folll = —1f1, U2, L1, foll = [Uf1, fol, [f1s fo]] = 0.
Then we set f3 := [f1, fa], fa := [f1,[f1, fol]l and f5 := [f1,[f1, [f1, f2]]]. Relations (I0.92) imply

that these vectors are linearly independent. Hence we have a canonical basis for the Lie algebra,
where the only nontrivial commutator relations are the folllowing:

[f17f2]:f37 [f17f3]:f47 [f17f4]:f5-

(¢). Growth vector equal to (4,5). In the case (4,5) let us consider again the map
®(,-): Dy x Dy — ToG/Dy,  ®(v,w) = [V,W](0) mod Dy (10.93)

since dim T)G /Dy = 1, the map (0.93)) is represented by a single 4 x 4 skew-simmetric matrix L.
By skew-symmetricity its eigenvalues are purely imaginary +iaq, £ics, one of which is different
from zero. Up to relabelling we can assume that a1 # 0. Then choose f1, f2, f3, f4 be a basis that
puts the matrix L in the normal form for skew-symmetric matrices

0 a1
—Q] 0
L =
0 (65)
—Q 0
Defining f5 := [f1, f2] we have that and setting « := ag/ay we get [fs, fa] = afs. O

Remark 10.77. In the proof of Theorem we showed that the structure of Lie brackets can is
uniquely determined (in the last example modulo a real parameter «) by the choice of a suitable
orthonormal frame.

Of course the coordinate representation of vector fields satisfying these structural equation is not
unique (compare for instance the vector fields in the case of the Heisenberg group with respect to
those used in the prevuois chapters). Nevertheless all of them are obtained from the one described
here with a change of variable, thanks to the Nagano principle [82].

Exercise 10.78. Prove that in the three examples described in Section [10.3.3] there is a unique
normal form for the generating frame, even if the distribution is endowed with an inner product.
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Chapter 11

Regularity of the sub-Riemannian
distance

In this chapter we focus our attention on the analytical properties of the sub-Riemannian squared
distance from a fixed point. In particular we want to answer to the following questions:

(i) Which is the (minimal) regularity of d? that one can expect?

(i) Is the sub-Riemannian distance d> smooth? If not, can we characterize smooth points?

11.1 General properties of the distance function

In this section we recall and collect some general properties of the sub-Riemannian distance and
results related to it, some of which we already proved in the previous chapters.

Let us consider a free sub-Riemannian structure (M, U, f) where the vector fields fi,..., fm
define a generating family, i.e.

f:U=STM,  f(u,q) =) uifi(q)
=1

Here U is a trivial Euclidean bundle on M of rank m.

Definition 11.1. Fix a point ¢ € M. The flag of the sub-Riemannian structure at the point ¢ is
the sequence of subspaces {Df]}ieN defined by

D(Z] = Span{[fjw SRR [fjlfﬂ fjl“(q)7 Vi< Z}

Notice that D; = D, is the set of admissible directions. Moreover, by construction, Dé - Df]H for
all 7 > 1.

The bracket generating assumptions implies that
Vge M, Im(q) >0 st. DI =T,M

and m(q) is called the step of the sub-Riemannian structure at gq.
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Exercise 11.2. 1. Prove that the filtration defined by the subspaces Dé, for ¢ > 1, is independent
on the choice of a generating family (i.e., on the trivialization of U).

2. Show that m(q) does not depend on the generating frame. Prove that the map g — m(q) is
upper semicontinuous.

In Chapter [0 we already proved that the sub-Riemannian distance is Holder continuous. For
the reader’s convenience, we recall here the statement.

Proposition 11.3. For every ¢ € M there exists a neighborhood Oy such that ¥ qo,q1 € Oy and
for every coordinate map ¢ : Oy — R"

d(qo, 1) < Cld(q0) — dlq1)|M/™

where m = m(q) is the step of the sub-Riemannian structure at q.

11.2 Regularity of the sub-Riemannian distance

In this section we fix once for all a point ¢y € M and a closed ball B = B, (ry) such that B is
compact. In particular for each ¢ € B there exists a minimizer joining ¢p and ¢ (see Corollary
R.63). In what follows we denote by f the squared distance from g

i) = ~d2(qo, ). (11.1)

2
The main result of this chapter is the following.

Theorem 11.4. The function HB : B — R is smooth on a open dense subset of B.

In the case of complete sub-Riemannian structures, since balls are compact for all radii, we have
immediately the following corollary

Corollary 11.5. Assume that M is a complete sub-Riemannian manifold and gy € M. Then § is
smooth on an open and dense subset of M.

We start by looking for necessary conditions for § to be C'*° around a point.
Proposition 11.6. Let ¢ € B and assume that § is C*° at q. Then

(i) there exists a unique length minimizer v joining qo with q. Moreover ~y is not abnormal and
not conjugate.

(11) dqf = M1, where Ay is the final covector of the normal lift of .

Proof. Under the above assumptions the functional
U:ives J(v) —f(F(v),  veL®(0,T],R"), (11.2)

is smooth and non negative. For every optimal trajectory -, associated with the control u, that
connects ¢y with ¢ in time 1, one has

0=d,¥ = d,J — df o D,F. (11.3)
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Thus, ~ is a normal extremal trajectory, with Lagrange multiplier A\; = d,f. By Theorem H.26]

—

we can recover vy by the formula v(t) = 7o e®=DH()\}). Then, v is the unique minimizer of .J
connecting its endpoints, and is normal.
Next we show that 7 is not abnormal and not conjugate. For y in a neighbourhood O, of g, let
us consider the map .
®: Oy Ty M, D(y) = e H(d,f). (11.4)

The map @, by construction, is a smooth right inverse for the exponential map, since

exp(®(y)) = 7o el (e~ (dyf)) = m(dyf) = 1. (11.5)

This implies that ¢ is a regular value for the exponential map. Since ¢ is a regular value for the
exponential map and, a fortiori, u is a regular point for the end-point map. This proves that u
corresponds to a trajectory that is at the same time strictly normal and not conjugate. O

Remark 11.7. Notice that from the proof it follows that if we only assume that § is differentiable
at g, we can still conclude that there exists a unique minimizer v joining ¢¢ to ¢, and it is normal.
Moreover leu us notice that to conclude it is enough to assume that f is twice differentiable at
g. In particular a posteriori we can prove that whenever § is is twice differentiable at ¢ then it is
C*.
Before going further in the study of the smoothness property of the distance function, we are
already able to prove an important corollary of this result.
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Denote, for » > 0, S, := f‘l(g) the sub-Riemannian sphere of radius r centered at qg

Corollary 11.8. Assume that Dy, # Ty, M. For every r < o, the sphere S, contains a non smooth
point of the function f.

Proof. Since r < rg, the sphere S, is non empty and contained in a compact ball. Assume, by
contradiction, that f is smooth at every point of S,. Then S, is a level set defined by § and d,f # 0
for every ¢ € S, (since d,f is the nonzero covector attached at the final point of a geodesic, see
Proposition [[T.6]). It follows that S, is a smooth submanifold of dimension n— 1, without boundary.
Moreover, being the level set of a continuous function, S, is closed, hence compact.

Let us consider the map

B:S, = TiM,  D(q) =e A (dy),

By assumption f is smooth, hence ® is a smooth right inverse of the exponential map (see also
(II3)). In particular the differential of @ is injective at every point. Moreover H(®(q)) = r since
f(q) = H(\) = r for every q € S,. It follows that actually ® defines a smooth immersion

®: 8, - H ' (r)nTr M (11.6)

of the sphere S, into the set

k
— * * 1
C,:=H(r) NT, M= {A eT,M: §Z<A, filqo))? = r}.
1=1

Notice that C). is a smooth connected and non compact n — 1 dimensional submanifold of the fiber
T, M, indeed diffeomorphic to the cylinder Sk=1 5 R"* (here k = dim Dy, < n is the rank of
the structure at the point ¢p). By continuity of ®, the image ®(S,) is closed in C, . Moreover,
since every immersion is a local submersion and dim S, = dim C,., the set ®(S,) is also open in C,.
Hence it is connected. Since ®(S,) has no boundary, it is a connected component of C,., namely

®(S,) = C,. This is a contradiction since, by continuity, ®(S,) is compact, while C, is not. O

Next we go back to the proof of the main result. Recall that gy € M is fixed and f is the one
half of the distance squared from ¢g. After Proposition [I1.6] it is natural to introduce the following
definition.

Definition 11.9. Fix a point gy € M. The set of smooth point from qq is the set > C M of g € M
such that there exists a unique lenght-minimizer v joining qg to ¢, that it is strictly normal, and
not conjugate.

From the proof of Proposition [I1.0] (see also Remark [[T.7)) it follows that if the squared distance
f from qg, is smooth at ¢ then ¢ € 3. The name smooth point of | is justified by the following
theorem.

Theorem 11.10. The set X is open and dense in B. Moreover § is smooth at every point of X.

Proof. We divide the proof into three parts: (a) the set ¥ is open, (b) the function f is smooth in
a neighborhood of every point of ¥, (c) the set 3 is dense in B.
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(a). To prove that ¥ is open we have to show that for every ¢ € ¥ there exists a neighborhood
O, of ¢ such that every ¢’ € O, is also in X.

Let us start by proving the following claim: there exists a neighborhood of ¢ in B such that
every point in this neighborhood is reached by exactly one minimizer.

By contradiction, if this property is not true, there exists a sequence g,, of points in B converging
to ¢ such that (at least) two minimizers ~, and 7/, joining gg and ¢,. Let us denote by w, and v,
the corresponding minimizing controls.

By Proposition B.65] the set of controls associated with minimizers whose endpoint is in the
compact ball B is compact in L? (w.r.t. the strong topology). Then there exist, up to considering
a subsequence, two controls u,v such that u, — u and v,, — v. Moreovers the limits v and v are
both minimizers and join gg with ¢. Since by assumption there is a unique minimizer v joining gg
with g, it follows that u = v is the corresponding control.

By smoothness of the end point map both D, F and D, F tends to D,F, which has has full
rank (u is strictly normal, hence is not a critical point for F'). Hence, for n big enough, both D, F'
and D, F' are surjective, i.e., u, and v, are strictly normal, and we can build the sequence A7 and
&7 of corresponding final covectors in T,; M satisfying

AN Dy, F = up, &'Dy, F = vy,.
These relations can be rewritten in terms of the adjoint linear maps
(Du, F)* AT = tn, (D, F)*EF = vp.

Since both (D, F)* and (D,, F')* are a family of injective linear maps converging to (D, F)* and
Up, Up — u, it follows that the corresponding (unique) solutions A} and £} also converge to the
solution of the limit problem (D, F')*A\; = u, i.e, both converge to the final covector A\; corresponding
to v. By using the flow defined by the corresponding controls we can deduce the convergence of the
sequences Aj and &7 of the initial covectors associated to u, and v, to the unique initial covector
Ao corresponding to 7.

Finally, since Ay by assumption is a regular point of the exponential map, i.e., the unique
minimizer v joining go to ¢ is not conjugate, it follows that the exponential map is invertible in a
neighborhood V), of Ay onto its image O, := exp(V),), that is a neighborhood of ¢. In particular
this proves our initial claim.

More precisely we have proved that for every point ¢ € O, there exists a unique minimizer
joining ¢o to ¢’, whose initial covector X' € V) is a regular point of the exponential map. This
implies that every ¢’ € Oy is a smooth point, and ¥ is open.

(b). Now we prove that f is smooth in a neighborhood of each point ¢ € ¥. From the part (a)
of the proof it follows that if ¢ € ¥ there exists a neighborhood V), of A\g and O, of ¢ such that
exp]vAO : Vi, = Oy is a smooth invertible map. Denote by ® : O, — V), its smooth inverse. Since
for every ¢’ € Oy there is only one minimizer joining go to ¢’ with initial covector ®(¢’) it follows
that,

i) = £*(a0.) = H(@(0))

that is a composition of smooth functions, hence smooth.
(¢). Our next goal is to show that 3 is a dense set in B. We start by a preliminary definition.
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Definition 11.11. A point ¢ € B is said to be

(i) a fair point if there exists a unique minimizer joining ¢o to ¢, that is normal.

(ii) a good point if it is a fair point and the unique minimizer joining gy to ¢ is strictly normal.
We denote by ¥y and ¥, the set of fair and good points, respectively.

We stress that a fair point can be reached by a unique minimizer that is both normal and
abnormal. From the definition it is immediate that ¥ C ¥, C ¥;. The proof of (c) relies on the
following four steps:

cl) Xy is a dense set in B,

c2) ¥, is a dense set in B,

(
( >
(¢3) f is Lipschitz in a neighborhood of every point of X,
( >

c4) ¥ is a dense set in B.

(cl). Fix an open set O C B and let us show that ;N O # 0. Consider a smooth function
a: O — R such that a=1([s, +o0[) is compact for every s € R. Then consider the function

Y:0 =R, () =f(qg) —alg)

The function ¢ is continuous on O and, since f is nonnegative, the set 1 ~!(] — 0o, s[) are compact
for every s € R due to the assumption on a. It follows that 1 attains its minimum at some point
q1 € O. Define a control uy associated with a minimizer « joining go and F(u1) = ¢.

Since J(u) > f(F(u)) for every u, it is easy to see that the map

¢:U — R, O (u) = J(u) — a(F(u))
attains its minimum at wy. In particular it holds
0=Dy,®=u; — (dg,a)Dy, F.

The last identity implies that u; is normal and A\; = dg, a is the final covector associated with the
trajectory. By Theorem [426] the corresponding trajectory ~ is uniquely recovered by the formula
~y(t) = moelt—DH (dg,a). In particular v is the unique minimizer joining go to ¢1 € O, and is normal,
ie. e XynNO.

Remark 11.12. In the Riemannian case ¥y = X, since there are no abnormal extremal.

(c2). As in the proof of (cl), we shall prove that ¥, N O # () for any open O C B. By (cl) the
set Xy N O is nonempty. For any ¢ € Xy N O we can define rank g := rank D, I, where u is the
control associated to the unique minimizer 7 joining gg to g. To prove (c2) it is sufficient to prove
that there exists a point ¢’ € ¥y N O such that rankq’ = n (i.e., Dy F is surjective, where v’ is the
control associated to the unique minimizer joining go and ¢'). Assume by contradiction that

ko := max rankqg <n
qeX MO 1 ’

and consider a point ¢ where the maximum is attained, i.e., such that rank ¢ = ko.
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We claim that all points of 3N O that are sufficiently close to g have the same rank (we stress
that the existence of points in X N O arbitrary close to ¢ is also guaranteed by (cl)).

Assume that the claim is not true, i.e., there exist a sequence of points ¢, € Xy N O such that
dn — q and rank g, < ko — 1. Reasoning as in the proof of (a), using uniqueness and compactness of
the minimizers, one can prove that the sequence of controls u,, associated to the unique minimizers
joining qg to ¢, satisfies u, — @ strongly in Lo, where u is the control associated to the unique
minimizer joining gy with g. By smoothness of the end-point map F' it follows that D, F — DgF
which, by semicontinuity of the rank, implies the contradiction

rank ¢ = rank Dz F < liminfrank D, F < ko — 1.
n—oo
Thus, without loss of generality, we can assume that rankq = ko < n for every ¢ € Xy N O
(maybe by restricting our neighborhood O). We introduce the following set

M, = e {¢ € T M| (D, F = \\D,F} C T}, M.

The set II, is the set of initial covector A\g € Ty M whose image via the exponential map is the
point gq.

Lemma 11.13. 11, is an affine subset of Ty M such that dimll, = n — ko. Moreover the map
q — Ilg is continuous.

Proof. Tt is easy to check that the set ﬁq ={§eT;M|{D,F = A\ D,F} is an affine subspace of
T, M. Indeed § € I, if and only if (D, F)*(§ — A1) = 0, that is

0

M, = {€ € )M | €D,F = \{D,F} = Ay + ker (D, F)*,

Moreover dimker (D, F)* = n — dimim D, F' = n — ko. Since all elements £ € ﬁq are associated

with the same control u, we have that I, = e~ (ﬁq) = Pg’t(ﬁq), hence II, is an affine subspace of
Ty M.

Let us now show that the map ¢ ~ Il is continuous on ¥y N O. Consider a sequence of points
¢n in £y N O such that ¢, — ¢ € £y NO. Let u, (resp. u) be the unique control associated with the
minimizing trajectory joining gy and g, (resp. ¢). By the uniqueness-compactness argument already
used in the previous part of the proof we have that u, — u strongly and moreover D,, F — D, F.
Since rank D, F' is constant, it follows that ker (D, F)* — ker (D, F)*, as subspaces.

O

Consider now A C Tj; M a ko-dimensional ball that contains \g = e H (1) and is transversal to
II,. By continuity A is transversal also to IIy, for ¢ € ¥y N O close to g. In particular Iy N A # (.

Since exp(Ily) = ¢, this implies that £y N O C exp(A). By (cl), ¥y N O is a dense set, hence
exp(A) is also dense in O. On the other hand, since exp is a smooth map and A is a compact ball
of positive codimension (ko < n), by Sard Lemma it follows that exp(A) is a closed dense set of O
that has measure zero, that is a contradiction.

(¢3) The proof of this claim relies on the following result, which is of independent interest.

Theorem 11.14. Let K C B a compact in our ball such that any minimizer connecting qg to
q € K is strictly normal. Then | is Lipschitz on K.
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Proof of Theorem [11.14] Let us first notice that, since K is compact, it is sufficient to show that f
is locally Lipschitz on K.

Fix a point ¢ € K and some control u associated with a minimizer joining gg and ¢ (it may be
not unique). By our assumptions D, F' is surjective, since u is strictly normal. Thus, by inverse
function theorem, there exist neighborhoods V of v in & and O, of ¢ in K, together with a smooth
map ® : O, — V that is a local right inverse for the end-point map, namey F(®(¢)) = ¢’ for all
¢ € Oy (see also Theorem [2.5]).

Fix then local coordinates around ¢. Since ® is smooth, there exists R > 0 and Cy > 0 such
that

B,(Cor) C F(By(r)), VO<r <R, (11.7)

where B,,(r) is the ball of radius 7 in L? and B,(r) is the ball of radius r in coordinates on M. Let
us also observe that, since J is smooth on, there exists C7 > 0 such that for every u,u € B,(R)
one has

J(') = J(u) < Cillu’ — uly

Pick then any point ¢’ € K such that |¢' — ¢q| = Cyr, with 0 < r < R. By (ILT), there exists
v € By(R) with ||u — ull2 < r such that F(u') = ¢/. Using that §f(¢') < J(v') and f(q) = J(u),
since u is a minimizer, we have

f(q") —f(q) < J(u') = J(u) < Cillu’ —ul2 < C'|l¢ —ql,

where C’ = C1/Cjy. Notice that the above inequality is true for all ¢’ such that |¢’ — q| < CyR.

Since K is compact, and the set of control u associated with minimizers that reach the compact
set K is also compact, the constants R > 0 and Cy, Cy can be chosen uniformly with respect to
g € K. Hence we can exchange the role of ¢’ and ¢ in the above reasoning and get

f(d") — f(a)| < C'|d" —4ql,

for every pair of points ¢, ¢ such that |¢' — q| < CyR.
O

To end the proof of (¢3) it is sufficient to show that if ¢ € ¥, there exists a (compact) neigh-
borhood O, of ¢ such that every point in O, is reached by only strictly normal minimizers (we
stress that no uniqueness is required here). By contradiction, assume that the claim is not true.
Then there exists a sequence of points g, converging to ¢ and a choice of controls u,, such that
the corresponding minimizers are abnormal. By compacness of minimizers there exists u such that
uy — u and by uniqueness of the limit u is abnormal for the point ¢, that is a contradiction.

(c4). We have to prove that ¥ N O is non empty for every open neighborhood O in B. By (c3)
we can choose ¢ € ¥, N O and fix O’ C O neighborhood of ¢ such that § is Lipschitz on O’. It is
then sufficient to show that ¥ N O’ # (.

By Proposition (see also Remark [[1.7]) every differentiability point of f is reached by a
unique minimizer that is normal, hence is a fair point. Since we know that f is Lipschitz on O’,
it follows by Rademacher Theorem that almost every point of O’ is fair, namely meas(¥X; N O’) =
meas(0’).

Let us also notice that the set Xy N O’ of fair points of O’ is also contained in the image of the
exponential map. Thanks to the Sard Lemma, the set of regular values of the exponential map in

306



O' is also a set of full measure in O’. Since by definition a point in X that is a regular value for
the exponential map is in ¥, this implies that meas(3¥ N O") = meas(Xy N O’) = meas(O’). This in
particular proves that ¥ N O’ is not empty. ]

As a corollary of this result we can prove that if there are no abnormal minimizers, then the
set of smooth points has full measure

Corollary 11.15. Assume that M is a complete sub-Riemannian structure and that there are no
abnormal minimizers. Then meas(M \ ¥) = 0.

This result is not known in general, and it is indeed a main open problem of sub-Riemannian
geometry to establish whether Corollary remains true in presence of abnormal minimizers.

We stress that the assumptions of the theorem are satisfied in the case of Riemannian structure.
Indeed in this case, following the same arguments of the proof, we have the following result.

Proposition 11.16. Let M be a sub-Riemannian structure that s Riemannian at qq,i.e., such that
dimD,, = dim M. Then there exists a neighborhood Oy, of qo such that § is smooth on Oy, .

11.3 Locally Lipschitz functions and maps

If S is a subset of a vector space V', we denote by conv(S) the convex hull of S, that is the smallest
convex set containing S. It is characterized as the set of v € V such that there exists a finite
number of elements vy, ...,v, € S such that

l n
'U:Z)\i'vi, )\7,207 Z)\Zzl
=0 =0

If p: M — R is a function defined on a smooth manifold M, we say that ¢ is locally Lipschitz
is  is locally Lipschitz in any coordinate chart, as a function defined on R™.

The classical Rademacher theorem implies that a locally Lipschitz function ¢ : M — R is
differentiable almost everywhere. Still we can introduce a weak notion of differential that is defined
at every point.

If ¢ : M — R is locally Lipschitz, any point ¢ € M is the limit of differentiability points. In
what follows, whenever we write dgp, it is implicitly understood that ¢ € M is a differentiability
point of .

Definition 11.17. Let ¢ : M — R be a locally Lipschitz function. The (Clarke) generalized
differential of ¢ at the point ¢ € M is the set

Oqtp = conv{{ € TyM|[¢{ = ligl dg, v} (11.8)
gn—q

Notice that, by definition, d,¢ is a subset of T;'M. It is closed by definition and bounded since the
function is locally Lipschitz, hence compact.

Exercise 11.18. (i). Show that the mapping ¢ — 0, is upper semicontinuous in the following
sense: if ¢, — ¢ in M and &, — £ in T*M where &, € 0, ¢, then £ € 9,¢.

(ii). We say that ¢ is regular for ¢ if 0 ¢ Oyp. Prove that the set of regular point for ¢ is open
in M.
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From the very definition of generalized differential we have the following result.

Lemma 11.19. Let ¢ : M — R be a locally Lipschitz function and q € M. The following are
equivalent:

(1) Oq0 = {£} is a singleton,

(11) dqp = & and the map x — dyp is continuous at q, i.e., for every sequence of differentiability
point g, — q we have dg, p — dgp.

Remark 11.20. Let A be a subset of R™ of measure zero and consider the set of half-lines L, =
{q +tv,t > 0} emanating from ¢ and parametrized by v € S"~!. It follows from Fubini’s theorem
that for almost every v € S"~! the one-dimensional measure of the intersection AN L, is zero.

If we apply this fact to the case when A is the set at which a locally Lipschitz function ¢ : R™ —
R fails to be differentiable, we deduce that for almost all v € S"~! the function t — (g + tv) is
differentiable for a.e. t > 0.

Example 11.21. Let ¢ : R — R defined by
(1) ¢(x) = |z|. Then dyp = [-1,1],
(17) p(x) =x,if £ <0 and p(z) = 2z, if x > 0. In this case dpp = [1, 2].

In particular in the first example 0 is a minimum for ¢ and 0 € Jyp. In the second case the function
is locally invertible near the origin and Oy is separated from zero. In what follows we will prove
that these fact corresponds to general results (cf. Proposition [T.25] and Theorem [IT.29]).

The following is a classical hyperplane separation theorem for closed convex sets in R™.

Lemma 11.22. Let K and C be two disjoint, closed, convex sets in R™, and suppose that K 1is
compact. Then there exists € > 0 and a vector v € S such that

(x,v) > (y,v) +¢, Vee K, VyeC. (11.9)
We also recall here another useful result from convex analysis.

Lemma 11.23 (Carathéodory). Let S C R™ and x € conv(S). Then there exists xg,...,x, € S
such that x € conv{zy,...,zy,}.

The notion of generalized gradient permits to extend some classical properties of critical points
of smooth functions.

Proposition 11.24. Let ¢ : M — R be locally Lipschitz and q be a local minimum for ¢. Then
0 € Ogp.

Proof. Since the claim is a local property we can assume without loss of generality that M = R". As
usual we will identify vectors and covectors with elements of R™ and the duality covectors-vectors
is given by the Euclidean scalar product, that we still denote (-, -).

Assume by contradiction that 0 ¢ J,¢ and let us show that ¢ cannot be a minimum for ¢. To
this aim, we prove that there exists a direction w in S"~! such that the scalar map t + ¢(q + tw)
has no minimum at ¢ = 0.
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The set 0,9 is a compact convex set that does not contain the origin, hence by Lemma [I1.22]
there exist ¢ > 0 and v € S"~! such that

(&, v) < —e, V€.

By definition of generalized differential, one can find open neighborhoods O, of ¢ in R" and V,, of
v in S ! such that for all differentiability point ¢’ € Oy of ¢ one has

<dq/cp,1/> < —g/2, Vo' eV,

Fix ¢’ € O, where ¢ is differentiable and a vector w € V,, such that the set of differentiable points
with the line {¢ 4 tw} has full measure (cf. Remark [T.20). Then we can compute for ¢t > 0

p(g +tw) — p(q) = /0 (dgtswip, w) ds < —et/2.

Thus ¢ cannot have a minimum at q. O

The following proposition gives an estimate for the generalized differential of some special class
of function.

Proposition 11.25. Let ¢, : M — R be a family of C' functions, with w € Q a compact set.
Assume that the following maps are continuous:

(W, q) = pu(q), (W, q) = dgpw

Then the function a(q) mi%zl ©w(q) is locally Lipschitz on M and

= i
Oqa C conv{dyp,|Vw € Q s.t. p,(q) = alq)}. (11.10)

Proof. As in the proof of Proposition [[T.24] we can assume that M = R". Notice that, if we denote
by Q; = {w € Q, pu(q) = a(q)} we have by compactness of Q that €, is non empy for every g € M
and we can rewrite the claim as follows

Oqa C conv{dgp,|w € Q4 }. (11.11)

We divide the proof into two steps. In step (i) we prove that a is locally Lipschitz and then in (ii)
we show the estimate (IT.II)).

(i). Fix a compact K C M. Since every ¢, is Lipschitz on K and () is compact, there exists a
common Lipschitz constant Cx > 0, i.e. the following inequality holds

(pw(q)_(pw(q/) SCK|q_q/|7 \v/(Lq/GKv WGQ,
Clearly we have
gleigsow(q)—sow(q’) <Ckl¢g—d|, VegdeK, weq,

and since the last inequality holds for all w € 2 we can pass to the min with respect to w in the
left hand side and

a(q) —a(d) <Cklg—d|, Vq.qd € K.
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Since the constant Cx depends only on the compact set K we can exchange in the previous reasoning
the role of ¢ and ¢/, that gives

la(q) —a(d)| < Ckla—4d|, V¢, d €K.

(ii). Define D, := conv{dspu|Vw € Q4}. Let us first prove prove that dya € D, for every
differentiability point ¢ of a.

Fix any ¢ ¢ D,. By Lemma applied to the pair D, and {¢}, there exist ¢ > 0 and
v € 8" such that

<dq(10w7v> > <£,’U> + &, Vw € Qq7
By continuity of the map (w, q) — dy¢,,, there exists a neighborhood O, of ¢ and V' neighborhood
of €, such that
<dq/<pw/,v> > (&,v) +¢/2, V¢ €0, Vo' €V,

An integration argument let us to prove that there exists § > 0 such that for w € V

Hpulat 1) — pul@) > (E0) +e/d, VO<1<E

Clearly we have
1
T(Pulg+tv) —alg)) 2 (€, v) +e/4,  VO<t<o.

and since the minimum in a(q + tv) = ming,cq ¢, (¢ + tv) is attained for w in Qg4 C V for ¢ small
enough, we can pass to the minimum w.r.t. w € V in the left hand side, proving that there exists
to > 0 such that

Halg+ 1) —a(@) > (E0) +e/d, VO<t <ty

Passing to the limit for ¢ — 0 we get
(dga,v) > (&,v) +¢/4 (11.12)

If dga ¢ D, we can choose { = dga in the above reasoning and (I1.12) gives the contradiction
(dqa,v) > (dqa,v) 4+ /4. Hence dga € D for every differentiability point ¢ of a.

Now suppose that one has a sequence ¢, — ¢, where ¢, are differentiability points of a. Then
dg,a € Dy, for all n from the first part of the proof. We want to show that, whenever the limit
& = limy, 0 dg, a exists, then € D,. This is a consequence of the fact that the map (w, q) — dypw
is continuous (in particular upper semicontinuous in the sense of Exercise [[T.18]) and the fact that
Q is compact. O

Exercise 11.26. Complete the second part of the proof of Proposition[I1.25] Hint: use Carathéodory
lemma.
11.3.1 Locally Lipschitz map and Lipschitz submanifolds

As for scalar functions, amap f : M — N between smooth manifolds is said to be locally Lipschitz if
for any coordinate chart in M and N the corresponding function from R™ to R" is locally Lipschitz.

For a locally Lipschitz map between manifolds f : M — N the (Clarke) generalized differential
is defined as follows

04f = conv{L € Hom(T;M, Ty N)| L = ligl Dy, f, qn diff. point of f},
qn—4q
The following lemma shows how the standard chain rule extends to the Lipschitz case.
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Lemma 11.27. Let M be a smooth manifold and f : M — N be a locally Lipschitz map.

(a) If  : M — M s a diffeomorphism and q € M we have
0q(f o @) = 0yuq)f - Dyo. (11.13)
(b) If o : N — W is a C' map, and ¢ € M we have

9q(po f) = Dy 0q4f. (11.14)

Moreover the generalized differential, as a set, is upper semicontinuous. More precisely for every
neighborhood 2 € Hom (TyM, T\ N) of Oy f there exists a neighborhood Oy of q such that Oy f € Q,
for every ¢ € Oy.

Sketch of the proof. For a detailed proof of this result see ?7. Here we only give the main ideas.
(a). Since ¢ is a diffeomorphism, it sends every differentiability point ¢ of f o ¢ to a differen-
tiability point ¢(q) for f. Then (III3]) is true at differentiability point and passing to the limit
it is also valid for sub-differential (one proves both inclusions using ¢ and ¢~!). Part (b) can be
proved along the same lines. The semicontinuity can be proved by using the hyperplane separation
theorem and the Carathéodory Lemma. O

Definition 11.28. Let f: M — N be a locally Lipschitz map. A point ¢ € M is said critical for
f if Oy f contains a non-surjective map. If ¢ € M is not critical it is said regular.

Notice that by the semicountinuity property of Lemma [[1.27] it follows that the set of regular
point of a locally Lipschitz map f is open.

Theorem 11.29. Let f : R™ — R" be a locally Lipschitz map and ¢ € M be a reqular point.
Then there exists neighborhood Opg) and a locally Lipschitz map g : Oy C R™ — R™ such that

fog=gof=1d

Remark 11.30. The classical C! version of the inverse function theorem (cf. Theorem ??) can be
proved from Theorem and the chain rule (Lemma [IT.27)). Indeed Theorem implies
that there exists a locally Lipschitz inverse g and using the chain rule it is easy to show that the
sub-differential of g contains only one element (this implies that it is differentiable at that point)
and the differential of g is the inverse of the differential of f.

Before proving Theorem [I1.29] we need the following technical lemma.

Lemma 11.31. Let f: R™ — R" be a locally Lipschitz map and ¢ € M be a reqular point. Then
there exists a neighborhood O, of q¢ and € > 0 such that

voe Sl 3¢, e 87! s.t. (€p, Oxf(v)) > e, VYxeO,. (11.15)
Moreover |f(z) — f(y)| > elz —yl, for all x,y € O,.

We stress that (IT.I5]) means that the inequality (§,, L(v)) > € holds for every x € O, and every
element L € 0, f.
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Proof. Notice that, since ¢ is a regular point, the set J,f contains only invertible linear maps. For
every v € S"1, the set 0y f(v) is compact and convex, and does not contain the zero linear map. By
the hyperplane separation theorem we can find &, such that (¢,,0,f(v)) > €(v). The map z — 0, f
is upper semicontinuous, hence there exists a neighborhood Oy of ¢ such that (§,,0,f(v)) > (v)
for all z € O,. Since S"~! is compact, there exists a uniform ¢ = min{e(v),v € S"~1} that satisfies

(ILI5).

To prove the second statement of the Lemma, write y = x + sv, where s = |z —y| and v € S"~1.
Consider a vector v’ € S"~! close to v such that almost every point in the direction of v’ is a point
of differentiability (cf. Remark [1.20)), and set 3y’ = x + sv’ and &, the vector associated to v’
defined by (II.I5]). Then we can write

16/) = 1@) = [ (Do Pl
and we have the inequality

1f(Y) = f@)] = (&, fY) = fl2))
= /0 <£v’v (Dx+tv’f)v/> dt
>ely’ — x|

Since € does not depend on v, we can pass to the limit for v — v in the above inequality (in
particular 4" — y) and the Lemma is proved. O

Proof of Theorem [I1.29. The inequality proved in Lemma [IT.31] implies that f is injective in the
neighborhood O, of the point ¢. If we show that f(O,) covers a neighborhood Oy, of the point
f(q), then the inverse function g : Oy, — R™ is well defined and locally Lipschitz.

Without loss of generality, up to restricting the neighborhood O,, we can assume that every
point in Oy is regular for f and moreover that the estimate of the Lemma [I1.31] holds also on the
topological boundary 00,. Lemma [I1.31] also implies that

dlSt(f(q)v af(Oq)) 2 €diSt(q, an) > 07

where dist(x, A) = infyc 4 | —y| denotes the Euclidean distance from z to the set A. Then consider
a neighborhood W C f(O,) of f(q) such that |y — f(q)| < dist(y,df(Oy)), for every y € W. Fix
an arbitrary y € W and let us show that the equation f(x) = y has a solution. Define the function

Y:0, =R, Y(z) =|f(z) -7

By construction 1(q) < 9(z), for all z € 90y, hence by continuity ¢ attains the minimum on some
point z € O,. By Proposition [[1.24, we have 0 € 0z1. Moreover, using the chain rule

05t = (f(2) — )" - Oaf
Since Z is a regular point of f, the linear map 0z f is invertible. Thus 0 € 0z¢ implies f(z) =g. O
0

We say that ¢ € R is a regular value of a locally Lipschitz function ¢ : M — R if p=1(c) #
and every x € ¢~ !(c) is a regular point.
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Corollary 11.32. Let ¢ : M — R be locally Lipschitz and assume that ¢ € R is a reqular value for
©. Then ¢~ (c) is a Lipschitz submanifold of M of codimension 1.

Proof. We show that in any small neighborhood O, of every x € p~!(c) the set O, N~ !(c) can
be described as the zero locus of a locally Lipschitz function. Since 0, does not contain 0, by the
hyperplane separation theorem there exists vy € S"~1, such that (9,¢,v1) > 0 for every x in the
compact neighborhood O, N ¢~ (y).

Let us complete v; to an orthonormal basis {v1,vs,...,v,} of R™ and consider the map
p(a') —c
n ! <U2’ x >
f:0z = R", f($ ) = .
(vn, ")

By construction f is locally Lipschitz and x is a regular point of f. Hence there exists, by Theorem
[M1.29]a Lipschitz inverse g of f. In particular the inverse map is a Lipschitz function that transforms
the hyperplane {y; = 0} into ¢ ~!(c). Hence the level set ¢ ~1(c) is a Lipschitz submanifold. O

11.3.2 A non-smooth version of Sard Lemma

In this section we prove a Sard-type result for the special class of Lipschitz functions we considered
in the previous section.

We first recall the statement of the classical Sard lemma. We denote by C the critical point
of a smooth map f: M — N, i.e. the set of points x in M at which the differential of f is not
surjective.

Theorem 11.33 (Sard lemma). Let f : R™ — R™ be a C* function, with k > max{n —m + 1,1}.
Then the set f(Cy) of critical values of f has measure zero in R™.

Notice that the classical Sard Lemma does not apply to C' functions ¢ : R® — R, whenever
n > 1. The following version of Sard lemma is due to Rifford.

Theorem 11.34 (Rifford [86]). Let M be a smooth manifold and ¢, : M — R a family of smooth
functions, with w € Q. Assume that

(i) Q= U;en Ni is the union of smooth submanifold, and is compact,
(1) the maps (w,q) — ¢u(q) and (w,q) — dgp. are continuous on 2 x M,

(13i) the maps ¥; : Ny x M = R, (w,q) — vw(q) are smooth.

Then the set of critical values of the function a(q) = ig ©w(q) has measure zero in R.
we
Proof. We are going to define a countable set of smooth functions ®, indexed by o = (g, ..., ) €

N"*1 where n = dim M, such that to every critical point ¢ of a there corresponds a critical point
zq of some ®,. Moreover we have ®,(z,) = a(q).
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Denote by A, = {(Ao,-- -, M) N > 0,3\ = 1}. For every a = (ag,...,a,) € N*T! et us
consider the map

Dy Noy X ... X Ny, x Ay x M =R

n
Do (Woy - vy Wiy AOy -+ oy Any @) = Z Ai0w, (q)- (11.16)
i=0
By computing partial derivatives, it is easy to see that a point z = (wp,...,Wn, A0y - -+, An,q) 1S
critical for ®, id and only if it satisfies the following relations:
o, ’
ZZL:OAZ%(O‘)Z?Q):(L 1207”’7”7
S o Aidgpw; =0 i=0,...,n, (11.17)
Pun (@) = -+ = P, (@)

Recall that 1; is simply the restriction of the map (w, q) — ¢, (q) for w € N;.

Let us now show that every critical point g of a can be associated to a critical point z, of some
®,. By Proposition IT.25] the function a is locally Lipschitz. Assume that ¢ is a critical point of
a, then we have

0 € 0ya C conv{dyp,|Vw € Q s.t. p,(q) = alq)}.

By Carathéodory lemma there exist n + 1 element &y, ...,w, and n + 1 scalars X0 - - -, A such
that A; > 0,>" ;A\ =1 and

OZZMW@“ 0o (q) =alg), Vi=0,...,n.
=0

Moreover, let us choose for every ¢ = 0,...,n an index &; € N such that @; € Ng,. Since pg,(q) =
a(q) = ming ¢, (q), @; is critical for the map 1,,, namely we have

a, ,

a; (wiv q) =0.

This implies that 2, = (@, . ., @n, Ao, - - - ; An, @) satisfies the relations (ITIT) for the function ®g,
with & = (@, ..., &y). Moreover it is easy to check that ®5(z;) = a(q) since

Balzg) = > Mg, (q) = <Z Ai) a(q) = a(q).
=0 =0

Then if C, denotes the set of critical points of @ and C,, the set of critical point of ®, we have

meas(a(Cy)) < meas U D,(Cy) | < Z meas(®,(Cy)) =0,

acNntl acNntl

since meas(®,,(C,)) = 0 for all a by classical Sard lemma. O
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We want to apply the previous result in the case of functions that are infimum of smooth
functions on level sets of a submersion.

Theorem 11.35. Let F' : N — M be a smooth map between finite dimensional manifolds and
p: N — R be a smooth function. Assume that

(i) F is a submersion

(73) for all g € M the set Ny ={x € N, p(xr) = min ¢(y)} is a non empty compact set.

yeF~1(q)
Then the set of critical values of the function a(q) = Ib{li?( : (z) has measure zero in R.
xel 4 (q

Proof. Denote by C, the set of critical points of a and a(C,) is the set of its critical values. Let
us first show that for every point ¢ € M there exist an open neighborhood O, of ¢ such that
meas(a(Cy) N Oy,) = 0.

From assumption (i), it follows that for every ¢ € M the set F~1(q) is a smooth submanifold
in N. Let us now consider an auxiliary non negative function ¢ : N — R such that

(A0) A, :=171([0,q]) is compact for every a > 0.

and select moreover a constant ¢ > 0 such that the following assumptions are satisfied:
(A1) Ny Cint A,

(A2) cis a regular level of w‘F,l(q).

The existence of such a ¢ > 0 is guaranteed by the fact that (A1) is satisfied for all ¢ big enough
since NN, is compact and A, contains any compact as ¢ — +o00. Moreover, by classical Sard lemma
(cf. Theorem [IT.33]), almost every c is a regular value for the smooth function 1/1| F1(g)

By continuity, there exists a neighborhood O, of the point ¢ such that assumptions (A0)-(A2)
are satisfied for every ¢’ € O, for ¢ > 0 and ¢ fixed. We observe that (A2) is equivalent to require
that level set of F are transversal to level of 1). We can infer that F~1(0,)N A, is a smooth manifold
with boundary that has the structure of locally trivial bundle. Maybe restricting the neighborhood
of g then we can assume

Fl)NnA,=Q,  FY0,)NA ~0, xQ,

where (2 is a smooth manifold with boundary. In this neighborhood we can split variables in NV as
follows & = (w, q) with w € Q and ¢ € M and the restriction a|o, is written as
alo, : Og — R, a(q) = min p(w, q).
we

Notice that €) is compact and is the union of its interior and its boundary, which are smooth by
assumptions (A0)-(A2). We can then apply the TheoremIT.341to a|o,, that gives meas(a(C,NO,) =
0 for every g € M.

We have built a covering of M = {J qem Og- Since M is a smooth manifold, from every covering
it is possible to extract a countable covering, i.e. there exists a sequence g, of points in M such

that
M = U Oq,,

neN
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In particular this implies that

meas(a Z meas(a(Cy) N Oy,) =

since meas(a(Cy N Oy4) = 0 for every q.
U

Remark 11.36. Notice that we do not assume that N is compact. In that case the proof is easier
since every submersion F': N — M with N compact automatically endows N with a locally trivial
bundle structure.

11.4 Regularity of sub-Riemannian spheres

We end this chapter by applying the previous theory to get information about the regularity of
sub-Riemannian spheres. Before proving the main result we need two lemmas.

Lemma 11.37. Fiz qo € M and let K C T3 M \ (H~1(0) N T M) be a compact set such that all
normal extremals associated with A\g € IC are not abnormal. Then there exists € = ¢(K) such that
tAo is a regular point for the exp,, for all 0 <t <e.

Proof. By Corollary ?? for every strongly normal extremal y(t) = exp(tAo), with Ao € T; M, there
exists € = €(\g) > 0 such that 7o does not contain points conjugate to go, or equivalently, g
is a regular point for the exp,, for all 0 <t < e. Since K is compact, it follows that there exists
e = £(K) such that the above property holds uniformly on K. O

Lemma 11.38. Let qg € M and K C M be a compact set such that every point of K is reached
from qo by only strictly normal minimizers. Define the set

C ={Xo € T, M| Ao minimizer, exp(\o) € K}
Then C' is compact.

Proof. 1t is enough to show that C is bounded. Assume by contradiction that there exists a
sequence A\, € C of covectors (and the associate sequence of minimizing trajectories 7,, associated
with controls u,) such that [\,| — +o00, where | - | is some norm in 7;y M. Since these minimizers
are normal they satisfy the relation

Dy, F = up, VneN. (11.18)

and dividing by |\, | one obtain the identity

An Up,

o ’D F= o VneN. (11.19)
Using compactness of minimizers whose endpoints stay in a compact region, we can assume that
u, — u. Morever the sequence A, /|\,| is bounded and we can assume that A, /|\,| — A for some
final covector A. Using that D, F — D,F and the fact that |\,| — +oo, passing to the limit
for n — oo in (IT.I9) we obtain AD,F' = 0. This implies in particular that the minimizers 7,
converge to a minimizer « (associated to A) that is abnormal and reaches a point of K that is a
contradiction. O
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Theorem 11.39 (Rifford [87]). Let M be a sub-Riemannian manifold, qo € M and ro > 0 such
that every point different from qq in the compact ball By, (ro) is not reached by abnormal minimizers.
Then the sphere Sq,(r) is a Lipschitz submanifold of M for almost every r < rg.

Proof. Let us fix § > 0 and consider the annulus As = B;,(q0) \ Bs(qo). Define the set
C = {Xo € T;; M| \o minimizer, exp(Xg) € As}
By Lemma the set C := C is compact. Moreover define
Cy == {Xo € ConH'([0,20])},

for some g > 0 that is chosen later. Notice that C; is compact. For every A\g € T*M let us consider
the control u associated with (¢) = exp(t\g) and denote by
—1 * *
D, = (P07t )i Ty M — T, (/\O)M,

0 eXpy,

the pullback of the flow defined by the control u, computed at qq.
For a fixed \g € Cp, using that Cy is compact, let us choose € = e(\g) satisfying the following

property: for every A\; € C1, the covector @y, (A1) € 150 ()\O)M, is a regular point of €XPexp, (Ao)*
90 0

Being C also compact, we can define €9 = min{e(\g), A\g € Cy}. Define the map
U:CyxCy— DsC M, \I’()\(),)\l) = expequo()\o)(@)\o()\l)).

By construction ¥ is a submersion. We want to apply Theorem to the submersion ¥ and
the scalar function
HZC() XCl —)R, 7‘[()\0,)\1) :H()\())-i-H()\l).

Let us show that the assumption of Theorem are satisfied. Indeed we have to show that the
set
Nq = {()\0,)\1) e Cy x C ’H()\(),)\l) = . min H()\(),)\l)}a Vqe Z(;,

A0,A1)=q

is non empty and compact. Let us first notice that
U (Ao, sA0) = exp,, ((1+ 5)Xo), H(Xo, sAo) = (1 + s2)H (o).

By definition of Cy, for each ¢ € A there exists \g € Cp such that equo(j\o) = ¢ and such that
the corresponding trajectory is a minimizer. Moreover we can always write this unique minimizer
as the union of two minimizers. It follows that
min  H(M, A1) = min H(X\) =f(q Vq € As.

L MO0 = min | HO) = f(0)
This implies that N, is non empty for every g. Moreover one can show that IV, is compact. By
applying Theorem [I1.35] one gets that the function

a(q) = min H(A(]v )‘1) = f(Q)7
A0,A1)=¢q

is locally Lipschitz in A5 and the set of its critical values has measure zero in As. Since § > 0 is
arbitrary we let § — 0 and we have that f is locally Lipschitz in By, (7o) \ {go} and the set of its
critical values has measure zero. In particular almost every r < rq is a regular value for f. Then,

applying Corollary IT1.32] the sphere f‘l(r2 /2) is a Lipschitz submanifold for almost every r < rq.
O
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11.5 Geodesic completeness and Hopf-Rinow theorem

In this section we prove a sub-Riemannian version of the Hopf-Rinow theorem. Namely, in absence
of abnormal minimizers, the geodesic completeness of M implies the completeness of M as a metric
space.

Theorem 11.40 (sub-Riemannian Hopf-Rinow). Let M be a sub-Riemannian manifold that does
not admit abnormal length minimizers. If there exists a point x € M such that the exponential
map exp, s defined on the whole T M, then M is complete with respect to the sub-Riemannian
distance.

Proof. For the fixed x € M, let us consider
A={r>0|B(z,r) is compact }, R :=sup A.

As in the proof of Theorem [B.44] one can show that A # () and that A is open (by using the local
compactness of the topology and repeating the proof of (ii.a)). Assume now that R < 4+o0c and let
us show that R € A. By openness of A this will give a contradiction and A =]0, +o0].

We have to show that B(z, R) is compact, i.e., for every sequence y; in B(z, R) we can extract
a convergent subsequence. Define r; := d(y;, ). It is not restrictive to assume that r; — R (if it is
not the case, the sequence stays in a compact ball and the existence of a convergent subsequence
is clear). Since the ball B(x,r;) is compact, by Theorem B.40 there exists a length minimizing
trajectory ~; : [0,7;] — M joining x and y;, parametrized by unit speed.

Due to the completeness of the vector field H , we can extend each curve ~;, parametrized by
length, to the common interval [0, R]. By construction this sequence of trajectory is normal

"}/Z(t) = exp(t)\i) =TTOo etH()\,-),

for some )\; € T, M, and is contained in the compact set B(x, R). Since there is no abnormal
minimizer, by Lemma [IT.38 the sequence {\;} is bounded in Ty M, thus there exists a subsequence
Ai,, converging to A\. Then r;, \;, — R and by continuity of exp we have that {y;} has a convergent
subsequence

in

Yin = Vin(Ti,) = xp(ri, Ai,) — exp(RA) =1 y

To end the proof, one should just notice that an arbitrary Cauchy sequence in M is bounded,
hence contained in a suitable ball centered at x, which is compact since R = +o00. Thus it admits
a convergent subsequence. O

As an immediate corollary we have the following version of geodesic completeness theorem.

Corollary 11.41. Let M be a sub-Riemannian manifold that does not admit abnormal length
minimizers. If the vector field H is complete on T*M, then M 1is complete with respect to the
sub-Riemannian distance.

11.6 Equivalence of sub-Riemannian distances®
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Chapter 12

Abnormal extremals and second
variation

In this chapter we are going to discuss in more details abnormal extremals and how the regularity
of the sub-Riemannian distance is affected by the presence of these extremals.

12.1 Second variation

We want to introduce the notion of Hessian (and second derivative) for smooth maps between
manifolds. We first discuss the case of the second differential of a map between linear spaces.

Let F: V — M be a smooth map from a linear space V on a smooth manifold M. As we know,
the first differential of F' at a point x € V'

DyF :V = Tpm M, D,F(v) Flz+tv), vev,

t=0

Tt

and is a well defined linear map independent on the linear structure on V. This is not the case for
the second differential. Indeed it is easy to see that the second order derivative

2

2

F(z +tv) (12.1)
t=0

has not invariant meaning if D,F'(v) # 0. Indeed in this case the curve v : t — F(z + tv) is
a smooth curve in M with nonzero tangent vector. Then there exists some local coordinates on
M such that the curve v is a straight line. Hence the second derivative D2F(v) vanish in these
coordinates.
In general, the linear structure on V' let us to define the second differential of F' as a quadratic
map
D2F : ker Do F — Tp(py M (12.2)

On the other hand the map (IZ2]) is not independent on the choice of the linear structure on
V and this construction cannot be used if the source of F'is a smooth manifold.

Assume now that F : N — M is a map between smooth manifolds. The first differential is a
linear map between the tangent spaces

D,F:T,N = Tp@yM,  x€N.
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and the definition of second order derivative should be modified using smooth curves with fixed
tangent vector (that belong to the kernel of D, F'):

d2

2

_OF(V(t)), v(0) =z, 4(0)=v € ker D, F, (12.3)

Computing in coordinates we find that

d2
dat?

2
(1) = T (3(0),40) + 2 5(0) (12.4)

t=0

that shows that term (I2.4]) is defined only up to im D, F.
Thus is intrinsically defined only a certain part of the second differential, which is called the
Hessian of F, i.e. the quadratic map

Hess, I : ker Dy F' — TpyM/im D, F

12.2 Abnormal extremals and regularity of the distance

In the previuos chapter we proved that if we have abnormal minimizer that reach some point g,
then the sub-Riemannian distance is not smooth at ¢. If we also have that no normal minimizers
reach g we can say that it is not even Lipschitz.

Proposition 12.1. Assume that there are no normal minimizers that join qo to q. Then § is not
Lipschitz in a neighborhood of ¢. Moreover

lim |d,f| = +o0. (12.5)
a—q
geX

In the previous theorem |- | is an arbitrary norm of the fibers of T*M.

Proof. Consider a sequence of smooth points ¢, € ¥ such that g, — ¢. Since g, are smooth we
know that there exists unique controls u,, and covectors A, such that

ADu,F =1n,  Ap=dg,f.

Assume by contradiction that |dg,f| < M then, using compactness we find that u, — u, A, — A
with AD,F = u, that means that the associate geodesic reach ¢. In other words, there exists a
normal minimizer that goes at g, that is a contradiction. O

Let us now consider the end-point map F' : U/ — M. As we explained in the previous section,
its Hessian at a point u € U is the quadratic vector function

Hess, I : ker D, F' — Coker D, F = TF(u)M/im D,F.

Remark 12.2. Recall that A D,F = 0 if and only if A € (im D,F)*. In other words, for every
abnormal extremal there is a well defined scalar quadratic form

AHess, F' : ker D, F — R

Notice that the dimension of the space im D, F1 of such covectors coincide with dim Coker D, F.
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Definition 12.3. Let Q : V — R be a quadratic form defined on a vector space V. The index of
@ is the maximal dimension of a negative subspace of Q:

ind”Q = sup{dim W | Q‘W\{o} < 0}. (12.6)

Recall that in the finite-dimensional case this number coincide with the number of negative eigen-
values in the diagonal form of Q.

The following notion of index of the map F will be also useful:

Definition 12.4. Let F': U/ — M and u € U be a critical point for F'. The index of F' at u is

Ind,F'= min ind” (AHess,F') — codimim D, F
)\EiII;\;?OUFL

Remark 12.5. If codimim D, F' = 1, then there exists a unique (up to scalar multiplication) non
zero A L im D, F, hence Ind, F' = ind~ (A Hess, F') — 1.

Theorem 12.6. If Ind, F' > 1, then u is not a strictly abnormal minimizer.
We state without proof the following result (see Lemma 20.8 of [§])

Lemma 12.7. Let Q : RY — R” be a vector valued quadratic form. Assume that Indg@Q > 0. Then
there exists a regular point x € R™ of Q such that Q(x) = 0.

Definition 12.8. Let ® : £ — R” be a smooth map defined on a linear space F and r > 0. We
say that ® is r-solid at a point x € F if there exists a constant C' > 0, € > 0 and a neighborhood
U of x such that for all £ < & there exists d(¢) > 0 satisfying

B,y (Ce") C O (B, (e)), (12.7)

for all maps ® € C°(E,R") such that ||® — P||corny < 0.

Exercise 12.9. Prove that if x is a regular point of ®, then ® is 1-solid at z.
(Hint: Use implicit function theorem to prove that ® satisfies (I2.7)) and Brower theorem to show
that the same holds for some small perturbation)

Proposition 12.10. Assume that Ind,® > 0. Then ® is 2-solid at x.

Proof. We can assume that © = 0 and that ®(0) = 0. We divide the proof in two steps: first
we prove that there exists a finite dimensional subspace £’ C E such that the restriction <I>| B
satisfies the assumptions of the theorem. Then we prove the proposition under the assumption
that dim F < +o0.

(7). Denote k := dim Coker Dy® and consider the Hessian

Hessg® : ker Dy® — Coker Dy®
We can rewrite the assumption on the index of ® as follows
ind”AHesso® >k, VA €imDyd*\ {0}. (12.8)
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Since property (IZ8) is invariant by multiplication of the covector by a positive scalar we are
reduced to the sphere
A€ SF = [\ €im Dy®t, |\ = 1}.

By definition of index, for every A € S¥~1 there exists a subspace Ey C E, dim Ey = k such that

A Hess,, <0

|0}

By the continuity of the form with respect to A, there exists a neighborhood Oy of A such that
Ey = E, for every X € O,.
By compactness we can choose a finite covering of S¥~! made by open subsets

SF1=0,,U...UOy,

Then it is sufficient to consider the finitedimensional subspace

N
E' = PE,,
j=1

(7i). Assume dim E < oo and split
E=F & FE FEs := ker Dy®

The Hessian is a map
HeSSQCI) By — Rn/D()(I)(El)

According to Lemma [I2.7] there exists e; € Fs, regular point of Hessy®, such that
Hessg®(e2) =0 = Dg@(eg) = Dy®(ey), for some e € Ej.

Define the map @ : E — R™ by the formula
1
Q(v1 + vo) := Do®(v1) + =D3®(vs), v=wv+vy € E=FE & E,.
2

and the vector e := —ej /2 + e2. From our assumptions it follows that e is a regular point of @ and
Q(e) = 0. In particular there exists ¢ > 0 such that

Bo(c) € Q(Bo(1))

and the same holds for some perturbation of the map @ (see Exercice [29). Consider then the
map

D, : v + v 6—12<I>(52v1 + ev9) (12.9)
Using that vy € ker Dy® we compute the Taylor expansion with respect to ¢
O (v1 + v2) = Q(v1 + v2) + O(e) (12.10)
hence for small € the image of ®. contain a ball around 0 from which it follows that
By(o)(cg®) C ®(By(e)) (12.11)

Moreover as soon as ¢ is fixed we can perturb the map ® and still the estimate (IZI1]) holds. O

322



Actually we proved the following statement, that is stronger than 2-solideness of ®:

Lemma 12.11. Under the assumptions of the Theorem [12.10, there exists C' > 0 such that for
every € small enough
Ba(o)(C<?) € @(By(e?) x B (e)) (12.12)

where B’ and B" denotes the balls in Ey and Ey respectively.

The key point is that, in the subspace where the differential of ® vanish, the ball of radius ¢ is
mapped into a ball of radius €2, while the restriction on the other subspace “preserves” the order,

as the estimates (I2.9) and (I2.10) show.

Proof of Theorem[12.6. We prove that if Ind, ' > 1, where u is a strictly abnormal geodesic, then
u cannot be a minimizer. It is sufficient to show that the “extended” endpoint map

O U SRxM, ®u)= <J(U)>,

is locally open at u. Recall that d,,J = A D, F, for some A € Tp(,)M, if and only if duJ|ker p,r =0
(see also Proposition [812]). Since u is strictly abnormal, it follows that

dud |\ e p,  # 0 (12.13)
Moreover from the definition of ® and (I2.I3]) one has
ker D,,® = ker d, J Nker D, F, dimimd,J = 1.

Moreover, a covector A = (a, \) in R x Tp (M annihilates the image of D,® if and only if « = 0

and A € im D, F*, indeed if
0= AD,® = ad,J + A\D,F

with « # 0, this would imply that « is also normal. In other words we proved the equality
im D, ®" = {(0,)) € R x Tj,yM |\ € im D, F'*} (12.14)
Combining (I2Z.13) and (IZI4]) one obtains for every A = (0, ) € im D, ®+

A Hess, ® = X\ Hess, (12.15)

F ‘ ker d, JNker D, F

Moreover codim im D, ® = codim im D, F" since dimim D, ® = dimim D, F"+1 by (I213) and D, P
takes values in R X T,y M. Then for every A = (0,)) € im D, ®+

ind~ (A Hess, ®) — codim im D, ® = ind ™ () HessuF|ker d, Jrker Dy ) — COdimim Dy F

> ind™ (AHess, F') — 1 — codimim D, F
and passing to the infimum with respect to X we get
Ind,® > Ind,F —1 > 0.

By Proposition [2.10] this implies that ® is locally open at u. Hence u cannot be a minimizer. [

'Bo(c) C @.(B(1)) & Bo(ce?) C ®(*v1 + ev2),v; € B'(1) & Bo(ce?) C ®(B2 x BY)
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Now we prove that, under the same assumptions on the index of the endpoint map given in
Theorem [12.0], the sub-Riemannian is Lipschitz even if some abnormal minimizers are present.

Theorem 12.12. Let K C By, (rg) be a compact and assume that Ind, F' > 1 for every abnormal
minimizer u such that F(u) € K. Then §f is Lipschitz on K.

Proof. Recall that if there are no abnormal minimizers reaching K, Theorem ensures that f
is Lipschitz on K. Then, using compactness of the set of all minimizers, it is sufficient to prove the
estimate in neighborhood of a point ¢ = F'(u), where u is abnormal.

Since Ind,F > 1 by assumption, Theorem implies that every abnormal minimizer v is not
strictly abnormal, i.e., has also a normal lift. We have

Hess, F' : ker D, F — Coker D, F, with Ind, F > 1.

and, since u is also normal, it follows that d,J = AD,F for some A € T ;(u M, hence ker D, F' C
ker d,J. The assumption of Lemma [I2.17] are satisfied, hence splitting the tﬁe space of controls

Li([0,1]) = By @ By,  Fy:=ker D, F
we have that there exists Cy > 0 and R > 0 such that for 0 < e < R we have
B,(Coe?) C F(B),  B.:=B,(e*) xBl(e), q=F(u), (12.16)

where B),(r) and B],(r) are the ball of radius r in E; and Ej respectively, and By(r) is the ball of
radius 7 in coordinates on M.

Let us also observe that, since J is smooth on B, (¢2) x B!(e), with d,J = 0 on Es, by Taylor
expansion we can find constants C1,Cy > 0 such that for every u' = (u},u) € B, one has (we write
u = (u1,u2))

J(u') = J(u) < Cil|uy — || + Colluy — us|®

Pick then any point ¢’ € K such that |¢/ — q| = Cpe?, with 0 < ¢ < R. Then (IZI6) implies

that there exists u' = (uf,u}) € B. such that F(u') = ¢’. Using that f(¢') < J(u') and f(q) = J(u),
since u is a minimizer, we have

f(q") = (@) < J(u') = J(u) < Culluy — ua | + Callub — ugl|? (12.17)
<Ce?=C"q —q (12.18)

where we can choose C' = max{Cy, Cy} and C" = C/C.

Since K is compact, and the set of control u associated with minimizers that reach the compact
set K is also compact, the constants R > 0 and Cy, C1, Cy can be chosen uniformly with respect to
g € K. Hence we can exchange the role of ¢’ and ¢ in the above reasoning and get

f(¢") — f(a)| < C'|d" —4ql,

for every pair of points ¢, ¢’ such that |¢/ — q| < CoR2. d
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12.3 Goh and generalized Legendre conditions

In this section we present some necessary conditions for the index of the quadratic form along an
abnormal extremal to be finite.

Theorem 12.13. Let u be an abnormal minimizer and let Ay € Tl:i(u)M satisfy M Dy F = 0.
Assume that ind~ A{Hess, F' < +o00. Then the following condition are satisfied :

(©) (A@),[fis fi](v(t)) =0,  forae. t, Vi,j=1,... k, (Goh condition)
(it) (M), [[fuys fols fol(Y(E)) =0, fora.e. t, Vv e RF, (Generalized Legendre condition)
where A(t) and y(t) = w(\(t)) are respectively the extremal and the trajectory associated to A1.

Remark 12.14. Notice that, in the statement of the previous theorem, if \; satisfies the assump-
tion A\;D,F = 0, then also —\; satisfies the same assumptions. Since ind™(—\;Hess, F) =
ind™ \{Hess, F' this implies that the statement holds under the assumption ind*A;Hess, F < +o0.
Indeed the proof shows that as soon as the Goh condition is not satisfied, both the positive and
the negative index of this form are infinity.

Notice that these condition are related to the properties of the distribution of the sub-Rieman-
nian structure and not to the metric. Indeed recall that the extremal A(t) is abnormal if and only
if it satisfies

A =Y w@®rA®), (A, fiy(#) =0, Vi=1,... .k,

i.e. A(t) satifies the Hamiltonian equation and belongs to Dvl(t). Goh condition are equivalent to

require that A(t) € (Dz(t)) .
Corollary 12.15. Assume that the sub-Riemannian structure is 2-generating, i.e. Dg =T,M for

all g € M. Then there are no strictly abnormal minimizers. In particular § is locally Lipschitz on
M.

Proof. Since D = T,M implies (D 0 for every ¢ € M, no abnormal extremal can satisfy the
Goh condition. Hence by Theorem&:{l it follows that Ind,F' = 400, for any abnormal minimizer
u. In particular, from Theorem 0l it follows that the minimizer cannot be strictly abnormal
Hence f is globally Lipschitz by Theorem O

Remark 12.16. Notice that § is locally Lipschitz on M if and only if the sub-Riemannian structure is
2-generating. Indeed if the structure is not 2-generating at a point ¢, then from Ball-Box Theorem
(Theorem [10.62)) it follows that the squared distance f is not Lipschitz at the base point gq.

On the other hand, on the set where f is positive, we have that f is Lipschitz if and only if the
sub-Riemannian distance d(qo,-) is

Before going into the proof of the Goh conditions (Theorem I2.13]) we discuss an important
corollary.

Theorem 12.17. Assume that Dy, # Dgo. Then for every e > 0 there exists a normal extremal
path vy starting from qo such that £(y) = € and 7 is not a length-minimizer.
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Before the proof, this is the idea: fix an element { € DqLO \ (Dgo)l which is non empty by
assumptions. We want to build an abnormal minimizing trajectory that has £ as initial covector
and that is the limit of a sequence of stricly normal lenth-minimizers. In this way this abnormal
will have finite index (the abnormal quadratic form will be the limit of positive ones) and then by
Goh condition ¢ - Dgo = 0, which is a contradiction.

Proof. Assume by contradiction that there exists T" > 0 such that all normal extremal paths 7,
associated with initial covector A € H~1(1/2) N7} M minimize on the segment [0,7]. Since restric-
tion of length-minimizers are still length-minimizers, by suitably reducing 7" > 0, we can assume,
thanks to Lemma 334} that there existdd a compact set K such that {w(T)|Ae H1(1/2)} C K.

Fix an element & € D(ﬁ) \ (DgO)L, which is non empty by assumptions. Then consider, given any

Ao € H™1(1/2)NT; M, the family of normal extremal paths (and corresponding normal trajectories)

M) =g +56),  ~s(t) =7(N(1),  telo,T].

and let ug be the control associated with 7, and defined on [0, 7]. Due to Theorem [I1.4], there exists
a positive sequence s, — +oo such that g, := s, (T) is a smooth point for the squared distance
from qq, for every n € N. By compactness of minimizers reaching K, there exists a subsequence of
Sn, that we still denote by the same symbol, and a minimizing control # such that us, — @, when
n — oo. In particular s, is a strictly normal length-minimizer for every n € N.

Denote @} = 0u7 ;" the non autonomous flow generated by the control ug,. The family A, (t)
satisfies

Ao, (1) = € (Ao + 5n€) = (B7)*(\o + $0E).

Moreover, by continuity of the flow with respect to convergence of controls, we have that &} — &,
for n — oo, where ®; denotes the flow associated with the control w. Hence we have that the
rescaled family

1 1
S0 = (@) <;Ao ; g)

converges for n — 0o to the limit extremal \(t) = ®;¢. Notice that A(t) is, by construction, an
abnormal extremal associated to the minimizing control %, and with initial covector &.

The fact that ug, is a strictly normal minimizer says that the Hessian of the energy J restricted
to the level set F~'(g,) is non negative. Recall that

Hess,J|p-1(q = I — M D.F,

where Ay € Tp(,)M is the final covector of the extremal lift. In particular we have for every n € N
and every control v the following inequality

[ol* = s, (T) Dy

ey, F(v,0) > 0.
This immediately implies
1 1
—[[ol* = =X, (T)D}, F(v,0) >0,
s s n

Us
n n

%indeed it is enough to fix an arbitrary compact K with qo € int(K) such that the corresponding dx defined by
Lemma [3.34] is smaller than 7.
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and passing to the limit for n — oo one gets
—XMNT)D2F(v,v) > 0.
In particular one has that
ind™\(T)Hessg F = ind ™ (—\(T)D2F) = 0.

Hence the abnormal extremal has finite (positive) index and we can apply Goh conditions (see

Theorem [[2.13] and Remark M2.T4]). Thus ¢ is orthogonal to Dgo, which is a contradiction since

£ e DL\ (D2)*L O

Remark 12.18 (About the assumptions of Theorem [[2.17]). Assume that the sub-Riemannian struc-
ture is bracket-generating and is not Riemannian in an open set O C M, i.e., Dy, # Ty, M for every
g € O. Then there exists a dense set D C O such that D, # Dgo for every q € D.

Indeed assume that D, # Dg for all ¢ in an open set A, then it is easy to see that Dfl =Dy #TyM
for all ¢ € A, since the structure is not Riemannian. Hence the structure is not bracket-generating
in A, which gives a contradiction.

12.3.1 Proof of Goh condition - (i) of Theorem [12.13

Proof of Theorem [IZ13. Denote by u the abnormal control and by P, = exp fg fu(s)ds the nonau-
tonomous flow generated by u. Following the argument used in the proof of Proposition 8.4l we can
write the end-point map as the composition

E(u+v) = P(G(v)), D,FE = P, DG,

and reduced the problem to the expansion of G, which is easier. Indeed denoting ¢! := Pl;l fi, the
map G can be interpreted as the end-point map for the system

k
q(t) = gl (@) = vi(t)g(a(t)
=1

and the Hessian of F' can be computed easily starting from the Hessian of G at v =0
Hess, F' = Pi.HessgG
from which we get, using that \g = Py,
A Hess, ' = A\ Pi.HessgG = AgHessgG
Moreover computing

@), [fis H100@) = (o, P i 11(3(1)))
= (Ao, g7, 951 (4(0)))

the Goh and generalized Legendre conditions can also be rewritten as

(Xos [gi- g517(0)) = 0, for a.e. t€[0,1], Vi, j=1,... k, (G.1)
Mo, [0y 91, 9i11(7(0))) > 0, forae. t€[0,1], Vi=1,...,k (L.1)
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Now we want to compute the Hessian of the map G. Using the Volterra expansion computed
in Chapter [6] we have

1
G()) ~qoo | 1d+ / ghoydt + // Gy 0 ghdrat | + O(llo])
0 0<r<t<1

where we used that ¢! is linear with respect to v to estimate the remainder.
This expansion let us to recover immediately the linear part, i.e. the expressions for the first
differential, which can be interpreted geometrically as the integral mean

1
DoG(e) = [ dly anht,
On the other hand the expression for the quadratic part, i.e. the second differential
D3G(v) =2¢qp 0 // G © gf}(t)det.
0<7<t<1

has not an immediate geometrical interpretation. Recall that the second differential D(Q]G is defined
on the set

1
ker DoG = {v € L2]0, 1], /0 9oy (q0)dt = 0} (12.19)

and, for such a v, D3G(v) belong to the tangent space Ty, M. Indeed, using Lemma 828 and that
v belong to the set (I2.19]), we can symmetrize the second derivative, getting the formula

D3G(v) = / / 95y Guey ) (q0)drt,
0<r<t<1

which shows that the second differential is computed by the integral mean of the commutator of
the vector field gf)(t) for different times.

Now consider an element \g € im DyG', i.e. that satisfies
(X0, 95(q0)) =0, for a.e. t € [0,1],Yv € R”,
Then we can compute the Hessian
AoHessoG(v) = // (Ao, [g;(T),gf}(t)](qO»det (12.20)
0<7<t<1
Remark 12.19. Denoting by K the bilinear form
K(7,t)(v,w) = (Ao, [95, 95)(q0)) ,

the Goh and generalized Legendre conditions are rewritten as follows

K(t, t)(v,w) =0, Vo,weRF, forae. te [0, 1], (G.2)
%—K(T, t)  (v,v) >0, Vo e R forae. te0,1]. (L.2)
T T=t
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Indeed, the first one easily follows from (G.I). Moreover recall that ¢!, = P;;' f,, hence the map
t — ¢! is Lipschitz for every fixed v. By definition of P, = exp fg Ju(pydt it follows that

8 t t t
agv = [gu(t)vgv]

which shows that (L.2]) is equivalent to (L.TJ).

Finally we want to express the Hessian of G in Hamiltonian terms. To this end, consider the
family of functions on T*M which are linear on fibers, associated to the vector fields g:

hy(N) = (X go(@),  AET'M, q=nr()).
and define, for a fixed element \g € im DyG™:
My = hi(No) € Ta,T*M (12.21)
Using the identities
oa(ly, By) = {hy, hi 3N = (A [gh, gb)(@) g =7(N)
and computing at the point Ao € T M we find

x0 (M M) = (X0, (90, 90, )(00))
and we get the final expression for the Hessian
XoHessoG(v(+)) = // Tx (n;(T),nf}(t))dth. (12.22)
0<7<t<1

where the control v € ker DoG satisfies the relation (notice that 7.7}, = ¢ (qo))

1 1
t t
Tk Ny dt = / Ty pydt = 0
/0 (t) 0 (t)

Moreover the “Hamiltonian” version of Goh and Legendre conditions is expressed as follows:

o (M mt,) =0, Vou,we RF, forae. te0,1], G.3)
Txo (ﬁf),nf)) >0, Vo e ]Rk, for a.e. t €[0,1]. (L.3)

—~

We are reduced to prove, under the assumption ind~A\gHessgG < +oo, that (G.3]) and (L.3]) hold.
Actually we will prove that Goh and generalized Legendre conditions are necessary conditions for
the restriction of the quadratic form to the subspace of controls in ker DgG that are concentrated
on small segments [t,t + s].

In what follows we fix once for all ¢ € [0,1[. Consider an arbitrary vector control function
v : [0,1] — R* with compact support in [0,1] and build, for s > 0 small enough, the control

T—1

vs(7) :v<

> ) suppvs C [t,t + s]. (12.23)
s
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The idea is to apply the Hessian to this particular control functions and then compute the asymp-
totics for s — 0.

indice finito allora e finito anche qui sopra.

Actually, since the index of a quadratic form is finite if and only if the same holds for the
restriction of the quadratic form to a subspace of finite codimension, it is not restrictive to restrict
also to the subspace of zero average controls

1
E; := {vs € ker DyG, v defined by (ﬂﬂﬂ),/ v(T)dr = 0}.
0

Notice that this space depend on the choice of ¢, while codim F4; does not depend on s.

Remark 12.20. We will use the following identity (writing o for o),), which holds for arbitrary
control functions v, w : [0,1] — R¥

B t B B
as<t<t<f3

For the specific choice w(t) = fg v(7)dT we have also the integration by parts formula

7 5 o g,
/ nv(t)dt = nw(ﬁ) () — / nw(t)dt‘ (1225)

«

Combining (I2:22)) and (I3.21)), we rewrite the Hessian applied to v, as follows

t+s T
AoHessoG(vs(+)) :/ 0(/ ngs(e)dﬁ,n;(ﬂ)dﬁ (12.26)
t t

Notice that the control vy is concentrated on the segment [t,¢ + s], thus we have restricted the
extrema of the integral. The integration by parts formula (I2:25]), using our boundary conditions,
gives

T 0 B . T .0
/t Ty (6) 40 = iy, (r) — /t Ty ()40 (12.27)
where we defined

0
ws(0) = / vu(F)dr, B[l t+s).
t
Combining (I2.26]) and (I2.27)) one has

t+s t+s T
AoHessoG(vs(+)) :/ U(U;S(T)anZS(T))dT—/ U(/ M (6)20, 07, () )T
t t t

t+s t+s t+s 9
= /t 0(77;5 (7_) s 'I’]Z)—‘5 (T))dT — /t 0'(77;3 (7_), /7: nvs(g) d@)dT (1228)
where the second equality uses (I3.21)).

Next consider the second term in (I2Z.28)) and apply again the integration by part formula (recall
that ws(t+s) =0)

t+s t+s t+s
/t (T, (7> / Mo, (0)d0)dT = — /t T (M () Thoy () AT

t+s t+s 0
—/t 0’(7'7;5(7)7/ Tho, (9)@0)dT.
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Collecting together all these results one obtains
t+s
NobtessoGl0.()) = [ (07, 7, )r
t

t+s
+/ (T (72 o (7)) AT
t

t+s t+s 0
+ / O'(??Z—US(T), / ﬁws(e)de)dT
t T

This is indeed a homogeneous decomposition of A\gHessoG(vs(+)) with respect to s, in the following

sense. Since 04
w8(9)23w< ; >,

we can perform the change of variable

(=

and obtain the following expression for the Hessian:

T—1

, T E [t,t+ s],
s

1
oHessoGlo()) = o [ ot )0
1
+s° /0 o (T3 o) )10 (12.29)

1 1
4 - t+s60 . t+s¢
+s /0 U(nw(g),/e T (¢) d¢)do
We recall that here v is defined through a control v compactly supported in [0,1] by (I2.23]) and

w is the primitive of v, that is also compactly supported on [0, 1].
In particular we can write

1
AoHessoG(vs(+)) = 32/0 J(nfﬂ(e),nf)(g))d9+0(83). (12.30)

By assumption ind~ A\gHessoG < +oo. This implies that the quadratic form given by its principal
part

1
w(-) '_>/0 U(Hfu(g),nfb(g))d& (12.31)

has also finite index. Indeed, assume that (I2.31]) has infinite negative index. Then by continuity
every sufficiently small perturbation of (I2.31]) would have infinite index too. Hence, for s small
enough, the quadratic form A\gHessgG would also have infinite index, contradicting our assumption

on (I2.30).
To prove Goh condition, it is then sufficient to show that if (I23T)) has finite index then the
integrand is zero, which is guaranteed by the following

Lemma 12.21. Let A : R¥ x R¥ — R be a skew-symmetric bilinear form and define the qudratic
form

1
QUSSR Qu()) = /0 A(uw(t), (1)),

where U := {w(-) € Lip[0, 1], w(0) = w(1) = 0}. Then ind”Q < +o0 if and only if A =0.
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Proof. Clearly if A =0, then @ = 0 and ind™Q = 0. Assume then that A # 0 and we prove that
ind™ @ = +oo. We divide the proof into steps
(7). The bilinear form B : U x U — R defined by

1
Blun () wa()) = [ Alwr(e) a(0)
0
is symmetric. Indeed, integrating by parts and using the boundary conditions we get
1
Blun,w) = [ Aluwn(0),ia(e))de
0
1
—— [ At @), w0
0
1
= / A(wg(t),wl(t))dt = B(wg,wl)
0

(77). @ is not identically zero. Since @ is the quadratic form associated to B and from the
polarization formula

Blws,uz) = 7(@Qun + ws) - Quwy — ws)

it easily follows that () = 0 if and only if B = 0. Then it is sufficient to prove that B is not zero.
Assume that there exists x,y € R¥ such that A(z,y) # 0, and consider a smooth nonconstant
function
a:R— R, s.t. a(0) = a(l) = &((0) = &(1) = 0.

Then G(t)z, a(t)z € U for every z € RF and we can compute

1
Bla()r, al)y) = /0 A(a(t)z, a(t)y)dt
L
= A(a;,y)/o a(t)“dt # 0.

(7i1). @ has the same number of positive and negative eigenvalues. Indeed it is easy to see that
Q) satisfies the identity

Qw(l—-)) = -Q(w("))

from which (iii) follows.
(7v). @ is non zero on a infinite dimensional subspace.
Consider some w € U such that Q(w) = a # 0. For every z = (x1,...,zy5) € RY one can built

the function o
v 1+1

wy(t) = x; w(Nt — 1), te[ﬁ’ N 1, i=1,...,N.
An easy computations shows that
N
Q(w:c) =« Z x22
i=1
In particular there exists a subspace of arbitrary large dimension where () is nondegenerate. O
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12.3.2 Proof of generalized Legendre condition - (ii) of Theorem 12.13

Applying Lemma [[2.21] for any ¢ we prove that the s order term in (I2.:29) vanish and we get to
1
NoHessoG(o() = 5* | ot 310 + O(s*)
0
1
= 33 /0 O'(T]Zjig)e, T’fu(@))de + 0(34)

where the last equalily follows from the fact that n!, is Lipschitz with respect to ¢ (see also (IZ.21))),
ie.
1,0 =l + O(s)

On the other hand 7! is only measurable bounded, but the Lebesgue points of u are the same of 7.
In particular if ¢ is a Lebesgue point of 7, the quantity ﬁfﬂ(.) is well defined and we can write

1
AoHessoG(v(:)) = 83/0 a(?’?i,(e)mfu(g))de
1
— s (/0 U(ﬁﬂg)eﬂ]fu(e)) - a(ﬁfv(g),nfu(e))w) + 0(34)

Using the linearity of ¢ and the boundedness of the vector fields we can estimate

1 1
\ / J(ﬁfj;?,nfu(g))—J(ﬁfy(e),nfﬂ(e))dﬁ‘SC /0 LSS0 = it gy 6

1 S
< C sup —/ |7'7f,+T — 7'7f,|d7' —0
‘U‘Sl S 0 s—0

where the last term tends to zero by definition of Lebesgue point. Hence we come to

1
XoHessoG(v(+)) = 33/0 a(ﬁfu(e),nfu(e))dH +o(s?) (12.32)
U

To prove the generalized Legendre condition we have to prove that the integrand is a non
negative quadratic form. This follows from the following Lemma, which can be proved similarly to

Lemma [12.2T]
Lemma 12.22. Let Q : R¥ — R be a quadratic form on R* and

U := {w(-) € Lip[0, 1], w(0) = w(1) = 0}.
The quadratic form

Q:u—R Qi) = [ Qe
has finite index if and only if Q) is non negative.
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12.3.3 More on Goh and generalized Legendre conditions

If Goh condition is satisfied, the generalized Legendre condition can also be characterized as an
intrinsic property of the module. Indeed one can see that the quadratic map
Uy =R, v (MG, [fuw) fol, Lol (V1))

is well defined and does not depend on the extension of f, to a vector field f,;) on U.
Notice that, using the notation h,(A) = (A, f,(¢)) an abnormal extremal satisfies

hy(A) =0, Vv e RF
Recalling that the Poisson bracket between linear functions on T7* M is computed by the Lie bracket

{hv,hw}(A) = <>‘7 [fvyfw](Q»

we can rewrite the Goh condition as follows

{hy, b }(A#)) =0,  VYo,weR" (12.33)
while strong Legendre conditions reads

{{huys ho} o} >0, VYveRF (12.34)
Taking derivative of (I2.33]) with respect to ¢ we find

{hu(ey: {ho, o} (A1) =0, Vo,w e R"
and using Jacobi identity of the Poisson bracket we get that the bilinear form
(v,w) = {{hu@), o ts hw HN) (12.35)

is symmetric. Hence the generalized Legendre condition says that the quadratic form associated to

(I235)) is nonnegative.

Now we want to characterize the trajectories that satisfy these conditions. Recall that, if A(t)
is an abnormal geodesic, we have

At) = hyy(A®), (M) =0, 0<t< L. (12.36)
where ﬁu(t) = Zle u;(t)h;(t). Moreover for any smooth function a : T*M — R

d

k
71 VA1) = {hu(y, a} (A1) = > wi(t){hi,a}(A®))
1=1

Notation. We will denote the iterated Poisson brackets

Riyie(N) = {hiys - LRy Bi 3 EHV) (12.37)
= (M fase o i full@) . a=7() (12.38)
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Differentiating the identities in (I2:36]), using (I237), we get
k
ROA®) =0 = ) uthi(A#) =0, Vt. (12.39)
j=1

If £ is odd we always have a nontrivial solution of the system, if k is even is possible only for
those X that satisfy det{h;;(A)} = 0. But we want to characterize only those controls that satisfy
Goh conditions, i.e. such that

hij(A(t)) = 0. (12.40)
Hence you cannot recover the control u from the linear system ([239)). We differentiate again
equations (12:40]) and we find

k
> w ()i (A(t) = 0. (12.41)
=1
For every fixed t, these are k(k — 1)/2 equations in k variables uq, ..., u;. Hence

(7) If k = 2, we have 1 equation in 2 variables and we can recover the control ui,ug up to a scalar
mutilplier, if at least one of the coefficients does not vanish. Since we can always deal with
lengh-parametrized curve this uniquely determine the control w.

(79) If k > 3, we have that the system is overdetermined.

Remark 12.23. For generic systems it is proved that, when k& > 3, Goh conditions are not satisfied.
On the other hand, in the case of Carnot groups, for big codimension of the distribution, abnormal
minimizers always appear.

12.4 Rank 2 distributions and nice abnormal extremals

Consider a rank 2 distribution generated by a local frame f1, fo and let hq, hy be the associated
linear Hamiltonian. An abnormal extremal \(¢) associated with a control u(t) satisfies the system
of equations

At) = ur (£ (A(B) + ua(t)ha (A1),
hi(A(t)) = ha(A(t)) = 0. (12.42)
Define the linear Hamiltonian associated with the hio(A(t)) = (A, [f1, f2](¢)). Notice that in this

special framework the Goh condition is rewritten as hj2(A(t)) = 0 for a.e. ¢.
Equivalently, every abnormal extremal satisfies Goh conditions if and only if

A(t) € (D)L,

Lemma 12.24. Fvery nontrivial abnormal extremal on a rank 2 sub-Riemannian structure satisfies
the Goh condition.

Proof. Indeed differentiating the identity (I2.42]) one gets (we omit ¢ in the notation for simplicity)

’LLg{hg, hl} = Uth()\) = 0,
ul{hl, hg} = —u1h21 (/\) = 0,

Since at least one among u; and wug is not identically zero, we have that hi2(A(¢)) = 0, that is Goh
condition. 0
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From now on we focus on a special class of abnormal extremals.

Definition 12.25. An abnormal extremal A(t) is called nice abnormal if, for every ¢ € [0, 1], it

satisfies
At) € (D*)F\ (D)

Remark 12.26. Assume that A(¢) is a nice abnormal extremal. The system ([2.41I]) obtained by
differentiating twice the equations (12.42) reads

u1h12(\) = uzhao1(A). (12.43)

Under our assumption, at least one coefficient in (I243)) is nonzero and we can uniquely recover
the control u = (u1,us2) up to a scalar as follows

uy(t) = haa1 (A(t)), ug(t) = h112(A(2)). (12.44)
If we plug this control into the original equation we find that A(t) is a solution of
A = haot (Whi(A) 4 hii2(M)ha (). (12.45)
Let us now introduce the quadratic Hamitonian
Ho = hag1hy + hii2hs. (12.46)

Theorem 12.27. Any abnormal extremal belong to (D?)*. Moreover we have that A(t) € (D?)*\
(D3)* for all t € [0,1] if and only if \(t) satisfies

At) = Ho(\(t)) (12.47)
with initial condition N € (D3):\ (D3)*.

Remark 12.28. Notice that, as soon as n > 3, the set (Dg)l \ (Dg’)l is nonempty for an open dense
set of ¢ € M. Indeed assume that we have Dg = DZ’ for any ¢ in a open neighborhood Oy, of a
point go in M. Then it follows that

2 13 b
Dl]o _DQO _qu o
and the structure cannot be bracket generating, since dim Déo < dim M for every i > 1. The case

n = 3 will be treated separately.

Proof. Using that any abnormal extremal belong to the subset {h1(A(t)) = ha(A(t)) = 0}, it is easy
to show that an abnormal extremal A(t) satisfies (12.45)) if and only if it is an integral curve of the
Hamiltonian vector field ﬁo.

It remains to prove that a solution of the system

Aty =HA®), o€ D)\ (D) (12.48)

satisfies A(t) € (D?)* \ (D?)* for every t. First notice that the solution cannot intersect the set
(D3)* since these are equilibrium points of the system ([Z48]) (since at these points the Hamiltonian
has a root of order two).
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We are reduced to prove that (D?)* is an invariant subset for H. Hence we prove that the
functions h1, hs, hio are constantly zero when computed on the extremal.
To do this we find the differential equation satisfied by these Hamiltonians. Recall that, for any

smooth function a : T*M — R and any solution of the Hamiltonian system A(t) = e \g, we have
a = {H,a}. Hence we get

hia = {hao1hy + h112ha, h1o}
= {hao1, hiz}h1 + {hi112, hi2}he + hii2hoo1 + hai2hi12

= c1h1 + coho =0

for some smooth coefficients ¢; and co. We see that there exists smooth functions aq, as, a12 and
b1, bs, b1o such that

hi = aihy + aghy + arahis
ilg = b1hy + bohg + biohio (12.49)
hiz = c1hy + cahy
If we plug the solution A(t) into the equation of (I2.48]), i.e. if we consider it as a system of differen-
tial equations for the scalar functions h;(t) := h;(A(t)), with variable coefficients a;(A(t)), b;(A(t)),

¢i(A(t)), we find that hi(t), ha(t), hi12(t) satisfy a nonautonomous homogeneous linear system of
differential equation with zero initial condition, since A\g € (DQ)L, ie.

hq (/\0) = hg(/\o) = hlg()\(]) =0. (12.50)

Hence
MA®) = ha(A1) = his(\(1)) =0, Wt

O

We also can prove easily that nice abnormals satisfy the generalized Legendre condition. Recall
that if A(¢) is an abnormal extremal, then —A(t) is also an abnormal extremal.

Lemma 12.29. Let A(t) be a nice abnormal. Then \(t) or —\(t) satisfy the generalized Legendre
condition.

Proof. Let u(t) be the control associated with the extremal A(¢). It is sufficient to prove that the
quadratic form

Qr:v— <>‘(t)7 [[fu(t)a fv]y fv]> ) v € R? (12.51)
is non negative definite. We already proved (cf. ??7) that the bilinear form
By : (U7 w) = <)‘(t)7 [[fu(t)a fv]y fw]> ) v,w € R? (12.52)

is symmetric. From (I2.52]) it is easy to see that u(t) € ker By for every t. Hence Q; is degenerate
for every . On the other hand if the quadratic form is identically zero we have A(t) € (D3)+, which
is a contradiction.

Hence the quadratic form has rank 1 and is semi-definite and we can choose £ in such a way
that (IZ51)) is positive at ¢ = 0. Since the sign of the quadratic form does not change along the
curve (it is continuous and it cannot vanish) we have that it is positive for all ¢. O
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12.5 Optimality of nice abnormal in rank 2 structures

Up to now we proved that every nice abnormal extremal in a rank 2 sub-Riemannian structure
automatically satisfies the necessary condition for optimality. Now we prove that actually they are
strict local minimizers.

Theorem 12.30. Let A(t) be a nice abnormal extremal and let ~(t) be corresponding abnormal
trajectory. Then there exists s > 0 such that |4 is a strict local length minimizer in the L?-
topology for the controls (equivalently the H'-topology for trajectories).

Remark 12.31. Notice that this property of v does not depend on the metric but only on the
distribution. In particular the value of s will be independent on the metric structure defined on
the distribution.

It follows that, as soon as the metric is fixed, small pieces of nice abnormal are also global
minimizers.

Before proving Theorem [12.30] we prove the following technical result.

Lemma 12.32. Let ® : E — R" be a smooth map defined on a Hilbert space E such that ®(0) = 0,
where 0 is a critical point for ®

ADgd =0, MNeR™, \£0.

Assume that \Hesso¢ is a positive definite quadratic form. Then for every v such that (\,v) < 0,
there exists a meighborhood of zero O C E such that

d(z) ¢ R v, Ve O,x#0, R = {a € R,a > 0}.
In particular the map ® is not locally open and x = 0 is an isolated point on its level set.

Proof. In the first part of the proof we build some particular set of coordinates that simplifies the
proof, exploiting the fact that the Hessian is well defined independently on the coordinates.
Split the domain and the range of the map as follows

E=F| & Es, FEoy = ker Dy®, (1253)
R* =RM @ RF,  RM =im Dy®, (12.54)

where we select the complement R*2 in such a way that v € R*? (notice that by our assumption
v ¢ R¥). Accordingly to the notation introduced, let us write

O(x1,22) = (1 (21, 22), P2(1, 22)), ri€ B, i=1,2.

Since ®; is a submersion by construction, the Implicit function theorem implies that by a smooth
change of coordinates we can linearize ®; and assume that ® has the form

(21, 22) = (Do®(21), P2(21,22)),

since x5 € Fy = ker Dy®. Notice that, by construction of the coordinate set, the function zo +—
(0, z2) coincides with the restriction of ® to the kernel of its differential, modulo its image.
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Hence for every scalar function a : R*> — R such that dya = A we have the equality
AHesso® = Hessp(a o ©2(0,:)) >0

In particular the function a o ®5(0,y) is non negative in a neighborhood of 0.
Assume now that ®(x1,x2) = sv for some s > 0. Since v € RF2 it follows that

Do®(x1) =0 = 21 =0, and  ®(0,22) = sv.

In particular we have

4 a(®2(0,z2)) = 4 a(sv) = (A\v) <0 = a(sv) <0 for s>0
ds s=0 ds s=0

which is a contradiction.

Let A(t) be an abnormal extremal and let v(¢) be corresponding abnormal trajectory.

¥ =urf1(y) +uafa(y).

(12.55)

In what follows we always assume that ¥ = {y(¢) : t € [0,1]} is a smooth one-dimensional
submanifold of M, with or without border. Then either the curve v has no self-intersection or 4 is
diffeomorfic to S*. In both cases we can chose a basis f1, fo in a neighborhood of 4 in such a way

that ~ is the integral curve of f;
¥ =)

Then ~ is the solution of (IZ55]) with associated control @ = (1,0). Notice that a change of the
frame on M corresponds to a smooth change of coordinates on the end-point map. With analogous

reasoning as in the previous section, we describe the end point map
F o (ug,ug) = (1)

as the composition
F=e¢l'o@

where G is the end point map for the system
= (u1 — Ve, fr + uge 1 fo.

Since ey /1 f1 = fi1, denoting g, := ex i1 fo and defining the primitives
t t
w(t) :/ (1 —uq(7))dr, v(t) :/ ug(T)dT,
0 0

we can rewrite the system, whose endpoint map is G, as follows

q=—wfi(q) +09:(q)-

The Hessian of G is computed
1 t
DoHtessoGlun, ) = [, [ ~(r) i + o(r)grdr, ~0(t) i + olt)an (.
0 0
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Recall that
1
Dquw%=A i (t) fulgo) + 5(t)gr (o)t
1
=—mmmm+/@@mmw
0

and the condition A\ € im DyG™ is rewritten as

(X0, f1(90)) = (Ao, 9t(q0)) =0, Vit (12.59)

Notice that since equality (I2.59]) is valid for all ¢ then we have that

(X0 9t(q0)) = (Ao, [f1,9t](q0)) = 0, (12.60)

Then we can rewrite our quadratic form only as a function of ©, since all terms containing w
disappear

1 t
%%WQMZAQMAWWWwww%Wt (12.61)

with the extra condition

1
| itatanit = w( st (12.62)

Now we rearrange these formulas, using integration by parts, rewriting the Hessian as a quadratic
form on the space of primitives

Using the equality
t t
/ o(7)grdr = v(t)g: — / v(T)grdr (12.63)
0 0
we have
1
JoHessoG(0) = [ (o o(t)gi,5(0)g) ao)
0

1 t
_/0 (Ao,[/o 0(7)grdr, 0(t)g:) (qo))dt

The first addend is zero since [g¢, g:] = 0. Exchanging the order of integration in the second term

Aﬁm%zmmmﬂwmmwzl

and then integrating by parts

1

1
<M@@%l@m%wmww

1 1
AOW%W=%%rW@m—AvmmM
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we get to
1
AHessoG(0) — /0 (0, [d6, 91] (q0))o(#)2dt

1 t
+ [ 0al [ o)gr oo~ vl (12.64)
which can also be rewritten as follows
1
AHessoG(0) — /0 Do 50, 0l (g0)) o (1) dit
1 t
" /O o /1 o()ir dr + v(D)g1, v(6)ie] (o) dt. (12.65)

Moreover, again integrating by parts the extra condition (I2.62)), we find

1
/0 v(t)dt(qo)dt = —w(1) f1(qo) + v(1)g1(q0) (12.66)

Remark 12.33. Notice that we cannot plug in the expression (I2.66]) directly into the formula since
this equality is valid only at the point gg, while in (I2.64]) we have to compute the bracket.

Notice that the vectors f1(q1) and fa(q1) are linearly independent, then also

fil@o) = ez (filar)), and  gi(q) = ;" (f2(q)),

are linearly independent. From (I2:66]) it follows that for every pair (w, v) in the kernel the following
estimates are valid
lw@)| < Cllvllrz, (D] < Cflvl|gz. (12.67)

Theorem 12.34. Let vy :[0,1] — M be an abnormal trajectory and assume that the quadratic form

[IZ64) satisfies
AoHessoG(0) > allv]|2,. (12.68)

Then the curve is locally minimizer in the L? topology of controls.

Remark 12.35. Notice that the estimate (I2.68]) depends only on v, while the map G is a smooth
map of ¥ and w. Hence Lemma does not apply.

Moreover, the statement of Lemma [12.32] violates for the endpoint map, since it is locally open
as soon as the bracket generating condition is satisfied (this is equivalent to the Chow-Rashevsky
Theorem). Moreover the final point of the trajectory is never isolated in the level set.

What we are going to use is part of the proof of this Lemma, to show that the statements holds
for the restriction of the endpoint map to some subset of controls

Proof of Theorem [12.54] Our goal is to prove that there are no curves shorter than « that join g
to g1 =(1).

To this extent we consider the restriction of the endpoint map to the set of curves that are
shorter or have the same lenght than the original curve. Hence we need to fix some sub-Riemannian
structure on M.
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We can then assume the orthonormal frame fi, fo to be fixed and that the length of our curve
is exactly 1 (we can always dilate all the distances on our manifold and the local optimality of the
curve is not affected).

The set of curves of length less or equal than 1 can be parametrized, using Lemma [3.15] by the
set

{(ur, uz)|uf +uj < 1}
Following the notation (IZ57]), notice that
{(uy,up)|u} +u3 <1} € {(w,v)|w > 0}.
We want to show that, for some function a € C*°(M) such that d,a = X € im Dy F*, we have

R(w,v)
ol i) -0

ao F|,(w, ) = AHessoF(w,0) + R(w,v), ~ where 0 (12.69)

in the domain
D = {(w,v) € ker DyF,w > 0}

Indeed if we prove (I2.69) we have that the point (w,?) = (0,0) is locally optimal for F. This
means that the curve «, i.e. the curve associated to controls u; = 1,us = 0, is also locally optimal.
Using the identity

t
e?f)/ 0(7) fodT = ev()f2
0

and applying the variations formula ([6.29) to the endpoint map F we get
1
Fi.0) = o &b | (1= i)+ 3O fd:
0

1
={qoo° @/ (1- u')(t))e*_v(t)f2 fy dt o e’z
0

Hence we can express the endpoint map as a smooth function of the pair (w,v).
Now, to compute (I2:69]), we can assume that the function a is constant on the trajectories of
f2 (since we only fix its differential at one point) so that

ev(l)fZ oa=a

which simplifies our estimates:

1
CLOF(u‘)y'{]) =4qo Oeﬁ/ (1 — w(t))e;v(t)fol dta
0

Writing
(1 —w(t)ex "D f1 = 1+ XO(u(t) + () X (v(¢)) (12.70)

and using the variation formula (6.30), setting Y, = e&t_l)f "X for i = 0,1, we get (recall that
a1 = qoo el (qo))

1
a0 F(,0) =0 05 [ Y2(0() + oY (w)dta,  ¥O©) = ¥(0) =0,
0
Expanding the chronological exponential we find that
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(a) the zero order term vanish since Y,?(0) = Y,}(0) = 0,

(b) all first order terms vanish since the vector fields f; and [fi, fo] spans the image of the
differential (hence are orthogonal to A = dya)

(c) the second order terms are in the Hessian, since our domain D is contained in the kernel of
the differential

In other words it remains to show that every term in v,w of order greater or equal than 3 in the
expansion can be estimated with o(||v[|?)
Let us prove first the claim for monomial of order three:

1 1 t
w(t)v? = of||v]|? w w(T)v(r)drdt = o(||v]?
/0 (H)2(t)dt = of[[o]2), /0 (t) /0 (r)o(r)drdt = o [v]?)

/0 0 /0 i) /0 " i(s)dsdrdt — of|Jo]]?)

Using that w > 0, which is the key assumption, and the fact that (w,©) € ker Do F', which gives
the estimates (IZ.67), we compute

/Olw(t)v2(t)dt‘ < /01 b (£)] 02 (£)dt
= /lu')(t)v2(t)dt

0
1
= w(1)v? — w(t)v(t)v
— w(1)?(1) /0 (o) (t)dt
< of® + ellol?.

where we estimate for the second term follows from

/Olw(t)v(t)’b(t)dt‘ < maxw(t) /Olv(t)@(t)dt‘

<w(D)]llllo]]
< Cllollllvl?

The second integral can be rewritten

1 t 1 1
/0 (1) /0 b(FYo(r)drdt = w(1) /O w(t)o(t)dt — /0 w(tyo(t)i(t)dt

and then we estimate

/0 L) /0 tw(T)v(T)det‘ < 2l (1) /0 (et

< Cla|lfol?

3where o(||v]|?) have the same meaning as in (I2.69).
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Finally, the last integral is very easy to estimate using the equality
1 t T 1 1
/ u')(t)/ u’;(T)/ w(s)dsdrdt = —/ w(t)3dt
0 0 0 6 Jo
< Cllfl|lv]|?

Starting from these estimate it is easy to show that any mixed monomial of order greater that three
satisfies these estimates as well. O

Applying these results to a small piece of abnormal trajectory we can prove that small pieces
of nice abnormals are minimizers

Proof of Theorem [I2.30 . 1f we apply the arguments above to a small piece vs = o 5 of the curve
v it is easy to see that the Hessian rescale as follows,

NoHessoGa(v) = /0 O [0 (a0 )Yl 2dt

T /0 o] /0 o(r)grdr, o(t)ir — v(s)gs)(q0))dt

Since the generalized Legendre condition ensured] that (see also Lemma [2:29)

(Nos [9¢,9¢)(q0)) > C >0

then the norm
1/2

lolly = ( / "o, [gt,gtnqo»v(t)zdt) (12.71)

is equivalent to the standard L?-norm. Hence the Hessian can be rewritten as
AHessoGs(v) = ||[v]lg + (Tv, v) (12.72)

where T is a compact operator in L? of the form
(Tw)(t) :/ K(t,7)v(r)dr
0

Since ||T||* = ||K||?, — 0 for s — 0, it follows that the Hessian is positive definite for small
s> 0. O

12.6 Conjugate points along abnormals

In this section, we give an effective way to check the inequality (IZ.68]) that implies local minimality
of the nice abnormal geodesic according to Theorem 12.34]

4it is semidefinite and we already know that f; is in the kernel
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We define Q1 (v) := AHesspG(0). Quadratic form @ is continuous in the topology defined by
the norm ||v||z,. The closure of the domain of @); in this topology is the space

1
DQy) = { € Lao. 1] [ o(0iu(an) dt span{mqo),gl(qo)}} |

The extension of Q1 to this closure is denoted by the same symbol Q1. We set:

l(t) = <)\07 [gt7gt](q0)>7 X =v1g1 —l—/l v(T)gr dr

and we rewrite the form (7 in these more compact notations:
1 1 )
@) = [ tte?a+ [ o, % Xilao)
0 0

Xt = ?)(t)gt, X1 A g1 =0, X()(Q()) A fl(qo) =0. (1)

Moreover, we introduce the family of quadratic forms @, for 0 < s < 1, as follows

Quv) = /0 CI(t)o(t)? dt + /0 " oy [, Xl (a0))

Xt = ’U(t)gt, X A gs = 0, XQ(QQ) A fl(QQ) =0. (1)

Recall that [(¢) is a strictly positive continuous function. In particular, fol I(t)v(t)? dt is the
square of a norm of v that is equivalent to the standard Lo-norm. Next statement is proved by the
same arguments as Proposition ?7. We leave details to the reader.

Proposition 12.36. The form Q1 is positive definite if and only if ker Qs = 0, Vs € (0, 1].

Definition 12.37. A time moment s € (0, 1] is called conjugate to 0 for the abnormal geodesic ~y
if ker Q5 # 0.

We are going to characterize conjugate times in terms of an appropriate “Jacobi equation”.

Let & € T, (T*M) and ¢; € Th,(T* M) be the values at Ay of the Hamiltonian lifts of the vector
fields fi and g;. Recall that the Hamiltonian lift of a field f € VecM is the Hamiltonian vector
field associated to the Hamiltonian function A — (X, f(q)), A € T, M, g € M. We have:

Qulv) = /O 1tyu(t)? dt + /O o(a(t). () dt,

it) =v)é, z(s)AC =0, ma(0) Amé =0, (2)

where o is the standard symplectic product on Ty,(T*M) and 7 : T*M — M is the standard
projection. Moreover .

Let E = span{{1,(;,0 <t < 1}. We use only the restriction of o to E in the expression of Qs
and we are going to get rid of unnecessary variables. Namely, we set: ¥ = E/(ker o|g).
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Lemma 12.38. dim ¥ < 2 (dimspan{fi(qo), g:(¢0),0 <t <1} —1).

Proof. Dimension of ¥ is equal to twice the codimension of a maximal isotropic subspace of o|g.
We have: o(&1,G) = (Nos [f1,9:](q0)]) = 0, Vt € [0,1], hence & € kero|g. Moreover, 7. (E) =
span{ f1(qo), 9:(¢0),0 < ¢ < 1} and E Nker 7, is an isotropic subspace of o|g. O

We denote by C € ¥ the projection of (; to 2 and by II C X the projection of E Nkerm,. Note
that the projection Of &1 to X is 0; moreover, equality (I2.73]) implies that ¢, #0, Vte [0,1]. The
final expression of @) is as follows:

B s ) s ]
Q) = [ 10+ [ ate).a0)
B(t) =v(t)(,, =(s)A¢ =0, x(0) €L (4)
We have: v € ker Qs if and only if
[ (100 + o(e(0).,)) wie) e =
for any w(-) such that
/ Cuw(t)dt e TT+RC . (5)
0
We obtain that v € ker Q; if and only if there exists v € II¢ N gsé such that
() +o(x(t),¢,) =o,(,), 0<t<s.

We set y(t) = x(t) — v and obtain the following;:

Theorem 12.39. A time moment s € (0, 1] is conjugate to 0 if and only if there exists a nontrivial
solution of the equation

1)y = o(¢, 9, (12.74)
that satisfy the following boundary conditions:
v elI“N¢S such that  (y(s)+v)A¢ =0, (y(0)+v) eIl (12.75)

Remark 12.40. Notice that identity (I2.73) implies that y(t) = ¢, for t € [0,1] is a solution to the
equation (12.74). However this solution may violate the boundary conditions.

Let us consider the special case: dimspan{fi(qo),9:(q0),0 < t < 1} = 2; this is what we
automatically have for abnormal geodesics in a 3-dimensional sub-Riemannian manifold. In this
case, dim F = 2, dimII = 1; hence 11 =11, Cl ]RC and 14 N Cl = 0. Then v in the boundary
conditions (I2.75) must be 0 and y(s) = cC_, where ¢ is a nonzero constant. Hence y(t) = <, for
0 <t<1andy(0) =c(, &Il We obtain: .

Corollary 12.41. If dimspan{fi(qo),gt(q0),0 < t < 1} = 2, then the segment [0,1] does not
contain conjugate time moments and assumption of Theorem [12.5] is satisfied.

We can apply this corollary to the isoperimetric problem studied in Section Abnormal
geodesics correspond to connected components of the zero locus of the function b (see notations in
Sec. [4.4.2])). All these abnormal geodesics are nice if and only if zero is a regular value of b. Take a
compact connected component of b~1(0); this is a smooth closed curve. Our corollary together with
Theorem [12.34] implies that this closed curve passed once, twice, three times or arbitrary number
of times is a locally optimal solution of the isoperimetric problem. Moreover, this is true for any
Riemannian metric on the surface M!
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12.6.1 Abnormals in dimension 3
Nice abnormals for the isoperimetric problem on surfaces

Recall the isoperimetric problem: given two points g, z1 on a 2-dimensional Riemannian manifold
N, a 1-form v € A’N and ¢ € R, we have to find (if it exists) the minimum:

min{¢(7),v(0) = zo,v(T) = z1, / v=c} (12.76)

As shown in Section £.4.2] this problem can be reformulated as a sub-Riemannian problem on the
extended manifold
M =N xR={(z,y),x € N,y € R},

where the sub-Riemannian structure is defined by the contact form
D = ker (dy — v)

and the sub-Riemannian length of a curve coincides with the Riemannian length of its projection
on N. If we write dv = bdV, where b is a smooth function and dV denote the Riemannian volume
on N, we have that the Martinet surface is defined by the cilynder

M =R x b"1(0),

where, generically, the set b=1(0) is a regular level of b.

Since the distribution is well behaved with the projection on N by construction, it follows
that the distribution is always transversal to the Martinet surface and all abnormal are nice, since
DZ’ =T,M for all g.

Thus the projection of abnormal geodesics on N are the connected components of the set b=1(0)
and we can recover the whole abnormal extremal integrating the 1-form v to find the missing
component. In other words the abnormal extremals are spirals on M with step equal to [ 4 dv, (if
dv is the volume form on N, it coincide with the area of the region A inside the curve defined on
N by the connected component of b=1(0)).

Corollary 12.42. Let M be a sub-Riemannian manifold, dim M = 3, and let y : [0,1] — M be
a nice abnormal geodesic. Then v is a strict local minimizer for the L? control topology, for any
metric.

Remark 12.43. Notice that we do not require that the curve does not self-intersect since in the 3D
case this is automatically guaranteed by the fact that nice abnormal are integral curves of a smooth
vector fields on M.

A non nice abnormal extremal

In this section we give an example of non nice (and indeed not smooth) abnormal extremal.

Consider the isoperimetric problem on R? = {(z1,73), z; € R} defined by the 1-form v such
that
dv = r122dx1d2s.
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Here b(z1,72) = 2172 and the set b~1(0) consists of the union of the two axes, with moreover
dblo = 0.

Let us fix T1,Z2 > 0 and consider the curve joining (0,Z2) and (Z1,0) that is the union of two
segment contained in the coordinate axes

0, —1), t € [—Z2,0],

=T, T 2 =
’7'[ 2 1]—>R7 V(t) {(t,O), e [0,:1_71].

Proposition 12.44. The curve 7 is a projection of an abnormal extremal that is not a length
minimaizer.

Proof of Proposition [12.44) Let us built a family of “variations” . s of the curve 7 defined as in
Figure [ZIl Namely in v, s we cut a corner of size € at the origin and we turn around a small circle
of radius ¢ before reaching the endpoint. Denoting by D. and Ds the two region enclosed by the
curve it is easy to see that the isoperimetric condition rewrites as follows

0:/ 1/:/ dz/—/ dv
Ve,s B Ds

It is then easy using that dv = z1x9dx1dxs to show that there exists c1,co > 0 such that

/ dv = 6164, dv = c96°
£ D6

while
U(Ve5) — L(y) = 218 — (2 — V2)e (12.77)

Choosing ¢ in such a way that c1e? = cp63 it is an easy exercise to show that the quantity (I2.77))
is negative when § > 0 is very small. O

Remark 12.45. If you consider some plane curve 7 that is a projection of a normal extremal having
the same endpoint v and contained in the set {(z1,22) € R?, 21 > 0,29 > 0}, then ¥ must have self
intersections. Indeed it is easy to see that if it is not the case then the isoperimetric condition

/VZO
¥

It is still an open problem to find which is the length minimizer joining these two points. We
know that it should be a projection of a normal extremal (hence smooth) but for instance we do
not know how many self-intersection it has.

cannot be satisfied.

12.6.2 Higher dimension

Now consider another important special case that is typical if dimension of the ambient manifold
is greater than 3. Namely, assume that, for some k& > 2, the vector fields

fio fay (adfi)fa, ..., (adfi)* 7' fy (12.78)
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T2

D;
D, |
L. )

Figure 12.1: An abnormal extremal that is not length minimizer

are linearly independent in any point of a neighborhood of our nice abnormal geodesic v, while
(adf1)* fo is a linear combination of the vector fields (I2Z.78) in any point of this neighborhood; in

other words,
k-1

(adf1)k fo = Z a;(adf1)’ fo + oufy,
i=0
where a;, « are smooth functions. In this case, all closed to = solutions of the equation ¢ = f1(q)
are abnormal geodesics.
A direct calculation based on the fact that (A, (adf{)f2)(y(t)) = 0, 0 < t < 1, gives the identity:

k—1
=3 a(v()CD +a(v()é. 0<t <1, (12.79)
=0

Identity (I279) implies that dimE = k and II = 0. The boundary conditions (I2.75)) take the
form:
v(0) €C5, (wls) —y(0) AL =0 (12.80)
The caracterization of conjugate points is especially simple and geometrically clear if the ambient
manifold has dimension 4. Let A be a rank 2 equiregular distribution in a 4-dimensional manifold
(the Engel distribution). Then abnormal geodesics form a 1-foliation of the manifold and condition
([218) is satisfied with £ = 2. Moreover, dim £ = 3, dim¥ = 2 and g? = R(,. Recall that
y(t) = ¢,, 0 <t <s, is asolution to (IZ.74). Hence boundary conditions (I2.80)) are equivalent to
the condition
NG =0. (12.81)

It is easy to re-write relation (I2.81)) in the intrinsic way without special notations we used to
simplify calculations. We have the following characterization of conjugate times.

Lemma 12.46. A time moment t is conjugate to O for the abnormal geodesic ~y if and only if
t _
e Dy0) = Do)
The flow !/t preserves D? and f; but it does not preserve D. The plane €X' D rotates around

the line R f; inside D? with a nonvanishing angular velocity. Conjugate moment is a moment when
the plane makes a complete revolution. Collecting all the information we obtain:

349



Theorem 12.47. Let D be the Engel distribution, fi be a horizontal vector field such that [f1, D?] =
D? and v = f1(y). Then ~y is an abnormal geodesic. Moreover

(i) if eileV(O) # Dy, Vt € (0,1], then v is a local length minimizer for any sub-Riemannian
structure on D

(i) If et Do) = Dy for some t € (0,1) and 7y is not a normal geodesic, then vy is not a local
length minimaizer.

12.7 Equivalence of local minimality

Now we prove that, under the assumption that our trajectory is smooth, it is equivalent to be
locally optimal in the H'-topology or in the uniform topology for the trajectories.

Recall that a curve 7 is called a C°-local length-minimizer if £(5) < £(y) for every curve v
that is C°-close to ~ satisfying the same boundary conditions, while it is called a H'-local length-
minimizer if £(7) < £(y) for every curve v such that the control u corresponding to v is close in
the L? topology to the control @ associated with 4 and ~ satisfies the same boundary conditions.

Any C%local minimizer is automatically a H'-local minimizer. Indeed it is possible to show
that for every v, w in a neighborhood of a fixed control u there exists a constant C' > 0 such that

70 () = Y(®)] < Cllu = vl VE€[0,T],
where v, and 7, are the trajectories associated to controls v,w respectively.

Theorem 12.48. Let M be a sub-Riemannian structure that is the restriction to D of a Riemannian
structure (M, g). Assume 7 is of class C' and has no self intersections. If 7 is a (strict) local
minimizer in the L? topology for the controls then 7 is also a (strict) local minimizer in the C°
topology for the trajectories.

Proof. Since 4 has no self intersections, we can look for a preferred system of coordinates on an
open neighborhood Q in M of the set V = {7(t) : t € [0,1]}. For every £ > 0, define the cylinder
in R" = {(z,y) : * € R,y € R"} as follows

LxB'Y'={(z,y) eR":x €] —e,14¢[,y € R" |y| < e}, (12.82)
We need the following technical lemma.

Lemma 12.49. There exists ¢ > 0 and a coordinate map ® : I. x B"~1 — Q such that for all
te0,1]

(a) (I)(t70) = :Y(t)y
(b) the Riemannian metric ®*g is the identity matriz at (t,0),i.e., along 7.

Proof of the Lemma. As in the proof of Theorem ?7, for every ¢ > 0 we can find coordinates in
the cylinder I. x B"~! such that, in these coordinates, our curve 7 is rectified 5(t) = (,0) and has
length one.

Our normalization of the curve 4 implies that for the matrix representing the Riemannian metric
®*g in these coordinates satisfies

*q — G G2 . B
P g = <G21 G22> ) with Gll(ﬂf,O) =1
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where Gj;, for 4,5 = 1,2, are the blocks of ®*g corresponding to the splitting R” = R x R 1
defined in (I2:82]). For every point (x,0) let us consider the orthogonal complement 7'(x,0) of the
tangent vector e; = 0, to ¥ with respect to G. It can be written as follows (in this proof (-,-) is
the Euclidean product in R™)

T(LZ',O) = {(<Ux7y> 7y) Y € Rn_l}

for some familyﬁ of vectors v, € R"™!, depending smoothly with respect to x. Let us consider now
the smooth change of coordinates

v:R"” — Rn, \Ij($,y) = ($ - <Uw7y> 7y)

Fix & > 0 small enough such that the restriction of ¥ to I. x BP~! is invertible. Notice that this
is possible since

det DU (z,y) =1— <%,y> .

It is not difficult to check that, in the new variables (that we still denote by the same symbol), one

has (1 0
G“”"”‘(o M(a;,O))’

where M (z,0) is a positive definite matrix for all x € I.. With a linear change of cooordinates in
the y space
(2,9) = (2, M(z,0)/%y)

we can finally normalize the matrix in such a way that G(z,0) = Id for all = € .. O

We are now ready to prove the theorem. We check the equivalence between the two notions of
local minimality in the coordinate set, denoted (z,y), defined by the previous lemma. Notice that
the notion of local minimality is independent on the coordinates.

Given an admissible curve v(t) = (z(t), y(t)) contained in the cylinder I. x B"~! and satisfying
7(0) = (0,0) and (1) = (1,0) and denoting the reference trajectory %(t) = (¢,0) we have that

1
Iy = A2 = /0 () — 112 + [9(6) [Pt
1 1
= [ P +lapa -2 [ a1
0 0
1
- /0 G + 9(0)Pdr — 1

where we used that z(0) = 0 and z(1) = 1 since ~ satisfies the boundary conditions. If we denote
by

1 1
J(y) = /0 GO0 AW dt, Te() = /O G0 + [g(0)dt (12.83)

respectively the energy of 7 and the “Euclidean” energy, we have ||y — 3|3, = Je(y) — 1 and the
H'-local minimality can be rewritten as follows:

Indeed it is easily checked that v, = —G3;(,0), where G3; denotes the first column of the (n — 1) x (n — 1)
matrix Gai.
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(x) there exists ¢ > 0 such that for every v admissible and J.(y) < 1+ ¢ one has J(v) > 1.

Next we build the following neighborhood of %: for every d > 0 define A5 as the set of admissible
curves v(t) = (2(t),y(t)) in I. x B2~1 such that the dilated curve y5(t) = (z(t), $y(t)) is still
contained in the cylinder. This implies that in particular that v is contained in I. x Bg;l. Notice
that As; C Ay whenever § < §'. Moreover, every curve that is €§ close to 4 in the C°-topology is
contained in Ag.

It is then sufficient to prove that, for ¢ > 0 small enough, for every v € As one has £(y) > £(7).
Indeed it is enough to check that J(v) > J(¥). Let us consider two cases

(i) v € As and Je() <1+ €. In this case (%) implies that J(v) > 1.

(ii) v € As and Je(y) > 1 + e. In this case we have G(x,0) = Id and, by smoothness of G, we
can write for (z,y) € I. x Bf" ' and § — 0

(G(z,y)v,0) = (14 0(6)) (v, 0) ,

where O(0) is uniform with respect to (x,y). Since v € As implies that v is contained in
I, x B(’;s—l we can deduce for § — 0

J(7) = Je(v)(1+0(9)) = (1 +e)(1+ 0(9))
and one can choose § > 0 small enough such that the last quantity is strictly bigger than one.
This proves that there exists § > 0 such every admissible curve v € Ay is longer than 7. O

Remark 12.50. Notice that this result implies in particular Theorem [£.61] since normal extremals
are always smooth. Nevertheless, the argument of Theorem .61l can be adapted for more general
coercive functional (see [8]), while this proof use specific estimates that hold only for our explicit
cost (i.e., the distance).

12.8 Non optimality of corners

Is any sub-Riemannian shortest path smooth? We still do not know if this is always true. We
know that normal geodesics are smooth as well as nice abnormal. It is easy to construct abnormal
extremal paths but all known examples are not shortest. See, for instance, an example of the
nonsmooth abnormal in Sec. 12.6.1: it is a local length minimizer in the L°°-topology for controls
but it is not a shortest path (and not a local length minimizer in the LP-topology Vp < oc). The
following important regularity result shows that “corners” are not shortest paths.

Theorem 12.51 (Hakavuori, Le Donne [60]). Any piecewise smooth parameterized by the length
shortest path is of class C'.

Proof. Let ¢ € M, ~; : [0,t;] — M, i = 1,2, are smooth horizontal curves, v;(0) = ~2(0) =
¢, @) = 1%@)] =1, 91(0) + 42(0) # 0. We have to show that the concatenation of the curves
t— yi(e —t) and t — (t), 0 < t < e, is not a shortest path between 7;(¢) and ~2(¢) for an
arbitrary small € > 0.

First we consider the main case of linearly independent 44 (0) and 2(0) and then explain what
to do in the simpler case 41 (0) = 42(0) when the concatenation of the curves has a cusp. The proof
of the main case is divided in several steps.
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1. Let f; be horizontal vector fields such that
Yi(t) = filwi(t), 0<t<1, i=12

Assume that d(7y1(t),v2(t)) = 2t for all sufficiently small ¢ > 0, where d(-,-) is the sub-Riemannian
distance. We are going to show that this assumption leads to a contradiction.

Let 6. : Oy — Oy, € > 0, be the dilation associated to some privileged coordinates in a neighbor-
hood Oy of the point ¢ in M (see Chapter 10). We set d-(q1,q2) = %d(&a(ql),&(qg)), q1,92 € Oy,
and denote:

fi=ebrfin () =eT, i=1,2;

then d.(75(t),~5(t)) = 2t. Moreover, ff converges to f; in the C>-topology and d. uniformly
converges to d as € — 0, where the vector fields f;, i = 1,2, are two of generators of the Carnot
algebra acting on the nonholonomic tangent space at ¢ and d(+, -) is the metric on the nonholonomic

tangent space at ¢ (see Section 10.4). We obtain that d (etfl (q), etf2(q)) = 2t.
2. Nonholonomic tangent space is a homogeneous space of the Carnot group and the distance

d(q1,G2) is, by definition, minimum of the Carnot group distances between elements of the stable
subgroups of the points ¢, g for this action. We keep symbol d for the Carnot group distance;

then d <A

the curves 7 — e/ and 7 — esz, 0 <7 <t, equals 2t).

(elth 1,etf2) = 2t (it cannot be greater than 2¢ because the length of the concatenation of

3. The Carnot algebra may have more than two generators. Let us consider the subalgebra
generated by fl, fg and the correspondent Carnot subgroup. Given two points in the subgroup, the
distance between the points in the subgroup is greater or equal than the distance in the ambient
group.

4. We arrived to the key step of the proof and would like to simplify notations. Let G be a
Carnot group with a Carnot algebra g. We assume that g is a step k Carnot algebra with two
generators, i.e.

9=019D - Sgy, 9=_Lie{g}, g1 =span{z1,z2}.
We also assume that |z1]| = |z2] = 1 but 21 might not be orthogonal to zo. We denote the sub-
Riemannian distance in G by d(-,-) (without “hat”). The statement of Theorem 1 in the no cusps
case is reduced to the following:

Proposition 12.52. d(e™,e"?) < 2.

Proof. We prove this statement by induction in k. For k = 2, G is the Heisenberg group where
we already know all shortest paths and they are smooth.

Induction step. Assume that the statement is valid for the (k — 1)-step Carnot groups. Note
that gx is contained in the center of G and e% takes part of the center of G. Then G/e% is a
Carnot group with a step (k — 1) Carnot algebra g1 @ --- @ gx—1. Moreover, the sub-Riemannian
distance between two points in G/e% is simply minimum of the distances between the points of
the correspondent residue classes. Taking into account the left-invariance of the distance, we can
write:

d(e? q1, €% q2) = mind(e*q1, q2).
2€Gk
Our induction assumption implies that there exists z € g, such that

d(ee™,e"?) =2 — v,
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where v > 0. Moreover, left-invariance of the distance implies that d(ee®, e*?) = d(1,e""1e ?e™2).

We have to show that the distance between e*' and e*? is smaller than the length of the
concatenation of the curves t — (=071 and ¢ e!®2 (0 <t < 1. The trick is to demonstrate it
playing with non-horizontal curves. First we insert a short piece of the form ¢ — etz , 0<t<1.

ert T2

X €2

Figure 12.2: Adding one piece

New curve contains a horizontal part of the length 2 but the distance between its endpoints is
. k k k
smaller than 2. I claim that d(e®!,e™¢ #e"2) < 2 —ev. Indeed, d(e™', e~ #e*?) = d(1,e""le ¢ *e"2)

and

_ _ek _ — _ek _
e TlpE 2 T2 :e(a 1)z (6 €1 ,—€ zea:cg) e(l a)xz‘

We have: e=5%1e—c 2502 — dc (e™e~*e"2), where ¢. is the dilation of the Carnot group. Moreover,
d(1,0:(q)) = €d(1,q), Yq € G. The triangle inequality for left-invariant metrics reads: d(1,ab) <
d(1,a) + d(1,b), therefore

d(l, e Tt e—zemz) < d(17 6(6—1)m1) + E(2 _ I/) + d(la e(l—s)xg)
=(1-¢g)+e2-v)+(1—¢)=2—cw

Now we would like to compensate the deviation of the endpoint of the curve produced by
the inserted piece e~ To this end, we insert some pieces of the form eekyi, where y; € gr_1.

k
Each piece costs O(e5-1) of the distance since e % = § . (e¥). Hence the distance between the

endpoints of the resulting curve remains smaller than 2 if £ is small enough.
It is actually sufficient to insert three pieces as follows:
We are looking for 1, y2,y3 such that

k _ Lk, 1 k 1 k
Tl eE Y1 p™T1 =€ 2 o502 o8 Y2 582 € Y3 — T2

for all ¢ > 0. To find them we use the fact that e=="* commutes with all elements of the group and
re-write the last equation in the form:

ko 1 Ky _ 1 ko _ k
<er1e€ Yl 901) (ezrzee Y2, 222) <ew2€€ Y3 902) = £ %

Now we use a universal identity: e¥eYe™" = e(ey), Moreover, since g is a step k nilpotent Lie
algebra and y; € gr_1, we obtain:

, 1 , ‘
eadm]yz’:yz"Fa[ Gvil, 1=1,2,3, j=1,2.
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k
€7Y3

Figure 12.3: Adding more pieces

All elements y;, [z;,y;] are mutually commuting because k& > 3 and [y;,y;] € gax—2 = 0. Hence
product of the exponents equals the exponent of the sum and we arrive to the equation:

3
6’“(_21 yit 3w,y + g [22,02]4+ 5 [22,03]) !
=

EeEvz

e

that is equivalent to the system

3

1
> yi=0, [zl + 5 lz2, 9o] + w2, 93] = 2z.
i=1
We insert y3 = —y1 — y92 in the second equation and obtain:
(21 — 22,11] — §[$2,yz] =2z

Existence of the desired y1, y2 now follows from the relations:

a1 = Span{whiﬂz} = 5pan{331 - $2,$2}, [91,919—1] =gk 2%

O

Now we return to the beginning of the proof of Theorem 1 and consider the case of a cusp:
41(0) = 42(0). In this case, there exists a horizontal field f; and smooth control ¢ — w(t) such that

F(t) = filni (), F2(t) = f1(72(®)) + tfuw) (12(2))-

If the concatenation of the curves t — ~1(e — t) and ¢t — ~2(t), 0 < t < ¢, is a shortest path
then d(v1(t),y2(t)) = 2t. We apply the blow-up procedure and lift to the Carnot group as in steps

1, 2 of the proof in the no cusp case and obtain that d (etfl, e@fg fl + Tfu(T) dT) = 2t. We have:

~ t A~ ~ 7 f t ¢ ¢
d <€tf1, 6@/ fi+ Tfu(T) dT) - <17 e_tfleﬂ/ fit Tfu(T) dT)
0 0

355



since d is a left-invariant metric. Moreover,

. t X t
etz [ fitrfundr = b [ g ar
0 0

where gt = re(t=)adfi fu(r), according to the variations formula (see Chapter 6). If the Carnot
group is of step k, then:

[asry

k
g =
i=0
The i-th term of the sum belongs to the (i + 1)-th level of the Carnot algebra and has order t*+1
ast — 0.

Hence the i-th level component of 67]3 fg gt dr in a privileged coordinates on the Carnot group
has order t*t! as t — 0. Indeed, this component is the value at ¢ of a started at the origin solution
of the ordinary differential equation whose right-hand side has order t* as t — 0.

The ball-box estimates imply that d (1, exp fot gt dT) < Ctﬁ1 for some constant C'. The

obtained contradition completes the proof of the theorem. O

w (adf1)' fuir)-
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Chapter 13

Some model spaces

In this chapter we are going to construct explicitly the full set of optimal arclength geodesics
starting from a point for certain relevant sub-Riemannian structures. This is what is called the
problem of constructing the optimal synthesis.

We start with a class of problems in which all computations can be done explicitly, namely
Carnot groups of step 2. In this setting we give a general formula for Pontryagin extremals and
explicitly computes them in the case of multi-dimensional Heisenberg groups, together with the
optimal synthesis. For free Carnot groups of step two we provide a description of the intersection
of the cut locus with the vertical space and we give an explicit formula for the sub-Riemannian
distance from the origin to those points.

Then we present a techniques to identify the cut locus, that generalize a classical technique used
in Riemannian geometry due to Hadamard. We then apply in full detail this technique to compute
the optimal synthesis for two cases: (i) the Grushin plane; (ii) the left-invariant sub-Riemannian
structure on SU(2) with the metric induced by the Killing form. The same technique can be applied
to study SO(3) and SL(2) (again with the metric induced by the Killing form). These last two
cases are left as exercise. The optimal synthesis for SO(3) together with the one for SO4(2,1)
is then obtained using an alternative (and more geometric) approach based on the Gauss-Bonnet
Theorem.

We conclude by treating two relevant cases namely the left-invariant sub-Riemannian structure
on SE(2) and the Martinet distribution. For these cases we compute geodesics (that can be
obtained explicitly in terms of elliptic functions) and we state the results concerning the cut locus.
Their proof require an estimation of the conjugate locus that can be obtained via a fine analysis of
properties of elliptic functions and it is outside the purpose of this book.

Let us recall the definition of cut time and cut locus.

Definition 13.1. Consider a sub-Riemannian manifold complete as metric space. Let v be an
archlength geodesic. The cut time along ~ is

tewt = sup{t > 0: 7¥|[oy is length-minimizing}.

If oyt < +o0 we say that (feyut) is the cut point of 4(0) along ~y. If ¢, = +00 we say that v has no
cut point. We denote by Cuty, the set of all cut points of geodesics starting from a point gy € M.

Remark 13.2. Notice that with this definition, the starting point is never included in the cut locus.
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Definition 13.3. Consider a sub-Riemannian manifold complete as metric space and fix a point
qo € M. The optimal synthesis from ¢q is the collection of all arclength geodesics starting from ¢q
together with their cut time.

Given a sub-Riemannian manifold, constructing explicitly the optimal synthesis from a point
qo is in general a very difficult problem. The main difficulties are the following:

(A) the integration of the Hamiltonian equations giving normal Pontryagin extremals. In most
cases such equations are not integrable;

(B) the identification of abnormal extremals and the study of their optimality;

(C) the evaluation of the cut time for every Pontryagin extremal. Such problem is particularly
difficult since in principle for every point of M one should find all Pontryagin extremals
reaching that point (and hence in particular one should be able to invert the exponential
map) and then one should choose the one having the smaller cost (i.e., the smaller distance
from qq).

For the reasons explained above, only few optimal syntheses are known in sub-Riemannian geom-
etry. Such examples all concern left-invariant sub-Riemannian structures on Lie groups or their
projections to homogenous spaces.

13.1 Carnot groups of step 2

A Carnot groups of step 2 is a Lie group structure G on R™ such that its Lie algebra g satisfies (cf.
also Section [T.5])

g =g1D go, [91,91] = 92, 91, 92] = [g2,92] = 0. (13.1)

The group G is endowed by the left-invariant sub-Riemannian structure induced by the choice of a
scalar product (- |-) on the distribution gy, that is bracket-generating of step 2 thanks to (I3]).
Consider a basis of left-invariant vector fields (on R™) of g such that

g1 = span{Xy,..., X}, g2 =span{Zy,..., Zy i},

where {X1, ..., Xy} define an orthonormal frame for (- |-) on the distribution g;. Such a basis will
be referred also as an adapted basis. We can write the commutation relations as follows
—k .. .
(X, X5 =>"0 cijg, i,j=1,...,k  with cfj = —cﬁi, 15.2)
[Xi,Zj]:[Zj,Zg]:O, izl,...,k, j,Ezl,...,n—k:.

Given an adapted basis, we can introduce the family of skew-symmetric matrices {C1,...,Cp_x}
encoding the structure constants of the Lie algebra, defined by Cp, = (cfj), for/=1,...,n—k, and
the corresponding the subspace of skew-symmetric operators on g; that are represented by linear
combination of this family of matrices

C :=span{Cy,...,Cp_r} C s0(g1) (13.3)

We stress that since the vector fields of the basis are left-invariant, then cfj are constant.
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Definition 13.4. A Carnot algebra of step 2 is called free if C = s0(g;) and the matrices Cy = (cfj),
for £=1,...,n — k, defines a basis of C.

A representation of the Lie algebra defined above is given by the family of vector fields on
R" = R¥ @ R"* (using coordinates g = (r,y) € RF @ R"*)

0 1k B
_ l .
Xl_a—%—§ZZCZJ$J8—Z£, Z—ly-'-7k7 (134)
7j=1 /=1
L I (13.5)
Z—aZZ? _— PECICIRNE) . .

The group law on G, when identified with R” = R* @ R** reads as follows
1
(z,y) * («',y) = <:17 +a' 242 + 50:1: : :E/> ,

where we denoted for the (n — k)-tuple C' = (C1,...,Cp_k) of k x k matrices, the product
Cx- -2 =(Cix-a,...,Chpz-2') e R"F

and a-b denotes here the Euclidean inner product between two vectors a,b € R¥. The choice of the

linearly independent vector fields {X;,..., Xk, Z1,...,Z,—} induce corresponding coordinates on

™G

The functions {h;, w,} defines a system of global coordinates on the fibers of T7*G. In what follows

it is convenient to use (z,y, h,w) as global coordinates on the whole T*G, identified with R?".
Normal extremal trajectories are projections on M of integral curves of the sub-Riemannian

Hamiltonian in T*G:

k
1 2
H = 5;@. (13.6)

Suppose now that A(t) = (z(t),2(?),h(t),w(t)) € T"G is a normal Pontryagin extremal. The
equation A\(t) = H(\(t)) is rewritten as follows

) . n—k k
{xi = h; {hz’ == 2.=1 ijl ijhjw (13.7)

s, — _ 15k Iy B, —

where we used the relation u;(t) = h;(A(t)) satisfied by normal extremals and the property a =
{H,a} for the derivative of a smooth function a along solutions of the Hamiltonian vector field H,
giving
1 k —k <k
hi={H,h} = — Zj:1{hi=hj}hj =—2 i 2]:1 ijhjwﬁ (13.8)
wy = {H,wp} = 0.
Recall moreover that H is constant along solutions, in particulat H = 1/2 along extremals
parametrized by arclength. From (I3.8]) we easily get that wy is constant for every £ =1,...,n—k,
hence the first equation rewrites as an autonomous linear equation for h = (hy,..., h;) € RF

n—k
il = — (Z wgCg> h,
/=1
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It follows that

n—k
h(t) = e h(0), Q=Y wCh. (13.9)
=1
From this expression one finds the z-component

x(t) = z(0) —I—/O e ¥ n(0)ds.

Finally, injecting the above expression in the equation of z, one can recover the full normal extremal
trajectory by integration.

13.2 Multi-dimensional Heisenberg groups

In this section we specify the previous analysis and provide explicit computation for the case of
multidimensional Heisenberg groups. These are step-2 Carnot group structures on R%+! where

g=g1 gy, dimg =2/, dimgy = 1. (13.10)

In particular the subspace C has dimension one and is spanned by a unique nonzero element in
50(g1). Choosing a suitable basis

g1 =span{Xy,..., Xy}, g2 = span{Z},

where {X1,..., X} is chosen as an orthonormal basis for the scalar product (- |-) on the distribu-
tion g1, we have that there exists a matrix C' = (¢;;) satisfying

D =span{Xy,..., Xy},
[XZ',X]'] = CijZ, Z,j = 1, v ,2[, where Cij = —Cji, (1311)
(X, Z] =0, i=1,...,2L

Notice that this structure is free if and only if [ = 1 and is contact if and only if C' is non-degenerate.
Recall that C is a real skew-symmetric matrix, hence there exist aq,...,q; € R such that

spec(C) = {%iay, ..., fiog}.

Up to an orthogonal transformation in the distribution, we can choose the orthonormal basis of g; in
such a way that the matrix C' has the following (block-diagonal) canonical form for skew-symmetric
matrices

Ay
0 (674
C = , where A; = ( > , a; > 0. (13.12)
— Oy 0
0 Ay
Remark 13.5. Notice that a; > 0 for at least one value of i, otherwise the matrix C would be zero.

In what follows we restrict our attention to the case when all coefficients «; are strictly positive.
This is equivalent to require that the structure is of contact type.
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According to this decomposition we denote by {X7,...,X;,Y1,...,Y;, Z} the orthonormal basis
of g1, where the vector fields satisfy the relations

g1 = Span{Xla"'7Xl7Y17"'7Y2}7

X; = w7, =1,...,1
[ (3] ’l] aZ Z .7 1Y (1313)
(X3, Y] = i # J,
(X;, Z] = [YZ,Z]—O i=1,...,1,
Denoting points ¢ = (z,y, z) € R%*! the group law is written in coordinates as follows
l
q-q = <x+$ y+y,z+2 + 3 ZOQ TiT yz%)) (13.14)
=1

Finally, from (I3.14]), we get the coordinate expression of the left-invariant vector fields of the Lie
algebra, namely

1
_aiyiaza 1= 17"'717

Xz' = Ug; —
O, 5
1
Y, = ayi + §ozi:ni62, i1=1,...,1, (13.15)
Z = 0,.

where = (z1,...,2),y = (y1,...,y) € Rl and z € R.

13.2.1 Pontryagin extremals in the contact case

Next we compute the exponential map exp,, where qg is the origin. Thanks to left-invariance of
the structure this permits to recover normal geodesics starting from every point. With an abuse of
notation, we define the hamiltonians (linear on fibers)

ui(A) = (A, Xi(q)) , vi(A) = (A, Yi(g)) w(A) = (A Z(q)) -

Suppose now that A(t) = (x(t),y(t), 2(t), u(t),v(t), w(t)) € T*G is a normal Pontryagin extremal.
The equation A(t) = H(A(t)) is rewritten as follows

Ty = U; = —QWY;
Yi = v; U; = owu; (13.16)
i=—3 S ai(wiy; — viy) w=20

Remark 13.6. Notice that from (I3.10) it follows that the sub-Riemannian length of a geodesic co-
incide with the Euclidean length of its projection on the horizontal subspace (1, ..., Zn, Y1, -, Yn)-



Now we solve (I3.16) with initial conditions (corresponding to arclength parametrized trajec-
tories starting from the origin)

(2%9",2%) = (0,0,0), (13.17)

(u, 0%, w?) = (ud,...,ud, 0P, ... 0 W) € S2L < R. (13.18)

0

Notice that w = w" is constant along the trajectory. We consider separately the two cases:

(a). If w # 0, we have

ui(t) = ud cos(oywt) — v¥ sin(owt),
vi(t) = ud sin(cwt) + v? cos(awt), (13.19)
w(t) =w
From (I3.I6]) one easily gets
1
x;i(t) = (uf sin(cwt) 4 v cos(awt) —vY),
oW
1
yi(t) = (—u? cos(awt) + v sin(ewt) 4+ u?), (13.20)
;W
l
1 ud)? + (v9)? .
z(t) = 3 ; ai(Z)agiwg’)(aiwt — sin(a;wt)).

(b). If w = 0, we find equations of horizontal straight lines in direction of the vector (u’,v°):

xi(t) = ugt, yi(t) = v?t, z(t) = 0.

To recover symmetry properties of the exponential map it is useful to rewrite (I3:20) in the following
version of polar coordinates, using the following change of variables

u) = —r; sin6;, v) = r;cos b;, i=1,...,1. (13.21)

In these new coordinates (I3.20]) becomes (case w # 0)

r

x;i(t) = ozizw (cos(a;wt + 6;) — cos(6;)),
yi(t) = —(sin(a;wt + 0;) — sin(6;)), (13.22)
;W
1 l 2
z(t) = 3 Z; aizuz (aywt — sin(a;wt)),
1=
and the condition (u°,v?) € S%~1 implies that r = (r1,...,r;) € S'. This permits also to rewrite
the z component as follows
1 2
z(t) = oo wt — Z; ” sin(awt) | . (13.23)
1=



(@1(8), 91 (1))

(z2(t), y2(t))
A (t)

As(t)

Z(t) = alAl (t) + 052./42 (t)

Figure 13.1: Projection of a non-horizontal geodesic: case [ = 2 and 0 < as < .

Remark 13.7. From equations (I3.22]) we easily see that the projection of a geodesic on every
2-plane (x;,y;) is a circle, with radius p;, center ¢;, and period T}, given by

pi = i = — i (cos b;,sin 6;), T, = —W,
a;|w] ) a;lw]

Vi=1,...,1 (13.24)

Moreover, generalizing the analogous property of the 3D Heisenberg group, from (I3.I6]) one
can see that the z component of the geodesic at time ¢ is the weighted sum (with coefficients «;)
of the areas A;(t) of the circles spanned by the vectors (z;(t),y;(t)) in R? (see Figure [3.1]). More
precisely we have the identities

l 2
2() =) e Ai(t),  Ai(t) = 53— (qwt — sin(azwt)). (13.25)
=1 ?

Remark 13.8. Prove the following simmetry identity for the exponential map on multi-dimensional
Heisenberg groups: expy(t,,60, —w) = exp(—t,r, 0 + m, w).

13.2.2 Optimal synthesis

We start the analysis of the optimal synthesis with the following general lemma. Recall that here
we assume «; > 0 for every i = 1,...,1[.

Lemma 13.9. Let v(t) = expy(r,0,w) be an arclength parametrized normal trajectory starting
from the origin. The cut time t.(y) along v is equal to the first conjugate time and satisfies

2T

e 13.26
|w| max; a;’ ( )

t()

with the understanding that t.(y) = +oo, if w = 0.
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Proof. The case w = 0 is trivial. Indeed the geodesic is a straight line and, by Remark [I3.6] the
trajectory is optimal for all times hence t.(y) = +o0o. We can assume then w # 0. Moreover,
thanks to Remark 3.8 and up to relabeling coordinates, it is not restrictive to assume that w > 0
and a1 > a9 > ... > o > 0.

Since all «; > 0 are strictly positive, there are no abnormal minimizers. First we prove that at
the point y(t,) there is at least a one parametric family of trajectory reaching this point and with
the same length. Thanks to Theorem [R.71], this will impy that the cut time is less or equal than ¢, ()
given in (I3.26). Then we prove that for every t < t. the restriction 7|, a is length-minimizer,
proving that the formula given in (I3:26]) is the cut time.

(i). By assumption, oy = max; ;. From (I3.22)) it is easily seen that projection on the (x1,y7)-
plane of the trajectory -y satisfies

z1(ts) = y1(ts) = 0.

Define the variation 6,4 := (61 + ¢, 602,...,6;) for ¢ € [0,27], and consider the trajectories

It is easily seen from equation (I3.22] that all these curves have the same endpoints. Indeed
neither (x;,y;), for i > 1, nor z depends on this variable. Then it follows that ¢, is a critical time
for exponential map, hence a conjugate time.

(ii). Since w > 0, our geodesic is not contained in the hyperplane {z = 0}. Moreover, for every
i =1,...,l, the projection of every non horizontal geodesic on on the plane (z;,y;) is a circle. In
particular, the distance from the origin of the projected curve is easily computed by

. t ]
ni(t) :== /2 (t)? + yi(t)? = sin. <%> rit, where sing(z) := ST

X

Let now tg < t., we want to show that there is no length-parametrized geodesic starting from the
origin 7 # 7 reaching the point y(tp) in time tg.

Assume by contradiction that there exists 5(t) = expy(t, 7, 0, @) with 7 € S such that ~(ty) =
7(to). Then for every i = 1,...,1 we have n;(tp) = 7;(to) which means

wt Wto\
sin, <$> rito = sing (O‘;“ 0) Fito i=1,...,1 (13.27)

Notice that, once w is fixed, 7; are uniquely determined by ([I3:27)) (here tg is fixed). Moreover, 0;
also are uniquely determined (mod 27) by relations (I3.24]). Finally, from the assumption that 5
also reach optimally the point (tp), it follows that

_ 2 owt .
th<t.(y) = — = "0 e Vi=1,... L (13.28)
aqw 2
Assume w > w (the case w < w being analogous). Since sin.(x) is a strictly decreasing function on
[0, 7], this implies 7; > r; for every i = 1,...,1. In particular
l
7“‘;-2 > 7*2-2 =1
i=1 i=1

contradicting the fact that 7 € S'. Then, since all frequences are positive there are no abnormal
extremals, Theorem B.7T] and Corollary B.73] permits to conclude that y(tp) is not a cut point. [

364



The next proposition computes the sub-Riemannian distance from the origin to a point con-
tained in the vertical axis, which is always contained in the cut locus.

Proposition 13.10. Let (0,2) € R x R ~ R?*! and let oy, 0, - , oy be the (possibly repeated)
frequences of the Heisenberg sub-Riemannian structure. Then (0, z) € Cuty and

47 |z|

d((070)7 (O,Z))2 = (13.29)

max; o;

Proof. Without loss of generality we can assume a3 > ag > --- > «, > 0. Consider the trajectory
Y(t) = expy(r,0,w) with r = (r,72) = (1,0,...,0) € S" and § = (61,...,6;), w > 0 arbitrary.
Then by Lemma [[3.9] the curve v|j4, is a length-minimizer for ¢. given by (I3.286]). It follows that

d(7(0), y(t+)) = tu. (13.30)

Thanks to (I3:22)) it follows easily that

s a1
71 (ts) = y1(te) = @2(ts) = y2(ts) = 0, 2(ty) = v Etz. (13.31)

Plugging the last formula in (I3:30) and writing ¢, as a function of z one gets ([3.29). O

The exact computation of the cut locus is possible thanks to the characterization of the cut
time for every geodesic

Exercise 13.11. Prove the folllowing facts
(a) Assume that a; = ... = o;. Then Cutg = {(0,2) € R¥+1: 2 ¢ R\ {0}}.
(b) Assume that [ =2 and 0 < az < ;. Prove that
Cutg = {(0,0,x2,y2,2) € R®: |2 > (43 + y3) K (a1, a2), (w2,42,2) € R\ {0}},  (13.32)

where K (a1, az) is a positive constant satisfying K (aq,ag) — 0 for ag — 0 and K (g, ag) —
+o00 for ag — oy.

(¢) Assume that | =2 and 0 = ag < ;. Compute Cutp.

Generalize the previous formulas to all other cases for 0 = oy < ... < ¢y, and compute the dimension
of Cutg in terms of the frequences aq, s, -+, qq.
13.3 Free Carnot groups of step 2

Recall from Definition [34] that the Carnot group of step 2 is free if the matrices Cy,...,Cph_g

define a basis of the space of skew-symmetric matrices. In particular n = k + @ and it is

convenient to treat R = R¥ @ R"* as the sum
R" = R* @ (R* A RH).

In what follows we denote by G, := RE@®A2RF the free Carnot groups of step 2 and we identify A2RF
with the vector space of skew-symmetric real matrices, that is v A w = vw* — wv* for v, w € RF,
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It is convenient to employ the following notation: we denote points (z, Z) € Gy, where x € Rk
and Z is a skew-symmetric matrix. We fix the canonical basis {Eym;}1<i<m<k of s0(R¥) and we
write Z = Z£<m ZomEom.-

As discussed in Section [I[3.0] we can can choose a suitable basis in such a way that the sub-
Riemannian structure is generated by the set of global orthonormal vector fields:

1 .
Xi o= On, — 5 > (i ND)emOz,,  i=1,..k, (13.33)
1<t<m<k
where {eq, ..., e} is the standard basis of R%. More precisely, the horizontal distribution is defined

by D :=span{Xy,..., X;} and the sub-Riemannian metric by g(X;, X;) = d;;.
For all 7 < j, we have [X;, X;] = 0z,,. In particular, the vector fields (I3.33) generate the free,
nilpotent Lie algebra of step 2 with k& generators:

g=01Dg, where g1 =span{Xy,..., Xz}, @2 =span{dz,; }i<;- (13.34)

There Lie group structure on Gy such that the vector fields X; are left-invariant is given by the
polynomial product law

1
(2, Z) % (', Z") = <x+x’,Z+Z’+§x/\x’>. (13.35)

Notice moreover that the matrices C1,...,C,_; coincide in this case with the standard basis of
s0(k) hence the matrix €,, defined in (I3.9)) is simply an arbitrary skew-symmetric matrix and the
w component of the initial covector are coordinates on the space so(k)

Qw = Z w@mcﬁm = Z meEZm'

1<t<m<k 1<t<m<k
For this reason in what follows we drop the w from the notation and simply write €2 for €2,,.

Example 13.12. The case k = 2 is the well-known Heisenberg group. Indeed, we can identify
(r,7) € R2® A’R? with (z,2) € R2@ R, so that the generating vector fields (I3.33)) read
Z2

., Xo=0, + %az. (13.36)

X1 =0y — 5

Example 13.13. The case k& = 3 can be dealt with by identifying (z,7) € R?® @ A’R? with
(x,t) € R @ R3. More precisely, any 3 x 3 skew-symmetric matrix can be written as Z = v A w,
and is identified with the cross product z = v x w. Notice that v X w does not depend on the choice
of the representatives v, w such that Z = v A w.

Under this identification, the tautological action of Z on R3 reads

Zr=@wAw)r=zX (vXw)=xX 2, vz € R3, (13.37)

and the generating vector fields (I3:33)) are

x3 T2 X x3 T2
Xl - a:cl + 7822 - 782'37 X2 = 8:1,‘2 + 7823 - 78Z17 X3 = 8:1,‘3 + ?821 -

%azz. (13.38)
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The goal of this section is to compute the intersection of the cut locus from the origin with the
vertical space V = {(0,2) | Z € A’RF}. In particular we give the explicit formula of the distance
from the origin to every point of V.

Suppose now that A(t) = (z(t),2(t), h(t),w(t)) € T*G is a normal Pontryagin extremal. Then
thanks to the previous analysis we have

h(t) = e h(0), Qe so(k).

From this expression one finds the z-component

() = /0 (0 ds.

The vertical part of the horizontal trajectory can be recovered integrating

2(t) = %x(t) A R(E). (13.39)

that gives the following formula (recall Z(0) = 0)

/ / e h(0) A e "2 (0)dsdt, (13.40)
—/ /(e_SQPetQ—e‘tQPe_SQ)dsdt. (13.41)

where we denoted by P the symmetric matrix h(0)h(0)*.
For a fixed geodesic, there exists a good set of coordinates such that the matrix € is written in
normal form. The main linear algebra ingredient is given by the following lemma.

Lemma 13.14. Let Q € so(n), zo € R"™ and define the set
0 :={Q €so(n) | em/:no = em:no, for all t > 0}.

There exists Q0 € © with all nonzero eigenvalues that are simple and such that ker Q has mazimal
dimension.

Proof. Since ) is skew-symmetric there exists aq, ..., a, such that spec(Q) = {£iay,...,+ia,,0}.
Let us decompose R"” in real eigenspaces

=FEy® EBEJ’ Ey =kerQ), E; =ker(Q+ic;) @ ker(2 —ic;),

and work in an adapted basis inducing coordinates adapted to the splitting. In this basis €2 has a
block-diagonal form Q = diag{y,...,,,0} and we similarly decompose zo = (20,1, .., 0, Z0,0)-
Notice that thanks to the block structure we have e'zy = (ethxo,l, - ,etQTxom, 0).

For every j > 0 such that zg; # 0 we the corresponding block €2; can be put to zero without
changing the value of e’

If there exists a block with multiple eigenvalues (i.e., there exists j > 0 such that dim E; > 2)
then, thanks to Exercice we have dimspan{e¥z,; | t € R} = dimspan{zg, Qzo} = 2, thus
we can write

E; = span{zg j, Q;x0 ;} ® span{zg ;, szno,j}l. (13.42)

367



Choosing a basis in E; corresponding to the splitting (I13.42]), we can put to zero the block of
2 corresponding to span{z;, szzzo,j}L and the new matrix has +ia; as _simple eigenvalues, and
kernel of dimension dim(E;) — 2. This proves the existence of the matrix . O

Exercise 13.15. Let Q € so(n) and assume spec(§2) = {£ia}. Then for zo € R"
span{ezg | t € R} = span{xg, Qzo}.

From the previous discussion it follows that, for a given geodesic, there exists a linear change
of coordinates in the space such that the matrix €2 is presented as a block-diagonal matrix

Q=(Q,...,9,0),

where Q is a block zero matrix and

0 (673 o
Q; = <_ai 0> =al

where J denotes the 2 x 2 symplectic matrix J = <_01 é)

13.3.1 Intersection of the cut locus with the vertical subspace

First we prove that every vertical points in Gy is contained in the cut locus.
Lemma 13.16. The set of points {(0,2) | Z € N>R\ {0}} is contained in Cutg.

Proof. Fix a point (0,7) € Gy with Z # 0. Thanks to ExercicdI3.17] there exists a non zero
orthogonal matrix M € SO(k) such that MZM* = Z and M equal to the identity on ker Z. Let
now y(t) = (x(t), Z(t)) be a length-minimizer joining the origin to (0, Z). The existence of such a
geodesic is guaranteed by completeness of the sub-Riemannian structure. Let us show that there
exists (at least) two length-minimizers reaching (0, Z).

Consider the curve J(t) = (Mz(t), M Z(t)M™*). Notice that 7(0) = (0,0) and, by properties of
M, one has (1) = (0, MZM*) = (0,Z). Moreover ¢(y) = £(3). Since M # I we have v # 7.
Thus « and 7 are two horizontal length-minimizers joining the same end-points. This proves the
claim. O

Exercise 13.17. Let Z € so(k) be a non zero skew-symmetric matrix.
(a). Prove that there exists an orthogonal matrix M € SO(k), M # I, such that MZM* = Z.
(b). Prove that the matrix M can be chosen to be the identity on ker Z.

(c). Show that the set of matrices satisfying properties (a) and (b) is a Lie group and compute
its dimension.

We then compute the distance from the origin of vertical points in Gg. A very close formula
appears as the second statement of [36, Thm. 2], and differs from ours by a factor 4.
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Proposition 13.18. Let (0,7) € Gy, and let oy > ag > -+- > «, > 0 be the (possibly repeated)
absolute values of the non-zero eigenvalues of Z. Then,

d((0,0),(0,2))? = 47727: iy (13.43)
=1

Proof. Without loss of generality, Let v(t) = (x(t), Z(t)) be a geodesic from the origin such that
z(1) =0 and Z(1) = Z, with h(t) = e *hg, where we set hg := h(0). By (I3.40), we have

1
/ e hodt = (1) = 0. (13.44)
0

Thus, the non-zero eigenvalues of 2 are of the form +i27w¢, with ¢ € N. By Lemma[13.14] and up to
an orthogonal transformation, we may assume that Q = (27¢1J, ..., 27¢.J, 0x_o¢), with all simple
eigenvalues, 2¢ = rank (Q2), and with distinct ¢; € N. We split accordingly ho = (ho1,- -, o, hoo),
with hg; € R2 fori=1,...,¢ and ho,o € Rk=2¢, Using the canonical form and the fact that ¢ € N,
it is not difficult to explicitly integrate the vertical part of the geodesic equations (I3.40). We
obtain

ho1|? hoo|?
Z(1) = <|4§’;|1 Joos |47°T’§)L J, 0k—2£> : (13.45)

Then |ho j|* = 4m¢;a; for all j = 1,...,r. The squared length of v is

1 2 r T
U(v)? = </ IU(t)!dt> = |ho[* =" lhoj|* = 47 bje. (13.46)
0 j=1 j=1
The minimum of this quantity over all choice of ¢; € N and all distinct is obtained when ¢; = j,

forall j=1,...,r. O

For more details we refer to [?] (see also [36]).

13.4 An extended Hadamard technique to compute the cut locus

Let us consider a sub-Riemannian structure, complete as metric space and fix ¢g € M. Assume
that we are able to solve the problems (A) and (B) above. This usually is not so hard when one is
considering left-invariant structures on Lie groups of small dimension. More precisely assume that:

e we are able to to get the explicit expression of normal geodesics;
e we are able to prove that all strict abnormal extremals are not optimal.

Let expy, (t,0) be the standard exponential map providing geodesic parametrized by arclength
(here 0 € Agy = T MNH~*(1/2)). With a slight abuse of notation, let exp,, (A) be the exponential
map at time 1 (here A € Tz M). Notice that exp, (t,0) = exp, (\) with A =¢6.

A useful method to evaluate the cut time for every normal extremal consists in a suitable use
of a classical result stating that if a smooth map between two connected manifolds of the same
dimension is proper and has nowhere vanishing Jacobian then it is a covering.
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Figure 13.2: Uniqueness of the lift for a covering map.

Definition 13.19. A continuous map f : M; — M between smooth manifold is proper if f~1(K)
is compact in M; for any K compact in M.

To prove that a continuous map is proper it is sufficient to show that a sequence escaping out
from any compact in M; escapes out from any compact in Ms. When M; and Ms are subsets of
two compact manifolds with the induced topologies, then to prove that f is proper, it is sufficient
to prove that M7 is mapped in OMs through f.

Definition 13.20. A continous (resp. smooth) map f : M; — My between connected smooth
manifolds is a continuous (resp. smooth) covering map if for every y € My, there exists an open
neighborhood V' of g, such that f~!(V) is a union of disjoint open sets in M, each of which is
mapped homeomorphically (resp. diffeomorphically) onto V.

We recall some important properties of covering maps:

P1: The number of preimages of a point is a discrete set whose cardinality is independent from
the point.

P2: Given a continuous curve 7 : [0,1] — My and a point ¢; in M; such that f(q1) = v(0), then
there exists a unique continuous curve I'y, : [0,1] — M; such that 'y, (0) = ¢; and f(T'y,) =~
(see Figure [I3.2). The curve I'y, is called the lift of v (through ¢i).

P3: Consider two homotopic loop v,7" : [0,1] — Ms and a point ¢; in My such that f(q1) =
7(0) =~'(0). Let T'y; and I'}, the corresponding lift. Then the final point of I'y, and I'} are
the same, namely T'y, (1) = T (1).
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Theorem 13.21. Let M and M two smooth connected differentiable manifolds and f : My — My
be smooth. If

e f is proper,
e the Jacobian of f vanishes nowhere,
then f is a covering.

Proof. We recall that any proper continuous map f : M; — My between smooth manifold is closed,
ie., f(C) is closed in My for every closed set C' C M.

Since f is a local diffeomorphism, it is open. Since f is proper, it is closed. Hence f(M;) is
open and closed in My and, by connectedness, f is surjective. Fix y € Ms. Since f is a local
diffeomorphism, each point of f~!(y) has a neighborhood on which f is injective, so f~1(y) is a
discrete set. Since the singleton {y} is compact and f is proper, then f~!(y) is compact, hence
finite. Set f~1(y) = {x1,...,7}. Fix U; a neighborhood of x; where f is a diffeomorphism.
It is not restrictive to suppose that U; N U; = () for ¢ # j. Set V = ﬁlef(Ui). Since each
f(U;) is a neighborhood of y, V' is a neighborhood of y also. By replacing V' with the connected
component of V' \ f(M; \ U;U;) (which is open since f is closed) containing y, we can moreover
assume that V is connected and f~!(V) C U;U;. Hence if one set U; := U; N f~1(V) one can
check that f~1(V) = U;U;, disjoint union of its connected components, and that f : U; — V is a
diffeomorphism, as desired.

O

Often one would like to prove that f is indeed a diffeomorphism (at least this is what we will
need later, with the exponential map playing the role of f). Once it is known that the map f is a
covering map, to show that it is injective one should prove that it is a 1-sheet covering, i.e., that
the preimage of each point is a single point. The following corollary provides a criterium.

Corollary 13.22 (of Theorem I3:21)). Under the assumptions of Theorem [I3.21), if My is simply
connected, then f is a diffeomorphism.

Proof. Tt is enough to show that the map f is injective. Let x1 # x9 in Mj such that f(z1) = f(x2).
Take a continuous curve « : [0,1] — M; such that a(0) = z; and (1) = 21 homotopic to a point.
Its image v := foa :[0,1] — Ms is a closed loop in M such that v(0) = v(1) = y. Since My is
simply connected there exists a continous map

T:[0,1] x [0,1] — Mo

such that I'(0,¢) = y and T'(1,¢) = «(t). For s sufficiently closed to 0 the curve v4(t) = I'(s, t) stays
in the set V where f is a covering hence f~!(v) is the union on k closed loop and it should be
homotopic to a point. This gives a contradiction. O

Another criterium is given by the following result

Corollary 13.23 (of Theorem[I3.21]). Under the assumptions of Theorem[I3.21), if My is not simply
connected, but it is homeomorphic to S' x N, where N is simply connected, and we find a loop in
M, that project via f in a loop in M that is homotopic to S, then f is a global diffeomorphism.
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Figure 13.3: Proof of Corollary 13.23]

Proof. Assume by contradiction that the number of pre-images of a point is not one. We refer to
Figure[I33l Let I': [0,1] — M;j be loop in My, g1 = I'(0) and let y be the corresponding projection
in Mj as in the statement of the Corollary. Let ¢; be another preimages of v(0). We are going to
prove that ¢; = q;.

Consider a continuous curve I : [0,1] — M; connecting q; and ¢ (this is possible since M; is
connected a manifold and hence path connected). Consider its projection on Ms that is 5 := f(I).
Because of the topology of Ms, 7 is a loop winded n times around S; (n =0,1,2...).

If 4 is homotopic to Sj then it is homotopic to . Hence since I'(0) = ['(0) = ¢; and because of
property P3 we have that I'(1) = I'(1). As a consequence q; = ;.

If 4 is winded n times around S; with (n > 1) then we consider the loop I'" : [0,n] — M
obtained concatenating n times I'. Let us call 4™ its projection on My. We have that 7 is homotopic
to v". The same reasoning as before gives again q; = q.

If 4 is winded O times around S; (i.e., if it is contractible) we consider a contractible loop
% :[0,1] — Mj such that T°(0) = I'°(1) = ¢1. Let 4° be its projection. Since a covering is a
continuous map, the projection of a contractible loop is a contractible loop. Hence 7° is contractible
and we have that 4 and 4" are homotopic. The same reasoning as before gives again ¢ = qi.

O

Finding the cut locus via Theorem [[3.21] consists in the following steps. Notice that the method
is slightly different if the structure is Riemannian at the starting point (i.e. if the rank of the sub-
Riemannian structure at go is n) or not. Recall that if the structure is Riemannian at gp, then A,
has the topology of S"~! while if the structure has rank k < n at go then A,, has the topology of
Sk=1 5 Rk,

Step 1 Study the symmetries of the problem to identify points that are reached at the same time by
more than one geodesic. This analysis has the purpose of having a guess about the cut locus
and hence of the cut time for each geodesic.
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Step 2

Step 3
Step 4 (R)

Let us call the conjectured cut locus Cuty, and the conjectured cut times t¢,,.(0), 6 € Ag,

(notice that it may happen that t..:(0) is +00).

Notice that if Cuty, has a boundary then the points on the boundary are expected to be
conjugate points (since the set Cu—tqO comes from the symmetries of the problem it is usually
not difficult to verify that the points on his boundary are conjugate points). Conjugate points
on the boundary of Cu—tqo must be included in Cu—tqo.

We have two cases:

— If the structure is Riemannian at qo define N1 = {t6 | 0 € Ay, t € [0,tcut(0))} C Ty M.
Notice that in this case /N7 is an open star-shaped set always covering a neighborhood
of the origin in Tj; M.

— If the structure is not Riemannian at gy define Ny = {t0 | 0 € Ay, t € (0,tcu(6))};
Notice that in this case N7 is an open set that looks like a star-shaped set to which it
was removed the starting point and the annihilator of the distribution.

Define Ny = exp, (N1). Verify that Ny = M \ Cuty,. If this is not the case then the

conjectured cut locus and cut times were wrong. Indeed if there exists ¢ € Na \ (M \ Cuty,)
then in ¢ is reached by a geodesic at its conjectured cut time and by another geodesic before
its conjectured cut time and hence the conjectured cut times was wrong. On the other side if
there exists ¢ € (M \ Cutg,) \ Na then exp, |, is not covering M up to the conjectured cut
locus.

Remark 13.24. Notice that if the structure is Riemannian at gy and the conjectured cut locus
is the right one, then N is contractible (can be contracted to gy along the geodesics) and
hence it is simply connected.

Remark 13.25. Consider the problem of finding the optimal synthesis starting from 0 for
standard Riemannian metric on the circle S! = [—, ]/ ~ where ~ is the identification of —7
and 7. We have only two geodesics parametrized by arclength: ¢* () =t and ¢~ (t) = —t. By
symmetry the two geodesics meet at t = 0,7, 27,37, ... etc. Assume that we make the (false)
conjecture that the cut time is fu; = 37 (instead than Ze,; = 7). We have Cutg = S* \ {r}.
In this case Step 1 fails because Ny = S # S\ Cuty.

Prove that the Jacobian of exp,, vanishes nowhere in Ny (i.e., there are no conjugate points
in Ny for exp|n,). In the following, for simplicity, we assume that there are no non-trivial
abnormal extremals. If there are non-strict abnormal extremals (and non trivial too) then
there are always conjugate points (cf. Remark [8.42)). In this case one can apply the technique
explained here to the larger subset of Ny not containing points mapped to the support of
the abnormal. In this way one can obtain the optimal synthesis outside the support of the
abnormal and one should study the abnormal separately. See the bibliographical note for
some references.

Prove that exp, |y, is proper.

If the structure is Riemannian at gg and the conjectured cut locus is the right one, then Ny
should be simply connected (cf. Remark [3.24]). After having verified that Ny is simply con-
nected, Corollary (with N1, Na, exp,, playing the role of My, My, f) permits to conclude
that exp,|n, is a diffeomorfism and hence that the conjectured cut times and cut locus are
the true ones.
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Step 4 (SR) If the structure is not Riemannian at qo, Theorem [3.2T] permits to prove that exp, [y, is a
covering but one cannot conclude that f is a diffeomorphism using Corollary [[3.22]unless No is
simply connected. If N is not simply connected, to conclude that exp,, |n, is a diffeomorphism
one could for instance try to apply Corollary [3.23l Notice that if n = 3 and the structure is
not Riemannian at gy then N, is never simply connected.

Writing 7 (-) = expg, (-, 9)[07m} the optimal synthesis is then the collection of trajectories

{16() [0 € HT'(1/2)}.

Remark 13.26. The main difference between the case in which gy is a Riemannian point and when
it is not, is that in the second case ¢y should be remove it from N;. This should be done to satisfy
the hypothesis of Theorem [[3.2]] and in particular to guarantee that i) N is a manifold ii) there
are no conjugate points in N7 (the starting point is always a conjugate point when the structure is
not Riemannian at the starting point itself).

Notice that when ¢ is a Riemannian point, the starting point is not a conjugate point. Moreover
Ny is a manifold even without removing gy. Thanks to the fact that in this case V7 is star-shaped,
N5 is simply connected and one obtain directly that the exponential map is a diffeomorphism.

We are now going to apply this technique to a structure that is Riemannian at the starting
point and to a structure that is not Riemannian at the starting point.

13.5 The Grushin structure

The Grushin plane is the free almost-Riemannain structure on R? for which a global orthonormal

frame is given by
1 0

Such a structure is Riemannian out of the y axis that is called the singular set. The only abnormal
extremals are the trivial ones lying on the singularity. Indeed out of the singularity we are in
the Riemannian setting and a curve whose support is entirely contained in the singular set is not
admissible. We are then reduced to study normal Pontryagin extremals.

Writing p = (p1,p2), the maximized Hamiltonian is given by

1 1
H(x,y,p1,p2) = 5 (0, F1)* + (p, o)) = 5 (0} + 2°P3), (13.47)
and the corresponding Hamiltonian equations are:

‘i:pla plz_xpga
§=2a%ps,  pa=0.

Normal Pontryagin extremals parameterized by arclength are projections on the (z,y) plane of
solutions of these equations, lying on the level set H = 1/2.

374



13.5.1 Optimal Synthesis starting from a Riemannian point

Let us construct the optimal synthesis starting from a point (z,0), ¢ # 0 (taking the second
coordinate zero is not restrictive due to the invariance of the structure by y-translations). In this
case the condition H(x(0),y(0),p1(0),p2(0)) = 1/2 becomes p? + x3p3 = 1 and it is convenient
to set p; = cos(), py = sin(f)/zg, 6 € S'. The expression of the normal Pontryagin extremals
parameterized by arclenght is q(t,0) = exp(,, o)(t,0) = (z(t,0),y(t,0)) where

( z(t,0) =t+xzo, y(t,0) =0,

y(t,m) = —t + g, y(t,m) =0,

sin(0 + Lm0 (13.48)
z(t) = xp————>—,
sin(6) )
sin(2€+2M) if 6 g—f {07 7T}
2t + 2z cos(f) — L0y
y(t) = xo

\ 4sin(6)

Theorem 13.27. The cut time for the geodesic q(-,0) is

tcut(e) =

o

v
sin(6) ‘ '

For 8 =0 or 8 = w this formula should be interpreted in the sense that the corresponding geodesic
q(-,0) and q(-, ) are optimal in [0, 00).

Let us fir 6§ € (0,7) (being the case 6 € (mw,2mw) symmetric). For 6 ¢ w/2, the cut point
q(teut(0),0) is reached exactly by two optimal geodesics. Namely the geodesics: q(-,0) and the
geodesics q(-,m — ).

For 0 = /2 the cut point q(teut(0),0) is reached exactly by one optimal geodesic for which
teut(0) is also a conjugate point.

By direct computation one gets

Corollary 13.28. The cut locus starting from (x,0) is
Cut:co = {(—Z'(),y) € Rz ‘ Y € (_007 ——.Z'%] U [

the points (—xo, :l:%:ng) are also conjugate points.

The optimal synthesis for Grushin plane with 2o = —1 is depicted in Figure [13.41

Proof of Theorem [13.27

We are going to apply the extended Hadamard technique to the case in which the starting point is
Riemannian.

Step 1: Construction of the conjectured cut locus and of the sets N; and Ns.
By a direct computation one immediately obtains:
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Figure 13.4: A: the optimal synthesis for the Grushin plane starting from the point (—1, 0), together
with the sub-Riemannian sphere of radius 4. B: all geodesics up to length 6 with the corresponding
wave front.
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Lemma 13.29. For 0 # {0, 7}, we have

(figlo) o

Moreover the determinant of the differential of the exponential map is:

T 1

y T — 97150) = (_330, §$3W)

_T
“0%in()

124 £+ tag if =0,
D, 6,20) — < 0yx(t,0)  Dpa(t, 0) ) ) +§ Lﬁ)ﬂ?)o if6 =,
Fry(t,0)  Opy(t,0) 20 (xo ) teos(o) cos(9+“‘i;;(‘”)>
7 (0) , if6¢{0,7}.

In particular D(|zow|,7/2,2¢) = 0.

We then conjecture that the cut time of the geodesic q(t,0) is teu(6) = ‘ﬂfoﬁ‘ and that the cut

locus is
ra e 2 T 2 T 2
Cutxo = {(—.Z'(),y) eER ‘ Yy € (_007 _ExO] U [5‘730700)}
We have then in polar coordinates
Ny ={(p.0) | p < |mo—r|}
1=p p Osin(9) .

In cartesian coordinates
Ny ={(p1,p2) € T*R? : |p2| < 7}.
And _
Ny = exp(N1) = {(z,y) € R? | (z,y) ¢ Cuty,}

Step 2: Study of the conjugate points
In this step we have to prove that there are no conjugate points in N7. In other words we have to
prove the following Lemma;:

Lemma 13.30. The geodesic q(-,0) has no conjugate points in [0,tcyu(6)).

Proof. Since the zeros of D(-,6,x() are not explicitly computable we proceed in the following way.
By symmetry we can assume zg > 0 and 6 € [0, 7]. We have that

e D(0,6,x9) = 0. Notice however that this does not mean that ¢ = 0 is a conjugate time.
Indeed in z( the structure is Riemannian and D(0, 0, z() vanishes only as a consequence of
the choice of polar coordinates.

o D(teut(0),0,20) = mad Z?ﬁi g. This quantity is always larger than zero except for § = 7/2
where it is zero.

(xo + tcosh) (sin(@ + tS;_H@)>

0

° 8tD(t,9,.Z'()) = Sin 0

Let us study when this function is zero in the interval (0, tc,:(6)). We have two type of zeros.

. Notice that this function is positive in t = 0.

377



— Type one when g + tcosf = 0, which means t = —_%. This value belongs to
(0,tcut(9)) when @ € (6, 7] where § = — arctan(7) ~ 1.88. One immediately verify that
this zero correspond to a minimum of D(-,0,zy) and that the value of this minimum is
positive.

— Type two when 6 + % = kr with £ =0,1,2,... which means t = 222 (k7 — 6). This

sin 6

value belongs to (0, eyt (0)) if and only if £ = 1. One immediately verify that this zero
correspond to a maximum of D(-, 6, z() and that the value of this maximum is positive.

By this analysis it follows that D(-, 0, x) is a function that is zero in zero; it has positive derivative
in zero; it is positive at tcu(0) (zero only when 6 = 7/2); it has a maximum and a minimum
(possible only a maximum) in which it is positive.

It follows that D(-,0,x¢) is never zero in (0, % (f)). Since ¢ = 0 is not a conjugate point, it
follows that there are no conjugate points in [0, ¢yt (6)).

O

Step 3 We are now going to prove that the map exp : Ny — Ny is proper. But this is obvious since

e all points of the form (p;, £7) are mapped in points of Cuty,;

e the image of any sequence in N; with p; — oo (resp. p; — —o0) is mapped in a sequence
tending to the point (0, 00) (resp. (0, —00)).

Step 4 (R) Since N is simply connected, the application of Corollary [3.22] permits to conclude
that exp is a diffeomorphism between Ni to Ns. As a consequence the conjectured cut locus and
cut times are the true ones.

13.5.2 Optimal Synthesis starting from a singular point

Let us construct the optimal synthesis starting from a singular point. By invariance of the structure
by y-translations we can assume that the starting point is the origin. In this case the condition
H(z(0),y(0),p1(0),p2(0)) = 1/2 becomes p? = 1. We have then p; = +1. Setting p(0) =
a, the expression of the normal Pontryagin extremals parameterized by arclenght is ¢ (¢,a) =
(x%(t,a),y(t,a)) where

at(t,0) = £t, y(t,0) =0,

. (13.49)
() =+ , y(t):w} ifa#0

a 4a?

Theorem 13.31. The cut time for the geodesic ¢*(-,a) is
™

tcut(a) = |;

For a = 0 this formula should be interpreted in the sense that the corresponding geodesics ¢*(-,0)
are optimal in [0,+00). The cut locus is

Cutg,0) = {(0,y) € R* | y # 0}.
and each point of the cut locus is reached exactly by two optimal geodesic.

The optimal synthesis starting from the origin for Grushin plane is depicted in Figure [13.5]
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Figure 13.5: A: the optimal synthesis for the Grushin plane starting from the origin, together with
the sub-Riemannian sphere for t = 1. B: all geodesics up to time 1 with the corresponding wave
front.
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Proof of Theorem 13.31]

We give a proof of Theorem [I[3.31] by making a direct computation, without using the extended
Hadamard technique. See also Exercise

Due to the fact that the family of geodesics {¢~ (-, a)}qecr can be obtained from the family
{q" (-, a)}aer by reflection with respect to the y axis, any geodesic starting from the origin has lost
its optimality after intersection with the y axis. From the expression of 2% (¢,a) one gets that for
a given value of a, the first intersection with the y axis occurs at time t = 7/|al.

Moreover the family {¢*(-,a)},cr+ can be obtained from the family {¢* (-, a)},cgr- by reflection
with respect to the x axis. Notice that the positive (resp. negative) part of the x axis is the support
of the geodesic g7 (-,0) (resp. ¢~ (+,0)) and no other geodesic starting from the origin can intersect
again the x axis since y(t,a) is monotone in ¢.

Then we can restrict ourself to the octant x > 0 y > 0 and we would like to prove the following:

Claim. For every & > 0 and g > 0 there exists a unique a > 0 and ¢t € (0,7 /a| such that
rt(t,a) =7 (13.50)
y(t,a) = 4. (13.51)

Proof of the Claim. Fix a. Let us try to find ¢(a) from equation (I3.50]). We have that such an
equation has no solutions if 1/a < Z and has two (possibly coinciding) solutions if 1/a > Z. Such
solutions are

arcsin(aZ
tl (a) — #7

T — arcsin(ax
ta(a) = —()

a
Notice that t1(a) < ta(a) and t1(a) = ta(a) if and only if 1/a = z.
Let us compute y(t1(a),a) and y(t2(a),a). We have

y(ti(a),a) = ﬁ (2arcsin(az) — sin(2 arcsin(az))).

Using the formula sin(2arcsin ) = 2£4/1 — &2, we have

1
y(ti(a),a) = 12 (2arcsin(az) — 2azV/1 — a?z?).
a

It is not difficult to check that such function is continuous and monotone increasing in the interval
a € [0, 2]. It take all values from 0 to 7z°/4.
Similarly

1
y(ta(a),a) = 12 (27 — 2arcsin(az) + 2azV/1 — a?22).
a

It is not difficult to check that such function is continuous and monotone decreasing in the interval
a € [0, 2]. It take all values from oo to 722 /4.

The functions y(t1(a),a) and y(t2(a),a) are pictured in Figure

Concluding, given  and 7, we have two cases.

o If § < 77%/4 then it is in the image of y(t1(a),a). Since y(t1(a),a) is monotone, one can
invert it and getting the required unique value of a. The corresponding value of ¢ is then
obtained from t(a).
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nz? /4

Figure 13.6: Proof of Theorem [13.311

o If § > 7z%/4 then it is in the image of y(t2(a),a). Since y(t2(a),a) is monotone, one can
invert it and getting the required unique value of a. The corresponding value of ¢ is then
obtained from t3(a).

Exercise 13.32. Prove Theorem [[3.3Tusing the extended Hadamard technique. Notice that in this
case V7 is not connected, hence one should apply twice the technique to its connected components.

13.6 The standard sub-Riemannian structure on SU(2)

The Lie group SU(2) is the group of unitary unimodular 2 x 2 complex matrices

SU2) = {( 5 ’ ) € Mat(2,C) | |af? + |B]2 = 1}.

The Lie algebra of SU(2) is the algebra of antihermitian traceless 2 x 2 complex matrices

su(2) = {( i% _fa ) € Mat(2,C) | aeR,ﬁeC}.

A basis of su(2) is {p1,p2, k} where
1 0 1 170 4 174 0
p1—§<_1 0> p2—§<i 0> k_§<0 _Z.>, (13.52)
whose commutation relations are [p1,p2] =k, [p2,k] =p1, [k, p1] = p2.
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For su(2) we have Kil(X,Y) = 4Tr(XY). In particular, Kil(p;,p;) = —26;;, Kil(p;, k) = 0,
Kil(k, k) = —2. Hence

1
(1) = —5Kil(. )
is a positive definite bi-invariant metric on su(2) (cf. Section [[.2.3] and Exercice [T.4T]).
If we define
d = span{p1,p2}, s =span{k}
and we provide d with the metric (- |-)|q we get a sub-Riemannian structre of the type d ® s (cf.
[Z.8.1).
Remark 13.33. Observe that all the d @ s structures that one can define on SU(2) are equivalent.
For instance, one could set d = span {po, k} and s = span {p; }.

Recall that SU(2) ~ S3 = {( g > eC?| o>+ |8 = 1} via the map

SU(2) - 53

“(5a) - ()

In the following we often write elements of SU(2) as pairs of complex numbers.
Notice that in this representation the sub-group e®* is

((3) -1

Let us write an initial covector in su(2) as xo+yo, where 2y € d and yy € s. To parametrize geodesics
by arclength, i.e. to be on the level set % of the Hamiltonian, we have to require (zq | zg) = 1. It is
then convenient to write

Expression of geodesics

xo +yo = cos(0)py +sin(@)pa + ck , €S, ceR.

x0 Yo

Using formula (7.44]), we have that the normal Pontryagin extremals starting from the identity are
(here A\ = (0, ¢))

eXPId(t, )\) _ 9(97 c; t) .— et@o+yo) p—tyo — o(cos(0)pr+sin(O)pa+ck)t o—ckt _

(<t i t ety g t
PGV  cos($) cos(VIT @) +i (“°S<2>;§FQ> - sm<%>cOs<¢1+—czg>>
sin(v14+c2%)

Remark 13.34. We have the following cylindrical symmetry reflecting the invariance of the sub-
Riemannan structure with respect to rotations along the k axis.

1 0
st = (o o )ato.cn
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Theorem 13.35. The cut time for the geodesic g(0,c,t) coincides with its first conjugate time. It
1s independent from 6 and it is given by the formula

21
Vit

Moreover (0, c;teui(c)) is independent from 6. Hence each cut point is reached by an infinite
number of geodesics (a one parameter family parameterized by 6).

teut (C) =

Since the largest cut time is obtained for ¢ = 0 we have
Corollary 13.36. The diameter of SU(2) with the standard sub-Riemannian structure is 2m.
By a direct computation one gets

Corollary 13.37. The cut locus starting from the identity is

Cutid:eRk\{z'd}:{< ‘g >Hay2:1,a7eo}.

Moreover each cut point is also a conjugate point.

Remark 13.38. Notice that with our definition of cut locus, the starting point is never a cut point.
Proof of Theorem [13.30 We are going to apply the extended Hadamard technique.
Step 1: Construction of the conjectured cut locus and of the sets N; and Ns.

By a direct computation one immediately obtain:

Lemma 13.39. For every 61,05 € S, we have

27 >: ( — cos (\/:fﬁ) ‘H.Sin(\/:?cﬁ) )

27
01,¢c;— ) =g 01,c;, ——
g<1 V1+c2> g<1 V1+e? 0
Moreover the determinant of the differential of the exponential map is zero if and only if
t
sin <\/ 1+ 02§> <2 sin (\/ 1+ 62%> — V14 c?tcos (\/ 1+ 62%>> =0. (13.53)

In particular \/% is a congugate time for the geodesic g (0,c;-).

We then conjecture that the cut time of the geodesic g(,¢;-) is teut(c) = \/1217 and that the

Cutid:eRk:{<(g>||a|2:1,0z750}.

Ny = {ap1 + bpa + ck € su(2) | (a,b) # (0,0), |c| < V2m —1}

cut locus is

We define

and
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Ny = exp(N1) = {g € SU(2) | g ¢ Cutiq}

Step 2: Study of the conjugate points
We are going to prove that the differential of the exponential map never vanishes in N7 and hence
that there are no conjugate points in Ny for expyy|n,. Conjugate times are given by formula (I3.53]).

The first term vanishes at times \/2171—7;2’ where m = 1,2,.... The second term vanishes at times
2Tm

T where {z1,z2,...} is the ordered set of the strictly positive solutions of x = tan(z). Since

x1 ~ 4.49 > 7, the first positive time at which the geodesic g(,¢;-) is conjugate is tcu¢(c), Hence
the differential of the exponential map never vanishes in Nj.

Step 3 We are now going to prove that the map exp : Ny — N> is proper. But this is obvious
since all points of N7 are mapped in points of INs.

Step 4 (SR) By Theorem [I3.21] we know that exp : Ny — Nj is a covering. It remains to prove
that it is a 1-covering. As already mentioned we cannot apply Corollary since Na is not
simply connected. Let us show that the hypotheses of Corollary I3.23] are verified. The topology
of Ny is those of S* x R2. We are left to find a loop in N; that is mapped via the exponential map
in a loop homotopic to S'. Indeed as we know from Chapter [I0}, the nilpotent approximation of
every 3D-contact structure is the Heisenberg group. For the Heisenberg group a loop ¢ winding
once the cut locus is the image through the exponential map of a loop #;.

Since for regular maps, the structure of the preimage of a set does not change for small per-
turbation of the map it follows that for SU(2) a small loop winding Cutyq is the image through
the exponential map of a loop ¢;. Then Corollary [3.23] permits to conclude that exp|y, is a
diffeomorphism. As a consequence the conjectured cut locus and cut times are the true ones.

Remark 13.40. The argument above apply to any 3 dimensional structure that is genuinely sub-
Riemannian at the starting point.

Exercise 13.41. Corollary [[3.36]says that the diameter of SU(2) for the standard sub-Riemannian
structure is 2. Prove that the diameter of SU(2) for the standard Riemannian structure (i.e., the
structure for which {p;,pe2,k} is an orthonormal frame) is 27 as well.

A representation of the cut locus for SU(2) is given in Figure [3.7

Exercise 13.42. Consider the d @ s sub-Riemannian structure on SO(3) introduced in Section
By using the techniques presented in this chapter construct the optimal synthesis. Represent
SO(3) as a full three dimensional ball with opposite points on the boundary identified. Call
this “boundary” RP2. Prove that the cut locus is the union of the subgroup e®¢ = e without
the identity and RP2. Compute the diameter of SO(3) for this structure. Compare it with the
diameter of SO(3) for the standard Riemannian structure (i.e. the structure for which {ey,es,e3}
is an orthonormal frame). An alternative technique to compute this optimal synthesis is provided

in Section I3.71

Exercise 13.43. Let G = SL(2) and consider the left-invariant sub-Riemannian structure for
which an orthonormal frame is given by

X1(9)2L9*<(1) _01>, X2(9)2L9*<(1) (1)>

Prove that this structure is of type d @ s for the metric induced by the Killing form. Construct the
optimal synthesis starting from the identity.
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Identified points

W

Identified points

Figure 13.7: We recall a standard construction for representing S? in a two dimensional space and
53 in a three dimensional one. Consider S? C R? and flatten it on the equator plane, pushing
the northern hemisphere down and the southern hemisphere up, getting two disks D? joined along
their circular boundaries. The construction is drawn in the up-left side of the figure. Similarly,
consider S3 C C? ~ R*: it can be viewed as two balls joined along their boundaries. In this case
the boundaries are two spheres S2. A picture of S is drawn in the up-right side of the figure.
In this representation, the cut locus is given the the great circle passing through the identity, the
north and the south pole (the identity should then be removed, cf. Remark [13.2]).
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13.7 Optimal synthesis on the groups SO(3) and SO, (2,1).

In this section we find the time optimal synthesis for the structures on SO(3) and SO4(2,1)
introduced in Section [T.8.3l Here, instead of using the extended Hadamard technique, we use a
more geometric approach using the Gauss-Bonnet theorem.

To describe these synthesis it is very convenient to use the interpretation of geodesics as parallel
transports along curves of a constant geodesic curvature in the unit sphere S? and the Lobachevsky
plane H (see Section [T.8.3)).

According to the general scheme, we use nontrivial symmetries of the structure that preserve the
endpoints of the geodesics in order to characterize the cut locus. In the cases under consideration,
the sub-Riemannian space is identified with the spherical bundle of the surface. This allows us to
give a nice and clear description of the cut locus in terms of natural symmetries of the surface.
As we'll see, the Gauss-Bonnet formula plays a key role. Here we give a brief description of the
cut locus; detailed proofs can be found in [24] 23] 25] but we advise the reader to recover them by
him (her)self.

The projection of a geodesic to the surface is a curve of a constant geodesic curvature. First
we describe symmetries of the surface that preserve endpoints of the curve. We use two essentially
different types of symmetries. The first one concerns the case when the curve is closed, i.e. the
initial point is equal to the final one. In this case, the initial and final velocities are also equal.
The symmetries are just rotations of the surface around the initial point of the curve. We obtain
a one-parametric family of symmetries where the angle of rotation is a parameter of the family.

The second type concerns any curve. If the endpoints of the curve are different then the
symmetry is the reflection of the surface with respect to the geodesic (of the Riemannian surface)
that contains both endpoints. If the endpoints are equal (the curve is closed) then the symmetry is
the reflection of the surface with respect to the geodesic that is tangent to the curve at the initial
point.

Now we turn to the parallel transport. Let v : [0,1] — M be a curve of constant geodesic
curvature p € R and the length ¢ > 0. Let vg € S,()M and let 6y be the angle between §(0) and
vo Then the parallel transport of vy along 7 is a vector v1 € S,(1)M such that the angle between
4(1) and v; equals 6y + pl.

A rotation around a point does not change neither the geodesic curvature nor the length of the
curve; hence the parallel transport along the curve does not change as well. Let (1) = v(0) and
I' € M be a compact domain such that v = 9I'. The Gauss-Bonnet formula implies a relation:

pl =21 £+ Area(T").

Let ¢ € M; it follows that the rotation of the circle S;M on any angle can be realized as the
parallel transport along a closed curve of a constant geodesic curvature (recall that angles are
defined modulo 27). We see that for any vg,v; € S;M there exists a one-parametric family of
sub-Riemannian geodesics of the same length that connect vy with vy.

Now we consider reflections. Let & be the shortest path connecting (1) with v(0) and ¢ be the
angle between +(0) and £(1). Then the angle between #(1) and £(0) equals —¢ (see Figure I3.8).

The reflection of M with respect to the geodesic changes the sign of the geodesic curvature
curvature and the sign of ¢.

To compute the parallel transport along the curve + and along the reflected curve we choose
the directions of £(1) and £(0) as the origins in the circles SyyM and S, qyM. Then the direction
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Figure 13.8: Construction of the optimal synthesis on SO(3) and SO, (2,1). Definition of the angle
¢. (The picture refers to SO(3))

of 4(0) is —¢ and the direction of 4(1) is +¢. Hence the parallel transport of (1) along ~ has the
direction
O+ pl+ o= pl+20.

The parallel transport of the same vector along the reflected curve has the direction —pf — 2¢. The
parallel transports along the both curves coincide if and only if

2(pl +2¢) = 0 mod 2.

Let us consider the curve ¥ = v U ¢ and the domain I' C M such that 4 = 9T (see the figure).
The Gauss-Bonnet formula (1.27) applied to I' gives a relation:

pl + 2¢ £+ Area(T") = 27.

If M is the unit sphere, then pl + 2¢ = 2 — Area(T"). The case pl + 2¢ = 7 is a natural candidate
to cut. If M is the Lobachevsky plane, then pf + 2¢ = 2w 4+ Area(I') and a natural candidate to
cut is the case pf + 2¢ = 3w. Both cases are characterized by the identity:

Area(T") = 7.

We are now ready to describe the optimal synthesis. Let M be either unit sphere in the three-
dimensional Euclidean space or hyperbolic plane in the Minkowsky space.

1. Geodesics are parallel transports along curves of a constant geodesic curvature in M, and
curves of a constant geodesic curvature are just the intersections of M C R? with affine
planes.
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2. Let t — ~(t) is a parameterized curve of a constant geodesic curvature in M and I'y C M be
the smaller domain among two domains whose boundary is the concatenation of 7|y, and
the shortest path connecting v(¢) with v(0). We assume that + is oriented in such a way that
I'y stays to the right from ~ (as in the figure). The cut time ¢, for the parallel transport along
~ is as follows:

ty = min{t > 0: y(t) = v(0) or Area(I'y) = 7}.

If M = S2, then the maximal length until the cut point (the sub-Riemannian diameter of
SO(3)) is equal to v/37 and is achieved when the equations ~(t) = v(0) and Area(I';) = 7 happen
simultaneously. If M = H, then the surface is not compact and the diameter is equal to +oo.

13.8 Synthesis for the group of Euclidean transformations of the
plane SE(2)

The group of (positively oriented) Euclidean transformations of the plane is

cos(f) —sin(d) | =1
SE(2) = sin(@) cos(0) |x2 |, #€ ST, z,2€R
0 0 |1

The name of this group comes from the fact that if we represent a point of R? as a vector
(y1,y2,1)! then the action of a matrix of SE(2) produces a rotation of angle # and a translation of
(x1,22) (cf. Section [[.2.2)). The Lie algebra of SE(2) is

se(2) = span{ey, e, e, },

where
0 011 0 010 0 —-110
e1 = 0 010 |, e= 0 011 , ep = 1 010
0 010 0 010 0O 0 1|O0
The commutation relations are:
[617 62] = 07 [617 67‘] = —€g, [627 67«] = €1. (1354)

The sub-Riemannian problem on SE(2) is obtained by declaring {e1, e, } to be an orthonormal
frame. In this way the sub-Riemannian problem can be written as (here 7" > 0 and go, g1 are two
fixed points in SE(2)),

g = g(uey + ve;), (13.55)

/T Vu(t)? + v(t)? dt, — min, (13.56)
0

9(0) =90, 9(T)=g1. (13.57)

Notice that since we are in dimension 3 and with one bracket one get the Lie algebra se(2),
this problem is a contact sub-Riemannian problem and hence there are no non-trivial abnormal
extremals.
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In coordinates ¢ = (z1,x2,6) this problem become

g =uX1(q) +vX,(q), (13.58)
T
/ Vu(t)? + v(t)? dt — min, (13.59)
0
q(0) = qo, q(T) = qu. (13.60)
where
cos() 0
X;=| sin(9) |, x,.=0]. (13.61)
0 1
Notice that if we define
sin(0)
—Xo=[X1,X,]=| —cos(d) |,
0

the commutation relations are the same as (I3.54)) i.e., [X1, X2] = 0, [X1, X,| = — X and [X», X, | =
Xi.

Exercise 13.44. Prove that every left-invariant sub-Riemannian structure on SE(2) is isometric
to the structure presented above, modulus a dilation in the (x1,z9) plane.

13.8.1 Mechanical interpretation

Recall that a point (x1,x2,0) € SE(2) can be represented as a unit vector on the plane applied
to the point (z1,x2) with an angle 6 with respect to the z; axis (see Figure [3.9] (A)). Then the
optimal control problem (I358])-(I3.61]) can be interpreted as the problem of controlling a car with
two wheels on the plane. More precisely x1 and x5 are the coordinates of the center of the car, 4 is
the orientation of the car with respect to the z1 direction (see Figure [[3.] (B)). The first control
u makes the two wheels rotating in the same directions and makes the car going forward with
velocity u; the second control v makes the two wheels rotating in opposite direction and makes
the car rotating with angular velocity v (see Figure (C)). An admissible trajectory in SE(2)
can be represented as a planar trajectory with two type of arrows: an “empty” arrow giving the
direction of the parameterization of the curve and a “bold” arrow indicating the orientation of the
car (see Figure [I3.91 (D)). Notice that in the drawn trajectory there is a cusp point where the car
stops to go forward and starts to go backward. Indeed a smooth admissible trajectory in SFE(2)
can have cusp points in this representation.

13.8.2 Geodesics

The maximized Hamiltonian for the problem (I358)), (I3.59), (I3.60), (I3.61) is

H(q,p) = 1 ((p, X1>2 + <p, X2>2) .

2
Setting p = (p1,p2,p9), p1 = P cos(pa), p2 = Psin(p,) we have
1 1
H = 3 ((pl cos 6 + pa sin@)2 —l—p(%) =3 (P2 cos2(9 — Da) —l—p(%) .

389



‘117

X1
T T ——» orientation of the car
—> orientation of the parameterization
(A (B) (©) (D)

Figure 13.9: Mechanical interpretation of the problem on SE(2).

The Hamiltonian equations are then

OH 0H
ri = —— — P 6 — Pa 67 )] = — =Y
I o cos(0 — pg) cos D1 e 0
OH 0H
ro — — — P 6 — Pa i 67 Ny = — =Y
T s cos(f — pg) sin D2 .
. OH 0H 1
== o = — = = P2sin(2(0 — pa)).
0 apy PO Do 50 — 2 sin(2(0 — pa))

Notice that this Hamiltonian system is integrable in the sense of Liouville, since we have enough
constants of the motion in involution (i.e. H,pi,ps or equivalently H, P,#). The last two equations
gives rise to

é:%P2wxu9—p@y

Now setting § = 2(6 — p,) € 25! = R/(4wZ) that is the double covering of the standard circle
St = R/(27Z), we get the equation

f = P?siné. (13.62)
This is the equation of a planar pendulum of mass 1, length 1, Where P? represents the gravity (see
Figure I3.10). In the following we will have to remember that 6 = 2py.

Initial conditions. By invariance by rototranslation we can assume z1(0) = 0, 22(0) =0, (0) =0
which means 6(0) = —2p,. Geodesics are then parameterized by p1, po (which are constants) and by
pe(0) (or alternatively by P, pg,pe(0)). If we require that geodesics are parametrized by arclenght,
we have H(0) = % hence the initial covector belongs to the cylinder

pi+po(0)° =1, ie, P2 cos® pq + pp(0)* = 1.

Fixed an initial covector p(0) on the cylinder H(0) = 1/2 one get P, p,, pp(0). Then one has to
consider the pendulum equation (I3.62) with gravity P? and initial condition

0(0) = —2pq,  0(0) = 2py(0).
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gravity = P2

Figure 13.10: The inverted pendulum

Once that the pendulum equation has been solved one obtains

o(t) = Tt) + Pa (13.63)
x1(t) = /Ot z1(s)ds = P/Ot cos(0(s) — pg) cosB(s) ds = P/Ot cos <?> cos <@ +pa> ds
) ) (13.64)
To(t) = /Ot o (s) ds = P/Ot cos(0(s) — pa) sin B(s) ds = P/Ot cos (%) sin (@ —I—pa> ds
(13.65)

Qualitative behaviour of the geodesics.
Equation (I3.62)) admits an explicit solution in terms of elliptic functions. However the qualitative
behaviour of the solutions can be understood without integrating it explicitly.

In particular this equation admits a constant of the motion (the energy of the pendulum)

1- _
H, = 592 + P?cos@.

Notice that this constant of the motion is not independent from H. Indeed a simple computation
gives:

H,=4H — P2
Since we are working on the level set H = 1/2, it will be much more convenient to work directly
with H that here we write in terms of the new variables

1 0
H= 3 <P2 cos? <§> +p§> .

The level sets of H are plotted in Figure [3.111 We are interested to the level set H = 1/2.
Depending on the value of (P, p,,pp(0)) different types of the trajectories of the pendulum are
possible. Notice that

e when 6 passes monotonically through m, then the projection on the (z1,22) plane of the
geodesic has a cusp.
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Figure 13.11: Trajectories of the inverted pendulum

Geodesics are parameterized by (P, pa,pe(0)) € H~1(1/2). Changing P correspond to change
the gravity of the pendulum. This changes the period of the trajectories oscillating close the
stable equilibrium and the time between two cusps. Notice that P enters also in the equations
for x1(t) and z2(t). Changing p, and py(0) corresponds to change the starting point on the
pendulum trajectory.

Classification of normal Pontryagin extremals.
We have the following type of trajectories (see Figure [3.12):

Trajectories with P > 0 and corresponding to the rotating pendulum. In this case 0(t)
increases monotonically. Notice that the projection of the geodesics on the plane (z1,x2) has
a cusp each time that 6 passes through 7 + 2k7 with k € N.

Trajectories with P > 0 and corresponding to the oscillating pendulum. In this case 0(t) is
oscillating either around 7 or around —=. Notice that the projection of the geodesics on the
plane (z1,x2) has a cusp each time that 6 passes through 7 or —7. One can easily check that
these trajectories have an inflection point between two cusps.

Trajectories with P > 0 and staying on the separatrix (but not on the unstable equilibria).
The projection on the (x1,x2) plane of these trajectories has at most one cusp.

Trajectories with P > 0 and staying on one of the unstable equilibria. In this case we have
po =0 and p, = 0 (or p, = 2m). As a consequence we have (t) =0, x1(t) = £t, x2(t) = 0.

Trajectories corresponding to P = 0 in this case each level set of the pendulum is an horizontal
line and equation (I3.62) is reduced to 6(t) = 0. then we have 6(t) = —2p, + 2pp(0)t, with
pe(0) = £1. As a consequence we have 6(t) = +t, x1(t) = 0, z2(t) = 0.
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rotating pendulum

oscillating pendulum

separatrix

unstable equilibrium

I~ -
1 L

zero gravity pendulum

Figure 13.12: Geodesics for SE(2)

Remark 13.45. Notice that trajectoreis with P > 0 and staying at one of the two stable equilibria
have H = 0 and they are abnormal extremals. For these trajectories § = £+, p, = F7/2. Hence
x1(t) =0, z2(t) =0, 6(t) = 0. This is the trivial trajectory staying fixed at the identity.

Optimality of geodesics.
Let q(+) = (x1(-), z2(-),6(-)) defined on [0,T] be a geodesic parameterized by arclength. Define the
two mapping of geodesics

S:q() = gs() and T : g(-) = qr(")
in the following way. In the mechanical representation given above, consider the segment £ join-
ing (21(0),22(0)) and (x1(T),z2(T)) and the line ¢+ passing through the middle point of ¢ and
orthogonal to /.

Map S the trajectory gs(-) is the trajectory obtained by considering the reflection of ¢(-) with respect
to £+

Map T The trajectory gr(-) is the trajectory obtained by considering the reflection of ¢(-) with respect
to the middle point of £.

In both cases the “bold arrows” should be reflected accordingly. The “empty arrows” giving the
direction of the parameterization should be oriented in such a way that the initial (resp. final) point
of gs(+) is q(0) (resp. ¢(T")). The same holds for gr(-). See Figure I3.13]
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4 map S map T

Figure 13.13: Maps S and T. Courtesy of Y. Sachkov.

Remark 13.46. Notice that if ¢(-) is defined in [0, 7] then in general Sq(-) is different from S(q(-)|j0,4)
for t € (0,T). The same applies to Tq(-).

Definition 13.47. Let ¢(-) defined on [0,7] be a geodesic. We say that ¢(7") is a Maxwell point
corresponding to S (resp. T) if q(+) # ¢s(-) (resp. ¢(-) # qr(+)), ¢(0) = ¢s(0) and ¢(T") = ¢s(T) (resp.
qo(T) = qr(T))-

Examples of Maxwell points for S and T are shown at Figures [3.141 We have the following

Theorem 13.48 (Yuri Sachkov). A geodesic q(.) on the interval [0,T], is optimal if and only if
each point q(t), t € (0,T'), is neither a Mazwell points corresponding to S or T for q(-)|o nor the
limit of a sequence of Mazwell points.

The cut locus for the sub-Riemannian problem on SE(2) has been computed by Y. Sachkov
and it is pictured in Figure
13.9 The Martinet sub-Riemannian structure

Let us write a point of R? as (x,y, z). The Martinet sub-Riemannian structure is the structure in
R3 for which an orthonormal frame is given by

1 0
Xi=[ 0], xo=1{o0|. (13.66)
y? 1

2
Remark 13.49. This problem can be formulated as an isoperimetric problem in the sense of Sec-
2
tion @42l In this case the base manifold is given by the points (z,y) € R? and the form A = Ydx.
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S

Cut Locus

Cut Locus

R2 seen as an open disc \

SE(2) ~R? x St
seen as a full torus with no boundary

Figure 13.15: Cut locus (dark region) from the identity for the sub-Riemannian problem on SE(2).
Courtesy of Y. Sachkov. In this picture SE(2) (that has the topology of R? x S1) is represented as
a solid torus without boundary given by By x S', where By is the 2D disc without boundary.

395



In other words the trajectory realizing the sub-Riemannian distance for the Martinet problem be-
tween (0,0,0) and (x1,y1,21) is a curve v(t) = (z(t), y(t), 2(t)) defined in [0, T] steering (0,0,0) to

(z1,y1,21), for which . )
_ . _ @x .
LA = /0 A(y(t))dt = /0 5 (t)dt = 2,

and whose projection in the (z,y)-plane is the shortest for the Euclidean distance.

This structure is bracket generating, but it is not equiregular. Indeed we have

0 0
X3 :=[X1,Xo] = 0 , (X3, Xo]=1[ 0

Hence the structure is 3D-contact out of {y = 0} and to get the full tangent space in every point
one need one more bracket.

In the following two sections we are going to construct the Pontryagin extremals. We already
know Section that the support of abnormal extremals should be contained in the set {A = 0}
that is the plane {y = 0}. Such set is called the Martinet surface. Let us use the notation

pP= (p:mpy,pz)-
13.9.1 Abnormal extremals

For abnormal extremals we have for every t,

y(t)?
2

(p(t), X1(q(t)) = pu(t) +
(p(t), X2(q(t)) = py(t).

Differentiating with respect to ¢ we obtain for almost every t
0 = uz(t)(p(t), [X2, X1](q(t))) = —u2(t)(p(t), X3(q(t))) = ua(t)p=(t)y
0 = w1 (£)(p(t), [X1, X2](q(£))) = ua (t){p(t), X3(q(t))) = —ur(t)p-(t)y(t).

Hence if v : [a,b] — R3 is an abnormal extremal, either it is trivial (i.e., v(t) = v(0)) or we have

(p(t), X3(q(t))) = p=(t)y(t) = 0. (13.67)

Since (ps, py, Px) cannot vanish, we have that + is contained in the Martinet surface i.e., vy([a, b]) C

{y =0}
To obtain the controls corresponding to ~ let us differentiate once more (I3.67). We have for
almost every t

0 =ur(t)(p(t), [X1, X5](q(#))) + ua(t){p(t), [ X2, X3](q(t))) = —ua(t)p-(t)

where we used the fact that [X7, X3] = 0 and [X3, X3] = (0,0, —1)". Since again (pg, py, px) cannot
vanish we obtain

0 Pz (t),
0

o~

(
(

uz(t) =0 for almost every t.

Indeed we already knew this fact since the only way to stay on the Martinet surface is to have
uo = 0 almost everywhere. The value of w; is then obtained by requiring that ~ is parametrized
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by arlength, i.e. |ui(t)] = 1 for almost every ¢t. Notice that we have many of such trajectories:
indeed the control u; can be any measurable function satisfying |uj(¢)] = 1. Such control can
switch arbitrarily between 1 and —1. Because of Remark [[3.49] only trajectories corresponding to
a control that is almost everywhere constant are optimal. We then obtain the following.

Proposition 13.50. Arclength parametrized trajectories admitting an abnormal lift are Lipschitz
trajectories vy : [a,b] — R3 lying on the Martinet surface and corresponding to us = 0 almost
everywhere. Among these trajectories, only those for which uy is constantly equal to +1 or —1 are
optimal.

13.9.2 Normal extremals

For normal extremals, the maximized Hamiltonian is given by

H(q,p) = %(hl(q,p)2 + ha(q,p)?),

where
y?
hi(q,p) = pz + 5P ha(q,p) = py.
The Hamiltonian equations are then
oH oH
X apx 1 D ax ( )
o0H o0H
U= gy v Py By 1Y P ( )
0H y? OH
z apz 1 2 ) p aZ ( )

Notice that this Hamiltonian system is integrable in the sense of Liouville, since we have enough
constants of the motion in involution (i.e. H,ps,p.).

From (I3.70)) we have that p, is constant. Let us set p, = a. We can solve (I3.68) and (I3.69)
since these equations are independent from z. Let us use as coordinates (z,y, hi, hy). We have

i = hy, hi=ps+y § a=ayhy, (13.71)
—~—
Py
Y =py = ho, he = py = —ayh;. (13.72)

Now if consider normal extremals parametrized by arclength, we have

= = H(q(t),p(t)) = ha(t)* + ha(t)*.
It is then convinient to set
hi(t) = cos0(t), ha(t) = sin6(t).
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Figure 13.16: The pendulum for the Martinet distribution

The equations for h; and he in (I3 and (I3772) give then
—sin(0)0 = aysin(9),
cos(0)0 = —ay cos(f),

from which we have .
0 = —ay. (13.73)

This equation together with § = he = sinf (see the equation for y in (I3.72])) gives
f = —asinf (13.74)

We obtain again a pendulum equation for a pendulum of unit mass, unit length and gravity a. See
Figure [13.16]

Initial conditions

We are going to consider normal Pontryagin extremals starting from the point (z,y, z) = (0,0,0).
Arclength geodesics are then parameterized by 6y := 6(0) (giving p,(0) and p,) and by a. Notice
that from (I3.773) we have that 6(0) = 0.

Once equation the pendulum equation has been solved, one gets
t t t
o(t) = / i(s) ds = / b (q(s), p(s)) ds = / cos B(s) ds, (13.75)
0 0 0
¢ t t
y(t) = / J(s) ds — / hala(s), p(s)) ds = / sin6(s) ds, (13.76)
0 0 0

t t 2 s t 2 s
A(t) = /0 i(s) ds = /0 hl(q(s),p(s))yé ) s = /0 cos(e(s))yé ) ds. (13.77)

The solution of the pendulum equation and the corresponding expressions for x(t), y(t) and z(t) can
be expressed in terms of elliptic functions. Here we are going to make a short qualitative analysis.
We already know that the pendulum equation admits the constant of the motion

H,(0,0) = %92 — acos(h).
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Figure 13.17: The phase portrait of the pendulum for the Martinet problem

Level sets of Hy, are plotted in Figure [3.17

Case a = 0. In this case the level set of H), are horizontal lines. We have 6 = 0 hence 6(t) =const.
This constant is indeed zero since #(0) = 0. Then 6(t) = 6. From (I3.75)-([I3.77) we have

3
x(t) = tcos(fp), y(t) = tsin(by), z(t) = cos(fp) sin2(6’o)%.
For 0y € {0, 7} this trajectory is lying on the Martinet surface and it is both normal and abnormal.

Case a # 0 and 0y = 0. This is the trajectory staying at the stable equilibrium of the pendulum.
In this case we have 6(t) = 0 and

x(t) =t, y(t) =0, z(t) = 0.

This trajectory is lying on the Martinet surface and it is both normal and abnormal.

Case a # 0 and 0y = 7. This is the trajectory staying at the unstable equilibrium of the pendulum.
In this case we have 6(t) = m and

x(t) = —t, y(t) =0, z(t) = 0.

As the previous one, this trajectory is lying on the Martinet surface and it is both normal and
abnormal. Notice that the heteroclinic orbit is not realized because of the initial condition 8(0) = 0.

Notice that all Pontryagin extremals studied up to now have a projection on the (z,y) plane
that is a straight line. Because of Remark they are automatically optimal.
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All other Pontryagin extremals are expressed in terms of Elliptic functions and are given by the
Theorem below.

To this purpose let sn(¢, m), cn(é, m), dn(p, m) be the standard Jacobi elliptic functions with
parameter m € [0, 1] and recall the definition of:

e the complete elliptic integral of the first kind

e the Jacobi epsilon function [?, p. 62]

¢
Eps(¢,m) ::/0 dn?(w, m) dw.

Let us define the following functions of ¢, 0y, a (here we assume a > 0, 6y € (0,7)).

k= 1_#5(90), (13.78)
, |1+ cos(fh)
o=/ - o/ (13.79)
u(t, k,a) = K(k?*) + tv/a, (13.80)
Y(t, k,a) = Eps(u(t, k,a), k*) — Eps(K (k?), k?), (13.81)

Theorem 13.51 (Agrachev, Bonnard, Chyba, Kupka). The normal geodesics starting from the
origin for 6y € (0,7) and a > 0 are given by:

x(t) = —t+ %T(t, k,a) (13.82)

y(t) = —2%cn(u(t, k,a),k?) (13.83)

2(t) = 3@% [(2k% = 1)Y(t, k,a) + K?tv/a + 2k%sn(u(t, k, ), k*)en(u(t, k, a), k*)dn(u(t, k, a), k?)]
(13.84)

For negative values of 0y and/or a, the formulas are obtained from the previous ones considering
that a change in sign of 0y produces a change of sign in the coordinate y and a change of sign of a
produces a change of sign in the coordinates x and z.

Remark 13.52. These geodesics can be easily drawn using a commercial software having elliptic
functions and integrals implemented, as for instance Mathematica. The Jacobi epsilon function can
be written in terms of more common elliptic integrals using the formula (see for instance [?, p.63])

Eps(¢, m) = E(am(¢,m),m).

1
Here E(a,m) := foa (1 - msin2(9))§ df, is the elliptic integral of the second kind and am is the
Jacobi amplitude defined as the inverse of the elliptic integral of the first kind, i.e. if ¢ = F(a,m) :=

Jor (1 - msinz(ﬁ))_% df, then o = am(¢, m).
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The optimality of these geodesics is not easy to be studied (the method presented at the be-
ginning of the chapter does not apply directly because of the presence of abnormal minimizers, see
also the Bibliographical note). However this study was completed in the '90s. And we have the
following result.

Theorem 13.53 (Agrachev, Bonnard, Chyba, Kupka). Normal Pontryagin Extremals correspond-
ing to a =0 or to 6y =0 (i.e. those for which the projection on the (x,y) plane is a straight line
are optimal for every time. All other Pontryagin extremals are optimal up to their first intersection
with the Martinet surface {y = 0}. The cut time is given by the formula

K(k?)
_— 2 e fora > 0,
cut — K(k’2)

2—\/_—[1, fora < 0.

The Martinet sphere for t = 1 is drawn in Figure I3I8 Its intersection with the Martinet
surface (that is also the cut locus) is drown in Figure I3.191 A. In Figure [3.19 B it is pictured the
point on the cylinder H = 1/2 that are mapped in the cut locus at ¢ = 1 namely the points

a = (2K (k*))? and a=—(2K(K?))?.

Notice that, due to the presence of the abnormal, the cut locus is the image via the exponential
map of an unbounded curve on the cylinder H = 1/2. Points on this curve that having high values
of a correspond to the part of the sphere that become tangent to the abnormal as pictured.

13.10 Bibliographical Note

Explicit computations of Pontryagin extremals and the cut locus for the Heisenberg group and its
higher dimensional generalizations are well known. [I 2,1l ?, 7, 7, 7]

The technique explained in Section [[3.4] to compute the cut locus is an extension of a classical
technique due to Hadamard that was used in Riemannian geometry, in particular to study the op-
timal synthesis on surfaces with negative curvature (see [58]). Its sub-Riemannian variant was used
to construct the optimal syntheses in several cases. See for instance [2], 811 [90] 91]. This technique
cannot be adapted to structures containing strict abnormal minimizers since these trajectories are
not seen from the exponential map. In principle one could apply the technique to normal Pontrya-
gin extremals and then one could compare the length of normal and abnormal at points reached
by both type of trajectories. However there are no known examples in which such an idea has
been successfully employed. With some additional work, the extended Hadamard technique can
be adapted to the presence of non-strict abnormal extremals. This program was successful for the
construction of the optimal synthesis for the Martinet sub-Riemannian structure and in particular
to prove Theorem [[3.53 See [2].

The shape of the synthesis for the Grushin plane starting from a Riemannian point was drawn
in [4, BI]. However we present here for the first time computations in full detail. The optimal
synthesis for SU(2), SO(3), SL(2) were constructed in [33] but using a different technique. These
optimal syntheses, together with the one for SO, (2,1), were also constructed in [23], 24, 25] using
the Gauss-Bonnet theorem. We follow this approach in Section 3.7}

The detailed analysis of geodesics for sub-Riemannian structure on SE(2) was done by Yuri
Sachkov in [74], 90, O1] that also proved Theorem [[3.48]in full details.
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/the Martinet surface (y = 0)

cut locus

the Martinet sphere

the Martinet sphere inside

cut locus

cut locus

section with the x = 0 plane section with the Martinet surface

Figure 13.18: The Mj%ginet sphere for ¢t = 1.



Figure 13.19: A: the intersection of the Martinet sphere for ¢ = 1 with the Martinet surface, that
is also the cut locus. B: the cut locus seen on the cotangent bundle on H = %
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The optimal synthesis for the Martinet sub-Riemannian structure was constructed in [2]. In
the same paper one can also find the proof of Theorem I3.53l See also [26].
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Chapter 14

Curves in the Lagrange (Grassmannian

In this chapter we introduce the manifold of Lagrangian subspaces of a symplectic vector space.
After a description of its geometric properties, we discuss how to define the curvature for regular
curves in the Lagrange Grassmannian, that are curves with non-degenerate derivative. Then we
discuss the non-regular case, where a reduction procedure let us to reduce to a regular curve in a
reduced symplectic space.

14.1 The geometry of the Lagrange Grassmannian

In this section we recall some basic facts about Grassmanians of k-dimensional subspaces of an
n-dimensional vector space and then we consider, for a vector space endowed with a symplectic
structure, the submanifold of its Lagrangian subspaces.

Definition 14.1. Let V be an n-dimensional vector space. The Grassmanian of k-planes on V is
the set

Gp(V) :={W | W C V is a subspace, dim(W) = k}.
It is a standard fact that Gy (V') is a compact manifold of dimension k(n — k).
Now we describe the tangent space to this manifold.
Proposition 14.2. Let W € G(V'). We have a canonical isomorphism
Ty Gy(V) =~ Hom(W, V/W).

Proof. Consider a smooth curve on Gy(V) which starts from W, ie. a smooth family of k-
dimensional subspaces defined by a moving frame

W (t) = span{ei(t),...,ex(t)}, W (0) =W.

We want to associate in a canonical way with the tangent vector W (0) a linear operator from W
to the quotient V/W. Fix w € W and consider any smooth extension w(t) € W (t), with w(0) = w.
Then define the map

W — V/W, w +— w(0) (mod W). (14.1)
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We are left to prove that the map (I4.1]) is well defined, i.e. independent on the choices of rep-
resentatives. Indeed if we consider another extension w;(t) of w satisfying wi(t) € W (t) we can
write

k
wy(t) = w(t) + Z a;(t)ei(t),
i=1

for some smooth coefficients «;(¢) such that a;(0) = 0 for every i. It follows that

i (t) = w(t) + Z di(t)ei(t) + > ailt)éi(t), (14.2)

and evaluating (I4.2) at ¢ = 0 one has

k
W1(0) = (0) + ) ci(0)e;(0).
=1

This shows that w;(0) = w(0) (mod W), hence the map (I4.1]) is well defined. In the same way one
can prove that the map does not depend on the moving frame defining W (¢).

Finally, it is easy to show that the map that associates the tangent vector to the curve W (t)
with the linear operator W — V/W is surjective, hence it is an isomorphism since the two space
have the same dimension. O

Let us now consider a symplectic vector space (X,0), i.e. a 2n-dimensional vector space X
endowed with a non degenerate symplectic form o € A?(X).

Definition 14.3. A vector subspace II C ¥ of a symplectic space is called
(i) symplectic if |1 is nondegenerate,
(ii) isotropic if ol = 0,
(iii) Lagrangian if ol = 0 and dim IT = n.

Notice that in general for every subspace II C X, by nondegeneracy of the symplectic form o, one
has
dim I 4 dim IT1* = dim X, (14.3)

where as usual we denote the symplectic orthogonal by 114 = {x € ¥ |o(x,y) =0, Yy € II}.
Exercise 14.4. Prove the following properties for a vector subspace II C X:
(i) II is symplectic iff [T N 14 = {0},
(ii) II is isotropic iff IT C 1%,
(iii) II is Lagrangian iff II = I14.

Exercise 14.5. Prove that, given two subspaces A, B C 3, one has the identities (A + B)Z =
A4 N B4 and (AN B)* = A + B%.
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Example 14.6. Any symplectic vector space admits Lagrangian subspaces. Indeed fix any non-
zero element e; := e # 0 in 3. Choose iteratively

e; € span{ey, ... ,ei_l}é \ span{ei,...,e;—1}, 1=2,...,n. (14.4)

Then IT := span{ey, ..., e, } is a Lagrangian subspace by construction. Notice that the choice (IZ.4))
is possible by (I4.3))

Lemma 14.7. Let I = span{ey,...,e,} be a Lagrangian subspace of ¥.. Then there exists vectors
fi,..., fn € X such that

(1) T=1IaA, A = span{fi,..., fn},
(ZZ) O-(eivfj) = 51]7 O'(Ei,ej) = 0(f27f]) =0, Vi,j=1,...,n.

Proof. We prove the lemma by induction. By nondegeneracy of ¢ there exists a non-zero x € 3
such that o(ey,z) # 0. Then we define the vector
o=

ﬁ, = O'(en,fn) =1.

The last equality implies that o restricted to span{e,, f,} is nondegerate, hence by (a) of Exercise
144

Span{em fn} N Span{em fn}Z =0, (14'5)
And we can apply induction on the 2(n — 1) subspace ¥’ := span{e,, f,}*. Notice that (IZ3H)
implies that o is non degenerate also on X' O

Remark 14.8. In particular the complementary subspace A = span{fi,..., f,} defined in Lemma
[[47is Lagrangian and transversal to II

Y=I1I6A.

Considering coordinates induced from the basis chosen for this splitting we can write ¥ = R™ pR",
(denoting R™ denotes the set of row vectors). More precisely x = (¢, z) if

1

n z

r=> Ce+fi, (=), 2= ],

=1 n

z

and using canonical form of o on our basis (see Lemma [[47) we find that in coordinates, if
r1 = (C1,21), 22 = (C2, 22) We get

o(x1,22) = Q22 — (221, (14.6)
where we denote with (z the standard rows by columns product.

Lemma [[4.7] shows that the group of symplectomorphisms acts transitively on pairs of transver-
sal Lagrangian subspaces. The next exercise, whose proof is an adaptation of the previous one,
describes all the orbits of the action of the group of symplectomorphisms on pairs of subspaces of
a symplectic vector spaces.

Exercise 14.9. Let Ay, A5 be two subspaces in a symplectic vector space Y, and assume that
dim A1 N A2 = k. Show that there exists Darboux coordinates (p, q) in ¥ such that

Al = {(p70)}7 A2 = {((ph v 7pk707' .. 70)7 (07 .. 707Qk+17' .. 7qn)}
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14.1.1 The Lagrange Grassmannian

Definition 14.10. The Lagrange Grassmannian L(X) of a symplectic vector space X is the set of
its n-dimensional Lagrangian subspaces.

Proposition 14.11. L(X) is a compact submanifold of the Grassmannian G, (X) of n-dimensional

subspaces. Moreover
n(n+1)

dim L(X) = 5

(14.7)

Proof. Recall that G,(X) is a n?-dimensional compact manifold. Clearly L(X) C G,,(X) as a subset.
Consider the set of all Lagrangian subspaces that are transversal to a given one

A"={AeL(Z):ANnA =0}

Clearly A™ C L(X) is an open subset and since by Lemma [[Z.7] every Lagrangian subspace admits
a Lagrangian complement

Lz = J an
)

A€L(S

It is then sufficient to find some coordinates on these open subsets. Every n-dimensional subspace
A C ¥ which is transversal to A is the graph of a linear map from II to A. More precisely there
exists a matrix Sy such that

ANA=0sA={(z1,52),2 e R"}.
(Here we used the coordinates induced by the splitting ¥ = II® A.) Moreover it is easily seen that
Ae LX) e Sy =(Sa)T.
Indeed we have that A € L(X) if and only if o[y = 0 and using (I4.6]) this is rewritten as
o((2F,Sphz1), (2, Sp20)) = 21 Sazg — 28 Spz = 0,

which means exactly Sy symmetric. Hence the open set of all subspaces that are transversal to A
is parametrized by the set of symmetric matrices, that gives coordinates in this open set. This also
proves that the dimension of L(X) coincide with the dimension of the space of symmetric matrices,
hence (I4.7). Notice also that, being L(X) a closed set in a compact manifold, it is compact. [

Now we describe the tangent space to the Lagrange Grassmannian.

Proposition 14.12. Let A € L(X). Then we have a canonical isomorphism
TAL(%) = Q(A),
where Q(A) denote the set of quadratic forms on A.

Proof. Consider a smooth curve A(t) in L(X) such that A(0) = A and A(0) € TAL(X) its tangent
vector. As before consider a point z € A and a smooth extension z(t) € A(t) and denote with
& := &(0). We define the map

Az o(x, i), (14.8)
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that is nothing else but the quadratic map associated to the self adjoint map = — & by the
symplectic structure. We show that in coordinates A is a well defined quadratic map, independent
on all choices. Indeed

A(t) = {(z", Sa2), 2 € R"},

and the curve z(t) can be written

z(t) = (2()7, Sa2(®), @ =2(0) = (=", Sx2),

for some curve z(t) where z = 2z(0). Taking derivative we get
i(t) = (2(6)7, Sayz(t) + Saw 2(1)),
and evaluating at t = 0 (we simply omit ¢t when we evaluate at ¢ = 0) we have
x=(21,822),  i= (1,50 2+ Sp2),
and finally get, using the simmetry of Sy, that
o(x, @) = 27 (Spyz 4 Saz) — TS 2
= 2780z + 27902 — 3792
=218y z. (14.9)
O

Exercise 14.13. Let A(t) € L(X) such that A = A(0) and o be the symplectic form. Prove that
the map S : A x A — R defined by S(z,y) = o(z,y), where y = (0) is the tangent vector to a
smooth extension y(t) € A(t) of y, is a symmetric bilinear map.

Remark 14.14. We have the following natural interpretation of this result: since L(X) is a subman-
ifold of the Grassmanian G, (X), its tangent space ThL(X) is naturally identified by the inclusion
with a subspace of the Grassmannian

i L(X) = Gp(%), ix : TAL(Y) < TAG,(X) ~ Hom(A, X /A),

where the last isomorphism is Proposition[I4.2] Being A a Lagrangian subspace of 3, the symplectic
structure identifies in a canonical way the factor space ¥ /A with the dual space A* defining

/A~ A", ([z]a,x) = o(z, ). (14.10)

Hence the tangent space to the Lagrange Grassmanian consist of those linear maps in the space
Hom(A, A*) that are self-adjoint, which are naturally identified with quadratic forms on A itself. [

Remark 14.15. Given a curve A(t) in L(X), the above procedure associates to the tangent vector
A(t) a family of quadratic forms A(t), for every t.

We end this section by computing the tangent vector to a special class of curves that will play
a major role in the sequel, i.e. the curve on L(X) induced by the action on A by the flow of the
linear Hamiltonian vector field & associated with a quadratic Hamiltonian h € C>(X). (Recall that
a Hamiltonian vector field transform Lagrangian subspaces into Lagrangian subspaces.)

lany quadratic form on a vector space ¢ € Q(V) can be identified with a self-adjoint linear map L : V — V*,
L(v) = B(v,-) where B is the symmetric bilinear map such that ¢(v) = B(v,v).
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Proposition 14.16. Let A € L(X) and define A(t) = etﬁ(A). Then A = 2h|,.

—

Proof. Consider z € A and the smooth extension z(t) = e/’(z). Then i = h(z) and by definition
of Hamiltonian vector field we find

o(z, &) = o(z, h(z))
= (dgh,z)
= 2h(z),

where in the last equality we used that h is quadratic on fibers. O

14.2 Regular curves in Lagrange Grassmannian

The isomorphism between tangent vector to the Lagrange Grassmannian with quadratic forms
makes sense to the following definition (we denote by A the tangent vector to the curve at the point
A as a quadratic map)

Definition 14.17. Let A(t) € L(X) be a smooth curve in the Lagrange Grassmannian. We say
that the curve is

(i) monotone increasing (descreasing) if A(t) >0 (A(t) < 0).
(i) strictly monotone increasing (decreasing) if the inequality in (i) is strict.
(iii) regular if its derivative A(t) is a non degenerate quadratic form.

Remark 14.18. Notice that if A(t) = {(p,S(t)p),p € R"} in some coordinate set, then it follows
from the proof of Proposition that the quadratic form A(t) is represented by the matrix Sa(t)
(see also (I4.9). In particular the curve is regular if and only if det Sy (t) # 0.

The main goal of this section is the construction of a canonical Lagrangian complement. (i.e.
another curve A°(t) in the Lagrange Grassmannian defined by A(t) and such that ¥ = A(t) S A°(¢).)

Consider an arbitrary Lagrangian splitting ¥ = A(0) & A defined by a complement A to A(0)
(see Lemma [I4.7)) and fix coordinates in such a way that that

¥ ={(q),p,qcR"},  A0)={(»,0),peR"}, A={(0,9),qcR"}.

In these coordinates our regular curve is described by a one parametric family of symmetric matrices
S(t)
A(t) ={(p,S(t)p), p € R"},

such that S(0) = 0 and S(0) is invertible. All Lagrangian complement to A(0) are parametrized by
a symmetrix matrix B as follows

Ap ={(Bq,q),q € R"}, B = BT.

The following lemma shows how the coordinate expression of our curve A(t) change in the new
coordinate set defined by the splitting ¥ = A(0) & Ap.
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Lemma 14.19. Let Sp(t) the one parametric family of symmetric matrices defining A(t) in coor-
dinates w.r.t. the splitting A(0) ® Ap. Then the following identity holds

Sp(t) = (S(t)™t — B)~L. (14.11)

Proof. Tt is easy to show that, if (p,q) and (p/,¢’) denotes coordinates with respect to the splitting
defined by the subspaces A and Ap we have

/: —B
p=peoa (14.12)
q=q

The matrix Sp(t) by definition is the matrix that satisfies the identity ¢’ = Sp(t)p’. Using that
g = S(t)p by definition of A(t), from (I412]) we find

¢ =q=St)p=St)¥ +Bq),
and with straightforward computations we finally get
Sp(t) = (I - S(HB)'S(t) = (S~ — B) ™.
O

Since S (t) represents the tangent vectors to the regular curve A(t), its properties are invariant
with respect to change of coordinates. Hence it is natural to look for a change of coordinates (i.e.
a choice of the matrix B) that simplifies the second derivative our curve.

Corollary 14.20. There exists a unique symmetric matriz B such that Sp(0) = 0.

Proof. Recall that for a one parametric family of matrices X (¢) we have

. o .
ZX(H)T = —XOT XXM

Applying twice this identity to (I4.11]) (we omit ¢ to denote the value at t = 0) we get

d d

T t:oSB(t) =—(s'-B)"! (E

570 ) (57 - )

t=0
= (57! -B)tstss (st - B)!
=(I-SB)"'S(I - BS)™.
Hence for the second derivative evaluated at ¢ = 0 (remember that in our coordinates S(0) = 0)
one gets ) ) o
Sp=5+25BS,
and using that S is non degerate, we can choose B = —%3_153_1. O

We set A°(0) := Ap, where B is determined by (I4.13]). Notice that by construction A°(0) is
a Lagrangian subspace and it is transversal to A(0). The same argument can be applied to define
A°(t) for every t.
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Definition 14.21. Let A(t) be a regular curve, the curve A°(t) defined by the condition above is
called derivative curve of A(t).

Exercise 14.22. Prove that, if A(t) = {(p, S(t)p), p € R"} (without the condition S(0) = 0), then
the derivative curve A°(t) = {(p, S°(t)p), p € R™}, satisfies

S°(t) = B(t)" + S(t), where B(t) ::—%S(t)_lg(t)g(t)_l, (14.13)

provided A°(t) is transversal to the subspace A = {(0,¢),¢ € R"}. (Actually this condition is
equivalent to the invertibility of B(t).) Notice that if S(0) = 0 then S°(0) = B(0)~!.

Remark 14.23. The set A" of all n-dimensional spaces transversal to a fixed subspace A is an affine
space over Hom(X/A,A). Indeed given two elements Ay, Ay € A" we can associate with their
difference the operator

Ay — Ay — A€ Hom(X/A,A), A([z]a) = 22 — 21 € A, (14.14)

where z; € A; N [z]p are uniquely identified.

If A is Lagrangian, we have identification ¥/A ~ A* given by the symplectic structure (see
(IZ10)) that A™, that coincide by definition with the intersection A" N L(X) is an affine space over
Hom® (A*, A), the space of selfadjoint maps between A* and A, that it isomorphic to Q(A*).

Notice that if we fix a distinguished complement of A, i.e. ¥ = A ® A, then we have also the
identification /A ~ A and A" ~ Q(A*) ~ Q(A).

Exercise 14.24. Prove that the operator A defined by (I4.14]), in the case when A is Lagrangian,
is a self-adjoint operator.

Remark 14.25. Assume that the splitting ¥ = A®A is fixed. Then our curve A(t) in L(X), such that
A(0) = A, is characterized by a family of symmetric matrices S(t) satisfying A(t) = {(p, S(t)p),p €
R™}, with S(0) =

By regularity of the curve, A(t) € A™ for + > 0 small enough, hence we can consider its
coordinate presentation in the affine space on the vector space of quadratic forms defined on A (see
Remark [4.23)) that is given by S~!(¢) and write the Laurent expansion of this curve in the affine
space

-1
St = <tS + gs + O(t3)>

1. t.. -1

= Zs—l <1 + 555—1 + O(t2)>

1oy 1o qoe

=287 —287ISST +0(1).
N—————

B
It is not occasional that the matrix B coincides with the free term of this expansion. Indeed the
formula (I4.17)) for the change of coordinates can be rewritten as follows
Sp(t)y™' =57t) - B, (14.15)

and the choice of B corresponds exactly to the choice of a coordinate set where the curve A(t) has
no free term in this expansion (i.e. Sp(t)~! has no term of order zero). This is equivalent to say
that a regular curve let us to choose a privileged origin in the affine space of Lagrangian subspaces
that are transversal to the curve itself.
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14.3 Curvature of a regular curve

Now we want to define the curvature of a regular curve in the Lagrange Grassmannian. Let A(t)
be a regular curve and consider its derivative curve A°(t).

The tangent vectors to A(t) and A°(t), as explained in Section 4.l can be interpreted in a a
canonical way as a quadratic form on the space A(t) and A°(t) respectively

A®) € QA®),  A’(t) € Q(A°(2)).

Being A°(t) a canonical Lagrangian complement to A(t) we have the identifications through the
symplectic for
A(t)" ~ A°(t), A°(t)" ~ A(t),
and the quadratic forms A(t), A°(¢) can be treated as (self-adjoint) mappings:

A) 1 A() = A°(1),  A°(t): A°(t) — A(1). (14.16)

Definition 14.26. The operator Ra(t) := A" (t)oA(t) : A(t) — A(t) is called the curvature operator
of the regular curve A(t).

Remark 14.27. In the monotonic case, when |A(t)| defines a scalar product on A(t), the operator
R(t) is, by definition, symmetric with respect to this scalar product. Moreover R(t), as quadratic
form, has the same signature and rank as A°(¢) sign(A°(¢)).

Definition 14.28. Let Ay, Ay be two transversal Lagrangian subspaces of 3. We denote
TA1As - ¥ = AQ, (14.17)
the projection on As parallel to A1, i.e. the linear operator such that

71-1\11\2|1\1 =0 7TA1A2|A2 = Id.

Exercise 14.29. Assume A; and A be two Lagrangian subspaces in ¥ and assume that, in some
coordinate set, A; = {(z,S;xz),€ R"} for i = 1,2 . Prove that ¥ = A; & Ay if and only if
ker(S; — S2) = {0}. In this case show that the following matrix expression for ma,a,:

_( SEs -SE o
TA Ay = <5251_2151 _5251_21 , S19 := 851 — So. (14.18)

From the very definition of the derivative of our curve we can get the following geometric
characterization of the curvature of a curve.

Proposition 14.30. Let A(t) a regular curve in L(X) and A°(t) its derivative curve. Then

1 O

A(t)(xt) = Ta)Ae (1) (Tt)s A (t)(1) = —Taoya) (Tt)-

In particular the curvature is the composition Ry(t) = A°(t) o A(t).

%if ¥ = A@A is a splitting of a vector space then X/A ~ A. If moreover the splitting is Lagrangian in a symplectic
space, the symplectic form identifies ¥/A ~ A*, hence A* ~ A.
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Proof. Recall that, by definition, the linear operator A : A — ¥ /A associated with the quadratic
form is the map x — & (mod A). Hence to build the map A — A° it is enough to compute the
projection of & onto the complement A°, that is exactly mapo(#). Notice that the minus sign in
equation (I4.30) is a consequence of the skew symmetry of the symplectic product. More precisely,
the sign in the identification A° ~ A* depends on the position of the argument. O

The curvature R (t) of the curve A(t) is a kind of relative velocity between the two curves A(t)
and A°(t). In particular notice that if the two curves moves in the same direction we have R (¢) > 0.
Now we compute the expression of the curvature Ry (t) in coordinates.

Proposition 14.31. Assume that A(t) = {(p, S(t)p)} is a regular curve in L(X). Then we have
the following coordinate expression for the curvature of A (we omit t in the formula)

Ry = ((28)718) — ((28)718)2 (14.19)
= 257 - s8R (14.20)

Proof. Assume that both A(t) and A°(t) are contained in the same coordinate chart with

A@) ={(,S®)p)},  A°(@) = {(p,S°(t)p)}-

We start the proof by computing the expression of the linear operator associated with the derivative
A : A — A° (we omit t when we compute at ¢t = 0). For each element (p,Sp) € A and any
extension (p(t), S(t)p(t)) one can apply the matrix representing the operator mapo (see (IZI8)) to
the derivative at t = 0 and find

mane(p, Sp) = (', S°p), P =—(S—S°)""5p.

Exchanging the role of A and A°, and taking into account of the minus sign one finds that the
coordinate representation of R is given by

R=(S°—8)"15°(8° - §)715. (14.21)

We prove formula (I4.20) under the extra assumption that S(0) = 0. Notice that this is
equivalent to the choice of a particular coordinate set in L(X) and, being the expression of R
coordinate independent by construction, this is not restrictive.

Under this extra assumption, it follows from (IZI3]) that

At) ={(p,S®p)}, A1) ={(p, 5°(t)p)},

where S°(t) = B(t)~! + S(t) and we denote by B(t) := —%S(t)_lg(t)S(t)_l.
Hence we have, assuming S(0) = 0 and omitting ¢ when ¢ = 0

R=(S8°—8)"18°(8° — §)"1§

_B <i
dt{—o

—(BS)? - BS.

B(t)™' + S(t)> BS

Plugging B = —%S —185~1 into the last formula, after some computations one gets to (IZ220).
O
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Remark 14.32. The formula for the curvature Ry () of a curve A(t) in L(X) takes a very simple
form in a particular coordinate set given by the splitting ¥ = A(0) & A°(0), i.e. such that

A0) ={(p,0),p eR"},  A(0) ={(0,9),q € R"}.

Indeed using a symplectic change of coordinates in ¥ that preserves both A and A° (i.e. of the kind
p = Ap, ¢ = (A 1)*q) we can choose the matrix A in such a way that S(0) = I. Moreover we
know from Proposition that the fact that A° = {(0,q),q € R"} is equivalent to S(0) = 0. Hence
one finds from (I4.20) that

1..
R= 55

When the curve A(t) is strictly monotone, the curvature R represents a well defined operator on
A(0), naturally endowed with the sign definite quadratic form A(0). Hence in these coordinates the
eigenvalues of § (and not only the trace and the determinant) are invariants of the curve.

Exercise 14.33. Let f : R — R be a smooth function. The Schwartzian derivative of f is defined

as 9
- f// / f//
5F= (ﬁ) - <ﬁ> (14.22)

at+b
ct+d

Prove that Sf = 0 if and only if f(¢) = for some a,b,c,d € R.

Remark 14.34. The previous proposition says that the curvature R is the matrix version of the
Schwartzian derivative of the matrix S (cfr. (I£19) and (I4.22]).

Example 14.35. Let ¥ be a 2-dimensional symplectic space. In this case L(X) ~ P!(R) is the real
projective line. Let us compute the curvature of a curve in L(X) with constant (angular) velocity
a > 0. We have

A(t) ={(p,S(t)p),p € R}, S(t) = tan(at) € R.

From the explicit expression it easy to find the relation
S(t) = a(l1+ S2(t), = ——==aS(t),

from which one gets that R(t) = aS(t) — a252(t) = o2, i.e. the curve has constant curvature.
We end this section with a useful formula on the curvature of a reparametrized curve.

Proposition 14.36. Let ¢ : R — R a diffeomorphism and define the curve Ay (t) := A(p(t)). Then
Ra (1) = (0 Ra(9() + Ry(t)1d. (14.23)

Proof. 1t is a simple check that the Schwartzian derivative of the composition of two function f
and g satisfies

S(fog)=(Sfog)(d)* +Sy.

Notice that R, (t) makes sense as the curvature of the regular curve ¢ : R — R C P! in the Lagrange
Grassmannian L(R?). O
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Exercise 14.37. (Another formula for the curvature). Let Ag, A1 € L(X) be such that ¥ = Ag® A4
and fix two tangent vectors &y € Tx,L(X) and & € Ty, L(X). Asin (IZI6]) we can treat each tangent
vector as a linear operator

f() : A() — Al, 61 : Al — AQ, (14.24)

andldeﬁne the cross-ratio [£1,&] = —&1 0 &. If in some coordinates A; = {(p, Sip)} for i = 0,1 we
have3

€1, &) = (S1— So)"1S1(S1 — So) 1 So.

Let now A(t) a regular curve in L(X). By regularity ¥ = A(0) @ A(¢) for all ¢ > 0 small enough,
hence the cross ratio

[A(t), A(0)] - A(0) — A(0),

is well defined. Prove the following expansion for ¢ — 0

Lra+ YRy o)+ o). (14.25)

A1), AO)] = 5 1d+ 5

14.4 Reduction of non-regular curves in Lagrange Grassmannian

In this section we want to extend the notion of curvature to non-regular curves. As we will see
in the next chapter, it is always possible to associate with an extremal a family of Lagrangian
subspaces in a symplectic space, i.e. a curve in a Lagrangian Grassmannian. This curve turns
out to be regular if and only if the extremal is an extremal of a Riemannian structure. Hence, if
we want to apply this theory for a genuine sub-Riemannian case we need some tools to deal with
non-regular curves in the Lagrangian Grassmannian.

Let (X, 0) be a symplectic vector space and L(X) denote the Lagrange Grassmannian. We start
by describing a natural subspace of L(X) associated with an isotropic subspace I' of 3. This will
allow us to define a reduction procedure for a non regular curve.

Let I'" be a k-dimensional isotropic subspace of %, i.e. U‘F = 0. This means that I' ¢ I'“. In
particular I'“/T is a 2(n — k) dimensional symplectic space with the restriction of o.

Lemma 14.38. There is a natural identification of L(I'“/T) as a subspace of L(X):
L(I4/T) ~{A € L(X),I € A} C L(%). (14.26)
Moroever we have a natural projection
' L(Y) = L(T4/T), A AL,
where AU .= (ANT4)+T = (A+T)NT4.

Proof. Assume that A € L(X) and I' € A. Then, since A is Lagrangian, A = A C I'“, hence the

identification (T4.26]).

Assume now that A € L(I'“/T") and let us show that 7' (A) = A, i.e. 7 is a projection. Indeed
from the inclusions I' € A C T'¥ one has 7' (A) = A = (ANT4)+T =A+T =A.

3here SZ denotes the matrix associated with &;.
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We are left to check that Al is Lagrangian, i.e. (Al)4 = Al
(AD)% = ((ANT4) + 1)~
= (ANT%)*Nr4

= (A+T)NI4 =AY,

where we repeatedly used Exercise T35l (The identity (ANT4) +T = (A +T)NT< is also a
consequence of the same exercise.) O

Remark 14.39. Let I'™ = {A € L(X),ANT = {0}}. The restriction Fr‘rm is smooth. Indeed it can
be shown that 7! is defined by a rational function, since it is expressed via the solution of a linear
system.

N

The following example shows that the projection 7" is not globally continous on L(X).

Example 14.40. Consider the symplectic structure ¢ on R*, with Darboux basis {e1, e2, f1, f2},
i.e. o(e;, fj) = d;j. Let I' = span{e; } be a one dimensional isotropic subspace and define

A. = span{e; +efo,e2 +cf1}, Ve > 0.
It is easy to see that A. is Lagrangian for every € and that
Al = span{ey, fo}, Ve >0, (14.27)
AL = span{eq, es}.

Indeed f5 € ef, that implies e; + e fo € A NT¥, therefore fo € A. NT“. By definition of reduced
curve fy € ALl and (IZ27) holds. The case € = 0 is trivial.

14.5 Ample curves

In this section we introduce ample curves.

Definition 14.41. Let A(t) € L(X) be a smooth curve in the Lagrange Grassmannian. The curve
A(t) is ample at t = tg if there exists N € N such that

5> = span{ AP (to)| A(t) € A(t), A(t) smooth,0 < i < N}. (14.28)

In other words we require that all derivatives up to order IV of all smooth sections of our curve in
L(X) span all the possible directions.

As usual, we can choose coordinates in such a way that, for some family of symmetric matrices
S(t), one has

S={(p,q) p,a eR"},  A@t)={(p,S(t)p)| p € R"}.

Exercise 14.42. Assume that A(t) = {(p, S(t)p),p € R"} with S(0) = 0. Prove that the curve is
ample at ¢ = 0 if and only if there exists N € N such that all the columns of the derivative of S(¢)
up to order N (and computed at ¢ = 0) span a maximal subspace:

rank{$(0), $(0),...,5™(0)} = n. (14.29)

In particular, a curve A(t) is regular at ty if and only if is ample at ¢ty with N = 1.
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An important property of ample and monotone curves is described in the following lemma.

Lemma 14.43. Let A(t) € L(X) a monotone, ample curve at tg. Then, there exists € > 0 such
that A(t) N A(to) = {0} for 0 < |t —to| < e.

Proof. Without loss of generality, assume tg = 0. Choose a Lagrangian splitting 3 = A @ I, with
A = J(0). For [t| < e, the curve is contained in the chart defined by such a splitting. In coordinates,
A(t) = {(p,S(t)p)| p € R"}, with S(t) symmetric and S(0) = 0. The curve is monotone, then S(t)
is a semidefinite symmetric matrix. It follows that S(t) is semidefinite too.

Suppose that, for some ¢, A(t) N A(0) # {0} (assume ¢ > 0). This means that 3v € R™ such
that S(t)v = 0. Indeed also v*S(t)v = 0. The function 7 — v*S(7)v is monotone, vanishing at
7 =0 and 7 = t. Therefore v*S(7)v = 0 for all 0 < 7 < t. Being a semidefinite, symmetric matrix,
v*S(7)v = 0 if and only if S(7)v = 0. Therefore, we conclude that v € ker S(7) for 0 < 7 < t. This
implies that, for any ¢ € N, v € ker S(i)(O), which is a contradiction, since the curve is ample at
0. O

Exercise 14.44. Prove that a monotone curve A(t) is ample at ¢ if and only if one of the equivalent
conditions is satisfied

(i) the family of matrices S(t) — S(to) is nondegenerate for ¢ # ¢y close enough, and the same
remains true if we replace S(t) by its N-th Taylor polynomial, for some N in N.

(ii) the map ¢ +— det(S(t) — S(tp)) has a finite order root at t = ¢.

Let us now consider an analytic monotone curve on L(X). Without loss of generality we can
assume the curve to be non increasing, i.e. A(¢) > 0. By monotonicity

AO)NA®) = (] AlF) =T

0<r<t

Clearly Ty is a decreasing family of subspaces, i.e. T, C T, if 7 < t. Hence the family T, for ¢ — 0
stabilizes and the limit subspace Y is well defined

T :=1lim Y,

t—0

The symplectic reduction of the curve by the isotropic subspace Y defines a new curve K(t) =
AT € L(T4/T).

Proposition 14.45. If A(t) is analytic and monotone in L(X), then A(t) is ample L(T4/Y).

Proof. By construction, in the reduced space Y4 /Y we removed the intersection of A(t) with A(0).
Hence

AO)NA®#) ={0}, in L(T?/T) (14.30)

In particular, if S(t) denotes the symmetric matrix representing A(¢) such that S(0) = A(to), it
follows that S(t) is non degenerate for 0 < |t| < e. The analyticity of the curve guarantees that
the Taylor polynomial (of a suitable order N) is also non degenerate. O
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14.6 From ample to regular

In this section we prove the main result of this chapter, i.e. that any ample monotone curve can
be reduced to a regular one.

Theorem 14.46. Let A(t) be a smooth ample monotone curve and set T' := ker A(0). Then the
reduced curve t — AY(t) is a smooth regular curve. In particular AF(O) > 0.

Before proving Theorem [I4.40] let us discuss two useful lemmas.

Lemma 14.47. Let vi(t),...,vx(t) € R" and define V (t) as the n x k matriz whose columns are
the vectors vi(t). Define the matriz S(t) := fg V(r)V(r)*dr. Then the following are equivalent:

(i) S(t) is invertible (and positive definite),
(11) span{v;(7)|i =1,...,k;7 € [0,t]} = R".

Proof. Fix t > 0 and let us assume S(¢) is not invertible. Since S(t) is non negative then there
exists a nonzero z € R"™ such that (S(t)x,z) = 0. On the other hand

(S(t)e, ) = /0 V()W (r) z,2) dr = /O |V (r)*z|2dr

This implies that V(7)*x = 0 (or equivalently z*V (1) = 0) for 7 € [0, ], i.e. the nonzero vector x*
is orthogonal to im ¢ 1V (7) = span{v;(7)|i = 1,...,k, 7 € [0,t]} = R", that is a contradiction.
The converse is similar. O

Lemma 14.48. Let A, B two positive and symmetric matrices such that 0 < A < B. Then we
have also 0 < B~' < A1,

Proof. Assume first that A and B commute. Then A and B can be simultaneously diagonalized
and the statement is trivial for diagonal matrices.

In the general case, since A is symmetric and positive, we can consider its square root A2,
which is also symmetric and positive. We can write

0 < (Av,v) < (Bv,v)

By setting w = A2y in the above inequality and using (Av,v) = <A1/2U, A1/21)> one gets
0 < (w,w) < <A_1/QBA_1/2w,w>,

which is equivalent to I < A~/2BA~Y/2. Since the identity matrix commutes with every other

matrix, we obtain
0 < AV2B-171/2 — (A—l/zBA—1/2)—1 <1

which is equivalent to 0 < B~! < A~! reasoning as before. O

Proof of Theorem [I17.406] By assumption the curve ¢ — A(t) is ample, hence A(t) NT' = {0} and
t — AT (t) is smooth for ¢+ > 0 small enough. We divide the proof into three parts: (i) we compute
the coordinate presentation of the reduced curve. (ii) we show that the reduced curve, extended
by continuity at ¢t = 0, is smooth. (iii) we prove that the reduced curve is regular.
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(i). Let us consider Darboux coordinates in the symplectic space ¥ such that

Y={pq) :p,qeR"},  A®)={(p,SH)p)|p eR"},  S(0)=0.

Morover we can assume also R” = R¥ @ R"~* where I' = {0} @ R" . According to this splitting
we have the decomposition p = (p1, p2) and ¢ = (¢1, g2). The subspaces I and I'“ are described by
the equations

I'={(p,q):p1=0,g=0}, TI“={(p,q):q =0}

and (p1,q1) are natural coordinates for the reduced space < /T. Up to a symplectic change of
coordinates preserving the splitting R” = R* @ R"* we can assume that

. Sll(t) Slg(t) . : . I, O
S(t) = <Sf2(t) 522(75)> , with S(0) = <0 0) . (14.31)

where [ is the k x k identity matrix. Finally, from the fact that S is monotone and ample, that
implies S(t) > 0 for each ¢ > 0, it follows

Sll(t) >0, Saa(t) > 0, Vit>0. (14.32)

Then we can compute the coordinate expression of the reduced curve, i.e. the matrix ST (¢) such
that

AT() = {(p1, " (t)p1), ;1 € R*}.
From the identity

A0 = (.50 s0p e 2 = { (s70().(4) ) e v (14.3)

one gets the key relation ST (¢)~! = (S(t)~H)11.
Thus the matrix expression of the reduced curve AT'(t) in L(I'“/T) is recovered simply by
considering it as a map of (p1, 1) only, i.e.

St 512> <p1> (511291 + 512292)
S(t)p = =
) <ST2 Sa2 ) \p2 STap1 + S2op2
from which we get S(t)p € R if and only if S}, (t)p1 + S22(t)p2 = 0. Then

AY(t) = {(p1, S11p1 + S12p2) : Sia(t)p1 + Saz(t)ps = 0}
= {(p1, (S11 — 51255 St2)p1)}
that means
SY = 811 — 512555 St (14.34)

(ii). By the coordinate presentation of S' () the only term that can give rise to singularities is
the inverse matrix 52_21(t). In particular, since by assumption ¢ — det Sa2(t) has a finite order zero
at t = 0, the a priori singularity can be only a finite order pole.

To prove that the curve is smooth it is enough the to show that S(t) — 0 for ¢t — 0, i.e. the
curve remains bounded. This follows from the following

Claim I. As quadratic forms on R*, we have the inequality 0 < ST (t) < Sy;().
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Indeed S(t) symmetric and positive one has that its inverse S(¢)~! is symmetric and positive also.
This implies that ST (t)~! = (S(t)~1)11 > 0 and so is ST (t). This proves the left inequality of the
Claim I.

Moreover using ([Z34) and the fact that Soo is positive definite (and so Sy,') one gets

{(S11 = SH)p1,p1) = (81285 Stap1,p1) = (S (Siap1). (Siap1)) > 0.

Since S(t) — 0 for t — 0, clearly Si1(t) — 0 when ¢ — 0, that proves that S™(t) — 0 also.

(iii). We are reduced to show that the derivative of ¢ — S'(¢) at 0 is non degenerate matrix,
which is equivalent to show that t — ST (t)~! has a simple pole at t = 0.

We need the following lemma, whose proof is postponed at the end of the proof of Theorem
114.406!

Lemma 14.49. Let A(t) be a smooth family of symmetric nonnegative n X n matrices. If the
condztzon rank(A A, ..., AN, = n is satisfied for some N, then there exists g > 0 such that
etA(0) < fo T)dT for all € <egg andt > 0 small enough.

Applying the Lemma to the family A(t) = S(t) one obtains (see also (TZ:31)))

(S(t)p,p) > et|p1|®

for all 0 < € < g, any p € R" and any small time ¢ > 0.

Now let p; € R¥ be arbitrary and extend it to a vector p = (p1,p2) € R™ such that (p, S(t)p) €
A(t)NT4 (ie. S(t)p = (q1 0)T or equivalently S(t)~'(g1,0) = (p1,p2)). This implies in particular
that ST (t)p; = ¢1 and

(ST (t)p1,p1) = (S(t)p,p) = et|pa*,

This identity can be rewritten as S*(¢) > et I, > 0 and implies by Lemma [[4.48]
0<S'(t)™ < iﬂk
et
which completes the proof. O

Proof of Lemma [14.49. We reduce the proof of the Lemma to the following statement:

Claim II. There exists c, N > 0 such that for any sufficiently small e, > 0

det ( /0 t A(T) — eA(0) dT> > etV

Moreover c,]v depends only on the 2N -th Taylor polynomial of A(t).

Indeed fix top > 0. Since A(t) > 0 and A(t) is not the zero family, then fg’o A(t)dr > 0. Hence, for
a fixed tp, there exists ¢ small enough such that foto A(1) —eA(0)dr > 0. Assume now that the

matrix Sy = fo —€A(0) dr > 0 is not strictly positive for some 0 < ¢ < ¢, then det S(7) =0
for some T € [t, to] that is a contradiction.

We now prove Claim II. We may assume that ¢t — A(t) is analytic. Indeed, by continuity
of the determinant, the statement remains true if we substitute A(t) by its Taylor polynomial of
sufficiently big order.
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An analytic one parameter family of symmetric matrices ¢ — A(t) can be simultaneously di-
agonalized (see ?77), in the sense that there exists an analytic (with respect to t) family of vectors
vi(t), with i = 1,...,n, such that

n
(A(t)x,z) = Z (vi(t), z)?.
i=1
In other words A(t) = V(¢)V(¢)*, where V (¢) is the n x n matrix whose columns are the vectors
v;(t). (Notice that some of these vector can vanish at 0 or even vanish identically.)
Let us now consider the flag Fy C Fs C ... C Eny = R" defined as follows

E; =span{o), 1< j <n,0<1 < i},

Notice that this flag is finite by our assumption on the rank of the consecutive derivatives of A(t)
and N is the same as in the statement of the Lemma. We then choose coordinates in R™ adapted
to this flag (i.e. the spaces F; are coordinate subspaces) and define the following integers (here
€l,...,ey is the standard basis of R")

m; = min{j : e; € E;}, i=1,...,n.

In other words, when written in this new coordinate set, m; is the order of the first nonzero term in
the Taylor expansion of the i-th row of the matrix V(¢). Then we introduce a quasi-homogeneous
family of matrices V(t): the i-th row of V(t) is the m;-homogeneous part of the i-the row of V(¢).
Then we define A(t) := V(¢)V(t)*. The columns of the matrix A(t) satisfies the assumption of
Lemma [[Z47) then [j A(r)dr > 0 for every ¢ > 0.

If we denote the entries A(t) = {a;;(¢)}};—; and A(t) = {aij ()=

aij(t) = cigt™ ™, ag(t) = ai(t) + O™,

| We obtain

for suitable constants c;; (some of them may be zero).
) Then we let A%(t) := A(t) — eA(0) = {a5;(t)}7 ;= Of course ag;(t) = c;;t™ ™ + O(tmitmi+1)
where

e _ (1 — E)Cij, if m; + m; = 0,
Cij, if m; + mj > 0.

From the equality

¢ 3
/ a§;(7)dr = tmitmatl (7% + O(t)>
0

mi—i-mj—i-l

t <.
det ( / AE(T)dT> = g2 <det (*) + O(t))
0 m; + m; +1
On the other hand

t ..
det < / A(T)dT> — 2 m (det <7c” > + O(t)> >0
0 m; + mj + 1

£

hence det <mz%n{bj+1) > 0 for small €. The proof is completed by setting

one gets

N
Cij -
ci=det | ————— |, N :=n+2 m;
<m,~+mj+1> ; !
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14.7 Conjugate points in L(X)

In this section we introduce the notion of conjugate point for a curve in the Lagrange Grassmannian.
In the next chapter we explain why this notion coincide with the one given for extremal paths in
sub-Riemannian geometry.

Definition 14.50. Let A(¢) be a monotone curve in L(X). We say that A(t) is conjugate to A(0)
if A(t) N A(0) # {0}.

As a consequence of Lemma [14.43] we have the following immediate corollary.
Corollary 14.51. Conjugate points on a monotone and ample curve in L(X) are isolated.
The following two results describe general properties of conjugate points
Theorem 14.52. Let A(t), A(t) two ample monotone curves in L(X) defined on R such that
(1) ¥ = A(t) ® A(t) for everyt >0,
(i) A(t) <0, A(t) >0, as quadratic forms.
Then there exists no 7 > 0 such that A(T) is conjugate to A(0). Moreover 3 lim; 4 A(t) = A(00).

Proof. Fix coordinates induced by some Lagrangian splitting of ¥ in such a way that Sy) = 0 and
Sa@) = I. The monotonicity assumption implies that ¢ — Sy (resp. ¢+ Sa(y)) is a monotone
increasing (resp. decreasing) curve in the space of symmetric matrices. Moreover the tranversality
of A(t) and A(t) implies that Sa(t) — Sz is a non degenerate matrix for all ¢. Hence

0 < Spp < Salt) <1, for all ¢ > 0.

In particular A(t) never leaves the coordinate neighborhood under consideration, the subspace A(t)
is always traversal to A(0) for ¢ > 0 and has a limit A(co) whose coordinate representation is
Sa(00) = limy—y 400 Sa(2). O

Theorem 14.53. Let Ay(t), fort,s € [0,1] be an homotopy of curves in L(X) such that As;(0) = A
for s € [0,1]. Assume that

(1) As(+) is monotone and ample for every s € [0,1],
(11) Ao(+),A1(:) and As(1), for s € [0,1], contains no conjugate points to A.
Then no curve t — As(t) contains conjugate points to A.

Proof. Let us consider the open chart A" defined by all the Lagrangian subspaces traversal to A.
The statement is equivalent to prove that As(t) € A" for all ¢ > 0 and s € [0,1]. Let us fix
coordinates induced by some Lagrangian splitting ¥ = A @ A in such a way that A = {(p,0)} and

As(t) = {(Bs(t)q,9)}

for all s and t > 0 (at least for ¢ small enough, indeed by ampleness A (t) € A™ for ¢ small).
Moreover we can assume that Bg(t) is a monotone increasing family of symmetric matrices.
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Notice that 27 Bs(1)x — —oo for every x € R® when 7 — 0%, due to the fact that Ag(0) = A is
out of the coordinate chart. Moreover, a necessary condition for A¢(t) to be conjugate to A is that
there exists a nonzero x such that 27 B,(7)z — oo for 7 — .

It is then enough to show that, for all x € R™ the function (¢,s) + 27 B,(t)z is bounded.
Indeed by assumptions ¢ ++ x7 By(t)z and t +— 27 By ()2 are monotone increasing and bounded up
to t = 1. Hence the continuous family of values M, := 27 B,(1)z is weel defined and bounded for
all s. The monotonicity implies that actually z7 B,(t)z < +oo for all values of t,s € [0,1]. (See

also Figure [[4.7)).

2TB,(1)z

xTBo(l)I/_\ ' By(1)x

2T By(t)x

S

Figure 14.1: Proof of Theorem [14.53]

14.8 Comparison theorems for regular curves

In this last section we prove two comparison theorems for regular monotone curves in the Lagrange
Grassmannian.

Corollary 14.54. Let A(t) be a monotone and regular curve in the Lagrange Grassmannian such
that Ra(t) < 0. Then A(t) contains no conjugate points to A(0).

Proof. This is a direct consequence of Theorem [14.52] O

Theorem 14.55. Let A(t) be a monotone and regular curve in the Lagrange Grassmannian. As-
sume that there exists k > 0 such that for all t > 0

(i) Ra(t) < kId. Then, if A(t) is conjugate to A(0), we have t > Z-.

S

(ii) Ltrace Ry(t) > k. Then for every t > 0 there exists T € [t,t + %] such that A(T) is conjugate
to A(0).
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We stress that assumption (i) means that all the eigenvalues of Ry (t) are smaller or equal than
k, while (ii) requires only that the average of the eigenvalues is bigger or equal than k.

Remark 14.56. Notice that the estimates of Theorem [[4.55] are sharp, as it is immediately seen by
considering the example of a 1-dimensional curve of constant velocity (see Example [I4.30]).

Proof. (i). Consider the real function

m 1 us
¢ : R =0, ﬁ[, o(t) = ﬁ(arctan Vkt + 5)

Using that ¢(t) = (1 + kt?)~! it is easy to show that the Schwarzian derivative of ¢ is

k

Ry(t) = T

Thus using ¢ as a reparametrization we find, by Proposition [14.30]

Ry, (t) = ¢* Ra(p(t) + Ro(t)ld
1
= ——=(R t)) — klId) < 0.
T R (elt) - k1d) <
By Corollary [4.54] the curve A o ¢ has no conjugate points, i.e. A has no conjugate points in the
interval |0, W[

(ii). We prove the claim by showing that the curve A(t), on every interval of length m/v/k has
non trivial intersection with every subspace (hence in particular with A(0)). This is equivalent to
prove that A(t) is not contained in a single coordinate chart for a whole interval of length m/v/k.

Assume by contradiction that A(t) is contained in one coordinate chart. Then there exists
coordinates such that A(t) = {(p,S(t)p)} and we can write the coordinate expression for the

curvature:
RA(t) = B(t) — B(t)?,  where B(t) = (25(t))7'S(t).

Let now b(t) := trace B(t). Computing the trace in both sides of equality
B(t) = B*(t) + Ra(t),

we get )
b(t) = trace(B?(t)) + trace Ra(t). (14.35)
Lemma 14.57. For every n x n symmetric matriz S the following inequality holds true
1
trace(S?) > —(trace S). (14.36)
n

Proof. For every symmetric matrix S there exists a matrix M such that MSM = D is diagonal.
Since trace(M AM ') = trace(A) for every matrix A, it is enough to prove the inequality (TZ-36])
for a diagonal matrix D = diag(A1,...,\,). In this case (I4.30)) reduces to the Cauchy-Schwartz
inequality

3
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Applying Lemma [IZ.57 to (IZ:35]) and using the assumption (ii) one gets

b(t) > %b2(t) + nk, (14.37)

By standard results in ODE theory we have b(t) > ¢(t) , where ¢(¢) is the solution of the differential
equation

1
o(t) = ;gﬂ(t) + nk (14.38)
The solution for (I4.38)), with initial datum ¢(ty) = 0, is explicit and given by
o(t) = nVktan(VE(t — to)).

This solution is defined on an interval of measure 7/v/k. Thus the inequality b(t) > ¢(t) completes
the proof. O

426



Chapter 15

Jacobi curves

Now we are ready to introduce the main object of this part of the book, i.e. the Jacobi curve
associated with a normal extremal. Heuristically, we would like to extract geometric properties of
the sub-Riemannian structure by studying the symplectic invariants of its geodesic flow, that is the
flow of H. The simplest idea is to look for invariants in its linearization.

As we explain in the next sections, this object is naturally related to geodesic variations, and
generalizes the notion of Jacobi fields in Riemannian geometry to more general geometric structures.

In this chapter we consider a sub-Riemannian structure (M, U, f) on a smooth n-dimensional
manifold M and we denote as usual by H : T*M — R its sub-Riemannian Hamiltonian.

15.1 From Jacobi fields to Jacobi curves

Fix a covector A € T*M, with 7(\) = ¢, and consider the normal extremal starting from ¢ and
associated with A, i.e.

A1) = et (N), ~v(t) = w(A(t)). (i.e. At) € T5,)M.)
For any € T\(T*M) we can define a vector field along the extremal A(t) as follows
X(t) = e € Ty (T M)

The set of vector fields obtained in this way is a 2n-dimensional vector space which is the space of
Jacobi fields along the extremal. For an Hamiltonian H corresponding to a Riemannian structure,
the projection m, gives an isomorphisms between the space of Jacobi fields along the extremal and
the classical space of Jacobi fields along the geodesic v(t) = w(A(t)).

Notice that this definition, equivalent to the standard one in Riemannian geometry, does
not need curvature or connection, and can be extended naturally for any strongly normal sub-
Riemannian geodesic.

In Riemannian geometry, the study of one half of this vector space, namely the subspace of
classical Jacobi fields vanishing at zero, carries informations about conjugate points along the
given geodesic. By the aforementioned isomorphism, this corresponds to the subspace of Jacobi
fields along the extremal such that 7, X (0) = 0. This motivates the following construction: For
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any A € T*M, we denote V) := ker .|, the vertical subspace. We could study the whole family of
(classical) Jacobi fields (vanishing at zero) by means of the family of subspaces along the extremal

L(t) = eiﬁV)\ C T)\(t) (T*M)

Notice that actually, being eiﬁ a symplectic transformation and V) a Lagrangian subspace, the
subspace L(t) is a Lagrangian subspace of T (T*M).

15.1.1 Jacobi curves

The theory of curves in the Lagrange Grassmannian developed in Chapter ?7 is an efficient tool
to study family of Lagrangian subspaces contained in a single symplectic vector space. It is then
convenient to modify the construction of the previous section in order to collect the informations
about the linearization of the Hamiltonian flow into a family of Lagrangian subspaces at a fixed
tangent space.

By definition, the pushforward of the flow of H maps the tangent space to T*M at the point
A(t) back to the tangent space to T*M at A:

e Ty (T* M) — Ta(T*M).

If we then restrict the action of the pushforward e, tH t4 the vertical subspace at A(t), i.e. the
tangent space T)y) (Tj:(t)M ) at the point A(t) to the fiber T;(t)M , we define a one parameter family
of n-dimensional subspaces in the 2n-dimensional vector space T (7*M). This family of subspaces

is a curve in the Lagrangian Grassmannian L(T)(T*M)).

Notation. In the following we use the notation Vy := T\(T; M) for the vertical subspace at
the point A € T*M, i.e. the tangent space at A to the fiber T/ M, where ¢ = m(A). Being the
tangent space to a vector space, sometimes it will be useful to identify the vertical space V) with
the vector space itself, namely V) >~ T7 M.

Definition 15.1. Let A € T*M. The Jacobi curve at the point A is defined as follows

In(t) = eV, (15.1)

where \(t) := etﬁ()\) and y(t) = m(A(t)). Notice that Jy(t) C Tx\(T*M) and J\(0) = V\ = T\(T; M)
is vertical.

As discussed in Chapter [[4] the tangent vector to a curve in the Lagrange Gassmannian can be
interpreted as a quadratic form. In the case of a Jacobi curve J)(t) its tangent vector is a quadratic
form Jy(t) : Ja(t) — R.

Proposition 15.2. The Jacobi curve Jy(t) satisfies the following properties:
(i) Ix(t+s) = e*_tﬁ,])\(t)(s), forall t,s >0,

(ii) J,(0) = —2H

T:M S quadratic forms on V) =~ T;M .
(iii) rank J,(t) = rank Hirs , m
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Proof. Claim (i) is a consequence of the semigroup property of the family {e*_tﬁ He>o-
To prove (ii), introduce canonical coordinates (p,x) in the cotangent bundle. Fix £ € V. The

smooth family of vectors defined by &(t) = e; "¢ (considering € as a constant vertical vector field)
is a smooth extension of &, i.e. it satisfies £(0) = £ and &(t) € Jx(t). Therefore, by (I4.8)

o =ate.é) = (6.5

e;tﬁs) =o(&,[H,€)). (15.2)

t=0

To compute the last quantity we use the following elementary, although very useful, property of
the symplectic form o.

Lemma 15.3. Let £ € V) a vertical vector. Then, for any n € T\(T*M)

o(&§,m) = (& ™), (15.3)

where we used the canonical identification Vy =Ty M.

Proof. In any Darboux basis induced by canonical local coordinates (p,z) on T*M, we have o =
S dpi Adx; and € =Y, £9,,. The result follows immediately. d

To complete the proof of point (ii) it is enough to compute in coordinates

- OH o0 OHO _0 0’H _ 0
wld = | G|~ o

Hence by Lemma [I5.3] and the fact that H is quadratic on fibers one gets

. 2
o6, () = — <£, 687215> — 20(6).

(iii). The statement for t = 0 is a direct consequence of (ii). Using property (i) it is easily seen that
the quadratic forms associated with the derivatives at different times are related by the formula

Iyt o et = Jy)(0). (15.4)

—

tH i a symplectic transformation, it preserves the sign and the rank of the quadratic formEI

O

Since e,

Remark 15.4. Notice that claim (iii) of Proposition implies that rank of the derivative of the
Jacobi curve is equal to the rank of the sub-Riemannian structure. Hence the curve is regular if and
only if it is associated with a Riemannian structure. In this case of course it is strictly monotone,
namely J,(t) < 0 for all ¢.

Corollary 15.5. The Jacobi curve Jy(t) associated with a sub-Riemannian extremal is monotone
nonincreasing for every A € T*M.

'Notice that J, (), lA(t)(O) are defined on Ji(t), Jx)(0) respectively, and Jx(t) = e:tﬁJA(t)(O).
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15.2 Conjugate points and optimality

At this stage we have two possible definition for conjugate points along normal geodesics. On one
hand we have singular points of the exponential map along the extremal path, on the other hand
we can consider conjugate points of the associated Jacobi curve. The next result show that actually
the two definition coincide.

Proposition 15.6. Let 7(t) = exp,(t\) be a normal geodesic starting from q with initial covector
A. Denote by Jy\(t) its Jacobi curve. Then for s >0

v(s) is conjugate to v(0) <~ J\(s) is conjugate to Jx(0).
Proof. By Definition BAT], ~(s) is conjugate to v(0) if s\ is a critical point of the exponential

map exp,. This is equivalent to say that the differential of the map from T;M to M defined by

A moest (M) is not surjective at the point \, i.e. the image of the differential eiﬁ has a nontrivial
intersection with the kernel of the projection m,

eSTIN0) N Ty T2y M # {0}, (15.5)

Applying the linear invertible transformation e, sH to both subspaces one gets that (I5.5]) is equiv-
alent to

Ja(0) N JIx(s) # {0}

which means by definition that Jy(s) is conjugate to Jy(0). O

The next result shows that, as soon as we have a segment of points that are conjugate to the
initial one, the segment is also abnormal.

Theorem 15.7. Let v : [0,1] — M be a normal extremal path such that v|j 4 is not abnormal for
all 0 < s < 1. Assume ’Y‘[to,tﬂ is a curve of conjugate points to ¥(0). Then the restriction ’Y‘[to,tl]
is also abnormal.

Remark 15.8. Recall that if a curve « : [0,7] — M is a strictly normal trajectory, it can happen
that a piece of it is abnormal as well. If the trajectory is strongly normal, then if ¢g,#; satisfy the
assumptions of Theorem [I5.7] necessarily to > 0.

Proof. Let us denote by Jy(t) the Jacobi curve associated with ~(¢). From Proposition it
follows that Jy(t) N Jx(0) # {0} for each ¢ € [to,t1]. We now show that actually this implies

IO N () A # {0}, (15.6)

tE[to,tl]

We can assume that the whole piece of the Jacobi curve Jy(t), with tg <t < ¢;, is contained in a
single coordinate chart. Otherwise we can cover [to, t1] with such intervals and repeat the argument
on each of them. Let us fix coordinates given by a Lagrangian splitting in such a way that

J)\(t) = {(p7 S(t)p)vp € Rn}7 J)\(O) = {(pv 0),]9 € Rn}
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Moreover we can assume that S(¢) < 0 for every tg < t < t;, i.e. is non positive definite and
monotone decreasing, A In particular Jy(¢t1) N Jy(0) # {0} if and only if there exists a vector v
such that S(t;)v = 0. Since the map t ~ vT'S(¢)v is nonpositive and decreasing this means that
S(t)v =0 for all ¢ € [tg,t1], thus

I0)NIA(t) € LO) N () ) (15.7)

te [to ,tﬂ

that implies that actually we have the equality in (I5.7).
We are left to show that if a Jacobi curve Jy(t) is such that every t is a conjugate point for
0 < 7 < 7, then the corresponding extremal is also abnormal. Indeed let us fix an element £ # 0

such that
ge () L
tel0,7]

which is non-empty by the above discussion. Then we consider the vertical vector field
() =ele e Ty(ThyM),  0<t<T

B_},’ construction, the vector field £ is preserved by the Hamiltonian field, i.e. eiﬁ & =&, that implies
[H,&](A(t)) = 0. Then the statement is proved by the following

Exercise 15.9. Define n(t) = £(A(t)) € 5 )M (by canonical identification T)\(T; M) ~ T M).
Show that the identity [H,&](A(t)) = 0 rewrites in coordinates as follows

Do m®)* =0, i) = 3 hi(A®)Ri(n(t)): (15.8)

Exercise [[5.9] shows that 7(t) is a family of covectors associated with the extremal path corre-
sponding to controls u;(t) = h;(A(t)) and such that h;(n(t)) = 0, that means that it is abnormal.
O

Corollary 15.10. Let Jy(t) be the Jacobi curve associated with X\ € T*M and v(t) = w(A\(t)) the
associated sub-Riemannian extremal path. Then 7|o - is not abnormal for all0 < 7 <t if and only
if (1) N Jx(0) = {0} for all0 <7 <t

15.3 Reduction of the Jacobi curves by homogeneity

The Jacobi curve at point A € T* M parametrizes all the possible geodesic variations of the geodesic
associated with an initial covector A. Since the variations in the direction of the motion are always
trivial, i.e. the trajectory remains the same up to parametrizations, one can reduce the space of
variation to an (n — 1)-dimensional one.

This idea is formalized by considering a reduction of the Jacobi curve in a smaller symplectic
space. As we show in the next section, this is a natural consequence of the homogeneity of the
sub-Riemannian Hamiltonian.

Indeed it is proved that the only invariant of a pair of two Lagrangian subspaces in a symplectic space is the
dimension of the intersection, i.e. the rank of the difference rank(S(t) — S(0)). Add exercise
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Remark 15.11. This procedure was already exploited in Section BTl obtained by a direct argument
via Proposition 838l Indeed one can recognize that the procedure that reduced the equation for
conjugate points of one dimension corresponds exactly to the reduction by homogeneity of the
Jacobi curve associated to the problem.

We start with a technical lemma, whose proof is left as an exercise.

Lemma 15.12. Let ¥ = X1 @ X9 be a splitting of the symplectic space, with 0 = o1 ® o5. Let
A; € L(%;) and define the curve A(t) := A1(t) ® Ao(t) € L(X). Then one has the splittings:

A(t) = A, (t) @ Ay(t),
RA(t) = R, (t) © Ra,(1).

Consider now a Jacobi curve associated with A € T*M:
IO =MV, Va=TaT5M).
Denote by 6, : T*M — T*M the fiberwise dilation §,(A) = a\, where a > 0 .
Definition 15.13. The Euler vector field E € Vec(T*M) is the vertical vector field defined by

= d

EN) 5s(\),  AeT*M.

ds s=1

It is easy to see that in canonical coordinates (x,&) it satisfies E = S &% and the following
identity holds

etfx = el ie. etE(f,az) = (e'¢, ).

Exercise 15.14. Prove that the Euler vector field is characterized by the identity
igo = s, s = Liouville 1-form in T M.

Lemma 15.15. We have the identity e;tﬁﬁ = E — tH. In particular [ﬁ, E] =—H.
Proof. The homogeneity property (8.50]) of the Hamiltonian can be rewritten as follows

(50 = d,(etH(N), Vs t>0.
Applying §_; to both sides and changing ¢ into —t one gets the identity

S_goe tH og, = st (15.9)

Computing the 2"? order mixed partial derivative at (¢,s) = (0,1) in (I59) one gets, by (Z27),
that [ﬁ ) E] — —H. Thus, by [231)) we have e, E = F—tH , since every higher order commutator
vanishes.

O

Proposition 15.16. The subspace Y= span{ﬁ, ﬁ}; is invariant under the action of the Hamilto-
nian flow. Moreover {E, H} is a Darboux basis on ¥ N H~1(1/2).
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Proof. The fact that Y is an invariant subspace is a consequence of the identities
esE=E—tH, e ""H=0.

Moreover, on the level set H~1(1/2), we have by homogeneity of H w.r.t. p:

Lo d ’ H
o(E,H)=E(H)=—| H((p,z) = pa— =2H = 1. (15.10)
dt|,_g Op
It follows that {E, H} is a Darboux basis for . O

In particular we can consider the the symplectic splitting > = PRI

Exercise 15.17. Prove the following intrinsic characterization of the skew-orthogonal to DF

24 = {E e T(T*M) : (d\H, &) = (s3,€) = 0}
The assumptions of Lemma are satisfied and we could split our Jacobi curve.
Definition 15.18. The reduced Jacobi curve is defined as follows
Ja(t) := Jy(t) N 7. (15.11)

Notice that, if we put V := Vy N Th"H~1(1/2), we get

~

J)\(O) = 9)\, j)\(t) = e*_tﬁﬁ)\.
Moreover we have the splitting
Jx(t) = JA(t) ®R(E — tH).

We stress again that Ty \(t) is a curve of (n—1)-dimensional Lagrangian subspaces in the (2n—2)-
dimensional vector space ¥.4.

Exercise 15.19. With the notation above
(i) Show that the curvature of the curve Jy(t) N in 3 is always zero.

(i) Prove that Jy(0) N Jy(s) # {0} if and only if Jy(0) N Jy(s) # {0}.
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Chapter 16

Riemannian curvature

On a manifold, in general there is no canonical method for identifying tangent spaces at different
points, (or more generally fibers of a vector bundle at different points). Thus, we have to expect
that a notion of derivative for vector fields (or sections of a vector bundle), has to depend on certain
choices.

In our presentation we introduce the general notion of Ehresmann connection and we then we
discuss how this notion is related with the notion of parallel transport and covariant derivative
usually introduced in classical Riemannian geometry.

16.1 Ehresmann connection

Given a smooth fiber bundle F, with base M and canonical projection w : E — M, we denote by
E, = n7%(q) the fiber at the point ¢ € M. The vertical distribution is by definition the collection
of subspaces in T'F that are tangent to the fibers

V= {VZ}ZEEa Vz = kerﬂ*,z = TzEw(z) C TZE.

Definition 16.1. Let E be a smooth fiber bundle. An Ehresmann connection on E is a smooth
vector distribution H in F satisfying

H= {Hz}zeEa T.E=V,®H,.

Notice that V, being the kernel of the pushforward m,, is canonically associated with the fibre
bundle. Defining a connection means exactly to define a canonical complement to this distribution.
For this reason H is also called horizontal distribution.

Definition 16.2. Let X € Vec(M). The horizontal lift of X is the unique vector field Vx € Vec(FE)
such that
Vx(z) € Hz, mVx = X, VzeE. (16.1)

The uniqueness follows from the fact that ., : T, £ — T ;)M is an isomorphism when restricted
to H.. Indeed 7, , is a surjective linear map with ker m, , = V,.

Notation. In the following we will refer also at V as the connection on F.

435



Given a smooth curve v : [0,7] — M on the manifold M, the connection let us to define
the parallel transport along -, i.e. a way to identify tangent vectors belonging to tangent spaces
at different points of the curve. Let X; be a nonautonomous smooth vector field defined on a
neighborhood of «, that is an extension of the velocity vector field of the curv, i.e. such that

Y(t) = Xi(v(#),  Vte€[0,T].
Then consider the non autonomous vector field Vy, € Vec(E) obtained by its lift.

Definition 16.3. Let v : [0,7] — M be a smooth curve. The parallel transport along v is the map
® defined by the flow of Vy,

t1
Oy =6xD | Vx,ds: By = Bypy),  for0<to<t; <T. (16.2)
to
In the general case we need some extra assumptions on the vector field to ensure that (I6.2])
exists (even for small time ¢ > 0) since the existence time of a solution also depend on the point
on the fiber. For instance if we the fibers are compact, then it is possible to find such ¢ > 0.

Exercise 16.4. Show that the parallel transport map sends fibers to fibers and does not depend
on the extension of the vector f