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Introduction

This book concerns a fresh development of the eternal idea of the distance as the length of a shortest
path. In Euclidean geometry, shortest paths are segments of straight lines that satisfy all classical
axioms. In the Riemannian world, Euclidean geometry is just one of a huge amount of possibilities.
However, each of these possibilities is well approximated by Euclidean geometry at very small scale.
In other words, Euclidean geometry is treated as geometry of initial velocities of the paths starting
from a fixed point of the Riemannian space rather than the geometry of the space itself.

The Riemannian construction was based on the previous study of smooth surfaces in the Eu-
clidean space undertaken by Gauss. The distance between two points on the surface is the length
of a shortest path on the surface connecting the points. Initial velocities of smooth curves starting
from a fixed point on the surface form a tangent plane to the surface, that is an Euclidean plane.
Tangent planes at two different points are isometric, but neighborhoods of the points on the surface
are not locally isometric in general; certainly not if the Gaussian curvature of the surface is different
at the two points.

Riemann generalized Gauss’ construction to higher dimensions and realized that it can be
done in an intrinsic way; you do not need an ambient Euclidean space to measure the length of
curves. Indeed, to measure the length of a curve it is sufficient to know the Euclidean length
of its velocities. A Riemannian space is a smooth manifold whose tangent spaces are endowed
with Euclidean structures; each tangent space is equipped with its own Euclidean structure that
smoothly depends on the point where the tangent space is attached.

For a habitant sitting at a point of the Riemannian space, tangent vectors give directions where
to move or, more generally, to send and receive information. He measures lengths of vectors, and
angles between vectors attached at the same point, according to the Euclidean rules, and this is
essentially all what he can do. The point is that our habitant can, in principle, completely recover
the geometry of the space by performing these simple measurements along different curves.

In the sub-Riemannian space we cannot move, receive and send information in all directions.
There are restictions (imposed by the God, the moral imperative, the government, or simply a
physical law). A sub-Riemannian space is a smooth manifold with a fixed admissible subspace in
any tangent space where admissible subspaces are equipped with Euclidean structures. Admissible
paths are those curves whose velocities are admissible. The distance between two points is the
infimum of the length of admissible paths connecting the points. It is assumed that any pair of
points in the same connected component of the manifold can be connected by at least an admissible
path. The last assumption might look strange at a first glance, but it is not. The admissible
subspace depends on the point where it is attached, and our assumption is satisfied for a more or
less general smooth dependence on the point; better to say that it is not satisfied only for very
special families of admissible subspaces.

Let us describe a simple model. Let our manifold be R3 with coordinates x, y, z. We consider
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the differential 1-form ω = dz + 1
2 (xdy − ydx). Then dω = dx ∧ dy is the pullback on R3 of the

area form on the xy-plane. In this model the subspace of admissible velocities at the point (x, y, z)
is assumed to be the kernel of the form ω. In other words, a curve t 7→ (x(t), y(t), z(t)) is an
admissible path if and only if ż(t) = 1

2 (y(t)ẋ(t)− x(t)ẏ(t)).
The length of an admissible tangent vector (ẋ, ẏ, ż) is defined to be (ẋ2+ ẏ2)

1
2 , that is the length

of the projection of the vector to the xy-plane. We see that any smooth planar curve (x(t), y(t))
has a unique admissible lift (x(t), y(t), z(t)) in R3, where:

z(t) =
1

2

∫ t

0
x(s)ẏ(s)− ẋ(s)y(s) ds.

If x(0) = y(0) = 0, then z(t) is the signed area of the domain bounded by the curve and the segment
connecting (0, 0) with (x(t), y(t)). By construction, the sub-Riemannian length of the admissible
curve in R3 is equal to the Euclidean length of its projection to the plane.

We see that sub-Riemannian shortest paths are lifts to R3 of the solutions to the classical Dido
isoperimetric problem: find a shortest planar curve among those connecting (0, 0) with (x1, y1) and
such that the signed area of the domain bounded by the curve and the segment joining (0, 0) and
(x1, y1) is equal to z1 (see Figure 1).

y

z (x(t), y(t), z(t))

(x(t), y(t))

x

Figure 1: The Dido problem

Solutions of the Dido problem are arcs of circles and their lifts to R3 are spirals where z(t) is
the area of the piece of disc cut by the hord connecting (0, 0) with (x(t), y(t)).

A piece of such a spiral is a shortest admissible path between its endpoints while the planar
projection of this piece is an arc of the circle. The spiral ceases to be a shortest path when its
planar projection starts to run the circle for the second time, i. e. when the spiral starts its second
turn. Sub-Riemannian balls centered at the origin for this model look like apples with singularities
at the poles (see Figure 3).

Singularities are points on the sphere connected with the center by more than one shortest
path. The dilation (x, y, z) 7→ (rx, ry, r2z) transforms the ball of radius 1 into the ball of radius
r. In particular, arbitrary small balls have singularities. This is always the case when admissible
subspaces are proper subspaces.

Another important symmetry connects balls with different centers. Indeed, the product opera-
tion

(x, y, z) · (x′, y′, z′) .=
(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y)

)
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z

x

y

Figure 2: Solutions to the Dido problem

Figure 3: The Heisenberg sub-Riemannian sphere

turns R3 into a group, the Heisenberg group. The origin in R3 is the unit element of this group. It
is easy to see that left translations of the group transform admissible curves into admissible ones
and preserve the sub-Riemannian length. Hence left translations transform balls in balls of the
same radius. A detailed description of this example and other models of sub-Riemannian spaces is
done in Section ?? and Chapter 13.

Actually, even this simplest model tells us something about life in a sub-Riemannian space. Here
we deal with planar curves but, in fact, operate in the three-dimensional space. Sub-Riemannian
spaces always have a kind of hidden extra dimension. A good and not yet exploited source for mystic
speculations but also for theoretical physicists who are always searching new crazy formalizations.
In mechanics, this is a natural geometry for systems with nonholonomic constraints like skates,
wheels, rolling balls, bearings etc. This kind of geometry could also serve to model social behavior
that allows to increase the level of freedom without violation of a restrictive legal system.

Anyway, in this book we perform a purely mathematical study of sub-Riemannian spaces to
provide an appropriate formalization ready for all eventual applications. Riemannian spaces appear
as a very special case. Of course, we are not the first to study the sub-Riemannian stuff. There is
a broad literature even if there are few experts who could claim that sub-Riemannian geometry is
his main field of expertise. Important motivations come from CR geometry, hyperbolic geometry,
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analysis of hypoelliptic operators, and some other domains. Our first motivation was control theory:
length minimizing is a nice class of optimal control problems.

Indeed, one can find a control theory spirit in our treatment of the subject. First of all, we
include admissible paths in admissible flows that are flows generated by vector fields whose values
in all points belong to admissible subspaces. The passage from admissible subspaces attached at
different points of the manifold to a globally defined space of admissible vector fields makes the
structure more flexible and well-adapted to algebraic manipulations. We pick generators f1, . . . , fk
of the space of admissible fields, and this allows us to describe all admissible paths as solutions
to time-varying ordinary differential equations of the form: q̇(t) =

∑k
i=1 ui(t)fi(q(t)). Different

admissible paths correspond to the choice of different control functions ui(·) and initial points q(0)
while the vector fields fi are fixed at the very beginning.

We also use a Hamiltonian approach supported by the Pontryagin maximum principle to char-
acterize shortest paths. Few words about the Hamiltonian approach: sub-Riemannian geodesics
are admissible paths whose sufficiently small pieces are length-minimizers, i. e. the length of such
a piece is equal to the distance between its endpoints. In the Riemannian setting, any geodesic is
uniquely determined by its velocity at the initial point q. In the general sub-Riemannian situation
we have much more geodesics based at the the point q than admissible velocities at q. Indeed, every
point in a neighborhood of q can be connected with q by a length-minimizer, while the dimension
of the admissible velocities subspace at q is usually smaller than the dimension of the manifold.

What is a natural parametrization of the space of geodesics? To understand this question, we
adapt a classical “trajectory – wave front” duality. Given a length-parameterized geodesic t 7→ γ(t),
we expect that the values at a fixed time t of geodesics starting at γ(0) and close to γ fill a piece
of a smooth hypersurface (see Figure 4). For small t this hypersurface is a piece of the sphere of
radius t, while in general it is only a piece of the “wave front”.

γ(0)

p(t)

γ(t)

Figure 4: The “wave front” and the “impulse”

Moreover, we expect that γ̇(t) is transversal to this hypersurface. It is not always the case but
this is true for a generic geodesic.

The “impulse” p(t) ∈ T ∗
γ(t)M is the covector orthogonal to the “wave front” and normalized by

the condition 〈p(t), γ̇(t)〉 = 1. The curve t 7→ (p(t), γ(t)) in the cotangent bundle T ∗M satisfies a
Hamiltonian system. This is exactly what happens in rational mechanics or geometric optics.

The sub-Riemannian Hamiltonian H : T ∗M → R is defined by the formula H(p, q) = 1
2〈p, v〉2,

where p ∈ T ∗
qM , and v ∈ TqM is an admissible velocity of length 1 that maximizes the inner

product of p with admissible velocities of length 1 at q ∈M .
Any smooth function on the cotangent bundle defines a Hamiltonian vector field and such a
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field generates a Hamiltonian flow. The Hamiltonian flow on T ∗M associated to H is the sub-
Riemannian geodesic flow. The Riemannian geodesic flow is just a special case.

As we mentioned, in general, the construction described above cannot be applied to all geodesics:
the so-called abnormal geodesics are missed. An abnormal geodesic γ(t) also possesses its “impulse”
p(t) ∈ T ∗

γ(t)M but this impulse belongs to the orthogonal complement to the subspace of admissible
velocities and does not satisfy the above Hamiltonian system. Geodesics that are trajectories of the
geodesic flow are called normal. Actually, abnormal geodesics belong to the closure of the space of
the normal ones, and elementary symplectic geometry provides a uniform characterization of the
impulses for both classes of geodesics. Such a characterization is, in fact, a very special case of the
Pontryagin maximum principle.

Recall that all velocities are admissible in the Riemannian case, and the Euclidean structure on
the tangent bundle induces the identification of tangent vectors and covectors, i. e. of the velocities
and impulses. We should however remember that this identification depends on the metric. One
can think to a sub-Riemannian metric as the limit of a family of Riemannian metrics when the
length of forbidden velocities tends to infinity, while the length of admissible velocities remains
untouched.

It is easy to see that the Riemannian Hamiltonians defined by such a family converge with all
derivatives to the sub-Riemannian Hamiltonian. Hence the Riemannian geodesics with a prescribed
initial impulse converge to the sub-Riemannian geodesic with the same initial impulse. On the other
hand, we cannot expect any reasonable convergence for the family of Riemannian geodesics with
a prescribed initial velocity: those with forbidden initial velocities disappear at the limit while
geodesics with admissible initial velocities multiply.

Outline of the book

We start in Chapter 1 from surfaces in R3 that is the beginning of everything in differential geometry
and also a starting point of the story told in this book. There are not yet Hamiltonians here, but a
control flavor is already present. The presentation is elementary and self-contained. A student in
applied mathematics or analysis who missed the geometry of surfaces at the university or simply
is not satisfied by his understanding of these classical ideas, might find it useful to read just this
chapter even if he does not plan to study the rest of the book.

In Chapter 2, we recall some basic properties of vector fields and vector bundles. Sub-Riemannian
structures are defined in Chapter 3 where we also prove three fundamental facts: the finiteness and
the continuity of the sub-Riemannian distance; the existence of length-minimizers; the infinitesimal
characterization of geodesics. The first is the classical Chow-Rashevski theorem, the second and the
third one are simplified versions of the Filippov existence theorem and the Pontryagin maximum
principle.

In Chapter 4, we introduce the symplectic language. We define the geodesic Hamiltonian flow,
we consider an interesting class of three-dimensional problems and we prove a general sufficient
condition for length-minimality of normal trajectories. Chapter 5 is devoted to applications to
integrable Hamiltonian systems. We explain the construction of the action-angle coordinates and
we describe classical examples of integrable geodesic flows, such as the geodesic flow on ellipsoids.

Chapters 1–5 form a first part of the book where we do not use any tool from functional
analysis. In fact, even the knowledge of the Lebesgue integration and elementary real analysis are
not essential with a unique exception of the existence theorem in Section 3.3. In all other places
the reader can substitute terms “Lipschitz” and “absolutely continuous” by “piecewise C1” and
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“measurable” by “piecewise continuous” without a loss for the understanding.

We start to use some basic functional analysis in Chapter 6. In this chapter, we give elements
of an operator calculus that simplifies and clarifies calculations with non-stationary flows, their
variations and compositions. In Chapter 7, we give a brief introduction to the Lie group theory.
Lie groups are introduced as subgroups of the groups of diffeomorphisms of a manifold M induced
by a family of vector fields whose Lie algebra is finite dimensional. Then we study left-invariant
sub-Riemannian structures and their geodesics.

In Chapter 8, we interpret the “impulses” as Lagrange multipliers for constrained optimization
problems and apply this point of view to the sub-Riemannian case. We also introduce the sub-
Riemannian exponential map and we study cut and conjugate points.

In Chapter 9, we consider two-dimensional sub-Riemannian metrics; such a metric differs from a
Riemannian one only along a one-dimensional submanifold. We describe in details the model space
of this geometry, known as the Grushin plane, and we discuss several properties in the generic case,
among which a Gauss-Bonnet like theorem.

In Chapter 10, we construct the nonholonomic tangent space at a point q of the manifold: a
first quasi-homogeneous approximation of the space if you observe and exploit it from q by means
of admissible paths. In general, such a tangent space is a homogeneous space of a nilpotent Lie
group equipped with an invariant vector distribution; its structure may depend on the point where
the tangent space is attached. At generic points, this is a nilpotent Lie group endowed with a
left-invariant vector distribution. The construction of the nonholonomic tangent space does not
need a metric; if we take into account the metric, we obtain the Gromov–Hausdorff tangent to the
sub-Riemannian metric space. Useful “ball-box” estimates of small balls follow automatically.

In Chapter 11, we study general analytic properties of the sub-Riemannian distance as a function
of points of the manifold. It is shown that the distance is smooth on an open dense subset and is
semi-concave out of the points connected by abnormal length-minimizers. Moreover, generic sphere
is a Lipschitz submanifold if we remove these bad points.

In Chapter 12, we turn to abnormal geodesics, which provide the deepest singularities of the
distance. Abnormal geodesics are critical points of the endpoint map defined on the space of
admissible paths, and the main tool for their study is the Hessian of the endpoint map. Chapter 13
is devoted to the explicit calculation of the sub-Riemannian distance for model spaces.

This is the end of the second part of the book; next few chapters are devoted to the curvature
and its applications. Let Φt : T ∗M → T ∗M , for t ∈ R, be a sub-Riemannian geodesic flow.
Submanifolds Φt(T ∗

qM), q ∈ M, form a fibration of T ∗M . Given λ ∈ T ∗M , let Jλ(t) ⊂ Tλ(T
∗M)

be the tangent space to the leaf of this fibration.

Recall that Φt is a Hamiltonian flow and T ∗
qM are Lagrangian submanifolds; hence the leaves

of our fibrations are Lagrangian submanifolds and Jλ(t) is a Lagrangian subspace of the symplectic
space Tλ(T

∗M).

In other words, Jλ(t) belongs to the Lagrangian Grassmannian of Tλ(T
∗M), and t 7→ Jλ(t) is

a curve in the Lagrangian Grassmannian, a Jacobi curve of the sub-Riemannian structure. The
curvature of the sub-Riemannian space at λ is simply the “curvature” of this curve in the Lagrangian
Grassmannian.

Chapter 14 is devoted to the elementary differential geometry of curves in the Lagrangian
Grassmannian. In Chapter 15 we apply this geometry to Jacobi curves, that are curves in the
Lagrange Grassmannian representing Jacobi fields.
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The language of Jacobi curves is translated to the traditional language in the Riemannian
case in Chapter 16. We recover the Levi Civita connection and the Riemannian curvature and
demonstrate their symplectic meaning. In Chapter 17, we explicitly compute the sub-Riemannian
curvature for contact three-dimensional spaces and we show how the curvature invariants appear
in the classification of sub-Riemannian left-invariant structures on 3D Lie groups. In the next
Chapter 18 we study the small distance asymptotics of the expowhree-dimensional contact case
and see how the structure of the conjugate locus is encoded in the curvature.

Chapter 19 we address the problem of defining a canonical volume in sub-Riemannian geometry.
We introduce the Popp volume, that is a canonical volume that is smooth for equiregular sub-
Riemannian manifold, and study its basic properties.

In the last Chapter 20 we define the sub-Riemannian Laplace operator, the canonical volume
form, and compute the density of the sub-Riemannian Hausdorff measure. We conclude with a
discussion of the sub-Riemannian heat equation and an explicit formula for the heat kernel in the
three-dimensional Heisenberg case.

We finish here this introduction into the Introduction. . .We hope that the reader won’t be
bored; comments to the chapters contain suggestions for further reading.1

1This research has been supported by the European Research Council, ERC StG 2009 “GeCoMethods”, contract
number 239748 and by the ANR project SRGI “Sub-Riemannian Geometry and Interactions”, contract number
ANR-15-CE40-0018.
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Chapter 1

Geometry of surfaces in R3

In this preliminary chapter we study the geometry of smooth two dimensional surfaces in R3 as a
“heating problem” and we recover some classical results.

In the fist part of the chapter we consider surfaces in R3 endowed with the standard Euclidean
product, which we denote by 〈· | ·〉. In the second part we study surfaces in the Minskowski space,
that is R3 endowed with a sign-indefinite inner product, which we denote by 〈· | ·〉h
Definition 1.1. A surface of R3 is a subset M ⊂ R3 such that for every q ∈ M there exists a
neighborhood U ⊂ R3 of q and a smooth function a : U → R such that U ∩M = a−1(0) and ∇a 6= 0
on U ∩M .

1.1 Geodesics and optimality

Let M ⊂ R3 be a surface and γ : [0, T ]→M be a smooth curve in M . The length of γ is defined as

ℓ(γ) :=

∫ T

0
‖γ̇(t)‖dt. (1.1)

where ‖v‖ =
√
〈v | v〉 denotes the norm of a vector in R3.

Remark 1.2. Notice that the definition of length in (1.1) is invariant by reparametrizations of the
curve. Indeed let ϕ : [0, T ′] → [0, T ] be a monotone smooth function. Define γϕ : [0, T ′] → M by
γϕ := γ ◦ ϕ. Using the change of variables t = ϕ(s), one gets

ℓ(γϕ) =

∫ T ′

0
‖γ̇ϕ(s)‖ds =

∫ T ′

0
‖γ̇(ϕ(s))‖|ϕ̇(s)|ds =

∫ T

0
‖γ̇(t)‖dt = ℓ(γ).

The definition of length can be extended to piecewise smooth curves on M , by adding the length
of every smooth piece of γ.

When the curve γ is parametrized in such a way that ‖γ̇(t)‖ ≡ c for some c > 0 we say that γ
has constant speed. If moreover c = 1 we say that γ is parametrized by length.

The distance between two points p, q ∈M is the infimum of length of curves that join p to q

d(p, q) = inf{ℓ(γ), γ : [0, T ]→M piecewise smooth, γ(0) = p, γ(T ) = q}. (1.2)

Now we focus on length-minimizers, i.e., piece-wise smooth curves that realize the distance between
their endpoints: ℓ(γ) = d(γ(0), γ(T )).
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γ̇(t)
γ(t)

M

Tγ(t)M

γ̈(t)

Figure 1.1: A smooth minimizer

Exercise 1.3. Prove that, if γ : [0, T ]→M is a length-minimizer, then the curve γ|[t1,t2] is also a
length-minimizer, for all 0 < t1 < t2 < T .

The following proposition characterizes smooth minimizers. We prove later that all minimizers
are smooth (cf. Corollary 1.15).

Proposition 1.4. Let γ : [0, T ] → M be a smooth minimizer parametrized by length. Then
γ̈(t) ⊥ Tγ(t)M for all t ∈ [0, T ].

Proof. Consider a smooth non-autonomous vector field (t, q) 7→ ft(q) ∈ TqM that extends the
tangent vector to γ in a neighborhood W of the graph of the curve {(t, γ(t)) ∈ R×M}, i.e.

ft(γ(t)) = γ̇(t) and ‖ft(q)‖ ≡ 1, ∀ (t, q) ∈W.

Let now (t, q) 7→ gt(q) ∈ TqM be a smooth non-autonomous vector field such that ft(q) and gt(q)
define a local orthonormal frame in the following sense

〈ft(q) | gt(q)〉 = 0, ‖gt(q)‖ ≡ 1, ∀ (t, q) ∈W.

Piecewise smooth curves parametrized by length on M are solutions of the following ordinary
differential equation

ẋ(t) = cos u(t)ft(x(t)) + sinu(t)gt(x(t)), (1.3)

for some initial condition x(0) = q and some piecewise continuous function u(t), which we call
control. The curve γ is the solution to (1.3) associated with the control u(t) ≡ 0 and initial
condition γ(0).

Let us consider the family of controls

uτ,s(t) =

{
0, t < τ

s, t ≥ τ
0 ≤ τ ≤ T, s ∈ R (1.4)

and denote by xτ,s(t) the solution of (1.3) that corresponds to the control uτ,s(t) and with initial
condition xτ,s(0) = γ(0).
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Lemma 1.5. For every τ1, τ2, t ∈ [0, T ] the following vectors are linearly dependent

∂

∂s

∣∣∣∣
s=0

xτ1,s(t)
∂

∂s

∣∣∣∣
s=0

xτ2,s(t) (1.5)

Proof. By Exercice 1.3 is not restrictive to assume t = T . Fix 0 ≤ τ1 ≤ τ2 ≤ T and consider the
family of curves φ(t;h1, h2) solutions of (1.3) associated with controls

vh1,h2(t) =





0, t ∈ [0, τ1[,

h1, t ∈ [τ1, τ2[,

h1 + h2, t ∈ [τ2, T + ε[,

where h1, h2 belong to a neighborhood of 0 and ε is small enough (to guarantee the existence of
the trajectory). Notice that φ is smooth in a neighborhood of (t, h1, h2) = (T, 0, 0) and

∂φ

∂hi

∣∣∣∣
(h1,h2)=0

=
∂

∂s

∣∣∣∣
s=0

xτi,s(T ), i = 1, 2.

By contradiction assume that the vectors in (1.5) are linearly independent. Then ∂φ
∂h is invertible

and the classical implicit function theorem applied to the map (t, h1, h2) 7→ φ(t;h1, h2) at the point
(T, 0, 0) implies that there exists δ > 0 such that

∀ t ∈ ]T − δ, T + δ[, ∃h1, h2, s.t. φ(t;h1, h2) = γ(T ),

In particular there exists a curve with unit speed joining γ(0) and γ(T ) in time t < T , which gives
a contradiction, since γ is a minimizer.

Lemma 1.6. For every τ, t ∈ [0, T ] the following identity holds
〈
∂

∂s

∣∣∣∣
s=0

xτ,s(t)

∣∣∣∣ γ̇(t)
〉

= 0. (1.6)

Proof. If t ≤ τ , then by construction (cf. (1.4)) the first vector is zero since there is no variation
w.r.t. s and the conclusion follows. Let us now assume that t > τ . Again, by Remark 1.3, it is
sufficient to prove the statement at t = T . Let us write the Taylor expansion of ψ(t) = ∂

∂s

∣∣
s=0

xτ,s(t)
in a right neighborhood of t = τ . Observe that, for t ≥ τ

ẋτ,s = cos(s)ft(xτ,s) + sin(s)gt(xτ,s).

Hence

ψ(τ) =
∂

∂s

∣∣∣∣
s=0

xτ,s(τ) = 0, ψ̇(τ) =
∂

∂s

∣∣∣∣
s=0

ẋτ,s(τ) = gτ (xτ,s(τ)).

Then, for t ≥ τ , we have
ψ(t) = (t− τ)gτ (xτ,s(τ)) +O((t− τ)2). (1.7)

For τ sufficiently close to T , one can take t = T in (1.7). Passing to the limit for τ → T one gets

1

T − τ
∂

∂s

∣∣∣∣
s=0

xτ,s(T ) −→
τ→T

gT (γ(T )).

Now, by Lemma 1.5 all vectors in left hand side are parallel among them, hence they are parallel
to gT (γ(T )). The lemma is proved since γ̇(T ) = fT (γ(T )) and fT and gT are orthogonal.
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Now we end the proposition by showing that γ̈(t) ⊥ Tγ(t)M . Notice that this is equivalent to
show

〈γ̈(t) | ft(γ(t))〉 = 〈γ̈(t) | gt(γ(t))〉 = 0. (1.8)

Recall that 〈γ̇(t) | γ̇(t)〉 = 1. Differentiating this identity one gets

0 =
d

dt
〈γ̇(t) | γ̇(t)〉 = 2 〈γ̈(t) | γ̇(t)〉 ,

which shows that γ̈(t) is orthogonal to ft(γ(t)). Next, differentiating (1.6) with respect to t, we
have1 for t 6= τ 〈

∂

∂s

∣∣∣∣
s=0

ẋτ,s(t)

∣∣∣∣ γ̇(t)
〉
+

〈
∂

∂s

∣∣∣∣
s=0

xτ,s(t)

∣∣∣∣ γ̈(t)
〉

= 0. (1.9)

Now, from 〈ẋτ,s(t) | ẋτ,s(t)〉 = 1 one gets
〈
∂

∂s
ẋτ,s(t)

∣∣∣∣ ẋτ,s(t)
〉

= 0, for t 6= τ.

Evaluating at s = 0, using that xτ,0(t) = γ(t), one has
〈
∂

∂s

∣∣∣∣
s=0

ẋτ,s(t)

∣∣∣∣ γ̇(t)
〉

= 0, for t 6= τ.

Hence, by (1.9), it follows that 〈
∂

∂s

∣∣∣∣
s=0

xτ,s(t)

∣∣∣∣ γ̈(t)
〉

= 0,

which, by continuity, holds for every t ∈ [0, T ]. Using that ∂
∂s

∣∣
s=0

xτ,s(t) is parallel to gt(γ(t)) (see
proof of Lemma 1.6), it follows that 〈gt(γ(t)) | γ̈(t)〉 = 0.

Definition 1.7. A smooth curve γ : [0, T ]→M parametrized with constant speed is called geodesic
if it satisfies

γ̈(t) ⊥ Tγ(t)M, ∀ t ∈ [0, T ]. (1.10)

Proposition 1.4 says that a smooth curve that minimizes the length is a geodesic.

Now we get an explicit characterization of geodesics when the manifold M is globally defined
as the zero level of a smooth function. In other words there exists a smooth function a : R3 → R
such that

M = a−1(0), and ∇a 6= 0 on M. (1.11)

Remark 1.8. Recall that for all q ∈M it holds ∇qa ⊥ TqM . Indeed, for every q ∈M and v ∈ TqM ,
let γ : [0, T ] → M be a smooth curve on M such that γ(0) = q and γ̇(0) = v. By definition of M
one has a(γ(t)) = 0. Differentiating this identity with respect to t at t = 0 one gets 〈∇qa | v〉 = 0.

Proposition 1.9. A smooth curve γ : [0, T ]→M is a geodesic if and only if it satisfies, in matrix
notation:

γ̈(t) = −
γ̇(t)T (∇2

γ(t)a)γ̇(t)

‖∇γ(t)a‖2
∇γ(t)a, ∀ t ∈ [0, T ], (1.12)

where ∇2
γ(t)a is the Hessian matrix of a.

1notice that xτ,s is smooth on the set [0, T ] \ {τ}.
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Proof. Differentiating the equality
〈
∇γ(t)a

∣∣ γ̇(t)
〉
= 0 we get, in matrix notation:

γ̇(t)T (∇2
γ(t)a)γ̇(t) + γ̈(t)T∇γ(t)a = 0.

By definition of geodesic there exists a function b(t) such that

γ̈(t) = b(t)∇γ(t)a.

Hence we get
γ̇(t)T (∇2

γ(t)a)γ̇(t) + b(t)‖∇γ(t)a‖2 = 0,

from which (1.12) follows.

Remark 1.10. Notice that formula (1.12) is always true locally since, by definition of surface, the
assumptions (1.11) are always satisfied locally.

1.1.1 Existence and minimizing properties of geodesics

As a direct consequence of Proposition 1.9 one gets the following existence and uniqueness theorem
for geodesics.

Corollary 1.11. Let q ∈M and v ∈ TqM . There exists a unique geodesic γ : [0, ε] →M , for ε > 0
small enough, such that γ(0) = q and γ̇(0) = v.

Proof. By Proposition 1.9, geodesics satisfy a second order ODE, hence they are smooth curves,
characterized by ther initial position and velocity.

To end this section we show that small pieces of geodesics are always global minimizers.

Theorem 1.12. Let γ : [0, T ]→M be a geodesic. For every τ ∈ [0, T [ there exists ε > 0 such that

(i) γ|[τ,τ+ε] is a minimizer, i.e. d(γ(τ), γ(τ + ε)) = ℓ(γ|[τ,τ+ε]),

(ii) γ|[τ,τ+ε] is the unique minimizers joining γ(τ) and γ(τ + ε) in the class of piecewise smooth
curves, up to reparametrization.

Proof. Without loss of generality let us assume that τ = 0 and that γ is length parametrized.
Consider a length-parametrized curve α on M such that α(0) = γ(0) and α̇(0) ⊥ γ̇(0) and denote
by (t, s) 7→ xs(t) the smooth variation of geodesics such that x0(t) = γ(t) and (see also Figure 1.2)

xs(0) = α(s), ẋs(0) ⊥ α̇(s). (1.13)

The map ψ : (t, s) 7→ xs(t) is a local diffeomorphism near (0, 0). Indeed the partial derivatives

∂ψ

∂t

∣∣∣
t=s=0

=
∂

∂t

∣∣∣∣
t=0

x0(t) = γ̇(0),
∂ψ

∂s

∣∣∣
t=s=0

=
∂

∂s

∣∣∣∣
s=0

xs(0) = α̇(0),

are linearly independent. Thus ψ maps a neighborhood U of (0, 0) on a neighborhood W of γ(0).
We now consider the function φ and the vector field X defined on W

φ : xs(t) 7→ t,

X : xs(t) 7→ ẋs(t).
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γ

α(s)

xs(t)

Figure 1.2: Proof of Theorem 1.12

Lemma 1.13. ∇qφ = X(q) for every q ∈W .

Proof of Lemma 1.13. We first show that the two vectors are parallel, and then that they actually
coincide. To show that they are parallel, first notice that ∇φ is orthogonal to its level set {t =
const}, hence 〈

∇xs(t)φ
∣∣∣∣
∂

∂s
xs(t)

〉
= 0, ∀ (t, s) ∈ U. (1.14)

Now, let us show that 〈
∂

∂s
xs(t)

∣∣∣∣ ẋs(t)
〉

= 0, ∀ (t, s) ∈ U. (1.15)

Computing the derivative with respect to t of the left hand side of (1.15) one gets

〈
∂

∂s
ẋs(t)

∣∣∣∣ ẋs(t)
〉
+

〈
∂

∂s
xs(t)

∣∣∣∣ ẍs(t)
〉
,

which is identically zero. Indeed the first term is zero because ẋs(t) has unit speed and the second
one vanishes because of (1.10). Hence, the left hand side of (1.15) is constant and coincides with
its value at t = 0, which is zero by the orthogonality assumption (1.13).

By (1.14) and (1.15) one gets that ∇φ is parallel to X. Actually they coincide since

〈∇φ |X〉 = d

dt
φ(xs(t)) = 1.

Now consider ε > 0 small enough such that γ|[0,ε] is contained inW and take a piecewise smooth
and length parametrized curve c : [0, ε′] → M contained in W and joining γ(0) to γ(ε). Let us
show that γ is shorter than c. First notice that

ℓ(γ|[0,ε]) = ε = φ(γ(ε)) = φ(c(ε′))
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Using that φ(c(0)) = φ(γ(0)) = 0 and that ℓ(c) = ε′ we have that

ℓ(γ|[0,ε]) = φ(c(ε′))− φ(c(0)) =
∫ ε′

0

d

dt
φ(c(t))dt (1.16)

=

∫ ε′

0
〈∇φ(c(t)) | ċ(t)〉 dt

=

∫ ε′

0
〈X(c(t)) | ċ(t)〉 dt ≤ ε′ = ℓ(c), (1.17)

The last inequality follows from the Cauchy-Schwartz inequality

〈X(c(t)) | ċ(t)〉 ≤ ‖X(c(t))‖‖ċ(t)‖ = 1 (1.18)

which holds at every smooth point of c(t). In addition, equality in (1.18) holds if and only if
ċ(t) = X(c(t)) (at the smooth points of c). Hence we get that ℓ(c) = ℓ(γ|[0,ε]) if and only if c
coincides with γ|[0,ε].

Now let us show that there exists ε̄ ≤ ε such that γ|[0,ε̄] is a global minimizer among all piecewise
smooth curves joining γ(0) to γ(ε̄). It is enough to take ε̄ < dist(γ(0), ∂W ). Every curve that escape
from W has length greater than ε̄.

From Theorem 1.12 it follows

Corollary 1.14. Any minimizer of the distance (in the class of piecewise smooth curves) is a
geodesic, and hence smooth.

1.1.2 Absolutely continuous curves

Notice that formula (1.1) defines the length of a curve even in the class of absolutely continuous
ones, if one understands the integral in the Lebesgue sense.

In this setting, in the proof of Theorem 1.12, one can assume that the curve c is actually
absolutely continuous. This proves that small pieces of geodesics are minimizers also in the class
of absolutely continuous curves on M . Morever, this proves the following.

Corollary 1.15. Any minimizer of the distance (in the class of absolutely continuous curves) is a
geodesic, and hence smooth.

1.2 Parallel transport

In this section we want to introduce the notion of parallel transport, which let us to define the
main geometric invariant of a surface: the Gaussian curvature.

Let us consider a curve γ : [0, T ] → M and a vector ξ ∈ Tγ(0)M . We want to define the
parallel transport of ξ along γ. Heuristically, it is a curve ξ(t) ∈ Tγ(t)M such that the vectors
{ξ(t), t ∈ [0, T ]} are all “parallel”.

Remark 1.16. If M = R2 ⊂ R3 is the set {z = 0} we can canonically identify every tangent space
Tγ(t)M with R2 so that every tangent vector ξ(t) belong to the same vector space.2 In this case,

parallel simply means ξ̇(t) = 0 as an element of R3. This is not the case if M is a manifold because
tangent spaces at different points are different.

2The canonical isomorphism R2 ≃ TxR2 is written explicitly as follows: y 7→ d
dt

∣
∣
t=0

x+ ty.
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Definition 1.17. Let γ : [0, T ] → M be a smooth curve. A smooth curve of tangent vectors
ξ(t) ∈ Tγ(t)M is said to be parallel if ξ̇(t) ⊥ Tγ(t)M .

Assume now that M is the zero level of a smooth function a : R3 → R as in (1.11). We have
the following description:

Proposition 1.18. A smooth curve of tangent vectors ξ(t) defined along γ : [0, T ]→M is parallel
if and only if it satisfies

ξ̇(t) = −
γ̇(t)T (∇2

γ(t)a)ξ(t)

‖∇γ(t)a‖2
∇γ(t)a, ∀ t ∈ [0, T ]. (1.19)

Proof. As in Remark 1.8, ξ(t) ∈ Tγ(t)M implies
〈
∇γ(t)a, ξ(t)

〉
= 0. Moreover, by assumption

ξ̇(t) = α(t)∇γ(t)a for some smooth function α. With analogous computations as in the proof of
Proposition 1.9 we get that

γ̇(t)T (∇2
γ(t)a)ξ(t) + α(t)‖∇γ(t)a‖2 = 0,

from which the statement follows.

Remark 1.19. Notice that, since (1.53) is a first order linear ODE with respect to ξ, for a given
curve γ : [0, T ] → M and initial datum v ∈ Tγ(0)M , there is a unique parallel curve of tangent
vectors ξ(t) ∈ Tγ(t)M along γ such that ξ(0) = v. Since (1.53) is a linear ODE, the operator that
associates with every initial condition ξ(0) the final vector ξ(t) is a linear operator, which is called
parallel transport.

Next we state a key property of the parallel transport.

Proposition 1.20. The parallel transport preserves the inner product. In other words, if ξ(t), η(t)
are two parallel curves of tangent vectors along γ, then we have

d

dt
〈ξ(t) | η(t)〉 = 0, ∀ t ∈ [0, T ]. (1.20)

Proof. From the fact that ξ(t), η(t) ∈ Tγ(t)M and ξ̇(t), η̇(t) ⊥ Tγ(t)M one immediately gets

d

dt
〈ξ(t) | η(t)〉 = 〈ξ̇(t)|η(t)〉 + 〈ξ(t) | η̇(t)〉 = 0.

The notion of parallel transport permits to give a new characterization of geodesics. Indeed, by
definition

Corollary 1.21. A smooth curve γ : [0, T ]→M is a geodesic if and only if γ̇ is parallel along γ.

In the following we assume that M is oriented.

Definition 1.22. The spherical bundle SM on M is the disjoint union of all unit tangent vectors
to M :

SM =
⊔

q∈M
SqM, SqM = {v ∈ TqM, ‖v‖ = 1}. (1.21)
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SM is a smooth manifold of dimension 3. Moreover it has the structure of fiber bundle with
base manifold M , typical fiber S1, and canonical projection

π : SM →M, π(v) = q if v ∈ TqM.

Remark 1.23. Since every vector in the fiber SqM has norm one, we can parametrize every v ∈
SqM by an angular coordinate θ ∈ S1 through an orthonormal frame {e1(q), e2(q)} for SqM , i.e.
v = cos(θ)e1(q) + sin(θ)e2(q).

The choice of a positively oriented orthonormal frame {e1(q), e2(q)} corresponds to fix the
element in the fiber corresponding to θ = 0. Hence, the choice of such an orthonormal frame at
every point q induces coordinates on SM of the form (q, θ + ϕ(q)), where ϕ ∈ C∞(M).

Given an element ξ ∈ SqM we can complete it to an orthonormal frame (ξ, η, ν) of R3 in the
following unique way:

(i) η ∈ TqM is orthogonal to ξ and (ξ, η) is positively oriented (w.r.t. the orientation of M),

(ii) ν ⊥ TqM and (ξ, η, ν) is positively oriented (w.r.t. the orientation of R3).

Let t 7→ ξ(t) ∈ Sγ(t)M be a smooth curve of unit tangent vectors along γ : [0, T ] → M . Define

η(t), ν(t) ∈ Tγ(t)M as above. Since t 7→ ξ(t) has constant speed, one has ξ(t) ⊥ ξ̇(t) and we can
write

ξ̇(t) = uξ(t)η(t) + vξ(t)ν(t).

In particular this shows that every element of TξSM , written in the basis (ξ, η, ν), has zero com-
ponent along ξ.

Definition 1.24. The Levi-Civita connection on M is the 1-form ω ∈ Λ1(SM) defined by

ωξ : TξSM → R, ωξ(z) = uz, (1.22)

where z = uzη + vzν and (ξ, η, ν) is the orthonormal frame defined above.

Notice that ω change sign if we change the orientation of M .

Lemma 1.25. A curve of unit tangent vectors ξ(t) is parallel if and only if ωξ(t)(ξ̇(t)) = 0.

Proof. By definition ξ(t) is parallel if and only if ξ̇(t) is orthogonal to Tγ(t)M , i.e., collinear to
ν(t).

In particular, a curve parametrized by length γ : [0, T ]→M is a geodesic if and only if

ωγ̇(t)(γ̈(t)) = 0, ∀ t ∈ [0, T ]. (1.23)

Proposition 1.26. The Levi-Civita connection ω ∈ Λ1(SM) satisfies:

(i) there exist two smooth functions a1, a2 :M → R such that

ω = dθ + a1(x1, x2)dx1 + a2(x1, x2)dx2, (1.24)

where (x1, x2, θ) is a system of coordinates on SM .
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(ii) dω = π∗Ω, where Ω is a 2-form defined on M and π : SM →M is the canonical projection.

Proof. (i) Fix a system of coordinates (x1, x2, θ) on SM and consider the vector field ∂/∂θ on SM .
Let us show that

ω

(
∂

∂θ

)
= 1.

Indeed consider a curve t 7→ ξ(t) of unit tangent vector at a fixed point which describes a rotation
in a single fibre. As a curve on SM , the velocity of this curve is exactly its orthogonal vector, i.e.
ξ̇(t) = η(t) and the equality above follows from the definition of ω. By construction, ω is invariant
by rotations, hence the coefficients ai = ω(∂/∂xi) do not depend on the variable θ.

(ii) Follows directly from expression (1.24) noticing that dω depends only on x1, x2.

Remark 1.27. Notice that the functions a1, a2 in (1.24) are not invariant by change of coordinates
on the fiber. Indeed the transformation θ → θ+ϕ(x1, x2) induces dθ → dθ+(∂x1ϕ)dx1+(∂x2ϕ)dx2
which gives ai → ai + ∂xiϕ for i = 1, 2.

By definition ω is an intrinsic 1-form on SM . Its differential, by property (ii) of Proposition
1.55, is the pull-back of an intrinsic 2-form on M , that in general is not exact.

Definition 1.28. The area form dV on a surface M is the differential two form that on every
tangent space to the manifold agrees with the volume induced by the inner product. In other
words, for every positively oriented orthonormal frame e1, e2 of TqM , one has dV (e1, e2) = 1.

Given a set Γ ⊂M its area is the quantity |Γ| =
∫
Γ dV .

Since any 2-form on M is proportional to the area form dV , it makes sense to give the following
definition:

Definition 1.29. The Gaussian curvature of M is the function κ :M → R defined by the equality

Ω = −κdV. (1.25)

Note that κ does not depend on the orientation ofM , since both Ω and dV change sign if we reverse
the orientation. Moreover the area 2-form dV on the surface depends only on the metric structure
on the surface.

1.3 Gauss-Bonnet Theorems

In this section we will prove both the local and the global version of the Gauss-Bonnet theorem. A
strong consequence of these results is the celebrated Gauss’ Theorema Egregium which says that
the Gaussian curvature of a surface is independent on its embedding in R3.

Definition 1.30. Let γ : [0, T ] → M be a smooth curve parametrized by length. The geodesic
curvature of γ is defined as

ργ(t) = ωγ̇(t)(γ̈(t)). (1.26)

Notice that if γ is a geodesic, then ργ(t) = 0 for every t ∈ [0, T ]. The geodesic curvature
measures how much a curve is far from being a geodesic.

Remark 1.31. The geodesic curvature changes sign if we move along the curve in the opposite
direction. Moreover, if M = R2, it coincides with the usual notion of curvature of a planar curve.
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1.3.1 Gauss-Bonnet theorem: local version

Definition 1.32. A curvilinear polygon Γ on an oriented surfaceM is the image of a closed polygon
in R2 under a diffeomorphism. We assume that ∂Γ is oriented consistently with the orientation of
M . In the following we represent ∂Γ = ∪mi=1γi(Ii) where γi : Ii →M , for i = 1, . . . ,m, are smooth
curves parametrized by length, with orientation consistent with ∂Γ. We denote by αi the external
angles at the points where ∂Γ is not C1 (see Figure 1.3).

Γ

γ1

γ2

γ5

γ3

γ4

α1

α2α3

α4

α5

Figure 1.3: A curvilinear polygon

Notice that a curvilinear polygon is homeomorphic to a disk.

Theorem 1.33 (Gauss-Bonnet, local version). Let Γ be a curvilinear polygon on an oriented surface
M . Then we have ∫

Γ
κdV +

m∑

i=1

∫

Ii

ργi(t)dt+

m∑

i=1

αi = 2π. (1.27)

Proof. (i) Case ∂Γ is smooth.

In this case Γ is the image of the unit (closed) ball B1, centered in the origin of R2, under a
diffeomorphism

F : B1 →M, Γ = F (B1).

In what follows we denote by γ : I → M the curve such that γ(I) = ∂Γ. We consider on B1

the vector field V (x) = x1∂x2 − x2∂x1 which has an isolated zero at the origin and whose flow is
a rotation around zero. Denote by X := F∗V the induced vector field on M with critical point
q0 = F (0).

For ε small enough, we define (cf. Figure 1.4)

Γε := Γ \ F (Bε), and Aε := ∂F (Bε),

where Bε is the ball of radius ε centered in zero in R2. We have ∂Γε = Aε ∪ ∂Γ. Define the map

φ : Γε → SM, φ(q) =
X(q)

|X(q)| .
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Γε

F

Aε

γ

MB1 \Bε

Figure 1.4: The map F

First notice that ∫

φ(Γε)
dω =

∫

φ(Γε)
π∗Ω =

∫

π(φ(Γε))
Ω =

∫

Γε

Ω, (1.28)

where we used the fact that π(φ(Γε)) = Γε. Then let us compute the integral of the curvature κ
on Γε

∫

Γε

κdV = −
∫

Γε

Ω = −
∫

φ(Γε)
dω, (by (1.28))

= −
∫

∂φ(Γε)
ω, (by Stokes Theorem)

=

∫

φ(Aε)
ω −

∫

φ(∂Γ)
ω, (since ∂φ(Γε) = φ(Aε) ∪ φ(∂Γ)) (1.29)

Notice that in the third equality we used the fact that the induced orientation on ∂φ(Γε) gives
opposite orientation on the two terms. Let us treat separately these two terms. The first one, by
Proposition 1.55, can be written as

∫

φ(Aε)
ω =

∫

φ(Aε)
dθ +

∫

φ(Aε)
a1(x1, x2)dx1 + a2(x1, x2)dx2 (1.30)

The first element of (1.30) is equal to 2π since we integrate the 1-form dθ on a closed curve. The
second element of (1.30), for ε→ 0, satisfies

∣∣∣∣∣

∫

φ(Aε)
a1(x1, x2)dx1 + a2(x1, x2)dx2

∣∣∣∣∣ ≤ Cℓ(φ(Aε))→ 0, (1.31)

Indeed the functions ai are smooth (hence bounded on compact sets) and the length of φ(Aε) goes
to zero for ε→ 0.
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Let us now consider the second term of (1.29). Since φ(∂Γ) is parametrized by the curve
t 7→ γ̇(t) (as a curve on SM), we have

∫

φ(∂Γ)
ω =

∫

I
ωγ̇(t)(γ̈(t))dt =

∫

I
ργ(t)dt.

Concluding we have from (1.29)
∫

Γ
κdV = lim

ε→0

∫

Γε

κdV = 2π −
∫

I
ργ(t)dt,

that is (1.27) in the smooth case (i.e. when αi = 0 for all i).
(ii) Case ∂Γ non smooth.

We reduce to the previous case with a sequence of polygons Γn such that ∂Γn is smooth and Γn
approximates Γ in a “smooth” way. In particular, we assume that ∂Γn coincides with ∂Γ excepts
in neighborhoods Ui, for i = 1, . . . ,m, of each point qi where ∂Γ is not smooth, in such a way that

the curve σ
(n)
i that parametrize (∂Γn \ ∂Γ) ∩ Ui satisfies ℓ(σni ) ≤ 1/n.

If we apply the statement of the Theorem for the smooth case to Γn we have
∫

Γn

κdV +

∫
ργ(n)(t)dt = 2π,

where γ(n) is the curve that parametrizes ∂Γn. Since Γn tends to Γ as n→∞, then

lim
n→∞

∫

Γn

κdV =

∫

Γ
κdV.

We are left to prove that

lim
n→∞

∫
ργ(n)(t)dt =

m∑

i=1

∫

Ii

ργi(t)dt+

m∑

i=1

αi. (1.32)

For every n, let us split the curve γ(n) as the union of the smooth curves σ
(n)
i and γ

(n)
i as in Figure

??. Then ∫
ργ(n)(t)dt =

m∑

i=1

∫
ρ
γ
(n)
i

(t)dt+
m∑

i=1

∫
ρ
σ
(n)
i

(t)dt.

Since the curve γ
(n)
i tends to γi for n→∞ one has

lim
n→∞

∫
ρ
γ
(n)
i

(t)dt =

∫
ργi(t)dt.

Moreover, with analogous computations of part (i) of the proof
∫
ρ
σ
(n)
i

(t)dt =

∫

φ(σ
(n)
i )

ω =

∫

φ(σ
(n)
i )

dθ + a1(x1, x2)dx1 + a2(x1, x2)dx2

and one has, using that ℓ(φ(σ
(n)
i ))→ 0

∫

φ(σ
(n)
i )

dθ −→
n→∞

αi,

∫

φ(σ
(n)
i )

a1(x1, x2)dx1 + a2(x1, x2)dx2 −→
n→∞

0.

Then (1.32) follows.
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An important corollary is obtained by applying the Gauss-Bonnet Theorem to geodesic triangles.
A geodesic triangle T is a curvilinear polygon with m = 3 edges and such that every smooth piece
of boundary γi is a geodesic. For a geodesic triangle T we denote by Ai := π−αi its internal angles.
Corollary 1.34. Let T be a geodesic triangle and Ai(T ) its internal angles. Then

κ(q) = lim
|T |→0

∑
iAi(T )− π
|T |

Proof. Fix a geodesic triangle T . Using that the geodesic curvature of γi vanishes, the local version
of Gauss-Bonnet Theorem (1.27) can be rewritten as

3∑

i=1

Ai = π +

∫

Γ
κdV. (1.33)

Dividing for |T | and passing to the limit for |T | → 0 in the class of geodesic triangles containing q
one obtains

κ(q) = lim
|T |→0

1

|T |

∫

T
κdV = lim

|T |→0

∑
iAi(T )− π
|T |

1.3.2 Gauss-Bonnet theorem: global version

Now we state the global version of the Gauss-Bonnet theorem. In other words we want to generalize
(1.27) to the case when Γ is a region ofM not necessarily homeomorphic to the disk, see for instance
Figure 1.5. As we will see that the result depends on the Euler characteristic χ(Γ) of this region.

In what follows, by a triangulation ofM we mean a decomposition ofM into curvilinear polygons
(see Definition 1.32). Notice that every compact surface admits a triangulation.3

Definition 1.35. Let M ⊂ R3 be a compact oriented surface with boundary ∂M (possibly with
angles). Consider a triangulation of M . We define the Euler characteristic of M as

χ(M) := n2 − n1 + n0, (1.34)

where ni is the number of i-dimensional faces in the triangulation.

The Euler characteristic can be defined for every region Γ of M in the same way. Here, by a
region Γ on a surfaceM , we mean a closed domain of the manifold with piecewise smooth boundary.

Remark 1.36. The Euler characteristic is well-defined. Indeed one can show that the quantity
(1.34) is invariant for refinement of a triangulation, since every at every step of the refinement
the alternating sum does not change. Moreover, given two different triangulations of the same
region, there always exists a triangulation that is a refinement of both of them. This shows that
the quantity (1.34) is independent on the triangulation.

Example 1.37. For a compact connected orientable surface Mg of genus g (i.e., a surface that
topologically is a sphere with g handles) one has χ(Mg) = 2− 2g. For instance one has χ(S2) = 2,
χ(T2) = 0, where T2 is the torus. Notice also that χ(B1) = 1, where B1 is the closed unit disk in
R2.

3Formally, a triangulation of a topological space M is a simplicial complex K, homeomorphic to M , together with
a homeomorphism h : K → M .
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Following the notation introduced in the previous section, for a given region Γ, we assume that
∂Γ is oriented consistently with the orientation of M and ∂Γ = ∪mi=1γi(Ii) where γi : Ii → M , for
i = 1, . . . ,m, are smooth curves parametrized by length (with orientation consistent with ∂Γ). We
denote by αi the external angles at the points where ∂Γ is not C1 (see Figure 1.5).

M

Γ3

Γ1

Γ4

Γ2

Figure 1.5: Gauss-Bonnet Theorem

Theorem 1.38 (Gauss-Bonnet, global version). Let Γ be a region of a surface on a compact
oriented surface M . Then

∫

Γ
κdV +

m∑

i=1

∫

Ii

ργi(t)dt+

m∑

i=1

αi = 2πχ(Γ). (1.35)

Proof. As in the proof of the local version of the Gauss-Bonnet theorem we consider two cases:
(i) Case ∂Γ smooth (in particular αi = 0 for all i).
Consider a triangulation of Γ and let {Γj , j = 1, . . . , n2} be the corresponding subdivision of Γ in

curvilinear polygons. We denote by {γ(j)k } the smooth curves parametrized by length whose image

are the edges of Γj and by and θ
(j)
k the external angles of Γj. We assume that all orientations

are chosen accordingly to the orientation of M . Applying Theorem 1.33 to every Γj and summing
w.r.t. j we get

n2∑

j=1

(∫

Γj

κdV +
∑

k

∫
ρ
γ
(j)
k

(t)dt+
∑

k

θ
(j)
k

)
= 2πn2. (1.36)

We have that
n2∑

j=1

∫

Γj

κdV =

∫

Γ
κdV,

∑

j,k

∫
ρ
γ
(j)
k

(t)dt =
m∑

i=1

∫
ργi(t)dt. (1.37)

The second equality is a consequence of the fact that every edge of the decomposition that does
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not belong to ∂Γ appears twice in the sum, with opposite sign. It remains to check that

∑

j,k

θ
(j)
k = 2π(n1 − n0), (1.38)

Let us denote by N the total number of angles in the sum of the left hand side of (1.38). After
reindexing we have to check that

N∑

ν=1

θν = 2π(n1 − n0). (1.39)

Denote by n∂0 the number of vertexes that belong to ∂Γ and with nI0 := n0 − n∂0 . Similarly we
define n∂1 and nI1. We have the following relations:

(i) N = 2nI1 + n∂1 ,

(ii) n∂0 = n∂1 ,

Claim (i) follows from the fact that every curvilinear polygon with n edges has n angles, but
the internal edges are counted twice since each of them appears in two polygons. Claim (ii) is a
consequence of the fact that ∂Γ is the union of closed curves. If we denote by Ak := π − θk the
internal angles, we have

N∑

ν=1

θν = Nπ −
N∑

ν=1

Aν . (1.40)

Moreover the sum of the internal angles is equal to π for a boundary vertex, and to 2π for an
internal one. Hence one gets

N∑

ν=1

Aν = 2πnI0 + πn∂0 , (1.41)

Combining (1.40), (1.41) and (i) one has

ν∑

i=1

θν = (2nI1 + n∂1)π − (2nI0 + n∂0)π

Using (ii) one finally gets (1.39).
(ii) Case ∂Γ non-smooth.

We consider a decomposition of Γ into curvilinear polygons whose edges intersect the boundary in
the smooth part (this is always possible). The proof is identical to the smooth case up to formula
(1.37). Now, instead of (1.39), we have to check that

N∑

ν=1

θν =

m∑

i=1

αi + 2π(n1 − n0), (1.42)

Now (1.42) can be rewritten as ∑

ν /∈A
θν = 2π(n1 − n0),

where A is the set of indices whose corresponding angles are non smooth points of ∂Γ.
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Consider now a new region Γ̃, obtained by smoothing the edges of Γ, together with the decom-
position induced by Γ (see Figure 1.5). Denote by ñ1 and ñ0 the number of edges and vertexes of
the decomposition of Γ̃. Notice that {θν , ν /∈ A} is exactly the set of all angles of the decomposition
of Γ̃. Moreover ñ1 − ñ0 = n1 − n0, since n0 = ñ0 +m and n1 = ñ1 +m, where m is the number of
non-smooth points. Hence, by part (i) of the proof:

∑

ν /∈A
θν = 2π(ñ1 − ñ0) = 2π(n1 − n0).

Corollary 1.39. Let M be a compact oriented surface without boundary. Then

∫

M
κdV = 2πχ(M). (1.43)

1.3.3 Consequences of the Gauss-Bonnet Theorems

Definition 1.40. Let M,M ′ be two surfaces in R3. A smooth map φ : R3 → R3 is called an
isometry between M and M ′ if φ(M) =M ′ and for every q ∈M it satisfies

〈v |w〉 = 〈Dqφ(v) |Dqφ(w)〉 , ∀ v,w ∈ TqM. (1.44)

If the property (1.44) is satisfied by a map defined locally in a neighborhood of every point q of
M , then it is called a local isometry.

Two surfaces M and M ′ are said to be isometric (resp. locally isometric) if there exists an
isometry (resp. local isometry) between M and M ′. Notice that the restriction φ of a global
isometry Φ of R3 to a surface M ⊂ R3 always defines an isometry between M and M ′ = φ(M).

From (1.44) it follows that an isometry preserves the angles between vectors and, a fortiori, the
length of a curve and the distance between two points.

Corollary 1.34, and the fact that the angles and the volumes are preserved by isometries, one
obtains that the Gaussian curvature is invariant by local isometries, in the following sense.

Corollary 1.41 (Gauss’s Theorema Egregium). Assume φ is a local isometry between M and M ′,
then for every q ∈M one has κ(q) = κ′(φ(q)), where κ (resp. κ′) is the Gaussian curvature of M
(resp. M ′).

This Theorem says that the Gaussian curvature κ depends only on the metric structure on M
and not on the specific fact that the surface is embedded in R3 with the induced inner product.

Corollary 1.42. Let M be surface and q ∈ M . If κ(q) 6= 0 then M is not locally isometric to R2

in a neighborhood of q.

Exercise 1.43. Prove that a surface M is locally isometric to the Euclidean plane R2 around a
point q ∈M if and only if there exists a coordinate system (x1, x2) in a neighborhood U of q ∈M
such that the vectors ∂x1 and ∂x2 have unit length and are everywhere orthonormal.

As a converse of Corollary 1.42 we have the following.
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Theorem 1.44. Assume that κ ≡ 0 in a neighborhood of a point q ∈ M . Then M is locally
Euclidean (i.e., locally isometric to R2) around q.

Proof. From our assumptions we have, in a neighborhood U of q:

Ω = κdV = 0.

Hence dω = π∗Ω = 0. From its explicit expression

ω = dθ + a1(x1, x2)dx1 + a2(x1, x2)dx2,

it follows that the 1-form a1dx1 + a2dx2 is locally exact, i.e. there exists a neighborhood W of q,
W ⊂ U , and a function φ : W → R such that a1(x1, x2)dx1 + a2(x1, x2)dx2 = dφ. Hence

ω = d(θ + φ(x1, x2)).

Thus we can define a new angular coordinate on SM , which we still denote by θ, in such a way
that (see also Remark 1.27)

ω = dθ. (1.45)

Now, let γ be a length parametrized geodesic, i.e. ωγ̇(t)(γ̈(t)) = 0. Using the the angular coordinate
θ just defined on the fibers of SM , the curve t 7→ γ̇(t) ∈ Sγ(t)M is written as t 7→ θ(t). Using
(1.45), we have then

0 = ωγ̇(t)(γ̈(t)) = dθ(γ̈(t)) = θ̇(t).

In other words the angular coordinate of a geodesic γ is constant.

We want to construct Cartesian coordinates in a neighborhood U of q. Consider the two length
parametrized geodesics γ1 and γ2 starting from q and such that θ1(0) = 0, θ2(0) = π/2. Define
them to be the x1-axes and x2-axes of our coordinate system, respectively.

Then, for each point q′ ∈ U consider the two geodesics starting from q′ and satisfying θ1(0) = 0
and θ2(0) = π/2. We assign coordinates (x1, x2) to each point q′ in U by considering the length
parameter of the geodesic projection of q′ on γ1 and γ2 (See Figure 1.6). Notice that the family of
geodesics constructed in this way, and parametrized by q′ ∈ U , are mutually orthogonal at every
point.

By construction, in this coordinate system the vectors ∂x1 and ∂x2 have length one (being the
tangent vectors to length parametrized geodesics) and are everywhere mutually orthogonal. Hence
the theorem follows from Exercise 1.43.

1.3.4 The Gauss map

We end this section with a geometric characterization of the Gaussian curvature of a manifold M ,
using the Gauss map.

Definition 1.45. Let M be an oriented surface. We define the Gauss map associated to M as

N :M → S2, q 7→ νq, (1.46)

where νq ∈ S2 ⊂ R3 denotes the external unit normal vector to M at q.
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γ2
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x1
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Figure 1.6: Proof of Theorem 1.44.

Let us consider the differential of the Gauss map at the point q

DqN : TqM → TN (q)S
2 ≃ TqM

where an element tangent to the sphere S2 at N (q), being orthogonal to N (q), is identified with a
tangent vector to M at q.

Theorem 1.46. We have that κ(q) = det(DqN ).

Before proving this theorem we prove an important property of the Gauss map.

Lemma 1.47. For every q ∈M , the differential DqN of the Gauss map is a symmetric operator,
i.e.,

〈DqN (ξ) | η〉 = 〈ξ |DqN (η)〉 , ∀ ξ, η ∈ TqM. (1.47)

Proof. We prove the statement locally, i.e., for a manifold M parametrized by a function φ :
R2 → M . In this case TqM = ImDuφ, where φ(u) = q. Let v,w ∈ R2 such that ξ = Duφ(v) and
η = Duφ(w). Since N (q) ∈ TqM⊥ we have 〈N (q) | η〉 = 〈N (q) |Duφ(w)〉 = 0. Taking the derivative
in the direction of ξ one gets

〈DqN (ξ) | η〉+
〈
N (q)

∣∣D2
uφ(v,w)

〉
= 0,

where D2
uφ is a bilinear symmetric map. Now (1.47) follows exchanging the role of v and w.

Proof of Theorem 1.46. We will use Cartan’s moving frame method. Let ξ ∈ SM and denote with

(e1(ξ), e2(ξ), e3(ξ)), ei : SM → R3,

the orthonormal basis attached at ξ and constructed in Section 1.2. Let us compute the differentials
of these vectors in the ambient space R3 and write them as a linear combination (with 1-form as
coefficients) of the vectors ei

dξei(η) =

3∑

j=1

(ωξ)ij(η) ej(ξ), ωij ∈ Λ1SM, η ∈ TξSM.
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Dropping ξ and η from the notation one gets the relation

dei =

3∑

j=1

ωij ej , ωij ∈ Λ1SM.

Since for each ξ the basis (e1(ξ), e2(ξ), e3(ξ)) is orthonormal (hence can be seen as an element of
SO(3)) its derivative is expressed through a skew-symmentric matrix (i.e., ωij = −ωji) and one
gets the equations

de1 = ω12e2 + ω13e3,

de2 = −ω12e1 + ω23e3, (1.48)

de3 = −ω13e1 − ω23e2.

Let us now prove the following identity

ω13 ∧ ω23 = dω12. (1.49)

Indeed, differentiating the first equation in (1.48) one gets, using that d2 = 0,

0 = d2e1 = dω12e2 + ω12 ∧ de2 + dω13e3 + ω13 ∧ de3
= (dω12 − ω13 ∧ ω23)e2 + (dω13 − ω12 ∧ ω23)e3,

which implies in particular (1.49).

The statement of the theorem can be rewritten as an identity between 2-forms as follows

det(DqN )dV = κdV.

Applying π∗ to both sides one gets

π∗(det(DqN )dV ) = π∗κdV = dω (1.50)

where ω is the Levi-Civita connection. Let us show that (1.50) is equivalent to (1.49).

Indeed by construction ω12 computes the coefficient of the derivative of the first vector of the
orthonormal basis along the second one, hence ω12 = ω (see also Definition 1.54). It remains to
show that

ω13 ∧ ω23 = π∗(det(DqN )dV ) = det(Dπ(ξ)N )π∗dV

Since e3 = N ◦ π, where π : SM →M is the canonical projection, one has

DqN ◦ π∗ = de3 = −ω13e1 − ω23e2

The proof is completed by the following

Exercise 1.48. Let V be a 2-dimensional Euclidean vector space and e1, e2 an orthonormal basis.
Let F : V → V a linear map and write F = F1e1 + F2e2, where Fi : V → R are linear functionals.
Prove that F1 ∧ F2 = (detF )dV , where dV is the area form induced by the inner product.
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Remark 1.49. Lemma 1.47 allows us to define the principal curvatures of M at the point q as the
two real eigenvalues k1(q), k2(q) of the map DqN . In particular

κ(q) = k1(q)k2(q), q ∈M.

The principal curvatures can be geometrically interpreted as the maximum and the minimum of
curvature of sections of M with orthogonal planes.

Notice moreover that, using the Gauss-Bonnet theorem, one can relate then degree of the map
N with the Euler characteristic of M as follows

degN :=
1

Area(S2)

∫

M
(detDqN )dV =

1

4π

∫

M
κdV =

1

2
χ(M).

1.4 Surfaces in R3 with the Minkowski inner product

The theory and the results obtained in this chapter can be adapted to the case when M ⊂ R3 is
a surface in the Minkowski 3-space, that is R3 endowed with the hyperbolic (or Minkowski-type)
inner product

〈q1, q2〉h = x1x2 + y1y2 − z1z2. (1.51)

Here qi = (xi, yi, zi) for i = 1, 2, are two points in R3. When 〈q, q〉h ≥ 0, we denote by ‖q‖h =

〈q, q〉1/2h the norm induced by the inner product (1.51).
For the metric structure to be defined onM , we require that the restriction of the inner product

(1.51) to the tangent space to M is positive definite at every point. Indeed, under this assumption,
the inner product (1.51) can be used to define the length of a tangent vector to the surface (which
is non-negative). Thus one can introduce the length of (piecewise) smooth curves on M and its
distance by the same formulas as in Section 1.1. These surfaces are also called space-like surfaces
in the Minkovski space.

The structure of the inner product impose some condition on the structure of space-like surfaces,
as the following exercice shows.

Exercise 1.50. Let M be a space-like surface in R3 endowed with the inner product (1.51).

(i) Show that if v ∈ TqM is a non zero vector that is orthogonal to TqM , then 〈v, v〉h < 0.

(ii) Prove that, if M is compact, then ∂M 6= ∅.

(iii) Show that restriction to M of the projection π(x, y, z) = (x, y) onto the xy-plane is a local
diffeomorphism.

(iv) Show that M is locally a graph on the plane {z = 0}.

The results obtained in the previous sections for surfaces embedded in R3 can be recovered for
space-like surfaces by simply adapting all formulas to their “hyperbolic” counterpart. For instance,
geodesics are defined as curves of unit speed whose second derivative is orthogonal, with respect to
〈· | ·〉h, to the tangent space to M .

For a smooth function a : R3 → R, its hyperbolic gradient ∇hqa is defined as

∇hqa =

(
∂a

∂x
,
∂a

∂y
,−∂a

∂z

)
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If we assume that M = a−1(0) is a regular level set of a smooth function a : R3 → R. If γ(t) is a
curve contained in M , i.e. a(γ(t)) = 0, one has the identity

0 =
〈
∇hγ(t)a

∣∣∣ γ̇(t)
〉
h
.

The same computation shows that ∇hγ(t)a is orthogonal to the level sets of a, where orthogo-

nal always means with respect to 〈· | ·〉h. In particular, if M = a−1(0) is space-like, one has
〈∇qa,∇qa〉h < 0.

Exercise 1.51. Let γ be a geodesic on M = a−1(0). Show that γ satisfies the equation (in matrix
notation)

γ̈(t) = −
γ̇(t)T (∇2

γ(t)a)γ̇(t)

‖∇hγ(t)a‖2h
∇hγ(t)a, ∀ t ∈ [0, T ]. (1.52)

where ∇2
γ(t)a is the (classical) matrix of second derivatives of a.4

Given a smooth curve γ : [0, T ] → M on a surface M , a smooth curve of tangent vectors
ξ(t) ∈ Tγ(t)M is said to be parallel if ξ̇(t) ⊥ Tγ(t)M , with respect to the hyperbolic inner product.
It is then straightforward to check that, if M is the zero level of a smooth function a : R3 → R,
then ξ(t) is parallel along γ if and only if it satisfies

ξ̇(t) = −
γ̇(t)T (∇2

γ(t)a)ξ(t)

‖∇hγ(t)a‖2h
∇hγ(t)a, ∀ t ∈ [0, T ]. (1.53)

By definition a smooth curve γ : [0, T ]→M is a geodesic if and only if γ̇ is parallel along γ.

Remark 1.52. As for surfaces in the Euclidean space, given curve γ : [0, T ]→M and initial datum
v ∈ Tγ(0)M , there is a unique parallel curve of tangent vectors ξ(t) ∈ Tγ(t)M along γ such that
ξ(0) = v. Moreover the operator ξ(0) 7→ ξ(t) is a linear operator, which the parallel transport of v
along γ.

Exercise 1.53. Show that if ξ(t), η(t) are two parallel curves of tangent vectors along γ, then we
have

d

dt
〈ξ(t) | η(t)〉h = 0, ∀ t ∈ [0, T ]. (1.54)

Assume that M is oriented. Given an element ξ ∈ SqM we can complete it to an orthonormal
frame (ξ, η, ν) of R3 in the following unique way:

(i) η ∈ TqM is orthogonal to ξ with respect to 〈· | ·〉h and (ξ, η) is positively oriented (w.r.t. the
orientation of M),

(ii) ν ⊥ TqM with respect to 〈· | ·〉h and (ξ, η, ν) is positively oriented (w.r.t. the orientation of
R3).

For a smooth curve of unit tangent vectors ξ(t) ∈ Sγ(t)M along a curve γ : [0, T ] → M we define
η(t), ν(t) ∈ Tγ(t)M and we can write

ξ̇(t) = uξ(t)η(t) + vξ(t)ν(t).

4otherwise one can write the numerator of (1.52) as
〈

∇2,h
γ(t)γ̇(t)

∣
∣
∣ γ̇(t)

〉

h
, where ∇2,h

γ(t) is the hyperbolic Hessian.

40



Definition 1.54. The hyperbolic Levi-Civita connection on M is the 1-form ω ∈ Λ1(SM) defined
by

ωξ : TξSM → R, ωξ(z) = uz, (1.55)

where z = uzη + vzν and (ξ, η, ν) is the orthonormal frame defined above.

It is again easy to check that a curve of unit tangent vectors ξ(t) is parallel if and only if
ωξ(t)(ξ̇(t)) = 0 and a curve parametrized by length γ : [0, T ]→M is a geodesic if and only if

ωγ̇(t)(γ̈(t)) = 0, ∀ t ∈ [0, T ]. (1.56)

Exercise 1.55. Prove that the hyperbolic Levi Civita connection ω ∈ Λ1(SM) satisfies:

(i) there exist two smooth functions a1, a2 :M → R such that

ω = dθ + a1(x1, x2)dx1 + a2(x1, x2)dx2, (1.57)

where (x1, x2, θ) is a system of coordinates on SM .

(ii) dω = π∗Ω, where Ω is a 2-form defined on M and π : SM →M is the canonical projection.

Again one can introduce the area form dV on M induced by the inner product and it makes
sense to give the following definition:

Definition 1.56. The Gaussian curvature of a surfaceM in the Minkowski 3-space is the function
κ :M → R defined by the equality

Ω = −κdV. (1.58)

By reasoning as in the Euclidean case, one can define the geodesic curvature of a curve and
prove the analogue of the Gauss-Bonnet theorem in this context. As a consequence one gets that
the Gaussian curvature is again invariant under isometries of M and hence is an intrinsic quantity
that depends only on the metric properties of the surface and not on the fact that its metric is
obtained as the restriction of some metric defined in the ambient space.

Finally one can define the hyperbolic Gauss map

Definition 1.57. Let M be an oriented surface. We define the Gauss map

N :M → H2, q 7→ νq, (1.59)

where νq ∈ H2 ⊂ R3 denotes the external unit normal vector to M at q, with respect to the
Minkovsky inner product.

Let us now consider the differential of the Gauss map at the point q:

DqN : TqM → TN (q)H
2 ≃ TqM

where an element tangent to the hyperbolic plane H2 at N (q), being orthogonal to N (q), is iden-
tified with a tangent vector to M at q.

Theorem 1.58. The differential of the Gauss map DqN is symmetric, and κ(q) = det(DqN ).
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1.5 Model spaces of constant curvature

In this section we briefly discuss surfaces embedded in R3 (with Euclidean or Lorentzian inner
product) that have constant Gaussian curvature, playing the role of model spaces. For each model
we are interested in describing geodesics and, more generally, curves of constant geodesic curvature.
These results will be useful in the study of sub-Riemannian model spaces in dimension three (cf.
Chapter 7).

Assume that the surface M has constant Gaussian curvature κ ∈ R. We already know that κ
is a metric invariant of the surface, i.e., it does not depend on the embedding of the surface in R3.
We will distinguish the following three cases:

(i) κ = 0: this is the flat model of the classical Euclidean plane,

(ii) κ > 0: these corresponds to the case of the sphere,

(iii) κ < 0: these corresponds to the hyperbolic plane.

We will briefly discuss the cases (i), since it is trivial, and study in some more detail the cases (ii)
and (iii) of spherical and hyperbolic geometry.

1.5.1 Zero curvature: the Euclidean plane

The Euclidean plane can be realized as the surface of R3 defined by the zero level set of the function

a : R3 → R, a(x, y, z) = z.

It is an easy exercise, applying the results of the previous sections, to show that the curvature
of this surface is zero (the Gauss map is constant) and to characterize geodesics and curves with
constant curvature.

Exercise 1.59. Prove that geodesics on the Euclidean plane are lines. Moreover, show that curves
with constant curvature c 6= 0 are circles of radius 1/c.

1.5.2 Positive curvature: the sphere

Let us consider the sphere S2
r of radius r as the surface of R3 defined as the zero level set of the

function
S2
r = a−1(0), a(x, y, z) = x2 + y2 + z2 − r2. (1.60)

If we denote, as usual, with 〈· | ·〉 the Euclidean inner product in R3, S2
r can be viewed also as the

set of points q = (x, y, z) whose Euclidean norm is constant

S2
r = {q ∈ R3 | 〈q | q〉 = r2}.

The Gauss map associated with this surface can be easily computed since its is explicitly given by

N : S2
r → S2, N (q) =

1

r
q, (1.61)

It follows immediately by (1.69) that the Gaussian curvature of the sphere is κ = 1/r2 at every
point q ∈ S2

r . Let us now recover the structure of geodesics and constant geodesic curvature curves
on the sphere.
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Proposition 1.60. Let γ : [0, T ]→ S2
r be a curve with constant geodesic curvature equal to c ∈ R.

For every vector w ∈ R3 the function α(t) = 〈γ̇(t) |w〉 is a solution of the differential equation

α̈(t) +

(
c2 +

1

r2

)
α(t) = 0

Proof. Without loss of generality, we can assume that γ is parametrized by unit speed. Differen-
tiating twice the equality a(γ(t)) = 0, where a is the function defined in (1.68), we get (in matrix
notation):

γ̇(t)T (∇2
γ(t)a)γ̇(t) + γ̈(t)T∇γ(t)a = 0.

Moreover, since ‖γ̇(t)‖ is constant and γ has constant geodesic curvature equal to c, there exists a
function b(t) such that

γ̈(t) = b(t)∇γ(t)a+ cη(t) (1.62)

where c is the geodesic curvature of the curve and η(t) = γ̇(t)⊥ is the vector orthogonal to γ̇(t) in
Tγ(t)S

2
r (defined in such a way that γ̇(t) and η(t) is a positively oriented frame). Reasoning as in

the proof of Proposition 1.9 and noticing that ∇γ(t)a is proportional to the vector γ(t), one can
compute b(t) and obtains that γ satisfies the differential equation

γ̈(t) = − 1

r2
γ(t) + cη(t). (1.63)

Lemma 1.61. η̇(t) = −cγ̇(t)

Proof of Lemma 1.61. The curve η(t) has constant norm, hence η̇(t) is orthogonal to η(t). Recall
that the triple (γ(t), γ̇(t), η(t)) defines an orthogonal frame at every point. Differentiating the
identity 〈η(t) | γ(t)〉 = 0 with respect to t one has

0 = 〈η̇(t) | γ(t)〉+ 〈η(t) | γ̇(t)〉 = 〈η̇(t) | γ(t)〉 .

Hence η̇(t) has nonvanishing component only along γ̇(t). Differentiating the identity 〈η(t) | γ̇(t)〉 = 0
one obtains

0 = 〈η̇(t) | γ̇(t)〉+ 〈η(t) | γ̈(t)〉 = 〈η̇(t) | γ̇(t)〉+ c

where we used (1.63). Hence η̇(t) = 〈η̇(t) | γ̇(t)〉 γ̇(t) = −cγ̇(t).

Next we compute the derivatives of the function α as follows

α̇(t) = 〈γ̈(t) |w〉 = − 1

r2
〈γ(t) |w〉+ c 〈η(t) |w〉 . (1.64)

Using Lemma 1.61, we have

α̈(t) = − 1

r2
〈γ̇(t) |w〉+ c 〈η̇(t) |w〉 (1.65)

= − 1

r2
〈γ̇(t) |w〉 − c2 〈γ̇(t) |w〉 = −

(
1

r2
+ c2

)
α(t). (1.66)

which ends the proof of the Proposition 1.60.
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Corollary 1.62. Constant geodesic curvature curves are contained in the intersection of S2
r with

an affine plane of R3. In particular, geodesics are contained in the intersection of S2
r with planes

passing through the origin, i.e., great circles.

Proof. Let us fix a vector w ∈ R3 that is orthogonal to γ̇(0) and γ̈(0). Let us then prove that
α(t) := 〈γ̇(t) |w〉 = 0 for all t ∈ [0, T ]. By Proposition 1.60, the function α(t) is a solution of the
Cauchy problem {

α̈(t) + ( 1
r2

+ c2)α(t) = 0

α(0) = α̇(0) = 0
(1.67)

Since (1.67) admits the unique solution α(t) = 0 for all t.
If the curve is a geodesic, then c = 0 and the geodesic equation is written as γ̈(t) = −γ(t).

Then consider the function Γ(t) := 〈γ(t) |w〉, where w is chosen as before. Γ(t) is constant since
Γ̇(t) = α(t) = 0. In fact Γ(t) is identically zero since Γ(0) = 〈γ(0) |w〉 = −〈γ̈(0) |w〉 = 0, by
the assumption on w. This proves that the curve γ is contained in a plane passing through the
origin.

Remark 1.63. Curves with constant geodesic curvatures on the spheres are circles obtained as the
intersection of the sphere with an affine plane. Moreover all these curves can be also characterized
in the following two ways:

(i) curves that have constant distance from a geodesic (equidistant curves),

(ii) boundary of metric balls (spheres).

1.5.3 Negative curvature: the hyperbolic plane

The negative constant curvature model is the hyperbolic plane H2
r obtained as the surface of R3,

endowed with the hyperbolic metric, defined as the zero level set of the function

a(x, y, z) = x2 + y2 − z2 + r2. (1.68)

Indeed this surface is a two-fold hyperboloid, so we restrict our attention to the set of points
H2
r = a−1(0) ∩ {z > 0}.
In analogy with the positive constant curvature model (which is the set of points in R3 whose

euclidean norm is constant) the negative constant curvature can be seen as the set of points whose
hyperbolic norm is constant in R3. In other words

H2
r = {q = (x, y, z) ∈ R3 | ‖q‖2h = −r2} ∩ {z > 0}.

The hyperbolic Gauss map associated with this surface can be easily computed since its is explicitly
given by

N : H2
r → H2, N (q) =

1

r
∇qa, (1.69)

Exercise 1.64. Prove that the Gaussian curvature of H2
r is κ = −1/r2 at every point q ∈ H2

r .

We can now discuss the structure of geodesics and constant geodesic curvature curves on the
hyperbolic space. With start with a result than can be proved in an analogous way to Proposition
1.60.
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Proposition 1.65. Let γ : [0, T ]→ H2
r be a curve with constant geodesic curvature equal to c ∈ R.

For every vector w ∈ R3 the function α(t) = 〈γ̇(t) |w〉h is a solution of the differential equation

α̈(t) +

(
c2 − 1

r2

)
α(t) = 0. (1.70)

As for the sphere, this result implies immediately the following corollary.

Corollary 1.66. Constant geodesic curvature curves on H2
r are contained in the intersection of

H2
r with affine planes of R3. In particular, geodesics are contained in the intersection of H2

r with
planes passing through the origin.

Exercise 1.67. Prove Proposition 1.65 and Corollary 1.66.

Geodesics on H2
r are hyperbolas, obtained as intersections of the hyperboloid with plane passing

through the origin. The classification of constant geodesic curvature curves is in fact more rich. The
sections of the hyperboloid with affine planes can have different shapes depending on the Euclidean
orthogonal vector to the plane: they are circles when it has negative hyperbolic length, hyperbolas
when it has positive hyperbolic length or parabolas when it has length zero (that is it belong to
the x2 + y2 − z2 = 0).

These distinctions reflects in the value of the geodesic curvature. Indeed, as the form of (1.70)
also suggest, the value c = 1

r is a threshold and we have the following situation:

(i) if 0 ≤ c < 1/r, then the curve is an hyperbola,

(ii) if c = 1/r, then the curve is a parabola,

(iii) if c > 1/r, then the curve is a circle.

This is not the only interesting feature of this classification. Indeed curves of type (i) are equidistant
curves while curves of type (iii) are boundary of balls, i.e., spheres, in the hyperbolic plane. Finally,
curves of type (ii) are also called horocycles (cf. Remark 1.63 for the difference with respect to the
case of the positive constant curvature model).
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Chapter 2

Vector fields

In this chapter we collect some basic definitions of differential geometry, in order to recall some
useful results and to fix the notation. We assume the reader to be familiar with the definitions of
smooth manifold and smooth map between manifolds.

2.1 Differential equations on smooth manifolds

In what follows I denotes an interval of R containing 0 in its interior.

2.1.1 Tangent vectors and vector fields

Let M be a smooth n-dimensional manifold and γ1, γ2 : I → M two smooth curves based at
q = γ1(0) = γ2(0) ∈ M . We say that γ1 and γ2 are equivalent if they have the same 1-st order
Taylor polynomial in some (or, equivalently, in every) coordinate chart. This defines an equivalence
relation on the space of smooth curves based at q.

Definition 2.1. Let M be a smooth n-dimensional manifold and let γ : I →M be a smooth curve
such that γ(0) = q ∈M . Its tangent vector at q = γ(0), denoted by

d

dt

∣∣∣∣
t=0

γ(t), or γ̇(0), (2.1)

is the equivalence class in the space of all smooth curves in M such that γ(0) = q.

It is easy to check, using the chain rule, that this definition is well-posed (i.e., it does not depend
on the representative curve).

Definition 2.2. Let M be a smooth n-dimensional manifold. The tangent space to M at a point
q ∈M is the set

TqM :=

{
d

dt

∣∣∣∣
t=0

γ(t) , γ : I →M smooth, γ(0) = q

}
.

It is a standard fact that TqM has a natural structure of n-dimensional vector space, where n =
dimM .
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Definition 2.3. A smooth vector field on a smooth manifold M is a smooth map

X : q 7→ X(q) ∈ TqM,

that associates to every point q inM a tangent vector at q. We denote by Vec(M) the set of smooth
vector fields on M .

In coordinates we can writeX =
∑n

i=1X
i(x) ∂

∂xi
, and the vector field is smooth if its components

Xi(x) are smooth functions. The value of a vector field X at a point q is denoted in what follows
both with X(q) and X

∣∣
q
.

Definition 2.4. Let M be a smooth manifold and X ∈ Vec(M). The equation

q̇ = X(q), q ∈M, (2.2)

is called an ordinary differential equation (or ODE ) on M . A solution of (2.2) is a smooth curve
γ : J →M , where J ⊂ R is an open interval, such that

γ̇(t) = X(γ(t)), ∀ t ∈ J. (2.3)

We also say that γ is an integral curve of the vector field X.

A standard theorem on ODE ensures that, for every initial condition, there exists a unique
integral curve of a smooth vector field, defined on some open interval.

Theorem 2.5. Let X ∈ Vec(M) and consider the Cauchy problem

{
q̇(t) = X(q(t))

q(0) = q0
(2.4)

For any point q0 ∈ M there exists δ > 0 and a solution γ : (−δ, δ) → M of (2.4), denoted by
γ(t; q0). Moreover the map (t, q) 7→ γ(t; q) is smooth on a neighborhood of (0, q0).

The solution is unique in the following sense: if there exists two solutions γ1 : I1 → M and
γ2 : I2 →M of (2.4) defined on two different intervals I1, I2 containing zero, then γ1(t) = γ2(t) for
every t ∈ I1 ∩ I2. This permits to introduce the notion of maximal solution of (2.4), that is the
unique solution of (2.4) that is not extendable to a larger interval J containing I.

If the maximal solution of (2.4) is defined on a bounded interval I = (a, b), then the solution
leaves every compact K of M in a finite time tK < b.

A vector field X ∈ Vec(M) is called complete if, for every q0 ∈M , the maximal solution γ(t; q0)
of the equation (2.2) is defined on I = R.

Remark 2.6. The classical theory of ODE ensure completeness of the vector field X ∈ Vec(M) in
the following cases:

(i) M is a compact manifold (or more generally X has compact support in M),

(ii) M = Rn and X is sub-linear, i.e. there exists C1, C2 > 0 such that

|X(x)| ≤ C1|x|+C2, ∀x ∈ Rn.

where | · | denotes the Euclidean norm in Rn.
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When we are interested in the behavior of the trajectories of a vector field X ∈ Vec(M) in a
compact subset K of M , the assumption of completeness is not restrictive.

Indeed consider an open neighborhood OK of a compact K with compact closure OK in M .
There exists a smooth cut-off function a :M → R that is identically 1 on K, and that vanishes out
of OK . Then the vector field aX is complete, since it has compact support in M . Moreover, the
vector fields X and aX coincide on K, hence their integral curves coincide on K too.

2.1.2 Flow of a vector field

Given a complete vector field X ∈ Vec(M) we can consider the family of maps

φt : M →M, φt(q) = γ(t; q), t ∈ R. (2.5)

where γ(t; q) is the integral curve of X starting at q when t = 0. By Theorem 2.5 it follows that
the map

φ : R×M →M, φ(t, q) = φt(q),

is smooth in both variables and the family {φt, t ∈ R} is a one parametric subgroup of Diff(M),
namely, it satisfies the following identities:

φ0 = Id,

φt ◦ φs = φs ◦ φt = φt+s, ∀ t, s ∈ R, (2.6)

(φt)
−1 = φ−t, ∀ t ∈ R,

Moreover, by construction, we have

∂φt(q)

∂t
= X(φt(q)), φ0(q) = q, ∀ q ∈M. (2.7)

The family of maps φt defined by (2.5) is called the flow generated by X. For the flow φt of a
vector field X it is convenient to use the exponential notation φt := etX , for every t ∈ R. Using
this notation, the group properties (2.6) take the form:

e0X = Id, etX ◦ esX = esX ◦ etX = e(t+s)X , (etX )−1 = e−tX , (2.8)

d

dt
etX(q) = X(etX (q)), ∀ q ∈M. (2.9)

Remark 2.7. When X(x) = Ax is a linear vector field on Rn, where A is a n × n matrix, the
corresponding flow φt is the matrix exponential φt(x) = etAx.

2.1.3 Vector fields as operators on functions

A vector field X ∈ Vec(M) induces an action on the algebra C∞(M) of the smooth functions on
M , defined as follows

X : C∞(M)→ C∞(M), a 7→ Xa, a ∈ C∞(M), (2.10)

where

(Xa)(q) =
d

dt

∣∣∣∣
t=0

a(etX(q)), q ∈M. (2.11)

In other words X differentiates the function a along its integral curves.
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Remark 2.8. Let us denote at := a◦etX . The map t 7→ at is smooth and from (2.11) it immediately
follows that Xa represents the first order term in the expansion of at when t→ 0:

at = a+ tXa+O(t2).

Exercise 2.9. Let a ∈ C∞(M) and X ∈ Vec(M), and denote at = a ◦ etX . Prove the following
formulas

d

dt
at = Xat, (2.12)

at = a+ tXa+
t2

2!
X2a+

t3

3!
X3a+ . . .+

tk

k!
Xka+O(tk+1). (2.13)

It is easy to see also that the following Leibnitz rule is satisfied

X(ab) = (Xa)b+ a(Xb), ∀ a, b ∈ C∞(M), (2.14)

that means that X, as an operator on functions, is a derivation of the algebra C∞(M).

Remark 2.10. Notice that, in coordinates, if a ∈ C∞(M) and X =
∑

iXi(x)
∂
∂xi

then Xa =∑
iXi(x)

∂a
∂xi

. In particular, when X is applied to the coordinate functions ai(x) = xi then Xai =
Xi, which shows that a vector field is completely characterized by its action on functions.

Exercise 2.11. Let f1, . . . , fk ∈ C∞(M) and assume that N = {f1 = . . . = fk = 0} ⊂ M is a
smooth submanifold. Show that X ∈ Vec(M) is tangent to N , i.e., X(q) ∈ TqN for all q ∈ N , if
and only if Xfi(q) = 0 for every q ∈ N and i = 1, . . . , k.

2.1.4 Nonautonomous vector fields

Definition 2.12. A nonautonomous vector field is family of vector fields {Xt}t∈R such that the
map X(t, q) = Xt(q) satisfies the following properties

(C1) X(·, q) is measurable for every fixed q ∈M ,

(C2) X(t, ·) is smooth for every fixed t ∈ R,

(C3) for every system of coordinates defined in an open set Ω ⊂M and every compact K ⊂ Ω and
compact interval I ⊂ R there exists L∞ functions c(t), k(t) such that

‖X(t, x)‖ ≤ c(t), ‖X(t, x) −X(t, y)‖ ≤ k(t)‖x− y‖, ∀ (t, x), (t, y) ∈ I ×K

Notice that conditions (C1) and (C2) are equivalent to require that for every smooth function
a ∈ C∞(M) the real function (t, q) 7→ Xta|q defined on R×M is measurable in t and smooth in q.

Remark 2.13. In these lecture notes we are mainly interested in nonautonomous vector fields of the
following form

Xt(q) =

m∑

i=1

ui(t)fi(q) (2.15)
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where ui are L
∞ functions and fi are smooth vector fields on M . For this class of nonautonomous

vector fields assumptions (C1)-(C2) are trivially satisfied. For what concerns (C3), by the smooth-
ness of fi for every compact set K ⊂ Ω we can find two positive constants CK , LK such that for all
i = 1, . . . ,m and j = 1, . . . , n we have

‖fi(x)‖ ≤ CK ,
∥∥∥∥
∂fi
∂xj

(x)

∥∥∥∥ ≤ LK , ∀x ∈ K,

and one gets for all (t, x), (t, y) ∈ I ×K

‖X(t, x)‖ ≤ CK
m∑

i=1

|ui(t)|, ‖X(t, x) −X(t, y)‖ ≤ LK
m∑

i=1

|ui(t)| · ‖x− y‖. (2.16)

The existence and uniqueness of integral curves of a nonautonomous vector field is guaranteed
by the following theorem (see [34]).

Theorem 2.14 (Carathéodory theorem). Assume that the nonautonomous vector field {Xt}t∈R
satisfies (C1)-(C3). Then the Cauchy problem

{
q̇(t) = X(t, q(t))

q(t0) = q0
(2.17)

has a unique solution γ(t; t0, q0) defined on an open interval I containing t0 such that (2.17) is
satisfied for almost every t ∈ I and γ(t0; t0, q0) = q0. Moreover the map (t, q0) 7→ γ(t; t0, q0) is
Lipschitz with respect to t and smooth with respect to q0.

Let us assume now that the equation (2.14) is complete, i.e., for all t0 ∈ R and q0 ∈ M the
solution γ(t; t0, q0) is defined on I = R. Let us denote Pt0,t(q) = γ(t; t0, q). The family of maps
{Pt,s}t,s∈R where Pt,s :M →M is the (nonautonomous) flow generated by Xt. It satisfies

∂

∂t

∂Pt0,t
∂q

(q) =
∂X

∂q
(t, Pt0,t(q0))Pt0,t(q)

Moreover the following algebraic identities are satisfied

Pt,t = Id,

Pt2,t3 ◦ Pt1,t2 = Pt1,t3 , ∀ t1, t2, t3 ∈ R, (2.18)

(Pt1,t2)
−1 = Pt2,t1 , ∀ t1, t2 ∈ R,

Conversely, with every family of smooth diffeomorphism Pt,s : M → M satisfying the relations
(2.18), that is called a flow on M , one can associate its infinitesimal generator Xt as follows:

Xt(q) =
d

ds

∣∣∣∣
s=0

Pt,t+s(q), ∀ q ∈M. (2.19)

The following lemma characterizes flows whose infinitesimal generator is autonomous.

Lemma 2.15. Let {Pt,s}t,s∈R be a family of smooth diffeomorphisms satisfying (2.18). Its infinites-
imal generator is an autonomous vector field if and only if

P0,t ◦ P0,s = P0,t+s, ∀ t, s ∈ R.
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2.2 Differential of a smooth map

A smooth map between manifolds induces a map between the corresponding tangent spaces.

Definition 2.16. Let ϕ : M → N a smooth map between smooth manifolds and q ∈ M . The
differential of ϕ at the point q is the linear map

ϕ∗,q : TqM → Tϕ(q)N, (2.20)

defined as follows:

ϕ∗,q(v) =
d

dt

∣∣∣∣
t=0

ϕ(γ(t)), if v =
d

dt

∣∣∣∣
t=0

γ(t), q = γ(0).

It is easily checked that this definition depends only on the equivalence class of γ.

N

q

γ(t)

ϕ

ϕ(q)
ϕ∗,qv

v ϕ(γ(t))

M

Figure 2.1: Differential of a map ϕ :M → N

The differential ϕ∗,q of a smooth map ϕ : M → N , also called its pushforward, is sometimes
denoted by the symbols Dqϕ or dqϕ (see Figure 2.2).

Exercise 2.17. Let ϕ : M → N , ψ : N → Q be smooth maps between manifolds. Prove that the
differential of the composition ψ ◦ ϕ :M → Q satisfies (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

As we said, a smooth map induces a transformation of tangent vectors. If we deal with diffeo-
morphisms, we can also pushforward a vector field.

Definition 2.18. Let X ∈ Vec(M) and ϕ : M → N be a diffeomorphism. The pushforward
ϕ∗X ∈ Vec(N) is the vector field on N defined by

(ϕ∗X)(ϕ(q)) := ϕ∗(X(q)), ∀ q ∈M. (2.21)

When P ∈ Diff(M) is a diffeomorphism on M , we can rewrite the identity (2.21) as

(P∗X)(q) = P∗(X(P−1(q))), ∀ q ∈M. (2.22)

Notice that, in general, if ϕ is a smooth map, the pushforward of a vector field is not well-defined.

Remark 2.19. From this definition it follows the useful formula for X,Y ∈ Vec(M)

(etX∗ Y )
∣∣
q
= etX∗

(
Y
∣∣
e−tX(q)

)
=

d

ds

∣∣∣∣
s=0

etX ◦ esY ◦ e−tX(q).
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If P ∈ Diff(M) and X ∈ Vec(M), then P∗X is, by construction, the vector field whose integral
curves are the image under P of integral curves of X. The following lemma shows how it acts as
operator on functions.

Lemma 2.20. Let P ∈ Diff(M), X ∈ Vec(M) and a ∈ C∞(M) then

etP∗X = P ◦ etX ◦ P−1, (2.23)

(P∗X)a = (X(a ◦ P )) ◦ P−1. (2.24)

Proof. From the formula

d

dt

∣∣∣∣
t=0

P ◦ etX ◦ P−1(q) = P∗(X(P−1(q))) = (P∗X)(q),

it follows that t 7→ P ◦ etX ◦ P−1(q) is an integral curve of P∗X, from which (2.23) follows. To
prove (2.24) let us compute

(P∗X)a
∣∣
q
=

d

dt

∣∣∣∣
t=0

a(etP∗X(q)).

Using (2.23) this is equal to

d

dt

∣∣∣∣
t=0

a(P (etX (P−1(q))) =
d

dt

∣∣∣∣
t=0

(a ◦ P )(etX (P−1(q))) = (X(a ◦ P )) ◦ P−1.

As a consequence of Lemma 2.20 one gets the following formula: for every X,Y ∈ Vec(M)

(etX∗ Y )a = Y (a ◦ etX ) ◦ e−tX . (2.25)

2.3 Lie brackets

In this section we introduce a fundamental notion for sub-Riemannian geometry, the Lie bracket of
two vector fieldsX and Y . Geometrically it is defined as the infinitesimal version of the pushforward
of the second vector field along the flow of the first one. As expalined below, it measures how much
Y is modified by the flow of X.

Definition 2.21. Let X,Y ∈ Vec(M). We define their Lie bracket as the vector field

[X,Y ] :=
∂

∂t

∣∣∣∣
t=0

e−tX∗ Y. (2.26)

Remark 2.22. The geometric meaning of the Lie bracket can be understood by writing explicitly

[X,Y ]
∣∣
q
=

∂

∂t

∣∣∣∣
t=0

e−tX∗ Y
∣∣
q
=

∂

∂t

∣∣∣∣
t=0

e−tX∗ (Y
∣∣
etX(q)

) =
∂

∂s∂t

∣∣∣∣
t=s=0

e−tX ◦ esY ◦ etX(q). (2.27)

Proposition 2.23. As derivations on functions, one has the identity

[X,Y ] = XY − Y X. (2.28)
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Proof. By definition of Lie bracket we have [X,Y ]a = ∂
∂t

∣∣
t=0

(e−tX∗ Y )a. Hence we have to compute
the first order term in the expansion, with respect to t, of the map

t 7→ (e−tX∗ Y )a.

Using formula (2.25) we have

(e−tX∗ Y )a = Y (a ◦ e−tX) ◦ etX .
By Remark 2.8 we have a ◦ e−tX = a− tXa+O(t2), hence

(e−tX∗ Y )a = Y (a− tXa+O(t2)) ◦ etX

= (Y a− t Y Xa+O(t2)) ◦ etX .
Denoting b = Y a− t Y Xa+O(t2), bt = b ◦ etX , and using again the expansion above we get

(e−tX∗ Y )a = (Y a− t Y Xa+O(t2)) + tX(Y a− t Y Xa+O(t2)) +O(t2)

= Y a+ t(XY − Y X)a+O(t2).

that proves that the first order term with respect to t in the expansion is (XY − Y X)a.

Proposition 2.23 shows that (Vec(M), [·, ·]) is a Lie algebra.

Exercise 2.24. Prove the coordinate expression of the Lie bracket: let

X =
n∑

i=1

Xi
∂

∂xi
, Y =

n∑

j=1

Yj
∂

∂xj
,

be two vector fields in Rn. Show that

[X,Y ] =

n∑

i,j=1

(
Xi
∂Yj
∂xi
− Yi

∂Xj

∂xi

)
∂

∂xj
.

Next we prove that every diffeomorphism induces a Lie algebra homomorphism on Vec(M).

Proposition 2.25. Let P ∈ Diff(M). Then P∗ is a Lie algebra homomorphism of Vec(M), i.e.,

P∗[X,Y ] = [P∗X,P∗Y ], ∀X,Y ∈ Vec(M).

Proof. We show that the two terms are equal as derivations on functions. Let a ∈ C∞(M),
preliminarly we see, using (2.24), that

P∗X(P∗Y a) = P∗X(Y (a ◦ P ) ◦ P−1)

= X(Y (a ◦ P ) ◦ P−1 ◦ P ) ◦ P−1

= X(Y (a ◦ P )) ◦ P−1,

and using twice this property and (2.28)

[P∗X,P∗Y ]a = P∗X(P∗Y a)− P∗Y (P∗Xa)

= XY (a ◦ P ) ◦ P−1 − Y X(a ◦ P ) ◦ P−1

= (XY − Y X)(a ◦ P ) ◦ P−1

= P∗[X,Y ]a.
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To end this section, we show that the Lie bracket of two vector fields is zero (i.e., they commute
as operator on functions) if and only if their flows commute.

Proposition 2.26. Let X,Y ∈ Vec(M). The following properties are equivalent:

(i) [X,Y ] = 0,

(ii) etX ◦ esY = esY ◦ etX , ∀ t, s ∈ R.

Proof. We start the proof with the following claim

[X,Y ] = 0 =⇒ e−tX∗ Y = Y, ∀ t ∈ R. (2.29)

To prove (2.29) let us show that [X,Y ] = d
dt

∣∣
t=0

e−tX∗ Y = 0 implies that d
dte

−tX
∗ Y = 0 for all t ∈ R.

Indeed we have

d

dt
e−tX∗ Y =

d

dε

∣∣∣∣
ε=0

e
−(t+ε)X
∗ Y =

d

dε

∣∣∣∣
ε=0

e−tX∗ e−εX∗ Y

= e−tX∗
d

dε

∣∣∣∣
ε=0

e−εX∗ Y = e−tX∗ [X,Y ] = 0,

which proves (2.29).

(i)⇒(ii). Fix t ∈ R. Let us show that φs := e−tX ◦ esY ◦ etX is the flow generated by Y . Indeed
we have

∂

∂s
φs =

∂

∂ε

∣∣∣∣
ε=0

e−tX ◦ e(s+ε)Y ◦ etX

=
∂

∂ε

∣∣∣∣
ε=0

e−tX ◦ eεY ◦ etX ◦ e−tX ◦ esY ◦ etX︸ ︷︷ ︸
φs

= e−tX∗ Y ◦ φs = Y ◦ φs.

where in the last equality we used (2.29). Using uniqueness of the flow generated by a vector field
we get

e−tX ◦ esY ◦ etX = esY , ∀ t, s ∈ R,

which is equivalent to (ii).

(ii)⇒(i). For every function a ∈ C∞ we have

XY a =
∂2

∂t∂s

∣∣∣
t=s=0

a ◦ esY ◦ etX =
∂2

∂s∂t

∣∣∣
t=s=0

a ◦ etX ◦ esY = Y Xa.

Then (i) follows from (2.28).

Exercise 2.27. Let X,Y ∈ Vec(M) and q ∈M . Consider the curve on M

γ(t) = e−tY ◦ e−tX ◦ etY ◦ etX(q).

Prove that the tangent vector to the curve t 7→ γ(
√
t) at t = 0 is [X,Y ](q).
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Exercise 2.28. Let X,Y ∈ Vec(M). Using the semigroup property of the flow, prove that

d

dt
e−tX∗ Y = e−tX∗ [X,Y ] (2.30)

Deduce the following expansion

e−tX∗ Y =
∞∑

n=0

tn

n!
(adX)nY (2.31)

= Y + t[X,Y ] +
t2

2
[X, [X,Y ]] +

t3

6
[X, [X, [X,Y ]]] + . . .

Exercise 2.29. Let X,Y ∈ Vec(M) and a ∈ C∞(M). Prove the following Leibnitz rule for the
Lie bracket:

[X, aY ] = a[X,Y ] + (Xa)Y.

Exercise 2.30. Let X,Y,Z ∈ Vec(M). Prove that the Lie bracket satisfies the Jacobi identity :

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. (2.32)

Hint: Differentiate the identity etX∗ [Y,Z] = [etX∗ Y, etX∗ Z] with respect to t.

Exercise 2.31. LetM be a smooth n-dimensional manifold andX1, . . . ,Xn be linearly independent
vector fields in a neighborhood of a point q0 ∈M . Prove that the map

ψ : Rn →M, ψ(t1, . . . , tn) = et1X1 ◦ . . . ◦ etnXn(q0)

is a local diffeomorphism at 0. Moreover we have, denoting t = (t1, . . . , tn),

∂ψ

∂ti
(t) = et1X1∗ ◦ . . . ◦ eti+1Xi+1

∗ Xi(ψ(t))

Deduce that, when [Xi,Xj ] = 0 for every i, j = 1, . . . , n, one has

∂ψ

∂ti
(t) = Xi(ψ(t)).

2.4 Frobenius theorem

In this section we prove Frobenius theorem about vector distributions.

Definition 2.32. Let M be a smooth manifold. A vector distribution D of rank m on M is a
family of vector subspaces Dq ⊂ TqM where dimDq = m for every q.

A vector distribution D is said to be smooth if, for every point q0 ∈M , there exists a neighbor-
hood Oq0 of q0 and a family of vector fields X1, . . . ,Xm such that

Dq = span{X1(q), . . . ,Xm(q)}, ∀ q ∈ Oq0 . (2.33)

Definition 2.33. A smooth vector distribution D (of rank m) on M is said to be involutive if
there exists a local basis of vector fields X1, . . . ,Xm satisfying (2.33) and smooth functions akij on
M such that

[Xi,Xk] =

m∑

j=1

akijXj, ∀ i, k = 1, . . . ,m. (2.34)
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Exercise 2.34. Prove that a smooth vector distribution D is involutive if and only if for every
local basis of vector fields X1, . . . ,Xm satisfying (2.33) there exist smooth functions akij such that
(2.34) holds.

Definition 2.35. A smooth vector distribution D on M is said to be flat if for every point q0 ∈M
there exists a diffeomorphism φ : Oq0 → Rn such that φ∗,q(Dq) = Rm × {0} for all q ∈ Oq0 .
Theorem 2.36 (Frobenius Theorem). A smooth distribution is involutive if and only if it is flat.

Proof. The statement is local, hence it is sufficient to prove the statement on a neighborhood of
every point q0 ∈M .

(i). Assume first that the distribution is flat. Then there exists a diffeomorphism φ : Oq0 → Rn

such that Dq = φ−1
∗,q(R

m × {0}). It follows that for all q ∈ Oq0 we have

Dq = span{X1(q), . . . ,Xm(q)}, Xi(q) := φ−1
∗,q

∂

∂xi
.

and we have for i, k = 1, . . . ,m

[Xi,Xk] =

[
φ−1
∗,q

∂

∂xi
, φ−1

∗,q
∂

∂xk

]
= φ−1

∗,q

[
∂

∂xi
,
∂

∂xi

]
= 0.

(ii). Let us now prove that if D is involutive then it is flat. As before it is not restrictive to
work on a neighborhood where

Dq = span{X1(q), . . . ,Xm(q)}, ∀ q ∈ Oq0 . (2.35)

and (2.34) are satisfied. We first need a lemma.

Lemma 2.37. For every k = 1, . . . ,m we have etXk∗ D = D.

Proof of Lemma 2.37. Let us define the time dependent vector fields

Y k
i (t) := etXk∗ Xi

Using (2.34) and (2.30) we compute

Ẏ k
i (t) = etXk∗ [Xi,Xk] =

m∑

j=1

etXk∗
(
akijXj

)
=

m∑

j=1

akij(t)Y
k
j (t)

where we set akij(t) = akij ◦ e−tXk . Denote by Ak(t) = (akij(t))
m
i,j=1 and consider the unique solution

Γk(t) = (γkij(t))
m
i,j=1 to the matrix Cauchy problem

Γ̇k(t) = Ak(t)Γk(t), Γk(0) = I. (2.36)

Then we have

Y k
i (t) =

m∑

j=1

γkij(t)Y
k
j (0)

that implies, for every i, k = 1, . . . ,m

etXk∗ Xi =

m∑

j=1

γkij(t)Xj

which proves the claim.
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We can now end the proof of Theorem 2.36. Complete the family X1, . . . ,Xm to a basis of the
tangent space

TqM = span{X1(q), . . . ,Xm(q), Zm+1(q), . . . , Zn(q)}
in a neighborhood of q0 and set ψ : Rn →M defined by

ψ(t1, . . . , tm, sm+1, . . . , sn) = et1X1 ◦ . . . ◦ etmXm ◦ esm+1Zm+1 ◦ . . . ◦ esnZn(q0)

By construction ψ is a local diffeomorphism at (t, s) = (0, 0) and for (t, s) close to (0, 0) we have
that (cf. Exercice 2.31)

∂ψ

∂ti
(t, s) = et1X1∗ ◦ . . . ◦ etiXi∗ Xi(ψ(t, s)),

for every i = 1, . . . ,m. These vectors are linearly independent and, thanks to Lemma 2.37, belong
to D. Hence

Dq = ψ∗ span
{
∂

∂t1
, . . . ,

∂

∂tm

}
, q = ψ(t, s),

and the claim is proved.

2.5 Cotangent space

In this section we introduce tangent covectors, that are linear functionals on the tangent space.
The space of all covectors at a point q ∈ M , called cotangent space is, in algebraic terms, simply
the dual space to the tangent space.

Definition 2.38. Let M be a n-dimensional smooth manifold. The cotangent space at a point
q ∈M is the set

T ∗
qM := (TqM)∗ = {λ : TqM → R, λ linear}.

If λ ∈ T ∗
qM and v ∈ TqM , we will denote by 〈λ, v〉 := λ(v) the action of the covector λ on the

vector v.

As we have seen, the differential of a smooth map yields a linear map between tangent spaces.
The dual of the differential gives a linear map between cotangent spaces.

Definition 2.39. Let ϕ :M → N be a smooth map and q ∈M . The pullback of ϕ at point ϕ(q),
where q ∈M , is the map

ϕ∗ : T ∗
ϕ(q)N → T ∗

qM, λ 7→ ϕ∗λ,

defined by duality in the following way

〈ϕ∗λ, v〉 := 〈λ, ϕ∗v〉 , ∀ v ∈ TqM, ∀λ ∈ T ∗
ϕ(q)M.

Example 2.40. Let a : M → R be a smooth function and q ∈ M . The differential dqa of the
function a at the point q ∈M , defined through the formula

〈dqa, v〉 :=
d

dt

∣∣∣∣
t=0

a(γ(t)), v ∈ TqM, (2.37)

where γ is any smooth curve such that γ(0) = q and γ̇(0) = v, is an element of T ∗
qM , since (2.37)

is linear with respect to v.

58



Definition 2.41. A differential 1-form on a smooth manifold M is a smooth map

ω : q 7→ ω(q) ∈ T ∗
qM,

that associates with every point q in M a cotangent vector at q. We denote by Λ1(M) the set of
differential forms on M .

Since differential forms are dual objects to vector fields, it is well defined the action of ω ∈ Λ1M
on X ∈ Vec(M) pointwise, defining a function on M .

〈ω,X〉 : q 7→ 〈ω(q),X(q)〉 . (2.38)

The differential form ω is smooth if and only if, for every smooth vector field X ∈ Vec(M), the
function 〈ω,X〉 ∈ C∞(M)

Definition 2.42. Let ϕ : M → N be a smooth map and a : N → R be a smooth function. The
pullback ϕ∗a is the smooth function on M defined by

(ϕ∗a)(q) = a(ϕ(q)), q ∈M.

In particular, if π : T ∗M →M is the canonical projection and a ∈ C∞(M), then

(π∗a)(λ) = a(π(λ)), λ ∈ T ∗M,

which is constant on fibers.

2.6 Vector bundles

Heuristically, a smooth vector bundle on a manifold M , is a smooth family of vector spaces
parametrized by points in M .

Definition 2.43. Let M be a n-dimensional manifold. A smooth vector bundle of rank k over M
is a smooth manifold E with a surjective smooth map π : E →M such that

(i) the set Eq := π−1(q), the fiber of E at q, is a k-dimensional vector space,

(ii) for every q ∈ M there exist a neighborhood Oq of q and a linear-on-fibers diffeomorphism
(called local trivialization) ψ : π−1(Oq)→ Oq×Rk such that the following diagram commutes

π−1(Oq)

π
%%▲

▲▲
▲▲

▲▲
▲▲

▲▲

ψ
// Oq × Rk

π1

��
Oq

(2.39)

The space E is called total space and M is the base of the vector bundle. We will refer at π as the
canonical projection and rank E will denote the rank of the bundle.

Remark 2.44. A vector bundle E, as a smooth manifold, has dimension

dimE = dimM + rank E = n+ k.

In the case when there exists a global trivialization map, i.e. one can choose a local trivialization
with Oq =M for all q ∈M , then E is diffeomorphic to M ×Rk and we say that E is trivializable.
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Example 2.45. For any smooth n-dimensional manifold M , the tangent bundle TM , defined as
the disjoint union of the tangent spaces at all points of M ,

TM =
⋃

q∈M
TqM,

has a natural structure of 2n-dimensional smooth manifold, equipped with the vector bundle struc-
ture (of rank n) induced by the canonical projection map

π : TM →M, π(v) = q if v ∈ TqM.

In the same way one can consider the cotangent bundle T ∗M , defined as

T ∗M =
⋃

q∈M
T ∗
qM.

Again, it is a 2n-dimensional manifold, and the canonical projection map

π : T ∗M →M, π(λ) = q if λ ∈ T ∗
qM,

endows T ∗M with a structure of rank n vector bundle.

Let O ⊂M be a coordinate neighborhood and denote by

φ : O → Rn, φ(q) = (x1, . . . , xn),

a local coordinate system. The differentials of the coordinate functions

dxi
∣∣
q
, i = 1, . . . , n, q ∈ O,

form a basis of the cotangent space T ∗
qM . The dual basis in the tangent space TqM is defined by

the vectors

∂

∂xi

∣∣∣∣
q

∈ TqM, i = 1, . . . , n, q ∈ O, (2.40)

〈
dxi,

∂

∂xj

〉
= δij , i, j = 1, . . . , n. (2.41)

Thus any tangent vector v ∈ TqM and any covector λ ∈ T ∗
qM can be decomposed in these basis

v =

n∑

i=1

vi
∂

∂xi

∣∣∣∣
q

, λ =

n∑

i=1

pidxi
∣∣
q
,

and the maps

ψ : v 7→ (x1, . . . , xn, v1, . . . , vn), ψ̄ : λ 7→ (x1, . . . , xn, p1, . . . , pn), (2.42)

define local coordinates on TM and T ∗M respectively, which we call canonical coordinates induced
by the coordinates ψ on M .
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Definition 2.46. A morphism f : E → E′ between two vector bundles E,E′ on the base M (also
called a bundle map) is a smooth map such that the following diagram is commutative

E

π
  ❆

❆❆
❆❆

❆❆
❆

f
// E′

π′

��
M

(2.43)

where f is linear on fibers. Here π and π′ denote the canonical projections.

Definition 2.47. Let π : E → M be a smooth vector bundle over M . A local section of E is a
smooth map1 σ : A ⊂M → E satisfying π ◦ σ = IdA, where A is an open set of M . In other words
σ(q) belongs to Eq for each q ∈ A, smoothly with respect to q. If σ is defined on all M it is said to
be a global section.

Example 2.48. Let π : E →M be a smooth vector bundle over M . The zero section of E is the
global section

ζ :M → E, ζ(q) = 0 ∈ Eq, ∀ q ∈M.

We will denote by M0 := ζ(M) ⊂ E.

Remark 2.49. Notice that smooth vector fields and smooth differential forms are, by definition,
sections of the vector bundles TM and T ∗M respectively.

We end this section with some classical construction on vector bundles.

Definition 2.50. Let ϕ :M → N be a smooth map between smooth manifolds and E be a vector
bundle on N , with fibers {Eq′ , q′ ∈ N}. The induced bundle (or pullback bundle) ϕ∗E is a vector
bundle on the base M defined by

ϕ∗E := {(q, v) | q ∈M,v ∈ Eϕ(q)} ⊂M × E.

Notice that rankϕ∗E = rankE, hence dimϕ∗E = dimM + rankE.

Example 2.51. (i). Let M be a smooth manifold and TM its tangent bundle, endowed with an
Euclidean structure. The spherical bundle SM is the vector subbundle of TM defined as follows

SM =
⋃

q∈M
SqM, SqM = {v ∈ TqM | |v| = 1}.

(ii). Let E,E′ be two vector bundles over a smooth manifold M . The direct sum E ⊕ E′ is the
vector bundle over M defined by

(E ⊕ E′)q := Eq ⊕ E′
q.

1hetre smooth means as a map between manifolds.
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2.7 Submersions and level sets of smooth maps

If ϕ :M → N is a smooth map, we define the rank of ϕ at q ∈M to be the rank of the linear map
ϕ∗,q : TqM → Tϕ(q)N . It is of course just the rank of the matrix of partial derivatives of ϕ in any
coordinate chart, or the dimension of im (ϕ∗,q) ⊂ Tϕ(q)N . If ϕ has the same rank k at every point,
we say ϕ has constant rank, and write rankϕ = k.

An immersion is a smooth map ϕ :M → N with the property that ϕ∗ is injective at each point
(or equivalently rankϕ = dimM). Similarly, a submersion is a smooth map ϕ :M → N such that
ϕ∗ is surjective at each point (equivalently, rankϕ = dimN).

Theorem 2.52 (Rank Theorem). Suppose M and N are smooth manifolds of dimensions m and
n, respectively, and ϕ :M → N is a smooth map with constant rank k in a neighborhood of q ∈M .
Then there exist coordinates (x1, . . . , xm) centered at q and (y1, . . . , yn) centered at ϕ(q) in which
ϕ has the following coordinate representation:

ϕ(x1, . . . , xm) = (x1, . . . , xk, 0, . . . , 0). (2.44)

Remark 2.53. The previous theorem can be rephrased in the following way. Let ϕ : M → N be a
smooth map between two smooth manifolds. Then the following are equivalent:

(i) ϕ has constant rank in a neighborhood of q ∈M .

(ii) There exist coordinates near q ∈M and ϕ(q) ∈ N in which the coordinate representation of
ϕ is linear.

In the case of a submersion, from Theorem 2.52 one can deduce the following result.

Corollary 2.54. Assume ϕ : M → N is a smooth submersion at q. Then ϕ admits a local right
inverse at ϕ(q). Moreover ϕ is open at q. More precisely it exist ε > 0 and C > 0 such that

Bϕ(q)(C
−1r) ⊂ ϕ(Bq(r)), ∀ r ∈ [0, ε), (2.45)

where the balls in (2.45) are considered with respect to some Euclidean norm in a coordinate chart.

Remark 2.55. The constant C appearing in (2.45) is related to the norm of the differential of the
local right inverse, computed with respect to the chosen Euclidean norm in the coordinate chart.
When ϕ is a diffeomorphism, C is a bound on the norm of the differential of the inverse of ϕ. This
recover the classical quantitative statement of the inverse function theorem.

Using these results, one can give some general criteria for level sets of smooth maps (or smooth
functions) to be submanifolds.

Theorem 2.56 (Constant Rank Level Set Theorem). Let M and N be smooth manifolds, and let
ϕ : M → N be a smooth map with constant rank k. Each level set ϕ−1(y), for y ∈ N is a closed
embedded submanifold of codimension k in M .

Remark 2.57. It is worth to specify the following two important sub cases of Theorem 2.56:

(a) If ϕ : M → N is a submersion at every q ∈ ϕ−1(y) for some y ∈ N , then ϕ−1(y) is a closed
embedded submanifold whose codimension is equal to the dimension of N .
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(b) If a :M → R is a smooth function such that dqa 6= 0 for every q ∈ a−1(c), where c ∈ R, then
the level set a−1(c) is a smooth hypersurface of M

Exercise 2.58. Let a : M → R be a smooth function. Assume that c ∈ R is a regular value of
a, i.e., dqa 6= 0 for every q ∈ a−1(c). Then Nc = a−1(c) = {q ∈ M | a(q) = c} ⊂ M is a smooth
submanifold. Prove that for every q ∈ Nc

TqNc = ker dqa = {v ∈ TqM | 〈dqa, v〉 = 0}.

Bibliographical notes

The material presented in this chapter is classical and covered by many textbook in differential
geometry, as for instance in [28, 73, 46, 92].

Theorem 2.14 is a well-known theorem in ODE. The statement presented here can be deduced
from [35, Theorem 2.1.1, Exercice 2.4]. The functions c(t), k(t) appearing in (C3) are assumed to
be L∞, that is stronger than L1 (on compact intervals). This stronger assumptions imply that the
solution is not only absolutely continuous with respect to t, but also locally Lipschitz.
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Chapter 3

Sub-Riemannian structures

3.1 Basic definitions

In this section we introduce a definition of sub-Riemannian structure which is quite general. In-
deed, this definition includes all the classical notions of Riemannian structure, constant-rank sub-
Riemannian structure, rank-varying sub-Riemannian structure, almost-Riemannian structure etc.

Definition 3.1. Let M be a smooth manifold and let F ⊂ Vec(M) be a family of smooth vector
fields. The Lie algebra generated by F is the smallest sub-algebra of Vec(M) containing F , namely

LieF := span{[X1, . . . , [Xj−1,Xj ]],Xi ∈ F , j ∈ N}. (3.1)

We will say that F is bracket-generating (or that satisfies the Hörmander condition) if

LieqF := {X(q),X ∈ LieF} = TqM, ∀ q ∈M.

Moreover, for s ∈ N, we define

LiesF := span{[X1, . . . , [Xj−1,Xj ]],Xi ∈ F , j ≤ s}. (3.2)

We say that the family F has step s at q if s ∈ N is the minimal integer satisfying

LiesqF := {X(q),X ∈ LiesF} = TqM,

Notice that, in general, the step may depend on the point on M and s = s(q) can be unbounded
on M even for bracket-generating structures.

Definition 3.2. Let M be a connected smooth manifold. A sub-Riemannian structure on M is a
pair (U, f) where:

(i) U is an Euclidean bundle with base M and Euclidean fiber Uq, i.e., for every q ∈M , Uq is a
vector space equipped with a scalar product (· | ·)q , smooth with respect to q. For u ∈ Uq we
denote the norm of u as |u|2 = (u |u)q.

(ii) f : U → TM is a smooth map that is a morphism of vector bundles, i.e. the following
diagram is commutative (here πU : U→M and π : TM →M are the canonical projections)

U

πU ""❉
❉❉

❉❉
❉❉

❉

f
// TM

π
��
M

(3.3)
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and f is linear on fibers.

(iii) The set of horizontal vector fields D := {f(σ) |σ : M → U smooth section}, is a bracket-
generating family of vector fields. We call step of the sub-Riemannian structure at q the step
of D.

When the vector bundleU admits a global trivialization we say that (U, f) is a free sub-Riemannian
structure.

A smooth manifold endowed with a sub-Riemannian structure (i.e., the triple (M,U, f)) is
called a sub-Riemannian manifold. When the map f : U → TM is fiberwise surjective, (M,U, f)
is called a Riemannian manifold (cf. Exercise 3.23).

Definition 3.3. Let (M,U, f) be a sub-Riemannian manifold. The distribution is the family of
subspaces

{Dq}q∈M , where Dq := f(Uq) ⊂ TqM.

We call k(q) := dimDq the rank of the sub-Riemannian structure at q ∈ M . We say that the
sub-Riemannian structure (U, f) on M has constant rank if k(q) is constant. Otherwise we say
that the sub-Riemannian structure is rank-varying.

The set of horizontal vector fields D ⊂ Vec(M) has the structure of a finitely generated C∞(M)-
module, whose elements are vector fields tangent to the distribution at each point, i.e.

Dq = {X(q)|X ∈ D}.

The rank of a sub-Riemannian structure (M,U, f) satisfies

k(q) ≤ m, where m = rankU, (3.4)

k(q) ≤ n, where n = dimM. (3.5)

In what follows we denote points in U as pairs (q, u), where q ∈ M is an element of the base
and u ∈ Uq is an element of the fiber. Following this notation we can write the value of f at this
point as

f(q, u) or fu(q).

We prefer the second notation to stress that, for each q ∈M , fu(q) is a vector in TqM .

Definition 3.4. A Lipschitz curve γ : [0, T ] → M is said to be admissible (or horizontal) for a
sub-Riemannian structure if there exists a measurable and essentially bounded function

u : t ∈ [0, T ] 7→ u(t) ∈ Uγ(t), (3.6)

called the control function, such that

γ̇(t) = f(γ(t), u(t)), for a.e. t ∈ [0, T ]. (3.7)

In this case we say that u(·) is a control corresponding to γ. Notice that different controls could
correspond to the same trajectory (see Figure 3.1).
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Dq

Figure 3.1: A horizontal curve

Remark 3.5. Once we have chosen a local trivialization Oq × Rm for the vector bundle U, where
Oq is a neighborhood of a point q ∈ M , we can choose a basis in the fibers and the map f is
written f(q, u) =

∑m
i=1 uifi(q), where m is the rank of U. In this trivialization, a Lipschitz curve

γ : [0, T ]→M is admissible if there exists u = (u1, . . . , um) ∈ L∞([0, T ],Rm) such that

γ̇(t) =
m∑

i=1

ui(t)fi(γ(t)), for a.e. t ∈ [0, T ]. (3.8)

Thanks to this local characterization and Theorem 2.14, for each initial condition q ∈ M and
u ∈ L∞([0, T ],Rm) it follows that there exists an admissible curve γ, defined on a sufficiently small
interval, such that u is the control associated with γ and γ(0) = q.

Remark 3.6. Notice that, for a curve to be admissible, it is not sufficient to satisfy γ̇(t) ∈ Dγ(t) for
almost every t ∈ [0, T ]. Take for instance the two free sub-Riemannian structures on R2 having
rank two and defined by

f(x, y, u1, u2) = (x, y, u1, u2x), f ′(x, y, u1, u2) = (x, y, u1, u2x
2). (3.9)

and let D and D′ the corresponding moduli of horizontal vector fields. It is easily seen that the
curve γ : [−1, 1]→ R2, γ(t) = (t, t2) satisfies γ̇(t) ∈ Dγ(t) and γ̇(t) ∈ D′

γ(t) for every t ∈ [−1, 1].
Moreover, γ is admissible for f , since its corresponding control is (u1, u2) = (1, 2) for a.e.

t ∈ [−1, 1], but it is not admissible for f ′, since its corresponding control is uniquely determined as
(u1(t), u2(t)) = (1, 2/t) for a.e. t ∈ [−1, 1], which is not essentially bounded.

This example shows that, for two different sub-Riemannian structures (U, f) and (U′, f ′) on
the same manifold M , one can have Dq = D′

q for every q ∈M , but D 6= D′. Notice, however, that
if the distribution has constant rank one has Dq = D′

q for every q ∈M if and only if D = D′.

3.1.1 The minimal control and the length of an admissible curve

We start by defining the sub-Riemannian norm for vectors that belong to the distribution.

Definition 3.7. Let v ∈ Dq. We define the sub-Riemannian norm of v as follows

‖v‖ := min{|u|, u ∈ Uq s.t. v = f(q, u)}. (3.10)
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Notice that since f is linear with respect to u, the minimum in (3.10) is always attained at a unique
point. Indeed the condition f(q, ·) = v defines an affine subspace of Uq (which is nonempty since
v ∈ Dq) and the minimum in (3.10) is uniquely attained at the orthogonal projection of the origin
onto this subspace (see Figure 3.2).

u1 + u2 = v

u1

u2

‖v‖

Figure 3.2: The norm of a vector v for f(x, u1, u2) = u1 + u2

Exercise 3.8. Show that ‖ · ‖ is a norm in Dq. Moreover prove that it satisfies the parallelogram
law, i.e., it is induced by a scalar product 〈· | ·〉q on Dq, that can be recovered by the polarization
identity

〈v |w〉q =
1

4
‖v + w‖2 − 1

4
‖v − w‖2, v, w ∈ Dq. (3.11)

Exercise 3.9. Let u1, . . . , um ∈ Uq be an orthonormal basis for Uq. Define vi = f(q, ui). Show
that if f(q, ·) is injective then v1, . . . , vm is an orthonormal basis for Dq.

An admissible curve γ : [0, T ] → M is Lipschitz, hence differentiable at almost every point.
Hence it is well defined the unique control t 7→ u∗(t) associated with γ and realizing the minimum
in (3.10).

Definition 3.10. Given an admissible curve γ : [0, T ]→M , we define

u∗(t) := argmin {|u|, u ∈ Uq s.t. γ̇(t) = f(γ(t), u)}. (3.12)

for all differentiability point of γ. We say that the control u∗ is the minimal control associated
with γ.

We stress that u∗(t) is pointwise defined for a.e. t ∈ [0, T ]. The proof of the following crucial
Lemma is postponed to the Section 3.5.

Lemma 3.11. Let γ : [0, T ] → M be an admissible curve. Then its minimal control u∗(·) is
measurable and essentially bounded on [0, T ].
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Remark 3.12. If the admissible curve γ : [0, T ]→M is differentiable, its minimal control is defined
everywhere on [0, T ]. Nevertheless, it could be not continuous, in general.

Consider, as in Remark 3.6, the free sub-Riemannian structure on R2

f(x, y, u1, u2) = (x, y, u1, u2x), (3.13)

and let γ : [−1, 1]→ R2 defined by γ(t) = (t, t2). Its minimal control u∗(t) satisfies (u∗1(t), u
∗
2(t)) =

(1, 2) when t 6= 0, while (u∗1(0), u
∗
2(0)) = (1, 0), hence is not continuous.

Thanks to Lemma 3.11 we are allowed to introduce the following definition.

Definition 3.13. Let γ : [0, T ]→M be an admissible curve. We define the sub-Riemannian length
of γ as

ℓ(γ) :=

∫ T

0
‖γ̇(t)‖dt. (3.14)

We say that γ is length-parametrized (or arclength parametrized) if ‖γ̇(t)‖ = 1 for a.e. t ∈ [0, T ].
Notice that for a length-parametrized curve we have that ℓ(γ) = T .

Formula (3.14) says that the length of an admissible curve is the integral of the norm of its
minimal control.

ℓ(γ) =

∫ T

0
|u∗(t)|dt. (3.15)

In particular any admissible curve has finite length.

Lemma 3.14. The length of an admissible curve is invariant by Lipschitz reparametrization.

Proof. Let γ : [0, T ]→M be an admissible curve and ϕ : [0, T ′]→ [0, T ] a Lipschitz reparametriza-
tion, i.e., a Lipschitz and monotone surjective map. Consider the reparametrized curve

γϕ : [0, T ′]→M, γϕ := γ ◦ ϕ.

First observe that γϕ is a composition of Lipschitz functions, hence Lipschitz. Moreover γϕ is
admissible since, by the linearity of f , it has minimal control (u∗ ◦ ϕ)ϕ̇ ∈ L∞, where u∗ is the
minimal control of γ. Using the change of variables t = ϕ(s), one gets

ℓ(γϕ) =

∫ T ′

0
‖γ̇ϕ(s)‖ds =

∫ T ′

0
|u∗(ϕ(s))||ϕ̇(s)|ds =

∫ T

0
|u∗(t)|dt =

∫ T

0
‖γ̇(t)‖dt = ℓ(γ). (3.16)

Lemma 3.15. Every admissible curve of positive length is a Lipschitz reparametrization of a length-
parametrized admissible one.

Proof. Let ψ : [0, T ]→M be an admissible curve with minimal control u∗. Consider the Lipschitz
monotone function ϕ : [0, T ]→ [0, ℓ(ψ)] defined by

ϕ(t) :=

∫ t

0
|u∗(τ)|dτ.
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Notice that if ϕ(t1) = ϕ(t2), the monotonicity of ϕ ensures ψ(t1) = ψ(t2). Hence we are allowed to
define γ : [0, ℓ(ψ)] →M by

γ(s) := ψ(t), if s = ϕ(t) for some t ∈ [0, T ].

In other words, it holds ψ = γ ◦ ϕ. To show that γ is Lipschitz let us first show that there exists
a constant C > 0 such that, for every t0, t1 ∈ [0, T ] one has, in some local coordinates (where | · |
denotes the Euclidean norm in coordinates)

|ψ(t1)− ψ(t0)| ≤ C
∫ t1

t0

|u∗(τ)|dτ.

Indeed fix K ⊂ M a compact set such that ψ([0, T ]) ⊂ K and set C := max
x∈K

(
m∑

i=1

|fi(x)|2
)1/2

.

Then

|ψ(t1)− ψ(t0)| ≤
∫ t1

t0

m∑

i=1

|u∗i (t)fi(ψ(t))| dt

≤
∫ t1

t0

√√√√
m∑

i=1

|u∗i (t)|2
√√√√

m∑

i=1

|fi(ψ(t))|2dt

≤ C
∫ t1

t0

|u∗(t)|dt,

Hence if s1 = ϕ(t1) and s0 = ϕ(t0) one has

|γ(s1)− γ(s0)| = |ψ(t1)− ψ(t0)| ≤ C
∫ t1

t0

|u∗(τ)|dτ = C|s1 − s0|,

which proves that γ is Lipschitz. It particular γ̇(s) exists for a.e. s ∈ [0, ℓ(ψ)].

We are going to prove that γ is admissible and its minimal control has norm one. Define for
every s such that s = ϕ(t), ϕ̇(t) exists and ϕ̇(t) 6= 0, the control

v(s) :=
u∗(t)
ϕ̇(t)

=
u∗(t)
|u∗(t)| .

By Exercise 3.16 the control v is defined for a.e. s. Moreover, by construction, |v(s)| = 1 for a.e. s
and v is the minimal control associated with γ.

Exercise 3.16. Show that for a Lipschitz and monotone function ϕ : [0, T ] → R, the Lebesgue
measure of the set {s ∈ R | s = ϕ(t), ϕ̇(t) exists, ϕ̇(t) = 0} is zero.

By the previous discussion, in what follows, it will be often convenient to assume that admissible
curves are length-parametrized (or parametrized such that ‖γ̇(t)‖ is constant).
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3.1.2 Equivalence of sub-Riemannian structures

In this section we introduce the notion of equivalence for sub-Riemannian structures on the same
base manifold M and the notion of isometry between sub-Riemannian manifolds.

Definition 3.17. Let (U, f), (U′, f ′) be two sub-Riemannian structures on a smooth manifold M .
They are said to be equivalent if the following conditions are satisfied

(i) there exist an Euclidean bundle V and two surjective vector bundle morphisms p : V → U
and p′ : V→ U′ such that the following diagram is commutative

U
f

""❊
❊❊

❊❊
❊❊

❊

V

p′   ❆
❆❆

❆❆
❆❆

❆

p
>>⑤⑤⑤⑤⑤⑤⑤⑤

TM

U′
f ′

<<②②②②②②②②

(3.17)

(ii) the projections p, p′ are compatible with the scalar product, i.e., it holds

|u| = min{|v|, p(v) = u}, ∀u ∈ U,

|u′| = min{|v|, p′(v) = u′}, ∀u′ ∈ U′,

Remark 3.18. If (U, f) and (U′, f ′) are equivalent sub-Riemannian structures on M , then:

(a) the distributions Dq and D′
q defined by f and f ′ coincide, since f(Uq) = f ′(U ′

q) for all q ∈M .

(b) for each w ∈ Dq we have ‖w‖ = ‖w‖′, where ‖ · ‖ and ‖ · ‖′ are the norms are induced by
(U, f) and (U′, f ′) respectively.

In particular the length of an admissible curve for two equivalent sub-Riemannian structures is the
same.

Remark 3.19. Notice that (i) is satisfied (with the vector bundle V possibly non Euclidean) if and
only if the two moduli of horizontal vector fields D and D′ defined by U and U′ are equal (cf.
Definition 3.2).

Definition 3.20. Let M be a sub-Riemannian manifold. We define the minimal bundle rank of
M as the infimum of rank of bundles that induce equivalent structures on M . Given q ∈ M the
local minimal bundle rank of M at q is the minimal bundle rank of the structure restricted on a
sufficiently small neighborhood Oq of q.

Exercise 3.21. Prove that the free sub-Riemannian structure on R2 defined by f : R2×R3 → TR2

defined by

f(x, y, u1, u2, u3) = (x, y, u1, u2x+ u3y)

has non constant local minimal bundle rank.

For equivalence classes of sub-Riemannian structures we introduce the following definition.
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Definition 3.22. Two equivalent classes of sub-Riemannian manifolds are said to be isometric
if there exist two representatives (M,U, f), (M ′,U′, f ′), a diffeomorphism φ : M → M ′ and an
isomorphism1 of Euclidean bundles ψ : U→ U′ such that the following diagram is commutative

U

ψ
��

f
// TM

φ∗
��

U′
f ′

// TM ′

(3.18)

3.1.3 Examples

Our definition of sub-Riemannian manifold is quite general. In the following we list some classical
geometric structures which are included in our setting.

1. Riemannian structures.
Classically a Riemannian manifold is defined as a pair (M, 〈· | ·〉), where M is a smooth
manifold and 〈· | ·〉q is a family of scalar product on TqM , smoothly depending on q ∈ M .
This definition is included in Definition 3.2 by taking U = TM endowed with the Euclidean
structure induced by 〈· | ·〉 and f : TM → TM the identity map.

Exercise 3.23. Show that every Riemannian manifold in the sense of Definition 3.2 is indeed
equivalent to a Riemannian structure in the classical sense above (cf. Exercise 3.8).

2. Constant rank sub-Riemannian structures.
Classically a constant rank sub-Riemannian manifold is a triple (M,D, 〈· | ·〉), where D is a
vector subbundle of TM and 〈· | ·〉q is a family of scalar product on Dq, smoothly depending
on q ∈ M . This definition is included in Definition 3.2 by taking U = D, endowed with its
Euclidean structure, and f : D →֒ TM the canonical inclusion.

3. Almost-Riemannian structures.
An almost-Riemannian structure on M is a sub-Riemannian structure (U, f) on M such that
its local minimal bundle rank is equal to the dimension of the manifold, at every point.

4. Free sub-Riemannian structures.
Let U = M × Rm be the trivial Euclidean bundle of rank m on M . A point in U can be
written as (q, u), where q ∈M and u = (u1, . . . , um) ∈ Rm.

If we denote by {e1, . . . , em} an orthonormal basis of Rm, then we can define globally m
smooth vector fields on M by fi(q) := f(q, ei) for i = 1, . . . ,m. Then we have

f(q, u) = f

(
q,

m∑

i=1

uiei

)
=

m∑

i=1

uifi(q), q ∈M. (3.19)

In this case, the problem of finding an admissible curve joining two fixed points q0, q1 ∈ M
1isomorphism of bundles in the broad sense, it is fiberwise but is not obliged to map a fiber in the same fiber.
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and with minimal length is rewritten as the optimal control problem





γ̇(t) =

m∑

i=1

ui(t)fi(γ(t))

∫ T

0
|u(t)|dt→ min

γ(0) = q0, γ(T ) = q1

(3.20)

For a free sub-Riemannian structure, the set of vector fields f1, . . . , fm build as above is called
a generating family. Notice that, in general, a generating family is not orthonormal when f
is not injective.

5. Surfaces in R3 as free sub-Riemannian structures
Due to topological constraints, in general it not possible to regard a surface of R3 (with
the induced metric) as a free sub-Riemannian structure of rank 2, i.e., defined by a pair of
globally defined orthonormal vector fields. However, it is always possible to regard it as a
free sub-Riemannian structure of rank 3.

Indeed, for an embedded surfaceM in R3, consider the trivial Euclidean bundle U =M×R3,
where points are denoted as usual (q, u), with u ∈ R3, q ∈M , and the map

f : U→ TM, f(q, u) = π⊥q (u) ∈ TqM. (3.21)

where π⊥q : R3 → TqM ⊂ R3 is the orthogonal projection.

Notice that f is a surjective bundle map and the set of vector fields {π⊥q (∂x), π⊥q (∂y), π⊥q (∂z)}
is a generating family for this structure.

Exercise 3.24. Show that (U, f) defined in (3.21) is equivalent to the Riemannian structure
on M induced by the embedding in R3.

3.1.4 Every sub-Riemannian structure is equivalent to a free one

The purpose of this section is to show that every sub-Riemannian structure (U, f) on M is equiva-
lent to a sub-Riemannian structure (U′, f ′) where U′ is a trivial bundle with sufficiently big rank.

Lemma 3.25. Let M be a n-dimensional smooth manifold and π : E →M a smooth vector bundle
of rank m. Then, there exists a vector bundle π0 : E0 → M with rankE0 ≤ 2n + m such that
E ⊕E0 is a trivial vector bundle.

Proof. Remember that E, as a smooth manifold, has dimension

dim E = dim M + rank E = n+m.

Consider the map i : M →֒ E which embeds M into the vector bundle E as the zero section
M0 = i(M). If we denote with TME := i∗(TE) the pullback vector bundle, i.e., the restriction of
TE to the section M0, we have the isomorphism (as vector bundles on M)

TME ≃ E ⊕ TM. (3.22)
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Eq. (3.22) is a consequence of the fact that the tangent to every fibre Eq, being a vector space, is
canonically isomorphic to its tangent space TqEq so that

TqE = TqEq ⊕ TqM ≃ Eq ⊕ TqM, ∀ q ∈M.

By Whitney theorem we have a (nonlinear on fibers, in general) immersion

Ψ : E → RN , Ψ∗ : TME ⊂ TE →֒ TRN ,

for N = 2(n+m), and Ψ∗ is injective as bundle map, i.e., TME is a sub-bundle of TRN ≃ RN×RN .
Thus we can choose as a complement E′, the orthogonal bundle (on the base M) with respect to
the Euclidean metric in RN , i.e.

E′ =
⋃

q∈M
E′
q, E′

q = (TqEq ⊕ TqM)⊥,

and considering E0 := TME ⊕ E′ we have that E0 is trivial since its fibers are sum of orthogonal
complements and by (3.22) we are done.

Corollary 3.26. Every sub-Riemannian structure (U, f) on M is equivalent to a sub-Riemannian
structure (U, f̄) where U is a trivial bundle.

Proof. By Lemma 3.25 there exists a vector bundle U′ such that the direct sum U := U ⊕U′ is
a trivial bundle. Endow U′ with any metric structure g′. Define a metric on U in such a way
that ḡ(u + u′, v + v′) = g(u, v) + g′(u′, v′) on each fiber Ūq = Uq ⊕ U ′

q. Notice that Uq and U ′
q are

orthogonal subspace of Ūq with respect to ḡ.
Let us define the sub-Riemannian structure (U, f̄) on M by

f̄ : U→ TM, f̄ := f ◦ p1,

where p1 : U⊕U′ → U denotes the projection on the first factor. By construction, the diagram

U
f̄

!!❈
❈❈

❈❈
❈❈

❈

U⊕U′

p1
##❍

❍❍
❍❍

❍❍
❍❍

Id

;;✇✇✇✇✇✇✇✇✇
TM

U
f

==④④④④④④④④④

(3.23)

is commutative. Moreover condition (ii) of Definition 3.17 is satisfied since for every ū = u + u′,
with u ∈ Uq and u′ ∈ U ′

q, we have |ū|2 = |u|2 + |u′|2, hence |u| = min{|ū|, p1(ū) = u}.

Since every sub-Riemannian structure is equivalent to a free one, in what follows we can assume
that there exists a global generating family, i.e., a family of f1, . . . , fm of vector fields globally
defined on M such that every admissible curve of the sub-Riemannian structure satisfies

γ̇(t) =

m∑

i=1

ui(t)fi(γ(t)), (3.24)
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Moreover, by the classical Gram-Schmidt procedure, we can assume that fi are the image of an
orthonormal frame defined on the fiber. (cf. Example 4 of Section 3.1.3)

Under these assumptions the length of an admissible curve γ is given by

ℓ(γ) =

∫ T

0
|u∗(t)|dt =

∫ T

0

√√√√
m∑

i=1

u∗i (t)
2dt,

where u∗(t) is the minimal control associated with γ.

Notice that Corollary 3.26 implies that the modulus of horizontal vector fields D is globally
generated by f1, . . . , fm.

Remark 3.27. The integral curve γ(t) = etfi , defined on [0, T ], of an element fi of a generating
family F = {f1, . . . , fm} is admissible and ℓ(γ) ≤ T . If F = {f1, . . . , fm} are linearly independent
then they are an orthonormal frame and ℓ(γ) = T .

Exercise 3.28. Consider a sub-Riemannian structure (U, f) over M . Let m = rank(U) and
hmax = max{h(q) : q ∈ M} ≤ m where h(q) is the local minimal bundle rank at q. Prove that
there exists a sub-Riemannian structure (U, f) equivalent to (U, f) such that rank(U) = hmax.

3.1.5 Proto sub-Riemannian structures

Sometimes can be useful to consider structures that satisfy only property (i) and (ii) of Definition
3.2, but that are not bracket generating. In what follows we call these structures proto sub-
Riemannian structures.

The typical example is the following: assume that the family of horizontal vector fields D
satisfies

(i) [D,D] ⊂ D,

(ii) dimDq does not depend on q ∈M .

In this case the manifold M is foliated by integral manifolds of the distribution, and each of them
is endowed with a Riemannian structure.

3.2 Sub-Riemannian distance and Chow-Rashevskii theorem

In this section we introduce the sub-Riemannian distance between two points as the infimum of
the length of admissible curves joining them.

Recall that, in the definition of sub-Riemannian manifold, M is assumed to be connected.
Moreover, thanks to the construction of Section 3.1.4, in what follows we can assume that the sub-
Riemannian structure is free, with generating family F = {f1, . . . , fm}. Notice that, by definition,
F is assumed to be bracket generating.

Definition 3.29. Let M be a sub-Riemannian manifold and q0, q1 ∈ M . The sub-Riemannian
distance (or Carnot-Caratheodory distance) between q0 and q1 is

d(q0, q1) = inf{ℓ(γ) | γ : [0, T ]→M admissible, γ(0) = q0, γ(T ) = q1}, (3.25)
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One of the purpose of this section is to show that, thanks to the bracket generating condition,
(9.1) is well-defined, namely for every q0, q1 ∈M , there exists an admissible curve that joins q0 to
q1, hence d(q0, q1) < +∞.

Theorem 3.30 (Chow-Raschevskii). Let M be a sub-Riemannian manifold. Then

(i) (M,d) is a metric space,

(ii) the topology induced by (M,d) is equivalent to the manifold topology.

In particular, d :M ×M → R is continuous.

In what follows B(q, r) (sometimes denoted also Br(q)) is the (open) sub-Riemannian ball of
radius r and center q

B(q, r) := {q′ ∈M | d(q, q′) < r}.
The rest of this section is devoted to the proof of Theorem 3.30. To prove it, we have to show that
d is actually a distance, i.e.,

(a) 0 ≤ d(q0, q1) < +∞ for all q0, q1 ∈M ,

(b) d(q0, q1) = 0 if and only if q0 = q1,

(c) d(q0, q1) = d(q1, q0) and d(q0, q2) ≤ d(q0, q1) + d(q1, q2) for all q0, q1, q2 ∈M ,

and the equivalence between the metric and the manifold topology: for every q0 ∈M we have

(d) for every ε > 0 there exists a neighborhood Oq0 of q0 such that Oq0 ⊂ B(q0, ε),

(e) for every neighborhood Oq0 of q0 there exists δ > 0 such that B(q0, δ) ⊂ Oq0 .

3.2.1 Proof of Chow-Raschevskii theorem

The symmetry of d is a direct consequence of the fact that if γ : [0, T ] → M is admissible,
then the curve γ̄ : [0, T ] → M defined by γ̄(t) = γ(T − t) is admissible and ℓ(γ̄) = ℓ(γ). The
triangular inequality follows from the fact that, given two admissible curves γ1 : [0, T1] → M and
γ2 : [0, T2]→M such that γ1(T1) = γ2(0), their concatenation

γ : [0, T1 + T2]→M, γ(t) =

{
γ1(t), t ∈ [0, T1],

γ2(t− T1), t ∈ [T1, T1 + T2].
(3.26)

is still admissible. These two arguments prove item (c).
We divide the rest of the proof of the Theorem in the following steps.

S1. We prove that, for every q0 ∈ M , there exists a neighborhood Oq0 of q0 such that d(q0, ·) is
finite and continuous in Oq0 . This proves (d).

S2. We prove that d is finite on M ×M . This proves (a).

S3. We prove (b) and (e).

To prove Step 1 we first need the following lemmas:
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Lemma 3.31. Let N ⊂M be a submanifold and F ⊂ Vec(M) be a family of vector fields tangent
to N , i.e., X(q) ∈ TqN , for every q ∈ N and X ∈ F . Then for all q ∈ N we have LieqF ⊂ TqN .
In particular dimLieqF ≤ dimN .

Proof. Let X ∈ F . As a consequence of the local existence and uniqueness of the two Cauchy
problems {

q̇ = X(q), q ∈M,

q(0) = q0, q0 ∈ N.
and

{
q̇ = X

∣∣
N
(q), q ∈ N,

q(0) = q0, q0 ∈ N.

it follows that etX(q) ∈ N for every q ∈ N and t small enough. This property, together with the
definition of Lie bracket (see formula (2.27)) implies that, if X,Y are tangent to N , the vector field
[X,Y ] is tangent to N as well. Iterating this argument we get that LieqF ⊂ TqN for every q ∈ N ,
from which the conclusion follows.

Lemma 3.32. Let M be an n-dimensional sub-Riemannian manifold with generating family F =
{f1, . . . , fm}. For every q0 ∈ M and every neighborhood V of the origin in Rn there exist ŝ =
(ŝ1, . . . , ŝn) ∈ V , and a choice of n vector fields fi1 , . . . , fin ∈ F , such that ŝ is a regular point of
the map

ψ : Rn →M, ψ(s1, . . . , sn) = esnfin ◦ · · · ◦ es1fi1 (q0).

Remark 3.33. Notice that, if Dq0 6= Tq0M , then ŝ = 0 cannot be a regular point of the map ψ.
Indeed, for s = 0, the image of the differential of ψ at 0 is spanq0{fij , j = 1, . . . , n} ⊂ Dq0 and the
differential of ψ cannot be surjective.

We stress that, in the choice of fi1 , . . . , fin ∈ F , a vector field can appear more than once, as
for instance in the case m < n.

Proof of Lemma 3.32. We prove the lemma by steps.

1. There exists a vector field fi1 ∈ F such that fi1(q0) 6= 0, otherwise all vector fields in F vanish
at q0 and dimLieq0F = 0, which contradicts the bracket generating condition. Then, for |s|
small enough, the map

φ1 : s1 7→ es1fi1 (q0),

is a local diffeomorphism onto its image Σ1. If dimM = 1 the Lemma is proved.

2. Assume dimM ≥ 2. Then there exist t11 ∈ R, with |t11| small enough, and fi2 ∈ F such that,

if we denote by q1 = et
1
1fi1 (q0), the vector fi2(q1) is not tangent to Σ1. Otherwise, by Lemma

3.31, dim LieqF = 1, which contradicts the bracket generating condition. Then the map

φ2 : (s1, s2) 7→ es2fi2 ◦ es1fi1 (q0),

is a local diffeomorphism near (t11, 0) onto its image Σ2. Indeed the vectors

∂φ2
∂s1

∣∣∣∣
(t11,0)

∈ Tq1Σ1,
∂φ2
∂s2

∣∣∣∣
(t11,0)

= fi2(q1),

are linearly independent by construction. If dimM = 2 the Lemma is proved.
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3. Assume dimM ≥ 3. Then there exist t12, t
2
2, with |t12 − t11| and |t22| small enough, and fi3 ∈ F

such that, if q2 = et
2
2fi2 ◦ et12fi1 (q0) we have that fi3(q2) is not tangent to Σ2. Otherwise, by

Lemma 3.31, dim Lieq1D = 2, which contradicts the bracket generating condition. Then the
map

φ3 : (s1, s2, s3) 7→ es3fi3 ◦ es2fi2 ◦ es1fi1 (q0),

is a local diffeomorphism near (t12, t
2
2, 0). Indeed the vectors

∂φ3
∂s1

∣∣∣∣
(t12,t

2
2,0)

,
∂φ3
∂s2

∣∣∣∣
(t12,t

2
2,0)

∈ Tq2Σ2,
∂φ3
∂s3

∣∣∣∣
(t12,t

2
2,0)

= fi3(q2),

are linearly independent since the last one is transversal to Tq2Σ2 by construction, while the
first two are linearly independent since φ3(s1, s2, 0) = φ2(s1, s2) and φ2 is a local diffeomor-
phisms at (t12, t

2
2) which is close to (t11, 0).

Repeating the same argument n times (with n = dimM), the lemma is proved.

Proof of Step 1. Thanks to Lemma 3.32 there exists a neighborhood V̂ ⊂ V of ŝ such that ψ is
a diffeomorphism from V̂ to ψ(V̂ ), see Figure 3.3. We stress that in general q0 = ψ(0) does not
belong to ψ(V̂ ), cf. Remark 3.33.

ψ(V̂ )

V

V̂

ŝ

ψ

q0

Figure 3.3: Proof of Lemma 3.32

To build a local diffeomorphism whose image contains q0, we consider the map (here ŝ = (ŝ1, . . . , ŝn))

ψ̂ : Rn →M, ψ̂(s1, . . . , sn) = e−ŝ1fi1 ◦ · · · ◦ e−ŝnfin ◦ ψ(s1, . . . , sn),

which has the following property: ψ̂ is a diffeomorphism from a neighborhood of ŝ ∈ V , that we
still denote V̂ , to a neighborhood of ψ̂(ŝ) = q0.

Fix now ε > 0 and apply the construction above where V is the neighborhood of the origin in
Rn defined by V = {s ∈ Rn | ∑n

i=1 |si| < ε}. Let us show that the claim of Step 1 holds with

Oq0 = ψ̂(V̂ ). Indeed, for every q ∈ ψ̂(V̂ ), let s = (s1, . . . , sn) such that q = ψ̂(s), and denote by γ
the admissible curve joining q0 to q, built by 2n-pieces, as in Figure 3.4.
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s

V

V̂

ψ̂

ψ(s)

q0

ψ̂(s)

ψ̂(V̂ )

Figure 3.4: The map ψ̂

In other words γ is the concatenation of integral curves of the vector fields fij , i.e., admissible

curves of the form t 7→ etfij (q) defined on some interval [0, T ], whose length is less or equal than T
(cf. Remark 3.27). Since s, ŝ ∈ V̂ ⊂ V , it follows that:

d(q0, q) ≤ ℓ(γ) ≤ |s1|+ . . .+ |sn|+ |ŝ1|+ . . .+ |ŝn| < 2ε,

which ends the proof of Step 1.

Proof of Step 2. To prove that d is finite on M×M let us consider the equivalence classes of points
in M with respect to the relation

q1 ∼ q2 if d(q1, q2) < +∞. (3.27)

From the triangular inequality and the proof of Step 1, it follows that each equivalence class is open.
Moreover, by definition, the equivalence classes are disjoint and nonempty. Since M is connected,
it cannot be the union of open disjoint and nonempty subsets. It follows that there exists only one
equivalence class.

Lemma 3.34. Let q0 ∈ M and K ⊂ M a compact set with q0 ∈ intK. Then there exists δK > 0
such that every admissible curve γ starting from q0 and with ℓ(γ) ≤ δK is contained in K.

Proof. Without loss of generality we can assume that K is contained in a coordinate chart of M ,
where we denote by | · | the Euclidean norm in the coordinate chart. Let us define

CK := max
x∈K

(
m∑

i=1

|fi(x)|2
)1/2

(3.28)

and fix δK > 0 such that dist(q0, ∂K) > CKδK (here dist is the Euclidean distance, in coordinates).

Let us show that for any admissible curve γ : [0, T ] → M such that γ(0) = q0 and ℓ(γ) ≤ δK
we have γ([0, T ]) ⊂ K. Indeed, if this is not true, there exists an admissible curve γ : [0, T ] → M
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with ℓ(γ) ≤ δK and t∗ := sup{t ∈ [0, T ] : γ([0, t]) ⊂ K}, with t∗ < T . Then

|γ(t∗)− γ(0)| ≤
∫ t∗

0
|γ̇(t)|dt ≤

∫ t∗

0

m∑

i=1

|u∗i (t)fi(γ(t))| dt (3.29)

≤
∫ t∗

0

√√√√
m∑

i=0

|fi(γ(t))|2
√√√√

m∑

i=0

u∗i (t)
2 dt (3.30)

≤ CK
∫ t∗

0

√√√√
m∑

i=0

u∗i (t)
2 dt ≤ CKℓ(γ) (3.31)

≤ CKδK < dist(q0, ∂K). (3.32)

which contradicts the fact that, at t∗, the curve γ leaves the compact K. Thus t∗ = T .

Proof of Step 3. Let us prove that Lemma 3.34 implies property (b). Indeed the only nontrivial
implication is that d(q0, q1) > 0 whenever q0 6= q1. To prove this, fix a compact neighborhood K of
q0 such that q1 /∈ K. By Lemma 3.34, each admissible curve joining q0 and q1 has length greater
than δK , hence d(q0, q1) ≥ δK > 0.

Let us now prove property (e). Fix ε > 0 and a compact neighborhood K of q0. Define CK
and δK as in Lemma 3.34, and set δ := min{δK , ε/CK}. Let us show that |q − q0| < ε whenever
d(q0, q) < δ, where again | · | is the Euclidean norm in a coordinate chart.

Consider a minimizing sequence γn : [0, T ]→M of admissible trajectories joining q0 and q such
that ℓ(γn) → d(q0, q) for n →∞. Without loss of generality, we can assume that ℓ(γn) ≤ δ for all
n. By Lemma 3.34, γn([0, T ]) ⊂ K for all n.

We can repeat estimates (3.29)-(3.31) proving that |q − q0| = |γn(T )− γn(0)| ≤ CKℓ(γn) for all
n. Passing to the limit for n→∞, one gets

|q − q0| ≤ CKd(q0, q) ≤ CKδ < ε. (3.33)

Corollary 3.35. The metric space (M,d) is locally compact, i.e., for any q ∈M there exists ε > 0
such that the closed sub-Riemannian ball B(q, r) is compact for all 0 ≤ r ≤ ε.

Proof. By the continuity of d, the set B(q, r) = {d(q, ·) ≤ r} is closed for all q ∈ M and r ≥ 0.
Moreover the sub-Riemannian metric d induces the manifold topology onM . Hence, for radius small
enough, the sub-Riemannian ball is bounded. Thus small sub-Riemannian balls are compact.

3.3 Existence of length-minimizers

In this section we want to discuss the existence of length-minimizers.

Definition 3.36. Let γ : [0, T ]→M be an admissible curve. We say that γ is a length-minimizer
if it minimizes the length among admissible curves with same endpoints, i.e., ℓ(γ) = d(γ(0), γ(T )).
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Remark 3.37. Notice that the existence length-minimizers between two points is not guaranteed
in general, as it happens for two points in M = R2 \ {0} (endowed with the Euclidean distance)
that are symmetric with respect to the origin. On the other hand, when length-minimizers exist
between two fixed points, they may not be unique, as it happens for two antipodal points on the
sphere S2.

We now show a general semicontinuity property of the length functional.

Theorem 3.38. Let γn : [0, T ] → M be a sequence of admissible curves on M such that γn → γ
uniformly on [0, T ]. Then

ℓ(γ) ≤ lim inf
n→∞

ℓ(γn). (3.34)

If moreover lim infn→∞ ℓ(γn) < +∞, then γ is also admissible.

Proof. Let L := lim infn→∞ ℓ(γn). If L = +∞ the inequality (3.34) is true, thus we can assume
L < +∞ and choose a subsequence, still denoted by the same symbol, such that ℓ(γn)→ L.

Fix δ > 0. It is not restrictive to assume that, for n large enough, ℓ(γn) ≤ L+δ and, by uniform
convergence, that the image of γn are all contained in a common compact set K. Now we divide
the proof into two steps

(i). We first prove that statement assuming that all γn are parametrized with constant speed
on the interval [0, 1]. Under this assumption we have that γ̇n(t) ∈ Vγn(t) for a.e. t, where

Vq = {fu(q), |u| ≤ L+ δ} ⊂ TqM, fu(q) =

m∑

i=1

uifi(q).

Notice that Vq is convex for every q ∈M , thanks to the linearity of f in u. Let us prove that γ is
admissible and satisfies ℓ(γ) ≤ L+ δ. Once this is done, since δ is arbitrary, this implies ℓ(γ) ≤ L,
that is (3.34).

Writing in local coordinates, we have for every ε > 0

1

ε
(γn(t+ ε)− γn(t)) =

1

ε

∫ t+ε

t
fun(τ)(γn(τ))dτ ∈ conv{Vγn(τ), τ ∈ [t, t+ ε]}. (3.35)

Next we want to estimate the right hand side of (3.35) uniformly with respect to n. For n ≥ n0
sufficiently large, we have |γn(t) − γ(t)| < ε (by uniform convergence) and an estimate similar to
(3.31) gives for τ ∈ [t, t+ ε]

|γn(t)− γn(τ)| ≤
∫ τ

t
|γ̇n(s)|ds ≤ CK(L+ δ)ε. (3.36)

where CK is the constant (3.28) defined by the compact K. Hence we deduce for every τ ∈ [t, t+ ε]
and every n ≥ n0

|γn(τ)− γ(t)| ≤ |γn(t)− γn(τ)|+ |γn(t)− γ(t)| ≤ C ′ε, (3.37)

where C ′ is independent on n and ε. From the estimate (3.37) and the equivalence of the manifold
and metric topology we have that, for all τ ∈ [t, t+ ε] and n ≥ n0, γn(τ) ∈ Bγ(t)(rε), with rε → 0
when ε→ 0. In particular

conv{Vγn(τ), τ ∈ [t, t+ ε]} ⊂ conv{Vq, q ∈ Bγ(t)(rε)}. (3.38)
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Plugging (3.38) in (3.35) and passing to the limit for n→∞ we get finally to

1

ε
(γ(t+ ε)− γ(t)) ∈ conv{Vq, q ∈ Bγ(t)(rε)}. (3.39)

Assume now that t ∈ [0, 1] is a differentiability point of γ. Then the limit of the left hand side in
(3.39) for ε → 0 exists and gives γ̇(t) ∈ conv Vγ(t) = Vγ(t). For every differentiability point t we
can thus define the unique u∗(t) satisfying γ̇(t) = f(γ(t), u∗(t)) and |u∗(t)| = ‖γ̇(t)‖. Using the
argument contained in Appendix 3.5 it follows that u∗(t) is measurable in t. Moreover |u∗(t)| is
essentially bounded since, by construction, |u∗(t)| ≤ L+ δ for a.e. t ∈ [0, T ]. Hence γ is admissible.
Moreover ℓ(γ) ≤ L+ δ since γ is defined on the interval [0, 1].

(ii) When γn : [0, T ] → M is an arbitrary sequence converging uniformly to γ, let us consider
the family γ̃n : [0, 1] → M such that γ̃n is parametrized by constant speed on [0, 1] (cf. Lemma
3.15). In particular

γn = γ̃n ◦ ϕn, ϕn(t) =
1

ℓ(γn)

∫ t

0
|u∗n(s)|ds

To prove the statement it is enough to prove that γ̃n → γ̃ where γ is some reparametrization of γ̃,
since length is invariant by reparametrization. Reasoning as in the proof of part (i) one gets

|γ̃n(s1)− γ̃n(s0)| ≤ CK(L+ δ)|s1 − s0|

then we can apply the Ascoli-Arzela theorem on the reparametrized sequence and we get that a sub-
sequence is uniformly convergent to a curve, that is necessarily a curve γ̃ whose γ is a reparametriza-
tion.

Corollary 3.39. Let γn be a sequence of length-minimizers on M such that γn → γ uniformly.
Then γ is a length-minimizer.

Proof. Since the length is invariant under reparametrization, it is not restrictive to assume that
all curves γn and γ are parametrized on [0, 1]. Since γn is a length-minimizer one has ℓ(γn) =
d(γn(0), γn(1)). By uniform convergence γn(t) → γ(t) for every t ∈ [0, 1] and, by continuity of the
distance and semicontinuity of the length

ℓ(γ) ≤ lim inf
n→∞

ℓ(γn) = lim inf
n→∞

d(γn(0), γn(1)) = d(γ(0), γ(1)),

that implies that ℓ(γ) = d(γ(0), γ(1)), i.e., γ is a length-minimizer.

The semicontinuity of the length implies the existence of minimizers, under a natural compact-
ness assumption on the space.

Theorem 3.40 (Existence of minimizers). Let M be a sub-Riemannian manifold and q0 ∈ M .
Assume that the ball Bq0(r) is compact, for some r > 0. Then for all q1 ∈ Bq0(r) there exists a
length minimizer joining q0 and q1, i.e., we have

d(q0, q1) = min{ℓ(γ) | γ : [0, T ]→M admissible , γ(0) = q0, γ(T ) = q1}.

Proof. Fix q1 ∈ Bq0(r) and consider a minimizing sequence γn : [0, 1] → M of admissible trajecto-
ries, parametrized with constant speed, joining q0 and q1 and such that ℓ(γn)→ d(q0, q1).
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Since d(q0, q1) < r, we have ℓ(γn) ≤ r for all n ≥ n0 large enough, hence we can assume without
loss of generality that the image of γn is contained in the common compact K = Bq0(r) for all n.
In particular, the same argument leading to (3.36) shows that for all n ≥ n0

|γn(t)− γn(τ)| ≤
∫ t

τ
|γ̇n(s)|ds ≤ CKr|t− τ |, ∀ t, τ ∈ [0, 1]. (3.40)

where CK depends only on K. In other words, all trajectories in the sequence {γn}n∈N are Lipschitz
with the same Lipschitz constant. Thus the sequence is equicontinuous and uniformly bounded.

By the classical Ascoli-Arzelà Theorem there exist a subsequence of γn, which we still denote by
the same symbol, and a Lipschitz curve γ : [0, T ] → M such that γn → γ uniformly. By Theorem
3.38, the curve γ satisfies ℓ(γ) ≤ lim inf ℓ(γn) = d(q0, q1), that implies ℓ(γ) = d(q0, q1).

Remark 3.41. Assume that B(q, r0) is compact for some r0 > 0. Then for every 0 < r ≤ r0 we
have that B̄(q, r) is compact also, being a closed subset of a compact set B(q, r0).

Combining Theorem 3.40 and Corollary 3.35 one gets the following corollary.

Corollary 3.42. Let q0 ∈ M . There exists ε > 0 such that for every q1 ∈ Bq0(ε) there exists a
minimizing curve joining q0 and q1.

3.3.1 On the completeness of the sub-Riemannian distance

We provide here a characterization of metric completeness of a sub-Riemannian space. We start
by proving a preliminary lemma.

Lemma 3.43. Let M be a sub-Riemannian manifold. For every ε > 0 and x ∈M we have

B(x, r + ε) =
⋃

y∈B(x,r)

B(y, ε). (3.41)

Proof. The inclusion ⊇ is a direct consequence of the triangle inequality.
Let us prove the inclusion ⊆. Fix y ∈ B(x, r + ε) \ B(x, ε). Then there exists a length-

parameterized curve γ connecting x with y such that ℓ(γ) = t+ ε where 0 ≤ t < r. Let t′ ∈ (t, r);
then γ(t′) ∈ B(x, r) and y ∈ B(γ(t′), ε).

Proposition 3.44. Let M be a sub-Riemannian manifold. Then the three following properties are
equivalent:

(i) (M,d) is complete,

(ii) B(x, r) is compact for every x ∈M and r > 0,

(iii) there exists ε > 0 such that B(x, ε) is compact for every x ∈M .

Proof. (iii) implies (i). Let us prove that every Cauchy sequence {xn} in M is convergent. Fix
ε > 0 satisfying the assumption. Since {xn} is Cauchy there exists N ∈ N such that one has
d(xn, xm) < ε for all n,m ≥ N .

In particular, by choosing m = N , for all n ≥ N one has that xn ∈ B(xN , ε), that is compact
by assumption. Hence {xn}n≥N is Cauchy and admits a convergent subsequence, that implies that
the whole sequence {xn} in M is convergent.
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(ii) implies (iii). This is trivial.

(i) implies (ii). Assume now that (M,d) is complete. Fix x ∈M and define

A := {r > 0 |B(x, r) is compact }, R := supA. (3.42)

Since the topology of (M,d) is locally compact then A 6= ∅ and R > 0. First we prove that A is
open and then we prove that R = +∞. Notice in particular that this proves that A =]0,+∞[ since,
by Remark 3.41, r ∈ A implies ]0, r[⊂ A.

(ii.a) It is enough to show that, if r ∈ A, then there exists δ > 0 such that r + δ ∈ A. For each
y ∈ B(x, r) there exists r(y) < ε small enough such that B̄(y, r(y)) is compact. We have

B̄(x, r) ⊂
⋃

y∈B̄(x,r)

B̄(y, r(y)).

By compactness of B̄(x, r) there exists a finite number of points {yi}Ni=1 in B̄(x, r) such that (denote
ri := r(yi))

B̄(x, r) ⊂
N⋃

i=1

B̄(yi, ri).

Moreover, there exists δ > 0 such that the set of points B̄(x, r+δ) = {y ∈M |dist(y,B(x, r)) ≤ δ},
where the equality is given by Lemma 3.43, satisfies

B̄(x, r + δ) ⊂
N⋃

i=1

B̄(yi, ri).

This proves that r + δ ∈ A, since a finite union of compact sets is compact.

(ii.b) Assume by contradiction that R < +∞ and let us prove that B := B̄(x,R) is compact.
Since B is a closed set, it is enough to show that it is totally bounded, i.e. it admits an ε-net2 for
every ε > 0. Fix ε > 0 and consider an (ε/3)-net S for the ball B′ = B(x,R − ε/3), that exists by
compactness. By Lemma 3.43 one has for every y ∈ B that dist(y,B′) < ε/3. Then it is easy to
show that

dist(y, S) < dist(y,B′) + ε/3 < ε,

that is S is an ε-net for B and B is compact.

This shows that if R < +∞, then R ∈ A. Hence (ii.a) implies that R + δ ∈ A for some δ > 0,
contradicting the fact that R is a sup. Hence R = +∞.

Remark 3.45. Notice that only in the “(i) implies (ii)” part of the statement we used that the
distance is sub-Riemannian. Actually the same statement, together with Lemma 3.43, remains
true in the more general context of length metric space, see [38, Ch. 2].

For the relation with geodesic completeness of the sub-Riemannian manifold, see Section 11.5.

Corollary 3.46. Let (M,d) be a complete sub-Riemannian manifold. Then for every q0, q1 ∈ M
there exists a length minimizer joining q0 and q1.

2an ε-net S for a set B in a metric space is a finite set of points S = {zi}
N
i=1 such that for every y ∈ B one has

dist(y, S) < ε (or, equivalently, for every y ∈ B there exists i such that d(y, zi) < ε).
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3.3.2 Lipschitz curves with respect to d vs admissible curves

The goal of this section is to prove that continous curves that are Lipschitz with respect to sub-
Riemannian distance are exactly admissible curves.

Proposition 3.47. Let γ : [0, T ]→M be a continuous curve. Then γ is Lipschitz with respect to
the sub-Riemannian distance if and only if γ is admissible.

Proof. (i). Assume γ is admissible and leu u be a control associated with γ. By definition u is
essentially bounded. Then

d(γ(t), γ(s)) ≤ ℓ(γ|[t,s]) ≤
∫ t

s
|u(τ)|dτ ≤ C|t− s|,

for some constant C > 0. Then γ is Lipschitz with respect to the sub-Riemannian distance.

(ii). Conversely assume that γ is Lipschitz with respect to the sub-Riemannian distance, with
Lipschitz constant L > 0, meaning that

d(γ(t), γ(s)) ≤ L|t− s|, ∀ t, s ∈ [0, T ]. (3.43)

Repeating arguments contained in the proof of Lemma 3.34 we have that for a compact neighbor-
hood K ⊂M of γ([0, T ]) there exists CK > 0 such that

|γ(t)− γ(s)| ≤ CKd(γ(t), γ(s)), (3.44)

for every t, s close enough, where | · | denotes the Euclidean norm in coordinates. Combining (3.43)
and (3.44) it follows that γ is Lipschitz in charts and γ is differentiable almost everywhere by
Rademacher theorem.

Let us prove that γ is admissile. Consider the partition σn = {ti,n}2ni=1 of the interval [0, T ] into
2n intervals of length T/2n, namely ti,n := i/2n for i = 1, . . . , 2n. By compactness of small balls
and compactness of [0, T ] for n large enough there exists a minimizer joining γ(ti,n) and γ(ti+1,n)
for i = 1, . . . , 2n − 1.

Denote by γn the curve defined by the concatenation of minimizers joining γ(ti,n) and γ(ti+1,n)
for i = 1, . . . , 2n − 1. Thanks to (3.43) we have the uniform bound on the length

ℓ(γn) =

2n∑

i=1

d(γ(ti,n), γ(ti+1,n)) ≤
2n∑

i=1

L|ti,n − ti+1,n| ≤
2n∑

i=1

L

2n
≤ L (3.45)

Moreover, by construction, γn converge uniformly to γ when n → ∞. By Theorem 3.38 γ is
admissible and ℓ(γ) ≤ L.

Exercise 3.48. Let γ : [0, T ] → M be an admissible curve. For every t ∈ [0, T ] let us define,
whenever it exists, the limit

vγ(t) := lim
ε→0

d(γ(t+ ε), γ(t))

|ε| . (3.46)

(i) Prove that vγ(t) exist for a.e. t ∈ [0, T ].

(ii) Prove that vγ(t) = ‖γ̇(t)‖ = |u∗(t)| for a.e. t ∈ [0, T ].
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Hint: fix a dense set {xn}n∈N in γ([0, T ]). Consider the functions ϕn(t) = d(γ(t), xn). Prove that
ϕn is Lipschitz for every n and vγ(t) = supn |ϕ̇n(t)| for a.e t ∈ [0, T ].

Exercise 3.49. Let γ : [0, T ]→M be an admissible curve. Prove that

ℓ(γ) = sup

{
n∑

i=1

d(γ(ti), γ(ti−1)) : 0 = t0 < t1 < . . . < tn−1 < tn = T

}
. (3.47)

3.3.3 Continuity of d with respect to the sub-Riemannian structure

In this section, for m ∈ N we define the space Sm of free and complete sub-Riemannian structures
f : Rm ×M → TM of rank m.

The space Sm is naturally endowed with the C0-topology as follows: embed M into RN , for
some N ∈ N, thanks to Whitney theorem. Given f, f ′ : Rm×M → TM , and K ⊂M compact, we
define

‖f ′ − f‖0,K = sup{|f ′(q, v) − f(q, v)| : q ∈ K, |v| ≤ 1}.
The family of seminorms ‖ · ‖0,K induces a topology on Sm with countable local bases of neigh-
borhood as follows: take an increasing family of compact sets {Kn}n∈N invading M , i.e., Kn ⊂
Kn+1 ⊂M for every n ∈ N and M = ∪n∈NKn.

For every f ∈ Sm, a countable local base of neighborhood of f is given by

Uf,n :=

{
f ′ ∈ Sm : ‖f ′ − f‖0,Kn ≤

1

n

}
, n ∈ N. (3.48)

Exercise 3.50. (i) Prove that (3.48) defines a basis for a topology. (ii) Prove that this topology
does not depend on the immersion of M into RN .

For f ∈ Sm, we denote by df the sub-Riemannian distance on M associated with f .

Theorem 3.51. Let q0, q1 ∈ M . The function distq0,q1 : Sm → R defined by f 7→ df (q0, q1) is
continuous in the C0 topology.

Proof. Let us prove separately the lower and the upper semi-continuity.
(i). Fix f ∈ Sm and 0 < r < df (q0, q1). To prove lower semi-continuity we show that there exist
ε > 0 such that r < df ′(q0, q1) for any sub-Riemannian structure f ′ with ‖f ′ − f‖0,K < ε for a
suitable choice of K.

Let Bq0(r) be the ball of radius r and centered at q0, with respect to the sub-Riemannian
structure defined by f . By completeness, this is a precompact set and by construction we have
q1 /∈ Bq0(r). Let O ⊃ Bq0(r) be an open neighbourhood of this ball in M such that q1 /∈ O. To
prove the claim it is sufficient to show that for ε small enough the ball B′

q0(r) of radius r and
centered at q0 defined by the sub-Riemannian structure f ′ is also contained in O.

Given u ∈ L∞([0, 1];Rm), let us denote by γf (t;u) the solution of the equation q̇ = f(q, u) with
initial condition q(0) = q0. Let K be a compact containing O and let a : M → R be a smooth
cut-off function with compact support on K, satisfying 0 ≤ a ≤ 1 and a|O ≡ 1. By compactness,
there exists C > 0 such that

|a(q′)f(q′, v)− a(q)f(q, v)| ≤ C|q′ − q|, ∀q, q′ ∈M, |v| ≤ 1. (3.49)
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Given f ′ : Rm ×M → TM a complete sub-Riemannian structure, we set:

δu(t) := |γaf ′(t;u)− γaf (t;u)|.

Combining the definition of δu(t) and (3.49) one gets

δu(t) ≤ C
t∫

0

δu(s) ds + ‖af ′ − af‖0,K
t∫

0

|u(s)| ds, 0 ≤ t ≤ 1. (3.50)

Using that ‖af ′−af‖0,K ≤ ‖f ′−f‖0,K and the Gronwall lemma, the inequality (3.50) implies that
for any sub-Riemannian structure f ′ with ‖f ′ − f‖0,K < ε

δu(t) ≤ eC‖f ′ − f‖0,K‖u‖L∞ ≤ εeC‖u‖L∞ .

Choosing ε small enough we have that γaf ′(t;u) belongs to O for every control u such that ‖u‖L∞ ≤
r. In particular, since a = 1 on O, we have γaf ′(t;u) = γf ′(t;u) for every t ∈ [0, 1] and the ball
B′
q0(r) ⊂ O, as claimed.

(ii). The upper semi-continuity is valid even without completeness of the sub-Riemannian struc-
tures. Fix r > df (q0, q1) and let us show that r > df ′(q0, q1) for any sub-Riemannian structure f ′

that is C0-close to f .

Fix u ∈ L∞([0, 1];Rm) such that γf (1;u) = q1, with ‖u‖L∞ = r′ < r. Notice that ‖u‖L1 ≤
‖u‖L∞ . Consider the local diffeomorphism (here, as usual, n = dimM) and

ψ̂ : (s1, . . . , sn) 7→ e−ŝ1fi1 ◦ · · · ◦ e−ŝnfin ◦ esnfin ◦ · · · ◦ es1fi1 (q1),

constructed as in the proof of the Chow–Rashevskii theorem, associated to the base point q1 and
defined for |s| < ε. Fix ε > 0 small enough so that length of all admissible curves involved in the
construction is smaller then r − r′.

Moreover, if f ′ is C0-close to f , then the map

ψ̂′ : (s1, . . . , sn) 7→ e
−ŝ1f ′i1 ◦ · · · ◦ e−ŝnf ′in ◦ esnf ′in ◦ · · · ◦ es1f ′i1 (γf ′(1;u))

is uniformly close to ψ̂. The map ψ̂′ is a map that is C0 close to a local diffeomorphism, hence its
image contains the point q1, as a consequence of Lemma 3.52. This implies that we can connect q0
with q1 by an admissible curve of the structure f ′ that is shorter than r.

In the next lemma we use the notation B(0, r) = {x ∈ Rn | |x| ≤ r}.

Lemma 3.52. Let F : Rn → Rn be a continous map such that F (x) = x+G(x), with G continuous
and ‖G‖0 ≤ ε. Then the image of F contains the ball B(0, ε).

Proof. Fix y ∈ B(0, ε) and let us prove that there exists x such that F (x) = x+G(x) = y. This is
equivalent to prove that there exists x ∈ Rn such that x = y − G(x), i.e., the map Φ : Rn → Rn

with Φ(x) = y −G(x) has a fixed point. But Φ is continuous and Φ(B(0, 2ε)) ⊂ B(0, 2ε) so, from
the Brower fixed point theorem, it has a fixed point.
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3.4 Pontryagin extremals

In this section we want to give necessary conditions to characterize length-minimizer trajectories.
To begin with, we would like to motivate our Hamiltonian approach that we develop in the sequel.

In classical Riemannian geometry length-minimizer trajectories satisfy a necessary condition
given by a second order differential equation inM , which can be reduced to a first-order differential
equation in TM . Hence the set of all length-minimizers is contained in the set of extremals, i.e.,
trajectories that satisfy the necessary condition, that are be parametrized by initial position and
velocity.

In our setting (which includes Riemannian and sub-Riemannian geometry) we cannot use the
initial velocity to parametrize length-minimizer trajectories. This can be easily understood by a
dimensional argument. If the rank of the sub-Riemannian structure is smaller than the dimension
of the manifold, the initial velocity γ̇(0) of an admissible curve γ(t) starting from q0, belongs to the
proper subspace Dq0 of the tangent space Tq0M . Hence the set of admissible velocities form a set
whose dimension is smaller than the dimension of M , even if, by the Chow and Filippov theorems,
length-minimizer trajectories starting from a point q0 cover a full neighborhood of q0.

The right approach is to parametrize length-minimizers by their initial point and an initial
covector λ0 ∈ T ∗

q0M , which can be thought as the linear form annihilating the “front”, i.e., the set
{γq0(ε) | γq0 is a length-minimizer starting from q0} on the corresponding length-minimizer trajec-
tory for ε→ 0.

The next theorem gives the necessary condition satisfied by length-minimizers in sub-Riemannian
geometry. Curves satisfying this condition are called Pontryagin extremals. The proof the following
theorem is given in the next section.

Theorem 3.53 (Characterization of Pontryagin extremals). Let γ : [0, T ] → M be an admissible
curve which is a length-minimizer, parametrized by constant speed. Let u(·) be the corresponding
minimal control, i.e., for a.e. t ∈ [0, T ]

γ̇(t) =

m∑

i=1

ui(t)fi(γ(t)), ℓ(γ) =

∫ T

0
|u(t)|dt = d(γ(0), γ(T )),

with |u(t)| constant a.e. on [0, T ]. Denote with P0,t the flow3 of the nonautonomous vector field

fu(t) =
∑k

i=1 ui(t)fi. Then there exists λ0 ∈ T ∗
γ(0)M such that defining

λ(t) := (P−1
0,t )

∗λ0, λ(t) ∈ T ∗
γ(t)M, (3.51)

we have that one of the following conditions is satisfied:

(N) ui(t) ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m,

(A) 0 ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m.

Moreover in case (A) one has λ0 6= 0.

Notice that, by definition, the curve λ(t) is Lipschitz continuous. Moreover the conditions (N)
and (A) are mutually exclusive, unless u(t) = 0 for a.e. t ∈ [0, T ], i.e., γ is the trivial trajectory.

3P0,t(x) is defined for t ∈ [0, T ] and x in a neighborhood of γ(0)
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Definition 3.54. Let γ : [0, T ]→M be an admissible curve with minimal control u ∈ L∞([0, T ],Rm).
Fix λ0 ∈ T ∗

γ(0)M \ {0}, and define λ(t) by (3.51).

- If λ(t) satisfies (N) then it is called normal extremal (and γ(t) a normal extremal trajectory).

- If λ(t) satisfies (A) then it is called abnormal extremal (and γ(t) a abnormal extremal trajec-
tory).

Remark 3.55. If the sub-Riemannian structure is not Riemannian at q0, namely if

Dq0 = spanq0{f1, . . . , fm} 6= Tq0M,

then the trivial trajectory, corresponding to u(t) ≡ 0, is always normal and abnormal.
Notice that even a nontrivial admissible trajectory γ can be both normal and abnormal, since

there may exist two different lifts λ(t), λ′(t) ∈ T ∗
γ(t)M , such that λ(t) satisfies (N) and λ′(t) satisfies

(A).

Remark 3.56. In the Riemannian case there are no abnormal extremals. Indeed, since the map f
is fiberwise surjective, we can always find m vector fields f1, . . . , fm on M such that

spanq0{f1, . . . , fm} = Tq0M,

and (A) would imply that 〈λ0, v〉 = 0, for all v ∈ Tq0M , that gives the contradiction λ0 = 0.

Exercise 3.57. Prove that condition (N) of Theorem 3.51 implies that the minimal control u(t)
is smooth. In particular normal extremals are smooth.

At this level it seems not obvious how to use Theorem 3.53 to find the explicit expression of
extremals for a given problem. In the next chapter we provide another formulation of Theorem
3.53 which gives Pontryagin extremals as solutions of a Hamiltonian system.

The rest of this section is devoted to the proof of Theorem 3.53.

3.4.1 The energy functional

Let γ : [0, T ] → M be an admissible curve. We define the energy functional J on the space of
Lipschitz curves on M as follows

J(γ) =
1

2

∫ T

0
‖γ̇(t)‖2dt.

Notice that J(γ) < +∞ for every admissible curve γ.

Remark 3.58. While ℓ is invariant by reparametrization (see Remark 3.14), J is not. Indeed
consider, for every α > 0, the reparametrized curve

γα : [0, T/α]→M, γα(t) = γ(αt).

Using that γ̇α(t) = α γ̇(αt), we have

J(γα) =
1

2

∫ T/α

0
‖γ̇α(t)‖2dt =

1

2

∫ T/α

0
α2‖γ̇(αt)‖2dt = αJ(γ).

Thus, if the final time is not fixed, the infimum of J , among admissible curves joining two fixed
points, is always zero.
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The following lemma relates minimizers of J with fixed final time with minimizers of ℓ.

Lemma 3.59. Fix T > 0 and let Ωq0,q1 be the set of admissible curves joining q0, q1 ∈ M . An
admissible curve γ : [0, T ] → M is a minimizer of J on Ωq0,q1 if and only if it is a minimizer of ℓ
on Ωq0,q1 and has constant speed.

Proof. Applying the Cauchy-Schwarz inequality

(∫ T

0
f(t)g(t)dt

)2

≤
∫ T

0
f(t)2dt

∫ T

0
g(t)2dt, (3.52)

with f(t) = ‖γ̇(t)‖ and g(t) = 1 we get

ℓ(γ)2 ≤ 2J(γ)T. (3.53)

Moreover in (3.52) equality holds if and only if f is proportional to g, i.e., ‖γ̇(t)‖ = const. in (3.53).
Since, by Lemma 3.15, every curve is a Lipschitz reparametrization of a length-parametrized one,
the minima of J are attained at admissible curves with constant speed, and the statement follows.

3.4.2 Proof of Theorem 3.53

By Lemma 3.59 we can assume that γ is a minimizer of the functional J among admissible curves
joining q0 = γ(0) and q1 = γ(T ) in fixed time T > 0. In particular, if we define the functional

J̃(u(·)) := 1

2

∫ T

0
|u(t)|2dt, (3.54)

on the space of controls u(·) ∈ L∞([0, T ],Rm), the minimal control u(·) of γ is a minimizer for the
energy functional J̃

J̃(u(·)) ≤ J̃(u(·)), ∀u ∈ L∞([0, T ],Rm),

where trajectories corresponding to u(·) join q0, q1 ∈M . In the following we denote the functional
J̃ by J .

Consider now a variation u(·) = u(·)+v(·) of the control u(·), and its associated trajectory q(t),
solution of the equation

q̇(t) = fu(t)(q(t)), q(0) = q0, (3.55)

Recall that P0,t denotes the local flow associated with the optimal control u(·) and that γ(t) =
P0,t(q0) is the optimal admissible curve. We stress that in general, for q different from q0, the curve
t 7→ P0,t(q) is not optimal. Let us introduce the curve x(t) defined by the identity

q(t) = P0,t(x(t)). (3.56)

In other words x(t) = P−1
0,t (q(t)) is obtained by applying the inverse of the flow of u(·) to the solution

associated with the new control u(·) (see Figure 3.5). Notice that if v(·) = 0, then x(t) ≡ q0.
The next step is to write the ODE satisfied by x(t). Differentiating (3.56) we get

q̇(t) = fu(t)(q(t)) + (P0,t)∗(ẋ(t)) (3.57)

= fu(t)(P0,t(x(t))) + (P0,t)∗(ẋ(t)) (3.58)
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x(t)

q(t) P0,t

q0

Figure 3.5: The trajectories q(t), associated with u(·) = u(·) + v(·), and the corresponding x(t).

and using that q̇(t) = fu(t)(q(t)) = fu(t)(P0,t(x(t))) we can invert (3.58) with respect to ẋ(t) and
rewrite it as follows

ẋ(t) = (P−1
0,t )∗

[
(fu(t) − fu(t))(P0,t(x(t)))

]

=
[
(P−1

0,t )∗(fu(t) − fu(t))
]
(x(t))

=
[
(P−1

0,t )∗(fu(t)−u(t))
]
(x(t))

=
[
(P−1

0,t )∗fv(t)
]
(x(t)) (3.59)

If we define the nonautonomous vector field gtv(t) = (P−1
0,t )∗fv(t) we finally obtain by (3.59) the

following Cauchy problem for x(t)

ẋ(t) = gtv(t)(x(t)), x(0) = q0. (3.60)

Notice that the vector field gtv is linear with respect to v, since fu is linear with respect to u. Now
we fix the control v(t) and consider the map

s ∈ R 7→
(
J(u+ sv)
x(T ;u+ sv)

)
∈ R×M

where x(T ;u + sv) denote the solution at time T of (3.60), starting from q0, corresponding to
control u(·) + sv(·), and J(u+ sv) is the associated cost.

Lemma 3.60. There exists λ̄ ∈ (R⊕ Tq0M)∗, with λ̄ 6= 0, such that for all v ∈ L∞([0, T ],Rm)
〈
λ̄ ,

(
∂J(u+ sv)

∂s

∣∣∣
s=0

,
∂x(T ;u+ sv)

∂s

∣∣∣
s=0

)〉
= 0. (3.61)

Proof of Lemma 3.60. We argue by contradiction: assume that (3.61) is not true, then there exist
v0, . . . , vn ∈ L∞([0, T ],Rm) such that the vectors in R⊕ Tq0M



∂J(u+ sv0)

∂s

∣∣∣
s=0

∂x(T ;u+ sv0)

∂s

∣∣∣
s=0


 , . . . ,




∂J(u+ svn)

∂s

∣∣∣
s=0

∂x(T ;u+ svn)

∂s

∣∣∣
s=0


 (3.62)
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are linearly independent. Let us then consider the map

Φ : Rn+1 → R×M, Φ(s0, . . . , sn) =

(
J(u+

∑n
i=0 sivi)

x(T ;u+
∑n

i=0 sivi)

)
. (3.63)

By differentiability properties of solution of smooth ODEs with respect to parameters, the map
(3.63) is smooth in a neighborhood of s = 0. Moreover, since the vectors (3.62) are the components
of the differential of Φ and they are independent, then the inverse function theorem implies that Φ
is a local diffeomorphism sending a neighborhood of s = 0 in Rn+1 in a neighborhood of (J(u), q0)
in R×M . As a result we can find v(·) =∑i sivi(·) such that (see also Figure 3.4.2)

x(T ;u+ v) = q0, J(u+ v) < J(u).

In other words the curve t 7→ q(t;u+ v) joins q(0;u+ v) = q0 to

x(T, ū)

J(ū)

J

x

q(T ;u+ v) = P0,T (x(T ;u+ v)) = P0,T (q0) = q1,

with a cost smaller that the cost of γ(t) = q(t;u), which is a contradiction

Remark 3.61. Notice that if λ̄ satisfies (3.61), then for every α ∈ R, with α 6= 0, αλ̄ satisfies (3.61)
too. Thus we can normalize λ̄ to be (−1, λ0) or (0, λ0), with λ0 ∈ T ∗

q0M , and λ0 6= 0 in the second
case (since λ̄ is not zero).

Condition (3.61) implies that there exists λ0 ∈ T ∗
q0M such that one of the following identities

is satisfied for all v ∈ L∞([0, T ],Rm):

∂J(u+ sv)

∂s

∣∣∣
s=0

=

〈
λ0,

∂x(T ;u+ sv)

∂s

∣∣∣
s=0

〉
, (3.64)

0 =

〈
λ0,

∂x(T ;u+ sv)

∂s

∣∣∣
s=0

〉
. (3.65)

with λ0 6= 0 in the second case (cf. Remark 3.61). To end the proof we have to show that identities
(3.64) and (3.65) are equivalent to conditions (N) and (A) of Theorem 3.53. Let us show that

∂J(u+ sv)

∂s

∣∣∣
s=0

=

∫ T

0

m∑

i=1

ui(t)vi(t)dt, (3.66)

∂x(T ;u+ sv)

∂s

∣∣∣
s=0

=

∫ T

0
gtv(t)(q0)dt =

∫ T

0

m∑

i=1

((P−1
0,t )∗fi)(q0)vi(t)dt. (3.67)
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The identity (3.66) follows from the definition of J

J(u+ sv) =
1

2

∫ T

0
|u+ sv|2dt. (3.68)

Eq. (3.67) can be proved in coordinates. Indeed by (3.60) and the linearity of gv with respect to v
we have

x(T ;u+ sv) = q0 + s

∫ T

0
gtv(t)(x(t;u+ sv))dt,

and differentiating with respect to s at s = 0 one gets (3.67).

Let us show that (3.64) is equivalent to (N) of Theorem 3.53. Similarly, one gets that (3.65) is
equivalent to (A). Using (3.66) and (3.67), equation (3.64) is rewritten as

∫ T

0

m∑

i=1

ui(t)vi(t)dt =

∫ T

0

m∑

i=1

〈
λ0, ((P

−1
0,t )∗fi)(q0)

〉
vi(t)dt

=

∫ T

0

m∑

i=1

〈λ(t), fi(γ(t))〉 vi(t)dt, (3.69)

where we used, for every i = 1, . . . ,m, the identities

〈
λ0, ((P

−1
0,t )∗fi)(q0)

〉
=
〈
λ0, (P

−1
0,t )∗fi(γ(t))

〉
=
〈
(P−1

0,t )
∗λ0, fi(γ(t))

〉
= 〈λ(t), fi(γ(t))〉 .

Since vi(·) ∈ L∞([0, T ],Rm) are arbitrary, we get ui(t) = 〈λ(t), fi(γ(t))〉 for a.e. t ∈ [0, T ].

3.5 Appendix: Measurability of the minimal control

In this appendix we prove a technical lemma about measurability of solutions to a class of mini-
mization problems. This lemma when specified to the sub-Riemannian context, implies that the
minimal control associated with an admissible curve is measurable.

3.5.1 Main lemma

Let us fix an interval I = [a, b] ⊂ R and a compact set U ⊂ Rm. Consider two functions g : I×U →
Rn, v : I → Rn such that

(M1) g(·, u) is measurable in t for every fixed u ∈ U ,

(M2) g(t, ·) is continuous in u for every fixed t ∈ I,

(M3) v(t) is measurable with respect to t.

Moreover we assume that

(M4) for every fixed t ∈ I, the problem min{|u| : g(t, u) = v(t), u ∈ U} has a unique solution.

Let us denote by u∗(t) the solution of (M4) for a fixed t ∈ I.
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Lemma 3.62. Under assumptions (M1)-(M4), the function t 7→ |u∗(t)| is measurable on I.

Proof. Denote ϕ(t) := |u∗(t)|. To prove the lemma we show that for every fixed r > 0 the set

A = {t ∈ I : ϕ(t) ≤ r}

is measurable in R. By our assumptions

A = {t ∈ I : ∃u ∈ U s.t. |u| ≤ r, g(t, u) = v(t)}

Let us fix r > 0 and a countable dense set {ui}i∈N in the ball of radius r in U . Let show that

A =
⋂

n∈N
An =

⋂

n∈N

⋃

i∈N
Ai,n

︸ ︷︷ ︸
:=An

(3.70)

where
Ai,n := {t ∈ I : |g(t, ui)− v(t)| < 1/n}

Notice that the set Ai,n is measurable by construction and if (17.12) is true, A is also measurable.

⊂ inclusion. Let t ∈ A. This means that there exists ū ∈ U such that |ū| ≤ r and g(t, ū) = v(t).
Since g is continuous with respect to u and {ui}i∈N is a dense, for each n we can find uin such that
|g(t, uin)− v(t)| < 1/n, that is t ∈ An for all n.

⊃ inclusion. Assume t ∈ ⋂n∈N An. Then for every n there exists in such that the corresponding
uin satisfies |g(t, uin) − v(t)| < 1/n. From the sequence uin , by compactness, it is possible to
extract a convergent susequence uin → ū. By continuity of g with respect to u one easily gets that
g(t, ū) = v(t). That is t ∈ A.

Next we exploit the fact that the scalar function ϕ(t) := |u∗(t)| is measurable to show that the
vector function u∗(t) is measurable.

Lemma 3.63. Under assumptions (M1)-(M4), the vector function t 7→ u∗(t) is measurable on I.

Proof. It is sufficient to prove that, for every closed ball O in Rn the set

B := {t ∈ I : u∗(t) ∈ O}

is measurable. Since the minimum in (M4) is uniquely determined, this set is equal to

B = {t ∈ I : ∃u ∈ O s.t. |u| = ϕ(t), g(t, u) = v(t)}.

Let us fix the ball O and a countable dense set {ui}i∈N in O. Let show that

B =
⋂

n∈N
Bn =

⋂

n∈N

⋃

i∈N
Bi,n

︸ ︷︷ ︸
:=Bn

(3.71)

where
Bi,n := {t ∈ I : |ui| < ϕ(t) + 1/n, |g(t, ui)− v(t)| < 1/n; }

94



Notice that the set Bi,n is measurable by construction and if (3.71) is true, B is also measurable.

⊂ inclusion. Let t ∈ B. This means that there exists ū ∈ O such that |ū| = ϕ(t) and
g(t, ū) = v(t). Since g is continuous with respect to u and {ui}i∈N is a dense in O, for each n we
can find uin such that |g(t, uin)− v(t)| < 1/n and |uin | < ϕ(t) + 1/n, that is t ∈ Bn for all n.

⊃ inclusion. Assume t ∈ ⋂n∈N Bn. Then for every n it is possible to find in such that the
corresponding uin satisfies |g(t, uin )− v(t)| < 1/n and |uin | < ϕ(t) + 1/n. From the sequence uin ,
by compactness of the closed ball O, it is possible to extract a convergent susequence uin → ū. By
continuity of f in u one easily gets that g(t, ū) = v(t). Moreover |ū| ≤ ϕ(t). Hence |ū| = ϕ(t).
That is t ∈ B.

3.5.2 Proof of Lemma 3.11

Consider an admissible curve γ : [0, T ] → M . Since measurability is a local property it is not
restrictive to assume M = Rn. Moreover, by Lemma 3.15, we can assume that γ is length-
parametrized so that its minimal control belong to the compact set U = {|u| ≤ 1}. Define g :
[0, T ]× U → Rn and v : [0, T ]→ Rn by

g(t, u) = f(γ(t), u), v(t) = γ̇(t).

Assumptions (M1)-(M4) are satisfied. Indeed (M1)-(M3) follow from the fact that g(t, u) is linear
with respect to u and measurable in t. Moreover (M4) is also satisfied by linearity with respect to
u of f . Applying Lemma 3.63 one gets that the minimal control u∗(t) is measurable in t.

3.6 Appendix: Lipschitz vs absolutely continuous admissible curves

In these lecture notes sub-Riemannian geometry is developed in the framework of Lipschitz admissi-
ble curves (that correspond to the choice of L∞ controls). However, the theory can be equivalently
developed in the framework of H1 admissible curves (corresponding to L2 controls) or in the frame-
work of absolutely continuous admissible curves (corresponding to L1 controls).

Definition 3.64. An absolutely continuous curve γ : [0, T ] → M is said to be AC-admissible if
there exists an L1 function u : t ∈ [0, T ] 7→ u(t) ∈ Uγ(t) such that γ̇(t) = f(γ(t), u(t)), for a.e.
t ∈ [0, T ]. We define H1-admissible curves similarly.

Being the set of absolutely continuous curve bigger than the set of Lipschitz ones, one could
expect that the sub-Riemannian distance between two points is smaller when computed among all
absolutely continuous admissible curves. However this is not the case thanks to the invariance by
reparametrization. Indeed Lemmas 3.14 and 3.15 can be rewritten in the absolutely continuous
framework in the following form.

Lemma 3.65. The length of an AC-admissible curve is invariant by AC reparametrization.

Lemma 3.66. Any AC-admissible curve of positive length is a AC reparametrization of a length-
parametrized admissible one.
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The proof of Lemma 3.65 differs from the one of Lemma 3.14 only by the fact that, if u∗ ∈ L1

is the minimal control of γ then (u∗ ◦ ϕ)ϕ̇ is the minimal control associated with γ ◦ ϕ. Moreover
(u∗ ◦ ϕ)ϕ̇ ∈ L1, using the monotonicity of ϕ. Under these assumptions the change of variables
formula (3.16) still holds.

The proof of Lemma 3.66 is unchanged. Notice that the statement of Exercise 3.16 remains true
if we replace Lipschitz with absolutely continuous. We stress that the curve γ built in the proof is
Lipschitz (since it is length-parametrized).

As a consequence of these results, if we define

dAC(q0, q1) = inf{ℓ(γ) | γ : [0, T ]→M AC -admissible, γ(0) = q0, γ(T ) = q1}, (3.72)

we have the following proposition.

Proposition 3.67. dAC(q0, q1) = d(q0, q1)

Since L2([0, T ]) ⊂ L1([0, T ]), Lemmas 3.65, 3.66 and Proposition 3.67 are valid also in the
framework of admissible curves associated with L2 controls.
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Chapter 4

Characterization and local minimality
of Pontryagin extremals

This chapter is devoted to the study of geometric properties of Pontryagin extremals. To this
purpose we first rewrite Theorem 3.53 in a more geometric setting, which permits to write a
differential equation in T ∗M satisfied by Pontryagin extremals and to show that they do not
depend on the choice of a generating family. Finally we prove that small pieces of normal extremal
trajectories are length-minimizers.

To this aim, all along this chapter we develop the language of symplectic geometry, starting by
the key concept of Poisson bracket.

4.1 Geometric characterization of Pontryagin extremals

In the previous chapter we proved that if γ : [0, T ]→M is a length minimizer on a sub-Riemannian
manifold, associated with a control u(·), then there exists λ0 ∈ T ∗

γ(0)M such that defining

λ(t) = (P−1
0,t )

∗λ0, λ(t) ∈ T ∗
γ(t)M, (4.1)

one of the following conditions is satisfied:

(N) ui(t) ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m,

(A) 0 ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m, λ0 6= 0.

Here P0,t denotes the flow associated with the nonautonomous vector field fu(t) =
∑m

i=1 ui(t)fi and

(P−1
0,t )

∗ : T ∗
qM → T ∗

P0,t(q)
M. (4.2)

is the induced flow on the cotangent space.

The goal of this section is to characterize the curve (4.1) as the integral curve of a suitable
(non-autonomous) vector field on T ∗M . To this purpose, we start by showing that a vector field
on T ∗M is completely characterized by its action on functions that are affine on fibers. To fix the
ideas, we first focus on the case in which P0,t :M →M is the flow associated with an autonomous
vector field X ∈ Vec(M), namely P0,t = etX .
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4.1.1 Lifting a vector field from M to T ∗M

We start by some preliminary considerations on the algebraic structure of smooth functions on
T ∗M . As usual π : T ∗M →M denotes the canonical projection.

Functions in C∞(M) are in a one-to-one correspondence with functions in C∞(T ∗M) that are
constant on fibers via the map α 7→ π∗α = α ◦ π. In other words we have the isomorphism of
algebras

C∞(M) ≃ C∞
cst(T

∗M) := {π∗α |α ∈ C∞(M)} ⊂ C∞(T ∗M). (4.3)

In what follows, with abuse of notation, we often identify the function π∗α ∈ C∞(T ∗M) with the
function α ∈ C∞(M).

In a similar way smooth vector fields on M are in a one-to-one correspondence with smooth
functions in C∞(T ∗M) that are linear on fibers via the map Y 7→ aY , where aY (λ) := 〈λ, Y (q)〉
and q = π(λ).

Vec(M) ≃ C∞
lin(T

∗M) := {aY |Y ∈ Vec(M)} ⊂ C∞(T ∗M). (4.4)

Notice that this is an isomorphism as modules over C∞(M). Indeed, as Vec(M) is a module over
C∞(M), we have that C∞

lin(T
∗M) is a module over C∞(M) as well. For any α ∈ C∞(M) and

aX ∈ C∞
lin(T

∗M) their product is defined as αaX := (π∗α)aX = aαX ∈ C∞
lin(T

∗M).

Definition 4.1. We say that a function a ∈ C∞(T ∗M) is affine on fibers if there exist two functions
α ∈ C∞

cst(T
∗M) and aX ∈ C∞

lin(T
∗M) such that a = α+ aX . In other words

a(λ) = α(q) + 〈λ,X(q)〉 , q = π(λ).

We denote by C∞
aff(T

∗M) the set of affine function on fibers.

Remark 4.2. Linear and affine functions on T ∗M are particularly important since they reflects the
linear structure of the cotangent bundle. In particular every vector field on T ∗M , as a derivation
of C∞(T ∗M), is completely characterized by its action on affine functions,

Indeed for a vector field V ∈ Vec(T ∗M) and f ∈ C∞(T ∗M), one has that

(V f)(λ) =
d

dt

∣∣∣∣
t=0

f(etV (λ)) = 〈dλf, V (λ)〉 , λ ∈ T ∗M. (4.5)

which depends only on the differential of f at the point λ. Hence, for each fixed λ ∈ T ∗M ,
to compute (4.5) one can replace the function f with any affine function whose differential at λ
coincide with dλf . Notice that such a function is not unique.

Let us now consider the infinitesimal generator of the flow (P−1
0,t )

∗ = (e−tX )∗. Since it satisfies
the group law

(e−tX)∗ ◦ (e−sX)∗ = (e−(t+s)X )∗ ∀ t, s ∈ R,

by Lemma 2.15 its infinitesimal generator is an autonomous vector field VX on T ∗M . In other
words we have (e−tX )∗ = etVX for all t.

Let us then compute the right hand side of (4.5) when V = VX and f is either a function
constant on fibers or a function linear on fibers.
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The action of VX on functions that are constant on fibers, of the form β ◦ π with β ∈ C∞(M),
coincides with the action of X. Indeed we have for all λ ∈ T ∗M

d

dt

∣∣∣∣
t=0

β ◦ π((e−tX )∗λ)) =
d

dt

∣∣∣∣
t=0

β(etX (q)) = (Xβ)(q), q = π(λ). (4.6)

For what concerns the action of VX on functions that are linear on fibers, of the form aY (λ) =
〈λ, Y (q)〉, we have for all λ ∈ T ∗M

d

dt

∣∣∣∣
t=0

aY ((e
−tX )∗λ) =

d

dt

∣∣∣∣
t=0

〈
(e−tX )∗λ, Y (etX(q))

〉

=
d

dt

∣∣∣∣
t=0

〈
λ, (e−tX∗ Y )(q)

〉
= 〈λ, [X,Y ](q)〉 (4.7)

= a[X,Y ](λ).

Hence, by linearity, one gets that the action of VX on functions of C∞
aff(T

∗M) is given by

VX(β + aY ) = Xβ + a[X,Y ]. (4.8)

As explained in Remark 4.2, formula (4.8) characterizes completely the generator VX of (P−1
0,t )

∗.
To find its explicit form we introduce the notion of Poisson bracket.

4.1.2 The Poisson bracket

The purpose of this section is to introduce an operation {·, ·} on C∞(T ∗M), called Poisson bracket.
First we introduce it in C∞

lin(T
∗M), where it reflects the Lie bracket of vector fields in Vec(M), seen

as elements of C∞
lin(T

∗M). Then it is uniquely extended to C∞
aff(T

∗M) and C∞(T ∗M) by requiring
that it is a derivation of the algebra C∞(T ∗M) in each argument.

More precisely we start by the following definition.

Definition 4.3. Let aX , aY ∈ C∞
lin(T

∗M) be associated with vector fields X,Y ∈ Vec(M). Their
Poisson bracket is defined by

{aX , aY } := a[X,Y ], (4.9)

where a[X,Y ] is the function in C∞
lin(T

∗M) associated with the vector field [X,Y ].

Remark 4.4. Recall that the Lie bracket is a bilinear, skew-symmetric map defined on Vec(M),
that satisfies the Leibnitz rule for X,Y ∈ Vec(M):

[X,αY ] = α[X,Y ] + (Xα)Y, ∀α ∈ C∞(M). (4.10)

As a consequence, the Poisson bracket is bilinear, skew-symmetric and satisfies the following relation

{aX , α aY } = {aX , aαY } = a[X,αY ] = αa[X,Y ] + (Xα) aY , ∀α ∈ C∞(M). (4.11)

Notice that this relation makes sense since the product between α ∈ C∞
cst(T

∗M) and aX ∈ C∞
lin(T

∗M)
belong to C∞

lin(T
∗M), namely αaX = aαX .

Next, we extend this definition on the whole C∞(T ∗M).
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Proposition 4.5. There exists a unique bilinear and skew-simmetric map

{·, ·} : C∞(T ∗M)× C∞(T ∗M)→ C∞(T ∗M)

that extends (4.9) on C∞(T ∗M), and that is a derivation in each argument, i.e. it satisfies

{a, bc} = {a, b}c + {a, c}b, ∀ a, b, c ∈ C∞(T ∗M). (4.12)

We call this operation the Poisson bracket on C∞(T ∗M).

Proof. We start by proving that, as a consequence of the requirement that {·, ·} is a derivation in
each argument, it is uniquely extended to C∞

aff(T
∗M).

By linearity and skew-symmetry we are reduced to compute Poisson brackets of kind {aX , α}
and {α, β}, where aX ∈ C∞

lin(T
∗M) and α, β ∈ C∞

cst(T
∗M). Using that aαY = αaY and (4.12) one

gets

{aX , aαY } = {aX , α aY }
= α{aX , aY }+ {aX , α}aY . (4.13)

Comparing (4.11) and (4.13) one gets

{aX , α} = Xα (4.14)

Next, using (4.12) and (4.14), one has

{aαY , β} = {α aY , β} = α{aY , β} + {α, β}aY (4.15)

= αY β + {α, β}aY . (4.16)

Using again (4.14) one also has {aαY , β} = αY β, hence {α, β} = 0.
Combining the previous formulas one obtains the following expression for the Poisson bracket

between two affine functions on T ∗M

{aX + α, aY + β} := a[X,Y ] +Xβ − Y α. (4.17)

From the explicit formula (4.17) it is easy to see that the Poisson bracket computed at a fixed
λ ∈ T ∗M depends only on the differential of the two functions aX + α and aY + β at λ.

Next we extend this definition to C∞(T ∗M) in such a way that it is still a derivation. For
f, g ∈ C∞(T ∗M) we define

{f, g}|λ := {af,λ, ag,λ}|λ (4.18)

where af,λ and ag,λ are two functions in C∞
aff(T

∗M) such that dλf = dλ(af,λ) and dλg = dλ(ag,λ).

Remark 4.6. The definition (4.18) is well posed, since if we take two different affine functions af,λ
and a′f,λ their difference satisfy dλ(af,λ − a′f,λ) = dλ(af,λ) − dλ(a′f,λ) = 0, hence by bilinearity of
the Poisson bracket

{af,λ, ag,λ}|λ = {a′f,λ, ag,λ}|λ.
Let us now compute the coordinate expression of the Poisson bracket. In canonical coordinates

(p, x) in T ∗M , if

X =

n∑

i=1

Xi(x)
∂

∂xi
, Y =

n∑

i=1

Yi(x)
∂

∂xi
,
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we have

aX(p, x) =

n∑

i=1

piXi(x), aY (p, x) =

n∑

i=1

piYi(x).

and, denoting f = aX + α, g = aY + β we have

{f, g} = a[X,Y ] +Xβ − Y α

=

n∑

i,j=1

pj

(
Xi
∂Yj
∂xi
− Yi

∂Xj

∂xi

)
+Xi

∂β

∂pi
− Yi

∂α

∂pi

=
n∑

i,j=1

Xi

(
pj
∂Yj
∂xi

+
∂β

∂pi

)
− Yi

(
pj
∂Xj

∂xi
+
∂α

∂pi

)

=

n∑

i=1

∂f

∂pi

∂g

∂xi
− ∂f

∂xi

∂g

∂pi
.

From these computations we get the formula for Poisson brackets of two functions a, b ∈ C∞(T ∗M)

{a, b} =
n∑

i=1

∂a

∂pi

∂b

∂xi
− ∂a

∂xi

∂b

∂pi
, a, b ∈ C∞(T ∗M). (4.19)

The explicit formula (4.19) shows that the extension of the Poisson bracket to C∞(T ∗M) is still a
derivation.

Remark 4.7. We stress that the value {a, b}|λ at a point λ ∈ T ∗M depends only on dλa and dλb.
Hence the Poisson bracket computed at the point λ ∈ T ∗M can be seen as a skew-symmetric and
nondegenerate bilinear form

{·, ·}λ : T ∗
λ (T

∗M)× T ∗
λ (T

∗M)→ R.

Exercise 4.8. Let f = (f1, . . . , fk) : T ∗M → Rk, g : T ∗M → R and ϕ : Rk → R be smooth
functions. Denote by ϕf := ϕ ◦ f . Prove that

{ϕf , g} =
k∑

i=1

∂ϕ

∂fi
{fi, g}. (4.20)

4.1.3 Hamiltonian vector fields

By construction, the linear operator defined by

~a : C∞(T ∗M)→ C∞(T ∗M) ~a(b) := {a, b} (4.21)

is a derivation of the algebra C∞(T ∗M), therefore can be identified with an element of Vec(T ∗M).

Definition 4.9. The vector field ~a on T ∗M defined by (4.21) is called the Hamiltonian vector field
associated with the smooth function a ∈ C∞(T ∗M).
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From (4.19) we can easily write the coordinate expression of ~a for any arbitrary function a ∈
C∞(T ∗M)

~a =

n∑

i=1

∂a

∂pi

∂

∂xi
− ∂a

∂xi

∂

∂pi
. (4.22)

The following proposition gives the explicit form of the vector field V on T ∗M generating the flow
(P−1

0,t )
∗.

Proposition 4.10. Let X ∈ Vec(M) be complete and let P0,t = etX . The flow on T ∗M defined by
(P−1

0,t )
∗ = (e−tX)∗ is generated by the Hamiltonian vector field ~aX , where aX(λ) = 〈λ,X(q)〉 and

q = π(λ).

Proof. To prove that the generator V of (P−1
0,t )

∗ coincides with the vector field ~aX it is sufficient to
show that their action is the same. Indeed, by definition of Hamiltonian vector field, we have

~aX(α) = {aX , α} = Xα

~aX(aY ) = {aX , aY } = a[X,Y ].

Hence this action coincides with the action of V as in (4.6) and (4.7).

Remark 4.11. In coordinates (p, x) if the vector field X is written X =
∑n

i=1Xi
∂
∂xi

then aX(p, x) =∑n
i=1 piXi and the Hamitonian vector field ~aX is written as follows

~aX =
n∑

i=1

Xi
∂

∂xi
−

n∑

i,j=1

pi
∂Xi

∂xj

∂

∂pj
. (4.23)

Notice that the projection of ~aX onto M coincides with X itself, i.e., π∗(~aX) = X.

This construction can be extended to the case of nonautonomous vector fields.

Proposition 4.12. Let Xt be a nonautonomous vector field and denote by P0,t the flow of Xt on
M . Then the nonautonomous vector field on T ∗M

Vt :=
−→aXt , aXt(λ) = 〈λ,Xt(q)〉 ,

is the generator of the flow (P−1
0,t )

∗.

4.2 The symplectic structure

In this section we introduce the symplectic structure of T ∗M following the classical construction. In
subsection 4.2.1 we show that the symplectic form can be interpreted as the “dual” of the Poisson
bracket, in a suitable sense.

Definition 4.13. The tautological (or Liouville) 1-form s ∈ Λ1(T ∗M) is defined as follows:

s : λ 7→ sλ ∈ T ∗
λ (T

∗M), 〈sλ, w〉 := 〈λ, π∗w〉 , ∀λ ∈ T ∗M, w ∈ Tλ(T ∗M),

where π : T ∗M →M denotes the canonical projection.
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The name “tautological” comes from its expression in coordinates. Recall that, given a system
of coordinates x = (x1, . . . , xn) on M , canonical coordinates (p, x) on T ∗M are coordinates for
which every element λ ∈ T ∗M is written as follows

λ =
n∑

i=1

pidxi.

For every w ∈ Tλ(T ∗M) we have the following

w =

n∑

i=1

αi
∂

∂pi
+ βi

∂

∂xi
=⇒ π∗w =

n∑

i=1

βi
∂

∂xi
,

hence we get

〈sλ, w〉 = 〈λ, π∗w〉 =
n∑

i=1

piβi =

n∑

i=1

pi 〈dxi, w〉 =
〈

n∑

i=1

pidxi, w

〉
.

In other words the coordinate expression of the Liouville form s at the point λ coincides with the
one of λ itself, namely

sλ =

n∑

i=1

pidxi. (4.24)

Exercise 4.14. Let s ∈ Λ1(T ∗M) be the tautological form. Prove that

ω∗s = ω, ∀ω ∈ Λ1(M).

(Recall that a 1-form ω is a section of T ∗M , i.e. a map ω :M → T ∗M such that π ◦ ω = idM ).

Definition 4.15. The differential of the tautological 1-form σ := ds ∈ Λ2(T ∗M) is called the
canonical symplectic structure on T ∗M .

By construction σ is a closed 2-form on T ∗M . Moreover its expression in canonical coordinates
(p, x) shows immediately that is a nondegenerate two form

σ =

n∑

i=1

dpi ∧ dxi. (4.25)

Remark 4.16 (The symplectic form in non-canonical coordinates). Given a basis of 1-forms ω1, . . . , ωn
in Λ1(M), one can build coordinates on the fibers of T ∗M as follows.

Every λ ∈ T ∗M can be written uniquely as λ =
∑n

i=1 hiωi. Thus hi become coordinates on the
fibers. Notice that these coordinates are not related to any choice of coordinates on the manifold,
as the p were. By definition, in these coordinates, we have

s =

n∑

i=1

hiωi, σ = ds =

n∑

i=1

dhi ∧ ωi + hidωi. (4.26)

Notice that, with respect to (4.25) in the expression of σ an extra term appears since, in general,
the 1-forms ωi are not closed.
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4.2.1 The symplectic form vs the Poisson bracket

Let V be a finite dimensional vector space and V ∗ denotes its dual (i.e. the space of linear forms
on V ). By classical linear algebra arguments one has the following identifications

{
non degenerate

bilinear forms on V

}
≃
{
linear invertible maps

V → V ∗

}
≃
{

non degenerate
bilinear forms on V ∗

}
. (4.27)

Indeed to every bilinear form B : V × V → R we can associate a linear map L : V → V ∗ defined
by L(v) = B(v, ·). On the other hand, given a linear map L : V → V ∗, we can associate with it
a bilinear map B : V × V → R defined by B(v,w) = 〈L(v), w〉, where 〈·, ·〉 denotes as usual the
pairing between a vector space and its dual. Moreover B is non-degenerate if and only if the map
B(v, ·) is an isomorphism for every v ∈ V , that is if and only if L is invertible.

The previous argument shows how to identify a bilinear form on B on V with an invertible
linear map L from V to V ∗. Applying the same reasoning to the linear map L−1 one obtain a
bilinear map on V ∗.

Exercise 4.17. (a). Let h ∈ C∞(T ∗M). Prove that the Hamiltonian vector field ~h ∈ Vec(T ∗M)
satisfies the following identity

σ(·,~h(λ)) = dλh, ∀λ ∈ T ∗M.

(b). Prove that, for every λ ∈ T ∗M the bilinear forms σλ on Tλ(T
∗M) and {·, ·}λ on T ∗

λ (T
∗M) (cf.

Remark 4.7) are dual under the identification (4.27). In particular show that

{a, b} = ~a(b) = 〈db,~a〉 = σ(~a,~b), ∀ a, b ∈ C∞(T ∗M). (4.28)

Remark 4.18. Notice that σ is nondegenerate, which means that the map w 7→ σλ(·, w) defines a
linear isomorphism between the vector spaces Tλ(T

∗M) and T ∗
λ (T

∗M). Hence ~h is the vector field

canonically associated by the symplectic structure with the differential dh. For this reason ~h is also
called symplectic gradient of h.

From formula (4.25) we have that in canonical coordinates (p, x) the Hamiltonian vector filed
associated with h is expressed as follows

~h =

n∑

i=1

∂h

∂pi

∂

∂xi
− ∂h

∂xi

∂

∂pi
,

and the Hamiltonian system λ̇ = ~h(λ) is rewritten as





ẋi =
∂h

∂pi

ṗi = −
∂h

∂xi

, i = 1, . . . , n.

We conclude this section with two classical but rather important results:

Proposition 4.19. A function a ∈ C∞(T ∗M) is a constant of the motion of the Hamiltonian
system associated with h ∈ C∞(T ∗M) if and only if {h, a} = 0.
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Proof. Let us consider a solution λ(t) = et
~h(λ0) of the Hamiltonian system associated with ~h, with

λ0 ∈ T ∗M . From (4.28), we have the following formula for the derivative of the function a along
the solution

d

dt
a(λ(t)) = {h, a}(λ(t)). (4.29)

It is then easy to see that {h, a} = 0 if and only if the derivative of the function a along the flow
vanishes for all t, that is a is constant.

The skew-simmetry of the Poisson brackets immediately implies the following corollary.

Corollary 4.20. A function h ∈ C∞(T ∗M) is a constant of the motion of the Hamiltonian system
defined by ~h.

4.3 Characterization of normal and abnormal extremals

Now we can rewrite Theorem 3.53 using the symplectic language developed in the last section.

Given a sub-Riemannian structure on M with generating family {f1, . . . , fm}, and define the
fiberwise linear functions on T ∗M associated with these vector fields

hi : T
∗M → R, hi(λ) := 〈λ, fi(q)〉 , i = 1, . . . ,m.

Theorem 4.21 (Hamiltonian characterization of Pontryagin extremals). Let γ : [0, T ] → M be
an admissible curve which is a length-minimizer, parametrized by constant speed. Let u(·) be the
corresponding minimal control. Then there exists a Lipschitz curve λ(t) ∈ T ∗

γ(t)M such that

λ̇(t) =

m∑

i=1

ui(t)~hi(λ(t)), a.e. t ∈ [0, T ], (4.30)

and one of the following conditions is satisfied:

(N) hi(λ(t)) ≡ ui(t), i = 1, . . . ,m, ∀ t,

(A) hi(λ(t)) ≡ 0, i = 1, . . . ,m, ∀ t.

Moreover in case (A) one has λ(t) 6= 0 for all t ∈ [0, T ].

Proof. The statement is a rephrasing of Theorem 3.53, obtained by combining Proposition 4.10
and Exercise 4.12.

Notice that Theorem 4.21 says that normal and abnormal extremals appear as solution of an
Hamiltonian system. Nevertheless, this Hamiltonian system is non autonomous and depends on
the trajectory itself by the presence of the control u(t) associated with the extremal trajectory.

Moreover, the actual formulation of Theorem 4.21 for the necessary condition for optimality
still does not clarify if the extremals depend on the generating family {f1, . . . , fm} for the sub-
Riemannian structure. The rest of the section is devoted to the geometric intrinsic description of
normal and abnormal extremals.
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4.3.1 Normal extremals

In this section we show that normal extremals are characterized as solutions of a smooth au-
tonomous Hamiltonian system on T ∗M , where the Hamiltonian H is a function that encodes all
the informations on the sub-Riemannian structure.

Definition 4.22. Let M be a sub-Riemannian manifold. The sub-Riemannian Hamiltonian is the
function on T ∗M defined as follows

H : T ∗M → R, H(λ) = max
u∈Uq

(
〈λ, fu(q)〉 −

1

2
|u|2
)
, q = π(λ). (4.31)

Proposition 4.23. The sub-Riemannian Hamiltonian H is smooth and quadratic on fibers. More-
over, for every generating family {f1, . . . , fm} of the sub-Riemannian structure, the sub-Riemannian
Hamiltonian H is written as follows

H(λ) =
1

2

m∑

i=1

〈λ, fi(q)〉2 , λ ∈ T ∗
qM, q = π(λ). (4.32)

Proof. In terms of a generating family {f1, . . . , fm}, the sub-Riemannian Hamiltonian (4.31) is
written as follows

H(λ) = max
u∈Rm

(
m∑

i=1

ui 〈λ, fi(q)〉 −
1

2

m∑

i=1

u2i

)
. (4.33)

Differentiating (4.33) with respect to ui, one gets that the maximum in the r.h.s. is attained at
ui = 〈λ, fi(q)〉, from which formula (4.32) follows. The fact that H is smooth and quadratic on
fibers then easily follows from (4.32).

Exercise 4.24. Prove that two equivalent sub-Riemannian structures (U, f) and (U′, f ′) on a
manifold M define the same Hamiltonian.

Exercise 4.25. Consider the sub-Riemannian Hamiltonian H : T ∗M → R. Denote by Hq :
T ∗
qM → R its restriction on fiber and fix λ ∈ T ∗

qM . The differential dλHq : T
∗
qM → R is a linear

form, hence it can be canonically identified with an element of TqM .

(i) Prove that dλHq ∈ Dx for all λ ∈ T ∗
qM .

(ii) Prove that ‖dλHq‖2 = 2H(λ).

Hint: use that, if f1, . . . , fm is a generating frame, then

dλHq =
m∑

i=1

〈λ, fi(q)〉 fi(q).

Theorem 4.26. Every normal extremal is a solution of the Hamiltonian system λ̇(t) = ~H(λ(t)).
In particular, every normal extremal trajectory is smooth.
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Proof. Denoting, as usual, hi(λ) = 〈λ, fi(q)〉 for i = 1, . . . ,m, the functions linear on fibers associ-

ated with a generating family and using the identity
−→
h2i = 2hi~hi (see (4.12)), it follows that

~H =
1

2

−−−→
m∑

i=1

h2i =
m∑

i=1

hi~hi.

In particular, since along a normal extremal hi(λ(t)) = ui(t) by condition (N) of Theorem 4.21,
one gets

~H(λ(t)) =

m∑

i=1

hi(λ(t))~hi(λ(t)) =

m∑

i=1

ui(t)~hi(λ(t)).

Remark 4.27. In canonical coordinates λ = (p, x) in T ∗M , H is quadratic with respect to p and

H(p, x) =
1

2

m∑

i=1

〈p, fi(x)〉2 .

The Hamiltonian system associated with H, in these coordinates, is written as follows





ẋ =
∂H

∂p
=
∑m

i=1 〈p, fi(x)〉 fi(x)

ṗ = −∂H
∂x

= −∑m
i=1 〈p, fi(x)〉 〈p,Dxfi(x)〉

(4.34)

From here it is easy to see that if λ(t) = (p(t), x(t)) is a solution of (4.34) then also the rescaled
extremal αλ(αt) = (α p(αt), x(αt)) is a solution of the same Hamiltonian system, for every α > 0.

Lemma 4.28. Let λ(t) be an integral curve of the Hamiltonian vector field ~H and γ(t) = π(λ(t))
be the corresponding normal extremal trajectory. Then for all t ∈ [0, T ] one has

1

2
‖γ̇(t)‖2 = H(λ(t)).

Proof. Fix a generating frame f1, . . . , fm. Since λ(t) is a solution of the Hamiltonian system we
have

γ̇(t) =
m∑

i=1

〈λ(t), fi(γ(t))〉 fi(γ(t)) (4.35)

hence ui(t) = 〈λ(t), fi(γ(t)〉 defines a control for the curve γ. This control is indeed the minimal
one as it follows from Exercice 4.25 and

1

2
‖γ̇(t)‖2 = 1

2

m∑

i=1

ui(t)
2 =

1

2

m∑

i=1

〈λ(t), fi(γ(t))〉2 = H(λ(t)) (4.36)

Remark 4.29. Notice that from (4.35) it follows that if γ(t) is a normal extremal trajectory asso-
ciated with initial covector λ0 ∈ T ∗

q0M it follows that

γ̇(0) =

m∑

i=1

〈λ0, fi(q0)〉 fi(q0). (4.37)
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Corollary 4.30. A normal extremal trajectory is parametrized by constant speed. In particular it
is length parametrized if and only if its extremal lift is contained in the level set H−1(1/2).

Proof. The fact that H is constant along λ(t), easily implies by (4.36) that ‖γ̇(t)‖2 is constant.
Moreover one easily gets that ‖γ̇(t)‖ = 1 if and only if H(λ(t)) = 1/2.

Finally, by Remark 4.27, all normal extremal trajectories are reparametrization of length
parametrized ones.

Let λ(t) be a normal extremal such that λ(0) = λ0 ∈ T ∗
q0M . The corresponding normal extremal

trajectory γ(t) = π(λ(t)) can be written in the exponential notation

γ(t) = π ◦ et ~H(λ0).

By Corollary 4.30, length-parametrized normal extremal trajectories corresponds to the choice of
λ0 ∈ H−1(1/2).

We end this section by characterizing normal extremal trajectory as characteristic curves of the
canonical symplectic form contained in the level sets of H.

Definition 4.31. Let M be a smooth manifold and Ω ∈ ΛkM a 2-form. A Lipschitz curve
γ : [0, T ]→M is a characteristic curve for Ω if for almost every t ∈ [0, T ] it holds

γ̇(t) ∈ ker Ωγ(t), (i.e. Ωγ(t)(γ̇(t), ·) = 0) (4.38)

Notice that this notion is independent on the parametrization of the curve.

Proposition 4.32. Let H be the sub-Riemannian Hamiltonian and assume that c > 0 is a regular
value of H. Then a Lipschitz curve γ is a characteristic curve for σ|H−1(c) if and only if it is the
reparametrization of a normal extremal on H−1(c).

Proof. Recall that if c is a regular value of H, then the set H−1(c) is a smooth (2n−1)-dimensional
manifold in T ∗M (notice that by Sard Theorem almost every c > 0 is regular value for H).

For every λ ∈ H−1(c) let us denote by Eλ = TλH
−1(c) its tangent space at this point. Notice

that, by construction, Eλ is an hyperplane (i.e., dimEλ = 2n−1) and dλH
∣∣
Eλ

= 0. The restriction

σ|H−1(c) is computed by σλ|Eλ
, for each λ ∈ H−1(c).

One one hand kerσλ|Eλ
is non trivial since the dimension of Eλ is odd. On the other hand the

symplectic 2-form σ is nondegenerate on T ∗M , hence the dimension of ker σλ|Eλ
cannot be greater

than one. It follows that dimkerσλ|Eλ
= 1.

We are left to show that ker σλ|Eλ
= ~H(λ). Assume that ker σλ|Eλ

= Rξ, for some ξ ∈ Tλ(T ∗M).
By construction, Eλ coincides with the skew-orthogonal to ξ, namely

Eλ = ξ∠ = {w ∈ Tλ(T ∗M)) |σλ(ξ, w) = 0}.

Since, by skew-symmetry, σλ(ξ, ξ) = 0, it follows that ξ ∈ Eλ. Moreover, by definition of Hamilto-
nian vector field σ(·, ~H) = dH, hence for the restriction to Eλ one has

σλ(·, ~H(λ))
∣∣
Eλ

= dλH
∣∣
Eλ

= 0.

Exercise 4.33. Prove that if two smooth Hamiltonians h1, h2 : T ∗M → R define the same level
set, i.e. E = {h1 = c1} = {h2 = c2} for some c1, c2 ∈ R, then their Hamiltonian flow ~h1,~h2 coincide
on E, up to reparametrization.
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Exercise 4.34. The sub-Riemannian Hamiltonian H encodes all the information about the sub-
Riemannian structure.

(a) Prove that a vector v ∈ TqM is sub-unit, i.e., it satisfies v ∈ Dq and ‖v‖ ≤ 1 if and only if

1

2
|〈λ, v〉|2 ≤ H(λ), ∀λ ∈ T ∗

qM.

(b) Show that this implies the following characterization for the sub-Riemannian Hamiltonian

H(λ) =
1

2
‖λ‖2, ‖λ‖ = sup

v∈Dq ,|v|=1
|〈λ, v〉|.

When the structure is Riemannian, H is the “inverse” norm defined on the cotangent space.

4.3.2 Abnormal extremals

In this section we provide a geometric characterization of abnormal extremals. Even if for abnor-
mal extremals it is not possible to determine a priori their regularity, we show that they can be
characterized as characteristic curves of the symplectic form. This gives an unified point of view of
both class of extremals.

We recall that an abnormal extremal is a non zero solution of the following equations

λ̇(t) =

m∑

i=1

ui(t)~hi(λ(t)), hi(λ(t)) = 0, i = 1, . . . ,m.

where {f1, . . . , fm} is a generating family for the sub-Riemannian structure and h1, . . . , hm are
the corresponding functions on T ∗M linear on fibers. In particular every abnormal extremal is
contained in the set

H−1(0) = {λ ∈ T ∗M | 〈λ, fi(q)〉 = 0, i = 1, . . . ,m, q = π(λ)}. (4.39)

where H denotes the sub-Riemannian Hamiltonian (4.32).

Proposition 4.35. Let H be the sub-Riemannian Hamiltonian and assume that H−1(0) is a smooth
manifold. Then a Lipschitz curve γ is a characteristic curve for σ|H−1(0) if and only if it is the
reparametrization of a abnormal extremal on H−1(0).

Proof. In this proof we denote for simplicity N := H−1(0) ⊂ T ∗M . For every λ ∈ N we have the
identity

kerσλ|N = TλN
∠ = span{~hi(λ) | i = 1, . . . ,m}. (4.40)

Indeed, from the definition of N , it follows that

TλN = {w ∈ Tλ(T ∗M) | 〈dλhi, w〉 = 0, i = 1, . . . ,m}
= {w ∈ Tλ(T ∗M) |σ(w,~hi(λ)) = 0, i = 1, . . . ,m}
= span{~hi(λ) | i = 1, . . . ,m}∠.
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and (4.40) follows by taking the skew-orthogonal on both sides. Thus w ∈ TλH−1(0) if and only if
w is a linear combination of the vectors ~hi(λ). This implies that λ(t) is a characteristic curve for
σ|H−1(0) if and only if there exists controls ui(·) for i = 1, . . . ,m such that

λ̇(t) =
m∑

i=1

ui(t)~hi(λ(t)). (4.41)

Notice that 0 is never a regular value of H. Nevertheless, the following exercise shows that the
assumption of Proposition 4.35 is always satisfied in the case of a regular sub-Riemannian structure.

Exercise 4.36. Assume that the sub-Riemannian structure is regular , namely the following as-
sumption holds

dimDq = dim spanq{f1, . . . , fm} = const. (4.42)

Then prove that the set H−1(0) defined by (4.39) is a smooth submanifold of T ∗M .

Remark 4.37. From Proposition 4.35 it follows that abnormal extremals do not depend on the
sub-Riemannian metric, but only on the distribution. Indeed the set H−1(0) is characterized as
the annihilator D⊥ of the distribution

H−1(0) = {λ ∈ T ∗M | 〈λ, v〉 = 0, ∀ v ∈ Dπ(λ)} = D⊥ ⊂ T ∗M.

Here the orthogonal is meant in the duality sense.

Under the regularity assumption (4.42) we can select (at least locally) a basis of 1-forms
ω1, . . . , ωm for the dual of the distribution

D⊥
q = span{ωi(q) | i = 1, . . . ,m}, (4.43)

Let us complete this set of 1-forms to a basis ω1, . . . , ωn of T
∗M and consider the induced coordinates

h1, . . . , hn as defined in Remark 4.16. In these coordinates the restriction of the symplectic structure
D⊥ to is expressed as follows

σ|D⊥ = d(s|D⊥) =

m∑

i=1

dhi ∧ ωi + hidωi, (4.44)

We stress that the restriction σ|D⊥ can be written only in terms of the elements ω1, . . . , ωm (and
not of a full basis of 1-forms) since the differential d commutes with the restriction.

4.3.3 Example: codimension one distribution and contact distributions

Let M be a n-dimensional manifold endowed with a constant rank distribution D of codimension
one, i.e., dimDq = n− 1 for every q ∈M . In this case D and D⊥ are sub-bundles of TM and T ∗M
respectively and their dimension, as smooth manifolds, are

dim D = dimM + rankD = 2n− 1,

dim D⊥ = dimM + rankD⊥ = n+ 1.

Since the symplectic form σ is skew-symmetric, a dimensional argument implies that for n even,
the restriction σ|D⊥ has always a nontrivial kernel. Hence there always exist characteristic curves
of σ|D⊥ , that correspond to reparametrized abnormal extremals by Proposition 4.35.
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Let us consider in more detail the case n = 3. Assume that there exists a one form ω ∈ Λ1(M)
such that D = kerω (this is not restrictive for a local description). Consider a basis of one forms
ω0, ω1, ω2 such that ω0 := ω and the coordinates h0, h1, h2 associated to these forms (see Remark
4.16). By (4.44)

σ|D⊥ = dh0 ∧ ω + h0 dω, (4.45)

and we can easily compute (recall that D⊥ is 4-dimensional)

σ ∧ σ|D⊥ = 2h0 dh0 ∧ ω ∧ dω. (4.46)

Lemma 4.38. Let N be a smooth 2k-dimensional manifold and Ω ∈ Λ2M . Then Ω is nondegen-
erate on N if and only if ∧kΩ 6= 0.1

Definition 4.39. LetM be a three dimensional manifold. We say that a constant rank distribution
D = kerω on M of corank one is a contact distribution if ω ∧ dω 6= 0.

For a three dimensional manifold M endowed with a distribution D = kerω we define the
Martinet set as

M = {q ∈M | (ω ∧ dω)|q = 0} ⊂M.

Corollary 4.40. Under the previous assumptions all nontrivial abnormal extremal trajectories are
contained in the Martinet set M. In particular, if the structure is contact, there are no nontrivial
abnormal extremal trajectories.

Proof. By Proposition 4.35 any abnormal extremal λ(t) is a characteristic curve of σ|D⊥ . By Lemma
4.38 σ|D⊥ is degenerate if and only if σ ∧ σ|D⊥ = 0, which is in turn equivalent to ω ∧ dω = 0
thanks to (4.46) (notice that dh0 and ω ∧ dω are independent since they depend on coordinates on
the fibers and on the manifold, respectively).

This shows that, if γ(t) is an abnormal trajectory and λ(t) is the associated abnormal extremal,
then λ(t) is a characteristic curve of σ|D⊥ if and only if (ω ∧ dω)|γ(t) = 0, that is γ(t) ∈ M. By
definition of M it follows that, if D is contact, then M is empty.

Remark 4.41. Since M is three dimensional, we can write ω ∧ dω = adV where a ∈ C∞(M) and
dV is some smooth volume form on M , i.e., a never vanishing 3-form on M .

In particular the Martinet set is M = a−1(0) and the distribution is contact if and only if
the function a is never vanishing. When 0 is a regular value of a, the set a−1(0) defines a two
dimensional surface on M , called the Martinet surface. Notice that this condition is satisfied for a
generic choice of the (one form defining the) distribution.

Abnormal extremal trajectories are the horizontal curves that are contained in the Martinet
surface. When M is smooth, the intersection of the tangent bundle to the surface M and the
2-dimensional distribution of admissible velocities defines, generically, a line field on M. Abnormal
extremal trajectories coincide with the integral curves of this line field, up to a reparametrization.

1Here ∧kΩ = Ω ∧ . . . ∧ Ω
︸ ︷︷ ︸

k

.
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4.4 Examples

4.4.1 2D Riemannian Geometry

LetM be a 2-dimensional manifold and f1, f2 ∈ Vec(M) a local orthonormal frame for the Rieman-
nian structure. The problem of finding length-minimizers on M could be described as the optimal
control problem

q̇(t) = u1(t)f1(q(t)) + u2(t)f2(q(t)),

where length and energy are expressed as

ℓ(q(·)) =
∫ T

0

√
u1(t)2 + u2(t)2 dt, J(q(·)) = 1

2

∫ T

0

(
u1(t)

2 + u2(t)
2
)
dt.

Geodesics are projections of integral curves of the sub-Riemannian Hamiltonian in T ∗M

H(λ) =
1

2
(h1(λ)

2 + h2(λ)
2), hi(λ) = 〈λ, fi(q)〉 , i = 1, 2.

Since the vector fields f1 and f2 are linearly independent, the functions (h1, h2) defines a system of
coordinates on fibers of T ∗M . In what follows it is convenient to use (q, h1, h2) as coordinates on
T ∗M (even if coordinates on the manifold are not necessarily fixed).

Let us start by showing that there are no abnormal extremals. Indeed if λ(t) is an abnormal
extremal and γ(t) is the associated abnormal trajectory we have

〈λ(t), f1(γ(t))〉 = 〈λ(t), f2(γ(t))〉 = 0, ∀ t ∈ [0, T ], (4.47)

that implies that λ(t) = 0 for all t ∈ [0, T ] since {f1, f2} is a basis of the tangent space at every
point. This is a contradiction since λ(t) 6= 0 by Theorem 3.53.

Suppose now that λ(t) is a normal extremal. Then ui(t) = hi(λ(t)) and the equation on the
base is

q̇ = h1f1(q) + h2f2(q). (4.48)

For the equation on the fiber we have (remember that along solutions ȧ = {H, a})
{
ḣ1 = {H,h1} = −{h1, h2}h2
ḣ2 = {H,h2} = {h1, h2}h1.

(4.49)

From here one can see directly that H is constant along solutions. Indeed

Ḣ = h1ḣ1 + h2ḣ2 = 0.

If we require that extremals are parametrized by arclength u1(t)
2 + u2(t)

2 = 1 for a.e. t ∈ [0, T ],
we have

H(λ(t)) =
1

2
⇐⇒ h21(λ(t)) + h22(λ(t)) = 1.

It is then convenient to restrict to the spherical cotangent bundle S∗M (see Example 2.51) of
coordinates (q, θ), by setting

h1 = cos θ, h2 = sin θ.
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Let a1, a2 ∈ C∞(M) be such that
[f1, f2] = a1f1 + a2f2. (4.50)

Since {h1, h2}(λ) = 〈λ, [f1, f2]〉, we have {h1, h2} = a1h1 + a2h2 and equations (7.28) and (4.57)
are rewritten in (θ, q) coordinates

{
θ̇ = a1(q) cos θ + a2(q) sin θ

q̇ = cos θf1(q) + sin θf2(q)
(4.51)

In other words we are saying that an arc-length parametrized curve on M (i.e. a curve which
satisfies the second equation) is a geodesic if and only if it satisfies the first. Heuristically this
suggests that the quantity

θ̇ − a1(q) cos θ − a2(q) sin θ,
has some relation with the geodesic curvature on M .

Let µ1, µ2 the dual frame of f1, f2 (so that dV = µ1 ∧ µ2) and consider the Hamiltonian field in
these coordinates

~H = cos θf1 + sin θf2 + (a1 cos θ + a2 sin θ)∂θ. (4.52)

The Levi-Civita connection on M is expressed by some coefficients (see Chapter ??)

ω = dθ + b1µ1 + b2µ2,

where bi = bi(q). On the other hand geodesics are projections of integral curves of ~H so that

〈ω, ~H〉 = 0 =⇒ b1 = −a1, b2 = −a2.

In particular if we apply ω = dθ − a1µ1 − a2µ2 to a generic curve (not necessarily a geodesic)

λ = cos θf1 + sin θf2 + θ̇ ∂θ,

which projects on γ we find geodesic curvature

κg(γ) = θ̇ − a1(q) cos θ − a2(q) sin θ,

as we infer above. To end this section we prove a useful formula for the Gaussian curvature of M

Corollary 4.42. If κ denotes the Gaussian curvature of M we have

κ = f1(a2)− f2(a1)− a21 − a22.

Proof. From (1.58) we have dω = −κdV where dV = µ1 ∧ µ2 is the Riemannian volume form. On
the other hand, using the following identities

dµi = −aiµ1 ∧ µ2, dai = f1(ai)µ1 + f2(ai)µ2, i = 1, 2.

we can compute

dω = −da1 ∧ µ1 − da2 ∧ µ2 − a1dµ1 − a2dµ2
= −(f1(a2)− f2(a1)− a21 − a22)µ1 ∧ µ2.
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4.4.2 Isoperimetric problem

LetM be a 2-dimensional orientable Riemannian manifold and ν its Riemannian volume form. Fix
a smooth one-form A ∈ Λ1M and c ∈ R.

Problem 1. Fix c ∈ R and q0, q1 ∈M . Find, whenever it exists, the solution to

min

{
ℓ(γ) : γ(0) = q0, γ(T ) = q1,

∫

γ
A = c

}
. (4.53)

Remark 4.43. Minimizers depend only on dA, i.e., if we add an exact term to A we will find same
minima for the problem (with a different value of c).

Problem 1 can be reformulated as a sub-Riemannian problem on the extended manifold

M =M × R,

in the sense that solutions of the problem (4.53) turns to be length minimizers for a suitable
sub-Riemannian structure on M , that we are going to construct.

To every curve γ on M satisfying γ(0) = q0 and γ(T ) = q1 we can associate the function

z(t) =

∫

γ|[0,t]
A =

∫ t

0
A(γ̇(s))ds.

The curve ξ(t) = (γ(t), z(t)) defined on M satisfies ω(ξ̇(t)) = 0 where ω = dz −A is a one form on
M , since

ω(ξ̇(t)) = ż(t)−A(γ̇(t)) = 0.

Equivalently, ξ̇(t) ∈ Dξ(t) where D = kerω. We define a metric on D by defining the norm of

a vector v ∈ D as the Riemannian norm of its projection π̄∗v on M , where π̄ : M → M is the
canonical projection on the first factor. This endows M with a sub-Riemannian structure.

If we fix a local orthonormal frame f1, f2 for M , the pair (γ(t), z(t)) satisfies
(
γ̇
ż

)
= u1

(
f1
〈A, f1〉

)
+ u2

(
f2
〈A, f2〉

)
. (4.54)

Hence the two vector fields on M

F1 = f1 + 〈A, f1〉 ∂z, F2 = f2 + 〈A, f2〉 ∂z,

defines an orthonormal frame for the metric defined above on D = span(F1, F2). Problem 1 is then
equivalent to the following:

Problem 2. Fix c ∈ R and q0, q1 ∈M . Find, whenever it exists, the solution to

min
{
ℓ(ξ) : ξ(0) = (q0, 0), ξ(T ) = (q1, c), ξ̇(t) ∈ Dξ(t)

}
. (4.55)

Notice that, by construction, D is a distribution of constant rank (equal to 2) but is not
necessarily bracket-generating. Let us now compute normal and abnormal extremals associated
to the sub-Riemannian structure just introduced on M . In what follows we denote with hi(λ) =
〈λ, Fi(q)〉 the Hamiltonians linear on fibers of T ∗M .
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Normal extremals

Equations of normal extremals are projections of integral curves of the sub-Riemannian Hamiltonian
in T ∗M

H(λ) =
1

2
(h21(λ) + h22(λ)), hi(λ) = 〈λ, fi(q)〉 , i = 1, 2.

Let us introduce F0 = ∂z and h0(λ) = 〈λ, F0(q)〉. Since F1, F2 and F0 are linearly independent,
then (h1, h2, h0) defines a system of coordinates on fibers of T ∗M . In what follows it is convenient
to use (q, h1, h2, h0) as coordinates on T

∗M .

For a normal extremal we have ui(t) = hi(λ(t)) for i = 1, 2 and the equation on the base is

ξ̇ = h1F1(ξ) + h2F2(ξ). (4.56)

For the equation on the fibers we have (remember that along solutions ȧ = {H, a})




ḣ1 = {H,h1} = −{h1, h2}h2
ḣ2 = {H,h2} = {h1, h2}h1.
ḣ0 = {H,h0} = 0

(4.57)

If we require that extremals are parametrized by arclength we can restrict to the cylinder of the
cotangent bundle T ∗M defined by

h1 = cos θ, h2 = sin θ.

Let a1, a2 ∈ C∞(M) be such that

[f1, f2] = a1f1 + a2f2. (4.58)

Then

[F1, F2] = [f1 + 〈A, f1〉 ∂z, f2 + 〈A, f2〉 ∂z]
= [f1, f2] + (f1 〈A, f2〉 − f2 〈A, f1〉)∂z

(by (4.58)) = a1(F1 − 〈A, f1〉) + a2(F2 − 〈A, f2〉) + f1 〈A, f2〉 − f2 〈A, f1〉)∂z
= a1F1 + a2F2 + dA(f1, f2)∂z.

where in the last equality we use Cartan formula (cf. (4.77) for a proof). Let µ1, µ2 be the dual
forms to f1 and f2. Then ν = µ1 ∧ µ2 and we can write dA = bµ1 ∧ µ2, for a suitable function
b ∈ C∞(M). In this case

[F1, F2] = a1F1 + a2F2 + b∂z.

and

{h1, h2} = 〈λ, [F1, F2]〉 = a1h1 + a2h2 + bh0. (4.59)

With computations analogous to the 2D case we obtain the Hamiltonian system associated to H
in the (q, θ, h0) coordinates 




ξ̇ = cos θF1(ξ) + sin θF2(ξ)

θ̇ = a1 cos θ + a2 sin θ + bh0

ḣ0 = 0

(4.60)

115



In other words if q(t) = π̄(ξ(t)) is the projection of a normal extremal path onM (here π̄ :M →M),
its geodesic curvature

κg(q(t)) = θ̇(t)− a1(q(t)) cos θ(t)− a2(q(t)) sin θ(t) (4.61)

satisfies
κg(q(t)) = b(q(t))h0. (4.62)

Namely, projections onM of normal extremal paths are curves with geodesic curvature proportional
to the function b at every point. The case b equal to constant is treated in the example of Section
4.4.3.

Abnormal extremals

We prove the following characterization of abnormal extremal

Lemma 4.44. Abnormal extremal trajectories are contained in the Martinet set M = {b = 0}.

Proof. Assume that λ(t) is an abnormal extremal whose projection is a curve ξ(t) = π(λ(t)) that
is not reduced to a point. Then we have

h1(λ(t)) = 〈λ(t), F1(ξ(t))〉 = 0, h2(λ(t)) = 〈λ(t), F2(ξ(t))〉 = 0, ∀ t ∈ [0, T ], (4.63)

We can differentiate the two equalities with respect to t ∈ [0, T ] and we get

d

dt
h1(λ(t)) = u2(t){h1, h2}|λ(t) = 0

d

dt
h2(λ(t)) = −u1(t){h1, h2}|λ(t) = 0

Since the pair (u1(t), u2(t)) 6= (0, 0) we have that {h1, h2}|λ(t) = 0 that implies

0 = 〈λ(t), [F1, F2](ξ(t))〉 = b(ξ(t))h0, (4.64)

where in the last equality we used (4.59) and the fact that h1(λ(t)) = h2(λ(t)) = 0. Recall that
h0 6= 0 otherwise the covector is identically zero (that is not possible for abnormals), then b(ξ(t)) = 0
for all t ∈ [0, T ].

The last result shows that abnormal extremal trajectories are forced to live in connected com-
ponents of b−1(0).

Exercise 4.45. Prove that the set b−1(0) is independent on the Riemannian metric chosen on M
(and the corresponding sub-Riemannian metric defined on D).

4.4.3 Heisenberg group

The Heisenberg group is a basic example in sub-Riemannian geometry. It is the sub-Riemannian
structure defined by the isoperimetric problem in M = R2 = {(x, y)} endowed with its Euclidean
scalar product and the 1-form (cf. previous section)

A =
1

2
(xdy − ydx).
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Notice that dA = dx ∧ dy defines the area form on R2, hence b ≡ 1 in this case. On the extended
manifold M = R3 = {(x, y, z)} the one-form ω is written as

ω = dz − 1

2
(xdy − ydx)

Following the notation of the previous paragraph we can choose as an orthonormal frame for R2

the frame f1 = ∂x and f2 = ∂y. This induced the choice

F1 = ∂x −
y

2
∂z, F2 = ∂y +

x

2
∂z.

for the orthonormal frame on D = kerω. Notice that [F1, F2] = ∂z, that implies that D is bracket-
generating at every point. Defining F0 = ∂z and hi = 〈λ, Fi(q)〉 for i = 0, 1, 2, the Hamiltonians
linear on fibers of T ∗M , we have

{h1, h2} = h0,

hence the equation (4.60) for normal extremals become




q̇ = cos θF1(q) + sin θF2(q)

θ̇ = h0

ḣ0 = 0

(4.65)

It follows that the two last equation can be immediately solved
{
θ(t) = θ0 + h0t

h0(t) = h0
(4.66)

Moreover {
h1(t) = cos(θ0 + h0t)

h2(t) = sin(θ0 + h0t)
(4.67)

From these formulas and the explicit expression of F1 and F2 it is immediate to recover the normal
extremal trajectories starting from the origin (x0 = y0 = z0 = 0) in the case h0 6= 0

x(t) =
1

h0
(sin(θ0 + h0t)− sin(θ0)) y(t) =

1

h0
(cos(θ0 + h0t)− cos(θ0)) (4.68)

and the vertical coordinate z is computed as the integral

z(t) =
1

2

∫ t

0
x(t)y′(t)− y(t)x′(t)dt = 1

2h20
(h0t− sin(h0t))

When h0 = 0 the curve is simply a straight line

x(t) = sin(θ0)t y(t) = cos(θ0)t z(t) = 0 (4.69)

Notice that, as we know from the results of the previous paragraph, normal extremal trajectories
are curves whose projection on R2 = {(x, y)} has constant geodesic curvature, i.e., straight lines
or circles on R2 (that correspond to horizontal lines and helix on M). There are no non trivial
abnormal geodesics since b = 1.

Remark 4.46. This sub-Riemannian structure on R3 is called Heisenberg group since it can be seen
as a left-invariant structure on a Lie group, as explained in Section 7.5.
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4.5 Lie derivative

In this section we extend the notion of Lie derivative, already introduced for vector fields in Section
3.2, to differential forms. Recall that if X,Y ∈ Vec(M) are two vector fields we define

LXY = [X,Y ] =
d

dt

∣∣∣∣
t=0

e−tX∗ Y.

If P : M →M is a diffeomorphism we can consider the pullback P ∗ : T ∗
P (q)M → T ∗

qM and extend

its action to k-forms. Let ω ∈ ΛkM , we define P ∗ω ∈ ΛkM in the following way:

(P ∗ω)q(ξ1, . . . , ξk) := ωP (q)(P∗ξ1, . . . , P∗ξk), q ∈M, ξi ∈ TqM. (4.70)

It is an easy check that this operation is linear and satisfies the two following properties

P ∗(ω1 ∧ ω2) = P ∗ω1 ∧ P ∗ω2, (4.71)

P ∗ ◦ d = d ◦ P ∗. (4.72)

Definition 4.47. Let X ∈ Vec(M) and ω ∈ ΛkM , where k ≥ 0. We define the Lie derivative of ω
with respect to X as

LX : ΛkM → ΛkM, LXω =
d

dt

∣∣∣∣
t=0

(etX)∗ω. (4.73)

When k = 0 this definition recovers the Lie derivative of smooth functions LXf = Xf , for
f ∈ C∞(M). From (4.71) and (4.72), we easily deduce the following properties of the Lie derivative:

(i) LX(ω1 ∧ ω2) = (LXω1) ∧ ω2 + ω1 ∧ (LXω2),

(ii) LX ◦ d = d ◦ LX .

The first of these properties can be also expressed by saying that LX is a derivation of the exterior
algebra of k-forms.

The Lie derivative combines together a k-form and a vector field defining a new k-form. A second
way of combining these two object is to define their inner product, by defining a (k − 1)-form.

Definition 4.48. Let X ∈ Vec(M) and ω ∈ ΛkM , with k ≥ 1. We define the inner product of ω
and X as the operator iX : ΛkM → Λk−1M , where we set

(iXω)(Y1, . . . , Yk−1) := ω(X,Y1, . . . , Yk−1), Yi ∈ Vec(M). (4.74)

One can show that the operator iX is an anti-derivation, in the following sense:

iX(ω1 ∧ ω2) = (iXω1) ∧ ω2 + (−1)k1ω1 ∧ (iXω2), ωi ∈ ΛkiM, i = 1, 2. (4.75)

We end this section proving two classical formulas linking together these notions, and usually
referred as Cartan’s formulas.

Proposition 4.49 (Cartan’s formula). The following identity holds true

LX = iX ◦ d+ d ◦ iX . (4.76)

118



Proof. Define DX := iX ◦ d+ d ◦ iX . It is easy to check that DX is a derivation on the algebra of
k-forms, since iX and d are anti-derivations. Let us show that DX commutes with d. Indeed, using
that d2 = 0, one gets

d ◦DX = d ◦ iX ◦ d = DX ◦ d.
Since any k-form can be expressed in coordinates as ω =

∑
ωi1...ikdxi1 . . . dxik , it is sufficient to

prove that LX coincide with DX on functions. This last property is easily checked by

DXf = iX(df) + d(iXf)︸ ︷︷ ︸
=0

= 〈df,X〉 = Xf = LXf.

Corollary 4.50. Let X,Y ∈ Vec(M) and ω ∈ Λ1M , then

dω(X,Y ) = X 〈ω, Y 〉 − Y 〈ω,X〉 − 〈ω, [X,Y ]〉 . (4.77)

Proof. On one hand Definition 4.47 implies, by Leibnitz rule

〈LXω, Y 〉q =
d

dt

∣∣∣∣
t=0

〈
(etX )∗ω, Y

〉
q

=
d

dt

∣∣∣∣
t=0

〈
ω, etX∗ Y

〉
etX(q)

= X 〈ω, Y 〉 − 〈ω, [X,Y ]〉 .

On the other hand, Cartan’s formula (4.76) gives

〈LXω, Y 〉 = 〈iX(dω), Y 〉+ 〈d(iXω), Y 〉
= dω(X,Y ) + Y 〈ω,X〉 .

Comparing the two identities one gets (4.77).

4.6 Symplectic geometry

In this section we generalize some of the constructions we considered on the cotangent bundle T ∗M
to the case of a general symplectic manifold.

Definition 4.51. A symplectic manifold (N,σ) is a smooth manifold N endowed with a closed,
non degenerate 2-form σ ∈ Λ2(N). A symplectomorphism of N is a diffeomorphism φ : N → N
such that φ∗σ = σ.

Notice that a symplectic manifold N is necessarily even-dimensional. We stress that, in general,
the symplectic form σ is not exact, as in the case of N = T ∗M .

The symplectic structure on a symplectic manifold N permits us to define the Hamiltonian
vector field ~h ∈ Vec(N) associated with a function h ∈ C∞(N) by the formula i~hσ = −dh, or
equivalently σ(·,~h) = dh.

Proposition 4.52. A diffeomorphism φ : N → N is a symplectomorphism if and only if for every
h ∈ C∞(N):

(φ−1
∗ )~h =

−−−→
h ◦ φ. (4.78)
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Proof. Assume that φ is a symplectomorphism, namely φ∗σ = σ. More precisely, this means that
for every λ ∈ N and every v,w ∈ TλN one has

σλ(v,w) = (φ∗σ)λ(v,w) = σφ(λ)(φ∗v, φ∗w),

where the second equality is the definition of φ∗σ. If we apply the above equality at w = φ−1
∗ ~h one

gets, for every λ ∈ N and v ∈ TλN

σλ(v, φ
−1
∗ ~h) = (φ∗σ)λ(v, φ

−1
∗ ~h) = σφ(λ)(φ∗v,~h)

=
〈
dφ(λ)h, φ∗v

〉
=
〈
φ∗dφ(λ)h, v

〉
.

= 〈d(h ◦ φ), v〉

This shows that σλ(·, φ−1
∗ ~h) = d(h◦φ), that is (4.78). The converse implication follows analogously.

Next we want to characterize those vector fields whose flow generates a one-parametric family
of symplectomorphisms.

Lemma 4.53. Let X ∈ Vec(N) be a complete vector field on a symplectic manifold (N,σ). The
following properties are equivalent

(i) (etX )∗σ = σ for every t ∈ R,

(ii) LXσ = 0,

(iii) iXσ is a closed 1-form on N .

Proof. By the group property e(t+s)X = etX ◦ esX one has the following identity for every t ∈ R:

d

dt
(etX )∗σ =

d

ds

∣∣∣∣
s=0

(etX)∗(esX)∗σ = (etX )∗LXσ.

This proves the equivalence between (i) and (ii), since the map (etX )∗ is invertible for every t ∈ R.
Recall now that the symplectic form σ is, by definition, a closed form. Then dσ = 0 and

Cartan’s formula (4.76) reads as follows

LXσ = d(iXσ) + iX(dσ) = d(iXσ),

which proves the the equivalence between (ii) and (iii).

Corollary 4.54. The flow of a Hamiltonian vector field defines a flow of symplectomorphisms.

Proof. This is a direct consequence of the fact that, for an Hamitonian vector field ~h, one has
i~hσ = −dh. Hence i~hσ is a cloded form (actually exact) and property (iii) of Lemma 4.53 holds.

Notice that the converse of Corollary 4.54 is true when N is simply connected, since in this case
every closed form is exact.

Definition 4.55. Let (N,σ) be a symplectic manifold and a, b ∈ C∞(N). The Poisson bracket
between a and b is defined as {a, b} = σ(~a,~b).
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We end this section by collecting some properties of the Poisson bracket that follow from the
previous results.

Proposition 4.56. The Poisson bracket satisfies the identities

(i) {a, b} ◦ φ = {a ◦ φ, b ◦ φ}, ∀ a, b ∈ C∞(N),∀φ ∈ Sympl(N),

(ii) {a, {b, c}} + {c, {a, b}} + {b, {c, a}} = 0, ∀ a, b, c ∈ C∞(N).

Proof. Property (i) follows from (4.78). Property (ii) follows by considering φ = et~c in (i), for some
c ∈ C∞(N),. and computing the derivative with respect to t at t = 0.

Corollary 4.57. For every a, b ∈ C∞(N) we have

−−−→{a, b} = [~a,~b]. (4.79)

Proof. Property (ii) of Proposition 4.56 can be rewritten, by skew-symmetry of the Poisson bracket,
as follows

{{a, b}, c} = {a, {b, c}} − {b, {a, c}}. (4.80)

Using that {a, b} = σ(~a,~b) = ~ab one rewrite (4.80) as

−−−→{a, b}c = ~a(~bc)−~b(~ac) = [~a,~b]c.

Remark 4.58. Property (ii) of Proposition 4.56 says that {a, ·} is a derivation of the algebra C∞(N).
Moreover, the space C∞(N) endowed with {·, ·} as a product is a Lie algebra isomorphic to a sub-
algebra of Vec(N). Indeed, by (4.79), the correspondence a 7→ ~a is a Lie algebra homomorphism
between C∞(N) and Vec(N).

4.7 Local minimality of normal trajectories

In this section we prove a fundamental result about local optimality of normal trajectories. More
precisely we show small pieces of a normal trajectory are length minimizers.

4.7.1 The Poincaré-Cartan one form

Fix a smooth function a ∈ C∞(M) and consider the smooth submanifold of T ∗M defined by the
graph of its differential

L0 = {dqa | q ∈M} ⊂ T ∗M. (4.81)

Notice that the restriction of the canonical projection π : T ∗M →M to L0 defines a diffeomorphism
between L0 and M , hence dimL0 = n. Assume that the Hamiltonian flow is complete and consider
the image of L0 under the Hamiltonian flow

Lt := et
~H(L0), t ∈ [0, T ]. (4.82)

Define the (n+ 1)-dimensional manifold with boundary in R× T ∗M as follows

L = {(t, λ) ∈ R× T ∗M |λ ∈ Lt, 0 ≤ t ≤ T} (4.83)

= {(t, et ~Hλ0) ∈ R× T ∗M |λ0 ∈ L0, 0 ≤ t ≤ T}. (4.84)
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Finally, let us introduce the Poincaré-Cartan 1-form on T ∗M × R ≃ T ∗(M × R) defined by

s−Hdt ∈ Λ1(T ∗M × R)

where s ∈ Λ1(T ∗M) denotes, as usual, the tautological 1-form of T ∗M . We start by proving a
preliminary lemma.

Lemma 4.59. s|L0 = d(a ◦ π)|L0

Proof. By definition of tautological 1-form sλ(w) = 〈λ, π∗w〉, for every w ∈ Tλ(T ∗M). If λ ∈ L0
then λ = dqa, where q = π(λ). Hence for every w ∈ Tλ(T ∗M)

sλ(w) = 〈λ, π∗w〉 = 〈dqa, π∗w〉 = 〈π∗dqa,w〉 = 〈dq(a ◦ π), w〉 .

Proposition 4.60. The 1-form (s−Hdt)|L is exact.

Proof. We divide the proof in two steps: (i) we show that the restriction of the Poincare-Cartan
1-form (s−Hdt)|L is closed and (ii) that it is exact.

(i). To prove that the 1-form is closed we need to show that the differential

d(s −Hdt) = σ − dH ∧ dt, (4.85)

vanishes when applied to every pair of tangent vectors to L. Since, for each t ∈ [0, T ], the set Lt
has codimension 1 in L, there are only two possibilities for the choice of the two tangent vectors:

(a) both vectors are tangent to Lt, for some t ∈ [0, T ].

(b) one vector is tangent to Lt while the second one is transversal.

Case (a). Since both tangent vectors are tangent to Lt, it is enough to show that the restriction of
the one form σ− dH ∧ dt to Lt is zero. First let us notice that dt vanishes when applied to tangent

vectors to Lt, thus σ − dH ∧ dt|Lt = σ|Lt . Moreover, since by definition Lt = et
~H(L0) one has

σ|Lt = σ|
et ~H (L0)

= (et
~H )∗σ|L0 = σ|L0 = ds|L0 = d2(a ◦ π)|L0 = 0.

where in the last line we used Lemma 4.59 and the fact that (et
~H)∗σ = σ, since et

~H is an Hamiltonian
flow and thus preserves the symplectic form.
Case (b). The manifold L is, by construction, the image of the smooth mapping

Ψ : [0, T ]× L0 → [0, T ]× T ∗M, Ψ(t, λ) 7→ (t, et
~Hλ),

Thus a tangent vector to L that is transversal to Lt can be obtained by differentiating the map Ψ
with respect to t:

∂Ψ

∂t
(t, λ) =

∂

∂t
+ ~H(λ) ∈ T(t,λ)L. (4.86)

It is then sufficient to show that the vector (4.86) is in the kernel of the two form σ − dH ∧ dt. In
other words we have to prove

i∂t+ ~H(σ − dH ∧ dt) = 0. (4.87)
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The last equality is a consequence of the following identities

i ~Hσ = σ( ~H, ·) = −dH, i∂tσ = 0,

i ~H(dH ∧ dt) = (i ~HdH︸ ︷︷ ︸
=0

) ∧ dt− dH ∧ (i ~Hdt︸︷︷︸
=0

) = 0,

i∂t(dH ∧ dt) = (i∂tdH︸ ︷︷ ︸
=0

) ∧ dt− dH ∧ (i∂tdt︸︷︷︸
=1

) = −dH.

where we used that i ~HdH = dH( ~H) = {H,H} = 0.
(ii). Next we show that the form s − Hdt|L is exact. To this aim we have to prove that, for

every closed curve Γ in L one has ∫

Γ
s−Hdt = 0. (4.88)

Every curve Γ in L can be written as follows

Γ : [0, T ]→ L, Γ(s) = (t(s), et(s)
~Hλ(s)), where λ(s) ∈ L0.

Moreover, it is easy to see that the continuous map defined by

K : [0, T ] ×L → L, K(τ, (t, et
~Hλ0)) = (t− τ, e(t−τ) ~Hλ0)

defines an homotopy of L such that K(0, (t, et
~Hλ0)) = (t, et

~Hλ0) and K(t, (t, et
~Hλ0)) = (0, λ0).

Then the curve Γ is homotopic to the curve Γ0(s) = (0, λ(s)). Since the 1-form s−Hdt is closed,
the integral is invariant under homotopy, namely

∫

Γ
s−Hdt =

∫

Γ0

s−Hdt.

Moreover, the integral over Γ0 is computed as follows (recall that Γ0 ⊂ L0 and dt = 0 on L0):
∫

Γ0

s−Hdt =
∫

Γ0

s =

∫

Γ0

d(a ◦ π) = 0,

where we used Lemma 4.59 and the fact that the integral of an exact form over a closed curve is
zero. Then (4.88) follows.

4.7.2 Normal trajectories are geodesics

Now we are ready to prove a sufficient condition that ensures the optimality of small pieces of normal
trajectories. As a corollary we will get that small pieces of normal trajectories are geodesics.

Recall that normal trajectories for the problem

q̇ = fu(q) =
m∑

i=1

uifi(q), (4.89)

where f1, . . . , fm is a generating family for the sub-Riemannian structure are projections of integral
curves of the Hamiltonian vector fields associated with the sub-Riemannian Hamiltonian

λ̇(t) = ~H(λ(t)), (i.e. λ(t) = et
~H(λ0)), (4.90)

γ(t) = π(λ(t)), t ∈ [0, T ]. (4.91)
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where

H(λ) = max
u∈Uq

{
〈λ, fu(q)〉 −

1

2
|u|2
}

=
1

2

m∑

i=1

〈λ, fi(q)〉2 . (4.92)

Recall that, given a smooth function a ∈ C∞(M), we can consider the image of its differential
L0 and its evolution Lt under the Hamiltonian flow associated to H as is (4.81) and (4.82).

Theorem 4.61. Assume that there exists a ∈ C∞(M) such that the restriction of the projection
π|Lt is a diffeomorphism for every t ∈ [0, T ]. Then for any λ0 ∈ L0 the normal geodesic

γ(t) = π ◦ et ~H(λ0), t ∈ [0, T ], (4.93)

is a strict length-minimizer among all admissible curves γ with the same boundary conditions.

Proof. Let γ(t) be an admissible trajectory, different from γ(t), associated with the control u(t)
and such that γ(0) = γ(0) and γ(T ) = γ(T ). We denote by u(t) the control associated with the
curve γ(t).

By assumption, for every t ∈ [0, T ] the map π|Lt : Lt → M is a local diffeomorphism, thus the
trajectory γ(t) can be uniquely lifted to a smooth curve λ(t) ∈ Lt. Notice that the corresponding
curves Γ and Γ in L defined by

Γ(t) = (t, λ(t)), Γ(t) = (t, λ(t)) (4.94)

have the same boundary conditions, since for t = 0 and t = T they project to the same base point
on M and their lift is uniquely determined by the diffeomorphisms π|L0 and π|LT

, respectively.

Recall now that, by definition of the sub-Riemannian Hamiltonian, we have

H(λ(t)) ≥
〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2, γ(t) = π(λ(t)), (4.95)

where λ(t) is a lift of the trajectory γ(t) associated with a control u(t). Moreover, the equality
holds in (4.95) if and only if λ(t) is a solution of the Hamiltonian system λ̇(t) = ~H(λ(t)). For this
reason we have the relations

H(λ(t)) >
〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2, (4.96)

H(λ(t)) =
〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2. (4.97)

since λ(t) is a solution of the Hamiltonian equation by assumptions, while λ(t) is not. Indeed
λ(t) and λ(t) have the same initial condition, hence, by uniqueness of the solution of the Cauchy
problem, it follows that λ̇(t) = ~H(λ(t)) if and only if λ(t) = λ(t), that implies that γ(t) = γ(t).

Let us then show that the energy associated with the curve γ is bigger than the one of the curve
γ. Actually we prove the following chain of (in)equalities

1

2

∫ T

0
|u(t)|2dt =

∫

Γ
s−Hdt =

∫

Γ
s−Hdt < 1

2

∫ T

0
|u(t)|2dt, (4.98)

where Γ and Γ are the curves in L defined in (4.94).
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By Lemma 4.60, the 1-form s − Hdt is exact. Then the integral over the closed curve Γ ∪ Γ
vanishes, and one gets ∫

Γ
s−Hdt =

∫

Γ
s−Hdt.

The last inequality in (4.98) can be proved as follows

∫

Γ
s−Hdt =

∫ T

0
〈λ(t), γ̇(t)〉 −H(λ(t))dt

=

∫ T

0

〈
λ(t), fu(t)(γ(t))

〉
−H(λ(t))dt

<

∫ T

0

〈
λ(t), fu(t)(γ(t))

〉
−
(〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2

)
dt (4.99)

=
1

2

∫ T

0
|u(t)|2dt.

where we used (4.96). A similar computation, using (4.97), gives

∫

Γ
s−Hdt = 1

2

∫ T

0
|u(t)|2dt, (4.100)

that ends the proof of (4.98).

As a corollary we state a local version of the same theorem, that can be proved by adapting
the above technique.

Corollary 4.62. Assume that there exists a ∈ C∞(M) and neighborhoods Ωt of γ(t), such that

π ◦ et ~H ◦ da|Ω0 : Ω0 → Ωt is a diffeomorphism for every t ∈ [0, T ]. Then (4.93) is a strict
length-minimizer among all admissible trajectories γ with same boundary conditions and such that
γ(t) ∈ Ωt for all t ∈ [0, T ].

We are in position to prove that small pieces of normal trajectories are global length-minimizers.

Theorem 4.63. Let γ : [0, T ] → M be a sub-Riemannian normal trajectory. Then for every
τ ∈ [0, T [ there exists ε > 0 such that

(i) γ|[τ,τ+ε] is a length-minimizer, i.e., d(γ(τ), γ(τ + ε)) = ℓ(γ|[τ,τ+ε]).

(ii) γ|[τ,τ+ε] is the unique length-minimizer joining γ(τ) and γ(τ + ε), up to reparametrization.

Proof. Without loss of generality we can assume that the curve is parametrized by length and prove

the theorem for τ = 0. Let γ(t) be a normal extremal trajectory, such that γ(t) = π(et
~H (λ0)), for

t ∈ [0, T ]. Consider a smooth function a ∈ C∞(M) such that dqa = λ0 and let Lt be the family of
submanifold of T ∗M associated with this function by (4.81) and (4.82). By construction, for the

extremal lift associated with γ one has λ(t) = et
~H(λ0) ∈ Lt for all t. Moreover the projection π

∣∣
L0

is a diffeomorphism, since L0 is a section of T ∗M .
Fix a compact K ⊂M containing the curve γ and consider the restriction πt,K : Lt∩π−1(K)→

K of the map π
∣∣
Lt
. By continuity there exists t0 = t0(K) such that πt,K is a diffeomorphism, for
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all 0 ≤ t < t0. Let us now denote δK > 0 the constant defined in Lemma 3.34 such that every curve
starting from γ(0) and leaving K is necessary longer than δK .

Then, defining ε = ε(K) := min{δK , t0(K)}, we have that the curve γ|[0,ε] is contained in K
and is shorter than any other curve contained in K with the same boundary condition by Corollary
4.62 (applied to Ωt = K for all t ∈ [0, T ]). Moreover ℓ(γ|[0,ε]) = ε since γ is length parametrized,
hence it is shorter than any admissible curve that is not contained in K. Thus γ|[0,ε] is a global
minimizer. Moreover it is unique up to reparametrization by uniqueness of the solution of the
Hamiltonian equation (see proof of Theorem 4.61).

Remark 4.64. When Dq0 = Tq0M , as it is the case for a Riemannian structure, the level set of the
Hamiltonian

{H = 1/2} = {λ ∈ T ∗
q0M |H(λ) = 1/2},

is diffeomorphic to an ellipsoid, hence compact. Under this assumption, for each λ0 ∈ {H = 1/2},
the corresponding geodesic γ(t) = π(et

~H(λ0)) is optimal up to a time ε = ε(λ0), with λ0 belonging
to a compact set. It follows that it is possible to find a common ε > 0 (depending only on q0) such
that each normal trajectory with base point q0 is optimal on the interval [0, ε].

It can be proved that this is false as soon as Dq0 6= Tq0M . Indeed in this case, for every ε > 0
there exists a normal extremal path that lose optimality in time ε, see Theorem 12.17.

Bibliographical notes

The Hamiltonian approach to sub-Riemannian geometry is nowadays classical. However the con-
struction of the symplectic structure, obtained by extending the Poisson bracket from the space of
affine functions, is not standard and is inspired by [?].

Historically, in the setting of PDE, the sub-Riemannian distance (also called Carnot-Carathéodory
distance) is introduced by means of sub-unit curves, see for instance [45] and references therein.
The link between the two definition is clarified in Exercice 4.34

The proof that normal extremal are geodesics is an adaptation of a more general condition for
optimality given in [8] for a more general class of problems. This is inspired by the classical idea
of “fields of extremals” in classical Calculus of Variation.
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Chapter 5

Integrable systems

In this chapter we present some applications of the Hamiltonian formalism developed in the previous
chapter. In particular we give a proof the well-known Arnold-Liouville’s Theorem and, as an
application, we study the complete integrability of the geodesic flow on a special class of Riemannian
manifolds.

More examples of sub-Riemannian completely integrable systems, together with a proof that
all left-invariant sub-Riemannian geodesic flows on 3D Lie groups are completely integrable, are
presented in Chapter 13.

5.1 Reduction of Hamiltonian systems with symmetries

Recall that a symplectic manifold (N,σ) is a smooth manifold wendowed with a closed non-
degenerate two-form σ (cf. Section 4.6). Fix a smooth Hamiltonian h : N → R.

Definition 5.1. A first integral for the Hamiltonian system defined by h is any smooth function
g : N → R such that {h, g} = 0.

Recall that by definition {h, g} = ~h(g) = −~g(h), hence, if g is a first integral for the Hamiltonian
system defined by h, we have

d

dt
h ◦ et~g = 0. (5.1)

namely, h is preserved along the flow of ~g.

We want to show that the existence of a first integral for the Hamiltonian flow generated by
h permits to define a reduction of the symplectic space and to reduce to 2n − 2 dimensions. The
construction of the reduction is local, in general.

Fix a regular level set Ng,c = {x ∈ N | g(x) = c} of the function g. This means that dxg 6= 0
for every x ∈ Ng,c. Fix a point x0 in the level set and a neighborhood U of x0 such that ~g(x) 6= 0
for x ∈ U . Notice that this is possible since dx0g = σ(·, ~g(x0)) with dx0g 6= 0 and σ non-degenerate.
By continuity this holds in a neighborhood U .

The set Ng,c has the structure of smooth manifold of dimension 2n−1. Being odd dimensional,
the restriction of the symplectic form to the tangent space to its tangent space TxNg,c is necessarily
degenerate, and its kernel is one dimensional. Indeed, following the same arguments as in the proof
of Proposition 4.32, we have that

kerσ|TxNg,c = ~g(x)
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and integral curves of ~g are tangent to the level set Ng,c. This is saying that the flow of ~g is well
defined on the level set.

Consider then the quotient

N/∼ := {x ∈ U ∩Ng,c | x1 ∼ x2 if x2 = es~g(x1), s ∈ R, ∪t∈[0,s]et~g(x1) ⊂ U}.
In other words N/∼ is the set of orbits of the one parametric group {es~g}s∈R contained in the fixed
level set Ng,c of g (and not leaving U). Under our assumptions, the quotient has the structure of
smooth manifold of dimension 2n−2. To build a chart close to a point [x0] ∈ N/∼ (with x0 ∈ Ng,c)
it is enough to find an hypersurface N ′

g,c ⊂ Ng,c passing through x0 and transversal to the orbit
itself, namely

Tx0Ng,c = Tx0N
′
g,c ⊕ ~g(x0)

Then local coordinates on N ′
g,c, which has dimension 2n− 2, induces local coordinates on N/∼.

The construction of the above quotient is classical (see for instance [9]). The restriction of the
symplectic structure σ to the quotient N/∼ is necessarily non-degenerate (since σ is non-degenerate
on the whole space N), hence gives to N/∼ the structure of symplectic space.

Coming back to the original Hamiltonian h in involution with g, we have that ~h is indeed well
defined on the quotient. Indeed since {h, g} = 0 we have, for every t, s such that the terms are
defined:

es~g ◦ et~h = et
~h ◦ es~g

and ~h induces a well defined Hamiltonian flow on N/∼. In particular every function f on N that
commutes with g, thanks to (5.1), is constant along the trajectories of ~g, hence defines a function
on the quotient N/∼.

Exercise 5.2. Prove that given f1, f2 ∈ C∞(N) such that {f1, g} = {f2, g} = 0, one has that
{{f1, f2}, g} = 0. Deduce that the Poisson bracket defined on N descends to a well-defined Poisson
bracket defined on the quotient N/∼ with C∞(N/∼) ≃ {f ∈ C∞(N) | {f, g} = 0}.

We end this section by showing that the construction of the space of orbits of an (Hamiltonian)
vector field is in general only local as the following classical example shows.

Example 5.3. Consider the torus1 T 2 ≃ [0, 1]2/≡, endowed with the canonical symplectic structure
σ = dp ∧ dx and the Hamitonian g(x, p) = −αx+ p. The vector field ~g is written as follows

~g(x, y) =
∂g

∂p

∂

∂x
− ∂g

∂x

∂

∂p
=

∂

∂x
+ α

∂

∂p
,

whose trajectories are given by

x(t) = x0 + t, p(t) = p0 + αt.

It is well known that, for α ∈ R\Q, then every trajectory is an immersed one dimensional subman-
ifold of T 2 that is dense in T 2. Hence the space of orbits (quotient with respect to the equivalence
relation) has globally even no structure of topological manifold (the quotient topology is not Haus-
dorff).

The next subsection describes an explicit situation where the symplectic reduction is globally
defined.

1with the equivalence relation (x, 0) ≡ (x, 1) and (0, p) ≡ (1, p).
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5.1.1 Example of symplectic reduction: the space of affine lines in Rn

In this section we consider an important example of symplectic reduction, that is going to be used
in what follows.

Let us consider the symplectic manifold N = T ∗Rn = Rn×Rn with coordinates (p, x) ∈ Rn×Rn
and canonical symplectic form

σ =

n∑

i=1

dpi ∧ dxi.

Define the Hamiltonian g : R2n → R given by

g(x, p) =
1

2
|p|2.

We want to prove the following result.

Proposition 5.4. For every c > 0 the level set Ng,c of g is globally diffeomorphic to Rn × Sn−1,
and its symplectic reduction N/∼ is a smooth (symplectic) manifold of dimension 2n − 2 globally
diffeomorphic to the space of affine lines in Rn.

Proof. For every c > 0 then we have that the level set

Ng,c = {(x, p) : g(x, p) = c} = {(x, p) : |p|2 = 2c},
is a smooth hypersurface of R2n of dimension 2n− 1, indeed globally diffeomorphic to Rn × Sn−1.

The Hamiltonian system for ~g is easily solved for every initial condition (x(0), p(0)) = (x0, p0)




ẋ =
∂g

∂p
(x, p) = p

ṗ = −∂g
∂x

(x, p) = 0

⇒
{
x(t) = x0 + tp0

p(t) = p0
, (5.2)

and its flow is globally defined, described by a straight line contained in the space Ng,c (notice that
c > 0 implies p0 6= 0). Hence it is clear that the quotient N/∼ of Ng,c with respect to orbits of the
Hamiltonian vector field ~g is the space of affine lines of Rn and is globally defined. The proof is
completed by Proposition 5.5.

Proposition 5.5. The set A(n) of affine lines in Rn has the structure of smooth (symplectic)
manifold of dimension 2n− 2.

Proof. We first fix some notation: denote by Hi := {xi = 0} ⊂ Rn the i-th coordinate hyperplane
and by U+

i = Sn−1 ∩ {xi > 0} an open subset of the sphere Sn−1, for every i = 1, . . . , n.
We define an open cover on A(n) in the following way: consider the open sets Wi ⊂ A(n) of

affine lines L of Rn that are not parallel to the hyperplane Hi. Then for every line L ∈ Wi there
exists a unique x̄ ∈ Hi and v̄ ∈ U+

i such that L = {x̄ + tv̄ | t ∈ R}. Then, for i = 1, . . . , n, we
define the coordinate chart

φi :Wi → Hi × U+
i , φi(L) = (x̄, v̄).

Using the standard identification Hi ≃ Rn−1 and the stereographic projection Wi ≃ Rn−1, we build
coordinate maps φi :Wi → R2n−2 for i = 1, . . . , n.

Exercise 5.6. Check that {Wi}i=1,...,n is an open cover of A(n), and that the change of coordinates
φi ◦ φ−1

j : R2n−2 → R2n−2 is smooth for every i, j = 1, . . . , n.
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5.2 Riemannian geodesic flow on hypersurfaces

In this section we want to show that the Riemannian geodesic flow on an hypersurface of Rn, that
is an Hamiltonian flow on a 2n − 2 dimension, can be seen as the restriction of the Hamiltonian
flow of R2n to the (reduced) symplectic space of affine lines in Rn (cf. Section 5.1.1).

5.2.1 Geodesics on hypersurfaces

Let us consider now a smooth function a : Rn → R and consider the family of hypersurfaces defined
by the level sets of a

Mc := a−1(c) ⊂ Rn, c is a regular value of a,

endowed with the Riemannian structure induced by the ambient space Rn. Recall that, by classical
Sard’s Lemma for almost every c ∈ R, c is a regular value for a (in particular, Mc is a smooth
submanifold of codimension one in Rn).

An adaptation of the arguments of Proposition 1.4 in Chapter 1, one can prove the following
characterization of geodesics on a hypersurface Mc.

Proposition 5.7. Let γ : [0, T ] → M be a smooth minimizer parametrized by length. Then
γ̈(t) ⊥ Tγ(t)M .

Exercise 5.8. Prove Proposition 5.7.

5.2.2 Riemannian geodesic flow and symplectic reduction

For a large class of functions a, we will find an Hamiltonian, defined on the ambient space T ∗Rn,
whose (reparametrized) flow generates the geodesic flow when restricted to each level set Mc.

Consider the standard symplectic structure on T ∗Rn

T ∗Rn = Rn × Rn = {(x, p) | x, p ∈ Rn}, σ =
n∑

i=1

dpi ∧ dxi,

For x, p ∈ Rn we will denote by x+ Rp the line {x+ tp | t ∈ R} ⊂ Rn .

Assumption. We assume that the function a : Rn → R satisfies the following assumptions:

(A1) the restriction of a : Rn → R to every affine line is strictly convex,

(A2) a(x)→ +∞ when |x| → +∞.

Under assumptions (A1)-(A2), the restriction of the function a to each affine line in Rn always
attains a minimum and we can define the Hamiltonian

h : Rn × Rn → R, h(x, p) = min
t∈R

a(x+ tp). (5.3)

By definition, the function h is constant on every affine line in Rn. If we define

g : Rn × Rn → R, g(x, p) =
1

2
|p|2. (5.4)

this implies the following (cf. proof of Proposition 5.4).
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Lemma 5.9. The Hamiltonian h is constant along the flow of ~g, i.e., {h, g} = 0.

We can then apply the symplectic reduction technique explained in Section 5.1: the flow of ~h
induced a well defined flow on the reduced symplectic space of dimension 2n − 2 of affine lines in
Rn (cf. Section 5.1.1). We want to interpret this flow of affine lines as a flow on the level set Mc

and to show that this is actually the Riemannian geodesic flow.
For every x, p ∈ Rn let us define the functions

s : Rn ×Rn → R, ξ : Rn × Rn → Rn,

defined as follows

(a) s(x, p) is the point at which the scalar function t 7→ a(x+ tp) attains its minimum,

(b) ξ(x, p) = x+ s(x, p)p.

Notice that, by construction, we have h(x, p) = a(ξ(x, p)) for every x, p ∈ Rn.
The first observation is that the line x + Rp is tangent at ξ(x, p) to the level set a−1(c), with

c := a(ξ(x, p)). Indeed combining (a) and (b) we have

〈∇ξa | p〉 =
d

dt

∣∣∣∣
t=s(x,p)

a(x+ tp) = 0, (5.5)

where 〈· | ·〉 denotes the scalar product in Rn.
The following proposition says that if we follow the motion of the affine lines x(t)+Rp(t) along

the flow (x(t), p(t)) of ~h, then the family of lines stay tangent to a fixed quadric and the point of
tangency describes a geodesic on it.

Proposition 5.10. Let (x(t), p(t)), for t ∈ [0, T ], be a trajectory of the Hamiltonian vector field ~h
associated with (5.3). Then the function

t 7→ ξ(t) := ξ(x(t), p(t)) ∈ Rn, (5.6)

(i) is contained in a fixed level set Mc = a−1(c), for some c ∈ R,

(ii) is a geodesic on Mc.

Proof. Property (i) is a simple consequence of Corollary 4.20, since every function is constant along
the flow of its Hamiltonian vector field. Indeed by construction h(x, p) = a(ξ(x, p)) and, denoting
by (x(t), p(t)) the Hamiltonian flow, one gets

a(ξ(t)) = a(ξ(x(t), p(t))) = h(x(t), p(t)) = const,

i.e., the curve ξ(t) is contained on a level set of a. Moreover by definition of ξ(t) we have (cf. (5.5))

〈
∇ξ(t)a

∣∣ p(t)
〉
= 0, ∀ t. (5.7)

The Hamiltonian system associated with h reads

{
ẋ(t) = s(t)∇ξ(t)a
ṗ(t) = −∇ξ(t)a

(5.8)
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that immediately implies ẋ(t)+s(t)ṗ(t) = 0. Thus computing the derivative of ξ(t) = x(t)+s(t)p(t)
one gets

ξ̇(t) = ṡ(t)p(t),

it follows that ξ̇(t) is parallel to p(t). Notice that s = s(t) is a well defined parameter on the curve
ξ(t). Indeed computing the derivative with respect to t in (5.7) we have that

ṡ(t)
〈
∇2
ξ(t)a p(t)

∣∣∣ p(t)
〉
− |∇ξ(t)a|2 = 0.

and the strict convexity of a implies
〈
∇2
ξ(t)a p(t)

∣∣∣ p(t)
〉
6= 0 and

ṡ(t) =
|∇ξ(t)a|2〈

∇2
ξ(t)a p(t)

∣∣∣ p(t)
〉 6= 0.

In particular p(t) denotes the velocity of the curve ξ(t), when reparametrized with the parameter
s = s(t), since |p(t)| = 1 implies |ξ̇(t)| = ṡ(t).

Finally, the second derivative of the reparametrized ξ(s) is ṗ(s) and, since ṗ(s) is parallel to
∇ξ(s)a = 0 by (5.8), the second derivative ξ̈(s) (i.e., the curve ξ reparametrized by the length) is
orthogonal to the level set, i.e., s 7→ ξ(s) is a geodesic on the level set.

Remark 5.11. Thus we can visualize the solutions of ~h as a motion of lines: the lines move in
such a way to be tangent to one and the same geodesic. The tangency point x on the line moves
perpendicular to this line in this process. We will also refer to this flow as the “line flow” associated
with a.

To end this section let us prove the following result, that will be used later in Section 5.6.
Consider two functions a, b : Rn → R satisfying our assumptions (A1)-(A2). Following our notation,
we set

h(x, p) = a(ξ(x, p)), ξ(x, p) = x+ s(x, p)p

g(x, p) = b(η(x, p)), η(x, p) = x+ τ(x, p)p

where s(x, p) and τ(x, p) are defined as above, and ξ, η denote the tangency point of the line x+Rp
with the level set of a and b respectively. The following proposition computes the Poisson bracket
of these Hamiltonian functions

Proposition 5.12. Under the previous assumptions

{h, g} = (s − τ) 〈∇ξa | ∇ηb〉 . (5.9)

Proof. The coordinate expression of the Poisson bracket (4.19) can be rewritten as

{h, g} = 〈∇ph | ∇xg〉 − 〈∇xh | ∇pg〉 , (5.10)

and using equation (5.8) for both h and g one gets

{h, g} = (s − τ) 〈∇ξa | ∇ηb〉 . (5.11)
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5.3 Sub-Riemannian structures with symmetries

Recall that, for a sub-Riemannian manifold, we denote by H the sub-Riemannian Hamiltonian.

Definition 5.13. We say that a complete smooth vector field X ∈ Vec(M) is a Killing vector field
if it generates a one parametric flow of isometries, i.e. etX :M →M is an isometry for all t ∈ R.

For every X ∈ Vec(M), we can define the function hX ∈ C∞(T ∗M) linear on fibers associated
with X by hX(λ) = 〈λ,X(q)〉, where q = π(λ).

The following lemma shows that X is a Killing vector field if and only if hX commutes with the
sub-Riemannian Hamiltonian H.

Lemma 5.14. Let M be a sub- Riemannian manifold and H the sub-Riemannian Hamiltonian.
For a vector field X ∈ Vec(M) is a Killing vector field if and only if {H,hX} = 0.

Proof. A vector field X generates isometries if and only if, by definition, the differential of its
flow etX∗ : TqM → TetX(q)M preserves the sub-Riemannian distribution and the norm on it, i.e.

etX∗ v ∈ DetX(q) for every v ∈ Dq and ‖etX∗ v‖ = ‖v‖. By definition of H, this is equivalent to the
identity

H((etX )∗λ) = H(λ), ∀λ ∈ T ∗M. (5.12)

On the other hand Proposition 4.10 implies that (etX)∗ = et
~hX , where hX is the Hamiltonian linear

on fibers related to X. Differentiating (5.12) with respect to t we find the equivalence

H ◦ etX∗ = H ⇔ ~hXH = 0 ⇔ {H,hX} = 0.

In other words, with every 1-parametric group of isometries of M we can associate an Hamil-
tonian in involution with H. Let us show two classical examples where we have a sub-Riemannian
structure with symmetries.

Example 5.15 (Revolution surfaces in R3). Let M be a 2-dimensional revolution surface in R3.
Since the rotation around the revolution axis preserves the Riemannian structure, by definition,
we have that the Hamiltonian generated by this flow and the Riemannian Hamiltonian H are in
involution.

Example 5.16 (Isoperimetric sub-Riemannian problem). Let us consider a sub-Riemannian struc-
ture associated with an isoperimetric problem defined on a 2-dimensional revolution surfaceM (see
Section 4.4.2). The sub-Riemannian structure on M ×R is determined by the function b ∈ C∞(M)
satisfying dA = bdV , where A ∈ Λ1(M) is the 1-form defining the isoperimetric problem and dV is
the volume form on M .

(i) By construction the problem is invariant by translation along the z-axis

(ii) If, moreover, both M and b are rotational invariant we find a first integral of the geodesic
flow as in the previous example
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5.4 Completely integrable systems

Let M be an n-dimensional smooth manifold and assume that there exist n independent Hamilto-
nians in involution in T ∗M , i.e. a set of n smooth functions

hi : T
∗M → R, i = 1, . . . , n,

{hi, hj} = 0, i, j = 1, . . . , n. (5.13)

such that the differentials dλh1, . . . , dλhn of the functions are independent on an open dense set of
point λ ∈ T ∗M .

Let us consider the vector valued map, called moment map, defined by

h : T ∗M → Rn, h = (h1, . . . , hn).

Definition 5.17. Under the assumptions (5.13), then we say that the map h is completely in-
tegrable. The same terminology applies to any of the Hamiltonian system defined by one of the
Hamiltonian hi, for i = 1, . . . , n.

Lemma 5.18. Assume that h is completely integrable and c ∈ Rn be a regular value of h. Then
the set h−1(c) is a n-dimensional submanifold in T ∗M and we have

Tλh
−1(c) = span{~h1(λ), . . . ,~hn(λ)}, ∀λ ∈ h−1(c). (5.14)

Proof. Since c is a regular value of h, by Remark 2.58 the set h−1(c) is a submanifold of dimension
n in T ∗M . In particular dimTλh

−1(c) = n for every λ ∈ h−1(c). Moreover, by Exercise 2.11, each
vector field ~hi is tangent to h

−1(c), since ~hihj = {hi, hj} = 0 by assumption. To prove (5.14) it is
then enough to show that these vector fields are linearly independent.

Since c is a regular value of h, the differentials of the functions hi are linearly independent on
h−1(c), namely

dim span{dλh1, . . . , dλhn} = n, ∀λ ∈ h−1(c). (5.15)

Moreover the symplectic form σ on T ∗M induces for all λ an isomorphism Tλ(T
∗M)→ T ∗

λ (T
∗M)

defined by w 7→ σλ(·, w). By nondegeneracy of the symplectic form, this implies that

dim span{~h1(λ), . . . ,~hn(λ)} = n, ∀λ ∈ h−1(c). (5.16)

hence they form a basis for Tλh
−1(c).

Remark 5.19. Notice that the symplectic form vanishes on Tλh
−1(c). Indeed this is a consequence

of the fact that σ(~hi,~hj) = {hi, hj} = 0 for all i, j = 1, . . . , n.

In what follows we denote by Nc = h−1(c) the level set of h. If h−1(c) is not connected, Nc will
denote a connected component of h−1(c).

Proposition 5.20. Assume that the vector fields ~hi are complete and define the map

Ψ : Rn → Diff(Nc), Ψ(s1, . . . , sn) := es1
~h1 ◦ . . . ◦ esn~hn

∣∣∣
Nc

. (5.17)

For every λ ∈ Nc, the map Ψλ : Rn → Nc defined by Ψλ(s) := Ψ(s)λ defines a transitive action of
Rn onto Nc.
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Proof. The complete integrability assumption together with Corollary 4.57 implies that the flows
of ~hi and ~hj commute for every i, j = 1, . . . , n since

[~hi,~hj ] =
−−−−−→{hi, hj} = 0.

By Proposition 2.26, this is equivalent to

et
~hi ◦ eτ~hj = eτ

~hj ◦ et~hi , ∀ t, τ ∈ R. (5.18)

Thus, for every λ, the map Ψλ is a smooth local diffeomorphism between at each point. Indeed,
using (5.18), one has (cf. also Exercice 2.31)

∂Ψλ

∂si
(Ψλ(s)) = ~hi(Ψλ(s)), i = 1, . . . , n,

and the partial derivatives are linearly independent at each point of Nc.

Since the vector fields are complete by assumption, we can compute for every s, s′ ∈ Rn

Ψ(s+ s′) = e(s1+s
′
1)
~h1 ◦ . . . ◦ e(sn+s′n)~hn

= es1
~h1 ◦ es′1~h1 ◦ . . . ◦ esn~hn ◦ es′n~hn

= es1
~h1 ◦ . . . ◦ esn~hn ◦ es′1~h1 ◦ . . . ◦ es′n~hn (by (5.18))

= Ψ(s) ◦Ψ(s′),

which proves that Ψ is a group action. Denote, for every point λ ∈ Nc, its orbit under the group
action, namely

Ωλ = imΨλ = {Ψλ(s) | s ∈ Rn}.

Exercise 5.21. Using the fact that Nc is connected, prove that Ωλ = Nc for every λ ∈ Nc.

Hence the map Ψλ is surjective, but in general it is not injective (as for instance in the case
when M is compact). As a consequence we consider the stabiliser Sλ of the point λ, i.e. the set

Sλ = {s ∈ Rn | Ψλ(s) = λ},

Exercise 5.22. Prove that Sλ is a discrete2 subgroup of Rn, independent on λ ∈ Nc.

Then the proof of Proposition 5.20 is completed by the next lemma.

Lemma 5.23. Let G be a non trivial discrete subgroup of Rn. Then there exist k ∈ N with
1 ≤ k ≤ n and v1, . . . , vk ∈ Rn such that

G =

{
k∑

i=1

mivi, mi ∈ Z

}
.

2Recall that a subgroup G of Rn is discrete if and only if for every g ∈ G there exist an open set U ⊂ Rn containing
g and such that U ∩G = {g}.
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Proof. We prove the claim by induction on the dimension n of the ambient space Rn.
(i). Let n = 1. Since G is a discrete subgroup of R, then there exists an element e1 6= 0 closest

to the origin 0 ∈ R. We claim that G = Zv1 = {mv1, m ∈ Z}. By contradiction assume that there
exists an element f ∈ G such that mv1 < f < (m + 1)v1 for some m ∈ Z. Then f̄ := f − mv1
belong to G and is closer to the origin with respect to v1, that is a contradiction.

(ii). Assume the statement is true for n − 1 and let us prove it for n. The discreteness of G
guarantees the existence of an element v1 ∈ G, closest to the origin. Moreover one can prove that
G1 := G ∩ Rv1 is a subgroup and, as in part (i) of the proof, that

G1 := G ∩ Rv1 = Zv1.

If G = G1 then the theorem is proved with k = 1. Otherwise one can consider the quotient G/G1.

Exercise 5.24. (i). Prove that there exists a nonzero element v2 ∈ G/G1 that minimize the
distance to the line ℓ = Rv1 in Rn.
(ii). Show that there exists a neighborhood of the line ℓ that does not contain elements of G/G1.

By Exercise 5.24 the quotient group G/G1 is a discrete subgroup in Rn/ℓ ≃ Rn−1. Hence, by
the induction step there exists v2, . . . , vk such that

G/G1 =

{
k∑

i=2

mivi, mi ∈ Z

}
.

Corollary 5.25. The connected manifold Nc is diffeomorphic to T k × Rn−k for some 0 ≤ k ≤ n,
where T k denotes the k-dimensional torus. Fix coordinates θ ∈ T k × Rn−k, with (θ1, . . . , θk) ∈ T k
and (θk+1, . . . , θn) ∈ Rn−k, then we have

~hi =

n∑

j=1

bij(c)∂θj , (5.19)

for some constants bij(c) independent on λ ∈ Nc.

Proof. Fix c ∈ Rn and a point λ ∈ Nc. Let us consider the elements v1, . . . , vk ∈ Rn generators
of the stabiliser Sλ (independent on λ) given by Lemma 5.23 and complete it to a global basis
v1, . . . , vn. Denote by e1, . . . , en the canonical basis of Rn and by B : Rn → Rn any isomorphism
such that Bei = vi for i = 1, . . . , n. We stress again that B does not depend on λ ∈ Nc and is thus
a function of c only.

Then clearly the map B ◦Ψλ : Rn → Nc is a local diffeomorphism and, due to the fact that Sλ
is the stabiliser of Ψλ, descends to a well-defined map on the quotient

B ◦Ψλ : T k × Rn−k → Nc

that is a global diffeomorphism. Introduce the coordinates (θ1, . . . , θn) in Rn induced by the choice
of the basis v1, . . . , vn.
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Since (θ1, . . . , θn) are obtained by (s1, . . . , sn) by a linear change of coordinates on each level
set, the vector fields ~hi are constant in the s coordinates (indeed ~hi = ∂si) we have and the basis
∂θ1 , . . . , ∂θn can be expressed as follows

~hi = ∂si =

n∑

j=1

bij(c)∂θj , (5.20)

where bij are the coefficients of the operator B, depending only on c (i.e., are constant on each level
set Nc).

Remark 5.26. In general, due to the fact that the level set Nc is not compact, the set (c, θ) do not
define local coordinates on T ∗M . If we assume that (c, θ) define a set of local coordinates, then
the Hamiltonian system defined by hi takes the form (on the whole space T ∗M)

{
ċ = 0

θ̇j = bij(c)
, i = 1, . . . , n. (5.21)

Notice that, as soon as (c, θ) define local coordinates, the coordinate set (θ1, . . . , θn) are not uniquely
defined. In particular, every transformation of the kind θi 7→ θi + ψi(c) still defines a set of
cylindirical coordinates on each level set. The choice of the functions ψi(c) corresponds to the
choice of the initial value of θi at a point (for every choice of c). However, the vector fields ∂θi are
independent on this choice.

5.5 Arnold-Liouville theorem

In this section we consider in detail the case when the level set of a completely integrable system
defined by

h : T ∗M → Rn, h = (h1, . . . , hn),

are compact. More precisely we assume that for all values of c ∈ R the level set h−1(c) is a smooth
compact and connected manifold. From Proposition 5.20 and the fact that T k × Rn−k is compact
if and only if k = n we have the following corollary.

Corollary 5.27. If Nc is compact, then Nc ≃ T n.
Fix λ ∈ Nc and introduce the diffeomorphism

Fc : T
n → Nc, Fc(θ1, . . . , θn) = Ψλ(θ1 + 2πZ, . . . , θn + 2πZ).

Next we want to analyze the dependence of this construction with respect to c. Fix c̄ ∈ Rn and
consider a neighborhood O of the submanifold Nc̄ in the cotangent space T ∗M . Being Nc̄ compact,
in O we have a foliation of invariant tori Nc, for c close to c̄. In other words (c1, . . . , cn, θ1, . . . , θn)
is a well defined coordinate set on O.
Theorem 5.28 (Arnold-Liouville). Let us consider a moment map h : T ∗M → Rn associated with
a completely integrable system such that every level set Nc is compact and connected. Then for
every c̄ ∈ R there exists a neighborhood O of Nc̄ and a change of coordinates

(c1, . . . , cn, θ1, . . . , θn) 7→ (I1, . . . , In, ϕ1, . . . , ϕn) (5.22)

such that
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(i) I = Φ ◦ h, where Φ : h(O)→ Rn is a diffeomorphism,

(ii) σ =
∑n

j=1 dIj ∧ dϕj .

Definition 5.29. The coordinates (I, ϕ) defined in Theorem 5.28 are called action-angle coordi-
nates.

Proof of Theorem 5.28. In this proof we will use the following notation: for c = (c1, . . . , cn) ∈ Rn,
j = 1, . . . , n and ε > 0 we set

(a) cj,ε := (c1, . . . , cj + ε, . . . , cn) ∈ Rn,

(b) γi(c) as the closed curve in the torus Nc parametrized by the i-th angular coordinate θi,
namely

γi(c) := {Fc(θ1, . . . , θi + τ, . . . , θn) ∈ Nc | τ ∈ [0, 2π]}.

(c) Cj,εi denotes the cylinder defined by the union of curves γi(c
j,τ ), for 0 ≤ τ ≤ ε.

Let us first define the coordinates Ii = Ii(c1, . . . , cn) by the formula

Ii(c) =
1

2π

∫

γi(c)
s,

where s is the tautological 1-form on T ∗M . Being σ|Nc ≡ 0, by Stokes Theorem the variable Ii
depends only on the homotopy class of γi.

3

Let us compute the Jacobian of the change of variables.

∂Ii
∂cj

(c) =
1

2π

∂

∂ε

∣∣∣∣
ε=0

(∫

γi(cj,ε)
s−

∫

γi(c)
s

)

=
1

2π

∂

∂ε

∣∣∣∣
ε=0

∫

∂Cj,ε
i

s

=
1

2π

∂

∂ε

∣∣∣∣
ε=0

∫

Cj,ε
i

σ (where σ = ds)

=
1

2π

∂

∂ε

∣∣∣∣
ε=0

∫ cj+ε

cj

∫

γi(cj,τ )
σ(∂cj , ∂θi)dθidτ

=
1

2π

∫

γi(c)
σ(∂cj , ∂θi)dθi.

Using that ∂θi =
∑n

j=1 b
ij(c)~hj (see (5.20)) (where bij are the entries of the inverse matrix of bij)

one gets

σ(·, ∂θi) =
n∑

j=1

bij(c)dhj . (5.23)

3Hence, in principle, we are free to choose any basis γ1, . . . , γn for the fundamental group of Tn.
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Moreover dhi = dci since they define the same coordinate set. Hence

∂Ii
∂cj

(c) =
1

2π

∫

γi(c)

〈
n∑

k=1

bik(c)dck, ∂ci

〉
dθi

=
1

2π

∫

γi(c)
bij(c)dθi

= bij(c)

Combining the last identity with (5.23) one gets

σ(·, ∂θi) = dIi

In particular this implies that the symplectic form has the following expression in the coordinates
(I, θ)

σ =
n∑

i,j=1

aij(I)dIi ∧ dIj +
n∑

i=1

dIi ∧ dθi. (5.24)

where the smooth functions aij depends only on the action variables, since the symplectic form σ
and the term

∑n
i=1 dIi ∧ dθi are closed form. Moreover it is easy to see that the first term of (5.24)

can be rewritten as
n∑

i,j=1

aij(I)dIi ∧ dIj = d

(
n∑

i=1

βi(I)

)
∧ dIi,

and σ can be rewritten as

σ =
n∑

i=1

dIi ∧ d(θi − βi(I)).

The proof is completed by setting ϕi := θi − βi(I).

Remark 5.30. This proves that there exists a regular foliation of the phase space by invariant
manifolds, that are actually tori, such that the Hamiltonian vector fields associated to the invariants
of the foliation span the tangent distribution.

There then exist, as mentioned above, special sets of canonical coordinates on the phase space
such that the invariant tori are the level sets of the action variables, and the angle variables are the
natural periodic coordinates on the torus. The motion on the invariant tori, expressed in terms of
these canonical coordinates, is linear in the angle variables.

Indeed, since the hj are functions on I variables only, we have

~hj =
n∑

i=1

∂hj
∂Ii

∂ϕi .

In other words, the Hamiltonian system defined by hj in the angle-action coordinate (I, ϕ) is written
as follows

İi = −
∂hj
∂ϕi

= 0, ϕ̇i =
∂hj
∂Ii

(I). (5.25)

This explains also why this property is called complete integrability. The Hamitonian equation in
these coordinates can indeed be solved explicitly.
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5.6 Geodesic flows on quadrics

In this chapter we prove that the geodesic flow on an ellipsoid (and, as a consequence, on quadrics)
is completely integrable. More precisely we consider the particular case when the function a is
a quadratic polynomial, i.e. every level set of our function is a quadric in Rn. The presentation
follows the arguments of Moser [80].

Definition 5.31. Let A be an n×n non degenerate symmetrix matrix. The quadric Q associated
to A is the set

Q = {x ∈ Rn, 〈A−1x, x〉 = 1}. (5.26)

For simplicity we deal with the case when A has simple distinct eigenvalues α1 < . . . < αn.
Define, for every λ that is not an eigenvalue of A,

aλ(x) = 〈(A− λI)−1x, x〉, Qλ = {x ∈ Rn, aλ(x) = 1}.

If A = diag(α1, . . . , αn) is a diagonal matrix then (5.26) reads

Q = {x ∈ Rn,
n∑

i=1

x2i
αi

= 1},

and Qλ represents the family quadrics that are confocal to Q

Qλ =

{
x ∈ Rn,

n∑

i=1

x2i
αi − λ

= 1

}
, ∀λ ∈ R \ Λ,

where Λ = {α1, . . . , αn} denotes the set of eigenvalues of A. Note that Qλ is an ellipsoid only if
λ < α1, while Qλ = ∅ when λ > αn.

Note. In what follows by a “generic” point x for A we mean a point x that does not belong to
any proper invariant subspace of A. In the diagonal case it is equivalent to say that x = (x1, . . . , xn),
with xi 6= 0 for every i = 1, . . . , n.

Exercise 5.32. Denote by Aλ := (A− λI)−1. Prove the two following formulas:

(i) d
dλAλ = A2

λ,

(ii) Aλ −Aµ = (µ− λ)AλAµ.

Lemma 5.33. Let x ∈ Rn be a generic point for A and let {Qλ}λ∈Λ be the family of confocal
quadrics. Then there exists exactly n distinct real numbers λ1, . . . , λn in R \ Λ such that x ∈ Qλi
for every i = 1, . . . , n,. Moreover the quadrics Qλi are pairwise orthoghonal at the point x.

Proof. For a fixed x, the function λ 7→ aλ(x) = 〈Aλx, x〉 satisfies in R \ Λ

∂aλ
∂λ

(x) =
〈
A2
λx, x

〉
= |Aλx|2 ≥ 0, where Aλ := (A− λI)−1,

as follows from part (i) of Exercise 5.32 and the fact that A (hence Aλ) is self-adjoint. Thus aλ(x) is
monotone increasing as a function of λ, and takes values from −∞ to +∞ in each interval ]αi, αi+1[
contained between two eigenvalues of A. This implies that, for a fixed x, there exist exactly n values
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λ1, . . . , λn such that aλi(x) = 1 (that means x ∈ Qλi). Next, using part (ii) of Exercise 5.32 (also
known as resolvent formula) we can compute, for two distinct values λi 6= λj and x ∈ Qλi ∩ Qλj :

〈
∇xaλi ,∇xaλj

〉
= 4

〈
Aλix,Aλjx

〉

= 4
〈
AλiAλjx, x

〉

=
4

λj − λi
(〈Aλix, x〉 −

〈
Aλjx, x

〉
) = 0,

where again we used the fact that Aλ is selfadjoint and 〈Aλx, x〉 = 1 for all λ.

Now we define the family of Hamiltonians associated with the family of confocal quadrics

hλ(x, p) = min
t
aλ(x+ tp) = aλ(ξλ(x, p)), (5.27)

Remark 5.34. Notice that the minimum in (5.27) is attained at a unique point, and the function
aλ satisfies the assumptions (A1)-(A2) introduced in Section ??, only if the corresponding quadric
is an ellipsoid.

In what follows we generalize the considerations to all quadrics associated to λ ∈ R \Λ. Indeed
we can still define the hamiltonian hλ as the value of the function aλ at its critical point along an
affine line (hence defining hλ as an Hamiltonian on the set of affine lines as well).

Now we prove another interesting “orthogonality” property of the family. We show that if two
confocal quadrics are tangent to the same line, then their gradient are orthogonal at the tangency
points.

Proposition 5.35. Assume that two confocal quadrics are tangent to a given line, i.e. there exist
x, y ∈ Rn such that

aλ(ξλ) = aµ(ξµ), where ξλ = x+ tλp, ξµ = x+ tµp.

Then 〈∇ξλaλ,∇ξµaµ〉 = 0. In particular {hλ, hµ} = 0.

Proof. The condition that the quadric Qλ is tangent to the line x + Ry at ξλ is expressed by the
following two equality

〈Aλξλ, y〉 = 0, 〈Aλξλ, ξλ〉 = 1 (5.28)

and an analogue relations is valid for Qµ. Notice than from (5.28) one also gets 〈Aλξλ, ξµ〉 =
〈Aµξµ, ξλ〉 = 1. Then, with the same computation as before using (5.32)

〈
∇ξλaλ,∇ξµaµ

〉
= 4 〈Aλξλ, Aµξµ〉
= 4 〈AλAµξλ, ξµ〉

=
4

µ− λ(〈Aλξλ, ξµ〉 − 〈Aµξµ, ξλ〉) = 0,

This implies also {hλ, hµ} = 0, thanks to Proposition 5.12.

Proposition 5.36. A generic line in Rn is tangent to n− 1 quadrics of a confocal family.
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Proof. Write Rn = L⊕L⊥ where L = x+Rp and L⊥ is the orthogonal hyperplane (passing through
x). Consider the orthogonal projection π : Rn → L⊥ in the direction of L. The following exercise
shows that the projection of a confocal family of quadrics in Rn is a confocal family of quadrics on
L⊥.

Exercise 5.37. (i). Show that the map x 7→ apλ(x) := 〈Aλ(x+ tλp), x+ tλp〉 is a quadratic form
and that p ∈ ker apλ. In particular this implies that apλ is well defined on the quotient Rn/Rp.
(ii). Prove that {apλ}λ is a family of confocal quadric on the factor space (in n− 1 variables).

Applying then Lemma 5.33 to the family {apλ}λ we get that, for a generic choice of x, there
exists n − 1 quadrics passing through the point on the plane where the line is projected, i.e. the
line x+ Rp is tangent to n− 1 confocal quadrics of the family {aλ}λ.

Remark 5.38. Notice that this proves that every generic line in Rn is associated with an orthonormal
frame of Rn, being all the normal vectors to the n− 1 quadrics given by Proposition 5.36 mutually
orthogonal and orthogonal to the line itself.

Theorem 5.39. The geodesic flow on an ellipsoid is completely integrable. In particular, the
tangents of any geodesics on an ellipsoid are tangent to the same set of its confocal quadrics, i.e.
independently on the point on the geodesic.

Proof. We want to show that the functions λ1(x, p), . . . , λn−1(x, p) (as functions defined on the set
of lines in Rn) that assign to each line x + Rp in Rn the n − 1 values of λ such that the line is
tangent to Qλ are independent and in involution.

First notice that each level set λi(x, p) = c coincide with the level set hc = 1. Hence, by Exercise
4.33, the two functions defines the same Hamiltonian flow on this level set (up to reparametrization).
We are then reduced to prove that the functions hc1 , . . . , hcn−1 are independent and in involution,
which is a consequence of Proposition 5.35.

Since the lines that are tangent to a geodesic on the ellipsoid Qλ form an integral curve of
the Hamiltoian flow of the associated function hλ, and all the Poisson brackets with the other
Hamiltonians are zero, it follows that the line remains tangent to the same set of n−1 quadrics.

Bibliographical notes

The notion of complete integrability introduced here is the classical one given by Liouville and
Arnold [9]. Sometimes, complete integrability of a dynamical system is also referred to systems
whose solution can be reduced to a sequence of quadratures. This means that, even if the solution
is implicitly given by some inverse function or integrals, one does not need to solve any differential
equation. Notice that by Theorem 5.28 complete integrability implies integrability by quadratures
(see also Remark 5.30).

The complete integrability of the geodesic flow on the triaxial ellipsoid was established by Jacobi
in 1838. Jacobi integrated the geodesic flow by separation of variables, see [65]. The appropriate
coordinates are called the elliptic coordinates, and this approach works in any dimension. Here we
give a different derivation, essentially due to Moser [80], as an application of the theory developed
in the first sections of the chapter. For further discussions on the geodesic flow on the ellipsoids or
quadrics, one can see [79, 10, 72].
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Chapter 6

Chronological calculus

In this chapter we develop a language, called chronological calculus, that will allow us to work in
an efficient way with flows of nonautonomous vector fields.

6.1 Motivation

Classical formulas from calculus that are valid in Rn are often no more meaningful on a smooth
manifold, unless one consider them as written in coordinates.

Let us consider for instance a smooth curve γ : [0, T ] → Rn. The fundamental theorem of
calculus states that, for every t ∈ [0, T ], one has

γ(t) = γ(0) +

∫ t

0
γ̇(s) ds. (6.1)

Formula (6.1) has no meaning a priori if γ takes values on a smooth manifold M . Indeed, if
γ : [0, T ]→M , then γ̇(s) ∈ Tγ(s)M and one should integrate a family of tangent vectors belonging
to different tangent spaces. Moreover, since M has no affine space structure, one should explain
what is the sum of a point on M with a tangent vector.

Saying that formula (6.1) is meaningful in coordinates means that, once we identify an open
set U on M with Rn through a coordinate map φ : U ⊂ M → Rn (a set of n independent scalar
functions φ = (φ1, . . . , φn)), we reduce (6.1) to n scalar identities.

In fact, it is not necessary to choose a specific set of coordinate functions to let (6.1) have a
meaning. The basic idea behind the formalism we introduce in this chapter is that formula (6.1)
has a meaning along any scalar function, treating this function as the object where the formula is
“evaluated”.

More formally, let us fix a smooth curve γ : [0, T ]→M and a smooth function a :M → R and
let us apply the fundamental theorem of calculus to the scalar function a ◦ γ : [0, T ]→ R. We get,
for every t ∈ [0, T ] the following identity

a(γ(t)) = a(γ(0)) +

∫ t

0

〈
dγ(s)a, γ̇(s)

〉
ds (6.2)

Formula (6.2) is meaningful even if we are on a manifold since it is a scalar identity. The integrand
is the duality product between dγ(s)a ∈ T ∗

γ(s)M and γ̇(s) ∈ Tγ(s)M .

143



If we think to a point on M as acting on a function by evaluating the function at that point,
and to a tangent vector as acting on a function by differentiating in the direction of the vector,
then we can think to (6.2) as formula (6.1) when “evaluated at a” , or at (6.2) as the coordinate
version of (6.1). If we choose as a the functions φi for i = 1, . . . , n we are writing the coordinate
version of the identity in the classical sense.

In what follows we develop in a formal way this flexible language that has the advantage of
computing things “as in coordinates” keeping track the geometric meaning of the object we are
dealing with.

6.2 Duality

The basic idea behind this formal construction is to replace nonlinear objects defined on the man-
ifold M with their linear counterpart, when interpreted as maps on the space C∞(M) of smooth
functions on M .

We recall that the set C∞(M) of smooth functions onM is an R-algebra with the usual operation
of pointwise addition and multiplication

(a+ b)(q) = a(q) + b(q),

(λa)(q) = λa(q), a, b ∈ C∞(M), λ ∈ R,

(a · b)(q) = a(q)b(q).

Any point q ∈M can be interpreted as the “evaluation” linear functional

q̂ : C∞(M)→ R, q̂(a) := a(q).

For every q ∈M , the functional q̂ is a homomorphism of algebras, i.e., it satisfies

q̂(a · b) = q̂(a)q̂(b).

A diffeomorphism P ∈ Diff(M) can be thought as the “change of variables” linear operator

P̂ : C∞(M)→ C∞(M), P̂ (a) := a(P (q)).

which is an automorphism of the algebra C∞(M).

Remark 6.1. One can prove that for every nontrivial homomorphism of algebras ϕ : C∞(M) → R
there exists q ∈M such that ϕ = q̂. Analogously, for every automorphism of algebras Φ : C∞(M)→
C∞(M), there exists a diffeomorphism P ∈ Diff(M) such that P̂ = Φ. A proof of these facts is
contained in [8, Appendix A].

Next we want to characterize tangent vectors as functionals on C∞(M). As explained in Chapter
2, a tangent vector v ∈ TqM defines in a natural way the derivation in the direction of v, i.e. the
functional

v̂ : C∞(M)→ R, v̂(a) = 〈dqa, v〉 ,
that satisfies the Leibnitz rule

v̂(a · b) = v̂(a)b(q) + a(q)v̂(b), ∀ a, b ∈ C∞(M).
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If v ∈ TqM is the tangent vector of a curve q(t) such that q(0) = q, it is also natural to check
the identity as operators

v̂ =
d

dt

∣∣∣∣
t=0

q̂(t) : C∞(M)→ R. (6.3)

Indeed, it is sufficient to differentiate at t = 0 the following identity

q̂(t)(a · b) = q̂(t)a · q̂(t)b.

In the same spirit, a vector field X ∈ Vec(M) is characterized, as a derivation of C∞(M) (cf. again
the discussion in Chapter 2), as the infinitesimal version of a flow (i.e., family of diffeomorphisms
smooth w.r.t t) Pt ∈ Diff(M). Indeed if we set

X̂ =
d

dt

∣∣∣∣
t=0

P̂t : C
∞(M)→ C∞(M),

we find that X̂ satisfies (see (2.14))

X̂(ab) = X̂(a)b+ aX̂(b), ∀ a, b ∈ C∞(M).

6.2.1 On the notation

In the following we will identify any object with its dual interpretation as operator on functions and
stop to use a different notation for the same object when acting on the space of smooth functions.

If P is a diffeomorphism on M and q is a point on M the point P (q) is simply represented by
the usual composition q̂ ◦ P̂ of the corresponding linear operator.

Thus, when using the operator notation, composition works in the opposite side. To simplify
the notation in what follows we will remove the “hat” identifying an object with its dual, but use
the symbol ⊙ to denote the composition of these object, so that P (q) will be q ⊙ P .

Analogously, the composition X ⊙ P of a vector field X and a diffeomorphism P will denote the
linear operator a 7→ X(a ◦ P ).

6.3 Topology on the set of smooth functions

We introduce the standard topology on the space C∞(M). Denote by X1, . . . ,Xr a family of
globally defined vector fields such that

span{X1, . . . ,Xr}|q = TqM, ∀ q ∈M.

For α ∈ N and K ⊂M compact, define the following seminorms of a function f ∈ C∞(M)

‖f‖α,K = sup
q∈K,
{|(Xiℓ

⊙ · · · ⊙Xi1f)(q)| : 1 ≤ ij ≤ r, 0 ≤ ℓ ≤ α}

The family of seminorms ‖ · ‖α,K induces a topology on C∞(M) with countable local bases of
neighborhood as follows: take an increasing family of compact sets {Kn}n∈N invading M , i.e.,
Kn ⊂ Kn+1 ⊂ M for every n ∈ N and M = ∪n∈NKn. For every f ∈ C∞(M), a countable local
base of neighborhood of f is given by

Uf,n :=

{
g ∈ C∞(M) : ‖f − g‖n,Kn ≤

1

n

}
, n ∈ N. (6.4)
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Exercise 6.2. (i). Prove that (6.4) defines a basis for a topology. (ii) Prove that this topology
does not depend neither on the family of vector fields X1, . . . ,Xr generating the tangent space to
M nor on the family of compact sets {Kn}n∈N invading M .

This topology turns C∞(M) into a Fréchet space, i.e., a complete, metrizable, locally convex
topological vector space, see [62, Chapter 2].

Remark 6.3. In differential topology this is also called weak topology on C∞(M), in contrast with
the strong (or Whitney) topology that can be defined on C∞(M). The two topology coincide when
the manifold M is compact. For more details about different topologies on the spaces Ck(M,N)
of Ck maps among two smooth manifolds M and N one can see, for instance, [62, Chapter 2].

Example 6.4. Prove that, given a diffeomorphism P ∈ Diff(M) and α ∈ N, there exists a constant
Cα,P > 0 such that for all f ∈ C∞(M) one has

‖Pf‖α,K ≤ Cα,P‖f‖α,P (K), ∀K ⊂M.

In other words the diffeomorphism P , when interpreted as a linear operator on C∞(M), is
continuous in the Whitnhey topology. One can then define its seminorm

‖P‖α,K := sup{‖Pf‖α,K : ‖f‖α,P (K) ≤ 1}.

Similarly, given a smooth vector field X on M , one defines its seminorms by

‖X‖α,K := sup{‖Xf‖α,K : ‖f‖α+1,K ≤ 1}.

6.3.1 Family of functionals and operators

Once the structure of a Fréchet space on C∞(M) is given, one can define regularity properties
of family of functions in C∞(M). In particular continuous and differentiable families of functions
t 7→ at are defined in a standard way. Moreover, we say that the family t 7→ at ∈ C∞(M) defined
on an interval [t0, t1] is

• measurable, if the map q 7→ at(q) is measurable on [t0, t1] for every q ∈M

• locally integrable, if ∫ t1

t0

‖at‖α,Kdt <∞,

for every α ∈ N and K ⊂M compact.

• absolutely continuous, if there exists a locally integrable family of functions bt such that

at = at0 +

∫ t

t0

bsds.

• Lipschitz, if

‖at − as‖α,K ≤ Cs,K |t− s|,
for every α ∈ N and K ⊂M compact.
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Analogous regularity property for a family of linear functionals (or linear operators) on C∞(M)
are then naturally defined in a weak sense: we say that a family of operators t 7→ At is continuos
(differentiable, etc.) if the map t 7→ Ata has the same property for every a ∈ C∞(M).

We define a non-autonomous vector field as a family of vector fields Xt that is locally bounded.
A non-autonomous flow is a family of diffeomorphisms Pt that is absolutely continuous. Hence,
for any non-autonomous vector field Xt, the family of functions t 7→ Xta is locally integrable for
any a ∈ C∞(M). Similarly, for any non-autonomous flow Pt the family of functions t 7→ a ◦ Pt is
absolutely continuous for any a ∈ C∞(M).

Integrals of measurable locally integrable families, and derivative of differentiable families are
also defined in the weak sense: for instance, if Xt denotes some locally integrable family of vector
fields we denote ∫ t

0
Xs ds : a 7→

∫ t

0
Xsa ds

d

dt
Xt : a 7→

d

dt
(Xta)

One can show that if At and Bt are continuous families of operators on C∞(M) wich are differ-
entiable at some t0, then the family At ⊙Bt is differentiable at t0 and satisfies the Leibnitz rule

d

dt

∣∣∣∣
t=t0

(At ⊙Bt) =

(
d

dt

∣∣∣∣
t=t0

At

)
⊙Bt0 +At0 ⊙

(
d

dt

∣∣∣∣
t=t0

Bt

)
. (6.5)

The same result holds true for the composition of functionals with operators. For a proof of the
last fact one can see [8, Chapter 2 and Appendix A].

6.4 Operator ODE and Volterra expansion

Consider a nonautonomous vector field Xt and the corresponding nonautonomous ODE

d

dt
q(t) = Xt(q(t)), q ∈M. (6.6)

Using the notation introduced in the previous section we can rewrite (6.6) in the following way

d

dt
q(t) = q(t) ⊙Xt. (6.7)

Indeed assume that q(t) satisfies (6.6) and let a ∈ C∞(M). Using “hat” notation of Section 6.2

(
d

dt
q̂(t)

)
a =

d

dt
q̂(t)a =

d

dt
a(q(t)) =

〈
dq(t)a,Xt(q(t))

〉
= (X̂ta)(q(t)) = (q̂(t) ⊙ X̂t)a. (6.8)

As discussed in Chapter 2, the solution to the nonautonomous ODE (6.6) defines a flow, i.e., family
of diffeomorphisms, Ps,t.

Lemma 6.5. The flow Ps,t defined by (6.10) satisfies the operator differential equation

d

dt
Ps,t = Ps,t ⊙Xt, Ps,s = Id. (6.9)
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Proof. Fix a point q0 ∈M and denote by q(t) the solution of the Cauchy problem (6.6) with initial
condition q(s) = q0. By the very definition of Ps,t we have that q(t) = Ps,t(q0), which rewrites as
q(t) = q0 ⊙ Ps,t.

Definition 6.6. We call Ps,t the right chronological exponential and use the notation

Ps,t :=
−→exp

∫ t

s
Xτdτ. (6.10)

Notice that the arrow in the notation recalls in which “position” the vector field appears when
differentiating the flow (cf. (6.9)).

6.4.1 Volterra expansion

In the following discussion we set for simplicity the initial time s = 0. In this case we use the short
notation Pt := P0,t.

The operator differential equation (6.9) rewrites as
{
Ṗt = Pt ⊙Xt

P0 = Id
(6.11)

and can be rewritten as an integral operator equation as follows

Pt = Id +

∫ t

0
Ps ⊙Xsds (6.12)

Replacing iteratively Ps in the right hand side of (6.12) with the equation (6.12) itself, we have

Pt = Id +

∫ t

0

(
Id +

∫ s1

0
Ps2 ⊙Xs2ds2

)
⊙Xs1ds1

= Id +

∫ t

0
Xsds+

∫∫

0≤s2≤s1≤t

Ps2 ⊙Xs2
⊙Xs1ds1ds2

= . . .

= Id +
N−1∑

k=1

∫
· · ·
∫

0≤sk≤...≤s1≤t

Xsk
⊙ · · · ⊙Xs1d

ks+RN

where the remainder term is defined as follows

RN :=

∫
· · ·
∫

0≤sN≤...≤s1≤t

PsN ⊙XsN
⊙ · · · ⊙Xs1d

Ns

Formally, letting N →∞ and assuming that RN → 0, we can write the flow Pt as the chronological
series

Id +

∞∑

k=1

∫
· · ·
∫

∆k(t)

Xsk
⊙ · · · ⊙Xs1d

ks (6.13)

where ∆k(t) = {(s1, . . . , sk) ∈ Rk| 0 ≤ sk ≤ . . . ≤ s1 ≤ t} denotes the k-dimensional symplex.
A discussion about the convergence of the series is contained in Section 6.A.
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Remark 6.7. If we write expansion (6.13) when Xt = X is an autonomous vector field, we find that
the chronological exponential coincides with the exponential of the vector field

−→exp
∫ t

0
Xds ≃ Id +

∞∑

k=1

∫
· · ·
∫

∆k(t)

X ⊙ · · · ⊙X︸ ︷︷ ︸
k

dks

≃
∞∑

k=0

vol(∆k(t))X
k =

∞∑

k=0

tk

k!
Xk = etX ,

since vol(∆k(t)) = tk/k!. In the nonautonomous case for different time Xs1 and Xs2 might not
commute, hence the order in which the vector fields appears in the composition is crucial. The
arrow in the notation recalls in which “direction” the parameters are increasing.

Exercise 6.8. Prove that in general, for a nonautonomous vector field Xt, one has

−→exp
∫ t

0
Xsds 6= e

∫ t
0
Xsds. (6.14)

Prove that if [Xt,Xτ ] = 0 for all t, τ ∈ R then the equality holds in (6.14)

Proposition 6.9. Assume that Pt satisfies (6.11) and consider the inverse flow Qt := (Pt)
−1.

Then Qt satisfies the Cauchy problem

{
Q̇t = −Xt ⊙Qt,

Q0 = Id.
(6.15)

Proof. From the definition of inverse flow we have the identity Pt ⊙Qt = Id, for every t ∈ R.
Differentiating and using the Leibnitz rule one obtains

Ṗt ⊙Qt + Pt ⊙ Q̇t = 0. (6.16)

Using (6.11) then we get
Pt ⊙Xt ⊙Qt + Pt ⊙ Q̇t = 0 (6.17)

Multiplying both sides by Qt on the left, one gets (6.15).

The solution to the problem (6.15) will be denoted by the left chronological exponential

Qt :=
←−exp

∫ t

0
(−Xs)ds. (6.18)

Repeating analogous reasoning, we find the formal expansion

←−exp
∫ t

0
(−Xs)ds ≃ Id +

∞∑

k=1

∫
· · ·
∫

0≤sk≤...≤s1≤t

(−Xs1) ⊙ · · · ⊙ (−Xsk)d
ks.

The difference with respect to the right chronological exponential is in the order of composition.
Again, the arrow over the exponential says in which direction the time increases and in which
position the vector field appears when differentiating the flow.
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We can summarize all the properties of the chronological exponential as follows

d

dt
−→exp

∫ t

0
Xsds =

−→exp
∫ t

0
Xsds ⊙Xt, (6.19)

d

dt
←−exp

∫ t

0
Xsds = Xt ⊙

←−exp
∫ t

0
Xsds, (6.20)

(
−→exp

∫ t

0
Xsds

)−1

=←−exp
∫ t

0
(−Xs)ds. (6.21)

6.4.2 Adjoint representation

Now we can study the action of diffeomorphisms on vectors and vector fields. Let v ∈ TqM and
P ∈ Diff(M). We claim that, as functionals on C∞(M), we have

P∗v = v ⊙ P.

Indeed consider a curve q(t) such that q̇(0) = v and compute

(P∗v)a =
d

dt

∣∣∣∣
t=0

a(P (q(t))) =

(
d

dt

∣∣∣∣
t=0

q(t)

)
⊙ Pa = v ⊙ Pa

Recall that, if X ∈ Vec(M) is a vector field we have P∗X
∣∣
q
= P∗(X

∣∣
P−1(q)

). In a similar way we

will find an expression for P∗X as derivation of C∞(M)

P∗X = P−1
⊙X ⊙ P. (6.22)

Remark 6.10. We can reinterpret the pushforward of a vector field in a totally algebraic way in the
space of linear operator on C∞(M). Indeed

P∗X = (AdP−1)X, (6.23)

where
AdP : X 7→ P ⊙X ⊙ P−1, ∀X ∈ Vec(M)

is the adjoint action of P on the space of vector fields1.

Assume now that Pt =
−→exp

∫ t
0 Xsds. We try to characterize the flow AdPt by looking for the

ODE it satisfies. Applying to a vector field Y we have
(
d

dt
AdPt

)
Y =

d

dt
(AdPt)Y =

d

dt
(Pt ⊙ Y ⊙ P−1

t )

= Pt ⊙Xt ⊙ Y ⊙ P−1
t + Pt ⊙ Y ⊙ (−Xt) ⊙ P−1

t

= Pt ⊙ (Xt ⊙ Y − Y ⊙Xt) ⊙ P−1
t

= (AdPt)[Xt, Y ]

= (AdPt)(adXt)Y

where
adX : Y 7→ [X,Y ],

1this is the differential of the conjugation Q 7→ P ⊙ Q ⊙ P−1, Q ∈ Diff(M)
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is the adjoint action on the Lie algebra of vector fields.

In other words we proved that AdPt is a solution to the differential equation

Ȧt = At ⊙ adXt, A0 = Id.

Thus it can be expressed as chronological exponential and we have the identity

Ad

(
−→exp

∫ t

0
Xsds

)
= −→exp

∫ t

0
adXsds. (6.24)

Notice that combining (6.24) with (6.23) in the case of an autonomous vector field one gets

e−tX∗ = et adX (6.25)

Exercise 6.11. Prove that, if [Xt, Y ] = 0 for all t, then (AdPt)Y = Y .

Remark 6.12. More explicitly we can write the following formal expansion

(AdPt)Y ≃ Y +

∞∑

k=1

∫
· · ·
∫

0≤sk≤...≤s1≤t

[Xsn , . . . , [Xs2 , [Xs1 , Y ]]dks, (6.26)

which generalizes the formula (2.31). Indeed if Pt = etX is the flow associated with an autonomous
vector field we get

(Ad etX )Y = e−tX∗ Y = Y +

∞∑

k=1

tk

k!
[X, . . . , [X,Y ]]

≃ Y + t[X,Y ] +
t2

2
[X, [X,Y ]] + o(t2)

Exercise 6.13. Prove the following using operator notation:

1. Show that ad is the infinitesimal version of the operator Ad , i.e. if Pt is a flow generated by
the vector field X ∈ Vec(M) then

adX =
d

dt

∣∣∣∣
t=0

AdPt.

2. Show that, if P ∈ Diff(M), then P∗ preserves Lie brackets, i.e. P∗[X,Y ] = [P∗X,P∗Y ].

3. Show that the Jacobi identity in Vec(M) is the infinitesimal version of the identity proved in
2. (Hint. use Pt = etZ)

Exercise 6.14. Prove the following change of variables formula for a nonautonomous flow:

P ⊙
−→exp

∫ t

0
Xsds ⊙ P−1 = −→exp

∫ t

0
(AdP )Xsds. (6.27)

Notice that for an autonomous vector field this identity reduces to (2.23).
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6.5 Variations Formulae

Consider the following ODE

q̇ = Xt(q) + Yt(q) (6.28)

where Yt is thought as a perturbation term of the equation (6.6). We want to describe the solution
to the perturbed equation (6.28) as the perturbation of the solution of the original one.

Proposition 6.15. Let Xt, Yt be two nonautonomous vector fields. Then

−→exp
∫ t

0
(Xs + Ys)ds =

−→exp
∫ t

0

(
−→exp

∫ s

0
adXτdτ

)
Ysds ⊙

−→exp
∫ t

0
Xsds (6.29)

= −→exp
∫ t

0
(AdPs)Ysds ⊙ Pt (6.30)

where Pt =
−→exp

∫ t
0 Xsds denotes the flow of the original vector field.

Proof. Our goal is to find a flow Rt such that

Qt :=
−→exp

∫ t

0
(Xs + Ys)ds = Rt ⊙ Pt (6.31)

By definition of right chronological exponential we have

Q̇t = Qt ⊙ (Xt + Yt) (6.32)

On the other hand, from (6.31), we also have

Q̇t = Ṙt ⊙Pt +Rt ⊙ Ṗt

= Ṙt ⊙Pt +Rt ⊙Pt ⊙Xt

= Ṙt ⊙Pt +Qt ⊙Xt (6.33)

Comparing (6.32) and (6.33), one gets

Qt ⊙ Yt = Ṙt ⊙Pt

and the ODE satisfied by Rt is

Ṙt = Qt ⊙ Yt ⊙ P−1
t

= Rt ⊙ (AdPt)Yt

Since R0 = Id we find that Rt is a chronological exponential and

−→exp
∫ t

0
(Xs + Ys)ds =

−→exp
∫ t

0
(AdPs)Ysds ⊙ Pt

which is (6.30). Plugging (6.24) in (6.30) one gets (6.29).

Exercise 6.16. Prove the following versions of the variation formula:
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(i) For every non autonomous vector fields Xt, Yt on M

−→exp
∫ t

0
(Xs + Ys)ds =

−→exp
∫ t

0
Xsds ⊙

−→exp
∫ t

0

(
−→exp

∫ s

t
adXτdτ

)
Ysds (6.34)

(ii) For every autonomous vector fields X,Y ∈ Vec(M) prove that

et(X+Y ) = −→exp
∫ t

0
es adXY ds ⊙ etX = −→exp

∫ t

0
e−sX∗ Y ds ⊙ etX (6.35)

= etX ⊙
−→exp

∫ t

0
e(s−t) adXY ds (6.36)

6.A Estimates and Volterra expansion

In this section we discuss the convergence of the Volterra expansion

Id +
∞∑

k=1

∫
· · ·
∫

∆k(t)

Xsk
⊙ · · · ⊙Xs1d

ks (6.37)

where ∆k(t) = {(s1, . . . , sk) ∈ Rk| 0 ≤ sk ≤ . . . ≤ s1 ≤ t} denotes the k-dimensional symplex.
Recall that if Xs = X is autonomous then the series (6.37) simplifies in

∞∑

k=0

tk

k!
Xk (6.38)

We prove the following result, saying that in general, if the vector field is not zero, the chronological
exponential is never convergent on the whole space C∞(M).

Proposition 6.17. Let X be a nonzero smooth vector field. Then there exists a ∈ C∞(M) such
that the Volterra expansion

∞∑

k=0

tk

k!
Xka (6.39)

is not convergent at some point q ∈M .

Proof. Fix a point q ∈ M such that X(q) 6= 0 and consider a smooth coordinate chart around q
such that X is rectified in this chart. We are then reduced to prove the statement in the case when
X = ∂x1 in Rn. Fix an arbitrary sequence (cn)n∈N and let f : I → R defined in a neighborhood I of
0 such that f (n)(0) = cn, for every n ∈ N. The existence of such a function is guaranteed by Lemma
6.18. Then define a(x) = f(x1), where x = (x1, x

′) ∈ Rn. In this case Xka(q) = ∂kx1f(0) = ck and

∞∑

k=0

tk

k!
Xka|q =

∞∑

k=0

tk

k!
ck (6.40)

which is not convergent for a suitable choice of the sequence (cn)n∈N.

Lemma 6.18 (Borel lemma). Let (cn)n∈N be a real sequence. Then there exist a C∞ function
f : I → R defined in a neighborhood I of 0 such that f (n)(0) = cn, for every n ∈ N.
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Proof. Fix a C∞ bump function φ : R → R with compact support and such that φ(0) = 1 and
φ(j)(0) = 0 for every j ≥ 1. Then set

gk(x) :=
ck
k!
xkφ

(
x

εk

)
(6.41)

Notice that g
(j)
k (0) = δjkck, where δjk is the Kronecker symbol, and |g(j)k (x)| ≤ Cj,kε

k−j
k for every

x ∈ R and some constant Cj,k > 0. Then choose εk > 0 in such a way that

|g(j)k (x)| ≤ 2−j, ∀ j ≤ k − 1,∀x ∈ R, (6.42)

and define the function

f(x) :=

∞∑

k=0

gk(x). (6.43)

The series (6.43) converges uniformly with all the derivatives by (6.42) and, by differentiating under
the sum, one obtains

f (j)(x) :=
∞∑

k=0

g
(j)
k (x), f (j)(0) :=

∞∑

k=0

g
(j)
k (0) = aj .

Even if in general the Volterra expansion is not convergent, it gives a good approximation of
the chronological exponential. More precisely, if we denote by

SN (t) := Id +

N−1∑

k=1

∫
· · ·
∫

∆k(t)

Xsk
⊙ · · · ⊙Xs1d

ks

the N -th partial sum, we have the following estimate.

Theorem 6.19. For every t > 0, α,N ∈ N, K ⊂M compact, we have

∥∥∥∥
(
−→exp

∫ t

0
Xsds− SN (t)

)
a

∥∥∥∥
α,K

≤ C

N !
eC

∫ t
0 ‖Xs‖α,K′ds

(∫ t

0
‖Xs‖α+N−1,K ′ds

)N
‖a‖α+N,K ′ , (6.44)

for some K ′ compact set containing K and some constant C = Cα,N,K ′ > 0.

The proof of this result is postponed to Appendix 6.B. Let us specify this estimate for a non
autonomous vector field of the form

Xt =
m∑

i=1

ui(t)Xi

where X1, . . . ,Xm are smooth vector fields on M and u ∈ L2([0, T ],Rm).

Theorem 6.20. For every t > 0, α,N ∈ N, K ⊂ M compact, we have (denoting ‖u‖1,t =
‖u‖L1([0,t],Rm))

∥∥∥∥∥

(
−→exp

∫ t

0

m∑

i=1

ui(t)Xi − SN (t)
)
a

∥∥∥∥∥
α,K

≤ C

N !
eC‖u‖1,t‖u‖N1,t‖a‖α+N,K ′ (6.45)

for some K ′ compact set containing K and some constant C = Cα,N,K > 0.
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Proof. It follows from the previous theorem and from the fact that for a vector field of the form
Xt =

∑m
i=1 ui(t)Xi we have the estimate

∫ t

0
‖Xs‖α,K ′ds ≤ ‖u‖L1([0,t],Rm) (6.46)

Indeed we have for every f such that ‖f‖α+1,K ′ ≤ 1 that

∥∥∥∥∥

m∑

i=1

ui(s)Xif

∥∥∥∥∥
α,K ′

≤ sup
x∈K ′

∣∣∣∣∣Xiℓ
⊙ · · · ⊙Xi1

(
m∑

i=1

ui(s)Xif

)∣∣∣∣∣ (6.47)

≤ sup
x∈K ′

m∑

i=1

|ui(s)||Xiℓ
⊙ · · · ⊙Xi1

⊙Xif | ≤
m∑

i=1

|ui(s)| (6.48)

To complete the discussion, let us describe a special case when the Volterra expansion is actually
convergent. One can prove the following convergence result.

Proposition 6.21. Let Xt be a nonautonomous vector field, locally bounded w.r.t. t ∈ I. Assume
that there exists a Banach space (L, ‖ · ‖) ⊂ C∞(M) such that

(a) Xta ∈ L for all a ∈ L and all t ∈ I

(b) sup{‖Xta‖ : a ∈ L, ‖a‖ ≤ 1, t ∈ I} <∞

Then the Volterra expansion (6.37) converges on L for every t ∈ I.

Proof. We can bound the general term of the sum with respect to the norm ‖ · ‖ of L
∥∥∥∥∥∥∥

∫
· · ·
∫

∆k(t)

Xsk
⊙ · · · ⊙Xs1a d

ks

∥∥∥∥∥∥∥
≤
∫
· · ·
∫

∆k(t)

‖Xsk‖ · · · ‖Xs1‖dks ‖a‖ (6.49)

=
1

k!

(∫ t

0
‖Xs‖ds

)k
‖a‖ (6.50)

then the norm of the k-th term of the Volterra expansion is bounded above by the exponential
series, and the Volterra expansion converges on L uniformly.

Remark 6.22. The assumption in the theorem is satisfied in particular for a linear vector field X
on M = Rn and L ⊂ C∞(Rn) the set of linear functions.

If M , the vector field Xt and the function a are real analytic, then it can be proved that the
Volterra expansion is convergent for small time. For a precise statement seet [5].
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6.B Remainder term of the Volterra expansion

In this Appendix we prove Theorem 6.19. We start with the following key result.

Proposition 6.23. Let Xt be a complete non autonomous vector field and denote by Pt,s its flow.
Then for every t > 0, α ∈ N and K ⊂ M compact, there exists K ′ compact containing K and
C > 0 such that

‖P0,ta‖α,K ≤ Ce
∫ t
0 ‖Xs‖α,K′ds‖a‖α,K ′ (6.51)

Proof. Define the compact set

Kt :=
⋃

s∈[0,t]
P0,s(K),

and the real function

β(t) := sup

{‖P0,tf‖α,K
‖f‖α+1,Kt

∣∣∣ f ∈ C∞(M), ‖f‖α+1,Kt 6= 0

}
(6.52)

Notice that the function β is measurable in t since the supremum in the right hand side can be
taken over an arbitrary countable dense subset of C∞(M). We have the following lemma, whose
proof is postponed at the end of the proof of the proposition.

Lemma 6.24. For every t > 0, α ∈ N and K ⊂M compact, there exists C > 0 such that

‖P0,tf‖α,K ≤ Cβ(t)‖f‖α,Kt , ∀ f ∈ C∞(M). (6.53)

Let us now consider the identity

P0,ta = a+

∫ t

0
P0,s ⊙Xsa ds

which implies

‖P0,ta‖α,K ≤ ‖a‖α,K +

∫ t

0
‖P0,s ⊙Xsa‖α,Kds.

Appying Lemma 6.24 with f = Xsa we get

‖P0,ta‖α,K ≤ ‖a‖α,K + C

∫ t

0
β(s)‖Xsa‖α,Ktds

≤ ‖a‖α,K + C‖a‖α+1,Kt

∫ t

0
β(s)‖Xs‖α,Ktds

where we used that Ks ⊂ Kt for s ∈ [0, t], hence ‖ · ‖α,Ks ≤ ‖ · ‖α,Kt . Dividing by ‖a‖α+1,Kt and
using ‖a‖α,Kt ≤ ‖a‖α+1,Kt we get

‖P0,ta‖α,K
‖a‖α+1,Kt

≤ 1 + C

∫ t

0
β(s)‖Xs‖α,Ktds

By definition (6.52) of the function β we have the inequality

β(t) ≤ 1 + C

∫ t

0
β(s)‖Xs‖α,Ktds (6.54)
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that by Gronwall inequality implies

β(t) ≤ eC
∫ t
0
‖Xs‖α,Ktds (6.55)

and (6.51) follows combining the last inequality and (6.53) choosing f equal to a and for every
compact set K ′ containing Kt.

Now we complete the proof of the main result, namely Theorem 6.19. Recall that we can write

−→exp
∫ t

0
Xsds − SN (t) =

∫
· · ·
∫

0≤sN≤...≤s1≤t

P0,sN
⊙XsN

⊙ · · · ⊙Xs1ds

hence

∥∥∥∥
(
−→exp

∫ t

0
Xsds− SN (t)

)
a

∥∥∥∥
α,K

≤
∫
· · ·
∫

0≤sN≤...≤s1≤t

‖P0,sN
⊙XsN

⊙ · · · ⊙Xs1a‖α,K ds

Applying Proposition 6.23 to the function XsN
⊙ · · · ⊙Xs1a one obtains

∥∥∥∥
(
−→exp

∫ t

0
Xsds− SN (t)

)
a

∥∥∥∥
α,K

≤ Ce
∫ t
0 ‖Xs‖α,Kds

∫
· · ·
∫

0≤sN≤...≤s1≤t

‖XsN
⊙ · · · ⊙Xs1a‖α,K ′ ds (6.56)

for some compact K ′ containing K. Now let us estimate the integral

∫
· · ·
∫

0≤sN≤...≤s1≤t

‖XsN
⊙ · · · ⊙Xs1a‖α,K ′ ds (6.57)

≤
∫
· · ·
∫

0≤sN≤...≤s1≤t

‖XsN ‖α,K ′

∥∥XsN−1

∥∥
α+1,K ′ · · · ⊙ ‖Xs1‖α+N−1,K ′ ‖a‖α+N,K ′ ds (6.58)

≤ ‖a‖α+N,K ′

∫
· · ·
∫

0≤sN≤...≤s1≤t

‖XsN‖α+N−1,K ′

∥∥XsN−1

∥∥
α+N−1,K ′ · · · ⊙ ‖Xs1‖α+N−1,K ′ ds

(6.59)

≤ ‖a‖α+N,K ′

1

N !

(∫ t

0
‖Xs‖α+N−1,K ′ ds

)N
(6.60)

and combining this inequality with (6.56) we are done.

Proof of Lemma 6.24. By Whitney theorem it is not restrictive to assume that M is a submanifold
of Rn for some n. We still denote by {Xi}i=1,...,r the vector fields (now defined on Rn) spanning
the tangent space to M .

Notice that if ‖f‖α,Kt = 0 then also ‖P0,tf‖α,K = 0 and the identity is satisfied, hence we can
assume ‖f‖α,Kt 6= 0. Fix a point q0 ∈ K where the supremum in

‖P0,tf‖α,K = sup
q∈K,
{|(Xiℓ

⊙ · · · ⊙Xi1
⊙ P0,tf)(q)| : 1 ≤ ij ≤ r, 0 ≤ ℓ ≤ α}
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is attained (the existence guaranteed by compactness of K) and let pf be the polynomial in Rn and
of degree ≤ α that coincides with the Taylor polynomial of degree α of f at qt = P0,t(q0). Then by
construction we have

‖P0,tf‖α,K ≤ ‖P0,tpf‖α,K , ‖pf‖α,qt ≤ ‖f‖α,Kt (6.61)

Moreover in the finite-dimensional space of polynomials in Rn of degree ≤ α all norms are equivalent
then there exist C > 0 such that

‖pf‖α,Kt ≤ C‖pf‖α,qt (6.62)

Combining (6.61) and (6.62) with ‖pf‖α,Kt = ‖pf‖α+1,Kt (since pf is a polynomial of degree α)
and the definition of β, we have

‖P0,tf‖α,K
‖f‖α,Kt

≤ ‖P0,tpf‖α,K
‖pf‖α,qt

≤ C ‖P0,tpf‖α,K
‖pf‖α,Kt

≤ C ‖P0,tpf‖α,K
‖pf‖α+1,Kt

≤ Cβ(t).
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Chapter 7

Lie groups and left-invariant
sub-Riemannian structures

In this chapter we study normal Pontryagin extremals on left-invariant sub-Riemannian structures
on a Lie groups G. Such a structures provide most of the examples in which normal Pontryagin
extremal can be computed explicitly in terms of elementary functions.

We introduce a Lie groups as a sub-group of the group of diffeomorphisms of a manifold M
induced by a family of vector fields whose Lie algebra is finite dimensional.

We then define left-invariant sub-Riemannian structures. Such structures are always constant
rank and, if they are of rank k, they can be generated by exactly k linearly independent vector
fields defined globally. On such a structure we have always global existence of minimizers.

We then discuss Hamiltonian systems on Lie groups with left-invariant Hamiltonians. Such
Hamiltonian systems are particularly simple since their tangent and cotangent bundles are always
trivial. They have always a certain number of constant of the motion that for systems on a Lie
group of dimension 3 are sufficient for the complete integrability.

We study in details some classes of systems in which one can obtain the explicit expression of
normal Pontryagin extremals.

7.1 Sub-groups of Diff(M) generated by a finite dimensional Lie
algebra of vector fields

LetM be a smooth manifold of dimension n and let L ⊂ Vec(M) be a finite-dimensional Lie algebra
of vector fields of dimension dimL = ℓ. Assume that all elements of L are complete vector fields.
The set

G := {eX1 ◦ . . . ◦ eXk | k ∈ N,X1, . . . ,Xk ∈ L} ⊂ Diff(M), (7.1)

that has a natural structure of subgroup of the group of diffeomorphisms of M , where the group
law is given by the composition. We want to prove the following result.

Theorem 7.1. The group G can be endowed with a structure of connected smooth manifold of
dimension ℓ = dimL. Moreover the group multiplication and the inversion are smooth with respect
to the differentiable structure.
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To prove this theorem, we build the differentiable structure on G by explicitly defining charts.
To this aim, for all P ∈ G let us consider the map

ΦP : L→ G, ΦP (X) = P ◦ eX .

Proposition 7.2. The following properties holds true:

(i) there exists U ⊂ L neighborhood of 0 such that ΦP |U is invertible on its image, for all P ∈ G,

(ii) for all P ′ ∈ ΦP (U) there exists V ⊂ U neighborhood of 0 such that ΦP ′(V ) ⊂ ΦP (U).

Thanks to the previous result, one can introduce the following basis of neighborhoods1 on G:

B = {ΦP (W ) |P ∈ G,W ⊂ U, 0 ∈W}. (7.2)

where U is determined as in (i) of Proposition 7.2. Part (ii) of Proposition 7.2 ensures that (7.2)
satisfies the axioms of a basis for generates a unique topology on G. Indeed it is sufficient to apply
it twice to show that if ΦP (W )∩ΦP ′(W ′) 6= ∅ then there exists Q ∈ ΦP (W )∩ΦP ′(W ′) and V ⊂ U
with 0 ∈ V such that ΦQ(V ) ⊂ ΦP (W ) ∩ ΦP ′(W ′).

Once the topology generated by B is introduced the map ΦP |U is automatically an homeo-
morphism, and this proves that G is a topological group, i.e., a group that is also a topological
manifold such that the multiplication and the inversion are continuous with respect to the topo-
logical structure. Indeed it can be shown that, if ΦP (W ) ∩ ΦP ′(W ′) 6= ∅, then the change of chart
Φ−1
P ∩ ΦP ′ : W ∩W ′ → W ∩W ′ is smooth with respect to the smooth structure defined on the

vector space L (cf. Exercice 7.10). Hence G has the structure of smooth manifold.

7.1.1 Proof of Proposition 7.2

To prove this theorem we use a reduction to a finite dimensional setting, by evaluating elements of
G, that are diffeomorphisms of M , on a special set of ℓ points, where ℓ is the dimension of L.

To identify this set of points, we first need a general lemma.

Lemma 7.3. For every k ∈ N and F1, . . . , Fk : Rm → Rn family of linearly independent functions,
there exist x1, . . . , xk ∈ Rm such that the vectors

(Fi(x1), Fi(x2), . . . , Fi(xk)), i = 1, . . . , k

are linearly independent as elements of (Rn)k = Rn × . . .× Rn.

Proof. We prove the statement by induction on k.

(i). Since F1 is not the zero function then there exists x1 ∈ Rm such that F1(x1) 6= 0.

(ii). Assume that the statement is true for every set of k linearly independent functions and
consider a family F1, . . . , Fk+1 of linearly independent functions. Let x1, . . . , xk to be the set of

1Recall that a collection B of subset of a set X is a basis for a (unique) topology on X if and only if

(a) ∪B∈B = X,

(b) for all B1, B2 ∈ B with B1 ∩B2 6= ∅ there exists nonempty B3 ∈ B such that B3 ⊂ B1 ∩B2.
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points obtained by applying the inductive step to the family F1, . . . , Fk. If the claim is not true for
k + 1, it means that for every x̄ ∈ Rm there exists a non zero vector (c1(x̄), . . . , ck+1(x̄)) such that

k+1∑

i=1

ci(x̄)Fi(x̄) = 0,

k+1∑

i=1

ci(x̄)Fi(xj) = 0, j = 1, . . . , k, (7.3)

By definition of x1, . . . , xk we have that ck+1(x̄) 6= 0, otherwise we get a contradiction with the
inductive assumption. Hence we can assume ck+1(x̄) = −1 and rewrite equation (7.3) as

k∑

i=1

ci(x̄)Fi(xj) = Fk+1(xj), j = 1, . . . , k, (7.4)

k∑

i=1

ci(x̄)Fi(x̄) = Fk+1(x̄), (7.5)

Treating (7.4) as a linear equation in the variables c1, . . . , ck, its matrix of coefficients has rank k
by assumption, hence its solution (that exists) is unique and independent on x̄. Let us denote it
by (c1, . . . , ck). Then (7.5) gives

k∑

i=1

ciFi(x̄) = Fk+1(x̄)

for every arbitrary x̄ ∈ Rm, which is in contradiction with the fact that F1, . . . , Fk+1 is a linearly
independent family of functions.

As an immediate consequence of the previous lemma one obtains the following property.

Proposition 7.4. Let X1, . . . ,Xℓ be a basis of L. Then there exists q1, . . . , qℓ ∈ M such that the
vectors

(Xi(q1), . . . ,Xi(qℓ)), i = 1, . . . , ℓ,

are linearly independent as elements of Tq1M × . . . × TqℓM .

In the rest of this section, the points q1, . . . , qℓ are determined as in Proposition 7.4. The
following proposition defines the neighborhood U that appears in the statement of Proposition 7.2.

Proposition 7.5. There exists a neighborhood of the origin U ⊂ L such that the map

φ : U →M ℓ, φ(X) = (eX(q1), . . . , e
X(qℓ)) ∈M ℓ,

is an immersion at the origin.2

Proof. It is enough to show that the rank of φ∗ is equal to ℓ. Computing the partial derivatives at
0 ∈ L of φ in the directions X1, . . . ,Xℓ we have

∂φ

∂Xi
(0) =

d

dt

∣∣∣∣
t=0

(etXi(q1), . . . , e
tXi(qℓ)) = (Xi(q1), . . . ,Xi(qℓ)), i = 1, . . . , ℓ,

and these are linearly independent as elements of Tq1M × . . .× TqℓM by Lemma 7.4.

2here M ℓ = M × . . .×M
︸ ︷︷ ︸

ℓ times

.
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We are now going to study L seen as a Lie algebra of vector fields on Mk. Given k ∈ N, we can
give Vec(Mk) = Vec(M)k the structure of a Lie algebra as follows:

[(X1, . . . ,Xk), (Y1, . . . , Yk)] = ([X1, Y1], . . . , [Xk, Yk]).

Lemma 7.6. For every k ∈ N the map i : L→ Vec(M)k defined by i(X) = (X, . . . ,X) defines an
involutive distribution on Mk.

Proof. It follows from the identity [i(X), i(Y )] = i([X,Y ]), since

[(X, . . . ,X), (Y, . . . , Y )] = ([X,Y ], . . . , [X,Y ]).

Lemma 7.7. If P ∈ G then P∗L = L.

Proof. Let us first prove that P∗L ⊂ L for every P ∈ G. Since elements in G are written as

P = eX1 ◦ . . . ◦ eXk , Xj ∈ L

it is enough to show that for every X,Y ∈ L we have that eX∗ Y ∈ L. By (6.25) we have the identity

eX∗ Y = e−adXY,

The Volterra exponential series of −adX converges, since L is a finite dimensional space. The N -th
term of the sum

Y +

N∑

k=1

(−1)k
k!

(adX)kY,

belongs to L for each N ∈ N, since L is a Lie algebra. Hence one can pass to the limit for N →∞
and e−adXY ∈ L. This proves that P∗L ⊂ L. Actually P∗L = L since P∗L is a Lie algebra and
dimP∗L = dimL, since P is a diffeomorphism.

For every P ∈ G we introduce

φP : U →M ℓ, φP = P ◦ φ

or, more explicitly

φP (X) = (P ◦ eX(q1), . . . , P ◦ eX(qℓ)), X ∈ U.
Thanks to Proposition 7.5 it follows that φP is an immersion at zero for all P ∈ G, since it is a
composition of an immersion with a diffeomorphism.

Proposition 7.8. For all P ∈ G we have that φP (U) belongs to the integral manifold in M ℓ of the
foliation defined by L (seen as distribution in Vec(M)ℓ) passing through the point (P (q1), . . . , P (qℓ)) ∈
M ℓ. Moreover for every P ∈ G, φP (U) belongs to the same leaf of the foliation.

Proof. The Lie algebra L, seen as a distribution in Vec(M)ℓ, is involutive. Thus it generates a
foliation by Frobenius theorem. The leaf of the foliation passing through (q1, . . . , qℓ) (that has
dimension ℓ) has the expression

N = {(P̂ (q1), . . . , P̂ (qℓ)) | P̂ = eX1 ◦ . . . ◦Xk , k ∈ N,X1, . . . ,Xk ∈ L},
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while for each P ∈ G,

φP (U) = {(P ◦ eX(q1), . . . , P ◦ eX(qℓ)) | P ∈ G,X ∈ U ⊂ L},

hence for each P ∈ G we have that φP (U) ⊂ N . The image φP (U) is an immersed submanifold
of dimension ℓ that is tangent to L thanks to Lemma 7.7, and passes through the point φP (0) =
(P (q1), . . . , P (qℓ)) ∈M ℓ.

Remark 7.9. The previous result implies that for every (q′1, . . . , q
′
ℓ) ∈ φP (U) ∩ φP ′(U) there exists

uniques X,X ′ ∈ U such that

(P ◦ eX(q1), . . . , P ◦ eX(qℓ)) = (P ′ ◦ eX′

(q1), . . . , P
′ ◦ eX′

(qℓ)) = (q′1, . . . , q
′
ℓ). (7.6)

In other words we are saying that the two diffeomorphisms P ◦ eX and P ′ ◦ eX′
coincides when

evaluated on the set of points {q1, . . . , qℓ}.

Exercise 7.10. Prove that the maps that associates X 7→ X ′ defined in (7.6) is smooth.

The argument that is developed in the next section shows that actually, not only one has the
identity (7.6), but also P ◦ eX = P ′ ◦ eX′

as diffeomorphisms.

7.1.2 Passage to infinite dimension

In what follows, to study elements of G as diffeomorphisms and not only as acting on a finite set
of points, we use the following idea: we study diffeomorphisms on a set of ℓ+ 1 points, where the
first one is “free”.

Fix q ∈M . Let us introduce

φ : U →M ℓ+1, φ(X) = (eX(q), eX (q1), . . . , e
X(qℓ)) ∈M ℓ+1.

Moreover, we define for every P ∈ G

φP : U →M ℓ+1, φP (X) = (P ◦ eX(q), P ◦ eX(q1), . . . , P ◦ eX(qℓ)) ∈M ℓ+1.

The following Proposition can be proved following the same arguments as the one of Proposition
7.8.

Proposition 7.11. Fix q ∈ M . For all P ∈ G we have that φP (U) is an integral manifold of
dimension ℓ in M ℓ+1 of a foliation defined by L (seen as distribution in Vec(M)ℓ+1) and passing
through the point (P (q), P (q1), . . . , P (qℓ)) ∈ M ℓ+1. Moreover, for every P ∈ G, φP (U) belong to
the same leaf of the foliation.

Notice that if π :M ℓ+1 →M ℓ denotes the projection π(q0, q1, . . . , qℓ) = (q1, . . . , qℓ) that forgets
about the first element we have φ = π ◦ φ and φP = π ◦ φP . Notice that by construction

π : φP (U)→ φP (U) (7.7)

is a diffeomorphism for every choice of P (in particular it is one-to-one).
We can now prove the main result.
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Proof of Proposition 7.2. (i). It is enough to show that ΦP is injective on its image. In other words
we have to show that, if P ◦ eX = P ◦ eY for some X,Y ∈ U , then X = Y . The assumption implies
that

φP (X) = (P ◦ eX(q1), . . . , P ◦ eX(qℓ)) = (P ◦ eY (q1), . . . , P ◦ eY (qℓ)) = φP (Y )

hence by invertibility of φP on U we have that X = Y .

(ii). Recall that, by construction, one has the following relation between ΦP and its finite-
dimensional representation φP

φP (W ) = {(Q(q1), . . . , Q(qℓ)) : Q ∈ ΦP (W )}, W ⊂ U.

For every V ⊂ U , with 0 ∈ V , one has that φP ′(V ) and φP (U) are integral submanifold of M ℓ

belonging to the same leaf of the foliation, thanks to Proposition 7.8.

Since by assumption P ′ ∈ ΦP (U), it follows that the intersection φP ′(V ) ∩ φP (U) is open and
non empty in M ℓ and contains the point (P ′(q1), . . . , P ′(qℓ)). We can then choose V small enough
such that φP ′(V ) ⊂ φP (U).

This inclusion of the finite-dimensional images implies the following: for every X ′ ∈ V there
exists a unique element X ∈ U such that P ′ ◦ eX′

= P ◦ eX when evaluated on the special set of
points, namely

(P ◦ eX(q1), . . . , P ◦ eX(qℓ)) = (P ′ ◦ eX′

(q1), . . . , P
′ ◦ eX′

(qℓ)). (7.8)

To complete the proof it is enough to show that P ′ ◦ eX′
= P ◦ eX at every point.

To this aim fix an arbitrary q ∈ M and let us consider the extended finite-dimensional maps
φP and φP ′ . Let us firs prove that, for V defined as before, one has φP ′(V ) ⊂ φP (U) (indepedently
on q). Assume that φP (U) \ φP ′(V ) 6= ∅, then we have

π(φP ′(V )) = π(φP ′(V ) ∩ φP (U)) ∪ π(φP (U) \ φP ′(V )) (7.9)

= φP ′(V ) ∪ π(φP (U) \ φP ′(V )) (7.10)

This gives a contradiction since on one hand the left-hand is connected thanks to (7.7) (for P = P ′),
while on the other hand it is written as a union of nonempty disjoint sets.

This implies in particular: for every X ′ ∈ V ∪W there exists a unique element X̂ ∈ U (a priori

dependent on q) such that P ′ ◦ eX′
= P ◦ eX̂ when evaluated at {q, q1, . . . , qℓ}, namely

(P ◦ eX̂(q), P ◦ eX̂(q1), . . . , P ◦ eX̂(qℓ)) = (P ′ ◦ eX′

(q), P ′ ◦ eX′

(q1), . . . , P
′ ◦ eX′

(qℓ)). (7.11)

Combining (7.8) with (7.11) one obtains

φP (X̂) = (P ◦ eX̂(q1), . . . , P ◦ eX̂(qℓ)) = (P ◦ eX(q1), . . . , P ◦ eX(qℓ)) = φP (X).

By invertibility of φP on U , it follows that X̂ = X, independently on q. Thus by (7.11) and the
arbitrarity of q we have P ′ ◦ eX′

(q) = P ◦ eX(q) for every q, for every fixed X ′ ∈ V , as claimed.
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7.2 Lie groups and Lie algebras

Definition 7.12. A Lie group is a group G that has a structure of smooth manifold such that the
group multiplication

G×G→ G, (g, h) 7→ gh

and inversion
G→ G, g 7→ g−1

are smooth with respect to the differentiable structure of G.

We denote by Lg : G→ G and Rg : G→ G the left and right multiplication respectively

Lg(h) = gh, Rg(h) = hg.

Notice that Lg and Rg are diffeomorphisms of G for every g ∈ G. Moreover Lg ◦Rg′ = Rg′ ◦Lg for
every g, g′ ∈ G.
Definition 7.13. A vector field X on a Lie group G is said to be left-invariant (resp. right-
invariant) if it satisfies (Lg)∗X = X (resp. (Rg)∗X = X) for every g ∈ G.
Remark 7.14. Every left-invariant vector field X on a Lie group G its uniquely identified with its
value at the origin 1 of the Lie group. Indeed if X is left-invariant, it satisfies the relation

X(g) = Lg∗X(1). (7.12)

On the other hand a vector field defined by the formula X(g) = Lg∗v for some v ∈ T
1

G, is
left-invariant.

Notice that left-invariant vector fields are always complete.

Definition 7.15. The Lie algebra associated with a Lie group G is the Lie algebra g of its left-
invariant vector fields.

By Remark 7.14 the Lie algebra g associated with a Lie group G is a finite dimensional Lie
algebra, that is isomorphic to T

1

G as vector space. Hence g endows T
1

G with the structure of Lie
algebra. In particular dim g = dimG. Given a basis e1, . . . , en of T

1

G we will often consider the
induced basis of g given by

Xi(g) = (Lg)∗ei, i = 1, . . . , n.

When it is convenient we identify g with T
1

G and a left invariant vector field X with its value at
the origin X(1).

Definition 7.16. Given a Lie group G and its Lie algebra g the group exponential map is the map

exp : T
1

G→ G, exp(X) = eX(1). (7.13)

It is important to remember that in general the exponential map (7.13) is not surjective.
If G1 and G2 are Lie groups, then a Lie group homomorphism φ : G1 → G2 is a smooth map

such that f(gh) = f(g)f(h) for every g, h ∈ G1. Two Lie groups are said to be isomorphic if there
exist a diffeomorphism φ : G1 → G2 that is also a Lie group homomorphism.

Two Lie groups G1 and G2 are said locally isomorphic if there exists neighborhoods U ⊂ G1

and V ⊂ G2 of the identity element and a diffeomorphism f : U → V such that f(gh) = f(g)f(h)
for every g, h ∈ U such that gh ∈ U .
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Exercise 7.17 (Third theorem of Lie). Let Gi be a Lie group with Lie algebra Li, for i = 1, 2.
Prove that an isomorphism between Lie algebras i : L1 → L2 induces a local isomorphism of
groups.
(Hint: Prove that the set (X, i(X)) is a subalgebra L of the Lie algebra of the product group
product G1 ×G2. Build the group G ⊂ G1 ×G2 associated with this and then show that the two
projections pi : G1 ×G2 → Gi define p2 ◦ (p1|G)−1 : G1 → G2 a local isomorphism of groups.)

7.2.1 Lie groups as group of diffeomorphisms

In Section 7.1 we have proved that given a manifold M and a finite dimensional Lie algebra L
of vector fields, the subgroup of Diff(M) generated by these vector fields has a structure of finite
dimensional differentiable manifold for which the groups operations are smooth. We call such a
subgroup GM,L. By Definition 7.12 we have

Proposition 7.18. GM,L is a Lie group.

We now want to prove a converse statement for connected group, i.e., every connetected Lie
group is isomorphic to a subgroup of the group of the diffeomorphisms of a manifold generated by
a finite dimensional Lie algebra of vector fields. Indeed this is true with M = G and L being the
Lie algebra of left invariant vector fields on G. More precisely we have the following.

Theorem 7.19. Let G a connected Lie group and L the Lie algebra of left invariant vector fields.
Then G is isomorphic to GG,L.

To prove Theorem 7.19, we give first the following definition.

Definition 7.20. Let G be a Lie group and let us define the group of its right translations as
GR = {Rg | g ∈ G}. On GR we give consider the group structure given by the operation (notice
the inverse order)

Rg1 · Rg2 := Rg2 ◦Rg1 .

Then we need the following simple facts.

Lemma 7.21. G is isomorphic GR.

Proof. Clearly the map φ : g → Rg is a diffeomorphism. That is a group homomorphism follows
from the fact that Rg1g2h = h(g1g2) = (Rg2 ◦Rg1)h. Hence

φ(g1g2) = Rg1g2 = Rg2 ◦Rg1 = Rg1 ·Rg2 .

Similarly one obtains that a Lie group G is isomorphic to the group GL = {Lg | g ∈ G} of left
translations on G endowed with the group low given by the standard composition.

Lemma 7.22. The flow of a left invariant vector fields on a Lie group G commutes with left
translations.
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Proof. If φ is a diffeomorphism and X a vector field we have that (see Lemma 2.20)

etφ∗X = φ ◦ etX ◦ φ−1.

Composing on the right with φ, we have

etφ∗X ◦ φ = φ ◦ etX .

Now taking φ = Lg for some g, X a left invariant vector field and using that Lg∗X = X, we have
that

etLg∗X ◦ Lg = Lg ◦ etX = Lg ◦ etLg∗X .

The conclusion follows from the arbitrarity of g.

A similar statement holds for right invariant vector fields.

Lemma 7.23. Let G be a Lie group. A diffeomorphism on G is a right translation if and only if
it commutes with all left translations.

Proof. Let P be the diffeomorphism. If P is a right translation then it commutes with left trans-
lation since for every g, h1, h2 ∈ G, we have Lh1Rh2g = h1gh2 = Rh2Lh1g. To prove the opposite,
let us define g = P (1). For every h ∈ H, we have

P (h) = P (Lh1) = LhP (1) = Lhg = hg

hence P = Rg.

Remark 7.24. By Lemma 7.22 and Lemma 7.23 we have that the flow of a left-invariant vector field
is a right translation.

Proof of Theorem 7.19. By Lemma 7.21, it remains to prove that GG,L is isomorphic to GR. Indeed
we are going to prove that GG,L = GR.

To prove that GG,L ⊆ GR observe that every element of GG,L is a composition of the flow of left
invariant vector fields and hence it is a right translation.

To prove that GG,L = GR, observe that by the argument above GG,L is a subgroup of GR.
Moreover since dim(GG,L) = dim(GR). It follows that GG,L contains an open neighborhood of the
identity. The conclusion of the Theorem is then a consequence of the following Lemma.

Lemma 7.25. Let G be a connected Lie group. If H is a subgroup of G containing an open
neighborhood of the identity then H = G.

Proof. Since by hypothesis H is nonempty and open it remains to prove that H is closed.

To this purpose observe that if g ∈ G \H, then gH is disjoint from H (otherwise there exists
u ∈ H such that gu ∈ H which implies that guu−1 = g ∈ H). Hence

G \H =
⋃

g /∈H
gH.

Since each set gH is open, it follows that G \H is open and hence that H is closed.

�
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7.2.2 Matrix Lie groups and the matrix notation

A very important example of Lie group is the group of all invertible n × n real matrices, with
respect to the matrix multiplication

GL(n) = {M ∈ Rn×n | det(M) 6= 0}.

Similarly one define
GL(n,C) = {M ∈ Cn×n | det(M) 6= 0}.

Exercise 7.26. Prove that GL(n,C) is connected while GL(n) is not. Prove that the Lie algebra
of GL(n) (resp. GL(n,C)) is gl(n) = {M ∈ Rn×n} (resp. gl(n,C) = {M ∈ Cn×n}).

Definition 7.27. A group of matrices is a sub group of GL(n) or of GL(n,C).

Remark 7.28. The Lie algebra of a sub-group of GL(n) (resp. GL(n,C)) is a sub-algebra of gl(n)
(resp. gl(n,C)).

Group of matrices that we are going to meet along the book are

• The special linear group

SL(n) = {M ∈ Rn×n | det(M) = 1},

whose Lie algebra is sl(n) = {M ∈ Rn×n | trace(M) = 0}.

• The orthogonal group and the special orthogonal group

O(n) = {M ∈ Rn×n |MMT = 1},
SO(n) = {M ∈ Rn×n |MMT = 1,det(M) = 1}, (7.14)

for both the Lie algebra is so(n) = {M ∈ Rn×n | M = −MT }. SO(n) is the connected
component of O(n) to the identity.

• The special unitary group

SU(n) = {M ∈ Cn×n |MM † = 1},

where M † is the transpose of the complex conjugate of M . The Lie algebra of SU(n) is
su(n) = {M ∈ Cn×n |M = −M †}.

• The group of (positively oriented) Euclidean transformations of Rn

SE(n) =








a1

R
...
an

0 1


 | R ∈ SO(n), a1, . . . , an ∈ R




.

The name of this group comes from the fact that if we represent a point of Rn as a vector
(x1, . . . , xn, 1) then the action of a matrix of SE(n) produces a rotation and a translation.
The Lie algebra of SE(n) is
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se(n) =








b1

M
...
bn

0 0


 |M ∈ so(n), b1, . . . , bn ∈ R




.

Exercise 7.29. Prove that o(3) and su(2) are isomorphic as Lie algebras.

Lemma 7.30. On group of matrices a left invariant vector field X = Lg∗A = gA, A ∈ T
1

G.

Proof. By using the expression in coordinates Lg : h 7→
∑

k gikhkj we have that

(Lg∗A)ij =
∑

l,m,k

∂(gikhkj)

∂hlm
Alm =

∑

l,m,k

gikδklδjmAlm =
∑

k

gikAkj

Similarly one obtains that for Rg∗A = Ag for every A ∈ T
1

G.

Remark 7.31. Notice that the for a left invariant vector field on a group of matrix X(g) = gA, the
integral curve ofX satisfying g(0) = g0 is g(t) = g0e

tA where etA is the standard matrix exponential.
Hence the integral curve of a left invariant vector field, at a given t, is a right translation. This is
indeed a general fact as explained in the next section.

Exercise 7.32. (i). Let X(g) = gA and Y (g) = gB be two left invariant vector on a group of
matrices. Prove that

[X,Y ](g) = g(AB −BA) = g[A,B].

(Hint: use the expression in coordinates Xij =
∑

k gikAkj and Yij =
∑

k gikBkj, [X,Y ]ij =
∑

kl

(
∂Yij
∂gkl

Xkl − ∂Xij

∂gkl
Ykl

)
.)

(ii). Prove that for right invariant vector fields X(g) = Ag and Y (g) = Bg we have

[X,Y ](g) = −[A,B]g.

Notation. For a left-invariant vector fields on a group of matrices it is often convenient to use
the abuse of notation X(g) = gX. This formula clarify well the identification of g with T

1

G. Here
X(·) ∈ g and X ∈ T

1

G.

On the matrix notation

Given a vector field X on a manifold, one can consider

• its integral curve on M , i.e., the solutions to q̇ = X(q),

• the equation for the flow of X, i.e., Ṗt = Pt ⊙X.

Let us write these equations for a left invariant vector field X on a Lie group G,

ġ = X(g),

Ṗt = Pt ⊙X.

These two equations are indeed the same equation because:
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• the flow of a left invariant vector field is a right translation (see Remark 7.24);

• an element g of a Lie group G can be interpreted both as a point on G seen as a manifold
or as a diffeomorphism over G, once that G is identified with the group of right translations
GR.

This fact is particularly evident when written for left invariant vector fields on group of matrices.
In this case the two equations take exactly the same form

ġ = gX

Ṗt = Pt ⊙X

In the following we take advantage of this fact to simplify the notation. We sometimes eliminate
the use of the symbols Lg and Lg∗: we write a left invariant vector field in the form X(g) = gX,
thinking to gX as to the matrix product when we are working with Lie groups of matrices (and
in this case we think to X ∈ T

1

G), or as the composition of the left translation g with the left
invariant vector field X otherwise (and in this case we think to X ∈ g).

7.2.3 Bi-invariant pseudo-metrics

Recall that a pseudo-Riemannian metric is a family of non-degenerate, symmetric metric bilinear
form on each tangent space smoothly depending on the point.

Since a Lie group G is a smooth manifold as well as a group, it is natural to introduce the class
of pseudo-Riemannian metric that respects the group structure of G.

Definition 7.33. Let 〈· | ·〉 be a pseudo-Riemannian metric on G. It is said to be left-invariant if

〈v |w〉 = 〈Lg∗v |Lg∗w〉 , ∀ v,w ∈ T
1

G, g ∈ G.

Similarly, 〈· | ·〉 is a right-invariant metric if

〈v |w〉 = 〈Rg∗v |Rg∗w〉 , ∀ v,w ∈ T
1

G, g ∈ G.

A bi-invariant metric is a pseudo-Riemannian metric that is at the same time left and right-
invariant.

Exercise 7.34. Prove that for a bi-invariant pseudo-metric we have the following

〈[X,Y ] |Z〉 = 〈X | [Y,Z]〉 , ∀X,Y,Z ∈ g. (7.15)

Definition 7.35. A Lie algebra g is said to be compact if it admits a positive definite bi-invariant
pseudo-metric (hence a bi-invariant Riemannian metric).

One can prove that the Lie algebra of a compact Lie group is compact in the sense above. See
for instance [16].

Next we define the natural adjoint action of G onto g.

Definition 7.36. For every g ∈ G, the conjugation Cg : G→ G, is the map

Cg = Rg−1 ◦ Lg, Cg(h) = ghg−1.

The adjoint action Ad g : g→ g is defined as Ad g = Cg∗, namely

Ad g(X) = Rg−1∗Lg∗X = Rg−1∗X, X ∈ g.
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In matrix notation

Ad g(X) = gXg−1, X ∈ T
1

G.

Recall that, given x ∈ g, its adjoint representation adx : g→ g is given by ad x(y) = [x, y].

Definition 7.37. The Killing form on a Lie algebra g is the symmetric bilinear form

K : g× g→ R, K(x, y) = trace(adx ◦ ad y) (7.16)

Exercise 7.38. Prove that the Killing form has the associativity property

K([x, y], z) = K(x, [y, z]). (7.17)

Exercise 7.39. Prove that the Killing form of a nilpotent Lie algebra is identically zero.

Definition 7.40. A Lie algebra is said to be semisimple if the Killing form is non-degenerate.

Exercise 7.41. Prove that for semisimple Lie algebras, the Killing form is a bi-invariant pseudo-
metric. Prove that for compact semisimple Lie algebras the Killing form is negative definite.

From the algebraic viewpoint a semisimple Lie algebra can be equivalently defined as a a Lie
algebra g satisfying [g, g] = g. See for instance [16].

7.2.4 The Levi-Malcev decomposition

A very important result in the theory of Lie algebras (see for instance [43, Ch. 4, Sect. 4, Thm. 4])
states that every Lie algebra can be decomposed as

g = r B s, (7.18)

where

• r is the so called radical, i.e., the maximal solvable ideal of g. A solvable Lie algebra is defined
in the following way. An ideal of a Lie algebra l is a subspace i such that [l, i] ⊂ i. Given a
Lie algebra l define the sequence of ideals l0 = l, l(1) = [l(0), l(0)], . . . , l(n+1) = [l(n), l(n)]. The
Lie algebra l is said to be solvable if there exists n such that l(n) = 0.

• s is a semisimple sub-algebra.

• The symbol B indicates the semidirect sum of two Lie algebras defined in the following way.
Let T andM two Lie algebras and D the homomorphism of M into the set of linear operators
in the vector space T such that every operator D(X) is a derivation of T . The Lie algebra
T B M is the vector space T ⊕M with a Lie algebra structure given by using the given Lie
brackets of T and M in each subspace and for the Lie brackets between the two subspaces
we set

[X,Y ] = D(X)Y, X ∈M,Y ∈ T.

Exercise 7.42. Prove that T B M is a well defined Lie algebra.
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Product of Lie groups

Given two Lie groups G1 and G2 their direct product is the Lie groups that one obtains taking as
manifold G1 ×G2 with the multiplication rule

(g1, g2), (h1, h2) ∈ G1 ×G2 7→ (g1h1, g2h2) ∈ G1 ×G2.

One immediately verify that if g1 and g2 are the Lie algebras of G1 and G2, the Lie algebra of
G1 ×G2 is g1 ⊕ g2. In g1 ⊕ g2 we have that [g1, g2] = 0.

7.3 Trivialization of TG and T ∗G

Lemma 7.43. The tangent bundle TG of a Lie group G is trivializable

Proof. Recall that the tangent bundle TM of a smooth manifold M is trivializable if and only if
there exists a basis of globally defined independent vector fields. In the case of the tangent bundle
TG of a Lie group G we can build a global family of independent vector field by fixing a basis
e1, . . . , en of T

1

G and consider the induced left-invariant vector fields given by

Xi(g) = (Lg)∗ei, i = 1, . . . , n,

that are linearly independent by construction.

We have then an isomorphism between TG and G × T
1

G. This isomorphism is is given by
Lg−1∗, that is acting in the following way

TG ∋ (g, v) 7→ (g, ν) ∈ G× T
1

G,

where ν = Lg−1∗v.
Notice that given two left invariant vector fields X(g) = Lg∗ν and Y (g) = Lg∗µ where ν, µ ∈

T
1

G, we have

[X,Y ](g) = Lg∗[ν, µ]

The isomorphism between TG and G × T
1

G extend to the dual. Hence T ∗G is isomorphic to
G× T ∗

1

G, the isomorphism being given by L∗
g, i.e.

T ∗G ∋ (g, p) 7→ (g, ξ) ∈ G× T ∗
1

G,

where ξ = L∗
gp.

Notice that without an additional notion of scalar product, the Lie algebra structure on T
1

G
induced by g does not induce a Lie algebra structure on T ∗

1

G.

In the following it is often convenient to make computations in G× T
1

G and G× T ∗
1

G instead
than TG and T ∗G. It is then useful to recall that if v = Lg∗ν ∈ TgG and p = L∗

g−1ξ ∈ TgG, then

〈p, v〉g = 〈ξ, ν〉1.
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7.4 Left-invariant sub-Riemannian structures

A left-invariant sub-Riemannian structure is a constant rank sub-Riemannian structure (G,D, 〈· | ·〉)
(cf. Section 3.1.3, Example 2) where

• G is a Lie group of dimensione n;

• the distribution is left-invariant, i.e., D(g) = Lg∗d, where d is a subspace of T ∗
1

G. Moreover
we assume that the distribution is Lie bracket generating or equivalently that the smallest
Lie sub-algebra of g containing D is g itself;

• 〈· | ·〉 is a scalar product on D(g) that is left-invariant, i.e., if v = Lg∗ν and w = Lg∗µ with
ν, µ ∈ d we have 〈v |w〉g = 〈ν |µ〉1 .

Remark 7.44. Left-invariant sub-Riemannian structure are by construction free and constant rank.
If D has dimension m ≤ n then the local minimum bundle rank is constantly equal to m (cf.
Definition 3.20).

Given a left-invariant sub-Riemannian structure we can always find m linearly independent
vectors e1, . . . , em in T

1

G such that

(i) D(g) = {∑m
i=1 uiLg∗ei | u1, . . . um ∈ R}

(ii) 〈ei | ej〉
1

= δij .

The problem of finding the shortest curve connecting two points g1, g2 ∈ G can then be formulated
as the optimal control problem





γ̇(t) =
∑m

i=1 ui(t)Lg∗ei

∫ T
0

√∑m
i=1 ui(t)

2 dt→ min

γ(0) = g1, γ(T ) = g2,

(7.19)

Exercise 7.45. (i). Prove that if g ∈ G and γ : [0, T ] → G is an horizontal curve, then the
left-translated curve γg := Lg ◦ γ is also horizontal and ℓ(γg) = ℓ(γ).

(ii). Prove that d(Lgh1, Lgh2) = d(h1, h2) for every g, h1, h2 ∈ G. Deduce that for every g, h ∈ G
and r > 0 one has

Lg(B(h, r)) = B(gh, r).

Existence of minimizers

Proposition 3.44 immediately implies the following.

Corollary 7.46. Any left-invariant sub-Riemannian structure on a Lie group G is complete.

Proof. By Proposition 3.35 small balls are compact. Hence there exists ε > 0 such that the
ball B(1, ε) is compact, where 1 is the identity of G. By left-invariance (cf. Exercice 7.45)
B(g, ε) = Lg(B(1, ε)) is compact for every g ∈ G, independently on ε. By Proposition 3.44,
the sub-Riemannian structure is complete.
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7.5 Carnot groups of step 2

The Heisenberg sub-Riemannian structure that we studied in Section 4.4.3 as an isoperimetric
problem is indeed a left-invariant sub-Riemannian structure on the group G = R3 endowed with
the product

(x, y, z) · (x′, y′, z′) .=
(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y)

)
.

Such a group is called the Heisenberg group.

Exercise 7.47. Prove that the Lie algebra of the Heisenberg group can be written as g = g1 ⊕ g2
where

g1 = span{∂x −
y

2
∂z, ∂y +

x

2
∂z}, and g2 = span{∂z}.

Notice that we have the commutation relations [g1, g1] = g2 and [g1, g2] = 0.

In this section we focus on Carnot groups of step 2, which are natural generalization of the
Heisenberg group, namely Lie groups G on Rn such that its Lie algebra g satisfies

g = g1 ⊕ g2, [g1, g1] = g2, [g1, g2] = [g2, g2] = 0. (7.20)

G is endowed by the left-invariant sub-Riemannian structure induced by the choice of a scalar
product 〈· | ·〉 on the distribution g1, that is bracket-generating of step 2 thanks to (7.20). Notice
that g is a nilpotent Lie algebra and that we have the inequality

n ≤ k(k + 1)

2
, k = dim g1, n = dim g.

We say that g is a Carnot algebra of step 2.
Let us now choose a basis of left-invariant vector fields (on Rn) of g such that

g1 = span{X1, . . . ,Xk}, g2 = span{Y1, . . . , Yn−k},

where {X1, . . . ,Xk} define an orthonormal frame for 〈· | ·〉 on the distribution g1. Such a basis will
be referred also as an adapted basis. We can write the commutation relations:




[Xi,Xj ] =

∑n−k
h=1 c

h
ijYh, i, j = 1, . . . , k, where chij = −chji,

[Xi, Yj ] = [Yj , Yh] = 0, i = 1, . . . , k, j, h = 1, . . . , n− k.
(7.21)

Define the the n− k skew-symmetric matrices Ch = (chij), for h = 1, . . . , n − k. We stress that

since the vector fields are left-invariant, then the structure functions chij are constant.
Given an adapted basis, we can associate with the family of matrices {C1, . . . , Cn−k} the sub-

space
C = span{C1, . . . , Cn−k} ⊂ so(g1) (7.22)

of skew-symmetric operators on g1 that are represented by linear combination of this family of
matrices.

Proposition 7.48 (2-step Carnot algebras and subspaces of so(g1)). For a given a 2-step Carnot
algebra g, the subspace C ⊂ so(g1) is independent on the choice of the adapted basis on g
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Proof. Assume that we fix another adapted basis

g1 = span{X ′
1, . . . ,X

′
k}, g2 = span{Y ′

1 , . . . , Y
′
n−k}.

where {X ′
1, . . . ,X

′
k} is orthonormal for the inner prodict. Then there exists A = (aij) an orthogonal

matrix and B = (bhl) an invertible matrix such that

X ′
i =

k∑

j=1

aijXj , Y ′
h =

n−k∑

l=1

bhlYl.

A direct computation shows that, denoting B−1 = (bhl), we have

[X ′
i,X

′
j ] =

k∑

h,l=1

aihajl[Xh,Xl] =
k∑

h,l=1

aihajl

n−k∑

r=1

crhlYr (7.23)

=
n−k∑

s=1



n−k∑

r=1

k∑

h,l=1

aihajlc
r
hlb

rs


Y ′

s (7.24)

it follows that

C ′
s =

n−k∑

h=1

bhs(AChA
∗) (7.25)

Recall that two matrices C and C ′ represents the same element of so(g1) with respect to the two
basis if and only if C ′ = ACA∗. Then formula (7.25) implies that elements of C′ are written as
linear combination of elements of C that represents the same linear operator, as claimed.

Remark 7.49. We have the following basis-independent interpretation of Proposition 7.48. The Lie
bracket defines a well-defined skew-symmetric bilinear map

[·, ·] : g1 × g1 → g2.

If we compose this map with an element ξ ∈ g∗2 we get a skew-symmetric bilinear form [·, ·]ξ :=
ξ ◦ [·, ·] : g1 × g1 → R. For every ξ ∈ g∗2 the map [·, ·]ξ can be identified with an element of so(g1),
thanks to the inner product on g1.

Hence with every Carnot algebra of step 2 we can associate a well-defined linear map

Ψ : g∗2 → so(g1)

The subspace C introduced in (7.22) coincides with imΨ ⊂ so(g1).

Definition 7.50. Two Carnot algebras g and g′ are isomorphic if there exists a Lie algebra iso-
morphism φ : g→ g′ such that φ|g1 : g1 → g′1 preserves the scalar products, i.e.,

〈φ(v) | φ(w)〉′ = 〈v |w〉 , ∀ v,w ∈ g.

Following the same arguments one can prove the following result

Corollary 7.51. The set of equivalence classes of 2-step Carnot algebras (with respect to isomor-
phisms) on g = g1 ⊕ g2 is in one-to-one correspondence with the set of subspaces of so(g1).
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7.5.1 Pontryagin extremals for 2-step Carnot groups

Let us fix a 2-step Carnot group G and let g its associated Lie algebra.

A basis of a Lie algebra of vector fields on Rn = Rk ⊕ Rn−k (using coordinates g = (x, z) ∈
Rk ⊕Rn−k) and satisfying (13.11) is given by

Xi =
∂

∂xi
− 1

2

k∑

j=1

n−k∑

ℓ=1

cℓijxj
∂

∂zℓ
, i = 1, . . . , k, (7.26)

Zℓ =
∂

∂zℓ
, ℓ = 1, . . . , n− k. (7.27)

The group G is Rn = Rk ⊕ Rn−k endowed with the group law

(x, z) ∗ (x′, z′) =
(
x+ x′, z + z′ +

1

2
Cx · x′

)

where we denoted for the (n− k)-tuple C = (C1, . . . , Cn−k) of k × k matrices, the product

Cx · x′ = (C1x · x′, . . . , Cn−kx · x′) ∈ Rn−k.

and x · x′ denotes the Euclidean inner product in Rk.
Let us introduce the following coordinates on T ∗G

hi(λ) = 〈λ,Xi(g)〉 , wℓ(λ) = 〈λ,Zℓ(g)〉

Since the vector fields {X1, . . . ,Xk, Z1, . . . , Zn−k} are linearly independent, the functions (hi, wℓ)
defines a system of coordinates on fibers of T ∗G. In what follows it is convenient to use (x, y, h,w)
as coordinates on T ∗G.

Geodesics are projections of integral curves of the sub-Riemannian Hamiltonian in T ∗G

H =
1

2

k∑

i=1

h2i

Suppose now that λ(t) = (x(t), y(t), h(t), ω(t)) is a normal Pontryagin extremal. Then ui(t) =
hi(λ(t)) and the equation on the base is

ġ =
k∑

i=1

hiXi(g). (7.28)

that rewrites as {
ẋi = hi

żh = −1
2

∑k
i,j=1 c

ℓ
ijhixj

(7.29)

For the equations on the fiber we have (remember that along solutions ȧ = {H, a})
{
ḣi = {H,hi} = −

∑k
j=1{hi, hj}hj = −

∑n−k
ℓ=1

∑k
j=1 c

ℓ
ijhjwℓ

ẇℓ = {H,wℓ} = 0.
(7.30)
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H is constant along solutions and if we require that extremals are parametrized by arclength. From
(7.30) we easily get that ωh is constant and the vector h = (h1, . . . , hk) ∈ Rk satisfies the linear
equation

ḣ = −Ωwh, Ωw =
n−k∑

ℓ=1

wℓCℓ

where we recall that the vector w = (w1, . . . , wn−k) is constant. It follows that

h(t) = e−tΩwh(0)

and

x(t) = x(0) +

∫ t

0
e−sΩwh(0)ds

Notice that the vertical coordinates z can be always recovered, once h(t) and x(t) are computed,
by a simple integration.

Proposition 7.52. The projection x(t) on the layer g1 ≃ Rk of a Pontryagin extremal such that
x(0) = 0 is the image of the origin through a one-parametric group of isometries of Rk.

Proof. The action of a 1-parametric group of isometries can be recovered by exponentiating an
element of its Lie algebra (cf. Exercice 7.53). This reduces to compute the solution of the differential
equation

ẋ = Ax+ b

where A is skew-symmetric and b ∈ Rk. Its flow is given by

φt(x̄) = etAx̄+

∫ t

0
esAbds

and it is easy to see that the projection x(t) on the layer g1 ≃ Rk of a Pontryagin extremal satisfies
this equation with x̄ = x(0) = 0, A = −Ωw and b = h(0).

Exercise 7.53. (i). Show that the group of (positively oriented) affine isometries on Rn can be
identified with the matrix group

SE(n) =

{(
M c
0 1

)
,M ∈ SO(n), c ∈ Rn

}
,

through the identification of an element x ∈ Rn with the vector

(
x
1

)
in Rn+1.

(ii). Prove that the Lie algebra of SE(n) is given by

se(n) =

{(
A b
0 0

)
, A ∈ so(n), b ∈ Rn

}
.

(iii). Prove the following formula for the exponential of an element of the Lie algebra

exp

(
t

(
A b
0 0

))
=

(
etA

∫ t
0 e

sAbds
0 1

)
.
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Heisenberg group

The simplest example of 2-step Carnot group is the Heisenberg group, whose Lie algebra g has
dimension 3. It can be realized in R3 by the left invariant vector fields

X1 =
∂

∂x1
− 1

2
x2

∂

∂z
, X2 =

∂

∂x2
+

1

2
x1

∂

∂z
, Z =

∂

∂z
,

satisfying the relation [X1,X2] = Z. In this case the set of matrices representing the Lie bracket is
reduced to a single matrix C, namely

C =

(
0 1
−1 0

)

and the projection x(t) on the layer g1 ≃ Rk of a Pontryagin extremal starting from the origin
satisfies the equation

x(t) =

∫ t

0
exp

(
0 −ws
ws 0

)
h(0)ds

Computing ∫ t

0
exp

(
0 −ws
ws 0

)
ds =

1

w

(
sin(wt) cos(wt) − 1

− cos(wt) + 1 sin(wt)

)

and choosing h(0) = (− sin θ, cos θ) ∈ S1, we get

h(t) =

(
cos(wt) − sin(wt)
sin(wt) cos(wt)

)(
− sin θ
cos θ

)
=

(
− sin(wt+ θ)
cos(wt+ θ)

)

x(t) =
1

w

(
sin(wt) cos(wt) − 1

− cos(wt) + 1 sin(wt)

)(
− sin θ
cos θ

)
=

1

w

(
cos(wt+ θ)− cos θ
sin(wt+ θ)− sin θ

)

This recovers the formulas already computed in Section 4.4.3. Notice that the z component is
recovered simply by integrating the last equation, that in this case gives

ż =
1

2
(−h1x2 + h2x1)

z(t) =
1

2w

∫ t

0
sin(ws + θ)(sin(ws + θ)− sin θ) + cos(ws+ θ)(cos(ws+ θ)− cos θ)ds

=
1

2w

∫ t

0
1− sin(ws+ θ) sin θ − cos(ws+ θ) cos θds =

1

2w

∫ t

0
1− cos(ws)ds

=
1

2w2
(wt− sin(wt)).

Analogous computation are performed for higher dimensional Heisenberg groups in Section 13.1.

7.6 Left-invariant Hamiltonian systems on Lie groups

In this section we study Hamiltonian systems non necessarily coming from a sub-Riemnnian prob-
lem.
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Figure 7.1: The set of end points of length 1 Pontryagin extremals for the 3D Heisenberg group.
Notice the singularities accumulating at the origin.

7.6.1 Vertical coordinates in TG and T ∗G

Thanks to the isomorphism between TG and G× T
1

G, a bases {e1, . . . , en} of T1G induces global
coordinates on TG. Indeed a base of TgG is Lg∗e1, . . . , Lg∗en and every element (g, v) of TG can
be written as

(g, v) = (g,

n∑

i=1

viLg∗ei).

The coordinates v1, . . . vn are called the vertical coordinates in TG and they are also coordinates in
the vertical part ofG×T

1

G. Indeed if (g, v) = (g,
∑n

i=1 v
iLg∗ei) ∈ TG, then the corresponding point

in G× T
1

G is (g, ξ) = (g,
∑n

i=1 v
iei) hence, in coordinates, both are representedby (g, v1, . . . , vn).

If {e∗1, . . . , e∗n} is the dual base in T ∗
1

G to {e1, . . . , en}, i.e., 〈e∗i , ej〉 = δi,j , then every element
(g, p) of T ∗G can be written as

(g, p) = (g,

n∑

i=1

hiL
∗
g−1e

∗
i ).
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The coordinates h1, . . . hn are called vertical coordinates in T ∗G. For the same reason as above, in
vertical coordinates (g, h1, . . . , hn) represents both a point in T ∗G and the corresponding point in
G× T ∗

1

G.

In other words, when using vertical coordinates it is not important to distinguish if we are
working in TG or G× T

1

G (the same holds for T ∗G or G× T ∗
1

G).

Remark 7.54. Notice that if Xi(g) = Lg∗ei then

hi(p, g) = 〈p,Xi(g)〉,

hence hi are the functions linear on fibers associated with Xi. Moreover if make the change of
variable (p, g)→ (ξ, g) where p(ξ, g) = L∗

g−1ξ where ξ ∈ T ∗
1

G, we have that hi becomes independent
from g. Indeed we can write

hi(p(ξ, g), g) = 〈ξ, ei〉1.

The vertical coordinates h1, . . . , hn are functions on T ∗G hence we can compute their Poisson
bracket (cf. Section 4.1.2)

{hi, hj} = 〈p, [Xi,Xj ]〉g = 〈ξ, [ei, ej ]〉1. (7.31)

Remark 7.55. Note that the vertical coordinates hi are not induced by a system of coordinates
x1, . . . , xn on the base G (we have not fixed coordinates on G). If they were induced by coordinates
on G, we would have obtained zero in the right-hand side of (7.31) since [∂xi , ∂xj ] = 0.

7.6.2 Left-invariant Hamiltonians

Consider a Hamiltonian function H : T ∗G → R. Thanks to the isomorphism between T ∗G and
G× T

1

G we can interpret it as a function on G× T ∗
1

G, i.e., we can define

H(g, ξ) = H(g, L∗
g−1ξ), H : G× T ∗

1

G→ R.

We say that H is left-invariant if H(g, ξ) is independent from g. For a left-invariant Hamiltonian
we call the corresponding H the trivialized Hamiltonian.

Equivalently we can use the following definition

Definition 7.56. A Hamiltonian H : T ∗G→ R is said to be left-invariant if there exists a function
H : T ∗

1

G→ R such that

H(g, p) = H(L∗
gp).

Hence a left invariant-Hamiltonian can be interpreted as a function on T ∗
1

G.

Example 7.57. Given a set of left-invariant vector field fi(g) = Lg∗wi, wi ∈ T1G, i = 1, . . . ,m,
we have that H(g, p) = 1

2

∑m
i=1〈p, fi(g)〉2 is a left-invariant Hamiltonian. Indeed

H(g, ξ) = 1

2

m∑

i=1

〈L∗
g−1ξ, Lg∗wi〉2 =

1

2

m∑

i=1

〈ξ, wi〉2,

which is independent from g.
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Remark 7.58. If we write p =
∑n

j=1 hjL
∗
g−1e

∗
j then

H(g,
∑

L∗
g−1hje

∗
j ) = H(L∗

g

∑
hjL

∗
g−1e

∗
j ) = H(

∑
hje

∗
j ).

In other words in vertical coordinates h1, . . . hn, we have for a left-invariant Hamiltonian

H(g, h1, . . . , hn) = H(h1, . . . , hn).

and we can identify H and H.
Remark 7.59. In the context of Lie groups, to write Hamiltonian equations is convenient avoiding
fixing coordinates on G and use vertical coordinates on the fiber only. This permits to exploit
better the trivialization of T ∗G in G×T ∗

1

G and the left invariance of H. Since vertical coordinates
hi do not come, in general, from coordinates on G, we do not have equations of the form ẋi = ∂hiH,
ḣi = −∂xiH for a system of coordinates x1, . . . , xn on G.

Consider a left-invariant Hamiltonian in vertical coordinates H(g, h1, . . . , hn). Let us write the
vertical part of the Hamiltonian equations. We are going to see that this equation is particularly
simple. We have

ḣi = {H,hi}, i = 1, . . . , n. (7.32)

Using Exercice 4.8 we have for i = 1, . . . , n,

ḣi =

n∑

j=1

∂H

∂hj
{hj , hi} =

n∑

j=1

∂H

∂hj
〈ξ, [ej , ei]〉 =

〈
ξ,




n∑

j=1

∂H

∂hj
ej , ei



〉
. (7.33)

Notice that since H is a function on the linear space T ∗
1

G, then dH(h1, . . . , hn) is an element of
T ∗∗
1

G = T
1

G. If we write an element of T ∗
1

G as h1e
∗
1+ . . .+hne

∗
n, then an element of its tangent at

(h1, . . . , hn) is written as v1∂h1 , . . . , vn∂hn with the identification ∂hi = e∗i due to the linear structure.
An element of its cotangent space T ∗∗

1

G at (h1, . . . , hn) is then written as ω1dh1+ . . .+ωndhn with
the identification dhi = (e∗i )

∗ = ei again due to the linear structure. Then

dH(h1, . . . , hn) =
n∑

j=1

∂H
∂hj

dhj =
n∑

j=1

∂H
∂hj

ej =
n∑

j=1

∂H

∂hj
ej. (7.34)

Hence the vertical part of the Hamiltonian equations can be written as

ḣi = 〈ξ, [dH, ei]〉
= 〈ξ, (ad dH)ei〉
= 〈(ad dH)∗ξ, ei〉 (7.35)

or more compactly recalling that ξ =
∑k

i=1 hie
∗
i ,

ξ̇ = (ad dH)∗ξ. (7.36)
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For what concerns the horizontal part, let β ∈ C∞(G), i.e., a function in C∞(T ∗G) that is constant
on fibers. For every curve g(·) solution of the horizontal part of the Hamiltonian system on T ∗G
corresponding to H we have

d

dt
β(g(t)) = {H,β}(g(t),p(t)) =

n∑

j=1

∂H

∂hj
{hj , β}(g(t),p(t)) .

Now recalling that (cf. (4.17)) {〈p,X(g)〉+α(g), 〈p, Y (g)〉+β(g)} = 〈p, [X,Y ](g)〉+Xβ(g)−Y α(g)
we have {hj , β} = {〈p,Xj〉 , β} = Xjβ = (Lg∗ej)β. Hence

d

dt
β(g(t)) =

n∑

j=1

∂H

∂hj
(Lg∗ej)β

∣∣∣∣∣∣
g(t)

=


Lg∗

n∑

j=1

∂H

∂hj
ej


 β

∣∣∣∣∣∣
g(t)

= Lg∗dH|g(t) .

Since the function β is arbitrary we have

ġ = Lg∗dH.

We have then proved the following

Proposition 7.60. Let H be a left invariant Hamiltonian on a Lie group G, i.e. H(g, p) = H(L∗
gp)

where (g, p) ∈ T ∗G and H is a smooth function from T ∗
1

G to R. Let dH be the differential of H
seen as an element of T

1

G. Then the Hamiltonian equations d
dt(g, p) =

~H(g, p) are,

{
ġ = Lg∗dH
ξ̇ = (ad dH)∗ξ. (7.37)

Here ξ ∈ T ∗
1

G and p(t) = L∗
g−1ξ(t).

Notice that the second equation is decoupled from the first (it does not involve g).

When we have available a bi-invariant metric equation (7.36) can be written in a simpler form.
Indeed in this case we can identify T

1

G with T ∗
1

G via

ξ ∈ T ∗
1

G←→M ∈ T
1

G⇐⇒ 〈M | v〉 = 〈ξ, v〉 , ∀v ∈ T
1

G.

Using (7.36) and (7.15), for every v ∈ T
1

G let us compute

〈
dM

dt

∣∣∣∣ v
〉

=

〈
dξ

dt
, v

〉
= 〈(ad dH)∗ξ, v〉 = 〈ξ, (ad dH)v〉 = 〈ξ, [dH, v]〉 = 〈M | [dH, v]〉 = 〈[M,dH] | v〉 .

Hence the Hamiltonian equations for a left-invariant Hamiltonian, when we have a bi-invariant
peseudometric are:

{
ġ = Lg∗dH
dM
dt = [M,dH]. (7.38)
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7.7 First integrals for Hamiltonian systems on Lie groups*

7.7.1 Integrability of left invariant sub-Riemannian structures on 3D Lie groups*

7.8 Normal Extremals for left-invariant sub-Riemannian struc-
tures

Consider a left-invariant sub-Riemannian structure of rank m (cf. (7.19)) for which an orthonormal
frame is given by a set of left-invariant vector fields Xi = Lg∗ei(g), i = 1, . . . ,m. The maximized
Hamiltonian is

H(g, p) =
1

2

m∑

i=1

〈p,Xi(g)〉2 =
1

2

m∑

i=1

〈p, Lg∗ei〉2 ,

hence it is left invariant (cf. Example 7.57). The corresponding trivialized Hamiltonian is

H(ξ) = 1

2

m∑

i=1

〈ξ, ei〉2 .

Now 〈ξ, ei〉 = hi(g, p) hence in vertical coordinates we have

H(h1, . . . , hm) =
1

2

m∑

i=1

h2i .

7.8.1 Explicit expression of normal Pontryagin extremals in the d⊕ s case

Explicit expressions of normal Pontryagin extremals can be obtained for left-invariant sub-Riemannain
structures when

• a bi-invariant pseudo-metric 〈· | ·〉 on G is given;

• T
1

G = d⊕ s where 〈· | ·〉|d is positive defined and s satisfies the following

i) s := d⊥ (where the orthogonality is taken with respect to 〈· | ·〉);
ii) s is a sub-algebra;

• The distribution is d and the metric is 〈· | ·〉|d.

We say that such a sub-Riemannian structure is of type d⊕ s.

Remark 7.61. A classical example of such a d ⊕ s sub-Riemannian structure is provided by the
group of matrices SO(n) in which the distribution at the identity d is given by any codimension
one subspace of T

1

SO(n) and the norm of a vector in d is the square root of the sum square of its
matrix elements.

Exercise 7.62. Prove that the distribution defined in Remark 7.61 is Lie bracket generating. Prove
that the metric induced by the norm defined above is induced (up to a negative proportionality
constant) by the Killing form.
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Let us write an element of v ∈ T
1

G as v = x+ y where x ∈ d and y ∈ s. Let e1, . . . em be an
orthonormal frame for the structure. In this case if M = x+ y is the element in T

1

G corresponding
to ξ ∈ T ∗

1

G via 〈· | ·〉 we have

hi = 〈ξ, ei〉 = 〈M | ei〉 = xi.

Hence

H =
1

2

n∑

i=1

h2i =
1

2

n∑

i=1

x2i =
1

2
〈x |x〉 = 1

2
‖x‖2. (7.39)

Notice that (cf. (7.34)) dH =
∑n

i=1
∂H
∂hi
ei =

∑n
i=1

∂H
∂xi
ei =

∑n
i=1 xiei = x. Hence the vertical part

of the Hamiltonian equation dM/dt = [M,dH] become

ẋ+ ẏ = [x+ y, x] = [y, x]. (7.40)

Now for every v ∈ s one has

〈[y, x] | v〉 = 〈x | [y, v]〉 = 0,

where we have used equation (7.15) and for the last equality that facts that

• [y, v] ∈ s since s is a sub-algebra.

• d and s are orthogonal for 〈· | ·〉.

We then conclude that [y, x] ∈ d. Hence (7.40) become

ẋ = [y, x]

ẏ = 0

Hence all y component are constant of the motion and we have

y(t) = y0

ẋ = [y0, x] = (ad y0)x

The solution of the last equation is

x(t) = etad y0x0. (7.41)

Then for the horizontal part we have

ġ = Lg∗dH = Lg∗x(t) = Lg∗e
tad y(0)x(0). (7.42)

Using the variation formula for smooth vector fields (cf. (6.35)),

et(Y +X) = −→exp
∫ t

0
es adYXds ◦ etY , (7.43)

we have that the solution of (7.42) starting from g0 and corresponding to x0, y0 is 3

g(x0, y0; t) = g0e
t(x0+y0)e−ty0 (7.44)

3For a group of matrices: formula (7.41) reads as ety0x0e
−ty0 , while (7.42) is gety0x0e

−ty0 .
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The parameterization by arclength is obtained requiring H = 1/2. From (7.39) at t = 0 we
obtain that the normal Pontryagin extremals (7.44) are parametrized by arclength when 〈x0 |x0〉 =
‖x0‖2 = 1.

The controls whose corresponding trajectories starting from g0 are the normal Pontryagin ex-
tremals (7.44) are

ui(t) = 〈p(t),Xi(g(t))〉 = hi(g(t), p(t)) = xi(t) =
〈
etad y0x0

∣∣∣ ei
〉
, i = 1, . . . ,m.

Exercise 7.63. Study abnormal extremals for this problem.

7.8.2 Example: The d⊕ s problem on SO(3)

The Lie group SO(3) is the group of special orthogonal 3× 3 real matrices

SO(3) =
{
g ∈ Mat(3,R) | ggT = Id,det(g) = 1

}
.

To compute its Lie algebra, let us compute its tangent space at the identity. Consider a smooth
curve g : [0, ε]→ SO(3), such that g(0) = e. Computing the derivative in zero of both sides of the
equation g(t)gT (t) = e, we have ġ(0)g(0) + g(0)gT (0) = 0 from which we deduce g(0) = −gT (0).
Hence the Lie algebra of SO(3) is the space of skew symmetric 3× 3 real matrices and it is usually
denoted by so(3). In other words

so(3) =








0 −a b
a 0 −c
−b c 0


 ∈ Mat(3,R)



 .

A basis of so(3) is {e1, e2, e3} where

e1 =




0 0 0
0 0 −1
0 1 0


 , e2 =




0 0 1
0 0 0
−1 0 0


 , e3 =




0 −1 0
1 0 0
0 0 0




whose commutation relations are [e1, e2] = e3 [e2, e3] = e1 [e3, e1] = e2. For so(3) the Killing
form is K(X,Y ) = trace(XY ) so, in particular, K(ei, ej) = −2δij . Hence

〈· | ·〉 = −1

2
K(·, ·)

is a (positive definite) bi-invariant metric on so(3). If we define

d = span{e1, e2}, s = span{e3}

and we provide d with the metric 〈· | ·〉 |d we get a sub-Riemannian structre of type d⊕ s.

Expression of normal Pontryagin extremals

Let us write an initial covector x0 + y0 such that 〈x0 |x0〉 = 1 in the following form

x0 + y0 = cos(θ)e1 + sin(θ)e2︸ ︷︷ ︸
x0

+ ce3︸︷︷︸
y0

, θ ∈ S1, c ∈ R.
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Figure 7.2: The set of end points of Pontryagin extremals of length 1 for the d⊕s sub-Riemannian
problem on SO(3). In the picture the x-axis is the element (g)23, the z-axis is the element (g)13,
the z-axis is the element (g)12. Notice the singularities accumulating at the origin. This picture
looks very similar to the one of the Heisenberg group (cf. Figure 7.1). Indeed it is possible to prove
(cf. Chapter 10) that the two pictures become more and more similar if one consider end points
of geodesics of length r and makes r smaller and smaller. For r big the two pictures become very
different due to the different topology of R3 and SO(3).

Using formula (7.44), we have that the normal Pontryagin extremals starting from the identity are

g(θ, c; t) := e(cos(θ)e1+sin(θ)e2+ce3)te−ce3t = (7.45)

=




K1 cos(ct) +K2 cos(2θ + ct) +K3c sin(ct) K1 sin(ct) +K2 sin(2θ + ct)−K3c cos(ct) K4 cos(θ) +K3 sin(θ)
−K1 sin(ct) +K2 sin(2θ + ct) +K3c cos(ct) K1 cos(ct) −K2 cos(2θ + ct) +K3c sin(ct) −K3 cos(θ) +K4 sin(θ)

K4 cos(θ + ct)−K3 sin(θ + ct) K3 cos(θ + ct) +K4 sin(θ + ct)
cos

(√
1+c2t

)

+c2

1+c2




with K1 =
1+(1+2c2) cos(

√
1+c2t)

2(1+c2) , K2 =
1−cos(

√
1+c2t)

2(1+c2) , K3 =
sin(

√
1+c2t)√
1+c2

, K4 =
c(1−cos(

√
1+c2t))

1+c2 .

The end point of all normal Pontryagin extremals for t = 1 are plotted in Figure 7.2.
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7.8.3 Further comments on the d⊕ s problem: SO(3) and SO+(2, 1)

The group SO(3) acts on the sphere S2 by isometries (in fact, by definition). We claim that the
induced action of SO(3) on the spherical bundle S S2 (see Definition 1.22) is a free transitive action.
In other words, if xi ∈ S2, and vi ∈ TxiS2 with |vi| = 1 for i = 1, 2, then there exists a unique
g ∈ SO(3) such that gx1 = x2, gv1 = v2. Indeed, v is a tangent vector of length 1 at a point x ∈ S2

if and only if {v, x} is a couple of mutually orthogonal vectors of length 1 in R3. Obviously, such a
couple can be transformed to any other couple of this type by a unique orthogonal transformation
of R3 preserving the orientation.

Let g(t) be a geodesic for our sub-Riemannian structure on SO(3). Then g(t)
(

0
0
1

)
is a circle, a

curve of the constant geodesic curvature on the sphere. This is not occasional; if you think about it,
you see that this sub-Riemannian problem is similar to isoperimetric problems studied in Section
4.4.2.

Exercise 7.64. Show that the differential of the map

SO(3)→ S2, g 7→
(
g
(

0
0
1

)
, g
(

1
0
0

))
(7.46)

transforms the left-invariant distribution d into the kernel of the Levi-Civita connection (cf. Defi-
nition 1.54) on S S2.

Let ω be the Levi-Civita connection and π : S S2 → S2 the standard projection; then π∗
∣∣
kerωξ

is an isomorphism of kerωξ onto Tπ(ξ)S
2, ξ ∈ S S2. We can lift Riemannian structure on S2

by this isomorphism and obtain a sub-Riemannian structure on S S2. It is easy to see that the
diffeomorphism described in the exercise induces an isometry of this sub-Riemannian structure and
the “d⊕ s” structure on SO(3).

Recall that an isoperimetric problem on a Riemannian surface M is equivalent to a sub-
Riemannian problem on the trivial bundle R×M →M ; the problem is defined by a non-vanishing
differential 1-form ω on R×M , where ω is invariant under translations of R and kerω is transversal
to the fibers (see Section 4.4.2). In this case, dω is the pullback of a 2-form on M . Moreover, the
2-form is the product of the area form and a function b on M , and normal geodesics are horizontal
lifts to R×M of the curves on M whose geodesic curvature is proportional to b.

Of course, one gets the same characteristic of normal geodesic if we consider the bundle S1 ×
M →M instead of the bundle R×M →M and a non-vanishing form ω on S1×M that is invariant
under translations in the group S1 and whose kernel is transversal to the fibers. Moreover, we may

equally consider an only locally trivial bundle N
S1

−→ M such that the group S1 acts freely on
N and the orbits of this action are exactly the fibers of the bundle. Such a structure is called a
principal bundle with the structural group S1. An invariant under the action of S1 non-vanishing
1-form on N whose kernel is transversal to the fibers is called a connection on the principal bundle.
The differential of the connection is the pullback of a 2-form on M that is called the curvature of
the connection.

Now consider the spherical bundle SM →M of a Riemannian surface. Rotations of the fibers
with a constant velocity introduce a structure of the principal bundle on SM , and the Levi-Civita
connection ω is a connection on this principal bundle. The curvature of the Levi-Civita connection
equals the area form multiplied by the Gaussian curvature of the surface.

The sub-Riemannian structure defined by the Levi-Civita connection has a nice geometric in-
terpretation: horizontal curves are parallel transports of tangent vectors along curves in M and
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their length is just the length of these curves in M . Normal geodesics are parallel transports along
the curves whose geodesic curvature is proportional to the Gaussian curvature. As we explained,
in the case of M = S2 we obtain an interpretation of the “d⊕ s” structure on SO(3).

Group SO(3) is the group of linear transformations of of R3 that preserve the orientation and
Euclidean inner product. Similarly, we may consider the group SO+(2, 1) of linear transformations
that preserve the orientation, the Minkowski inner product 〈· | ·〉h and, moreover, preserve the
connected components of the hyperboloid defined by the equation 〈q | q〉h = −1 (see Section 1.4).
The matrices

f1 =



0 0 0
0 0 1
0 1 0


 , f2 =



0 0 1
0 0 0
1 0 0


 , f3 =



0 −1 0
1 0 0
0 0 0


 = e3

form a basis of the Lie algebra of this group. This Lie algebra is denoted by so(2, 1) and it is
isomorphic to sl(2). We set 〈X|Y 〉 = −1

2trace(XY ), a bi-invariant pseudo-metric on so(2, 1). If we
define

d = span{f1, f2}, s = span{f3}
and we equip d with the metric 〈·|·〉|d we obtain a sub-Riemannian structure of type d⊕ s.

The group SO(2, 1) acts on the surface

H2 = {(x, y, z) ∈ R3 : z2 − x2 − y2 = 1, z > 0}

in the Minkowski space by isometries (cf. Section 1.5.3). Moreover, the induced action of SO(2, 1)
on the spherical bundle SH2 is a free transitive action

Exercise 7.65. Show that the differential of the map

SO+(2, 1)→ H2, g 7→
(
g
(

0
0
1

)
, g
(

1
0
0

))
(7.47)

transforms the left-invariant distribution d into the kernel of the Levi-Civita connection on SH2.

The transformation (7.47) sends geodesics of the “d ⊕ s” sub-Riemannian structure to the
parallel transports along the curves of constant geodesic curvature in H2. Recall that, when
considered as Riemannian surface, H2 has constant Gaussian curvature equal to −1, this is a
model of the Lobachevsky hyperbolic plane.

The constructions described above have important multidimensional generalizations; some of
them will be discussed later in this chapter.

7.8.4 Explicit expression of normal Pontryagin extremals in the k⊕ z case

Another case in which one can get an explicit expression of normal Pontryagin extremals is when

• G = Gk ×Gz where Gk has a compact algebra k and Gz is abelian. In other words the Lie
algebra at the origin of G can be written as T

1

G = k ⊕ z where k is a compact subalgebra
and z is contained in the center of T

1

G, i.e., [v, y] = 0 for every v ∈ T
1

G and y ∈ z. In the
following we write an element of v ∈ T

1

G as v = x+ y where x ∈ k and y ∈ z. Moreover we
assume that a bi-invariant metric 〈· | ·〉

k
on k is given (this is always possible by definition of

compact Lie algebra);
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k

z

d

Figure 7.3: The k⊕ z problem

• we assume that the distribution (that we assume to be Lie bracket generating) projects well
on k, that is if π : T

1

G → k is the canonical projection induced by the splitting, we have
π|D is 1:1 over k. Under this condition, there exists a linear operator A : k → z such that
d = {x+Ax | x ∈ k} ⊂ k⊕ z = T

1

G.

• we assume that the metric on d is induced by the projection, i.e.,

〈w1 |w2〉d = 〈π(w1) | π(w2)〉k , for every w1, w2 ∈ d,

or equivalently that if v1, v2 ∈ d, v1 = (x1, Ax1), v2 = (x2, Ax2) with x1, x2 ∈ k, then

〈v1 | v2〉d = 〈x1 | x2〉k .

See Figure 7.3.

Let us fix any scalar product on 〈· | ·〉
z
on z and define the scalar product 〈· | ·〉 on T

1

G by

〈v1 | v2〉 = 〈x1 | x2〉k + 〈y1 | y2〉z , where v1 = x1 + y1, v2 = x2 + y2.

Notice that if x ∈ k and y ∈ z then 〈x | y〉 = 0.

Exercise 7.66. Prove that 〈· | ·〉 is bi-invariant as a consequence of the bi-invariance of 〈· | ·〉
k
and

of the fact that z is in the center of T
1

G.

The metric 〈· | ·〉T
1

G is used to identify vectors and covectors, to use the simpler form (7.38)
of the Hamiltonian equations for normal Pontryagin extremals. The resulting normal Pontryagin
extremals will be independent on the choice of the scalar product 〈· | ·〉

z
.

Remark 7.67. An example of such a structure is provided by the problem of rolling without slipping
a sphere of radius 1 in R3 on a plane. Its state is described by a point in R2 giving the projection
of its center on the plane and by an element of SO(3) describing its orientation. Given an initial
and final position in SO(3)× R2 one would like to roll the sphere on the plane in such a way that

the initial and final conditions are the given ones and
∫ T
0

√∑3
i=1 ui(t)

2 dt is minimal, where u1, u2
and u3 are the three controls corresponding to the rolling of the sphere along the two axes of the
plane and to the twist. See Figure 7.4. Why this problem gives rise to a k ⊕ z sub-Riemannian
structure is described in detail in the next section.
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z2

z1

u1

u2

u3

(z1, z2)

X ∈ SO(3)

z3

Figure 7.4: Rolling sphere with twisting.

Let us write the maximized Hamiltonian. Let e1, . . . , em be an orthonormal frame for k. Then
an orthonormal frame for d is e1 +Ae1, . . . , em +Aem. We have

H(g, p) =
1

2

m∑

i=1

〈p, Lg∗(ei +Aei)〉2 .

The corresponding trivialized Hamiltonian is

H(ξ) = 1

2

m∑

i=1

〈ξ, (ei +Aei)〉2 , ξ ∈ T ∗
1

G.

Now using the metric 〈· | ·〉T
1

G we can identify T
1

G with T ∗
1

G and write ξ = x+ y. Then

H(x, y) = 1

2

m∑

i=1

〈x+ y | (ei +Aei)〉2T
1

G =
1

2

m∑

i=1

(〈x | ei〉+ 〈y |Aei〉)2. (7.48)

Here we have used the the fact that x, ei ∈ k and y,Aei ∈ z and we have used the orthogonality of
k and z with respect to 〈· | ·〉. Now 〈y |Aei〉 = 〈A∗y | ei〉 = 〈A∗y | ei〉k, where A∗ is the adjoint of A.
Hence

H(x, y) = 1

2

m∑

i=1

(〈x | ei〉+ 〈A∗y | ei〉k)2 =
1

2
‖x+A∗y‖2k. (7.49)

The vertical part of the Hamiltonian equations are (cf. the second equation of (7.38) with M
replaced by x+y)

ẋ+ ẏ = [x+ y, dH]. (7.50)

The let us compute
dH = x+A∗y︸ ︷︷ ︸

∈k

+Ax+AA∗y︸ ︷︷ ︸
∈z

Now since z is in the center, the second part of dH disappear in the commutator in (7.50) and we
get

ẋ+ ẏ = [x+ y, x+A∗y] = [x,A∗y],
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from which we deduce

ẋ = [x,A∗y],

ẏ = 0.

Hence all y components are constant of the motion and we have

y(t) = y0

ẋ = [x,A∗y0] = −[A∗y0, x] = −(ad (A∗y0))x

The solution of the last equation is

x(t) = e−tad (A∗y0)x0. (7.51)

For the horizontal part of the Hamiltonian equations we have

ġ(t) = Lg(t)∗dH(x(t), y(t)) = Lg(t)∗(x(t) +A∗y0︸ ︷︷ ︸
∈k

+Ax(t) +AA∗y0︸ ︷︷ ︸
∈z

). (7.52)

Using the fact that G = Gk ×Gz, it is convenient to write an element of G as g = (g1, g2) where
g1 ∈ Gk and g2 ∈ Gz. Then equation (7.52) splits in the following way

ġ1 = Lg1∗(x(t) +A∗y0) (7.53)

ġ2 = Ax(t) +AA∗y0 (7.54)

In the second equation we have used the fact that Lg2∗(Ax(t) + AA∗y0) = Ax(t) + AA∗y0, since
we are in an Abelian group. Moreover if g(0) = (g01, g02), then for (7.53) and (7.53) we have the
initial conditions g1(0) = g01 and g2(0) = g02.

Let us solve (7.53). Using (7.51) this equation is reduced to

ġ1 = Lg1∗(e
−t ad (A∗y0)x0 +A∗y0) = Lg1∗e

−t ad (A∗y0)(x0 +A∗y0), (7.55)

where in the last formula we have used the fact that e−t ad (A∗y0)A∗y0 = A∗y0. Using the variation
formula (cf. (6.35)),

et(Y +X) = −→exp
∫ t

0
es adYXds ◦ etY , (7.56)

with Y → −A∗y0 and X → x0 +A∗y0, we get

g1(t) = g01e
t x0et A

∗y0 . (7.57)

For (7.54), using (7.51) and using the fact that Gz is Abelian, we have

g2(t) = g02 +

∫ t

0
(Ax(s) +AA∗y0) ds = g02 +

∫ t

0

(
Ae−sad (A∗y0)x0 +AA∗y0

)
ds. (7.58)

The parameterization by arclength is obtained requiring H = 1
2 . From (7.49) we obtain that

the normal Pontryagin extremals are parametrized by arclength when 〈x0 +A∗y0 |x0 +A∗y0〉 =
‖x0 +A∗y0‖2 = 1.

The controls corresponding to the normal Pontryagin extremals (g1(t), g2(t) are (cf. Formula
7.48):

ui(t) = 〈x(t) + y0 | ei +Aei〉 = 〈x(t) | ei〉+〈y0 |Aei〉 = 〈x(t) +A∗y0 | ei〉 =
〈
e−tad (A∗y0)x0 +A∗y0

∣∣∣ ei
〉
.

Exercise 7.68. Study abnormal extremals for this problem.
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7.9 Rolling spheres

7.9.1 (3, 5) - Rolling sphere with twisting

Consider a sphere of radius 1 in R3 rolling on a plane without slipping. At every time the state of
the system is described by a point on the plane (the projection of its center) and the orientation
of the sphere.

We represent a point on the plane as z = (z1, z2) ∈ R2 and the orientation of the sphere by a
point X ∈ SO(3) representing the orientation of an orthonormal frame attached to the sphere with
respect to the standard orthonormal frame in R3.

Let {e1, e2, e3} be the following basis of the Lie algebra so(3) of SO(3),

e1 =




0 0 0
0 0 −1
0 1 0


 , e2 =




0 0 1
0 0 0
−1 0 0


 , e3 =




0 −1 0
1 0 0
0 0 0


 . (7.59)

The condition that the sphere is rolling without slipping can be expressed by saying that the
only admissible trajectories in SO(3) × R2 are the horizontal trajectories of the following control
system (here ui(·) ∈ L∞([0, T ],R), for i = 1, 2, 3).





ż1 = u1(t)
ż2 = u2(t)

Ẋ = X(u2(t)e1 − u1(t)e2 + u3(t)e3).

(7.60)

The controls u1(·) and u2(·) correspond to the two rotations of the sphere that produce a movement
in the plane, while the control u3(·) correponds to a twist of the sphere (that produces no movement
in the plane). See Figure 7.4. We would like to solve the following problem.

P: Given an initial and final position in SO(3) × R2, roll the sphere on the plane in such a way

that the initial and final conditions are the given ones and
∫ T
0

√∑3
i=1 ui(t)

2 dt is minimal.

We have the following result.

Proposition 7.69. The projection on the plane (z1, z2) of normal Pontryagin extremals is (up to
time reparameterization) the set of sinusoids on the plane:

{(
z01
z02

)
+

(
cos(a0) − sin(a0)
sin(a0) cos(a0)

)(
f(φ0, b, r, t)

t

)
| a0, φ0 ∈ S1, b, r ≥ 0, z01, z02 ∈ R

}
,

where

f(φ0, b, r, t) =

{
b sin(rt+ φ0) if r > 0
b t if r = 0.

To prove Proposition 7.69 we first prove that the problem define a k⊕ z sub-Riemannian struc-
ture and then we study its normal Pontryagin extremals.

Claim. The problem above is a problem of type k⊕ z.
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To prove the claim let us set G = SO(3) × R2. We have T
1

G = so(3) ⊕ R2. Now let f1 = (1, 0)T

and f2 = (0, 1)T be the generators of R2 and define

d = span{f1 − e2, f2 + e1, e3} ⊂ so(3)× R2.

Given a vector v = u1(f1−e2)+u2(f2+e1)+u3e3 ∈ d we define its norm as ‖v‖ =
√
u21 + u22 + u23.

If π : so(3)×R2 → R2 is the canonical projection, this norm coincide with the norm of ‖π(v)‖so(3),
where ‖ · ‖so(3) is the standard norm for which {e1, e2, e3} is an orthonormal frame. This norm
comes from a bi-invariant metric as explained in Section 7.8.2.

The corresponding sub-Riemannian problem is then

ġ = g
(
u1(t)(f1 − e2) + u2(t)(f2 + e1) + u3e3

)
, (7.61)

g(0) = g0, g(T ) = g1, (7.62)

∫ T

0

√√√√
3∑

i=1

ui(t)2 dt → min, (7.63)

where g0, g1 ∈ SO(3) × R2. Writing elements in SO(3) × R2 as pairs g = (X, z), this problem
become exactly (7.60).

If we define the linear application A : so(3)→ R2 via

Ae1 = f2, Ae2 = −f1, Ae3 = 0,

we can write
d = {x+Ax | x ∈ so(3)}.

Remark 7.70. Notice that if we write an element of so(3) as x1e1 + x2e2 + x3e3 and an element of
R2 as y1f1 + y2f2, we can think to A and to its adjoint A∗ as to the rectangular matrices

A =

(
0 −1 0
1 0 0

)
, A∗ =




0 1
−1 0
0 0


 .

Notice that AA∗ = 12×2 while A∗A 6= 13×3. From the expression of A∗ we also get

A∗f1 = −e2, A∗f2 = e1. (7.64)

The problem P is then a k⊕z problem with k = so(3), z = R2. Moreover d, A and the bi-invariant
metric on k, are defined as above.

Geodesics

Geodesics are parametrized by arclength if we take x0 ∈ so(3) and y0 ∈ R2 satisfying

‖x0 +A∗y0‖ = 1. (7.65)

Now writing y0 = y01f1 + y02f2 and using (7.64) we have

A∗y0 = A∗(y01f1 + y02f2) =




0 0 −y01
0 0 −y02
y01 y02 0


 .
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Hence writing x0 = x01e1 + x02e2 + x03e3, equation (7.65) become

‖(x01 + y02)e1 + (x02 − y01)e2 + x03e3‖ = 1.

It is then convenient to parametrize normal Pontryagin extremals with

y01 ∈ R, y02 ∈ R, θ ∈ [0, π], ϕ ∈ [0, 2π], (7.66)

taking

x01 = −y02 + cos(θ) cos(ϕ) (7.67)

x02 = y01 + cos(θ) sin(ϕ) (7.68)

x03 = sin(θ) (7.69)

(7.70)

The z part of the geodesics is given by the formula (7.58), with g2 → (z1, z2)
T , i.e.,

(
z1(t)
z2(t)

)
=

(
z01
z02

)
+

∫ t

0

(
Ae−sad (A∗y0)x0 +AA∗y0

)
ds.

=

(
z01
z02

)
+

∫ t

0

(
Ae−s(A

∗y0)x0e
s(A∗y0) +

(
y01
y02

))
ds.

(7.71)

If we fix y01 = y02 = 0, we get

z1(t) = z01 − t cos(θ) sin(ϕ),
z2(t) = z02 + t cos(θ) cos(ϕ).

Otherwise if we set y01 = r cos(a) and y02 = r sin(a), we obtain for r 6= 0,

z1(t) = z01−
1

r
(rt cos2(a) cos(θ) sin(ϕ) + sin(a) cos(a) cos(θ) cos(ϕ)(sin(rt)− rt)+

sin(a)(sin(a) cos(θ) sin(ϕ) sin(rt) + sin(θ) + sin(θ)(− cos(rt)))),

z2(t) = z02+
1

r
(cos(θ)

(
cos(ϕ)

(
rt sin2(a) + cos2(a) sin(rt)

)
+ sin(a) cos(a) sin(ϕ)(sin(rt)− rt)

)
−

cos(a) sin(θ)(cos(rt)− 1).

that is a combination of sinus and cosinus. See Figure 7.5.

Exercise 7.71. Prove that each trajectory (z1(t), z2(t)) is a rototranslation of a sinusoid and that
ϕ determines its initial direction, r its frequence, θ its amplitude and a its rotation on the plane.

The k part of the geodesics can be obtained with the formula

X(t) = et x0et A
∗y0 .
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Figure 7.5: A Pontryagin extremals for the rolling sphere with twist

7.9.2 (2, 3, 5) - Rolling without twisting

We now consider a sphere rolling on a plane without slipping and without twisting. Similarly
to what done in Section 7.9, the state space is the group G = SO(3) × R2 whose Lie algebra is
T
1

G = so(3) × R2 and the distribution is still defined by equation (7.61) with the difference that
now we have u3 ≡ 0.

More precisely, the condition that the sphere is rolling without slipping and twisting can be
expressed by saying that the only admissible trajectories in SO(3)×R2 are the horizontal trajectories
of the following control system

ġ = g
(
u1(t)(f1 − e2) + u2(t)(f2 + e1)

)
. (7.72)

Here f1, f2 are the generators of R2 and e1, e2, e3 are given by (7.59). The controls u1(·) and u2(·)
belonging to L∞([0, T ],R) correspond to the rotations of the sphere along the z1 and z2 axis.

The commutators among f1, f2, e1, e2, e3 are

[f1, f2] = 0

[fi, ej ] = 0, i = 1, 2, j = 1, 2, 3, (7.73)

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

We would like to solve the following problem.

P: Given an initial and final position in SO(3) × R2, roll the sphere on the plane in such a way

that the initial and final conditions are the given ones and
∫ T
0

√∑2
i=1 ui(t)

2 dt is minimal.

Remark 7.72. Notice that solving problem P corresponds to find the shortest path on the plane such
that the sphere rolling along that path goes from the prescribed initial condition to the prescribed
final condition. See Figure (7.6).
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shortest path on the plane

u1

z3
u2

z2

(z1, z2)

X ∈ SO(3)

z1

Figure 7.6: The sub-Riemannian problem of rolling a sphere without slipping and twisting.

Contrarily to what happens to the problem of rolling a sphere with twisting (Section 7.9.1), this
time the problem is not of the form k + z. Indeed the distribution is two dimensional while and
it is not projecting well on the compact sub-algebra so(3). We are going to use the general equations.

Normal extremals are solutions of the Hamiltonian system associated with the following Hamil-
tonian

H(g, p) =
1

2

(
〈p, Lg∗(f1 − e2)〉2 + 〈p, Lg∗(f2 + e1)〉2

)
.

The trivialized Hamiltonian is

H(ξ) = 1

2

(
〈ξ, (f1 − e2)〉2 + 〈ξ, (f2 + e1)〉2

)
, ξ ∈ T ∗

1

G.

It is convenient to use the following coordinates,

hf1 = 〈ξ, fi〉 , i = 1, 2, hej = 〈ξ, ej〉 , j = 1, 2, 3.

Notice that, using (7.73) we have

{hf1 , hf2} = 〈ξ, [f1, f2]〉 = 0,

{hfi , hej} = 〈ξ, [fi, ej ]〉 = 0, i = 1, 2, j = 1, 2, 3,

{he1 , he2} = 〈ξ, [e1, e2]〉 = 〈ξ, e3〉 = he3 , {he2 , he3} = he1 , {he3 , he1} = he2 .

Then

H =
1

2

(
(hf1 − he2)2 + (hf2 + he1)

2
)
.

The Hamiltonian equations are

ḣfi = {H, hfi}, i = 1, 2, ḣej = {H, hej}, j = 1, 2, 3. (7.74)

Let us start with the first one

ḣf1 = {H, hf1} =
2∑

i=1

∂H
∂hfi
{hfi , hf1}+

3∑

i=1

∂H
∂hei
{hei , hf1} = 0,
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where we have used that hf1 commutes (for the Poisson brackets) with everything. Similarly

ḣf2 = 0,

ḣe1 = (hf1 − he2)he3 ,
ḣe2 = (hf2 + he1)he3 ,

ḣe3 = −hf1he1 − hf2he2 .

Now if we consider normal Pontryagin extremals parametrized by length, i.e., if we work on the
level {H = 1/2} ≃ S1 × R3, it is convenient to use the coordinates r, α, θ, c defined by

hf1 = r cos(α)

hf2 = r sin(α)

hf1 − he2 = cos(θ + α),

hf2 + he1 = sin(θ + α),

he3 = c.

Normal normal Pontryagin extremals starting from a given initial condition, are parametrized by
points in {H = 1/2}, i.e., by θ0 ∈ S1, c0 ∈ R and (r0, α0) parametrizing R2 in polar coordinates
(r0 ≥ 0, α ∈ S1).

The Hamiltonian equations are then

ṙ = 0 ⇒ r = r0, (7.75)

α̇ = 0 ⇒ α = α0, (7.76)

θ̇ = c, (7.77)

ċ = −r0 sin(θ). (7.78)

Once that equations (7.77) and (7.78) are solved in function of the initial conditions (r0, θ0, c0),
i.e., once that one gets θ(t; r0, θ0, c0), the controls are given by

u1(t; r0, θ0, c0, α0) = 〈ξ, f1 − e2〉 = hf1 − he2 = cos(θ(t; r0, θ0, c0) + α0)

u2(t; r0, θ0, c0, α0) = 〈ξ, f2 + e1〉 = hf2 + he1 = sin(θ(t; r0, θ0, c0) + α0). (7.79)

Once u1(·) and u2(·) are known, one can compute the corresponding trajectory by integrating
(7.72). However here we are only interesting to the planar part of the normal Pontryagin extremals
starting from z01 and z02, that is given by

z1(t; θ0, c0, α0) = z01 +

∫ t

0
u1(s)ds = z01 +

∫ t

0
cos(θ(s; θ0, c0) + α0)ds, (7.80)

z2(t; θ0, c0, α0) = z02 +

∫ t

0
u2(s)ds = z02 +

∫ t

0
sin(θ(s; θ0, c0) + α0)ds. (7.81)

In the following we refer to (z1(·), z2(·)) as the z-geodesics.

Qualitative analysis of the trajectoris
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Equations (7.77) and (7.78) are the equation of a planar pendulum of mass 1, length 1, where r0
represent the gravity. These equations admits an explicit solution in terms of elliptic functions.
However their qualitative behaviour can be understood easily.

First notice that if we consider only z-geodesics starting from the origin and with z′1(0) = 1
and z′2(0) = 0, we can fix z01 = z02 = 0, α0 = −θ0. All other z-geodesics can be obtained by
rototranslations of these ones.

Equation (7.77) and (7.78) admit a constant of the motion that up to a constant is the energy
of the pendulum:

Hp =
1

2
c2 − r0 cos(θ).

Fixed (r0, c0), one compute Hp and the corresponding trajectory in the (θ, c) plane should stay on
this set.

Now let us compute the curvature of the z-geodesics. We have

K =
z′1z

′′
2 − z′2z′′1

((z′1)
2 + (z′2)

2)3/2
= θ′(t; r0, θ0, c0) = c(t; r0, θ0, c0).

Hence c is precisely the curvature of the z-geodesic. Inflection points of z-geodesics corresponds to
times in which c changes sign.

The case r0 = 0. In this case ċ = 0 and θ(t) = θ0 + c0t. The z-geodesic is a circle (if c0 6= 0) or a
straight line (if c0 = 0).

The case r0 > 0. The level sets of Hp are shown in Figure (7.8). There are several types of
trajectories:

• Hp > r0. In this case the pendulum is rotating and θ(·) is monotonic increasing (no inflection
points).

• Hp = r0. We have two cases:

– If θ0 6= ±π. The pendulum is on the separatrix. The z-geodesic has an inflection point
at infinity.

– If θ0 = ±π. The pendulum stays at the unstable equilibrium (θ, c) = (±π, 0). The
z-geodesic is a straight line.

• Hp ∈ (−r0, r0). In this case the pendulum is oscillating and θ(·) too. The z-geodesic present
inflection points. Such z-geodesics are called “inflectional”.

• Hp = −r0. The pendulum stays at the stable equilibrium (θ, c) = (0, 0). The z-geodesic is a
straight line.

Evaluating when these normal Pontryagin extremals lose optimality is not an easy problem and
it is outside the purpose of this book. See the bibliographical note.

Exercise 7.73. Find all abnormal extremals for this problem.
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ℓ = 1

θ

g = r0

M = 1

θ

c

−π π

Hp > r0

Hp = r0

Hp = 0

Hp = −r0

c = 2
√
r0

Figure 7.7: Level set of the pendulum for r0 6= 0. The vertical line θ = π is identified with the
veritical line θ = −π. We have also indicated the direction of parameterization that one gets from
the equation θ̇ = c. Notice that the only critical points are (θ, c) = (0, 0) (stable equilibrium) and
(θ, c) = (π, 0) (unstable equilibrium).
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r0 = 0

Hp > 0 Hp = 0

Hp > r0 > 0 non inflectional geodesics

Hp = r0 > 0

separatrice θ0 6= ±π unstable critical point (θ0 = ±π)

Hp ∈ (−r0, r0) inflectional geodesics

Hp = −r0 stable critical point

Figure 7.8: z-geodesics. Notice the presence of a periodic trajectories.
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7.9.3 Euler’s “cvrvae elasticae”

The z-geodesics for the rolling ball withouting twisting are called Euler’s cvrvae elasticae, since
they are obtained via (7.80) and (7.81) from the solution of equations (7.75), (7.76), (7.77), (7.78),
that are the same equation that one gets while looking for the configurations of an elastic rod on
the plane having a stationary point of elastic energy. See [47].

For convenience we re-write the equations here:

ż1 = cos(θ + α0) (7.82)

ż2 = sin(θ + α0) (7.83)

θ̇ = c (7.84)

ċ = −r0 sin(θ) (7.85)

These equations contains several parameters: r0 > 0, α0, and the initial conditions θ(0) = θ0,
c(0) = c0, z1(0) = z01, z2(0) = z02, having the following meaning:

• (z01, z02) is the starting point of the curba elastica;

• θ0 + α0 is the starting angle of the curba elastica;

• θ0 gives the “starting point” of the solution of the pendulum that it is used in the interval
[0, T ];

• r0 and c0 establish the gravity of the pendulum and the level of the Hamiltonian Hp. This
has consequences on the type of curba elastica (inflection, non inflectional etc,. . . ) and on
their “size” on the plane.

We have the following interesting characterization of cvrvae elasticae.

Proposition 7.74. The set of cvrvae elasticae coincides with the set of planar curves parametrized
by planar arclength for which the curvature is an affine function of the coordinates.

Proof. Let us make the following change of coordinates z1, z2 → x1, x2 where

(
x1
x2

)
=

(
cos(α0) sin(α0)
− sin(α0) cos(α0)

)(
z1
z2

)
.

Then equations (7.82)–(7.85) become

ẋ1 = cos(θ),

ẋ2 = sin(θ),

θ̇ = c,

ċ = −r0 sin(θ).

Hence
ċ = −r0 sin(θ) = −r0ẋ2.

Integrating we obtain
c(t)− c0 = −r0(x2(t)− x2(0)).
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Hence

c(t) = c0 − r0(− sin(α0)z1 + cos(α0)z2) + r0(− sin(α0)z01 + cos(α0)z02) = a0 + a1z1 + a2z2.

where
a0 = c0 + r0(− sin(α0)z01 + cos(α0)z02), a1 = r0 sin(α0), a2 = −r0 cos(α0).

One immediately verify that the Jacobian of the transformation c0, r0, α0 → a0, a1, a2 is equal to
r0. However this singularity is only due to the choice of polar coordinates.

Exercise 7.75. Consider the Engel sub-Riemannian problem, i.e. the sub-Riemannian structure
on R4 for which an orthonormal frame is given by the vector fields

X1 = ∂x1 , X2 = ∂x2 − x1∂x3 +
x21
2
∂x4 .

Prove that the Lie algebra generated by X1 and X2 is finite dimensional. Using Theorem 7.1 deduce
that this problem define a sub-Riemannian structure on a Lie group. Find the group law. Study its
geodesics. Do the same for the Cartan sub-Riemannian problem, i.e. the sub-Riemannian structure
on R5 for which an orthonormal frame is given by the vector fields

X1 = ∂x1 , X2 = ∂x2 − x1∂x3 +
x21
2
∂x4 + x1x2∂x5 .

7.9.4 Rolling spheres: further comments

A regular curve in the Euclidean plane is an elastica if and only if its curvature is an affine function
of the coordinates. In other words, a plane curve is an elastica if and only if it is a geodesic of a
plane isoperimetric problem with an affine “magnetic field” (see Section 4.4.2).

One can realize that the rolling without slipping or twisting problem looks somehow similar to
the isoperimetric one. The state space is R × R2 for the isoperimetric problem and is SO(3)× R2

for the rolling problem. The horizontal distribution is a complement to the tangent space to R× ·
and is invariant under translations of the additive group R for the isoperimetric problem; it is a
compliment to the tangent space to SO(3)×· and is invariant under (left) translations of the group
SO(3). The sub-Riemannian length is induced by the Riemannian length in R2 for both problems.
The general framework that contains both problems as well as the problems discussed in Section
7.8.4 is as follows.

Let G be a Lie group. A principal bundle with a structure group G is a locally trivial bundle

N
G−→M where the group G acts freely on N and the orbits of this action are exactly the fibers of

the bundle. The typical example is the bundle of orthonormal frames on a Riemannian manifold
and traditionally a right action of G is considered. In the case of the bundle of oriented orthonormal
frames on an n-dimensional Riemannian manifold the structure group is SO(n); if (v1, . . . , vn) is a
frame and A = {aij}ni,j=1 ∈ SO(n), then the action is defined as

(v1, . . . , vn) · A =

(
n∑

i=1

ai1vi, . . . ,

n∑

i=1

ainvi

)
.

Let g be the Lie algebra of the group G. A connection on the principal bundle N
G−→ M is a

vector distribution on N that is a complement to the tangent spaces to the fibers and is invariant
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under the action of G. Recall that right translations of the Lie group are generated by left-invariant
vector fields; hence the tangent space to the fiber at any point is naturally identified with g. Let
Dq ⊂ TqN, q ∈ N be a connection. We have TqN = g⊕Dq; a linear projection ωq : TqN → g such
that kerωq = Dq defines a non-degenerate G-invariant g-valued vector differential form ω on N .

Of course, the construction can be inverted. According to another equivalent definition, a
connection on the principal bundle is a non-degenerate G-invariant g-valued differential form. The
kernel of such a form is the connection in the sense of the first definition.

Let π : N
G−→M be the canonical projection to the base of the bundle and γ : [0, 1]→M be a

smooth curve. Given a point q0 ∈ π−1(γ(0)) there exists a unique horizontal lift qt of γ(t) starting
at q0, i.e., q̇t ∈ Dqt, 0 ≤ t ≤ 1. The point q1 ∈ π−1(γ(1)) is called the parallel transport of q0 along
γ. The parallel transport commutes with the action of G; thus the transport of a point determines
the transport of the whole fiber.

Assume that M is equipped with a Riemannian structure. The length-minimization problem
on the set of curves in M that provide a parallel transport from q0 to the given point q1 is a
isoholonomic problem. The two-dimensional isoperimetric problems, their modification considered
in Section 7.8.4, and the rolling without slipping or twisting problem are just very special cases.
Isoholonomic problems link sub-Riemannian geometry with numerous applications: dynamics of a
particle in a gauge field, optimal shape transformation, and many others.

Bibliographical notes
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Chapter 8

End-point map and Exponential map

In Chapter 4 we started to study necessary conditions for an horizontal trajectory to be a minimizer
of the sub-Riemannian length between two fixed points. By applying first order variations we found
two different class of candidates, namely normal and abnormal extremals. We also proved that
normal extremal trajectories are geodesics, i.e., short arcs realize the sub-Riemannian distance.

In this chapter we go further and we study second order conditions. To this purpose, we intro-
duce the end-point map Eq0 that associates to a control u the final point Eq0(u) of the admissible
trajectory associated to u and starting from q0. Then we treat the problem of minimizing the en-
ergy J of curves joining two fixed points q0, q1 ∈M as the problem of minimization with constraint

min J |E−1
q0

(q1)
, q1 ∈M. (8.1)

It is then natural to introduce Lagrange multipliers. First order conditions recover Pontryagin
extremals, while second order conditions give new information. This viewpoint permits to interpret
abnormal extremals as candidates for optimality that are critical points of the map Eq0 defining
the constraint.

In this chapter we take advantage of the invariance by reparametrization to assume all the
trajectories to be defined on the same interval I = [0, 1]. Also, since the energy of a curve coincides
with the L2-norm of the corresponding control, it is natural to take L2([0, 1],Rm) as class of
admissible controls (cf. the discussion in Section 3.6). This is useful since L2([0, 1],Rm) has a
natural structure of Hilbert space.

8.1 The end-point map and its differential

Recall that every sub-Riemannian manifold (M,U, f) is equivalent to a free one, as explained in
Section 3.1.4. In this chapter we always assume that the sub-Riemannian structure is free of rank
m, i.e., U =M × Rm. In the following {f1, . . . , fm} denotes a generating frame.

Fix q0 ∈ M . Recall that, for every control u ∈ L2([0, 1],Rm), the corresponding trajectory γu
is the unique solution of the Cauchy problem

γ̇(t) =
m∑

i=1

ui(t)fi(γ(t)), γ(0) = q0. (8.2)

Let Uq0 ⊂ L2([0, 1],Rm) the set of controls u such that the corresponding trajectory γu starting at
q0 is defined on [0, 1].
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q0

γu(t)

fv(t)

(Pu
t,1)∗

(Pu
t,1)∗fv(t)

γu(1)

Tγu(1)M

Figure 8.1: Differential of the end-point map

Exercise 8.1. (i). Prove that Uq0 is an open subset of L2([0, 1],Rm).
(ii). Let r0 > 0 such that the closure of the sub-Riemannian ball Bq0(r0) is compact (cf.

Corollary 3.35), and denote by BL2(r0) the ball of radius r0 in L2. Prove that BL2(r0) ⊂ Uq0 .
Definition 8.2. Let (M,U, f) be a free sub-Riemannian manifold of rank m and fix q0 ∈M . The
end-point map based at q0 is the map

Eq0 : Uq0 →M, Eq0(u) = γu(1). (8.3)

where γu is the unique solution to the Cauchy problem (8.2).

Remark 8.3. Similarly one can define the end-point map at time t ∈ R based at q0 that is denoted
by Etq0 : U tq0 → M and defined by the identity Etq0(u) := γu(t) defined on the set U tq0 of controls u
for which the corresponding trajectory γu is defined on [0, t].

Now we prove that the end-point map is differentiable (and actually smooth) and we compute
its (Fréchet) differential.

Proposition 8.4. The end-point map Eq0 is smooth on Uq0 and for every u ∈ Uq0 we have

DuEq0 : L2([0, 1],Rm)→ Tγu(1)M, DuEq0(v) =

∫ 1

0
(P ut,1)∗fv(t)

∣∣
γu(1)

dt. (8.4)

for every v ∈ L2([0, 1],Rm). Here P ut,s is the flow generated by u.

From the geometric viewpoint, the differential DuEq0(v) computes the integral mean of the
vector field fv(t) defined by v along the trajectory γu defined by u, where all the vectors are pushed
forward in the same tangent space Tγu(1) with P

u
t,1 (see Figure 8.1). We stress that, since Uq0 is an

open set of L2([0, 1],Rm), the differential is defined on the tangent space to Uq0 that is L2([0, 1],Rm).

Proof of Proposition 8.4. The end-point map from q0 is a map Eq0 : Uq0 → M . Instead of proving
the smoothness of the end-point map in coordinates (on M), we will evaluate the end point on a
function a :M → R and obtain a◦Eq0 : Uq0 → R, adopting the viewpoint of chronological calculus.

Employing the notation fu(q) :=
∑m

i=1 uifi(q). the end-point map from q0 can be rewritten as
the chronological exponential (cf. Chapter 6)

Eq0(u) = q0 ⊙
−→exp

∫ 1

0
fu(t) dt. (8.5)
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We will show that for every control ū in the set Uq0 we can write a Taylor expansion around ū and
control the rest at the corresponding order.

Step 1. Let us first show the Taylor expansion of Eq0 near the control ū = 0. We remove the
subscript q0 and write

E(v) = −→exp
∫ 1

0
fv(t) dt. (8.6)

splitting it into the sum of the two parts of the Volterra series

E(v(·)) = SN (v) +RN (v) (8.7)

where

SN (v) = Id +

N−1∑

k=1

∫
· · ·
∫

∆k(1)

fv(sk) ⊙ · · · ⊙ fv(s1)ds

RN (v) =

∫
· · ·
∫

∆N (1)

P v0,sN
⊙ fv(sN ) ⊙ · · · ⊙ fv(s1)ds

By linearity of fv with respect to v, the k-th term in the sum SN is k-linear. Moreover, applying
Theorem 6.19 with t = 1, there exists C > 0 such that

‖RN (v)a‖α,K ≤
C

N !
eC‖v‖2‖v‖N2 ‖a‖α+N,K ′ (8.8)

We stress that the previous inequality holds (for suitable values of the constants) for every N ∈ N,
and in the particular case when N = 2 gives

∥∥∥∥
(
E(v(·)) −

∫ 1

0
fv(t)dt

)
a

∥∥∥∥
α,K

≤ CeC‖v‖2‖v‖22‖a‖α+1,K ′ (8.9)

Since a is arbitrary, choosing α = 0 and a compact set K containing the point q0 one has, for v
sufficiently small ∣∣∣∣Eq0(v(·)) −

∫ 1

0
fv(t)(q0)dt

∣∣∣∣ ≤ CeC‖v‖2‖v‖22 (8.10)

the inequality being meaningful in coordinates. This says in particular that the end-point map is
differentiable at ū = 0 and, since the map v 7→

∫ 1
0 fv(t)(q0)dt is linear and the right hand side is

o(‖v‖2), computes its differential.
Step 2. To compute the Taylor expansion at an arbitrary point ū ∈ Uq0 , let us consider the

expansion in a neighborhood of v = 0 of the map

v 7→ Eq0(ū+ v) = q0 ⊙
−→exp

∫ 1

0
f(ū+v)(t)dt.

Using the variation formula (6.29) one can write

−→exp
∫ 1

0
f(ū+v)(t)dt =

−→exp
∫ 1

0
fū(t) + fv(t)dt

= −→exp
∫ 1

0

(
−→exp

∫ t

0
ad fū(s)ds

)
fv(t)dt ⊙

−→exp
∫ 1

0
fū(t)dt (8.11)

= −→exp
∫ 1

0
(P ū0,t)

−1
∗ fv(t)dt ⊙ P ū0,1
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Indeed we have

Eq0(ū+ v) = P ū0,1(G
ū
q0(v)) = Gūq0(v) ⊙ P ū0,1 (8.12)

where Gūq0 is the map defined as follows

Gūq0(v) := q0 ⊙
−→exp

∫ 1

0
(P ū0,t)

−1
∗ fv(t)dt

Then, the expansion of (8.12) near v = 0 is obtained by the Volterra expansion of the map Gūq0
with respect to v. Using the same computations and estimate as above one obtains

D0G
ū
q0(v) = q0 ⊙

∫ 1

0
(P ū0,t)

−1
∗ fv(t)dt =

∫ 1

0
(P ū0,t)

−1
∗ fv(t)(q0)dt (8.13)

and, by composition,

DūEq0(v) = (P ū0,1)∗ ◦D0G
ū
q0(v) = (P ū0,1)∗

∫ 1

0
(P ū0,t)

−1
∗ fv(t)(q0)dt

=

∫ 1

0
(P ūt,1)∗fv(t)(q1)dt.

where we denote q1 := Eq0(ū).

Remark 8.5. Notice that the decomposition of the non autonomous flow associated with ū + v
into the one associated with ū and a correction term obtained via the variation formula in (8.11)
translates in “chronological terms” the change of variables argument used in the ODE proof of
Proposition 3.53 (cf. Section 3.4.2).

8.2 Lagrange multipliers rule

Let U be an open set of an Hilbert space H, and let M be a smooth n-dimensional manifold.
Consider two smooth maps

ϕ : U → R, F : U →M. (8.14)

In this section we discuss the Lagrange multipliers rule for the minimization of the function ϕ under
the constraint defined by F . More precisely, we want to write necessary conditions satisfied by the
solutions of the problem

min ϕ
∣∣
F−1(q)

, q ∈M. (8.15)

Theorem 8.6. Assume u ∈ U is solution of the minimization problem (8.15). Then there exists a
covector (λ, ν) ∈ T ∗

qM × R such that (λ, ν) 6= (0, 0) and

λDuF + νDuϕ = 0. (8.16)

Remark 8.7. Formula (8.16) means that for every v ∈ H one has

〈λ,DuF (v)〉+ νDuϕ(v) = 0.

208



Proof. Let us prove that if u ∈ U is solution of the minimization problem (8.15), then u is a critical
point for the extended map Ψ : U →M ×R defined by Ψ(v) = (F (v), ϕ(v)).

Indeed, if u is not a critical point for Ψ, then DuΨ is surjective. By implicit function theorem,
this implies that Ψ is locally surjective at u. In particular, for every neighborhood V of u it exists
v ∈ V such that F (v) = F (u) = q and ϕ(v) < ϕ(u), that contradicts that u is a constrained
minimum.

Hence DuΨ = (DuF,Duϕ) is not surjective and there exists a non zero covector (λ, ν) such that
λDuF + νDuϕ = 0.

8.3 Pontryagin extremals via Lagrange multipliers

Applying the previous result to the case when F = Eq0 is the end-point map and ϕ = J is the
sub-Riemannian energy, one obtains the following result.

Corollary 8.8. Assume that a control u ∈ U is a solution of the minimization problem (8.1), then
there exists (λ, ν) ∈ T ∗

qM × R such that (λ, ν) 6= (0, 0) and

λDuEq0 + νDuJ = 0. (8.17)

Let us now prove that these necessary conditions are equivalent to those obtained in Chapter
4. Recall that, since J(u) = 1

2‖u‖2L2 , then DuJ(v) = (u, v)L2 and, identifying L2([0, 1],Rm) with
its dual, we have DuJ = u.

Proposition 8.9. We have the following:

(N) (u(t), λ(t)) is a normal extremal if and only if there exists λ1 ∈ T ∗
q1M , where q1 = Eq0(u),

such that λ(t) = (P ut,1)
∗λ1 and u satisfies (8.17) with (λ, ν) = (λ1,−1), namely

λ1DuEq0 = u. (8.18)

(A) (u(t), λ(t)) is an abnormal extremal if and only if there exists λ1 ∈ T ∗
q1M , where q1 = Eq0(u),

such that λ(t) = (P ut,1)
∗λ1 and u satisfies (8.17) with (λ, ν) = (λ1, 0), namely

λ1DuEq0 = 0. (8.19)

where in (8.18) we identify u ∈ L2 with the element (u, ·)L2 ∈ (L2)′

Proof. Let us prove (N). The proof of (A) is similar.

Recall that the pair (u(t), λ(t)) is a normal extremal if the curve λ(t) satisfies λ(t) = (P ut,1)
∗λ(1)

(that is equivalent to say that λ(t) is a solution of the Hamiltonian system, cf. Chapter 4) and
〈λ(t), fi(γ(t))〉 = ui(t) for every i = 1, . . . ,m, where γ(t) = π(λ(t)).

Assume that u satisfies (8.18) for some λ1, let us prove that the curve defined by λ(t) := (P ut,1)
∗λ1

is a normal extremal. Condition (8.18) means that for every v ∈ L2([0, T ],Rm) we have

〈λ1,DuEq0(v)〉 = (u, v)L2 (8.20)
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Using (8.4), the left hand side is rewritten as follows

〈λ1,DuEq0(v)〉 =
∫ 1

0

〈
λ1, (P

u
t,1)∗fv(t)(q1)

〉
dt =

∫ 1

0

〈
(P ut,1)

∗λ1, fv(t)(γ(t))
〉
dt

=

∫ 1

0

〈
λ(t), fv(t)(γ(t))

〉
dt =

∫ 1

0

m∑

i=1

〈λ(t), fi(γ(t))〉 vi(t)dt,

where we used that γ(t) = (P ut,1)
−1(q1). Then (8.20) becomes

∫ 1

0

m∑

i=1

〈λ(t), fi(γ(t))〉 vi(t)dt =
∫ 1

0

m∑

i=1

ui(t)vi(t)dt. (8.21)

and since v(t) is arbitrary, this implies 〈λ(t), fi(γ(t))〉 = ui(t) for a.e. t ∈ [0, 1] and every i =
1, . . . ,m. Following the same computations in the oppposite direction we have that if (u(t), λ(t))
is a normal extremal then the identity (8.18) is satisfied.

8.4 Critical points and second order conditions

In this chapter, we develop second order conditions for constrained critical points in the case in
which the constraint is regular. When applied to the sub-Riemannian case, this gives second order
conditions for normal extremals (that are not abnormal). Cf. also Section 8.5.

In the following H always denote an Hilbert space. Recall that a smooth submanifold of H is
a subset V ⊂ H such that for every point v ∈ V there is an open neighborhood Y of v in H and a
smooth diffeomorphism φ : V → W to an open subset W ⊂ H such that φ(V ∩ Y ) =W ∩ U for U
a closed linear subspace of H.

We now recall the implicit function theorem in this setting.

Proposition 8.10 (Implicit function theorem). Let F : H →M be a smooth map and fix q ∈M . If
F is a submersion at every u ∈ F−1(q), i.e., the Fréchet differential DuF : H → TqM is surjective
for every u ∈ F−1(q), then F−1(q) is a smooth submanifold whose codimension is equal to the
dimension of M . Moreover TuF

−1(q) = kerDuF .

We now define critical points.

Definition 8.11. Let ϕ : H → R be a smooth function and N ⊂ H be a smooth submanifold.
Then u ∈ N is called a critical point of ϕ

∣∣
N

if Duϕ
∣∣
TuN

= 0.

We start with a geometric version of the Lagrange multipliers rule, which caracterizes con-
strained critical points (not just minima). This construction is then used to develop a second order
analysis.

Proposition 8.12 (Lagrange multipliers rule). Let U be an open subset of H and assume that
u ∈ U is a regular point of F : U → M . Let q = F (u), then u is a critical point of ϕ

∣∣
F−1(q)

if and

only if it exists λ ∈ T ∗
qM such that

λDuF = Duϕ. (8.22)

210



Proof. Recall that the differential of F is a well-defined map

DuF : TuU → TqM, q = F (u).

Since u is a regular point, DuF is surjective and, by implicit function theorem, the level set Vq :=
F−1(q) is a smooth submanifold (of codimension n = dimM), with u ∈ Vq and TuVq = kerDuF .
Since u is a critical point of ϕ

∣∣
Vq
, by definition Duϕ

∣∣
TuVq

= Duϕ
∣∣
kerDuF

= 0, i.e.,

kerDuF ⊂ kerDuϕ. (8.23)

Now consider the following diagram

TuU

duϕ
##●

●●
●●

●●
●●

DuF // TqM

?
��
R

(8.24)

From (8.23), using Exercice 8.13, it follows that there exists a linear map λ : TqM → R (that means
λ ∈ T ∗

qM) that makes the diagram (8.24) commutative.

Exercise 8.13. Let V be a separable Hilbert spaces and W be a finite-dimensional vector space.
Let G : V → W and φ : V → R two linear maps such that kerG ⊂ ker φ. Then show that there
exists a linear map λ :W → R such that λ ◦G = φ.

Now we want to consider second order information at critical points. Recall that, for a function
ϕ : U → R defined on an open set U of an Hilbert space H, the first and second differential are
defined in the following way,

Duϕ(v) =
d

ds

∣∣∣∣
s=0

ϕ(u+ sv), D2
uϕ(v) =

d2

ds2

∣∣∣∣
s=0

ϕ(u+ sv)

For a function F : U →M whose target space is a manifold its first differential DuF : H → TF (u)M
is still well defined while the second differential D2

uF is meaningful only if we fix a set of coordinates
in the target space.

If V is a submanifold in H, the first differential of a smooth function ψ : V → R at a point
u ∈ V is defined as

Duψ : TuV → R, Duψ(v) =
d

ds

∣∣∣∣
s=0

ψ(w(s)),

where w : (−ε, ε)→ V is a curve that satisfies w(0) = u, ẇ(0) = v. If ψ = ϕ|V is the restriction of
a function ϕ : H → R defined globally on H, then Duψ = Duφ|TuV coincides with the restriction of
the differential defined on the ambient space H. For the second differential things are more delicate.
Indeed the formula

v ∈ TuV 7→
d2

ds2

∣∣∣∣
s=0

ψ(w(s)) (8.25)

where w : (−ε, ε) → V is a curve that satisfies w(0) = u, ẇ(0) = v, is a well-defined object (i.e.,
the right hand side depends only on v) only if u is a critical point of ψ. Indeed, if this is not the
case, the quantity (8.25) depends also on the second derivative of w, as it is easily checked.
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If u is a critical point of ψ : V → R (i.e., Duψ = 0) the second order differential (8.25) is a
well-defined quadratic form TuV, that is called the Hessian of ψ at u:

Hessu ψ : TuV → R, v 7→ d2

ds2

∣∣∣∣
s=0

ψ(w(s)) (8.26)

We stress that if ψ = ϕ|V is the restriction of a function ϕ : H → R defined globally on H, then the
Hessian of ψ at a critical point u does not coincide, in general, with the restriction of the second
differential of ϕ to the tangent space TuV.

Let us compute the Hessian of the restriction in the case when V = F−1(q) is a smooth sub-
manifold of H, and ψ = ϕ

∣∣
F−1(q)

. Using that TuF
−1(q) = kerDuF , the Hessian is a well-defined

quadratic form

Hessu ϕ
∣∣
F−1(q)

: kerDuF → R

that is computed in terms of the second differentials of ϕ and F as follows.

Proposition 8.14. For all v ∈ kerDuF we have

Hessu ϕ
∣∣
F−1(q)

(v) = D2
uϕ(v) − λD2

uF (v). (8.27)

where λ is satisfies the identity λDuF = Duϕ.

Remark 8.15. We stress again that in (8.27), while the left hand side is a well defined object, in
the right hand side D2

uϕ is well-defined thanks to the linear structure of H, while D2
uF needs also

a choice of coordinates in the manifold M .

Proof of Proposition 8.14. By assumption F−1(q) ⊂ U is a smooth submanifold in a Hilbert space.
Fix u ∈ F−1(q) and consider a smooth path w(s) in U such that w(0) = u and w(s) ∈ F−1(q) for
all s. Differentiating twice with respect to u, with respect to some local coordinates on M , we have

DuF (u̇) = 0, 〈D2
uF (u̇), u̇〉+DuF (ü) = 0. (8.28)

where we denoted by u̇ = u̇(0) and ü = ü(0). Analogous computations for ϕ gives

Hessu ϕ
∣∣
F−1(q)

(u̇) =
d2

ds2

∣∣∣∣
s=0

ϕ(w(s))

= 〈D2
uϕ(u̇), u̇〉+Duϕ(ü)

= 〈D2
uϕ(u̇), u̇〉+ λDuF (ü) (by λDuF = Duϕ)

= 〈D2
uϕ(u̇), u̇〉 − λ〈D2

uF (u̇), u̇〉 (by (8.28))

8.4.1 The manifold of Lagrange multipliers

As above, let us consider the two smooth maps ϕ : U → R and F : U →M defined on an open set
U of an Hilbert space H.
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Definition 8.16. We say that a pair (u, λ), with u ∈ U and λ ∈ T ∗M , is a Lagrange point for the
pair (F,ϕ) if λ ∈ T ∗

F (u)M and Duϕ = λDuF . We denote the set of all Lagrange points by CF,ϕ.
More precisely

CF,ϕ = {(u, λ) ∈ U × T ∗M | F (u) = π(λ), Duϕ = λDuF}. (8.29)

The set CF,ϕ is a well-defined subset of the vector bundle F ∗(T ∗M), that we recall is defined as
follows (cf. also Definition 2.50)

F ∗(T ∗M) = {(u, λ) ∈ U × T ∗M | F (u) = π(λ)}. (8.30)

We now study the structure of the set CF,ϕ. It turns to be a smooth manifold under some
regularity conditions on the maps (F,ϕ).

Definition 8.17. The pair (F,ϕ) is said to be a Morse pair (or a Morse problem) if 0 is a regular
value for the smooth map

θ : F ∗(T ∗M)→ U∗ ≃ U , (u, λ) 7→ Duϕ− λDuF. (8.31)

Remark 8.18. Notice that, if M is a single point, then F is the trivial map and with this definition
we have that (F,ϕ) is a Morse pair if and only if ϕ is a Morse function. Indeed in this case DuF = 0,
and 0 is a critical value for θ if, by definition, the second differential D2

uϕ is non-degenerate.

Proposition 8.19. If (F,ϕ) define a Morse problem, then CF,ϕ is a smooth manifold in F ∗(T ∗M).

Proof. To prove that CF,ϕ is a smooth manifold it is sufficient to notice that CF,ϕ = θ−1(0) and,
by definition of Morse pair, 0 is a regular value of θ. The result follows from the version of the
implicit function theorem stated in Lemma 8.20

Lemma 8.20. Let N be a smooth manifold and H a Hilbert space. Consider a smooth map
f : N →H and assume that 0 is a regular value of f . Then f−1(0) is a smooth submanifold of N .

If the dimension of U , the target space of θ, were finite, a simple dimensional argument would
permit to compute the dimension of CF,ϕ = θ−1(0) (as in Proposition 8.10). In this case, since the
differential of θ is surjective we would have that

dim F ∗(T ∗M)− dim CF,ϕ = dim U

so we could compute the dimension of CF,ϕ

dim CF,ϕ = dim F ∗(T ∗M)− dim U
= (dim U + rankT ∗M)− dim U
= rankT ∗M = n

However, in the case dim U = +∞ the above argument is no more valid, and we need the explicit
expression of the differential of θ.

Proposition 8.21. Under the assumption of Proposition 8.19, then dimCF,ϕ = dimM = n.
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Proof. To prove the statement, let us choose a set of coordinates λ = (ξ, x) in T ∗M and describe
the set CF,ϕ ⊂ F ∗(T ∗M) as follows

{
Duϕ− ξDuF = 0

F (u) = x
(8.32)

where here ξ is thought as a row vector. To compute dimCF,ϕ, it will be enough to compute the
dimension of its tangent space T(u,ξ,x)CF,ϕ at a every (u, ξ, x). The tangent space T(u,ξ,x)CF,ϕ is
described in coordinates by the set of points (u′, ξ′, x′) satisfying the equations1

{
D2
uϕ(u

′, ·)− ξD2
uF (u

′, ·)− ξ′DuF (·) = 0

DuF (u
′) = x′

(8.33)

Let us denote the linear map Q : U → U∗ ≃ U defined by

Q(u′) = D2
uϕ(u

′, ·)− ξD2
uF (u

′, ·).
Since Q is defined by second derivatives of the maps F and ϕ, it is a symmetric operator. on the
Hilbert space U .

The definition of Morse problem is immediately rewritten as follows: the pair (F,ϕ) defines a
Morse problem if and only if the following map is surjective.

Θ : U × Rn∗ → U∗ ≃ U , Θ(u′, ξ′) = Q(u′)−B(ξ′). (8.34)

where we denoted with B : Rn∗ → U∗ ≃ U the map

B(ξ′) = ξ′DuF (·).
Indeed the map Θ is exactly the first equation in (8.33). The dimension of CF,ϕ coincides with
the dimension of ker Θ. Indeed for each element (u′, ξ′) ∈ kerΘ by setting x′ = DuF (u

′) we find a
unique (u′, ξ′, x′) ∈ T(u,ξ,x)CF,ϕ. Since Q is self-adjoint, we have

U = kerQ⊕ imQ, dimkerQ = codim imQ.

Using that Θ is surjective and dim(imB) ≤ n we get that

dimkerQ = codim imQ ≤ dim imB ≤ n,
is finite dimensional (in particular imQ is closed and U = kerQ⊕ imQ).

If we denote with πker : U → kerQ and πim : U → imQ the orthogonal projection onto the two
subspaces, it is easy to see that

Θ(u′, ξ′) = 0 ⇐⇒
{
πkerBξ

′ = 0

πimBξ
′ = Qu′

Moreover πkerB : Rn → kerQ is a surjective map between finite-dimensional spaces (the surjectivity
is a consequence of the fact that Θ is surjective). In particular we have dimker (πkerB) = n −
dimkerQ. Then we get the identity

dimkerΘ = dimkerQ+ dimker (πkerB) = dimkerQ+ (n− dimkerQ) = n

since πkerB : Rn → kerQ is a surjective map

1if a submanifold C of a manifold Z is described as the set {z ∈ Z | Ψ(z) = 0}, then its tangent space TzC at a
point z ∈ C is described by the linear equation {z′ ∈ Z | DzΨ(z′) = 0}.
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The last characterization of Morse problem leads to a convenient criterion to check whether a
pair (F,ϕ) defines a Morse problem.

Lemma 8.22. The pair (F,ϕ) defines a Morse problem if and only if

(i) imQ is closed,

(ii) kerQ ∩ kerDuF = {0}.

Proof. Assume that (F,ϕ) is a Morse problem. Then, following the lines of the proof of Proposition
8.21, imQ has finite codimension, hence is closed, and (i) is proved. Moreover, since the problem
is Morse, then the image of the differential of the map (8.31) is surjective, i.e. if there exists w ∈ U
that is orthogonal to imΘ, namely

〈Q(u′), w〉 − 〈ξ′DuF (·), w〉 = 0, ∀ (ξ′, u′),

then w = 0. Using that Q is self-adjoint we can rewrite the previous identity as

〈u′, Q(w)〉 − 〈ξ′DuF (·), w〉 = 0, ∀ (ξ′, u′),

that is equivalent, since ξ′, u′ are arbitrary, to

Q(w) = 0 and DuF (w) = 0.

This proves (ii). The converse implications are proved in a similar way.

Definition 8.23. Let N be a n-dimensional submanifold. An immersion F : N → T ∗M is said to
be a Lagrange immersion if F ∗σ = 0, where σ denotes the standard symplectic form on T ∗M .

Let us consider now the projection map Fc : CF,ϕ −→ T ∗M defined by :

Fc(u, λ) = λ.

Proposition 8.24. If the pair (F,ϕ) defines a Morse problem, then Fc is a Lagrange immersion.

Proof. First we prove that Fc is an immersion and then that F ∗
c σ = 0.

(i). Recall that Fc : CF,ϕ → T ∗M where

CF,ϕ = {(u, ξ, x) | equations (8.32) holds}

The differential D(u,λ)Fc : T(u,λ)CF,ϕ → TλT
∗M is defined by the linearization of equations (8.32)

T(u,λ)CF,ϕ = {(u′, ξ′, x′) | equations (8.33) holds}

where
D(u,λ)Fc(u

′, ξ′, x′) = (ξ′, x′)

Now looking at (8.33) it easily seen that

D(u,λ)Fc(u
′, ξ′, x′) = 0 iff Q(u′) = DuF (u

′) = 0.

Since (F,ϕ) defines a Morse problem we have by Lemma 8.22 that such a u′ does not exists. Hence
the differential is never zero and Fc is an immersion.
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(ii). We now show that F ∗
c σ = 0. Since σ = ds is the differential of the tautological form s, and

F ∗
c σ = dF ∗

c s since the pullback commutes with the differential, it is sufficient to show that F ∗
c s is

closed. Let us show the identity
F ∗
c s = D(ϕ ◦ πU)

∣∣
CF,ϕ

.

By definition of the map Fc, the following diagram is commutative:

CF,ϕ

πU
��

Fc // T ∗M

πM
��

U
F

//M

(8.35)

Moreover, notice that if φ : M → N is smooth and ω ∈ Λ1(N), by definition of pull-back we have
(φ∗ω)q = ωφ(q) ◦Dqφ. Hence

(F ∗
c s)(u,λ) = sλ ◦D(u,λ)Fc

= λ ◦ πM∗ ◦D(u,λ)Fc (by definition sλ = λ ◦ πM∗)

= λ ◦DuF ◦ πU∗ (by (8.35))

= Du(ϕ ◦ πU ) (by (8.22))

Definition 8.25. The set LF,ϕ ⊂ T ∗M of Lagrange multipliers associated with the pair (F,ϕ) is
the image of CF,ϕ under the map Fc.

From Proposition 8.24 it follows that, if LF,ϕ is a smooth manifold, then it is a Lagrangian
submanifold of T ∗M , i.e., σ|LF,ϕ

= 0.
Collecting the results obtained above, we have the following proposition.

Proposition 8.26. Let (F,ϕ) be a Morse pair and assume (u, λ) is a Lagrange point such that u
is a regular point for F , where F (u) = q = π(λ). The following properties are equivalent:

(i) Hessu ϕ
∣∣
F−1(q)

is degenerate,

(ii) (u, λ) is a critical point for the map π ◦ Fc = F
∣∣
CF,ϕ

: CF,ϕ →M ,

Moreover, if LF,ϕ is a submanifold, then (i) and (ii) are equivalent to

(iii) λ is a critical point for the map π
∣∣
LF,ϕ

: LF,ϕ →M .

Proof. In coordinates we have the following expression for the Hessian

Hessuϕ
∣∣
F−1(q)

(v) = 〈Q(v), v〉, ∀ v ∈ kerDuF.

and Q is the linear operator associated to the bilinear form. Assume that Hessu ϕ
∣∣
F−1(q)

is degen-

erate, i.e. there exists u′ ∈ kerDuF such that

〈Qu′, v〉 = 0, ∀ v ∈ kerDuF.

216



In other words Q(u′) ⊥ kerDuF that is equivalent to say that Q(u′) is a linear combination of the
row of the Jacobian matrix of F , namely

Q(u′) = ξ′DuF (·),

for some row vector ξ′. From equations (8.33) it follows immediately that (i) is equivalent to (ii).
The fact that, if LF,ϕ is a submanifold, (ii) is equivalent to (iii) is obvious.

8.5 Sub-Riemannian case

In this section we want to specify the theory that we developed in the previous ones to the case
of sub-Riemannian normal extremal. Hence, we will consider the action functional J defined by
J(u) = 1

2

∫ 1
0 |u(t)|2dt and we consider its critical points constrained to a regular level set of the

end-point map E, that means that we fix the final point of our trajectory (as usual we assume that
the starting point q0 is fixed).

We already characterized critical points by means of Lagrange multipliers, now we want to
consider second order informations. We start by computing the Hessian of J

∣∣
E−1(q1)

.

Lemma 8.27. Let q1 ∈M and (u, λ) be a critical point of J
∣∣
E−1(q1)

. Then for every v ∈ kerDuF

HessuJ
∣∣
E−1(q1)

(v) = ‖v‖2L2 −
〈
λ,D2

uE(v)
〉
, (8.36)

where

D2
uE(v, v) = 2

∫∫

0≤s≤t≤1

[(Ps,1)∗fv(s), (Pt,1)∗fv(t)](q1) dsdt. (8.37)

and Pt,s denotes the nonautonomous flow defined by the control u.

Proof. By Proposition 8.14 we have

HessuJ
∣∣
E−1(q1)

(v) = D2
uJ − λD2

uE.

It is easy to compute derivatives of J . Indeed we can rewrite it as J(u) = 1
2(u, u)L2 , hence

DuJ(v) = (u, v)L2 , D2
uJ(v) = (v, v)L2 = ‖v‖2L2 , ∀ v ∈ kerDuE

It remains to compute the second derivative of the end-point map. From the Volterra expansion
(8.13) we get

D2
uE(v, v) = 2 q1 ⊙

∫∫

0≤s≤t≤1

(Ps,1)∗fv(s) ⊙ (Pt,1)∗fv(t)dsdt (8.38)

To end the proof we use the following lemma on chronological calculus, which we will use to
symmetrize the second derivative.

Lemma 8.28. Let Xt be a nonautonomous vector field on M . Then

∫∫

0≤s≤t≤1

Xs ⊙Xtdsdt =
1

2

∫ 1

0
Xsds ⊙

∫ 1

0
Xtdt+

1

2

∫∫

0≤s≤t≤1

[Xs,Xt]dsdt. (8.39)
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Proof of the Lemma. We have

2

∫∫

0≤s≤t≤1

Xs ⊙Xtdsdt =

∫∫

0≤s≤t≤1

Xs ⊙Xtdsdt+

∫∫

0≤s≤t≤1

Xs ⊙Xtdsdt

−
∫∫

0≤s≤t≤1

Xt ⊙Xsdsdt+

∫∫

0≤s≤t≤1

Xt ⊙Xsdsdt

=

∫∫

0≤s≤t≤1

Xs ⊙Xtdsdt+

∫∫

0≤s≤t≤1

[Xs,Xt]dsdt+

∫∫

0≤s≤t≤1

Xt ⊙Xsdsdt

=

∫ 1

0

∫ 1

0
Xs ⊙Xtdsdt+

∫∫

0≤s≤t≤1

[Xs,Xt]dsdt

=

∫ 1

0
Xsds ⊙

∫ 1

0
Xtdt+

∫∫

0≤s≤t≤1

[Xs,Xt]dsdt.

Using Lemma 8.28 we obtain from (8.38)

D2
uE(v, v) = q1 ⊙ 2

∫∫

0≤s≤t≤1

[(Ps,1)∗fv(s), (Pt,1)∗fv(t)]dsdt (8.40)

where we used that
∫ 1
0 (Pt,1)∗fv(t)dt = 0 since v ∈ kerDuE.

Proposition 8.29. The sub-Riemannian problem (E, J) is a Morse pair.

Proof. We use the characterization of Lemma 8.22. We have to show that

im
(
Id− λD2

uE
)
is closed, ker

(
Id− λD2

uE
)
∩ ker (DuE) = 0. (8.41)

Using the previous notation and defining gtv := (Pt,1)∗fv, we can write

DuE(v) = q1 ⊙

∫ 1

0
gtv(t)dt

Moreover we have

〈
λD2

uE(v), v
〉
= 2

∫∫

0≤s≤t≤1

gsv(s) ⊙ gtv(t)dsdt ⊙ a (8.42)

=

∫∫

0≤s≤t≤1

gsv(s) ⊙ gtv(t)dsdt ⊙ a+

∫∫

0≤t≤s≤1

gtv(t) ⊙ gsv(s)dsdt ⊙ a (8.43)

=

∫ 1

0

∫ t

0
gsv(s) ⊙ gtv(t)dsdt ⊙ a+

∫ 1

0

∫ 1

t
gtv(t) ⊙ gsv(s)dsdt ⊙ a (8.44)

where a is any smooth function such that dq1a = λ.
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The kernel of the bilinear form is, by definition, the kernel of the symmetric linear operator
associated to it through the scalar product, i.e., the unique symmetric operator Q satisfying

〈
λD2

uE(v), v
〉
= (Qv, v)L2 =

∫ 1

0
(Qv)(t)v(t)dt.

Then it follows that

(Qv)(t) =

(∫ t

0
gsv(s)ds ⊙ gt + gt ⊙

∫ 1

t
gsv(s)ds

)
⊙ a (8.45)

where gt denotes the vector (gt1, . . . , g
t
m) and we recall that gti = (Pt,1)∗fi for i = 1, . . . ,m. Let us

now prove the following technical lemma.

Lemma 8.30. Let us consider the linear operator A : L2([0, T ],Rm)→ L2([0, T ],Rm) defined by

(Av)(t) = v(t)−
∫ t

0
K(t, s)v(s)ds (8.46)

where K(t, s) is a function in L2([0, T ]2,Rm). Then

(i) A = I −Q, where Q is a compact operator,

(ii) kerA = {0}.
Moreover, if K(t, s) = K(s, t) for all t, s, then A is a symmetric operator.

Proof. The fact that the integral operator Q : L2([0, T ],Rm)→ L2([0, T ],Rm) defined by

(Qv)(t) =

∫ t

0
K(t, s)v(s)ds (8.47)

is compact is classical (see for instance [61, Chapter 6]). We then prove statement (ii) in two steps.
(a) we prove it for small T . (b) we prove it for arbitrary T .

(a). Fix T > 0 and consider a solution in L2([0, T ],Rm) to the equation

v(t) =

∫ t

0
K(t, s)v(s)ds, t ∈ [0, T ]. (8.48)

We multiply (8.48) by v(t) and integrate over t ∈ [0, T ], obtaining
∫ T

0
v(t)2dt =

∫ T

0

∫ t

0
K(t, s)v(s)v(t)dsdt

By applying twice the Cauchy-Schwartz identity, one obtains

∫ T

0
v(t)2dt ≤

(∫ T

0

∫ T

0
|K(t, s)|2dtds

)1/2 ∫ T

0
v(t)2dt.

or, equivalently
‖v‖2L2 ≤ ‖K‖L2‖v‖2L2 .

Since for T → 0 we have ‖K‖L2([0,T ]2,Rm) → 0, this implies that v = 0 on [0, T ].
(b). Consider a solution of the identity (8.48) and define T ∗ = sup{τ > 0 | v(t) = 0, t ∈ [0, τ ]}.

By part (a) one has T ∗ > 0. Since the set X := {v ∈ L2([0, T ],Rm) | v(t) = 0 a.e. on [0, T ∗]} is
preserved by A (namely A(X) ⊂ X) using again part (a) one obtains that v indeed vanishes on
[0, T ∗ + ε], for some ε > 0, contradicting the fact that that T ∗ is the supremum.
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Let us go back to the proof of Proposition 8.29. Since (8.45) is a compact integral operator,
then I − Q is Fredholm, and the closedness of im (I − Q) follows from the fact that it is of finite
codimension. On the other hand, for every control v ∈ kerDuE we have the identity (cf. (8.4))

q1 ⊙

∫ t

0
gsv(s)ds = −q1 ⊙

∫ 1

t
gsv(s)ds

Hence we have that v belong to the intersection in (8.41) if and only if it satisfies

(
I − λD2

uE
)
v(·)(t) = v(t) + λ

∫ t

0

[
gsv(s), g

t
v(t)

]
(q1)ds

which has trivial kernel thanks to Lemma 8.30.

Combining the last result with Proposition 8.24 we obtain the following corollary.

Corollary 8.31. The manifold of Lagrange multilpliers of the sub-Riemannian problem (E, J)

L(E,J) := {λ1 ∈ T ∗M |λ1 = e
~H(λ0), λ0 ∈ T ∗

q0M}

is a smooth n-dimensional submanifold of T ∗M .

8.6 Exponential map and Gauss’ Lemma

A key object in sub-Riemannian geometry is the exponential map, that is the map that parametrizes
normal extremals through their initial covectors.

Definition 8.32. Let q0 ∈M . The sub-Riemannian exponential map (based at q0) is the map

expq0 : Aq0 ⊂ T ∗
q0M →M, expq0(λ0) = π ◦ e ~H(λ0). (8.49)

defined on the domain Aq0 of covectors such that the corresponding solution of the Hamiltonian
system is defined on the interval [0, 1]. When there is no confusion on the base point, we might use
the simplified notation exp.

The homogeneity of the sub-Riemannian Hamiltonian H yields the following homogeneity prop-
erty of the flow associated with ~H.

Lemma 8.33. Let H be the sub-Riemannian Hamiltonian. Then, for every λ ∈ T ∗M

et
~H(αλ) = αeαt

~H (λ), (8.50)

for any α > 0 and t > 0 such that both sides of the identity are defined.

Proof. By Remark 4.27 we know that if λ(t) = et
~H(λ0) is a solution of the Hamiltonian system

associated with H, then also λα(t) := αλ(αt) is a solution. The identity (8.50) follows from the
uniqueness of the solution and the fact that λα(0) = αλ(0).

The homogeneity property (8.50) permits to recover the whole extremal trajectory as the image
of the ray joining 0 to λ0 in the fiber T ∗

q0M .
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Corollary 8.34. Let λ(t), for t ∈ [0, T ], be the normal extremal that satisfies the initial condition

λ(0) = λ0 ∈ T ∗
q0M.

Then the normal extremal path γ(t) = π(λ(t)) satisfies

γ(t) = expq0(tλ0), t ∈ [0, T ]

Proof. Using (8.50) we get

expq0(tλ0) = π(e
~H(tλ0)) = π(et

~H(λ0)) = π(λ(t)) = γ(t).

Remark 8.35 (Unit speed normal extremals). Due to the homogeneity property one can introduce
the cylinder Λq0 of normalized covectors

Λq0 = {λ ∈ T ∗
q0M | H(λ) = 1/2},

and consider the following exponential map with two arguments

expq0 : R+ × Λq0 →M, exp(t, λ0) := expq0(tλ0)

In other words one restricts to length parametrized extremal paths, considering the time as an
extra variable. In what follows, with an abuse of notation, we set

exptq0(λ0) := expq0(tλ0), λ0 ∈ Λq0

whenever the right hand side is defined.

Proposition 8.36. If the metric space (M, d) is complete, then Aq0 = T ∗
q0M . Moreover, if there

are no strictly abnormal minimizers, the exponential map expq0 is surjective.

Proof. To prove that Aq0 = T ∗
q0M , it is enough to show that any normal extremal λ(t) starting from

λ0 ∈ T ∗
q0M with H(λ0) = 1/2 is defined for all t ∈ R. Assume that the extremal λ(t) is defined on

[0, T [, and assume that it is not extendable to some interval [0, T+ε[. The projection γ(t) = π(λ(t))
defined on [0, T [ is a curve with unit speed, thus for any sequence tj → T the sequence (γ(tj))j is
a Cauchy sequence on M since

d(γ(ti), γ(tj)) ≤ |ti − tj|.
The sequence (γ(tj))j is then convergent to a point q1 ∈M by completeness. Let us now consider
coordinates around the point q1 and show that, in coordinates λ(t) = (p(t), x(t)), the curve p(t) is
uniformly bounded. This gives a contradiction to the fact that λ(t) is not extendable. By Hamilton
equations (4.34)

ṗ(t) = −∂H
∂x

(p(t), x(t)) = −
m∑

i=1

〈p(t), fi(γ(t))〉 〈p(t),Dxfi(γ(t))〉 .

Since H(λ(t)) = 1
2

∑m
i=1 〈p(t), fi(γ(t))〉2 = 1/2 then | 〈p(t), fi(γ(t))〉 | ≤ 1 for every i = 1, . . . ,m.

Moreover by smoothness of fi, the derivatives |Dxfi| ≤ C are locally bounded in the neighborhood
and one gets the inequality

|ṗ(t)| ≤ C|p(t)|,
which by Gronwall’s lemma implies that |p(t)| is uniformly bounded on a bounded interval. The
second part of the statement follows from the existence of minimizers, cf. Proposition 3.44 and
Corollary 3.46.
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Corollary 8.37. If the metric space (M, d) is complete, then every normal extremal trajectory is
extendable on [0,+∞[.

We end this section by an Hamiltonianian version of the Gauss’ Lemma.

Proposition 8.38 (Cotangent Gauss’ Lemma). Fix q0 ∈ M . Let λ0 ∈ Λq0 that is not a critical
point for expq0. Let U be a small neighborhood of λ0 ∈ Λq0 and set F := expq0(U). Then

λ1 := e
~H(λ0) annihilates the tangent space TqF to F at q := expq0(λ0).

Proof. It is enough to show that for every smooth variation ηs ∈ Λq0 , s ∈ [0, 1], of initial covectors
such that η0 = λ0 we have 〈

λ(1),
d

ds

∣∣∣∣
s=0

expq0(η
s)

〉
= 0.

Let ηs(τ) := eτ
~H(ηs) and γs(t) = π(ηs(t)) be the corresponding trajectory. Define the family of

controls us(·) satisfying for a.e. τ ∈ [0, 1]

usi (τ) := 〈ηs(τ), fi(γs(τ))〉 , i = 1, . . . ,m, (8.51)

where f1, . . . , fm denotes as usual a generating frame. By definition (8.51) of us we have expq0(η
s) =

Eq0(u
s) hence we can compute

d

ds

∣∣∣∣
s=0

exptq0(η
s) =

d

ds

∣∣∣∣
s=0

Etq0(u
s) = DuEq0(v), (8.52)

where we denoted v := d
ds

∣∣
s=0

us. Notice that v is orthogonal to u in L2 since, by Lemma 4.28 the
map s 7→ ‖us‖2L2 is constant. Thus we have

〈
λ(1),

d

ds

∣∣∣∣
s=0

expq0(η
s)

〉
= 〈λ(1),DuEq0(v)〉 = (u, v)L2 = 0, (8.53)

where the second identity follows from the normal condition (8.18) and (8.52).

Exercise 8.39. Deduce from Proposition (8.38) and the homogeneity property of the Hamiltonian

that if λ0 ∈ Λq0 is not a critical point for exptq0 , then λt := et
~H (λ0) annihilates the tangent space

TqtFt to Ft := exptq0(U) at qt := exptq0(λ0).

We end this section with an elementary but important observation on the behavior of the
exponential map in a neighborhood of zero.

Proposition 8.40. The sub-Riemannian exponential map expq0 : T ∗
q0M → M is a local diffemor-

phism at 0 if and only if Dq0 = Tq0M . More precisely im (D0expq0) = Dq0 .
Proof. Fix any element ξ ∈ T ∗

q0M . By definition of differential

D0expq0(ξ) =
d

dt

∣∣∣∣
t=0

expq0(0 + tξ) =
d

dt

∣∣∣∣
t=0

γξ(t) = γ̇ξ(0). (8.54)

where γξ is the horizontal curve associated with initial covector ξ ∈ T ∗
q0M . This proves that

imD0expq0 = Dq0 . To prove the equality let us notice that from (4.37) one has

γ̇ξ(0) =

m∑

i=1

〈ξ, fi(q0)〉 fi(q0). (8.55)

Since ξ ∈ T ∗
q0M is arbitrary, the proof is completed.
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In the Riemannian case expq0 gives local coordinates to M around q0, being a diffeomorphism
of a small ball in T ∗

q0M onto a small geodesic ball in M , where geodesics are images of straight
lines in the cotangent space. Moreover there is a unique minimizer joining q0 to every point of the
(sufficiently small) ball and the distance from q0 is a smooth function in a neighborhood of q0 itself.

This is no more true as soon as Dq0 6= Tq0M and, as we will show in Corollary 11.8 and Theorem
12.17, singularities appear naturally.

8.7 Conjugate points

In this section we introduce conjugate points and we discuss a basic result on the structure of the
set of conjugate points along an extremal trajectory.

Definition 8.41. Fix q0 ∈M . A point q ∈M is conjugate to q0 if there exists s > 0 and λ0 ∈ Λq0
such that q = expq0(sλ0) and sλ is a critical point of expq0 .

In this case we say that q is conjugate to q0 along γ(t) = expq0(tλ0). Moreover we say
that q is the first conjugate point to q0 along γ(t) = expq0(tλ) if q = γ(s) and s = inf{τ >
0 | τλ is a critical point of expq0}.

We denote by Conq0 the set of all first conjugate points to q0 along some normal extremal
trajectory starting from q0.

Remark 8.42. Notice that, given a normal extremal trajectory γ : [0, 1] → M defined by γ(t) =
expq0(tλ0), if γ admits an abnormal lift, then γ(1) is conjugate to γ(0). Indeed by definition
of abnormal, this means that the control u associated with γ is a critical point for Eq0 , i.e.,
the differential DuEq0 is not surjectuve. Since, by definition of the exponential map, one has
imDλ0expq0 ⊂ imDuEq0 , it follows that Dλ0expq0 is not surjective as well.

Since the restriction of an abnormal extremal is still abnormal, Remark 8.42 is saying that an
abnormal extremal is made of conjugate points. The following theorem discuss somehow a converse
statement.

Theorem 8.43. Let γ : [0, T ]→M be a normal extremal path. Assume that t0 > 0 is a limit of a
decreasing (resp. increasing) sequence of conjugate times. Then there exists ε > 0 such that

(a) all points of the segment [t0, t+ ε] (resp. [t0 − ε, t0]) are conjugate,

(b) γ|[t0,t0+ε] (resp. γ|[t0−ε,t0]) is an abnormal extremal path.

Proof. We shall consider only the case of a decreasing convergent sequence of conjugate times and
leave to the reader to make necessary modifications in the case of an increasing sequence.

Let (u(t), λ(t)), 0 ≤ t ≤ T, be a normal extremal, where

γ(t) = π(λ(t)), γ̇ = fu(γ).

We set P0,t =
−→exp

∫ t
0 fu(τ) dτ . We consider the maps

Ft : λ 7→ π ◦ P ∗
0,t ◦ e

~H(tλ)

defined on a neighborhood of λ0 in T
∗
q0M , where q0 = γ(0). According to the construction, Ft(λt) =

λ0 for all t. I claim that t ∈ (0, T ] is a conjugate time for γ if and only if λ0 is a critical point of
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the map Ft. Indeed, according to the definition, γ(t) is conjugate to γ(0) if and only if tλ0 is a

critical point of the map expq0 = π ◦ e ~H
∣∣
T ∗
q0
M
, i.e., if Tλ(t)e

~H(T ∗
q0M) ∩ Tλ(t)(T ∗

γ(t)M) 6= 0, and the

diffeomorphism P ∗
0,t transforms T ∗

γ(t)M into T ∗
q0M .

As we know, (P ∗
0,t)

−1 = −→exp
∫ t
0
~hu(t) dt, where hu(λ) = 〈λ, fu〉. The variations formula and

formula (4.64???) imply that the depending on t ∈ [0, T ] family of diffeomorphisms

λ 7→ P ∗
0,t ◦ e

~H(tλ) = P ∗
0,t ◦ et

~H(λ), λ ∈ T ∗M,

is a time-varying Hamiltonian flow generated by the Hamiltonian gt : T
∗M → R defined by

gt := (H − hu(t)) ◦ (P ∗
0,t)

−1.

We have: gt ≥ 0 and gt(λ0) = 0. It follows that dλ0gt = 0 and d2λ0gt is a nonnegative quadratic
form on the symplectic space Tλ0(T

∗M). We introduce the following notations:

Σ := Tλ0(T
∗M), Π := Tλ0(T

∗
q0M), Qt :=

1

2
d2λ0gt. (8.56)

The linear Hamiltonian flow −→exp
∫ t
0
~Qτ dτ on Σ is the linearization of the flow −→exp

∫ t
0 ~gτ dτ at the

equilibrium λ0. Moreover, γ(t) is conjugate to γ(0) if and only if

Π ∩ Jt 6= 0, where Jt :=
−→exp

∫ t

0

~Qτ dτ(Π).

Recall that Lagrange subspaces of the 2n-dimensional symplectic space Σ are n-dimensional
subspaces on which the symplectic form σ vanishes identically. In particular, Π is a Lagrange
subspace. Jt is also a Lagrange subspace because symplectic flows preserve the symplectic form. A
Darboux basis for Σ is a basis e1, . . . , en, f1, . . . , fn satisfying

σ(ei, fj) = δij , σ(fi, fj) = σ(ei, ej) = 0, i, j = 1, . . . , n. (8.57)

We’ll need the following simple lemma:

Lemma 8.44. Let Λ0,Λ1 be Lagrange subspaces of Σ, with dim(Λ0 ∩ Λ1) = k. Then there exist
Darboux basis e1, . . . , en, f1, . . . , fn in Σ such that

Λ0 = span{e1, . . . , en}, Λ1 = span{e1, . . . , ek, ek+1 + fk+1, . . . , en + fn}.

Proof. Consider any arbitrary basis e1, . . . , en of Λ0 satisfying

Λ0 ∩ Λ1 = span{e1, . . . , ek}.

The nondegeneracy of σ implies the existence of f1 ∈ Σ such that

σ(e1, f1) = 1, σ(e2, f1) = · · · = σ(en, f1) = 0.

Chosen f1, the nondegeneracy of σ implies the existence of f2 ∈ Σ such that

σ(e2, f2) = 1, σ(f1, f2) = σ(e1, f2) = σ(e3, f2) = · · · = σ(en, f2) = 0.
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Iterating one obtains f1, . . . , fk such that

σ(ei, fj) = δij , σ(fi, fj) = σ(el, fj) = 0, i, j = 1, . . . , k, l = k + 1, . . . , n.

Let us introduce the space

Γ = {v ∈ Λ1 : σ(f1, v) = · · · = σ(fn, v) = 0}.

By construction Λ1 = Γ⊕ (Λ0 ∩ Λ1). The linear map Ψ : Γ→ Rn−k defined by

Ψ(v) := (σ(ek+1, v), . . . , σ(en, v)),

is invertible, hence there exist vk+1, . . . , vn ∈ Γ such that σ(ei, vj) = δij , for i, j = k + 1, . . . , n.
Setting fi := vi − ei, for i = k + 1, . . . , n, one obtains the Darboux basis e1, . . . , en, f1, . . . , fn.

We apply the previous lemma to the pair of Lagrange subspaces Π and Jt0 , working in the
coordinates (p, x) ∈ Rn × Rn induced by the Darboux basis. We have:

Jt0 = {(p, x) ∈ Rn ×Rn | x = St0p},

where St0 =
(

0k 0
0 In−k

)
is a nonnegative symmetric matrix.

The subspace of Σ = {(p, x) ∈ Rn×Rn} defined by the equation x = 0 is called vertical and the
one defined by the equation p = 0 is called horizontal. Any close to Jt0 n-dimensional subspace Λ is
transversal to the horizontal subspace and can be presented in the form Λ = {(p,Ap) : p ∈ Rn} for
some n× n-matrix A. Moreover, Λ is a Lagrange subspace if and only if A is a symmetric matrix.
Indeed,

σ((p1, Ap1), (p2, Ap2)) = pT1Ap2 − pT2Ap1 = pT1 (A−A∗)p2.

where vT denotes the transpose of a vector v. Let Jt = {(p, Stp) : p ∈ Rn} for t close to t0; then St
is a symmetric matrix smoothly depending on t. Moreover,

Π ∩ Jt = {(p, 0) ∈ Rn × Rn : Stp = 0}.

Lemma 8.45. For every p ∈ Rn one has pT Ṡtp ≥ 0.

Proof. We keep symbol Qt for the matrix of the quadratic form Qt on Σ. Let t 7→ λt be a solution
of the equation λ̇t = ~Qtλt; then

σ(λt, λ̇t) = σ(λt, ~Qtλt) = 2〈Qtλt, λt〉 ≥ 0.

We apply this inequality to λt = (pt, Stpt) and obtain:

σ((p, Stp), (ṗ, Stṗ) + (0, Ṡtp)) = 〈p, Ṡtp〉 ≥ 0.

Lemma 8.46. If St1 p̄ = 0 for some t1 > t0 and p̄ ∈ Rn, then Stp̄ = 0, ∀t ∈ [t0, t1].

Proof. This statement is an easy corollary of Lemma 8.45. Indeed,

0 ≤ 〈St0 p̄, p̄〉 ≤ 〈Stp̄, p̄〉 ≤ 〈St1 p̄, p̄〉 = 0.

Hence 〈Stp̄, p̄〉 = 0. Since p 7→ 〈Stp, p〉 is a nonnegative quadratic form, we obtain that Stp̄ = 0.

225



Lemma 8.46 implies claim (a) of the theorem (for a decreasing sequence). Let us prove claim
(b), whose proof is also based on Lemma 8.46.

The fiber T ∗
q0M is a vector space, it is naturally identified with its tangent space Π, and the

coordinates p ∈ Rn on Π introduced above serve as coordinates on T ∗
q0M . The restriction of the

Hamiltonian gt to T
∗
q0M has a form:

gt(p) =
1

2

k∑

i=1

〈p, (P−1
0,t∗fi)(q0)〉2 − 〈p, (P−1

0,t∗fu(t))(q0)〉.

Hence

〈Qt(p, 0), (p, 0)〉 =
1

2

k∑

i=1

〈p, (P−1
0,t∗fi)(q0)〉2. (8.58)

Moreover, if s 7→ λs = (ps, xs) is a solution of the system λ̇ = ~Qτλ, and xt = 0, then 〈p, ẋt〉 =
〈(p, 0), Qt(pt, 0)〉, for all p ∈ Rn. In particular, under conditions of Lemma 8.46, we get:

〈(p̄, 0), Qt(p̄t, 0)〉 = 0, t ∈ [t0, t1],

and, according to the identity (8.58),

〈p̄, (P−1
0,t∗fi)(q0)〉 = 0, i = 1, . . . , k, t ∈ [t0, t1].

Let η(t) = (P ∗
0,t)

−1(p̄, q0) ∈ T ∗
γ(t)M . We obtain that (u(t), η(t)) for t ∈ [t0, t1] is an abnormal

extremal, thanks to characterization of Proposition 8.9.

We deduce from Theorem 8.43 the following important corollary.

Corollary 8.47. Let γ : [0, 1]→M be a normal extremal trajectory that does not contain abnormal
segments. Define the set of conjugate times to zero

Tc := {t > 0 | γ(t) is conjugate to γ(0)}.

Then the set Tc is discrete.

8.8 Minimizing properties of extremal trajectories

In this section we study the relation between conjugate points and length-minimality properties of
extremal trajectories. The space of horizontal trajectories on M can be endowed with two different
topologies:

• the W 1,2 topology, also called weak topology, that is the topology induced on the space of
horizontal trajectories by the L2 norm on the space of controls,

• the C0 topology, also called strong topology, that is the usual uniform topology on the space
of continuous curves on M .

The main result of this section is the following one.

Theorem 8.48. Let γ : [0, 1]→M be a normal extremal trajectory that does not contain abnormal
segments. Then,
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(i) tc := inf{t > 0 | γ(t) is conjugate to γ(0)} > 0.

(ii) for every τ < tc the curve γ|[0,τ ] is a local length-minimizer in the W 1,2 topology among
horizontal trajectories with same endpoints.

(iii) for every τ > tc the curve γ|[0,τ ] is not a length-minimizer.

Remark 8.49. Notice that claim (i) of Theorem 8.48 is a direct consequence of Corollary 8.47.
Nevertheless we will obtain in this section an independent proof. The proof of part (ii) and (iii)
need some preliminary results.

Some of these preliminary results holds true under weaker assumptions. For the sake of sim-
plicity in this section we state them for normal extremal trajectory that does not contain abnormal
segments. A discussion on the validity of these statements under different assumptions is contained
in Exercice 8.54.

Given a normal extremal trajectory γu : [0, 1] → M , let us denote by us(t) := su(st) the
reparametrized control associated with the reparametrized trajectory γs(t) := γu(st), both defined
for t ∈ [0, 1]. Notice that if λ is a Lagrange multiplier associated with u, then λs = s(P ∗

s,1)λ ∈
T ∗
γu(s)

M , is a Lagrange multiplier associated with us.

The first result concerns the characterisation of conjugate points through the second variation
of the energy.

Proposition 8.50. Assume that γu : [0, 1] → M contains no abnormal segments. Then γu(s) is
conjugate to γu(0) if and only if HessusJ |E−1

q0
(γs(1)) is a degenerate quadratic form.

Proof. Since the curve contains no abnormal segments, the control us is a regular point for the
end-point map. Hence, thanks to Proposition 8.26 combined with Proposition 8.29 and Corollary
8.31, one has that γu(s) is conjugate to γu(0) if and only if λs is a critical point of the exponential
map, that is equivalent to the fact that Hessus J

∣∣
E−1

q0
(γs(1))

is degenerate.

The following lemma, studying the family of quadratic form s 7→ Hessus J
∣∣
E−1

q0
(γs(1))

, is crucial

in what follows.

Lemma 8.51. Assume that a normal extremal trajectory γu : [0, 1] → M contains no abnormal
segments. Define the function α : (0, 1]→ R as follows

α(s) := inf
{
‖v‖2L2 −

〈
λs,D2

usEq0(v)
〉
| ‖v‖2L2 = 1, v ∈ kerDusEx

}
. (8.59)

Then α is continuous and has the following properties:

(a) α(0) := lims→0 α(s) = 1;

(b) α(s) = 0 implies that HessusJ
∣∣
E−1

q0
(γs(1))

is degenerate;

(c) α is monotone decreasing;

(d) if α(s̄) = 0 for some s̄ > 0, then α(s) < 0 for s > s̄.
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Proof of Lemma 8.51. Notice that one can write

‖v‖2L2 − λs ◦D2
usEq0(v) = 〈(I −Qs)(v)|v〉L2 , (8.60)

where Qs : L
2([0, 1],Rm)→ L2([0, 1],Rm) is a compact and symmetric operator thanks to Lemma

8.30. A compact symmetric operator on a Hilbert space is diagonalizable and the set of eigenvalues
is countable {µn}n∈N, bounded, and can be ordered in such a way that µn → 0 (see [71, III Thm.
6.26]). As a consequence, one can prove that the infimum in (8.59) is attained.

Observe that since every restriction γ|[0,s] is not abnormal, the rank of DusEx is maximal,
equal to n, for all s ∈ (0, 1]. Then, by Riesz representation Theorem, we find a continuous or-
thonormal basis {vsi }i∈N for kerDusEx, yielding a continuous one-parameter family of isometries
φs : kerDusEx → H on a fixed Hilbert space H. Since also s 7→ Qs is continuous (in the norm
topology), we reduce (8.59) to

α(s) = 1− sup{〈φs ◦Qs ◦ φ−1
s (w)|w〉H | w ∈ H, ‖w‖H = 1}, (8.61)

where the composition Q̃s := φs ◦Qs ◦ φ−1
s is a continuous one-parameter family of symmetric and

compact operators on a fixed Hilbert space H. The supremum coincides with the largest eigenvalue
of Q̃s, which is well known to be continuous as a function of s if Q̃s is (see [71, V Thm. 4.10]).
This proves that α is continuous.

Let us recall that

DusEq0(v) =

∫ s

0
(Pt,1)∗fv(t)|γu(s)dt, (8.62)

D2
usEq0(v, v) =

∫∫

0≤τ≤t≤s

[(Pτ,1)∗fv(τ), (Pt,1)∗fv(t)]|γu(s)dτdt. (8.63)

By a rescaling one can see that

DusEq0(v) = s

∫ 1

0
(Pst,1)∗fv(st)|γu(s)dt, (8.64)

D2
usEq0(v, v) = s2

∫∫

0≤τ≤t≤1

[(Psτ,1)∗fv(sτ), (Pst,1)∗fv(st)]|γu(s)dτdt. (8.65)

Taking the limit s→ 0, one can show that Qs → 0, hence Q̃s → 0, proving (a).

To prove (b), notice that α(s̄) = 0 means that I − Qs̄ ≥ 0, and that there exists a sequence
vn ∈ kerDus̄Eq0 of controls with ‖vn‖ = 1 and such that ‖vn‖2L2 − 〈Qs̄(vn)|vn〉L2 → 0 for n → ∞.
Since the unit ball is weakly compact in L2, up to extraction of a sub-sequence, we have that vn
is weakly convergent to some v̄. By compactness of Qs̄, we deduce that 〈Qs̄(v̄)|v̄〉L2 = 1. Since
‖v̄‖2L2 ≤ 1, we have 〈(I − Qs̄)(v̄)|v̄〉L2 = 0. Being I − Qs̄ a bounded, non-negative symmetric
operator, and since v̄ 6= 0, this implies that I −Qs̄ is degenerate.

Exercise 8.52. Let V be a vector space and Q : V ×V → R be a quadratic form on V . Recall that
Q is degenerate if there exists a non-zero v̄ ∈ V such that Q(v̄, ·) = 0. Prove that a non negative
quadratic form is degenerate if and only if there exists v̄ such that Q(v̄, v̄) = 0.
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To prove (c) let us fix 0 ≤ s ≤ s′ ≤ 1 and v ∈ kerDusEx. Define

v̂(t) :=





√
s′

s
v

(
s′

s
t

)
, 0 ≤ t ≤ s

s′
,

0,
s

s′
< t ≤ 1.

It follows that ‖v̂‖2L2 = ‖v‖2L2 , v̂ ∈ kerDus′Ex, and D2
usEx(v) = D2

us′
Ex(v̂). As a consequence,

α(s) ≥ α(s′).
To prove (d), assume by contradiction that there exists s1 > s̄ such that α(s1) = 0. By

monotonicity of point (c), α(s) = 0 for every s̄ ≤ s ≤ s1. This implies that every point in the image
of γ|[s̄,s1] is conjugate to γ(0). Arguing as in the proof of Theorem 8.43, the segment γ|[s̄,s1] is also
abnormal, contradicting the assumption on γ.

Proof of Theorem 8.48. Thanks to Lemma 8.51 there exists ε > 0 such that α(s) > 0 on the segment
[0, ε]. This implies that this segment does not contain conjugate points thanks to Proposition 8.50.
This proves claim (i).

To prove claim (ii) notice that if γ|[0,s] does not contain conjugate points, by Proposition 8.50 it
follows that Hessus J

∣∣
E−1(γs(1))

is non degenerate for every s ∈ [0, τ ], hence HessuτJ
∣∣
E−1(γτ (1))

> 0

using items (b) and (c) of Lemma 8.51.

Let τ > tc and assume by contradiction that the trajectory is a length-minimizer. Then,
using the terminology of Lemma 8.51, one has α(tc) = 0 and α(τ) < 0 thanks to properties (c)
and (d). This implies that the Hessian has a negative eigenvalue, hence we can find a variation
joining the same end-points and shorter than the original geodesic, contradicting the minimality
assumption.

Remark 8.53. Notice that claim (i) of Theorem 8.48 is also an immediate consequence of Corollary
8.47. However the previous argument gives another proof which is independent on the argument
contained in the proof of Theorem 8.43 in the previous section.

Exercise 8.54. Introduce the following definitions: a normal extremal trajectory γ : [0, T ] → M
is said to be

• left strongly normal, if for every s ∈ (0, T ] the curve γ|[0,s] does not admit abnormal lifts.

• right strongly normal, if for every s ∈ [0, T ) the curve γ|[s,T ] does not admit abnormal lifts.

• strongly normal, if γ is both left and right strongly normal.

Prove that a normal extremal trajectory γ : [0, 1]→M does not contain abnormal segments if and
only if γ|[0,τ ] is strongly normal for every τ ∈ [0, 1].

Prove that Theorem 8.48 claim (i)-(ii), Proposition 8.50, Lemma 8.51 claim (a)-(b)-(c), hold
under the weaker assumption that the normal extremal trajetory is left strongly normal.

8.8.1 Local length-minimality in the strong topology

A direct consequence of Theorem 8.48 proved in the previous section is the following.
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Corollary 8.55. Let γ : [0, 1]→M be a normal extremal trajectory that does not contain abnormal
segments. Assume that the trajectory does not contain conjugate points. Then γ is a local miminum
for the length in the W 1,2 topology in the space of admissible trajectories with the same endpoints.

The main goal of this section is to prove that indeed the same conclusion holds true in the
uniform topology. The proof of this result, which is based upon the arguments of Theorem 4.61,
requires a preliminary discussion on the free endpoint problem.

Free initial point problem

In all our previous discussions the initial point q0 ∈ M has always been fixed from the very
beginning. Clearly, given a final point q1 ∈M , if the initial point q0 is not fixed the minimization
problem

min
q∈M,u∈E−1

q (q1)
J (8.66)

has only the trivial solution (q, u) = (q1, 0).
In this case it is meaningful to introduce a penalty function a ∈ C∞(M) and consider the

minimization problem

min
q∈M,u∈E−1

q (q1)
J(u) + a(q) (8.67)

Let us introduce the extendend end-point map

E :M × U →M, (q, u) 7→ Eq(u),

where Eq(u) is the end-point map based at q. Notice that E is trivially a submersion since for every
q ∈M one has E(q, 0) = q. Moreover denoting P ut,s the nonautonomous flow associated with u one
has

E
∣∣
{q0}×U = Eq0 , E

∣∣
M×{u} = P u0,1. (8.68)

The minimization problem (8.67) is then rewritten as

min
E−1(q1)

ϕ (8.69)

where ϕ : M × U → R is defined by ϕ(q, u) := J(u) + a(q) and choosing F = E this constrained
minimization problem is of the type studied in Section 8.4.2

Notice that every level set E−1(q1) is regular since the map E is a submersion. The Lagrange
multiplier equation (8.22) is rewritten as follows: the point (q0, u) ∈ M × U is a critical point of
the problem (8.69) if and only if there exists a λ1 ∈ T ∗M such that

λ1D(q0,u)E = D(q0,u)(J + a) (8.70)

Since the differentials D(q0,u)E and D(q0,u)(J + a) are defined on the product space T(q0,u)M ×U ≃
Tq0M × U , and thanks to the identity

D(q0,u)E = (DuEq0 , (P
u
0,1)∗), D(q0,u)(J + a) = (DuJ, dq0a)

2to be precise, here the problem is defined on a Hilber manifold and not on a subspace an Hilber space, but since
M is finite dimensional the theory applies with essentially no modifications.
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the equation (8.70) splits into the following system

{
λ1DuEq0 = DuJ = u,

λ1(P
u
0,1)∗ = dq0a

In other words, to every critical point of the problem (8.69) we can associate a normal extremal

λ(t) = (P−1
0,t )

∗λ1,

where the initial condition is defined by the function a by λ0 = dq0a.

Proposition 8.56. A point (q0, u) ∈M ×U is a critical point of the problem (8.69) if and only if
the corresponding horizontal trajectory γu(t) is a normal extremal trajectory associated with initial
covector λ0 = dq0a, namely γ(t) = expq0(tdq0a) for t ∈ [0, 1].

We end this subsection with an analogous statement for the free endpoint problem, where one
does not restrict to a sublevel F−1(q1) but considers a penalty in the functional at the end-point.

Exercise 8.57. Fix q0 ∈ M and a ∈ C∞(M). Prove that every critical point ū ∈ U of the free
endpoint problem

min
u∈U

J(u)− a(Eq0(u)), (8.71)

we can associate a normal extremal trajectory satisfying

λDūF = ū, λ = dF (ū)a.

Proof of local length-minimality in the strong topology

We can now prove the following result.

Proposition 8.58. Let γ : [0, 1] → M be a normal extremal trajectory that does not contain
abnormal segments. If γ does not contain conjugate points, then it is a local miminum for the
length in the C0 topology in the space of admissible trajectories with the same endpoints.

Proof. Assume that

γ(t) = π ◦ et ~H(λ0), λ0 ∈ T ∗
qM

We want to show that hypothesis of Theorem 4.61 are satisfied. We will use the following lemma,
which we prove at the end of the proposition.

Lemma 8.59. There exists a ∈ C∞(M) such that

λ0 = dq0a, Hess(q0,u)J + a
∣∣∣
E−1(γs)

> 0,

Moroever (E, J + a) is a Morse problem and

L(E,J+a) = {e
~H(dqa), q ∈M}
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From this Lemma it follows that sλ0 is a regular point of the map π ◦ e ~H
∣∣
L0
, where as usual

L0 = {dqa, q ∈ M} denotes the graph of the differential. Using the homogeneity property (8.50)
we can rewrite this saying that

π ◦ es ~H
∣∣
L0

is an immersion at λ0, ∀ s ∈ [0, 1],

In particular it is a local diffeomorphism. Hence we can apply the local version of Theorem 4.61.

We end the section with the proof of the technical lemma.

Proof of Lemma 8.59. First we notice that

kerD(q0,u)E ⊂ Tq0M ⊕ L2([0, 1],Rm)

In particular
kerD(q0,u)E ∩ (0⊕ L2([0, 1],Rm)) = kerDuEq0

Since there are no conjugate points, it follows that

Hess(q0,u)J + a
∣∣∣
0⊕kerDuE

= HessuJ > 0 (8.72)

Then it is sufficient to show that there exists a choice of the function a ∈ C∞(M) such that the
Hessian is positive definite also in the complement. We define

Ws := {ξ ⊕ v ∈ kerD(q0,us)E | Hess(J + a)(ξ ⊕ v, 0 ⊕ kerDusE) = 0}
Notice from (8.72) that, if there is some ξ ⊕ v ∈ Ws, then ξ 6= 0. Now we prove the existence of a
map Bs : TqM → L2([0, 1],Rm) such that

Ws = {ξ ⊕Bsξ | ξ ∈ TqM}
Then we will have

kerD(q0,us)E = (0⊕ kerDusF ) +Ws.

Let us compute

Hess(J + a)(ξ ⊕Bsξ + 0⊕ v, ξ ⊕Bsξ + 0⊕ v) =
= HessJ(v, v) + Hess(J + a)(ξ ⊕Bsξ, ξ ⊕Bsξ)
= HessJ(v, v) + d2a(ξ, ξ) +Q(ξ)

where we used that mixed terms give no contribution and denote with Q(ξ) a quadratic form that
does not depend on second derivatives of a. In particular, since the first term is positive and does
not depend on ξ, we can choose a in such a way that it remains positive.

Combining the results obtained in the previous sections we have the following result.

Theorem 8.60. Let γ : [0, 1]→M be a normal extremal trajectory that does not contain abnormal
segments.

(i) if γ has no conjugate point then its a local length-minimizer in the C0 topology in the space
of admissible trajectories with the same endpoints,

(ii) if γ has at least a conjugate point then its not a local length-minimizer in the W 1,2 topology
in the space of admissible trajectories with the same endpoints.
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8.9 Compactness of length-minimizers

In this section we reinterpret in terms of the end-point map some results already obtained in
Section 3.3, in order to prove compactness of length-minimizers. For simplicity of presentation we
assume throughout this section that M is complete with respect to the sub-Riemannian distance.

Fix a point q0 ∈ M and denote by Eq0 : L2([0, 1],Rm) → M the end-point map. Notice that
Eq0 is globally defined thanks to the completeness assumption and Exercice 8.1.

Moreover, thanks to reparametrization, we assume that trajectories are parametrized by con-
stant speed on the interval [0, 1]. Notice that in this case if γu is the horizontal curve corresponding
to a control u one has ℓ(γu) = ‖u‖L1 = ‖u‖L2 . Recall that

‖u‖L1 =

∫ 1

0
|u(t)|dt, ‖u‖L2 =

(∫ 1

0
|u(t)|2dt

) 1
2

.

where | · | denotes the standard norm on Rm.

Proposition 8.61. The end-point map Eq0 : L2([0, 1],Rm) → M is weakly continuous, namely if
un ⇀ u in the weak-L2 topology then Eq0(un)→ Eq0(u).

Proof. First notice that since un ⇀ u in the weak-L2 topology then, there exists r0 > 0 such
that ‖un‖L2 ≤ r0. Denote by B the compact ball Bq0(r0). The unique solution γn of the Cauchy
problem

γ̇(t) = fun(t)(γ(t)), γ(0) = q0

satisfies the integral identity

γn(t) = q0 +

∫ t

0
fun(τ)(γn(τ))dτ, (8.73)

Since ‖un‖ ≤ r0 for every n, all trajectories γn are contained in the compact ball B, they are
Lipschitzian with the same Lipchitz constant. In particular the set {γn}n∈N has compact closure
in the space of continuous curves in M with respect to the C0 topology.

Then, by compactness, there exists a convergent subsequence (which we still denote γn) and a
limit continuous curve γ such that γn → γ uniformly. Let us show that γ is the horizontal trajectory
associated to u.

Since un weakly converges to u we have that fun(t)(γn(t)) → fu(t)(γ(t)), since this can be seen
as a product between strongly and weakly convergent sequences.3 Passing to the limit for n→∞
in (8.73), one finds that

γ(t) = q0 +

∫ t

0
fu(τ)(γ(τ))dτ,

namely that γ is the trajectory associated to u. This completes the proof.

Remark 8.62. Notice that in the proof one obtains the uniform convegence of trajectories and not
only of their end-points.

The previous proposition given another proof of the existence of minimizers, cf. Theorem 3.40.

Corollary 8.63 (Existence of minimizers). Let M be a complete sub-Riemannian manifold and
q0 ∈ M . For every q ∈ M there exists u ∈ L2([0, 1],Rm) such that the corresponding horizontal
trajectory γu joins q0 and q and is a minimizer, i.e., ℓ(γu) = d(q0, q).

3writing the coordinate expression
∑m

i=1 un,ifi(γn(t)).
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Proof. Consider a point q in the compact ball B. Then take a minimizing sequence un such
that Eq0(un) = q and ‖un‖L2 → d(q0, q). The sequence (‖un‖L2)n is bounded, hence by weak
compactness of balls in L2 there exists a subsequence, still denoted by the same symbol, such that
un ⇀ u for some u. By weak continuity Eq0(u) = q. Moreover the semicontinuity of the L2 norm
proves that u corresponds to a minimizer joining q0 to q since

‖u‖L2 ≤ lim inf
n→∞

‖un‖L2 = d(q0, q).

Definition 8.64. A control u is called a minimizer if it satisfies ‖u‖L2 = d(q0, Eq0(u)). We denote
byMq0 ⊂ L2([0, 1],Rm) the set of all minimizing controls from q0.

Theorem 8.65 (Compactness of minimizers). Let K ⊂ M be compact. The set of all minimal
controls associated with trajectories reaching K

MK = {u ∈ Mq0 | Eq0(u) ∈ K},

is compact in the strong L2 topology.

Proof. Consider a sequence (un)n∈N contained MK . Since K is compact, the sequence of norms
(‖un‖L2)n∈N is bounded. Since bounded sets in L2 are weakly compact, up to extraction of a
subsequence, we can assume that un ⇀ u.

From Proposition 8.61 it follows that Eq0(un) → Eq0(u) in M and the continuity of the sub-
Riemannian distance implies that d(q0, Eq0(un))→ d(q0, Eq0(u)). Moreover since un ∈ M we have
that ‖un‖ = d(q0, Eq0(un)) and by weak semicontinuity of the L2 norm we get

‖u‖L2 ≤ lim inf
n→∞

‖un‖L2 = lim inf
n→∞

d(q0, Eq0(un)) = d(q0, Eq0(u)). (8.74)

Since by definition of distance d(q0, Eq0(u)) ≤ ℓ(γu) ≤ ‖u‖L2 we have that all inequalities are
equalities in (8.74), hence u is a minimizer and ‖un‖L2 → ‖u‖L2 , which implies that un → u
strongly in L2.

This implies the following continuity property.

Proposition 8.66. Let M be complete and assume that q ∈ M is reached by a unique minimizer
starting from q0 associated with u. If un is any sequence of minimizer controls such that Eq0(un)→
q, then un → u in the strong L2 topology.

Proof. Fix an arbitrary subsequence ukn of the original sequence un. Consider the compact set
K := {q} in M . By construction ukn ∈ MK for all n ∈ N. Hence ukn admit a convergent
subsequence ukn → û, for some control û ∈ MK . The trajectory corresponding to û is a minimizer
joining q0 to q. Hence by uniqueness û = u.

This proves that every subsequence of un admits a subsequence converging to the same element
u. A general topological argument implies that the whole sequence un converges to u.

Remark 8.67. If M is not complete, all the results of this section holds true by restricting the
end-point map to a ball BL2(r0) ⊂ L2([0, 1],Rm), where r0 > 0 is chosen in such a way that the
sub-Riemannian ball Bq0(r0) is compact. See also Exercice 8.1.
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8.10 Cut locus and global length-minimizers

In this section we discuss some global properties of length-minimizers. We assume throughout the
section that M is a complete sub-Riemannian manifold.

Definition 8.68. A horizontal trajectory γ : [0, T ] → M is called a geodesic if it is parametrized
by unit speed and for every t ∈ [0, T ] there exists ε > 0 such that γ|[t−ε,t+ε] realizes the distance
between its end-points.

A geodesic γ : [0, T ] → M is said to be maximal if it is not the restriction of a geodesic
γ′ : [0, T ′] → M to a smaller interval, meaning that γ = γ′|[0,T ]. In what follows when we speak
about a geodesic we always assume that it is maximal.

Recall that a normal extremal trajectory parametrized by unit speed is a geodesic by Theorem
4.63. When M is complete, it is extendable to [0,+∞[ thanks to Corollary 8.37.

Exercise 8.69. Let γ be a geodesic. Introduce the set A = {t > 0 : γ|[0,t] is length-minimizing}.
Prove that A is an interval either of the form (0, t∗] or (0,+∞).

Definition 8.70. Let γ be a geodesic and define

t∗ := sup{t > 0 : γ|[0,t] is length-minimizing}.

If t∗ < +∞ we say that γ(t∗) is the cut point of γ(0) along γ. If t∗ = +∞ we say that γ has no cut
point. We denote by Cutq0 the set of all cut points of geodesics starting from a point q0 ∈M .

Cut points along geodesics detect the segments on which they are global length-minimizer. The
following is the fundamental property of cut locus along normal extremal trajectories.

Theorem 8.71. Let M be a complete sub-Riemannian manifold and γ : [0, T ] → M be a normal
extremal trajectory that does not contain abnormal segments. Suppose that there exists t0 ∈ (0, T )
such that

(a) either γ(t0) is the first conjugate point along γ,

(b) or there exists a length-minimizer γ̂ 6= γ joining γ(0) and γ(t0) with ℓ(γ̂) = ℓ(γ|[0,t0]).

then there exist t∗ ∈ (0, t0] such that γ(t∗) is the cut point along γ.
Conversely, if γ(t0) is the cut point from γ(0) along γ, then either (a) or (b) are satisfied.

Proof. Let us first assume that there exists t0 > 0 such that (a) is satisfied and that the cut time
t∗ is strictly bigger than t0. This implies that γ|[0,t∗] is a minimizer contradicting Theorem 8.60,
claim (ii).

Assume now that assumption (b) is satisfied and there exists a minimizer γ̂ 6= γ such that
γ̂(t0) = γ(t0). From this it follows that the concatenation of the two curves γ̂|[0,t0] and γ|[t0,T ] is
also a length-minimizer, hence it satisfies the first-order necessary conditions. This would built two
different normal lifts of the normal extremal trajectory γ|[t0,T ], hence γ|[t0,T ] would be an abnormal
segment, contradicting our assumption on γ.

Assume now that γ(t0) is the cut point from γ(0) along γ and that (a) does not hold, i.e., the
segment [0, t0] contains no conjugate points. Let us show that in this case (b) holds.

Fix a sequence tn → t0 such that tn > t0 for all n ∈ N. Since the manifold is complete, for every
n ∈ N there exists a length-minimizer γn joining γ(0) to γ(tn), namely ℓ(γn) = d(γ(0), γ(tn)).
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By compactness of minimizers there exists (up to extraction of a convergent subsequence) a
limit minimizer γ̂ such that γn → γ̂ uniformly, and the curve γ̂ joins γ(0) and γ(t∗). Moreover
ℓ(γ̂|[0,t∗]) = d(γ(0), γ(t∗)) = ℓ(γ|[0,t∗]).

On the other hand, since the segment γ|[0,t∗] contains no conjugate points, the curve γ|[0,t∗] is a
local length-minimizer in the uniform C0 topology. Thus γ̂ cannot be contained in a neighborhood
γ and necessarily γ̂ 6= γ, ending the proof.

Theorem 8.72. Let γ : [0, 1]→M be a normal extremal trajectory that does not contain abnormal
segments. Assume that for some t0 ∈ (0, 1)

(i) γ|[0,t0] is a length-minimizer,

(ii) there exists a neighborhood U of γ(t0) such that there every points of U is reached by a unique
length-minimizer from γ(0), which is not abnormal.

Then γ(t0) is not conjugate to γ(0). Moreover there exists ε > 0 such that γ|[0,t0+ε] is a length-
minimizer.

Proof. It is enough to show that there exists ε > 0 such that the segment [0, t0+ε] does not contain
conjugate points. Indeed this fact, together with assumptions (i) and (ii), imply that the cut time
t∗ along γ satisfies t∗ ≥ t0 + ε.

Fix a neighborhood U of γ(t0) and, for each q ∈ U , let us denote by uq (resp. γq) the minimizing
control (resp. trajectory) joining γ(0) to q. Thanks to Proposition 8.66 the map q 7→ uq is continuous
in the L2 topology.

Hence we can consider the family λq1 of normal final covectors associated with uq, i.e., satisfying
the identity

λq1DuqF = uq, ∀ q ∈ U.
By the smoothness of the end-point map Eq0 , the map q 7→ DuqEq0 is continuous and; moreover
DuqEq0 is surjective for every q since the normal extremal trajectory associated with uq is not
abnormal. The adjoint map (DuqF )

∗ : TqM → L2([0, 1],Rm) is then injective and λq1 is the
unique solution to the linear equation (DuqF )

∗ξ = uq (unicity of covector is guaranteed since the
trajectory is strict abnormal by assumption (ii)). Since the coefficient of the linear equation are
continuous with respect to q, this implies that the map Φ1 : q 7→ λq1 is continuous, as well as the
map Φ0 : q 7→ λq0 that associates with every q the initial covector λq0 of the trajectory joining q0
with q, since Φ0(q) = (P u

q

0,1)
∗ ◦ Φ1(q).

Moreover, by construction, we have expq0(Φ
0(q)) = q for every q ∈ U , i.e, Φ0 is a right inverse

of the exponential map expq0 . Thus the map Φ0 is injective on U and, by the invariance of domain

theorem, Φ0 is an open map and A := {Φ0(q) | q ∈ U} is an open set in T ∗
qM containing λ

γ(t0)
0 .

Fix δ0 > 0 small enough such that (1+ δ)λ
γ(t0)
0 ∈ A for |δ| < δ0. By homogeneity (1+ δ)λ

γ(t0)
0 =

λ
γ((1+δ)t0)
0 . This means that the unique minimizer joining q0 with γ((1 + δ0)t0) is γ itself. Thus γ

deos not contain conjugate points in the segment [0, t0 + ε] for every ε < δ0t0.

We end this section by explicitly stating the converse of Theorem 8.72, in the case when the
structure admits no abnormal minimizers.

Corollary 8.73. Assume that the sub-Riemannian structure admits no abnormal minimizer. Let
γ : [0, 1]→M be a horizontal curve such that for some t0 ∈ (0, 1)
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(i) γ|[0,t0] is a length-minimizer,

(ii) γ(t0) is conjugate to γ(0).

Then any neighborhood of γ(t0) contains a point reached from γ(0) by at least two length-minimizers.

Recall that, thanks to Theorem 8.71, if the sub-Riemannian structure admits no abnormals,
points where geodesics lose global optimality can be of two types: (a) (first) conjugate points, or
(b) points reached by two minimizers.

Corollary 8.73 says that, if there are no abnormal minimizers, cut points of type (a) always
appears as accumulation points of those of type (b). Hence to compute the cut locus is is enough
to consider the closure of points reached by at least two length-minimizers.

8.11 An example: the first conjugate locus on perturbed sphere

In this section we prove that a C∞ small perturbation of the standard metric on S2 has a first
conjugate locus with at least 4 cusps. See Figure 8.2. Recall that geodesics for the standard metric
on S2 are great circles, and the first conjugate locus from a point q0 coincides with its antipodal
point q̂0. Indeed all geodesics starting from q0 meet and lose their local and global optimality at
q̂0.

Denote H0 the Hamiltonian associated with the standard metric on the sphere and let H be an
Hamiltonian associated with a Riemannian metric on S2 such that H is sufficiently close to H0,
with respect to the C∞ topology for smooth functions in T ∗M .

Fix a point q0 ∈ S2. Normal extremal trajectories starting from q0 and parametrized by
length (with respect to the Hamiltonian H) can be parametrized by covectors λ ∈ T ∗

q0M such that
H(λ) = 1/2. The set H−1(1/2) is diffeomorphic to a circle S1 and can be parametrized by an angle
θ. For a fixed initial condition λ0 = (q0, θ), where q0 ∈M and θ ∈ S1 we write

λ(t) = et
~H(λ0) = (p(t, θ), γ(t, θ)),

and we denote by exp = expq0 the exponential map based at q0

expq0(t, λ0) = π ◦ et ~H(λ0) = γ(t, θ)

For every initial condition θ ∈ S1 denote by tc(θ) the first conjugate time along γ(·, θ), i.e. tc(θ) =
inf{τ > 0 | γ(τ, θ) is conjugate to q0 along γ(·, θ)}.

Proposition 8.74. The first conjugate time tc(θ) is characterized as follows

tc(θ) = inf

{
t > 0

∣∣∣∣
∂exp

∂θ
(t, θ) = 0

}
. (8.75)

Proof. Conjugate points correspond to critical points of the exponential map, i.e., points exp(t, θ)
such that

rank

{
∂exp

∂t
(t, θ),

∂exp

∂θ
(t, θ)

}
= 1. (8.76)
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Notice that ∂exp
∂t (t, θ) = γ̇(t, θ) 6= 0. Let us show that condition (8.76) occurs only if ∂exp∂θ (t, θ) = 0.

Indeed, by Proposition 8.38, one has that
〈
p,
∂exp

∂t
(t, θ)

〉
= 1,

〈
p,
∂exp

∂θ
(t, θ)

〉
= 0,

thus, whenever ∂exp
∂θ (t, θ) 6= 0, the two vectors appearing in (8.76) are always linearly independent.

Lemma 8.75. The function θ 7→ tc(θ) is C
1.

Proof. By Proposition 8.74, tc(θ) is a solution to the equation (with respect to t)

∂exp

∂θ
(t, θ) = 0. (8.77)

Let us first remark that, for the exponential map exp0 associated with the Hamitonian H0 we have

∂exp0
∂θ

(t0c(θ), θ) = 0,
∂2exp0
∂t∂θ

(t0c(θ), θ) 6= 0 (8.78)

where t0c(θ) is the first conjugate time with respect to the metric induced by H0, as it is easily
checked.

Since H is close to H0 in the C∞ topology, by continuity with respect to the data of solution
of ODEs, we have that exp is close to exp0 in the C∞ topology too. Moreover the condition (8.78)
ensures the existence of a solution tc(θ) of (8.77) that is close to t0c(θ). Hence we have that

∂2exp

∂t∂θ
(tc(θ), θ) 6= 0 (8.79)

By the implicit function the function θ 7→ tc(θ) is C
1.

Let us introduce the function β : S1 → M defined by β(θ) = exp(tc(θ), θ). The first conjugate
locus, by definition, is the image of the map β. The cuspidal point of the conjugate locus are
by definition those points where the function θ 7→ t′c(θ) change sign. By continuity (cf. proof of
Lemma 8.75) the map β takes value in a neighborhood of the point q̂0 antipodal to q0. Let us take
stereographic coordinates around this point and consider β as a function from S1 to R2. By the
chain rule and (8.77), we have

β′(θ) = t′c(θ)
∂exp

∂t
(tc(θ), θ) +

∂exp

∂θ
(tc(θ), θ)

︸ ︷︷ ︸
=0

(8.80)

Let us define g, g0 : S1 → R2 by g(θ) := ∂exp
∂t (tc(θ), θ) and g0(θ) :=

∂exp0
∂t (t0c(θ), θ). The set

C0 = {ρg0(θ) | θ ∈ S1, ρ ∈ [0, 1]}
is convex, since

g0(θ) =

(
cos θ
sin θ

)

By assumption the perturbation of the metric is small in the C∞-topology, hence

C = {ρg(θ) | θ ∈ S1, ρ ∈ [0, 1]}, (8.81)

remains convex.
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Theorem 8.76. The conjugate locus of the perturbed sphere has at least 4 cuspidal points.

Proof. Notice that the function θ 7→ t′c(θ) can change sign only an even number of times on
S1 = [0, 2π]/ ∼. Moreover ∫ 2π

0
t′c(θ)dθ = tc(2π)− tc(0) = 0. (8.82)

A function with zero integral mean on [0, 2π] which is not identically zero has to change sign at
least twice on the interval. Notice also that

∫ 2π

0
t′c(θ)g(θ)dθ =

∫ 2π

0
β′(θ)dθ = β(2π) − β(0) = 0. (8.83)

Let us now assume by contradiction that the function θ 7→ t′c(θ) changes sign exactly twice at
θ1, θ2 ∈ S1. Then, by convexity of C, there exists a covector η ∈ (R2)∗ such that 〈η, g(θi)〉 = 0 for
i = 1, 2 and such that t′c(θ) 〈η, g(θ)〉 > 0 if θ 6= θi for i = 1, 2. This implies in particular

〈
η,

∫ 2π

0
t′c(θ)g(θ)dθ

〉
=

∫ 2π

0
t′c(θ) 〈η, g(θ)〉 dθ 6= 0

which contradicts (8.83).

Remark 8.77. A careful analysis of the proof shows that the statement remains true if one considers
a small perturbation of the Hamiltonian (or equivalently, the metric) in the C4 topology. Indeed
the key point is that g is close to g0 in the C2 topology, to preserve the convexity of the set C
defined by (8.81).

The same argument can be applied for every arbitrary small C∞ (and actually C4) perturbation
H of the Riemannian Hamiltonian H0 associated with the standard Riemannian structure on S2,
without requiring that H comes from a Riemannian metric.

conjugate

Figure 8.2: Perturbed sphere or ellipsoid

239



240



Chapter 9

2D-Almost-Riemannian Structures

Almost-Riemannian structures are examples of sub-Riemannian strucures such that the local min-
imum bundle rank (cf. Definition 3.20) is equal to the dimension of the manifold at each point (cf.
Section 3.1.3). They are the prototype of rank-varying sub-Riemannian structures. In this chapter
we study the 2-dimensional case, that is very simple since it is Riemannian almost everywhere (see
Theorem 9.19), but presents already some interesting phenomena as for instance the presence of
sets of finite diameter but infinite area and the presence of conjugate points even when the curva-
ture is always negative (where it is defined). Also the Gauss-Bonnet theorem has a surprising form
in this context.

9.1 Basic definitions and properties

Thanks to Exercise 3.28, given a structure having constant local minimum bundle rank m one can
find an equivalent one having bundle rank m. In dimension 2, due to the Lie bracket generating
assumption, also the opposite holds true in the following sense: a structure having bundle rank 2
has local minimal bundle rank 2. Hence we can define a 2D-almost-Riemannian structure in the
following simpler way.

Definition 9.1. Let M be a 2-D connected smooth manifold. A 2D-almost-Riemannian structure
on M is a pair (U, f) where

• U is an Euclidean bundle over M of rank 2. We denote each fiber by Uq, the scalar product
on Uq by (· | ·)q and the norm of u ∈ Uq as |u| =

√
(u |u)q.

• f : U→ TM is a smooth map that is a morphism of vector bundles i.e.,f(Uq) ⊆ TqM and f
is linear on fibers.

• D = {f(σ) | σ :M → U smooth section}, is a bracket-generating family of vector fields.

As for a general sub-Riemannian structure, we define:

• the distribution as D(q) = {X(q) | X ∈ D} = f(Uq) ⊆ TqM ,

• the norm of a vector v ∈ Dq as ‖v‖ := min{|u|, u ∈ Uq s.t. v = f(q, u)}.
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• admissible curve as a Lipschitz curve γ : [0, T ] → M such that there exists a measurable
and essentially bounded function u : t ∈ [0, T ] 7→ u(t) ∈ Uγ(t), called control function, such
that γ̇(t) = f(γ(t), u(t)), for a.e. t ∈ [0, T ]. Recall that there may be more than one control
corresponding to the same admissible curve.

• minimal control of an admissible curve γ as u∗(t) := argmin{|u|, u ∈ Uγ(t) s.t. γ̇(t) =
f(γ(t), u)} (for all differentiability point of γ). Recall that the minimal control is measurable
(cf. Section 3.5)

• (almost-Riemannian) length of an admissible curve γ : [0, T ] → M as ℓ(γ) :=
∫ T
0 ‖γ̇(t)‖dt =∫ T

0 |u∗(t)|dt.

• distance between two points q0, q1 ∈M as

d(q0, q1) = inf{ℓ(γ) | γ : [0, T ]→M admissible, γ(0) = q0, γ(T ) = q1}. (9.1)

Recall that thanks to the Lie-bracket generating condition, the Chow-Rashevskii Theorem 3.30
guarantees that (M,d) is a metric space and that the topology induced by (M,d) is equivalent to
the manifold topology.

Definition 9.2. If (σ1, σ2) is an orthonormal frame for (· | ·)q on a local trivialization Ω × R2 of
U, an orthonormal frame for the 2D-almost-Riemannian structure on Ω is the pair of vector fields
(F1, F2) := (f ◦ σ1, f ◦ σ2). In Ω × R2 the map f can be written as f(q, u) = u1F1(q) + u2F2(q).
When this can be done globally, we say that the 2D-almost-Riemannian structure is free.

In this chapter we do not work with an equivalent structure of higher bundle rank that is free.
Technically such a structure fits Definition 3.20 (i.e., that local minimum bundle rank is equal to
the dimension of the manifold at each point) but not Definition 9.1. We rather work with local
orthonormal frames that, as explained below, are orthonormal in the standard sense out of the
singular set.

This point of view permits to understand how global properties of U (as its orientability, its
topology) are transferred in properties of the almost-Riemannian structure.

Definition 9.3. A 2D-almost-Riemannian structure (U, f) over a 2D manifold M is said to be
orientable if U is orientable. It is said to be fully orientable if both U and M are orientable.

Remark 9.4. Free 2D almost-Riemannian structures are always orientable.

Given an orientable 2D almost-Riemannian structure, if {F1, F2} and {G1, G2} are two positive
oriented orthonormal frames defined respectively on two open subsets Ω and Ξ, then on Ω∩Ξ there
exists a smooth function θ :M → S1 such that

(
G1(q)
G2(q)

)
=

(
cos(θ(q)) sin(θ(q))
− sin(θ(q)) cos(θ(q))

)(
F1(q)
F2(q)

)
.

As shown by the following examples, one can construct orientable 2D-almost-Riemannian structures
on non-orientable manifolds and viceversa.

An orientable 2D almost-Riemannian structure on the Klein bottle. Let M be the Klein
bottle seen as the square [−π, π] × [−π, π] with the identifications (x,−π) ∼ (x, π), (−π, y) ∼
(π,−y).
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Let U = M × R2 with the standard Euclidean metric and consider the morphism of vector
bundles given by

f : U→ TM, f(x1, x2, u1, u2) = (x1, x2, u1, u2 sin(2x1)).

This structure is Lie bracket generating and the two vector fields

F1(x1, x2) = f(x1, x2, 1, 0) = (x1, x2, 1, 0), F2(x1, x2) = (x1, x2, 0, sin(2x1)),

which are well defined on M , provide a global orthonormal frame. This structure is orientable since
U is trivial.

Exercise 9.5. Construct a non orientable almost-Riemannian structure on the 2D torus.

We now define Euler number of U that measures how far the vector bundle U is from the trivial
one.

Definition 9.6. Consider a 2D almost-Riemannian structure (U, f) on a 2D manifold M . The
Euler number ofU, denoted by e(U) is the self-intersection number ofM inU, whereM is identified
with the zero section. To compute e(U), consider a smooth section σ : M → U transverse to the
zero section. Then, by definition,

e(U) =
∑

p|σ(p)=0

i(p, σ),

where i(p, σ) = 1, respectively −1, if dpσ : TpM → Tσ(p)U preserves, respectively reverses, the
orientation. Notice that if we reverse the orientation on M or on U then e(U) changes sign.
Hence, the Euler number of an orientable vector bundle E is defined up to a sign, depending
on the orientations of both U and M . Since reversing the orientation on M also reverses the
orientation of TM , the Euler number of TM is defined unambiguously and is equal to χ(M), the
Euler characteristic of M .

Remark 9.7. Assume that σ ∈ Γ(E) has only isolated zeros, i.e.,the set {p | σ(p) = 0} is finite.
Since U is endowed with a smooth scalar product (· | ·)q we can define σ̃ :M \{p | σ(p) = 0} → SU

by σ̃(q) = σ(q)√
(σ |σ)q

(here SU denotes the spherical bundle of U). If σ(p) = 0, then i(p, σ̃) = i(p, σ)

is equal to the degree of the map ∂B → S1 that associate with each q ∈ ∂B the value σ̃(q), where
B is a neighborhood of p diffeomorphic to an open ball in Rn that does not contain any other zero
of σ.

Notice that if i(p, σ) 6= 0, the limit limq→p σ̃(q) does not exist.

Remark 9.8. Notice that U is trivial if and only if e(U) = 0.

Remark 9.9. Consider a 2D-almost-Riemannian structure (U, f) on a 2D manifold M . Let σ be a
section of U and zσ the set of its zeros. As in Remark 9.7, define onM \zσ the normalization σ̃ of σ
and let σ̃⊥ (still defined onM \zσ) its orthogonal with respect to (· | ·)q . Then the original structure
is free when restricted to M \ zσ and {σ̃, σ̃⊥} is a global orthonormal frame for (· | ·)q . The global
orthonormal frame for the corresponding 2D-almost-Riemannian structure is then (f ◦ σ̃, f ◦ σ̃⊥).

Exercise 9.10. Consider a 2D-almost-Riemannian structure (U, f) on a 2D manifold M . Prove
that (U, f) is free when restricted to M \ {q0} where q0 is any point on M .
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Definition 9.11. The singular set Z of a 2D-almost-Riemannian structure (U, f) over a 2D man-
ifold M is the set of points q of M such that f is not fiberwise surjective, i.e., such that the rank
of the distribution k(q) := dim(Dq) is less than 2.

Notice if q ∈ Z then k(q) = 1. Indeed at q we have k(q) = 0 then the structure could not be
bracket generated at q.

Since outside the singular set Z, f is fiberwise surjective, we have the following

Proposition 9.12. A 2D-almost-Riemannian structure is Riemannian structure on M \ Z.
On Riemannian points, the Riemannian metric g is reconstructed with the polarization identity

(see Exercice 3.8). We have that if v = v1F1(q)+v2F2(q) ∈ TqM and w = w1F1(q)+w2F2(q) ∈ TqM
then

gq(v,w) = v1w1 + v2w2.

By construction, at Riemannian points, {F1, F2} is an orthonormal frame in the usual sense

gq(Fi(q), Fj(q)) = δij , i, j = 1, 2.

Exercise 9.13. Assume that in a local system of coordinates an orthonormal frame is given by

F1 =

(
F 1
1

F 2
1

)
, F2 =

(
F 1
2

F 2
2

)
and let F = (F ji )i,j=1,2 =

(
F 1
1 F 1

2

F 2
1 F 2

2

)
.

Prove that at Riemannian points the Riemannian metric is represented by the matrix g = t(F−1)F−1.

The following Proposition is very useful to study local properties of 2D-almost-Riemannian
structures

Proposition 9.14. For every point q0 of M there exists a neighborhood Ω of this point and a
system of coordinates (x1, x2) in Ω such that an orthonormal frame for the 2D-almost-Riemannian
structure can be written in Ω as:

F1(q) =

(
1
0

)
, F2 =

(
0

f(x1, x2)

)
, (9.2)

where f : Ω→ R is a smooth function. Moreover

(i) the integral curves of F1 are normal Pontryagin extremals;

(ii) if the step of the structure at q is equal to s, we have ∂rx1f = 0 for r = 1, 2, . . . , s − 2 and
∂s−1
x1 f 6= 0;

Remark 9.15. Notice that using the system of coordinates and the orthonormal frame given by
Proposition 9.14, we have that Z ∩ Ω = {(x1, x2) ∈ Ω | f(x1, x2) = 0}.

Before proving Proposition 9.14, let us prove the following Lemma

Lemma 9.16. Consider a 2D-almost-Riemannian structure and let W be a smooth embedded one-
dimensional submanifold of M . Assume that W is transversal to the distribution D, i.e., such that
D(q) + TqW = TqM for every q ∈W . Then, for every q ∈W there exists an open neighborhood U
of q such that for every ε > 0 small enough, the set

{q′ ∈ U | d(q′,W ) = ε} (9.3)

is a smooth embedded one-dimensional submanifold of U .
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normal Pontryagin extremals

W

D(q)

Figure 9.1: Normal Pontryagin extremals starting from the singular set

Proof. Let H(λ) be sub-Riemannian Hamiltonian and consider a smooth regular parametrization
α 7→ w(α) of W . Let α 7→ λ0(α) ∈ T ∗

w(α)M be a smooth map satisfying H(λ0(α)) = 1/2 and

λ0(α) ⊥ Tw(α)W .
Let E(t, α) be the solution at time t of the Hamiltonian system with Hamiltonian H and with

initial condition λ(0) = λ0(α). Fix q ∈W and define ᾱ by q = w(ᾱ). Now let us prove that E(t, α)
is a local diffeomorphism around the point (0, ᾱ). To do so let us show that the two vectors

v1 =
∂E

∂α
(0, ᾱ) and v2 =

∂E

∂t
(0, ᾱ) (9.4)

are not parallel. On one hand, since v1 is equal to dw
dα (ᾱ), then it spans TqW . On the other hand,

being H quadratic in λ,

〈λ0(ᾱ), v2〉 = 〈λ0(ᾱ),
∂H

∂λ
(λ0(ᾱ))〉 = 2H(λ0(ᾱ)) = 1. (9.5)

Thus v2 does not belong to the orthogonal to λ0(ᾱ), that is, to TqW .
Therefore for a small enough neighborhood U of q, using the fact that small arcs of normal

extremal paths are minimizers, we have that for ε > 0 small enough, the set A = {q′ ∈ U |
d(q′,W ) = ε} contains the intersection of U with the images of E(ε, ·) and E(−ε, ·). By possibly
restricting U , we are in the situation of Figure 9.1 and the set A coincides with the intersection of
U with the images of E(ε, ·) and E(−ε, ·).

Remark 9.17. Notice that in this proof we did not make any hypothesis on abnormal extremals. In
Section 9.1.3 we are going to see that for 2D almost-Riemannian structures there are no non trivial
abnormal extremals.

Proof of Proposition 9.14. Following the notation of the proof of Lemma 9.16 let us take (t, α) as
a system of coordinates on U and define the vector field F1 by

F1(t, α) =
∂E(t, α)

∂t
. (9.6)
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Notice that, by construction, for every q′ ∈ U the vector X(q′) belongs to D(q′) and ‖F1(q
′)‖ = 1.

In the coordinates (t, α) we have F1 = (1, 0) and by construction its integral curves are normal
Pontryagin extremals. Let F2 be a vector field on U such that (F1, F2) is an orthonormal frame for
the 2D almost-Riemannian structure in U .

We claim that the first component of F2 is identically equal to zero. Indeed, were this not the
case, the norm of F1 would not be equal to one.

We are left to prove B. We have

F3 := [F1, F2] =

(
0

∂x1f(x1, x2)

)
(9.7)

and beside (9.7), the only brackets among F1, F2 and F3 that could be different from zero are of
the form

[F3, . . . , [F3, F1], F1]︸ ︷︷ ︸
r times

=

(
0

∂rx1f(x1, x2)

)
.

Hence if the structure has step s at q we have ∂rx1f = 0 for r = 1, 2, . . . , s − 2 and ∂s−1
x1 f 6= 0.

The form (9.2) is very useful to express the Riemannian quantities on M \ Z. Indeed one has

Lemma 9.18. Assume that on an open set Ω ⊂M a system of coordinates (x1, x2) is fixed and an
orthonormal frame for the 2D-almost-Riemannian is given in the form (9.2). Then on Ω∩ (M \Z)
the Riemannian metric, the element of Riemannian area and the Gaussian curvatures are given by

g(x1,x2) =

(
1 0
0 1

f(x1,x2)2

)
, (9.8)

dA(x1,x2) =
1

|f(x1, x2)|
dx1 dx2, (9.9)

K(x1, x2) =
f(x1, x2)∂

2
x1f(x1, x2)− 2 (∂x1f(x1, x2))

2

f(x1, x2)2
. (9.10)

Proof. Formula (9.8) is a direct consequence of (9.1). Formula (9.9) comes from the definition of
the Riemannian area dA(F1, F2) = 1 where {F1, F2} is a local orthonormal frame. Formula (9.10)
comes from the formula

K(q) = −α2
1 − α2

2 + F1α2 − F2α1

where α1 and α2 are the two functions defined by [F1, F2] = α1F1 + α2F2 (see Corollary 4.42).

Hence in a 2D-almost-Riemannian structure all Riemannian quantities explodes while approach-
ing to Z.

9.1.1 How big is the singular set?

A natural question is how big could be the singular set. The answer is given by the following
Lemma.

Theorem 9.19. Consider a system of coordinates (x1, x2) defined on an open set Ω and let dx1 dx2
be the corresponding Lebesgue measure. Then Z ∩ Ω has zero dx1 dx2-measure.
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Proof. Without loss of generality we can assume that Ω has the following properties:

• it is the product of two non-empty intervals:

Ω = (xA1 , x
B
1 )× (xA2 , x

B
2 ),

• on Ω we have an orthonormal frame of the form

F1(q) =

(
1
0

)
, F2 =

(
0

f(x1, x2)

)
, (9.11)

• on Ω the step of the structure is s ∈ N.

If some of the properties above are not satisfied, one can prove the theorem on a countable union
of sets where the properties above hold.

Let 1Z : Ω→ {0, 1} be the characteristic function of Z. Using Fubini theorem,

∫

Z∩Ω
dx1dx2 =

∫

Ω
1Z(x1, x2) dx1dx2 =

∫ xB2

xA2

(∫ xB1

xA1

1Z(x1, x2)dx1

)
dx2.

We now prove that for every fixed x̄2 ∈ (xA2 , x
B
2 ), we have

∫ xB1
xA1

1Z(x1, x̄2)dx1 = 0 from which the

conclusion of the theorem follows.
Indeed B. of Proposition 9.14 guarantees that there exists r ≤ s− 1 such that ∂rx1f(x1, x̄2) 6= 0

for every x1 ∈ (xA1 , x
B
1 ). Hence f(·, x̄2) has only isolated zeros and

∫ xB1
xA1

1Z(x1, x̄2)dx1 = 0.

Exercise 9.20. Show that from the proof of Theorem 9.19 it follows that the singular set is locally
the countable union of zero- and one-dimensional manifolds and hence that it is rectifiable.

9.1.2 Genuinely 2D-almost-Riemannian structures have always infinite area

Theorem 9.21. Let Ω be a bounded open set such that Ω ∩ Z 6= ∅. Then

diam(Ω) ≤ +∞ and

∫

Ω\Z
dA = +∞

where diam(Ω) is the diameter of Ω computed with respect to the almost-Riemannian distance and
dA is the Riemannian area associated with the almost-Riemannian structure on Ω \ Z.

Proof. Take a point q0 ∈ Ω \ Z and a system of coordinates (x1, x2) on a neighborhood Ω0 ⊂ Ω of
q0. Expanding f in Taylor series, we have

f(x1, x2) = a1x1 + a2x2 +O(x21 + x22). (9.12)

According to (9.9), the (almost-Riemannian) area of Ω0 is
∫

Ω0

1

|f(x1, x2)|
dx1 dx2.

But the inverse of a function of the form (9.12) is never integrable around the origin in the plane.
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9.1.3 Normal Pontryagin extremals

Since 2D almost Riemannian structures are particular cases of sub-Riemannian structures, there
are two kind of candidate optimal trajectories: normal and abnormal extremals. Normal extremals
are geodesics while abnormal extremals could or could not be geodesics. An important fact is the
following.

Theorem 9.22. For a 2D-almost-Riemannian structure, all abnormal extremal are trivial. More-
over a trivial trajectory γ : [a, b] → M , γ(t) = q0 is the projection of an abnormal extremal if and
only if q0 ∈ Z.

Proof. It is immediate to verify that if γ(t) = q0 ∈ Z for every t ∈ [a, b] then γ admits an abnormal
lift.

Let γ : [a, b] → M , (a < b) be the projection of an abnormal extremal and let us prove that
γ([a, b]) = q0 for some q0 ∈ Z.

Let us first prove that γ([a, b]) ⊂ Z. By contradiction assume that there exists t̄ ∈]a, b[ such that
γ(t̄) /∈ Z. By continuity there exists a non trivial interval [c, d] ⊂]a, b[ such that γ([c, d]) ∩ Z = ∅.
Then γ[c,d] is a Riemannian geodesic and hence cannot be abnormal. Recall that if an arc of a
geodesic is not abnormal, then the geodesic if not abnormal too, hence it follows that γ is not
abnormal. This contradicts the hypothesis that γ is the projection of an abnormal extremal.

Let us fix a local system of coordinates such that an orthonormal frame is given in the form
(9.2). If this is not possible globally on a neighborhood of γ([a, b]), one can repeat the proof on
different coordinate charts.

Let us write in coordinates γ(t) = (γ1(t), γ2(t)). We have different cases.

• If (γ1(t), γ2(t)) = (c1, c2) for every t ∈ [a, b] we already know that γ admits an abnormal lift.

• If γ1 is not constant and γ2 = c in [a, b], then γ̇2 = 0 in [a, b] and Z contains a set of the type

Z̄ = {(x1, c) | x1 ∈ [xA1 , x
B
1 ]} with xA1 < xB1 .

Hence f = 0 on Z̄ . It follows that ∂rx1f = 0 on Z̄ for every r = 1, 2, . . .. As in the proof
of Theorem 9.19 it follows that all brackets between F1 and F2 are zero on Z̄ and that the
bracket generating condition is violated. Hence this case is not possible.

• There exists t̄ ∈]a, b[ such that γ̇2(t̄) is defined and γ̇2(t̄) 6= 0. Now since

γ̇(t̄) =

(
v1

v2f(γ(t̄))

)
,

for some v1, v2 ∈ R, we have f(γ(t̄)) 6= 0 and hence γ(t̄) /∈ Z violating the condition γ([a, b]) ⊂
Z for an abnormal extremal. Hence also this case is not possible.

Hence all non-trivial geodesics are normal and are projection on M of the solution of the
Hamiltonian system whose Hamiltonian is (cf. (4.31))

H : T ∗M → R, H(λ) = max
u∈Uq

(
〈λ, f(q, u)〉 − 1

2
|u|2
)
, q = π(λ). (9.13)
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Locally, if an orthonormal frame {F1, F2} is assigned, we have

H(λ) =
1

2

(
〈λ, F1(q)〉2 + 〈λ, F2(q)〉2

)
.

For a system of coordinates and a choice of an orthonormal frame as those of Proposition 9.14, we
have

H(x1, x2, p1, p2) =
1

2

(
p21 + p22 f(x1, x2)

2
)
. (9.14)

As a consequence of the fact that all geodesics are projections of solutions of a smooth Hamiltonian
system and that our structure is Riemannian on M \ Z, we have

Proposition 9.23. In 2D almost-Riemannian geometry all geodesics are smooth and they coincide
with Riemannian geodesics on M \ Z.

The only particular property of geodesics in almost-Riemannian geometry is that on the singular
set their velocity is constrained to belong to the distribution (otherwise their length could not be
finite). All this is illustrated in the next section for the Grushin plane.

9.2 The Grushin plane

The Grushin plane is the simplest example of genuinely almost-Riemannian structure. It is the free
almost-Riemannain structure on R2 for which a global orthonormal frame is given by

F1 =

(
1
0

)
, F2 =

(
0
x1

)

In the sense of Definition 9.1, it can be seen as the pair (U, f) where U = R2 × R2 and
f((x1, x2), (u1, u2)) = ((x1, x2), (u1, u2x1)).

Here the singular set Z is the x2-axis and on R2 \ Z the Riemannian metric, the Riemannian
area and the Gaussian curvature are given respectively by:

g =

(
1 0
0 1

x21

)
, dA =

1

|x1|
dx1 dx2, K = − 2

x21
. (9.15)

Notice that the (almost-Riemannian) area of an open set intersecting the x2-axis is always infinite.

9.2.1 Normal Pontryagin extremals of the Grushin plane

In this section we recall how to compute the normal Pontryagin extremals for the Grushin plane,
with the purpose of stressing that they can cross the singular set with no singularities.

In this case the Hamiltonian (9.14) is given by

H(x1, x2, p1, p2) =
1

2
(p21 + x21p

2
2) (9.16)

and the corresponding Hamiltonian equations are:

ẋ1 = p1, ṗ1 = −x1p22
ẋ2 = x21p2, ṗ2 = 0 (9.17)
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Figure 9.2: Normal Pontryagin extremals and the front for the Grushin plane, starting from the
singular set.

Normal Pontryagin extremals parameterized by arclength are projections on the (x1, x2) plane
of solutions of these equations, lying on the level set H = 1/2. We study the normal Pontryagin
extremals starting from: i) a point on Z, e.g. (0, 0); ii) an ordinary point, e.g. (−1, 0).

Case (x1(0), x2(0)) = (0, 0)
In this case the condition H(x1(0), x2(0), p1(0), p2(0)) = 1/2 implies that we have two families of
normal Pontryagin extremals corresponding respectively to p1(0) = ±1 and p2(0) =: a ∈ R. Their
expression can be easily obtained and it is given by:





x1(t) = ±t, x2(t) = 0, if a = 0

x1(t) = ±
sin(at)

a
, x2(t) =

2at− sin(2at)

4a2
, if a 6= 0

(9.18)

Some normal Pontryagin extremals are plotted in Figure 9.2 together with the “front”, i.e., the
end point of all normal Pontryagin extremals at time t = 1. Notice that normal Pontryagin
extremals start horizontally. The particular form of the front shows the presence of a conjugate
locus accumulating to the origin.

Case (x1(0), x2(0)) = (−1, 0)
In this case the conditionH(x1(0), x2(0), p1(0), p2(0)) = 1/2 becomes p21+p

2
2 = 1 and it is convenient

to set p1 = cos(θ), p2 = sin(θ), θ ∈ S1. The expression of the normal Pontryagin extremals is given
by: 




x1(t) = t− 1, x2(t) = 0, if θ = 0

x1(t) = −t− 1, x2(t) = 0, if θ = π

x1(t) = −
sin(θ − t sin(θ))

sin(θ)
,

x2(t) =
2t− 2 cos(θ) + sin(2θ−2t sin(θ))

sin(θ)

4 sin(θ)





if θ /∈ {0, π}
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Some normal Pontryagin extremals are plotted in Figure 9.3 together with the “front” at time
t = 4.8. Notice that normal Pontryagin extremals pass horizontally throughZ, with no singularities.
The particular form of the front shows the presence of a conjugate locus. Normal Pontryagin
extremals can have conjugate times only after intersecting Z. Before it is impossible since they are
Riemannian and the curvature is negative.

-6 -4 -2 2 4

-10

-5

5

10

Figure 9.3: Normal Pontryagin extremals and the front for the Grushin plane, starting from a
Riemannian point.

9.3 Riemannian, Grushin and Martinet points

In 2D almost-Riemannian structures there are 3 kind of important points, namely Riemannian,
Grushin and Martinet points. As we are going to see in Section 9.4, these points are important
in the following sense: if a system has only this type of points, then this remains true also after a
small perturbation of the system. Moreover arbitrarily close to any system there is a system where
only these points are present.

First we study under which conditions Z has the structure of a 1D manifold. To this purpose
we are going to study Z as the set of zeros of a function.

Definition 9.24. Let {F1, F2} be a local orthonormal frame on an open set Ω and let ω be a
volume form on Ω. On Ω define the function Φ = ω(F1, F2).

Exercise 9.25. Prove that Φ is invariant by a positive oriented change of orthonormal frame
defined on the same open set Ω.

Since a volume form can be globally defined whenM is orientable we have that Φ can be globally
defined on fully orientable 2D almost-Riemannian structures (cf. Definition 9.3), just defining it as
above on positive oriented orthonormal frames.
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For structure that are not fully orientable, Φ can be defined only locally and up to a sign.
(notice however that |Φ| is always well defined). This is what should be taken in mind every time
that the function Φ appears in the following.

If in a system of coordinates (x1, x2), we write

F1 =

(
F 1
1

F 2
1

)
, F2 =

(
F 1
2

F 2
2

)
, ω(x1, x2) = h(x1, x2)dx1 ∧ dx2

then

Φ(x1, x2) = h(x1, x2) det

(
F 1
1 F 1

2

F 2
1 F 2

2

)∣∣∣∣
(x1,x2)

.

Remark 9.26. For a system of coordinates and a choice of an orthonormal frame as those of Propo-
sition 9.14, and taking ω = dx1 ∧ dx2, we have Φ(x1, x2) = f(x1, x2).

The function Φ permits to write,

Z = {q ∈M | Φ(q) = 0}.

We are now going to consider the following assumptions

H0q0 If Φ(q0) = 0 then dΦ(q0) 6= 0.

H0 The condition H0q0 holds for every q0 ∈M .

Exercise 9.27. Prove that the conditions above do not depend on the choice of the volume form
ω.

By definition of submanifold we have

Proposition 9.28. Assume that H0 holds. Then Z is a one dimensional embedded submanifold
of M .

As usual define D1 = D, Di+1 = Di+[Di,Di], for i ≥ 1. We are now ready to define Riemannian,
Grushin and Martinet points.
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Figure 9.4: Grushin and Martinet points

Definition 9.29. Consider a 2D-almost Riemannian structure. Fix q0 ∈M .

• If D1(q0) = Tq0M (equivalently if q0 /∈ Z) we say that q0 is a Riemannian point.

• If D1(q0) 6= Tq0M (equivalently if q0 ∈ Z), H0q0 holds then

– if D2(q0) = TqM we say that q0 is a Grushin point.

– if D2(q0) 6= TqM we say that q0 is a Martinet point.

Remark 9.30. Hence under H0 every point is either a Riemannian or a Grushin or a Martinet
point.

Exercise 9.31. By using the system of coordinate given by Proposition 9.14 prove the following:

(a) q0 is a Grushin point if and only if q0 ∈ Z and LvΦ(q0) 6= 0 for v ∈ D(q), ‖v‖ = 1.

(b) q0 is a Martinet point if and only if q0 ∈ Z, dΦ(q0) 6= 0, and for v ∈ D(q0), ‖v‖ = 1, we have
LvΦ(q0) = 0.

The following proposition describes properties of Grushin and Martinet points (see Figure 9.4).

Proposition 9.32. We have the following:

(i) Z is an embedded 1D manifold around Grushin or Martinet points;

(ii) if q0 is a Grushin point then D(q0) is transversal to Tq0Z;

(iii) if q0 is a Martinet point then D(q0) is parallel to Tq0Z;

(iv) Martinet points are isolated.

Proof. We use the system of coordinates and an orthonormal frame as the one given by Proposition
9.14, with q0 = (0, 0),

F1 =

(
1
0

)
, F2 =

(
0
f

)
.

If we take ω = dx ∧ dy, we have Φ = f, dΦ = (∂x1 f, ∂x2f).

To prove (i), it is sufficient to notice that by definition dΦ 6= 0 at Grushin and Martinet points.
To prove (ii), notice thatD(q0) = span(F1(q0)) = (1, 0) while Tq0Z = span{(−∂x2f(q0), ∂x1 f(q0))}

that are not parallel since ∂x1f(q0) 6= 0.
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To prove (iii), notice that D(q0) = span(F1(q0)) = (1, 0) while Tq0Z = span{(−∂x2 f, 0)} since
the condition D2(q0) 6= Tq0M implies ∂x1f(q0) = 0.

To prove (iv), simply observe that if Martinet points were accumulating at q0 then at that point
we cold not have ∂s−1

x1 f 6= 0, where s is the step of the structure at q0.

Examples

• All points on the x2-axis for the Grushin plane are Grushin points.

• The origin the following structure is the simplest example of Martinet point

F1 =

(
1
0

)
, F2 =

(
0

x2 − x21

)
.

• The origin for the following example

F1 =

(
1
0

)
and F2 =

(
0

x22 − x21

)
,

is not a Martinet point since the condition dΦ(0, 0) 6= 0 is not satisfied. Outside the origin
all points are either Riemannian or Grushin points, but at the origin Z is not a manifold.

• The x2-axis of the following example

F1 =

(
1
0

)
and F2 =

(
0
x21

)
,

is not made by Grushin points since D2((0, x2)) 6= T(0,x2)M and it is not made by Martinet
points since dΦ(0, x2) 6= 0 is not satisfied (althugh in this case Z is a manifold). In this case
D((0, x2)) is transversal to Z.

9.3.1 Normal forms*

Proposition 9.33. Let q0 be a Riemannian, Grushin or a Martinet point. There exists a neigh-
borhood Ω of q0 and a system of coordinates (x1, x2) in Ω such that an orthonormal frame for the
2D-almost-Riemannian structure can be written in Ω as:

(NF1) if q0 is a Riemannian point, then

F1(x1, x2) = (1, 0), F2(x1, x2) = (0, eφ(x1,x2)),

(NF2) if q0 is a Grushin point, then

F1(x1, x2) = (1, 0), F2(x1, x2) = (0, xeφ(x1,x2))

(NF3) if q0 is a Martinet point, then

F1(x1, x2) = (1, 0), F2(x1, x2) = (0, (x2 − xs−1
1 ψ(x))eξ(x1,x2)),

where φ, ξ and ψ are smooth real-valued functions such that φ(0, x2) = 0 and ψ(0) 6= 0. Moreover
s ≥ 2 is an integer, that is the step of the structure at the Martinet point.

Proof. To be written.

254



9.4 Generic 2D-almost-Riemannian structures

Recall hypothesis H0q0 and H0:

H0q0 If Φ(q0) = 0 then dΦ(q0) 6= 0.

H0 The condition H0q0 holds for every q0 ∈M .

Recall the H0 is independent from the volume form used to define the function Φ. We have
seen (cf. Remark 9.30) that under hypothesis H0 every point is either a Riemannian or a Grushin
or a Martinet point.

In this section we are going to prove that hypothesis H0 holds for most of the systems. More
precisely we are going to prove that hypothesis H0 is generic in the following sense.

Definition 9.34. Fix a rank 2 Euclidean bundle U over a 2D compact manifold M . Let F be the
set of all morphism of bundle from U to TM such that (U, f), f ∈ F is a 2D almost-Riemannian
structure. Endow F with the C1 norm. We say that a subset of F is generic if it is open and dense
in F.

Theorem 9.35. Under the same hypothesis of Definition 9.34, let F̄ ⊂ F the subset of morphisms
satisfying H0. Then F̄ is generic.

Remark 9.36. In Theorem 9.35 we have assumed that M is compact. A similar result holds also
in the case in which M is not compact. However, in the non compact case, one gets that F̄ is
a countable union of open and dense subsets of F and one should use a suitable topology (the
Whitney one). In this book we have decided not to enter inside transversality theory and we have
provided a statement that can be proved easily via the Sard lemma.

9.4.1 Proof of the genericity result

Cover M with a finite number of compact coordinate neighborhood Ui, i = 1 . . . N , in such a way
that an orthonormal frame for the 2-ARS in Ui is given by

Fi(x
i
1, x

i
2) =

(
1
0

)
, Gi(x

i
1, x

i
2) =

(
0

fi(x1, x2)

)
. (9.19)

Let us consider the following hypothesis

Hi The condition H0q0 holds for every q0 ∈ Ui.

Proposition 9.37. Let Fi be the subset of F satisfying H0i. Then Fi is generic.

Once Proposition 9.37 is proved, the conclusion of Theorem 9.35 follows immediately. Indeed Fi is
open and dense in F and the open and dense set F̄ := ∩Ni=1Fi is made by systems satisfying H0 in
all M .

Proof of Proposition 9.37. Since the map that to (Fi, Gi) associates Φ is continuous in the
C1 topology, a small perturbation of Fi and Gi will induce a small perturbation of Φ. Fixed q0,
condition H0q0 is clearly open in the set of maps from Ui to R for the C1 topology. As a consequence
of the compactness of Ui, condition H0i is open as well.

We are now going to prove that H0i is dense. To this purpose we construct an arbitrarily small
perturbation in the C1 norm (F εi , G

ε
i ) of (Fi, Gi) for which H0i is satisfied.
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Lemma 9.38. For every ε ∈ R with |ε| small enough there exists a perturbation (F εi , G
ε
i ) of (Fi, Gi)

such that ‖F εi − Fi‖C1 ≤ Cε, ‖Gεi −Gi‖C1 ≤ Cε (for some C > 0 independent from ε) and on Ui
we have Φε := ω(F εi , G

ε
i ) = Φ + ε;

Once Lemma 9.38 is proved, the density of Fi follows easily. Indeed let now apply the Sard
Lemma to the C∞ function Φ in Ui. We have that the set

{c ∈ R such that there exists q ∈ Ui such that Φ(q) = c and dΦ(q) = 0}

has measure zero. As a consequence, since Φε = Φ+ ε, we have that the set

{ε ∈ R such that there exists q ∈ Ui such that Φε(q) = 0 and dΦε(q) = 0}

has measure zero. It follows that, for almost every ε, condition H0i is realized for (F εi , G
ε
i ). �

Proof of Lemma 9.38. If in Ui we write in coordinates

ω = hi(x
i
1, x

i
2)dx

i
1 ∧ dxi2,

then

Φ = ω(Fi, Gi) = hi(x
i
1, x

i
2)fi(x

i
1, x

i
2).

Consider now a perturbation Gεi of Gi of the form

Gεi (x
i
1, x

i
2) =

(
0

fi(x
i
1, x

i
2) +

ε
hi(xi1,x

i
2)

)
. (9.20)

and let us define F εi = Fi. It follows that in Ui,

Φε = ω(F εi , G
ε
i ) = hi(x

i
1, x

i
2)

(
fi(x

i
1, x

i
2) +

ε

hi(x
i
1, x

i
2)

)
= hi(x

i
1, x

i
2)fi(x

i
1, x

i
2) + ε = Φ+ ε.

Notice that by construction Gεi is close to Gi in the C1 norm. �.

9.5 A Gauss-Bonnet theorem

For an compact orientable 2D-Riemannian manifold, the Gauss-Bonnet theorem asserts that the
integral of the curvature is a topological invariant that is the Euler characteristic of the manifold
(see Section 1.3).

This theorem admit an interesting generalization in the context of 2D almost-Riemannian struc-
tures that are fully orientable. This generalization is not trivial since one needs to integrate the
Gaussian curvature (that in general is diverging while approaching to the singular set) on the
manifold (that has always infinite volume).

This generalization holds under certain natural assumptions on the 2D almost-Riemannian
structure, namely we will assume

HG : The base manifold M is compact. The 2D almost-Riemannian structure is fully orientable,
H0 holds and every point of Z is a Grushin point.
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The hypotheses that the structure is fully orientable is crucial and it is the almost-Riemannian
version of the classical orientability hypothesis that one need in Riemannian geometry. The
hypothesis H0 is the basic hypothesis to have a reasonable description of the asymptotics of K in
a neighborhood of Z. The hypotesis that every point is a Grushin point is a technical hypothesis.
A version of a Gauss Bonnet Theorem in presence of Martinet points can also be written, but is
more technical and outside the purpose of this book.

With an argument similar to the one of the beginning of Section 9.4.1, one get

Theorem 9.39. Hypothesis HG is open in the set of smooth map f : U→ TM endowed with C1

topology:

Clearly hypothesis HG is not dense since Martinet points do not disappear for small C1 per-
turbations of the system.

It is important to notice that HG is not empty. Indeed we have

Lemma 9.40. Every oriented compact surface can be endowed with an oriented almost-Riemannian
structure satisfying the requirement that there are no Martinet points.

We are going to prove Lemma 9.40 in Section 9.5.2.

Definition 9.41. Consider a 2D almost-Riemannian structure (U, f) over a 2D manifold M and
assume that HG holds.

Let ν a volume form for the Euclidean structure on U, i.e.,a never vanishing 2-form s.t.
ν(σ1, σ2) = 1 on every positive oriented local orthonormal frame for (· | ·)q . Let Ξ be an orien-
tation on M . We define:

• The signed area form dAs on M as the two-form on M \ Z given by the pushforward of ν
along f . Notice that the Riemannian area dA on M \ Z is the density associated with the
volume form dAs.

• M+ = {q ∈M \ Z, s.t. the orientation given by dAsq and Ξq are the same }.1

• M− = {q ∈M \ Z, s.t. the orientation given by dAsq and Ξq are opposite }.
Notice that given a measurable function h : Ω ⊂M± \ Z → R, we have

∫

Ω
h dAs = ±

∫

Ω
h dA (if it exists). (9.21)

Definition 9.42. Under the same hypotheses of Definition 9.41, define

• Mε = {q ∈M | d(q,Z) > ε} where d(·, ·) is the 2D-almost-Riemannian structure on M .

• M±
ε =Mε ∩M±

• Given a measurable function h :M \ Z → R, we say that it is AR-integrable if

lim
ε→0

∫

Mε

h dAs (9.22)

exists and is finite. In this case we denote such a limit by
∫
hdAs.

Remark 9.43. Notice that (9.22) is equivalent to

lim
ε→0

(∫

M+
ε

h dA−
∫

M−
ε

h dA

)

1i.e.,dAs
q(F1, F2) = αΞ(F1, F2) with α > 0
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Example: the Grushin sphere

The Grushin sphere is the free 2D-almost Riemannian structure on the sphere S2 = {y21+y22+y23 =
1} for which an orthonormal frame is given by two orthogonal rotations for instance

Y1 =




0
−y3
y2


 (rotation along the y1-axis) (9.23)

Y2 =



−y3
0
y1


 (rotation along the y2-axis) (9.24)

In this case Z = {y3 = 0, y21 + y22 = 1}. Passing in spherical coordinates

y1 = cos(x) cos(φ)

y2 = cos(x) sin(φ)

y3 = sin(x)

and letting

X1 = cos(φ− π/2)Y1 + sin(φ− π/2)Y2
X2 = − sin(ϕ− π/2)Y1 + cos(φ− π/2)Y2

we get that an orthonormal frame is given by

X1 =

(
0

tan(x)

)
, X2 =

(
1
0

)
.

Notice that the singularity at x = π/2 is due to the spherical coordinates. Instead Z = {x = 0}.
In this case we have.

dA =
1

| tan(x)|dx dφ, dAs =
1

tan(x)
dx ∧ dφ, K =

−2
sin(x)2

The loci Z, M±, are illustrated in Figure 9.5.

The main result of this section is the following.

Theorem 9.44. Consider a 2D-almost-Riemannian structure satisfying hypothesis HG. Let dAs

be the signed area form and K be the Riemannian curvature, both defined on M \ Z. Then K is
AR-integrable and we have ∫

K dAs = e(U)

where e(U) denotes the Euler number of E. Moreover we have

e(U) = χ(M+)− χ(M−)

where χ(M±) denotes the Euler characteristic of M±.
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M−

y3

y2

y1
Z

φ

x

M+

Figure 9.5: The Grushin sphere

Notice that in the Riemannian case
∫
K dAs is the standard integral of the Riemannian curva-

ture and e(U) = χ(M) since U = TM . Hence Theorem 9.44 contains the classical Gauss-Bonnet
theorem.

In a sense, in Riemannian geometry the topology of the surface gives a constraint on the total
curvature, while in 2D almost-Riemannian geometry such constraints is determined by the topology
of the bundle U.

For a free almost-Riemannian structure we have that U is a rank 2 trivial bundle over M . As
a consequence we get that

∫
K dAs = 0, generalizing what happens on the torus.

We could interpret this result in the following way. Take a metric that is determined by a single
pair of vector fields. In the Riemannian context we are constrained to be parallelizable (i.e.,we are
constrained to be on the torus). In the AR context, M could be any compact orientable manifolds,
but the metric is constrained to be singular somehwere. In any case, the integral of the curvature
will be zero.

9.5.1 Proof of Theorem 9.44*

The proof is divided in two steps. First we prove that
∫
K dAs = χ(M+)−χ(M−). Then we prove

that e(U) = χ(M+)− χ(M−)

Step 1

As a consequence of the compactness of M and of Lemma 9.16 one has:

Lemma 9.45. Assume that HG holds. Then the set Z is the union of finitely many curves
diffeomorphic to S1. Moreover, there exists ε0 > 0 such that, for every 0 < ε < ε0, we have that

259



−b

b

ε a−ε−a

∂Mε is smooth and the set M \Mε is diffeomorphic to Z × [0, 1].

Under HG the almost-Riemannian structure can be described, around each point of Z, by a
normal form of type (NF2).

Take ε0 as in the statement of Lemma 9.45. For every ε ∈ (0, ε0), let M
±
ε = M± ∩Mε. By

definition of dAs and M
±,

∫

Mε

KdAs =

∫

M+
ε

KdA−
∫

M−
ε

KdA.

The Gauss-Bonnet formula asserts that for every compact oriented Riemannian manifold (N, g)
with smooth boundary ∂N , we have

∫

N
KdA+

∫

∂N
kgds = 2πχ(N),

where K is the curvature of (N, g), dA is the Riemannian density, kg is the geodesic curvature of
∂N (whose orientation is induced by the one of N), and ds is the length element.

Applying the Gauss-Bonnet formula to the Riemannian manifolds (M+
ε , g) and (M−

ε , g) (whose
boundary smoothness is guaranteed by Lemma 9.45), we have

∫

Mε

KdAs = 2π(χ(M+
ε )− χ(M−

ε ))−
∫

∂M+
ε

kgds+

∫

∂M−
ε

kgds. (9.25)

Thanks again to Lemma 9.45, χ(M±
ε ) = χ(M±). We are left to prove that

lim
ε→0

(∫

∂M+
ε

kgds−
∫

∂M−
ε

kgds

)
= 0. (9.26)

Fix q ∈ Z and a (NF2)-type local system of coordinates (x1, x2) in a neighborhood Uq of q. We
can assume that Uq is given, in the coordinates (x1, x2), by a rectangle [−a, a] × [−b, b], a, b > 0.
Assume that ε < a. Notice that Z ∩ Uq = {0} × [−b, b] and ∂Mε ∩ Uq = {−ε, ε} × [−b, b].

We are going to prove that ∫

∂Mε∩Uq

kg ds = O(ε). (9.27)
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Then (9.26) follows from the compactness of Z. (Indeed, {−ε} × [−b, b] and {ε} × [−b, b], the
horizontal edges of ∂Uq, are normal Pontryagin extremals minimizing the length from Z. Therefore,
Z can be covered by a finite number of neighborhoods of type Uq whose pairwise intersections have
empty interior.)

Without loss of generality, we can assume thatM+∩Uq = (0, a]×[−b, b]. Therefore,M+
ε induces

on ∂M+
ε = {ε}× [−b, b] a downwards orientation (see Figure 9.5.1). The curve s 7→ c(s) = (ε, x2(s))

satisfying
ċ(s) = −F2(c(s)) , c(0) = (ε, 0) ,

is an oriented parametrization by arclength of ∂M+
ε , making a constant angle with F1. Let (θ1, θ2)

be the dual basis to (F1, F2) on Uq ∩M+, i.e., θ1 = dx1 and θ2 = x−1
1 e−φ(x1,x2)dx2. According to

[?, Corollary 3, p. 389, Vol. III], the geodesics curvature of ∂M+
ε at c(s) is equal to λ(ċ(s)), where

λ ∈ Λ1(Uq) is the unique one-form satisfying

dθ1 = λ ∧ θ2 , dθ2 = −λ ∧ θ1 .

A trivial computation shows that

λ = ∂x1(x
−1
1 e−φ(x1,x2))dx2 .

Thus,

kg(c(s)) = −∂x1(x−1
1 e−φ(c(s))) (dx2(F2))(c(s)) =

1

ε
+ ∂x1φ(ε, x2(s)) .

Denote by L1 and L2 the lengths of, respectively, {ε} × [0, b] and {ε} × [−b, 0]. Then,
∫

∂M+
ε ∩Uq

kgds =

∫ L2

−L1

kg(c(s))ds

=

∫ L2

−L1

(
1

ε
+ ∂x1φ(ε, (s))

)
ds

=

∫ b

−b

(
1

ε
+ ∂x1φ(ε, x2)

)
1

εeφ(ε,x2)
dx2 ,

where the last equality is obtained taking x2 = x2(−s) as the new variable of integration.
We reason similarly on ∂M−

ε ∩Uq, on whichM−
ε induces the upwards orientation. An orthonor-

mal frame on M− ∩ Uq, oriented consistently with M , is given by (F1,−F2), whose dual basis is
(θ1,−θ2). The same computations as above lead to

∫

∂M−
ε ∩Uq

kgds =

∫ b

−b

(
1

ε
− ∂x1φ(−ε, x2)

)
1

εeφ(−ε,x2)
dx2 .

Define
F (ε, x2) = (1 + ε∂x1φ(ε, x2))e

−φ(ε,x2). (9.28)

Then ∫

∂M+
ε ∩Uq

kgds−
∫

∂M−
ε ∩Uq

kgds =
1

ε2

∫ b

−b
(F (ε, x2)− F (−ε, x2)) dx2.

By Taylor expansion with respect to ε we get

F (ε, x2)− F (−ε, x2) = 2∂εF (0, x2)ε+O(ε3) = O(ε3)
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X=

zeros of X

zeros of Y

Y=

singular locus
BA

where the last equality follows from the relation ∂εF (0, x2) = 0 (see equation (9.28)). Therefore,

∫

∂M+
ε ∩Uq

kgds−
∫

∂M−
ε ∩Uq

kgds = O(ε),

and (9.27) is proved.

Step 2

The idea of the proof is to find a section σ of SE with isolated singularities p1, . . . , pm such that∑m
j=1 i(pj , σ) = χ(M+) − χ(M−) + τ(S). In the sequel, we consider Z to be oriented with the

orientation induced by M+. To be finished.

9.5.2 Construction of trivializable 2-ARSs with no tangency points

In this section we prove Lemma 9.40, by showing how to construct a trivializable 2-ARS with no
tangency points on every compact orientable two-dimensional manifold.

Without loss of generality we can assume M connected. For the torus, an example of such
structure is provided by the standard Riemannian one. The case of a connected sum of two tori
can be treated by gluing together two copies of the pair of vector fields F1 and F2 represented in
Figure 9.5.2A, which are defined on a torus with a hole cut out. In the figure the torus is represented
as a square with the standard identifications on the boundary. The vector fields F1 and F2 are
parallel on the boundary of the disk which has been cut out. Each vector field has exactly two
zeros and the distribution spanned by F1 and F2 is transversal to the singular locus. Examples on
the connected sum of three or more tori can be constructed similarly by induction. The resulting
singular locus is represented in Figure 9.5.2B.

We are left to check the existence of a trivializable 2-ARS with no tangency points on a sphere. A
simple example can be found in the literature and arises from a model of control of quantum systems
(see [29, 30]). Let M be a sphere in R3 centered at the origin and take F1(x, y, z) = (y,−x, 0),
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Integral Curves of X

Integral Curves of Y

z

x

y

Y

X
Y

Y

Y

Y

X

X

X

X

F2(x, y, z) = (0, z,−y) as orthonormal frame. Then F1 (respectively, F2) is an infinitesimal rotation
around the third (respectively, first) axis. The singular locus is therefore given by the intersection
of the sphere with the plane {y = 0} and none of its points exhibit tangency (see Figure 9.5.2).
Notice that hypothesis HG is satisfied.
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Chapter 10

Nonholonomic tangent space

In this chapter we introduce the notion of nonholomic tangent space, that can be regarded as the
“principal part” of the structure defined on the manifold by the distribution in a neighborhood of
a point. This notion is indeed independent on the inner product defined on the distribution.

When the distribution is endowed with an inner product, this process defines a metric tangent
space (in the sense of Gromov) to the sub-Riemannian structure, that is itself a sub-Riemannian
manifold. When the manifold is Riemannian one recovers on the tangent space the Euclidean
structure induced by the Riemannian metric at the point.

In the general case, the nonholonomic tangent space of a sub-Riemannian manifold at a point
is endowed with a structure of homogeneous space of Carnot group, defined as follows.

Definition 10.1 (Carnot Groups). A Carnot group G is a connected and simply connected Lie
group whose Lie algebra g admits a decomposition

g = g1 ⊕ g2 ⊕ . . . ⊕ gr (10.1)

satisfying the following properties

[g1, gi] = gi+1, [g1, gr] = 0, i = 1, . . . , r − 1. (10.2)

The smallest integer r such that (10.1)-(10.2) are satisfied is called step of the Carnot group.

When the first layer g1 of the Lie algebra g is endowed with an inner product, then G is
automatically endowed with a left-invariant sub-Riemannian structure (cf. Chapter 7), that is
bracket generating thanks to (10.2).

Notice that Carnot groups of step 2 as defined in Section 7.5 are included in Definition 10.1.

Remark 10.2. Carnot groups are also known in the literature as homogeneous and stratified Lie
group. Indeed the Lie agebra g of a Carnot group G admits the stratification (10.1) and thanks to
the property (10.2) they posses a family {δα}α∈R of authomorphisms on g (called dilations) defined
by

δα(v) =

r∑

i=1

αivi, if v =

r∑

i=1

vi, vi ∈ gi.

Carnot groups play a crucial role in sub-Riemannian geometry : these are left-invariant sub-
Riemannian structure arising as metric tangent space of equiregular sub-Riemannian manifolds. In
this sense they play an analogous role of the Euclidean space in Riemannian geometry.
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In this chapter we give an intrinsic construction of the nonholonomic tangent space through the
theory of jets of curves and based on the notion of admissible variation, providing both a geometric
and an algebraic interpretation of this construction. We prove the existence of privileged coordi-
nates, i.e., special sets of coordinates where the nonholonomic tangent space writes conveniently to
perform computations.

Moreover this chapter contains also some fundamental distance estimates, known in the litera-
ture as the Ball-Box theorem, and a classification of nonholonomic tangent space in low dimension.

10.1 Jet spaces

In this chapter, given a point q ∈ M , the symbol Ωq denotes the set of smooth curves γ on M
defined on some open interval I containing 0 and based at q, that is γ(0) = q. In fact, we work
with germs of smooth curves at 0 and sometimes it will be convenient to think to those curves γ
to be defined on I = R.

Fix q in M and a curve γ ∈ Ωq. In every coordinate chart one can write the Taylor expansion

γ(t) = q + γ̇(0)t+O(t2). (10.3)

The tangent vector v ∈ TqM to γ at t = 0 is by definition the equivalence class of curves in Ωq such
that, in some coordinate chart, they have the same 1-st order Taylor polynomial. This requirement
indeed implies that the same is true for every coordinate chart, by the chain rule.

In the same spirit one can consider, given a smooth curve γ ∈ Ωq, its k-th order Taylor polyno-
mial at q

γ(t) = q + γ̇(0)t+ γ̈(0)
t2

2
+ . . . + γ(k)(0)

tk

k!
+O(tk+1), (10.4)

and define analogously an equivalence class on higher order Taylor polynomial.

Exercise 10.3. Let γ, γ′ ∈ Ωq. We say that γ is equivalent up to order k at q to γ′, writing
γ ∼q,k γ′, if their Taylor polynomial at q of order k coincide in some coordinate chart. Prove that
∼q,k is a well-defined equivalence relation on the set of curves based at q.

Definition 10.4. Let k > 0 be an integer and q ∈ M . We define the set of k-th jets of curves
at point q ∈ M as the equivalence classes of Ωq with respect to ∼q,k. We denote with Jkq γ the
equivalence class of a curve γ and with

JkqM := {Jkq γ | γ ∈ Ωq}.

Exercise 10.5. Prove that JkqM has the structure of smooth manifold and dim JkqM = kn. Hint :
use the coordinates representation (10.4) and the fact that the k-th order Taylor polynomial is
characterized by the n-dimensional vectors γ(i)(0) for i = 1, . . . , k.

In the following we always assume that q ∈M is fixed and when working in a coordinate chart
we always assume that q = 0. Identifying the jet of a curve γ ∈ Ωq, with its Taylor polynomial in
some coordinate chart, we can write (recall that γ(0) = q = 0)

Jkq γ =

k∑

i=1

γ(i)(0)
ti

i!
.
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When k = 1, we have easily from the definition that J1
qM = TqM . To study more in detail the

structure of jet space for k ≥ 2, let us introduce the map which “forgets” the k-th derivative

Πkk−1 : J
k
qM −→ Jk−1

q M, Πkk−1

(
k∑

i=1

γ(i)(0)
ti

i!

)
:=

k−1∑

i=1

γ(i)(0)
ti

i!
.

Proposition 10.6. Let k ≥ 2. Then JkqM is an affine bundle over Jk−1
q M with projection Πkk−1,

whose fibers are affine spaces over TqM .

Proof. Fix an element j ∈ Jk−1
q M . The fiber (Πkk−1)

−1(j) is the set of all kth-jets with fixed (k−1)th
jet equal to j. To show that it is an affine space over TqM it is enough to define the sum of a
tangent vector and a kth-jet, with (k − 1)th-jet fixed, in such a way that the resulting kth-jet has
the same (k − 1)th-jet.

Let j = Jkq γ be the kth-jet of a smooth curve in M and let v ∈ TqM . Consider a smooth vector
field V ∈ Vec(M) such that V (q) = v and define the sum

Jkq γ + v := Jkq (γ
v), γv(t) = et

kV (γ(t)) (10.5)

It is easy to see that, due to the presence of the factor tk, the (k− 1)th Taylor polynomial of γ and
γv coincide. Indeed

Jkq (e
tkV (γ(t))) = Jkq γ + tkV (q)

Hence the sum (10.5) gives to (Πkk−1)
−1(j) the structure of affine space over TqM . Notice that this

definition does not depend on the representative curve γ defining j.

Roughly speaking, the fact that JkqM is an affine bundle (and not a vector bundle) is saying

that one cannot complete in a canonical way a (k−1)th-jet to a kth-jet, i.e., we cannot fix an origin
in the fibers. On the other hand there exists a sort of “global” origin on the space JkqM , that is
the jet of the constant curve equal to q.

Now we introduce dilations on jet spaces, analogous to homotheties in Euclidean spaces. This
is done via time rescaling.

Definition 10.7. Let α ∈ R and define γα(t) := γ(αt) for every t such that the right hand side is
defined. Define the dilation of factor α on JkqM as

δα : JkqM → JkqM, δα(J
k
q γ) = Jkq (γα).

One can check that this definition does not depend on the representative and, in coordinates,
it is written as a quasi-homogeneous multiplication

δα

(
k∑

i=1

tiξi

)
=

k∑

i=1

tiαiξi.

Next we extend the notion of jets also for vector fields. To start with we consider flows on the
manifold.

Definition 10.8. A flow on M is a family of diffeomorphisms P = {Pt ∈ Diff(M), t ∈ R} that is
smooth with respect to t and such that P0 = Id.
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Notice that we do not require the family to be a one parametric group (i.e., the group law
Pt ⊙Ps = Pt+s is not necessarily satisfied) and its infinitesimal generator is the nonautonomous
vector field

Xt :=
d

dε

∣∣∣∣
ε=0

Pt+ε ⊙ P−1
t . (10.6)

The set of all flows on M is a group with the point-wise product, i.e., the product of the flows
P = {Pt} and Q = {Qt} is given by

(P ⊙Q)t := Pt ⊙Qt

The action of a flow (in the sense of Definition 10.8) on a smooth curve γ is defined as

(Pγ)(t) := Pt(γ(t)). (10.7)

Proposition 10.9. Let P be a smooth flow on M . Then P induces a well-defined map P : JkqM →
JkqM defined as follows

Pj := Jkq (Pγ), if j = Jkq γ. (10.8)

Moreover (P ⊙Q)j = P (Qj) for every j ∈ JkqM
Proof. Notice that, since P0 = Id, then Pγ ∈ Ωq for every γ ∈ Ωq. By the chain rule, Jkq (Pγ)

depends only on first k derivatives of γ at q, i.e., on Jkq γ. Hence this action is well-behaved with
respect to equivalence relations ∼k,q. The last part of the statement is an easy check and is left to
the reader.

10.1.1 Jets of vector fields

As explained in Proposition 10.9, a flow on M induces a diffeomeorphism in Ωq, and thus in the
space of jets JkqM . In particular, given a vector field V ∈ Vec(M), the flow associated with V , i.e.

the 1-parametric group PV = {etV }, acts on curves

(PV γ)(t) = etV (γ(t)),

and this action pass to the quotient on jets.
A vector field on a manifold is the infinitesimal generator of a family of diffeomorphism, hence

an element of Vec(JkqM) is the infinitesimal generator of a family of diffeomorphism of JkqM .
A natural contstruction, given V ∈ Vec(M), is to consider the 1-parametric group of flows (in-

dexed by s) defined by P sV = {estV } and to define the k-th jet of the vector field as the infinitesimal
generator of this family of diffeomorphism of JkqM .

Definition 10.10. For every V ∈ Vec(M), the vector field Jkq V ∈ Vec(JkqM) is the smooth section

Jkq V : JkqM → TJkqM defined as follows

(Jkq V )(Jkq γ) :=
∂

∂s

∣∣∣∣
s=0

P sV (J
k
q γ) =

∂

∂s

∣∣∣∣
s=0

Jkq (e
tsV (γ(t))). (10.9)

Exercise 10.11. Prove the following formula for every V ∈ Vec(M)

(Jkq V )(Jkq γ) =

k∑

i=1

ti

i!

di

dti

∣∣∣
t=0

(tV (γ(t))),

where V is identified with a vector function V : Rn → Rn in coordinates.
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To end this section we study the interplay between dilations and jets of vector fields. Since δα
is a map on JkqM its differential (δα)∗ acts on elements of Vec(JkqM), and in particular on jets of
vector fields on M . Surprisingly, its action on these particular vector fields is linear with respect
to α.

Proposition 10.12. For every α ∈ R and V ∈ Vec(M) one has

(δα)∗(J
k
q V ) = Jkq (αV ) = αJkq V.

Proof. By definition of the differential of a map (see also Chapter 2). we have

((δα)∗J
k
q V ))(Jkq γ) =

∂

∂s

∣∣∣∣
s=0

Jkq (δα e
tsV δ1/α(γ(t)))

=
∂

∂s

∣∣∣∣
s=0

Jkq (δα e
tsV (γ(t/α)))

=
∂

∂s

∣∣∣∣
s=0

Jkq (e
αtsV (γ(t)))

= Jkq (αV ) = αJkq V

Exercise 10.13 (1-jet of vector fields). Prove that J1
qM = TqM . Moreover, if V ∈ Vec(M) then

J1
q V = V (q) is the constant vector field on the vector space TqM defined by the value of V at q.

10.2 Admissible variations

The goal of this section is to define the appropriate notion of tangent vector, or more precisely to
define the “tangent structure” to a distribution at a point.

As usual, we assume that the distribution D associated with a structure (M,U, f) is defined by
a generating family {f1, . . . , fm} and admissible curves on M are maps γ : [0, T ] → M such that
there exists a control function u ∈ L∞ satisfying

γ̇(t) = fu(t)(γ(t)) =
m∑

i=1

ui(t)fi(γ(t)).

To build a notion of “tangent structure” as a first order approximation of the structure, thus
encoding informations about all directions, we cannot restrict to study family of admissible curves,
since these are all tangent to the distribution.

We shall reinterpret a “tangent vector” as the principal term of a “variation of a point”. To
give a precise meaning to this, we introduce the notion of smooth admissible variation.

Definition 10.14. A curve γ : [0, T ] → M in Ωq is said a smooth admissible variation if there
exists a family of controls {u(t, s)}s∈[0,τ ] such that

(i) u(t, ·) is measurable and essentially bounded for all t ∈ [0, T ], uniformly in s ∈ [0, τ ],

(ii) u(·, s) is smooth with bounded derivatives, for all s ∈ [0, τ ], uniformly in t ∈ [0, T ],
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(iii) u(0, s) = 0 for all s ∈ [0, τ ],

(iv) γ(t) = −→exp
∫ τ
0 fu(t,s)(q)ds.

In other words γ is a smooth admissible variation (or, shortly, admissible variation) if it can be
parametrized as the final point of a smooth family of admissible curves.

Remark 10.15. Notice that from the property (iii) of the definition of admissible variation, we can
rewrite u(t, s) = tū(t, s) for some suitable family of controls ū(t, s) that are still smooth with respect
to t but do not necessarily satisfy ū(0, s) = 0.

The following example shows that admissible variations are not admissible curves, in general.

Example 10.16. Consider two vector fields X,Y ∈ Vec(M) and the curve

γ : [0, T ]→M, γ(t) = e−tY ◦ e−tX ◦ etY ◦ etX(q).

If we set fu := u1X + u2Y and u : [0, T ]× [0, 4]→ R2 defined by

u(t, s) =





(t, 0), if s ∈ [0, 1],

(0, t), if s ∈ [1, 2],

(−t, 0), if s ∈ [2, 3],

(0,−t), if s ∈ [3, 4].

It is easily seen that γ is an admissible variation since

γ(t) = −→exp
∫ 4

0
fu(t,s)(q)ds

and it admits the expansion in coordinates γ(t) = q + t2[X,Y ](q) + o(t2).

Iterating the previous construction one can actually build smooth admissible variations whose
tangent vector at t = 0 is any element in Diq\Di−1

q (cf. Lemmas 10.34-10.35 for a precise statement).

Proposition 10.17. Equivalent distributions admits the same admissible variations. In partic-
ular the class of smooth admissible variation is independent on the inner product defined on the
distribution.

Proof. Recall that two distributions D,D′ are equivalent (see also Definitions 3.3 and 3.17) if and
only if the corresponding modulus of horizontal vector fields are isomorphic where

D = span{f(σ), σ smooth section of U}.

It is not restrictive to assume that D and D′ are finitely generated by f1, . . . , fm and f ′1, . . . , f
′
m′

(we stress that a priori m 6= m′).
By definition, for any admissible variation γ(t) there exists a family q(t, s), for s ∈ [0, τ ], such

that γ(t) = q(t, τ) and q(t, s) solves

∂

∂s
q(t, s) =

m∑

i=1

ui(t, s)fi(q(t, s)), s ∈ [0, τ ], (10.10)
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Assume that f ′1, . . . , f
′
m′ is another set of local generators of the modulus. Then there exist functions

aij ∈ C∞(M) for i = 1, . . . ,m and j = 1, . . . ,m′, such that

fi(q) =

m∑

j=1

aij(q)f
′
j(q), ∀ q ∈M, ∀ i = 1, . . . ,m. (10.11)

Next we prove that there exist a family ũ(t, s) of controls such that γ is an admissible variation for
the frame f ′1, . . . , f

′
m′ . From (10.11) we get

m∑

i=1

ui(t, s)fi(q) =

m∑

i=1

m′∑

j=1

ui(t, s)aij(q)f
′
j(q). (10.12)

Then we could define, through the solution q(t, s) of (10.10), the new family of controls

u′j(t, s) :=
m∑

i=1

ui(t, s)aij(q(t, s)), j = 1, . . . ,m′,

and we see from identities above that

∂

∂s
q(t, s) =

m′∑

j=1

u′j(t, s)f
′
j(q(t, s)), s ∈ [0, τ ]. (10.13)

Since the role of f1, . . . , fm and f ′1, . . . , f
′
m′ can be exchanged, this prove the equivalence.

Assumption. In what follows D denotes a distribution associated with the datum (M,U, f).
Here the vector bundle U is not necessarily endowed with an Euclidean structure. We fix a point
q ∈M and we assume that the distribution on M is bracket generating of step k at the point q.

Definition 10.18. Let D be a bracket generating distribution on M . The set of admissible jets is

JfqM := {Jkq γ, γ ∈ Ωq is an admissible variation}

where k is the step of the distribution at q, i.e., Dkq = TqM .

Next we want to introduce the nonholonomic tangent space in a coordinate-free way. In the
next section we will see how it can be described in some special set of coordinates.

Definition 10.19. Let D be a bracket generating distribution on M . The group of flows of
admissible variations is

Pf :=

{
−→exp

∫ τ

0
fu(t,s)ds, u(t, s) smooth variation

}
,

where the group structure on Pf is given by the following identity:

−→exp
∫ τ1

0
fu1(t,s)ds ⊙

−→exp
∫ τ2

0
fu2(t,s)ds =

−→exp
∫ τ1+τ2

0
fv(t,s)ds

where we set

v(t, s) :=

{
u1(t, s), 0 ≤ s ≤ τ1,
u2(t, s− τ1), τ1 ≤ s ≤ τ1 + τ2.
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Remark 10.20. Any admissible variation is given by γ(t) = Pt(q) for some P ∈ Pf , where we

identify q with the constant curve. Hence JfqM is exactly the orbit of q under the action of the
group Pf

JfqM = {Jkq (P (q)) | P ∈ Pf}.

The nonholonomic tangent space will be defined as the quotient of Pf with respect to the action
of the subgroup of “slow flows”.

Definition 10.21. A smooth admissible variation u(t, s) for D is said to be a slow variation if

u(0, s) =
∂u

∂t
(0, s) = 0, ∀ s ∈ [0, τ ]. (10.14)

A flow associated with a slow variation is said to be purely slow. The subgroup of slow flows Pf0 is
the normal subgroup of Pf generated by flows associated with slow variations, namely

Pf0 :=
{
(Pt)

−1
⊙Qt ⊙ Pt | P ∈ Pf , Q purely slow

}
. (10.15)

Remark 10.22. Notice that, by definition of slow variation and the linearity of f , a purely slow flow
Qt is associated with a family of control that can be written in the form u(t, s) = tv(t, s), where
v(0, s) = 0 (cf. also Remark 10.15). Moreover we have

Qt =
−→exp

∫ τ

0
fu(t,s)ds =

−→exp
∫ τ

0
ftv(t,s)ds =

−→exp
∫ τ

0
tfv(t,s)ds.

Heuristically, a flow Qt is purely slow if the first nonzero jet J iqγ of the trajectory γ(t) = q ⊙Qt

belongs to a subspace Djq, with j < i. In particular γ̇(0) = 0.

Being equivalent up to a slow flow defines an equivalence relation on the space of jets.

Exercise 10.23. Let j = Jkq γ and j′ = Jkq γ
′ for some γ, γ′ ∈ Ωq. Prove that

Jkq γ ∼ Jkq γ′, if γ′(t) = Pt(γ(t)) (10.16)

for some slow flow P ∈ Pf0 is a well defined equivalence relation on JfqM .

This permits us to introduce the main object of the section.

Definition 10.24. The nonholonomic tangent space T fq M is defined as

T fq M := JfqM/ ∼

where ∼ is the equivalence relation defined in (10.16).

Finally, every horizontal vector field induces a vector field on the noholonomic tangent space at
every point.

Proposition 10.25. Let D be a bracket-generating distribution on M of step k at q and X be
a horizontal vector field. Then the jet JkqX is tangent to the submanifold JfqM . Moreover JkqX

induces a well defined vector field X̂ on the nonhonolomic tangent space T fq M .
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Proof. By definition of JkqX, its action on a jet of an admissible variation Jkq γ is given by

(JkqX)(Jkq γ) :=
∂

∂s

∣∣∣∣
s=0

P sX(J
k
q γ) =

∂

∂s

∣∣∣∣
s=0

Jkq (e
tsX(γ(t))). (10.17)

It is easily seen that if γ(t) is an admissible variation, then for every s the curve etsV (γ(t)) is an

admissible variation as well, thus JkqX is tangent to the submanifold JfqM .
To prove that the action is well defined on the quotient, assume that γ(t) ∼ γ′(t), i.e., γ′(t) =

γ(t) ⊙Qt for a slow flow Q ∈ Pf0 . Then we compute, using chronological notation

γ′(t) ⊙ estX = γ(t) ⊙Qt ⊙ estX

= γ(t) ⊙ estX ⊙ e−stX ⊙Qt ⊙ estX

= (γ(t) ⊙ estX) ⊙ Q̃st

where Q̃st := e−tsX ⊙Qt ⊙ etsX is a slow flow for every fixed s and smooth with respect to s. This
means that for every s we have etsXγ(t) ∼ etsXγ′(t) through a slow flow Q̃st . Hence J

k
qX defines a

vector field X̂ on the quotient T fq M .

10.3 Nilpotent approximation and privileged coordinates

In this section we want to introduce some special set of coordinates in which we have a good
description of the nonholonomic tangent space T fq M .

Consider some non negative integers n1, . . . , nk such that n = n1 + . . .+ nk and the splitting

Rn = Rn1 ⊕ . . .⊕ Rnk , x = (x1, . . . , xk)

where xi = (x1i , . . . , x
ni
i ) ∈ Rni for i = 1, . . . , k.

The space Der(Rn) of all differential operators in Rn with smooth coefficients form an associative
algebra with composition of operators as multiplication. The differential operators with polynomial
coefficients form a subalgebra of this algebra with generators 1, xji ,

∂

∂xji
, where i = 1, . . . , k; j =

1, . . . , ni. We define weights of generators as follows

ν(1) := 0, ν(xji ) := i, ν

(
∂

∂xji

)
:= −ν(xji ) = −i.

This defines by additivity the weight of any monomial

ν

(
y1 · · · yα

∂β

∂z1 · · · ∂zβ

)
=

α∑

i=1

ν(yi)−
β∑

j=1

ν(zj).

We say that a polynomial differential operator D is homogeneous if it is a sum of monomial terms
of the same weight. We stress that this definition depends on the coordinate set and the choice of
the weights.

Lemma 10.26. Let D1,D2 be two homogeneous differential operators. Then D1 ◦D2 is homoge-
neous and

ν(D1 ◦D2) = ν(D1) + ν(D2). (10.18)
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Proof. By linearity, it is sufficent to check formula (10.18) for monomials of the form

D1 =
∂

∂xj1i1

, D2 = xj2i2 .

Then we have

D1 ◦D2 =
∂

∂xj1i1

◦ xj2i2 = xj2i2
∂

∂xj1i1

+
∂xj2i2
∂xj1i1

,

and formula (10.18) is easily checked in this case.

A special case is when we consider first order differential operators, namely vector fields.

Corollary 10.27. If V1, V2 ∈ Vec(Rn) are homogeneous vector fields then [V1, V2] is homogeneous
and ν([V1, V2]) = ν(V1) + ν(V2).

With these properties we can define a filtration in the space of all smooth differential operators
Indeed we can write (in the multi-index notation)

D =
∑

α

ϕα(x)
∂|α|

∂xα

Considering the Taylor expansion at 0 of every coefficient we can splitD as a sum of its homogeneous
components

D ≈
∞∑

i=−∞
D(i),

and define the filtration {F (h)}h∈Z of Der(Rn) as follows

F (h) := {D ∈ Der(Rn) : D(i) = 0,∀ i < h}, h ∈ Z.

It is easy to see that it is a decreasing filtration, i.e., F (h) ⊂ F (h−1) for every h ∈ Z. Moreover, if
we restrict our attention to vector fields, we get

V ∈ Vec(Rn) ⇒ V (i) = 0, ∀ i < −m.

Indeed every monomial of a N th-order differential operator has weight not smaller than −mN . In
other words we have

(i) Vec(Rn) ⊂ F (−m),

(ii) V ∈ Vec(Rn) ∩ F (0) implies V (0) = 0.

In particular every vector field that does not vanish at the origin belongs at least to F (−1). This
motivates the following definition.

Definition 10.28. (i). A system of coordinates near the point q is said linearly adapted to the
flag D1

q ⊂ D2
q ⊂ . . . ⊂ Dkq if

Diq = Rn1 ⊕ . . .⊕ Rni , ∀ i = 1, . . . , k. (10.19)

(ii). A system of coordinates near the point q is said privileged if it is linearly adapted to the flag
and X ∈ F (−1) for every X ∈ D.
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Notice that condition (i) can always be satisfied after a suitable linear change of coordinates.
Condition (ii) says that each horizontal vector field has no homogeneous component of degree less
than −1.

Example 10.29 (On privileged coordinates). We discuss which coordinate systems are privileged
in the case k = 1, 2, 3.

(i) For k = 1 all sets of coordinates are privileged. In fact ν(∂xi) = −1 for all i easyly implies
Vec(M) ⊂ F (−1).

(ii) For k = 2 all systems of coordinates that are linearly adapted to the flag are also privileged.
Indeed, we have ν(∂

xj1
) = −1 and ν(∂

xj2
) = −2. Thus a vector field belonging to F (−2) \F (−1)

contains a monomial vector field of the kind ∂
xj2
, with constant coefficients. On the other

hand a vector field X ∈ D cannot contain such a monomial since, by our assumption X(0) ∈
D1

0 = Rn1 .

(iii) For k = 3, let us show an example of coordinates that are linearly adapted but not privileged.
Consider the following set of vector fields in R3 = R⊕ R⊕ R

X1 = ∂x1 + x1∂x3 , X2 = x1∂x2 , X3 = x2∂x3

and set ν(xi) = i for i = 1, 2, 3. The nontrivial commutators between these vector fields are

[X1,X2] = ∂x2 , [X2,X3] = x1∂x3 , [[X1,X2],X3] = ∂x3 .

Then the flag (computed at x = 0) is given by

D1
0 = span{∂x1}, D2

0 = span{∂x1 , ∂x2}, D3
0 = span{∂x1 , ∂x2 , ∂x3}.

These coordinates are then linearly adapted to the flag but they are not privileged since
ν(x1∂x3) = −2, thus X1 ∈ F (−2) \ F (−1).

The following theorem is the main result of this section and states the existence of privileged
coordinates.

Theorem 10.30. Let D be a bracket generating distribution on a smooth manifold M and q ∈M .
There always exists a system of privileged coordinates around q.

The proof of this theorem is postponed to Section 10.3.2.

10.3.1 Properties of privileged coordinates

We showed in Proposition 10.25 that given a horizontal vector field X it induces a well defined
vector field X̂ on the nonhonolomic tangent space T fq M at q ∈ M . The goal of this section is to

discuss the peculiar structure of the vector field X̂ in privileged coordinates.
We start with a description of the space of jets JkqM and the equivalence relation defining the

nonholonomic tangent space T fq M .

Theorem 10.31. Let D be a bracket generating distribution on a smooth manifold M and q ∈M .
In privileged coordinates we have the following
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(i) JfqM = {∑k
i=1 t

iξi | ξi ∈ Diq} and dimJfqM = kn1 + (k − 1)n2 + . . .+ nk.

(ii) Let j1, j2 ∈ JfqM . Then j1 ∼ j2 if and only if j1 − j2 =
∑k

i=1 t
iηi, where ηi ∈ Di−1

q .

Proof of Theorem 10.31, Claim (i), part 1. We start by proving the following inclusion

JfqM ⊂
{

k∑

i=1

tiξi | ξi ∈ Diq

}
. (10.20)

For any smooth variation γ(t) = q ⊙
−→exp

∫ τ
0 fu(t,s)ds, we can write the Volterra expansion

γ(t) = q +

k∑

i=1

∫
· · ·
∫

0≤si≤...≤s1≤τ

q ⊙ fu(t,s1) ⊙ . . . ⊙ fu(t,si) ds1 . . . dsi +O(tk+1). (10.21)

Let us write (cf. Remark 10.15) the controls u(t, si) = tū(t, si) for some suitable families ū(t, si).
Then (10.21) becomes, using the fact that f is linear in u, as follows

γ(t) = q +
k∑

i=1

ti
∫
· · ·
∫

0≤si≤...≤s1≤τ

q ⊙ fū(t,s1) ⊙ . . . ⊙ fū(t,si) ds1 . . . dsi +O(tk+1). (10.22)

By definition of privileged coordinates we have fu(t,si) ∈ F (−1) for each i, hence fū(t,si) ∈ F (−1) and

fū(t,s1) ⊙ . . . ⊙ fū(t,si) ∈ F (−j) (10.23)

Let us apply the differential operator (10.23) to a coordinate function xβα, with α = 1, . . . , k and

β = 1, . . . , nα. Since ν(x
β
α) = α we have

fū(t,s1) ⊙ . . . ⊙ fū(t,si)x
β
α ∈ F (−i+α) (10.24)

Therefore, for every α > i, this function has positive weight and vanishes when evaluated at x = 0.

In privileged coordinates satisfying (10.19), this says that, for every i = 1, . . . , k, the sum in
(10.21) up to the ith-term contains only element in Diq.

To prove the converse inclusion we have to show that, given arbitrary elements ξi ∈ Diq for
i = 1, . . . , k, we can find a smooth variation that has these vectors as elements of its jet. The proof
is constructive and we start with some preliminary lemmas.

Lemma 10.32. Let m,n be two integers. Assume that we have two flows such that, as operators

Pt = Id + V tn +O(tn+1),

Qt = Id +Wtm +O(tm+1).

Then PtQtP
−1
t Q−1

t = Id + [V,W ]tn+m +O(tn+m+1).
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Proof. Define R(t, s) := PtQsP
−1
t Q−1

s . We are interested in the expansion of R(t, t) with respect to
t. Since P0 = Q0 = Id, we have R(0, s) = R(t, 0) = Id, for every t, s ∈ R. This implies that, when
writing the Taylor expansion of PtQsP

−1
t Q−1

s , only mixed derivatives in t and s gives contribution.
Using that

P−1
t = Id− tnV +O(tn+1), Q−1

t = Id− tmW +O(tm+1).

one gets

(Id + tnV +O(tn+1))(Id + smW+O(sm+1))(Id − tnV +O(tn+1))(Id − smW +O(sm+1)) =

= Id + tnsm(V W −WV ) +O(tn+m+1)

= Id + tnsm[V,W ] +O(tn+m+1)

and the lemma is proved.

Exercise 10.33. Assume that the flow Pt satisfies Pt = Id + V tn + O(tn+1). Show that the
nonautonomous vector field Vt associated to Pt satisfies Vt = ntn−1V +O(tn).

Lemma 10.34. For all i1, . . . , ih ∈ {1, . . . , k} and l ≥ h, there exists an admissible variation
u(t, s), depending only on the Lie bracket structure, such that

q ⊙
−→exp

∫ τ

0
fu(t,s)ds = q + tl[fi1 , . . . , [fih−1

, fih ]](q) +O(tl+1). (10.25)

Proof. The lemma is proved by induction on h.
(i) For all i = 1, . . . , k and l ≥ 1 there exists an admissible variation u(t, s) such that

q ⊙
−→exp

∫ τ

0
fu(t,s)ds = q + tlfi(q) +O(tl+1).

In fact, it is sufficient to take u = (u1, . . . , uk) such that ui = tl and uj = 0 for all j 6= i.
(ii) For all i, j ∈ {1, . . . , k} and l ≥ 2, we have to show that there exists an admissible variation

u(t, s) such that

q ⊙
−→exp

∫ τ

0
fu(t,s)ds = q + tl[fi, fj](q) +O(tl+1).

In fact, it is sufficient to apply Lemma 10.32 where Pt and Qt are the flows generated by the
nonautonomous vector fields Vt = tl−1fi1 and Wt = tfi2 , respectively.

Iterating this argument the lemma is proved.

In other words we proved that every bracket monomial of degree i can be presented as the i-th
term of a jet of some admissible variation. Now we prove that we can do the same for any linear
combination of such monomials (recall that Di is the linear span of all i-th order brackets).

Lemma 10.35. Let π = π(f1, . . . , fm) be a bracket polynomial of degree deg π ≤ l. There exists
an admissible variation u(t, s), depending only on the Lie bracket structure, such that

q ⊙
−→exp

∫ τ

0
fu(t,s)ds = q + tlπ(f1, . . . , fm)(q) +O(tl+1). (10.26)
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Proof. Let π(f1, . . . , fm) =
∑N

j=1 Vj(f1, . . . , fm) where Vj are monomials. By our previous argu-

ment we can find uj(t, s), for s ∈ [0, τj ] such that

q ⊙
−→exp

∫ τj

0
fuj(t,s)ds = q + tlVj(f1, . . . , fm)(q) +O(tl+1).

Then (10.26) is obtained choosing as u(t, s), where s ∈ [0, τ ] and τ :=
∑N

j=1 τj the concatenation
of controls defined as follows

u(t, s) = uj

(
t, s −

j−1∑

i=1

τi

)
, if

j−1∑

i=1

τi ≤ s <
j∑

i=1

τi, 1 ≤ j ≤ N,

where the sum is understood to be zero for j = 1.

Exercise 10.36. Complete the proof by showing that the flow associated with u has as main term
in the Taylor expansion

∑
j Vj at order l. Then prove, by using a time rescaling argument, that

also any monomial of type αV for α ∈ R can be presented in this way.

We are now in position to complete the proof of Claim (i) of Theorem 10.31

Proof of Theorem 10.31, Claim (i), part 2. We have to prove the remaining inclusion

{
k∑

i=1

tiξi | ξi ∈ Diq

}
⊂ JfqM. (10.27)

Let us consider a k-th jet j =
∑k

i=1 t
iξi, with ξi ∈ Diq. We prove the statement by steps: at i-th

step we built an admissible variation whose i-th Taylor polynomial coincide with the one of j.

- Thanks to Lemma 10.35, there exists a smooth admissible variation γ1(t) such that

γ1(t) = q ⊙
−→exp

∫ τ

0
fu(t,s)ds, γ̇(t) = ξ1

Then we will have γ1(t) = tξ1 + t2η2 +O(t3) where η2 ∈ D2
q from the first part of the proof.

- Thanks to Lemma 10.35, there exists a smooth admissible variation γ̃2(t) such that

γ̃2(t) = q ⊙
−→exp

∫ τ

0
fv(t,s)ds, γ̃2(t) = t2(ξ2 − η2) +O(t3)

Defining1 the product γ2(t) := (γ̃2 ∗ γ1)(t) we have

γ2(t) = tξ1 + t2η2 + t2(ξ2 − η2) + t3η3 +O(t4)

= tξ1 + t2ξ2 + t3η3 +O(t4)

where η3 ∈ D3
q .

At every step we can correct the right term of the jet and after k steps we have the inclusion.

1we define the product of two curves γ(t) = q ⊙ Pt and γ′(t) = q ⊙ P ′
t as follows: (γ′ ∗ γ)(t) := q ⊙ Pt ⊙ P ′

t .
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Proof of Theorem 10.31, Claim (ii). We have to prove that

j ∼ j′ ⇐⇒ j − j′ =
k∑

i=1

tiηi, ηi ∈ Di−1
q .

(⇒). Assume that j ∼ j′, where j = Jkq γ =
∑
tiξi and j

′ = Jkq γ
′ =

∑
tiξ′i. Then γ′ = γ ⊙Qt for

some slow flow Qt ∈ Pf0 of the form

Qt = Q1
t

⊙ · · · ⊙Qht ,

Qit = P it ⊙
−→exp

∫ τ

0
ftvi(t,s)ds ⊙ (P it )

−1,

for some P i ∈ Pf and some admissible variations vi(t, s), for i = 1, . . . , h. It is sufficient to prove
it for the case h = 1. By formula (6.27) we have that

Qt = Pt ⊙
−→exp

∫ τ

0
ftv(t,s)ds ⊙ P−1

t = −→exp
∫ τ

0
(AdPt)ftv(t,s)ds,

then by linearity of f we have

Qt =
−→exp

∫ τ

0
t(AdPt)fv(t,s)ds.

Now recall that Pt =
−→exp

∫ τ
0 fw(t,θ)dθ for some admissible variation w(t, θ) and from (6.24) we get

Qt =
−→exp

∫ τ

0
t −→exp

∫ s

0
adfw(t,θ)dθ fv(t,s)ds.

Finally, if γ(t) = q ⊙
−→exp

∫ τ
0 fu(t,s)ds we can write

γ′(t) = q ⊙
−→exp

∫ τ

0
fu(t,s)ds ⊙

−→exp
∫ τ

0
t −→exp

∫ s

0
adfw(t,θ)dθ fv(t,s)ds.

Expanding with respect to t we have Qt ≃ (Id + t
∑
tiVi) = Id +

∑
ti+1Vi where Vi is a bracket

polynomial of degree ≤ i. Due to the presence of t it is easy to see that in the expansion of γ′ we
will find the same terms of γ plus something that belong to Di−1.

(⇐). Assume now that j = Jkq γ =
∑
tiξi and j

′ = Jkq γ
′ =

∑
tiξ′i, with

j − j′ =
k∑

i=1

tiηi, ηi ∈ Di−1
q .

We need to find a slow flow Qt such that γ′ = γ ⊙Qt. In other words it is sufficient to prove that
we can realize with a slow flow every jet of type

∑k
i=1 t

iηi, ηi ∈ Di−1
q . To this purpose one just

adapts arguments from the proof of part (i), using the following crucial observation, which given
an adaptation of Lemma 10.32.

Lemma 10.37. Let Pt, Qt be two flows with Pt ∈ Pf and Qt ∈ Pf0 (or Pt ∈ Pf0 and Qt ∈ Pf ).
Then PtQtP

−1
t Q−1

t ∈ Pf0 .

279



Proof. If Qt ∈ Pf0 then Q−1
t ∈ Pf0 . Moreover from the definition of Pf0 we have that PtQtP

−1
t ∈ Pf0 .

Hence also their composition is in Pf0 .

We have the following corollary of Theorem 10.31, part (i).

Corollary 10.38. In privileged coordinates (x1, . . . , xk) defined by the splitting Rn = Rn1⊕. . .⊕Rnk

we have

JfqM =








tx1 +O(t2)
t2x2 +O(t3)

...
tkxk


 : xi ∈ Rni , i = 1, . . . , k




. (10.28)

Proof. Indeed we know that Di = Rn1 ⊕ . . .⊕ Rni and writing

ξi = xi,1 + . . .+ xi,i, xi,j ∈ Rnj

we have, expanding and collecting terms

k∑

i=1

tiξi = tξ1 + t2ξ2 + . . .+ tkξk

= tx1,1 + t2(x2,1 + x2,2) + . . . + tk(xk,1 + . . .+ xk,k)

= (tx1,1 + t2x2,1 + . . .+ tkxk,1, t
2x2,2 + . . .+ tkxk,2, t

kxk,k)

Corollary 10.39. The nonholonomic tangent space T fq M is a smooth manifold of dimension

dimT fq M =
∑k(q)

i=1 ni(q). In privileged coordinates we have

T fq M =








tx1
t2x2
...

tkxk


 : xi ∈ Rni , i = 1, . . . , k




, (10.29)

and dilations {δα}α>0 acts on T fq M in the following quasi-homogeneous way

δα(tx1, . . . , t
kxk) = (αtx1, . . . , α

ktkxk).

Proof. It follows directly from Corollary 10.38 that two elements j and j′ can be written in coor-
dinates as

j = (tx1 +O(t2), t2x2 +O(t3), . . . , tkxk),

j′ = (ty1 +O(t2), t2y2 +O(t3), . . . , tkyk).

Moreover, thanks to Theorem 10.31, claim (ii), we have that j ∼ j′ if and only if xi = yi for all
i = 1, . . . , k.
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Remark 10.40. Notice that a polynomial differential operator homogeneous with respect to ν (i.e.,
whose monomials are all of same weight) is homogeneous with respect to dilations δt : Rn → Rn

defined by

δt(x1, . . . , xk) = (tx1, t
2x2, . . . , t

kxk), t > 0. (10.30)

In particular for a homogeneous vector field X of weight h it holds δt∗X = t−hX.

Now we can improve Proposition 10.25 and see that actually the jet of a horizontal vector field
is a vector field on the tangent space and belongs to F (−1) (in privileged coordinates).

Lemma 10.41. Fix a set of privileged coordinates. Let V ∈ F (−1), then the vector field V̂ ∈
Vec(T fq M) induced on the nonhonolomic tangent space writes as follows

V =




v1(x)
v2(x)
...

vk(x)


 =⇒ V̂ =




v̂1(x)
v̂2(x)
...

v̂k(x)


 (10.31)

where v̂i is the homogeneous term of order i− 1 of vi.

Proof. Let V ∈ F (−1) and γ(t) be an admissible variation. When expressed in coordinates we have

V =




v1(x)
v2(x)
...

vk(x)


 , γ(t) =




tx1 +O(t2)
t2x2 +O(t3)

...
tkxk,




Thanks to Exercise 10.11, the coordinate representation of (Jkq V )(Jkq γ) is given as the k-th jet of
tV (γ(t)). Hence we compute

(Jkq V )(Jkq γ) =




tv1(tx1 +O(t2), . . . , tkxk)
tv2(tx1 +O(t2), . . . , tkxk)

...
tvk(tx1 +O(t2), . . . , tkxk)


 (10.32)

Notice that V ∈ F (−1) means exactly that decomposing V in coordinates as follows

V =
k∑

i=1

vi(x)
∂

∂xi
=

k∑

i=1

ni∑

j=1

vji (x)
∂

∂xji
,

every vi is a function of order ≥ i−1, since ν(∂/∂xji ) = −i. Let us denote with v̂i the homogeneous

part of vi of order i−1. To compute the value of V̂ then we have to restrict its action on admissible
variations from T fq M , then evaluate and neglect the higher order part (that corresponds to the
projection on the factor space) in order to have

vi(tx1 +O(t2), . . . , tkxk) = ti−1v̂i(x1, . . . , xk) +O(ti)
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and using identity 10.32 we have

(Jkq V )
∣∣∣
T f
q M

=




tv1(tx1 +O(t2), . . . , tkxk)
tv2(tx1 +O(t2), . . . , tkxk)

...
tvk(tx1 +O(t2), . . . , tkxk)


 =




tv̂1 +O(t2)
t2v̂2 +O(t3)

...
tkv̂k +O(tm+1)


 (10.33)

from which (10.31) follows.

Remark 10.42. Notice that, since v̂i is a homogeneous function of weight i − 1, it depends only
on variables x1, . . . , xi−1 of weight equal of smaller than its weight. Hence V̂ has the following
triangular form

V̂ (x) =




v̂1
v̂2(x1)

...
v̂k(x1, . . . , xk−1)


 (10.34)

A triangular vector field of the kind (10.34) is complete and its flow can be easily computed by a
step by step substitution.

10.3.2 Existence of privileged coordinates: proof of Theorem 10.30.

Fix a generating frame {f1, . . . , fm} of the distribution D. Assume that D is bracket generating of
step k at the point q

D1
q ⊂ D2

q ⊂ . . . ⊂ Dkq = TqM. (10.35)

Denote by dj := dimDjq the dimension of the elements of the flag, for j = 1, . . . , k.

Definition 10.43. A set V1, . . . , Vn of n vector fields on M is said to be a privileged frame for D
at q if it satisfies the following properties:

(a) Vi = πi(f1, . . . , fm), where πi is some bracket polynomial, for i = 1, . . . , n,

(b) deg πi ≤ j for every i ≤ dj ,

(c) Djq = span{V1(q), . . . , Vdj (q)}, for j = 1, . . . , k.

A privileged frame can be constructed as follows: choose V1, . . . , Vd1 among the vector fields
{f1, . . . , fm} in such a way that Dq = span{V1(q), . . . , Vd1(q)}, then fix Vd1+1, . . . , Vd2 among the
set {[fi, fj ] : i, j = 1, . . . ,m} in such a way that D2

q = span{V1(q), . . . , Vd2(q)}, and so on.

Remark 10.44. Given a privileged frame V1, . . . , Vn, one can introduce on TqM the weight on the
coordinates (y1, . . . , yn) induced by the flag. In other words we write every element v in TqM along
the basis V1(q), . . . , Vn(q) and set

v = (y1, . . . , yn) =

n∑

i=1

yiVi(q), where ν(yi) = wi := j if dj−1 < i ≤ dj

Identifying v ∈ TqM with a constant vector field, it makes sense to consider the value of a polynomial
bracket X = π(f1, . . . , fm) at the point q and consider its weight ν(X).
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Privileged coordinates are then easily build in terms of a privileged frame.

Theorem 10.45. Let V1, . . . , Vn be a privileged frame at q. Then the map

Ψ : Rn →M, Ψ(s1, . . . , sn) = q ⊙ es1V1 ⊙ . . . ⊙ esnVn , (10.36)

is a local diffeomorphism at s = 0 and its inverse Ψ−1 defines privileged coordinates around q.

Proof. The map (10.46) is a local diffeomorphism at s = 0 since

∂Ψ

∂si

∣∣∣
s=0

= Vi(q), i = 1, . . . , n (10.37)

and these vectors are linearly independent by property (c) of privileged frame. To complete the
proof we have to show that:

(i) Ψ−1
∗ (Djq) = span

{
∂

∂s1
, . . . ,

∂

∂sdj

}
, for every j = 1, . . . , k,

(ii) Ψ−1
∗ fi ∈ F (−1) for every i = 1, . . . ,m.

Claim (i), that is Ψ defines linearly adapted coordinates, easily follows from property (c) of privi-
leged frame and (10.37). On the other hand, claim (ii) is not trivial since requires the computation
of the differential of Ψ at every point, and not only at s = 0.

We prove the following preliminary result.

Lemma 10.46. Let X = π(f1, . . . , fm)(q) ∈ Vec(TqM) be a bracket polynomial with ν(X) ≤ h.
Given a polynomial vector field on TqM

Y (y) :=
∑

yil · · · yi1(ad Vil ⊙ · · · ⊙ adVi1X)(q) (10.38)

there exists polynomials pi(y) ∈ F (wi−h) for i = 1, . . . , n such that

Y (y) :=

n∑

i=1

pi(y)Vi(q)

We stress that the weight of the polynomial pi in the previous Lemma is independent on the
degree of the polynomial vector field.

Proof of Lemma 10.46. It easily follows from definition of weights that

adVil ⊙ · · · ⊙ adVi1(X) ∈ F (−w), w =
l∑

j=1

wij + h.

By additivity, every term in the sum (10.38) belongs to F (−h). Then if we rewrite the sum (10.38)
in terms of the basis Vi(q), for i = 1, . . . , n we have that every coefficient pi(y) must belong to
F (wi−h), since ν(Vi(q)) = wi.

The proof of existence of privileged coordinates is completed by the following proposition,
applied in the particula case h = 1.
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Proposition 10.47. Let X = π(f1, . . . , fm) be a bracket polynomial with ν(X) ≤ h and Ψ be the
map defined in (10.46). Then Ψ−1

∗ X ∈ F (−h).

Proof. Writing the vector field Ψ−1
∗ X in coordinates

Ψ−1
∗ X =

n∑

i=1

ai(s)
∂

∂si
, (10.39)

the statement is proved if we show that ai ∈ F (wi−h). We compute the differential of Ψ (cf. also
Exercice 2.31)

Ψ∗
∂

∂si
=

∂

∂ε

∣∣∣∣
ε=0

q ⊙ es1V1 ⊙ · · · ⊙ e(si+ε)Vi ⊙ · · · ⊙ esnVn

= q ⊙ es1V1 ⊙ · · · ⊙ esiVi ⊙ Vi ⊙ esi+1Vi+1 ⊙ · · · ⊙ esnVn

= q ⊙ es1V1 ⊙ · · · ⊙ esnVn︸ ︷︷ ︸
Ψ(s)

⊙ e−snVn ⊙ · · · ⊙ e−si+1Vi+1 ⊙ Vi ⊙ esi+1Vi+1 ⊙ · · · ⊙ esnVn .

In geometric notation we can write

Ψ∗
∂

∂si
= esnVn∗ · · · esi+1Vi+1

∗ Vi

∣∣∣
Ψ(s)

. (10.40)

Remember that, as operator on functions, etY∗ = e−t ad Y . This implies that in (10.40) we have a
series of bracket polynomials. Applying Ψ∗ to (10.39) one gets

X
∣∣∣
Ψ(s)

=

n∑

i=1

ai(s)e
snVn
∗ · · · esi+1Vi+1

∗ Vi

∣∣∣
Ψ(s)

.

Now we apply e−s1V1∗ · · · e−snVn∗ to both sides to compute the vector field at the point q

e−s1V1∗ · · · e−snVn∗ X
∣∣∣
q
=

n∑

i=1

ai(s)e
−s1V1∗ · · · e−si−1Vi−1

∗ Vi

∣∣∣
q
. (10.41)

Rewriting the last identity in the basis V1(q), . . . , Vn(q) we have

n∑

i=1

bi(s)Vi(q) =
n∑

i,j=1

ai(s)(Vi(q) + ϕij(s)Vj(q)), (10.42)

for some smooth functions bi, ϕij such that ϕij(0) = 0. Applying Lemma 10.46 to X and Vi, for
i = 1, . . . , n, we have

bi ∈ F (wi−h), ϕij ∈ F (wj−wi).

On the other hand we can rewrite relation between coefficients as follows

B(s) = A(s)(I +Φ(s)),
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where we denote B(s) = (b1(s), . . . , bn(s)), A(s) = (a1(s), . . . , an(s)) and Φ(s) = (ϕij(s))ij . Notice
that I +Φ(s) is invertible. Thus we get

A(s) = B(s)(I +Φ(s))−1

=
∑

p≥0

(−1)p(BΦp)(s),

and we observe that

(B)i = bi ∈ F (wi−h),

(BΦ)i =

n∑

j=1

bjϕji ∈ F (wj−h+wi−wj) = F (wi−h).

Iterating the argument it follows that (BΦp)i ∈ F (wi−h) for every p ≥ 0. Hence ai ∈ F (wi−h).

Remark 10.48. The previous proof can be rewritten in purely algebraic way through chronological
notation. In the above proof nothing changes if we consider some permutation σ = (i1, . . . , in) of
(1, . . . , n) and work with the map

Ψσ : (s1, . . . , sn) 7→ q ⊙ esinVin ⊙ . . . ⊙ esi1Vi1 .

We stress that, even if we are allowed to switch the position of the vector fields in the composition,
the coordinate si has to correspond to the vector field Vi, for i = 1, . . . , n.

We summarize the previous considerations in the next corollary.

Corollary 10.49. Let V1, . . . , Vn be a privileged frame at q and σ = (i1, . . . , in) a permutation of
{1, . . . , n}. Then the map

Ψσ : Rn →M, Ψσ(s1, . . . , sn) = q ⊙ esinVin ⊙ . . . ⊙ esi1Vi1 , (10.43)

is a local diffeomorphism at s = 0 and its inverse Ψ−1
σ defines privileged coordinates around q.

Remark 10.50. As a particular case of Corollary 10.49 we can consider the coordinate map

Φ : (x1, . . . , xn) 7→ q ⊙ exnVn ⊙ . . . ⊙ ex1V1 .

Computing the differential Φ∗ (cf. also Exercice 2.31) it is easy to see that for every i = 1, . . . , n

Φ−1
∗ Vi

∣∣∣
x1=···=xi−1=0

= ∂xi . (10.44)

This implies in particular that for i = 1, . . . , d1 we have in coordinates

Vi = ∂xi +
∑

j≥d1
aij(x1, . . . , xd1)∂xj , (10.45)

for some functions aij depending only on the coordinates of the first layer. Indeed the set of vector
fields {Vi}i=1,...,d1 are chosen among f1, . . . , fm (generating Dq) and have weight −1.
Exercise 10.51. Let V1, . . . , Vn be a privileged frame at q. Prove that the map

Ψ+ : Rn →M, Ψ+(s1, . . . , sn) = q ⊙ e
∑n

i=1 siVi (10.46)

is a local diffeomorphism at s = 0 and its inverse Ψ−1
+ defines privileged coordinates around q.
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10.3.3 Nonholonomic tangent spaces in low dimension

In Riemannian geometry the above procedure becomes very easy since when k = 1 we have that
JkqM = TqM and moreover every admissible variation is an admissible trajectory. This implies
that if (M,U, f) is a Riemannian manifold and X is a vector field on M , then the vector field

X̂ induced on the tangent space T fq M = TqM is simply the constant vector field defined on TqM
defined by the value of X at q. Moreover, every local basis of the tangent space is a privileged
frame and defines privileged coordinates

As soon as the structure is not Riemannian, the structure of the noholonomic tangent space
can depend on the point q and on the growth vector (d1, . . . , dk) of the distribution D at q. Let us
study the low dimensional cases.

If we consider regular sub-Riemannian distributions, namely when the dimension of Dq is con-
stant with respect to q, then the simplest case is obtained in dimension n = 3 for a distribution of
rank 2.

If the distribution is also equiregular, i.e, the dimension of all Djq is constant with respect to q,
then the growth vector is necessarily (2, 3) at every point. In this case the nonholonomic tangent
space is unique and given by the Heisenberg group.

Example 10.52 (Heisenberg group). Assume n = 3 and that growth vector is (2, 3). Then we
consider coordinates (x1, x2, x3) and weights (w1, w2, w3) = (1, 1, 2). Since we work locally around
the point q, it is not restrictive to assume that D is locally generated by two vector fields f1, f2 and
that we can choose as a privileged frame

V1 = f1, V2 = f2, V3 = [f1, f2]. (10.47)

Using privileged coordinates defined in Remark 10.50, we have that

V1 = f1 = ∂x1 , V2 = f2 = ∂x2 + αx1∂x3 , (10.48)

for some α ∈ R. On the other hand since

V3 = [f1, f2] = α∂x3 (10.49)

and V3(0) = ∂x3 from (10.44) we get α = 1. This gives the following normal form for the generating
frame of the nonholonomic tangent space

f1 = ∂x1 , f2 = ∂x2 + x1∂x3 . (10.50)

If we admit the regular distribution D of rank 2 in dimension n = 3 to be not equiregular, then
the growth vector can be of the form (2, . . . , 2, 3) at some singular points. In the simplest case, for
a growth vector (2, 2, 3), the nonholonomic tangent space is the Martinet space.

Example 10.53 (Martinet space). Assume n = 3 and that growth vector is (2, 2, 3). This means
that we have coordinates (x1, x2, x3) with corresponding weights (w1, w2, w3) = (1, 1, 3). Since we
work locally around the point q, it is not restrictive to assume that D is locally generated by two
vector fields f1, f2 and that we can choose as a privileged frame

V1 = f1, V2 = f2, V3 = [f1, [f1, f2]]. (10.51)
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Indeed if the three vector fields above are not linearly independent then we can choose V3 =
[f2, [f2, f1]] and we reduce to the previous case by switching the role of f1 and f2. Moreover denote
fu := u1f1 + u2f2 and consider the linear map

ϕ : R2 → TqM/Dq, ϕ(u1, u2) := [fu, [f1, f2]](q) mod Dq.

Since ϕ is surjective (by bracket-generating assumption) and dimTqM/Dq = 1, then kerϕ is one
dimensional. Thus, up to a rotation of constant angle of the generating frame f1, f2 (which does
not change the value [f1, f2]), we can assume that f2 ∈ kerϕ. In particular this implies

[f2, [f1, f2]] = 0. (10.52)

Using privileged coordinates defined in Remark 10.50, we have that

V1 = f1 = ∂x1 , V2 = f2 = ∂x2 + x1a(x1, x2)∂x3 , (10.53)

for some smooth function a(x1, x2). Since ν(f2) = −1 then a(x1, x2) = αx1+βx2 for some α, β ∈ R
and we get the coordinate representation

f1 = ∂x1 , f2 = ∂x2 + (αx21 + βx1x2)∂x3 . (10.54)

Since [f1, [f1, f2]] = 2α∂x3 , the requirement V3|x=0 = ∂x3 in (10.51) gives α = 1/2. Moreover for
this value o α we have [f2, [f1, f2]] = β∂x3 and the condition (10.52) gives β = 0. We have then the
normal form for the generating frame of the nonholonomic tangent space

f1 = ∂x1 , f2 = ∂x2 +
1

2
x21∂x3 , f3 = ∂x3 (10.55)

If we consider non regular distributions, then the simplest case is obtained as the nonholonomic
tangent space to a distribution D in dimension n = 2 in some singular point. Analogously to the
previous case the growth vector can be of the form (1, . . . , 1, 2) and the simplest case is obtained
when the growth vector is (1, 2). In this case nonholonomic tangent space is the Grushin plane.

Example 10.54 (Grushin plane). Assume n = 2 and that growth vector is (1, 2). Then we consider
coordinates (x1, x2) and weights (w1, w2) = (1, 2). Let {f1, f2} be a generating rame for D. It is
not restrictive to assume that

V1 = f1, V2 = [f1, f2]

By properties of privileged coordinates defined in Remark 10.50, we have that

V1 = f1 = ∂x1 , V2 = [f1, f2] = ∂x2 .

Moreover f2 should be a vector field of weight −1 that vanishes at x = 0 so it is necessarily of the
form

f2 = αx1∂x2 ,

for some α ∈ R. The condition [f1, f2] = ∂x2 gives α = 1 and we obtain the normal form for the
generating frame of the nonholonomic tangent space

f1 = ∂x1 , f2 = x1∂x2 . (10.56)
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10.4 Metric meaning

In this section we study the interplay between the distance and the nonholonomic tangent space.
In other words we consider a sub-Riemannian manifold (M,U, f) and we want to understand what
is the metric structure which is naturally defined on the nonholonomic tangent space and in which
sense the latter gives a good approximation of the original structure in a neighborhood of a point.

To this aim, we start by exploring in more details, given a vector field V , in which sense the
vector field V̂ defined on T fq M is an approximation of V .

Lemma 10.55. Let V be a horizontal vector field on M and let V̂ be its nilpotent approximation.
In privileged coordinates around q we have equality

εδ 1
ε
∗V = V̂ + εW ε, (10.57)

where {δα}α>0 denotes the family of dilations defined in (10.30) and W ε depends smoothly on the
parameter ε. In particular V̂ is characterized as follows

V̂ = lim
ε→0

εδ 1
ε
∗V. (10.58)

Proof. Recall that in privileged coordinates any horizontal vector fields V belongs to F (−1) and V̂
is its homogeneous part of degree −1. Let us write V = V̂ +W and apply the dilation δ 1

ε
∗ to both

sides of the equality. We have

δ 1
ε
∗V = δ 1

ε
∗V̂ + δ 1

ε
∗W =

1

ε
V̂ + δ 1

ε
∗W, (10.59)

where we used the homogeneity of V̂ (cf. Remark 10.40). Noting that W ∈ F (0), hence setting
W ε := εδ 1

ε
∗W we have that W ε is smooth with respect to ε and εW ε → 0 for ε→ 0.

Geometrically this procedure means that if we consider a small neighborhood of the point q
and we make a nonisotropic dilation (with scaling related to the local structure of the Lie bracket)
then V̂ catches the principal terms of V . This is a nonholonomic analogous of the linearization of
a vector filed in the Euclidean case.

10.4.1 Convergence of the sub-Riemannian distance and the Ball-Box theorem

Given a sub-Riemannian structure on M , with dimM = n, let us denote by {f1, . . . , fm} a gener-
ating frame and fix a point q where the structure has step k.

Once we have fixed a privileged coordinate chart, we can treat the vector fields {f1, . . . , fm} as
vector fields in Rn, introduce the family of dilations {δα}α>0 defined in (10.30) and introduce the
vector fields

f εi := εδ 1
ε
∗fi, i = 1, . . . ,m. (10.60)

Thanks to Lemma 10.55 we have that f εi → f̂i for i = 1, . . . ,m and we can define the sub-

Riemannian structure f ε and f̂ on Rn defined by the generating frames {f ε1 , . . . , f εm} and {f̂1, . . . , f̂m}
respectively.

From the definition (10.60) of the vector fields f εi , it follows directly that the sub-Riemannian
distance defined by these vector fields is, up to a rescaling, the original sub-Riemannian distance
in the dilated coordinates. More precisely we have the following relation.
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Proposition 10.56. Let dε and d be the sub-Riemannian distances on Rn associated with the
sub-Riemannian structures f ε and f , respectively. Then for every x, y ∈ Rn we have

dε(x, y) =
1

ε
d(δε(x), δε(y)). (10.61)

Proposition 10.56 is saying that dε is d when we “blow-up” the space near the point q and
rescale the distances. This relations rewrites as follows in terms of balls.

Corollary 10.57. Let B(x, r) (resp. Bε(x, r)) be the sub-Riemannian ball with respect to the dis-
tance d (resp. dε). Then for every r > 0 and ε > 0 one has

δε(B
ε(x, r)) = B(δεx, εr). (10.62)

In particular δε(B
ε(0, 1)) = B(0, ε) for every ε > 0.

The previous results relates the original distance d with the approximating one dε. Next we
move to the convergence of dε for ε→ 0.

We start from an auxiliary proposition, studying the convergence of the end-point maps. Denote
Eεx and Êx the end-point map of the approximating frame and the nilpotent one based at a point
x ∈ Rn.

Proposition 10.58. Let x ∈ Rn. Then Eεx → Êx uniformly on balls in L2([0, 1],Rk).

Proof. Fix a control u ∈ L2([0, 1],Rk) and consider the solution xε(t) and x̂(t) of the two systems

ẋ =
m∑

i=1

ui(t)f
ε
i (x), ẋ =

m∑

i=1

ui(t)f̂i(x), (10.63)

with some fixed initial condition x(0) = x0 ∈ Rn. Using Lemma 10.55, we write f εi = f̂i+ εW
ε
i and

the first equation in (10.63) becomes

ẋ =

m∑

i=1

ui(t)f̂i(x) + ε

m∑

i=1

ui(t)W
ε
i (x). (10.64)

In the right hand side the term

W ε
t (x) := ε

m∑

i=1

ui(t)W
ε
i (x), (10.65)

is a non-autonomous vector field smoothly depending on the parameter ε. Moreover W ε
t (x) → 0

when ε→ 0. From classical result in ODE theory (continuity with respect to parameters) it follows
that the solution xε(t) converges uniformly on [0, T ] to the solution x̂(t). In particular the final
points converges and the convergence can be taken uniform Notice that, since nilpotent vector fields
are complete (cf. Remark 10.42), the solution x̂(t) is defined for all t ∈ R.

We notice that actually, thanks to the smoothness of the end-point map, the convergence in
Proposition 10.58 holds in the C∞ sense.

We now prove a key uniform Hölder estimate (with respect to ε) for the approximating sub-
Riemannian distance.
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Proposition 10.59. For every compact K ⊂ Rn there exists ε0, C > 0, depending on K, such that

dε(x, y) ≤ C|x− y|1/k, ∀ ε ∈ (0, ε0), ∀x, y ∈ K. (10.66)

where k is the degree of nonholonomy of the sub-Riemannian structure.

Proof. Let V̂1, . . . , V̂n be a privileged frame for the nilpotent system f̂ at the origin (cf. Defini-
tion 10.43), such that V̂i = πi(f̂1, . . . , f̂k) for some bracket polynomials πi, where i = 1, . . . , n. By
construction we have

V̂1(0) ∧ . . . ∧ V̂n(0) 6= 0. (10.67)

By continuity, this implies that they are linearly independent also in a small neighborhood of the
origin and, thanks to quasi-homogeneity, this implies

V̂1(x) ∧ . . . ∧ V̂n(x) 6= 0, ∀x ∈ Rn. (10.68)

Let V ε
i := πi(f

ε
1 , . . . , f

ε
k) denote vector fields defined by the same bracket polynomials, written in

terms of the vector fields of the approximating system. Fix a compact K ⊂ Rn and let ε0 = ε0(K)
be chosen such that

V ε
1 (x) ∧ . . . ∧ V ε

n (x) 6= 0, ∀x ∈ K, ∀ ε ≤ ε0. (10.69)

Recall that by Lemma 10.35, given a bracket polynomial πi(g1, . . . , gk), with deg πi = wi, there
exists an admissible variation ui(t, s), depending only on πi, such that

−→exp
∫ 1

0
gui(t,s)ds = Id + twiπi(g1, . . . , gk) +O(twi+1).

If we apply this lemma for gi := f εi we find ui(t, s) such that

−→exp
∫ 1

0
f εui(t,s)ds = Id + twiV ε

i +O(twi+1), ∀ ε > 0,

where we recall wi = deg πi. Next we define the map for ε > 0

Φε(t1, . . . , tn, x) := x ⊙
−→exp

∫ 1

0
f ε
u1(t

1/w1
1 ,s)

ds ⊙ . . . ⊙
−→exp

∫ 1

0
f ε
un(t

1/wn
n ,s)

ds. (10.70)

Notice that we have the expansion

x ⊙
−→exp

∫ 1

0
f ε
ui(t

1/wi
i ,s)

ds = x+ tiV
ε
i (x) +O(t

wi+1

wi
i ). (10.71)

In particular (10.71) is a C1 map in a neighborhood of t = 0 but, in general, it is not C2 as soon
as wi > 1.

From this observation it follows that Φε is C1 as a function of t, being a composition of C1

maps. Clearly Φε is smooth as a function of x. Combining the contributions of (10.71) we obtain
the expansion

Φε(x; t1, . . . , tn) = x+

n∑

i=1

tiV
ε
i (x) + o(|t|), (10.72)
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This implies that the partial derivatives

∂Φε

∂ti

∣∣∣
t=0

= V ε
i (x), (10.73)

are linearly independent at the origin thanks to (10.69) and Φε is a local diffeomorphism at t =
(t1, . . . , tn) = 0. Applying classical Implicit Function Theorem (see Corollary 2.54) we have that
there exists a constant c > 0 satifying

B(x, cr) ⊂ Φε(x;B(0, r)), x ∈ K, (10.74)

where here B(x, r) denotes the ball in Rn and c is independent of x, ε and the parameter r is small
enough.

Let us denote now with Ex the end-point map based at the point x ∈ Rn (with analogous
meaning for Eεx, Êx), and with B the unit ball in Lk2 [0, 1].

We claim that (10.74) implies that there exists a constant c′ such that for all r > 0 and ε > 0
small enough

B(x, c′r) ⊂ Eεx(r
1
mB), (10.75)

Since t 7→ ui(t, ·) is a smooth map for every i, and ui(0, ·) = 0 we have that there exist a
constant ci such that

t ∈ B(0, r)⇒ ui(t, ·) ∈ cirB, (10.76)

⇒ ui(t
1/wi , ·) ∈ cir1/wiB, (10.77)

for all r > 0 small enough. For such values of r > 0 we have thanks to the inclusion (10.75) that
for every x, y ∈ K such that |x− y| ≤ cr then we have also dε(x, y) ≤ r1/k. Here we used the fact
that dε is the infimum of norm of u such that Eεx(u) = y. From this it follows the inequality for
every x, y ∈ K

dε(x, y) ≤ c− 1
k |x− y| 1k (10.78)

We are now ready to prove the main result of this section.

Theorem 10.60. dε → d̂ uniformly on compacts sets in Rn × Rn.

Proof. By Proposition 10.59 it is sufficient to prove the pointwise convergence. We prove the
following inequalities

lim
ε→0+

dε(x, y) = d̂(x, y) (10.79)

but (10.79) is a consequence of Theorem 3.51 and the fact that the vector fields f εi converge to f̂i
thanks to Lemma 10.55.

Combining Proposition 10.59 and Theorem 10.60 we obtain the following corollary.

Corollary 10.61. For every compact K ⊂ Rn there exists C > 0, depending on K, such that

d̂(x, y) ≤ C|x− y|1/k, ∀x, y ∈ K, (10.80)

where k is the degree of nonholonomy of the sub-Riemannian structure.
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The uniform convergence given in Theorem 10.60 permits us to prove an important quantitative
estimate on the shape of sub-Riemannian balls. Let us introduce the box Box(ε) of size ε > 0
defined, in privileged coordinates x = (x1, . . . , xk) ∈ Rn1 ⊕ . . .⊕ Rnk = Rn, as follows

Box(ε) = {x ∈ Rn : |xi| ≤ εi, i = 1, . . . , k}. (10.81)

Theorem 10.62 (Ball-Box Theorem). There exists constants ε0 > 0, and c1, c2 > 0 such that

c1Box(ε) ⊂ B(x, ε) ⊂ c2Box(ε), ∀ ε ≤ ε0

where B(x, ε) is the sub-Riemannian ball in privileged coordinates.

Notice that this statement is weaker with respect to Theorem 10.60.

Proof. We work in privileged coordinates (x1, . . . , xk) ∈ Rn1 ⊕ . . .⊕Rnk = Rn where the base point
is identified with the origin. Consider the unit ball B̂(0, 1) for the nilpotent approximation and fix
two constants c1, c2 > 0 such that there exists a cube [−c1, c1]n ⊂ B̂(0, 1) ⊂ [−c2, c2]n. Thanks to
Theorem 10.60 there exists ε0 > 0 such that for all ε ≤ ε0 we have

[−c1, c1]n ⊂ Bε(0, 1) ⊂ [−c2, c2]n,

where Bε(0, 1) is the unit ball defined by the metric dε. Applying the dilation δε to all sets we get
that

δε[−c1, c1]n ⊂ δεBε(0, 1) ⊂ δε[−c2, c2]n

but for c > 0 we have that δε[−c, c]n = cBox(ε). Moreover by definition of dε we have that
δε(B

ε(0, 1)) = B(0, ε) (cf. also Corollary 10.57).

10.5 Algebraic meaning

In this last section we discuss the algebraic structure induced on the nonholonomic tangent space
and in particular how one can recover it in purely algebraic terms from the data of the vector fields.

Recall that given a generating frame {f1, . . . , fm} for the sub-Riemannian structure and a point

q ∈M , there are well defined vector field {f̂1, . . . , f̂m} on the nilpotent tangent space T fq M .

We start with a basic observation on the structure of the Lie algebra generated by {f̂1, . . . , f̂m}.

Proposition 10.63. The Lie algebra Lie{f̂1, . . . , f̂m} is a finite-dimensional nilpotent Lie algebra
of step k, where k is the nonholonomic degree of the sub-Riemannian structure at q.

Proof. Consider privileged coordinates in a neighborhood of the point q. Then f̂i has weight −1
and is homogeneous with respect to the dilation {δα}α>0. Moreover, for any bracket monomial of
length j we have

ν([f̂i1 , . . . , [f̂ij−1 , f̂ij ]]) = −j.

Since every vector field V satisfies ν(V ) ≥ −k, it follows that every bracket of length j ≥ k is
necessarily zero.
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Consider now the Lie algebra of vector fields L := Lie{f̂1, . . . , f̂m}. This Lie algebra is finite-
dimensional and nilpotent thanks to Proposition 10.63. Denote by G the Lie group of associated
flows (cf. Section 7.1)

G = {et1 f̂i1 ⊙ . . . ⊙ etj f̂ij : ti ∈ R, j ∈ N}. (10.82)

endowed with the product ⊙ . By construction this is a nilpotent Lie group, and Lie(G) = L.

The group G naturally acts on T fq M = JkqM/ ∼. Denote by [j] ∈ JkqM/ ∼ the equivalence class

of a jet j = Jkq γ ∈ JkqM . The action of an generator of G on T fq M is defined follows

etf̂i · [j] := [γ ⊙ etf̂i ], j = Jkq γ ∈ JkqM. (10.83)

Notice that this is a right action. Let us denote by G0 the isotropy sub-group of the trivial element
of T fq M under the action of G.

Collecting the results proved in Section 10.3, and in particular Theorem 10.31, we have the
following result

Theorem 10.64. The nilpotent approximation T fq M has the structure of a smooth manifold of

dimension dimT fq M = dimM , diffeomorphic to the homogeneous space G/G0.

Remark 10.65. The diffeomorphism given by Theorem 10.64 was built explicitly thanks to privileged
coordinates in in Section 10.3.

Notice that indeed this could also be seen as a consequence of the theory of Lie groups. Indeed
it is not difficult to see that actually in the proof of Theorem 10.31 we proved that the action of
the Lie group G on T fq M is transitive, hence T fq M is diffeomorphic to the quotient of G with the
isotropy group of the identity, that is G0. See for instance [73].

Next we give a purely algebraic interpretation of this construction at the level of Lie algebras.
Let us first recall some definitions.

Definition 10.66. The free associative algebra Am (or A(x1, . . . , xm)) generated by x1, . . . , xm is
the associative algebra of linear combinations of words of its generators, where the product of two
element is defined by juxtaposition.

The free Lie algebra Liem or Lie{x1, . . . , xm} is the algebra of elements of Am, where the product
of two elements xi, xj is defined by the commutator [xi, xj ] = xixj − xjxi.

The free nilpotent Lie algebra of step k on m generators, denoted Liekm or Liek{x1, . . . , xm}, is
the quotient Liekm = Liem/Ik+1 of the free Lie algebra Liem by the ideal Ik+1 defined through the
iterative formula

I1 = Liem, Ij = [Ij−1,Liem], j > 1.

Let Liek{x1, . . . , xm} be the free Lie algebra nilpotent of step k generated by the elements
x1, . . . , xm. Notice when taking an element π ∈ Liek{x1, . . . , xm} we can define a vector field
π(X1, . . . ,Xm) replacing generators with vector fields X1, . . . ,Xm (on Rn).

Definition 10.67. Given a sub-Riemannian structure defined by the generating frame {f1, . . . , fm}
that is bracket generating of step k at a point q, we define the core algebra

Cq := {π ∈ Liek{X1, . . . ,Xm} |π(f1, . . . , fm)(q) ∈ Ddeg π−1
q }. (10.84)
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Exercise 10.68. (i) Prove that Cq is a subalgebra. (ii) Consider the subset

Nq := {π ∈ Liek{X1, . . . ,Xm} |π(f1, . . . , fm)(x) ∈ Ddeg π−1
x ,∀x ∈ Oq}.

Prove that Nq is an ideal contained in Cq.

Denote by Gkm the connected and simply connected Lie group generated by the free nilpotent
Lie algebra Liekm and exp : Liekm → Gkm its exponential map. Let Cq = exp(Cq).

Theorem 10.69. There exists a canonical isomorphism

φ : Gkm/Cq → T fq M.

Its differential φ∗ sends generators X1, . . . ,Xm to f̂1, . . . , f̂m.

Remark 10.70. The core algebra can be rewritten in privileged coordinates in terms of the nilpotentb
approximation of the generators as follows {f̂1, . . . , f̂m} as follows:

Cq := {π ∈ Liek{X1, . . . ,Xk} |π(f̂1, . . . , f̂m)(0) = 0}

Exercise 10.71 (Grushin plane). Let us analyze this algebraic construction in the case of the
simplest non-holonomic tangent space arising as the tangent space to a non-regular structure in
R2: the Grushin plane described in the Example 10.54.

We have shown that the nonholonomic tangent space has the following normal form

f̂1 = ∂x1 , f̂2 = x1∂x2 . (10.85)

In these coordinates indeed the two vector fields have weight one and are homogeneous with respect
to the weights ν(x1) = 1 and ν(x2) = 2. In this case m = k = 2.

Since [f̂1, f̂2] =: f̂3 = ∂x2 it is easy to see that

Lie{f̂1, f̂2} = span{f̂1, f̂2, f̂3} (10.86)

On the other hand the core algebra at the origin C0 contains f̂2 since it has weight one but it
vanishes at zero (does not belong to D1

0), hence C0 = span{f̂2}.

10.5.1 The equiregular case

The last two statements concerns the case of a equiregular distribution. In this case one can show
that the subgroup G0 of G is trivial.

Proposition 10.72. Assume that the sub-Riemannian structure is equiregular, i.e., for every i ≥ 1
the integer di(q) = dimDiq does not depend on q. Then Cq is an ideal. In particular T fq M is a Lie
group.

Proof. To prove that the core subalgebra Cq is an ideal, it is sufficient to prove that X ∈ Cq implies
[fi,X] ∈ Cq for every i = 1, . . . ,m.

Thanks to the characterization (10.84), this is equivalent to prove the following claim: for
every X = π(f1, . . . , fm) bracket polynomial of degree deg π ≤ h such that X(q) ∈ Dh−1

q , we have

[fi,X](q) ∈ Dhq for every i = 1, . . . ,m.
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Since the structure has constant growth vector, we can consider a frame V1, . . . , Vn that is
privileged at every point in neighborhood Oq of q. In particular for every x ∈ Oq we have

Dix = span{V1(x), . . . , Vdi(x)}. (10.87)

Let X = π(f1, . . . , fm) be a bracket polynomial of degree deg π ≤ h. Then there exist smooth
functions aj such that

X(x) =
∑

j:wj≤h
aj(x)Vj(x), ∀x ∈ Oq. (10.88)

Thanks to (10.87), X(q) ∈ Dh−1
q is equivalent to require that aj(q) = 0 for every j such that wj = h.

Let us compute

[fi,X] =


fi,

∑

wj≤h
ajVj


 =

∑

wj≤h
aj[fi, Vj ] + fi(aj)Vj . (10.89)

Evaluating (10.89) at the point q and using that aj(q) = 0 for every j such that wj = h, it follows
that [fi,X](q) ∈ Dhq for every i = 1, . . . ,m, that is our claim.

Corollary 10.73. Assume that the sub-Riemannian structure is equiregular and {f1, . . . , fm} is a

generating frame. Then f̂1, . . . , f̂m are a basis of left-invariant vector fields on T fq M .

Proof. This is a consequence of the following two general facts: (i). given a right action of a Lie
group on a homogeneous space G/H, then a left-invariant vector fields on X induces a well-defined
vector field π∗X on G/H through the projection π : G → G/H. (ii). if the Lie subgroup H is
normal and G/H is a Lie group, then π∗X is also left-invariant.

Exercise 10.74. Prove the two statement contained in the proof of Corollary 10.73.

10.6 Carnot groups: normal forms in low dimension

In this section we provide normal forms for Carnot groups in dimension less or equal than 5. Recall
that Carnot groups arise as nonholonomic tangent spaces to equiregular sub-Riemannian structures.

For an equiregular sub-Riemannian structure the integer di = dimDiq is independent on q.
Denote by k the step of the sub-Riemannian structure, namely k is the smallest integer such that
dk = dimM . The sequence of integers (d1, . . . , dk) is called growth vector of the sub-Riemannian
structure.

Exercise 10.75. Prove that if the structure is equiregular of step k, then the sequence (d1, . . . , dk)
is strictly increasing. Hint : prove that if di = di+1 for some i < k, then di = dk = dimM ,
contradicting the minimality of k.

From Exercice 10.75 it easily follows that the possibilities for the growth vector in dimension
less or equal than 5 are the following:

• (2, 3), if dim(M) = 3,

• (2, 3, 4) and (3, 4), if dim(M) = 4,
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• (2, 3, 4, 5), (2, 3, 5), (3, 4, 5), (3, 5) and (4, 5), if dim(M) = 5.

The following theorem gives normal forms for Carnot groups of given growth vector in the prevuois
list. In every case but the last one, the normal form is unique.

Theorem 10.76. Let (M,U, f) be an equiregular sub-Riemannian manifold. Its nonholonomic
tangent space at a point is isomorphic to one of the following sub-Riemannian structures:

- (Heisenberg). If the growth vector is (2, 3), then the orthonormal frame can be chosen as

f1 = ∂x1 ,

f2 = ∂x2 + x1∂x3 .

- (Engel). If the growth vector is (2, 3, 4), then the orthonormal frame can be chosen as

f1 = ∂x1 ,

f2 = ∂x2 + x1∂x3 + x1x2∂x4 .

- (Quasi-Heisenberg). If the growth vector is (3, 4), then the orthonormal frame can be chosen
as

f1 = ∂x1 ,

f2 = ∂x2 + x1∂x4 ,

f3 = ∂x3 .

- (Cartan rank 2). If the growth vector is (2, 3, 5), then the orthonormal frame can be chosen
as

f1 = ∂x1 ,

f2 = ∂x2 + x1∂x3 +
1

2
x21∂x4 + x1x2∂x5 .

- (Goursat rank 2). If the growth vector is (2, 3, 4, 5), then the orthonormal frame can be chosen
as

f1 = ∂x1 ,

f2 = ∂x2 + x1∂x3 +
1

2
x21∂x4 +

1

6
x31∂x5 .

- (Cartan rank 3). If the growth vector is (3, 5), then the orthonormal frame can be chosen as

f1 = ∂x1 −
1

2
x2∂x4 ,

f2 = ∂x2 +
1

2
x1∂x4 −

1

2
x3∂x5 ,

f3 = ∂x3 +
1

2
x2∂x5 .
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- (Goursat rank 3). If the growth vector is (3, 4, 5), then the orthonormal frame can be chosen
as

f1 = ∂x1 −
1

2
x2∂x4 −

1

3
x1x2∂x5 ,

f2 = ∂x2 +
1

2
x1∂x4 +

1

3
x21∂x5 ,

f3 = ∂x3 .

- (Bi-Heisenberg). If the growth vector is (4, 5), then there exists α ∈ R such that the orthonor-
mal frame can be chosen as

f1 = ∂x1 −
1

2
x2∂x5 ,

f2 = ∂x2 +
1

2
x1∂x5 ,

f3 = ∂x3 −
α

2
x4∂x5 ,

f4 = ∂x4 +
α

2
x3∂x5 .

Proof. Recall that given X1, . . . ,Xm a basis of a Lie algebra g. The coefficients cℓij satisfying

[Xi,Xj ] =
∑

ℓ c
ℓ
ijXℓ are called structural constant of g.

To prove the theorem we will show that, for every choice of the growth vector, we can choose
an orthonormal basis of the Lie algebra such that the structural constants are uniquely determined
by the sub-Riemannian structure.

We give a sketch of the proof for the (3, 4, 5), (2, 3, 4, 5) and (4, 5) cases. The other cases can
be treated in a similar way.

Since we deal with sub-Riemannian structures (M,U, f) that are left-invariant on a nilpotent
Lie group, we can identify the distribution D with its value at the identity of the group D0.

(a). Growth vector equal to (3, 4, 5). Let (M,U, f) be a nilpotent (3, 4, 5) sub-Riemannian
structure. Let {X1,X2,X3} be a basis for D0, as a vector subspace of the Lie algebra. By our
assumption on the growth vector we know that

dim span{[X1,X2], [X1,X3], [X2,X3]}/D0 = 1. (10.90)

In other words, we can define the skew-simmetric bilinear map

Φ(·, ·) : D0 ×D0 → T0G/D0, Φ(v,w) = [V,W ](0) mod D0 (10.91)

where V,W are smooth vector fields such that V (0) = v and W (0) = w. The condition (10.90)
implies that there exists a one dimensional subspace in the kernel of this map, namely a non-zero
vector v such that Φ(v, ·) = 0. Let f3 be a vector in ker Φ ∩ D0 with norm one, and consider its
orthogonal subspace f⊥3 ⊂ D0 with respect to the inner product on the distribution D0. For every
positively oriented orthonormal basis {X1,X2} on f⊥3 it is easy to see that f4 := [X1,X2] is well
defined, i.e., it does not depend on rotation of X1,X2 within f⊥3 . Then, reasoning as in the proof
of Example 10.53, we can choose a rotation of the original orthonormal frame, denoted {f1, f2},
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such that [f2, f4] = 0. Defining f5 := [f1, f4], this gives a choice of a canonical basis {f1, . . . , f5}
for the Lie algebra where the only non trivial commutator relations are the following

[f1, f2] = f4, [f1, f4] = f5.

(b). Growth vector equal to (2, 3, 4, 5). Let (M,U, f) be a nilpotent (3, 4, 5) sub-Riemannian
structure. Consider any orthonormal basis {X1,X2} for the two dimensional subspace D0. By our
assumption on the growth vector we have that

dim span{X1,X2, [X1,X2]} = 3

dim span{X1,X2, [X1,X2], [X1, [X1,X2]], [X2, [X1,X2]]} = 4. (10.92)

As in part (a) of the proof, it is easy to see that there exists a suitable rotation of {X1,X2} on D0,
which we denote {f1, f2}, such that [f2, [f1, f2]] = 0. Using the Jacobi identity we get

[f2, [f1, [f1, f2]]] = −[f1, [f2, [f1, f2]]− [[f1, f2], [f1, f2]] = 0.

Then we set f3 := [f1, f2], f4 := [f1, [f1, f2]] and f5 := [f1, [f1, [f1, f2]]]. Relations (10.92) imply
that these vectors are linearly independent. Hence we have a canonical basis for the Lie algebra,
where the only nontrivial commutator relations are the folllowing:

[f1, f2] = f3, [f1, f3] = f4, [f1, f4] = f5.

(c). Growth vector equal to (4, 5). In the case (4, 5) let us consider again the map

Φ(·, ·) : D0 ×D0 → T0G/D0, Φ(v,w) = [V,W ](0) mod D0 (10.93)

since dimT0G/D0 = 1, the map (10.93) is represented by a single 4 × 4 skew-simmetric matrix L.
By skew-symmetricity its eigenvalues are purely imaginary ±iα1,±iα2, one of which is different
from zero. Up to relabelling we can assume that α1 6= 0. Then choose f1, f2, f3, f4 be a basis that
puts the matrix L in the normal form for skew-symmetric matrices

L =




0 α1

−α1 0
0 α2

−α2 0




Defining f5 := [f1, f2] we have that and setting α := α2/α1 we get [f3, f4] = αf5.

Remark 10.77. In the proof of Theorem 10.76 we showed that the structure of Lie brackets can is
uniquely determined (in the last example modulo a real parameter α) by the choice of a suitable
orthonormal frame.

Of course the coordinate representation of vector fields satisfying these structural equation is not
unique (compare for instance the vector fields in the case of the Heisenberg group with respect to
those used in the prevuois chapters). Nevertheless all of them are obtained from the one described
here with a change of variable, thanks to the Nagano principle [82].

Exercise 10.78. Prove that in the three examples described in Section 10.3.3 there is a unique
normal form for the generating frame, even if the distribution is endowed with an inner product.
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Chapter 11

Regularity of the sub-Riemannian
distance

In this chapter we focus our attention on the analytical properties of the sub-Riemannian squared
distance from a fixed point. In particular we want to answer to the following questions:

(i) Which is the (minimal) regularity of d2 that one can expect?

(ii) Is the sub-Riemannian distance d2 smooth? If not, can we characterize smooth points?

11.1 General properties of the distance function

In this section we recall and collect some general properties of the sub-Riemannian distance and
results related to it, some of which we already proved in the previous chapters.

Let us consider a free sub-Riemannian structure (M,U, f) where the vector fields f1, . . . , fm
define a generating family, i.e.

f : U→ TM, f(u, q) =
m∑

i=1

uifi(q)

Here U is a trivial Euclidean bundle on M of rank m.

Definition 11.1. Fix a point q ∈ M . The flag of the sub-Riemannian structure at the point q is
the sequence of subspaces {Diq}i∈N defined by

Diq := span{[fj1 , . . . , [fjl−1
, fjl ]](q), ∀ l ≤ i}

Notice that D1
q = Dq is the set of admissible directions. Moreover, by construction, Diq ⊂ Di+1

q for
all i ≥ 1.

The bracket generating assumptions implies that

∀ q ∈M, ∃m(q) > 0 s.t. Dm(q)
q = TqM

and m(q) is called the step of the sub-Riemannian structure at q.
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Exercise 11.2. 1. Prove that the filtration defined by the subspaces Diq, for i ≥ 1, is independent
on the choice of a generating family (i.e., on the trivialization of U).

2. Show that m(q) does not depend on the generating frame. Prove that the map q 7→ m(q) is
upper semicontinuous.

In Chapter 10 we already proved that the sub-Riemannian distance is Hölder continuous. For
the reader’s convenience, we recall here the statement.

Proposition 11.3. For every q ∈ M there exists a neighborhood Oq such that ∀ q0, q1 ∈ Oq and
for every coordinate map φ : Oq → Rn

d(q0, q1) ≤ C|φ(q0)− φ(q1)|1/m

where m = m(q) is the step of the sub-Riemannian structure at q.

11.2 Regularity of the sub-Riemannian distance

In this section we fix once for all a point q0 ∈ M and a closed ball B = Bq0(r0) such that B is
compact. In particular for each q ∈ B there exists a minimizer joining q0 and q (see Corollary
8.63). In what follows we denote by f the squared distance from q0

f(·) = 1

2
d2(q0, ·). (11.1)

The main result of this chapter is the following.

Theorem 11.4. The function f
∣∣
B
: B → R is smooth on a open dense subset of B.

In the case of complete sub-Riemannian structures, since balls are compact for all radii, we have
immediately the following corollary

Corollary 11.5. Assume that M is a complete sub-Riemannian manifold and q0 ∈ M . Then f is
smooth on an open and dense subset of M .

We start by looking for necessary conditions for f to be C∞ around a point.

Proposition 11.6. Let q ∈ B and assume that f is C∞ at q. Then

(i) there exists a unique length minimizer γ joining q0 with q. Moreover γ is not abnormal and
not conjugate.

(ii) dqf = λ1, where λ1 is the final covector of the normal lift of γ.

Proof. Under the above assumptions the functional

Ψ : v 7→ J(v)− f(F (v)), v ∈ L∞([0, T ],Rk), (11.2)

is smooth and non negative. For every optimal trajectory γ, associated with the control u, that
connects q0 with q in time 1, one has

0 = duΨ = duJ − dqf ◦DuF. (11.3)
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Thus, γ is a normal extremal trajectory, with Lagrange multiplier λ1 = dqf. By Theorem 4.26,

we can recover γ by the formula γ(t) = π ◦ e(t−1) ~H (λ1). Then, γ is the unique minimizer of J
connecting its endpoints, and is normal.

Next we show that γ is not abnormal and not conjugate. For y in a neighbourhood Oq of q, let
us consider the map

Φ : Oq 7→ T ∗
q0M, Φ(y) = e−

~H(dyf). (11.4)

The map Φ, by construction, is a smooth right inverse for the exponential map, since

exp(Φ(y)) = π ◦ e ~H(e− ~H(dyf)) = π(dyf) = y. (11.5)

This implies that q is a regular value for the exponential map. Since q is a regular value for the
exponential map and, a fortiori, u is a regular point for the end-point map. This proves that u
corresponds to a trajectory that is at the same time strictly normal and not conjugate.

Remark 11.7. Notice that from the proof it follows that if we only assume that f is differentiable
at q, we can still conclude that there exists a unique minimizer γ joining q0 to q, and it is normal.

Moreover leu us notice that to conclude it is enough to assume that f is twice differentiable at
q. In particular a posteriori we can prove that whenever f is is twice differentiable at q then it is
C∞.

Before going further in the study of the smoothness property of the distance function, we are
already able to prove an important corollary of this result.
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Denote, for r > 0, Sr := f−1( r
2

2 ) the sub-Riemannian sphere of radius r centered at q0

Corollary 11.8. Assume that Dq0 6= Tq0M . For every r ≤ r0, the sphere Sr contains a non smooth
point of the function f.

Proof. Since r ≤ r0, the sphere Sr is non empty and contained in a compact ball. Assume, by
contradiction, that f is smooth at every point of Sr. Then Sr is a level set defined by f and dqf 6= 0
for every q ∈ Sr (since dqf is the nonzero covector attached at the final point of a geodesic, see
Proposition 11.6). It follows that Sr is a smooth submanifold of dimension n−1, without boundary.
Moreover, being the level set of a continuous function, Sr is closed, hence compact.

Let us consider the map

Φ : Sr → T ∗
q0M, Φ(q) = e−

~H(dqf),

By assumption f is smooth, hence Φ is a smooth right inverse of the exponential map (see also
(11.5)). In particular the differential of Φ is injective at every point. Moreover H(Φ(q)) = r since
f(q) = H(λ) = r for every q ∈ Sr. It follows that actually Φ defines a smooth immersion

Φ : Sr → H−1(r) ∩ T ∗
q0M (11.6)

of the sphere Sr into the set

Cr := H−1(r) ∩ T ∗
q0M =

{
λ ∈ T ∗

q0M :
1

2

k∑

i=1

〈λ, fi(q0)〉2 = r

}
.

Notice that Cr is a smooth connected and non compact n− 1 dimensional submanifold of the fiber
T ∗
q0M , indeed diffeomorphic to the cylinder Sk−1 × Rn−k (here k = dimDq0 < n is the rank of

the structure at the point q0). By continuity of Φ, the image Φ(Sr) is closed in Cr . Moreover,
since every immersion is a local submersion and dimSr = dimCr, the set Φ(Sr) is also open in Cr.
Hence it is connected. Since Φ(Sr) has no boundary, it is a connected component of Cr, namely
Φ(Sr) = Cr. This is a contradiction since, by continuity, Φ(Sr) is compact, while Cr is not.

Next we go back to the proof of the main result. Recall that q0 ∈ M is fixed and f is the one
half of the distance squared from q0. After Proposition 11.6, it is natural to introduce the following
definition.

Definition 11.9. Fix a point q0 ∈M . The set of smooth point from q0 is the set Σ ⊂M of q ∈M
such that there exists a unique lenght-minimizer γ joining q0 to q, that it is strictly normal, and
not conjugate.

From the proof of Proposition 11.6 (see also Remark 11.7) it follows that if the squared distance
f from q0, is smooth at q then q ∈ Σ. The name smooth point of f is justified by the following
theorem.

Theorem 11.10. The set Σ is open and dense in B. Moreover f is smooth at every point of Σ.

Proof. We divide the proof into three parts: (a) the set Σ is open, (b) the function f is smooth in
a neighborhood of every point of Σ, (c) the set Σ is dense in B.
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(a). To prove that Σ is open we have to show that for every q ∈ Σ there exists a neighborhood
Oq of q such that every q′ ∈ Oq is also in Σ.

Let us start by proving the following claim: there exists a neighborhood of q in B such that
every point in this neighborhood is reached by exactly one minimizer.

By contradiction, if this property is not true, there exists a sequence qn of points in B converging
to q such that (at least) two minimizers γn and γ′n joining q0 and qn. Let us denote by un and vn
the corresponding minimizing controls.

By Proposition 8.65, the set of controls associated with minimizers whose endpoint is in the
compact ball B is compact in L2 (w.r.t. the strong topology). Then there exist, up to considering
a subsequence, two controls u, v such that un → u and vn → v. Moreovers the limits u and v are
both minimizers and join q0 with q. Since by assumption there is a unique minimizer γ joining q0
with q, it follows that u = v is the corresponding control.

By smoothness of the end point map both DunF and DvnF tends to DuF , which has has full
rank (u is strictly normal, hence is not a critical point for F ). Hence, for n big enough, both DunF
and DvnF are surjective, i.e., un and vn are strictly normal, and we can build the sequence λn1 and
ξn1 of corresponding final covectors in T ∗

qnM satisfying

λn1DunF = un, ξn1DvnF = vn.

These relations can be rewritten in terms of the adjoint linear maps

(DunF )
∗λn1 = un, (DvnF )

∗ξn1 = vn.

Since both (DunF )
∗ and (DvnF )

∗ are a family of injective linear maps converging to (DuF )
∗ and

un, vn → u, it follows that the corresponding (unique) solutions λn1 and ξn1 also converge to the
solution of the limit problem (DuF )

∗λ1 = u, i.e, both converge to the final covector λ1 corresponding
to γ. By using the flow defined by the corresponding controls we can deduce the convergence of the
sequences λn0 and ξn0 of the initial covectors associated to un and vn to the unique initial covector
λ0 corresponding to γ.

Finally, since λ0 by assumption is a regular point of the exponential map, i.e., the unique
minimizer γ joining q0 to q is not conjugate, it follows that the exponential map is invertible in a
neighborhood Vλ0 of λ0 onto its image Oq := exp(Vλ0), that is a neighborhood of q. In particular
this proves our initial claim.

More precisely we have proved that for every point q′ ∈ Oq there exists a unique minimizer
joining q0 to q′, whose initial covector λ′ ∈ Vλ is a regular point of the exponential map. This
implies that every q′ ∈ Oq is a smooth point, and Σ is open.

(b). Now we prove that f is smooth in a neighborhood of each point q ∈ Σ. From the part (a)
of the proof it follows that if q ∈ Σ there exists a neighborhood Vλ0 of λ0 and Oq of q such that
exp|Vλ0 : Vλ0 → Oq is a smooth invertible map. Denote by Φ : Oq → Vλ0 its smooth inverse. Since
for every q′ ∈ Oq there is only one minimizer joining q0 to q′ with initial covector Φ(q′) it follows
that,

f(q′) =
1

2
d2(q0, q

′) = H(Φ(q′)),

that is a composition of smooth functions, hence smooth.

(c). Our next goal is to show that Σ is a dense set in B. We start by a preliminary definition.
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Definition 11.11. A point q ∈ B is said to be

(i) a fair point if there exists a unique minimizer joining q0 to q, that is normal.

(ii) a good point if it is a fair point and the unique minimizer joining q0 to q is strictly normal.

We denote by Σf and Σg the set of fair and good points, respectively.

We stress that a fair point can be reached by a unique minimizer that is both normal and
abnormal. From the definition it is immediate that Σ ⊂ Σg ⊂ Σf . The proof of (c) relies on the
following four steps:

(c1) Σf is a dense set in B,

(c2) Σg is a dense set in B,

(c3) f is Lipschitz in a neighborhood of every point of Σg,

(c4) Σ is a dense set in B.

(c1). Fix an open set O ⊂ B and let us show that Σf ∩ O 6= ∅. Consider a smooth function
a : O → R such that a−1([s,+∞[) is compact for every s ∈ R. Then consider the function

ψ : O → R, ψ(q) = f(q)− a(q)

The function ψ is continuous on O and, since f is nonnegative, the set ψ−1(]−∞, s[) are compact
for every s ∈ R due to the assumption on a. It follows that ψ attains its minimum at some point
q1 ∈ O. Define a control u1 associated with a minimizer γ joining q0 and F (u1) = q1.

Since J(u) ≥ f(F (u)) for every u, it is easy to see that the map

Φ : U → R, Φ(u) = J(u)− a(F (u))

attains its minimum at u1. In particular it holds

0 = Du1Φ = u1 − (dq1a)Du1F.

The last identity implies that u1 is normal and λ1 = dq1a is the final covector associated with the
trajectory. By Theorem 4.26, the corresponding trajectory γ is uniquely recovered by the formula

γ(t) = π◦e(t−1) ~H (dq1a). In particular γ is the unique minimizer joining q0 to q1 ∈ O, and is normal,
i.e. q1 ∈ Σf ∩O.

Remark 11.12. In the Riemannian case Σf = Σg since there are no abnormal extremal.

(c2). As in the proof of (c1), we shall prove that Σg ∩O 6= ∅ for any open O ⊂ B. By (c1) the
set Σf ∩ O is nonempty. For any q ∈ Σf ∩ O we can define rank q := rankDuF , where u is the
control associated to the unique minimizer γ joining q0 to q. To prove (c2) it is sufficient to prove
that there exists a point q′ ∈ Σf ∩O such that rank q′ = n (i.e., Du′F is surjective, where u′ is the
control associated to the unique minimizer joining q0 and q′). Assume by contradiction that

kO := max
q∈Σf∩O

rank q < n,

and consider a point q̂ where the maximum is attained, i.e., such that rank q̂ = kO.
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We claim that all points of Σf ∩O that are sufficiently close to q̂ have the same rank (we stress
that the existence of points in Σf ∩O arbitrary close to q̂ is also guaranteed by (c1)).

Assume that the claim is not true, i.e., there exist a sequence of points qn ∈ Σf ∩O such that
qn → q̂ and rank qn ≤ kO−1. Reasoning as in the proof of (a), using uniqueness and compactness of
the minimizers, one can prove that the sequence of controls un associated to the unique minimizers
joining q0 to qn satisfies un → û strongly in L2, where û is the control associated to the unique
minimizer joining q0 with q̂. By smoothness of the end-point map F it follows that DunF → DûF
which, by semicontinuity of the rank, implies the contradiction

rank q̂ = rankDûF ≤ lim inf
n→∞

rankDunF ≤ kO − 1.

Thus, without loss of generality, we can assume that rank q = kO < n for every q ∈ Σf ∩ O
(maybe by restricting our neighborhood O). We introduce the following set

Πq = e−
~H{ξ ∈ T ∗

qM | ξDuF = λ1DuF} ⊂ T ∗
q0M.

The set Πq is the set of initial covector λ0 ∈ T ∗
q0M whose image via the exponential map is the

point q.

Lemma 11.13. Πq is an affine subset of T ∗
q0M such that dimΠq = n − kO. Moreover the map

q 7→ Πq is continuous.

Proof. It is easy to check that the set Π̂q = {ξ ∈ T ∗
qM | ξDuF = λ1DuF} is an affine subspace of

T ∗
q0M . Indeed ξ ∈ Πq if and only if (DuF )

∗(ξ − λ1) = 0, that is

Π̂q = {ξ ∈ T ∗
qM | ξDuF = λ1DuF} = λ1 + ker (DuF )

∗,

Moreover dimker (DuF )
∗ = n − dim imDuF = n − kO. Since all elements ξ ∈ Π̂q are associated

with the same control u, we have that Πq = e− ~H(Π̂q) = P ∗
0,t(Π̂q), hence Πq is an affine subspace of

T ∗
q0M .
Let us now show that the map q 7→ Πq is continuous on Σf ∩O. Consider a sequence of points

qn in Σf ∩O such that qn → q ∈ Σf ∩O. Let un (resp. u) be the unique control associated with the
minimizing trajectory joining q0 and qn (resp. q). By the uniqueness-compactness argument already
used in the previous part of the proof we have that un → u strongly and moreover DunF → DuF .
Since rank DunF is constant, it follows that ker (DunF )

∗ → ker (DuF )
∗, as subspaces.

Consider now A ⊂ T ∗
q0M a kO-dimensional ball that contains λ0 = e− ~H(λ1) and is transversal to

Πq. By continuity A is transversal also to Πq′ , for q
′ ∈ Σf ∩O close to q. In particular Πq′ ∩A 6= ∅.

Since exp(Πq) = q, this implies that Σf ∩ O ⊂ exp(A). By (c1), Σf ∩ O is a dense set, hence
exp(A) is also dense in O. On the other hand, since exp is a smooth map and A is a compact ball
of positive codimension (kO < n), by Sard Lemma it follows that exp(A) is a closed dense set of O
that has measure zero, that is a contradiction.

(c3) The proof of this claim relies on the following result, which is of independent interest.

Theorem 11.14. Let K ⊂ B a compact in our ball such that any minimizer connecting q0 to
q ∈ K is strictly normal. Then f is Lipschitz on K.
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Proof of Theorem 11.14. Let us first notice that, since K is compact, it is sufficient to show that f
is locally Lipschitz on K.

Fix a point q ∈ K and some control u associated with a minimizer joining q0 and q (it may be
not unique). By our assumptions DuF is surjective, since u is strictly normal. Thus, by inverse
function theorem, there exist neighborhoods V of u in U and Oq of q in K, together with a smooth
map Φ : Oq → V that is a local right inverse for the end-point map, namey F (Φ(q′)) = q′ for all
q′ ∈ Oq (see also Theorem 2.54).

Fix then local coordinates around q. Since Φ is smooth, there exists R > 0 and C0 > 0 such
that

Bq(C0r) ⊂ F (Bu(r)), ∀ 0 ≤ r < R, (11.7)

where Bu(r) is the ball of radius r in L2 and Bq(r) is the ball of radius r in coordinates on M . Let
us also observe that, since J is smooth on, there exists C1 > 0 such that for every u, u′ ∈ Bu(R)
one has

J(u′)− J(u) ≤ C1‖u′ − u‖2
Pick then any point q′ ∈ K such that |q′ − q| = C0r, with 0 ≤ r ≤ R. By (11.7), there exists
u′ ∈ Bu(R) with ‖u′ − u‖2 ≤ r such that F (u′) = q′. Using that f(q′) ≤ J(u′) and f(q) = J(u),
since u is a minimizer, we have

f(q′)− f(q) ≤ J(u′)− J(u) ≤ C1‖u′ − u‖2 ≤ C ′|q′ − q|,

where C ′ = C1/C0. Notice that the above inequality is true for all q′ such that |q′ − q| ≤ C0R.
Since K is compact, and the set of control u associated with minimizers that reach the compact

set K is also compact, the constants R > 0 and C0, C1 can be chosen uniformly with respect to
q ∈ K. Hence we can exchange the role of q′ and q in the above reasoning and get

|f(q′)− f(q)| ≤ C ′|q′ − q|,

for every pair of points q, q′ such that |q′ − q| ≤ C0R.

To end the proof of (c3) it is sufficient to show that if q ∈ Σg there exists a (compact) neigh-
borhood Oq of q such that every point in Oq is reached by only strictly normal minimizers (we
stress that no uniqueness is required here). By contradiction, assume that the claim is not true.
Then there exists a sequence of points qn converging to q and a choice of controls un, such that
the corresponding minimizers are abnormal. By compacness of minimizers there exists u such that
un → u and by uniqueness of the limit u is abnormal for the point q, that is a contradiction.

(c4). We have to prove that Σ ∩O is non empty for every open neighborhood O in B. By (c3)
we can choose q′ ∈ Σg ∩ O and fix O′ ⊂ O neighborhood of q such that f is Lipschitz on O′. It is
then sufficient to show that Σ ∩O′ 6= ∅.

By Proposition 11.6 (see also Remark 11.7) every differentiability point of f is reached by a
unique minimizer that is normal, hence is a fair point. Since we know that f is Lipschitz on O′,
it follows by Rademacher Theorem that almost every point of O′ is fair, namely meas(Σf ∩O′) =
meas(O′).

Let us also notice that the set Σf ∩O′ of fair points of O′ is also contained in the image of the
exponential map. Thanks to the Sard Lemma, the set of regular values of the exponential map in
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O′ is also a set of full measure in O′. Since by definition a point in Σf that is a regular value for
the exponential map is in Σ, this implies that meas(Σ ∩O′) = meas(Σf ∩O′) = meas(O′). This in
particular proves that Σ ∩O′ is not empty.

As a corollary of this result we can prove that if there are no abnormal minimizers, then the
set of smooth points has full measure

Corollary 11.15. Assume that M is a complete sub-Riemannian structure and that there are no
abnormal minimizers. Then meas(M \ Σ) = 0.

This result is not known in general, and it is indeed a main open problem of sub-Riemannian
geometry to establish whether Corollary 11.15 remains true in presence of abnormal minimizers.

We stress that the assumptions of the theorem are satisfied in the case of Riemannian structure.
Indeed in this case, following the same arguments of the proof, we have the following result.

Proposition 11.16. Let M be a sub-Riemannian structure that is Riemannian at q0,i.e., such that
dimDq0 = dimM . Then there exists a neighborhood Oq0 of q0 such that f is smooth on Oq0 .

11.3 Locally Lipschitz functions and maps

If S is a subset of a vector space V , we denote by conv(S) the convex hull of S, that is the smallest
convex set containing S. It is characterized as the set of v ∈ V such that there exists a finite
number of elements v0, . . . , vℓ ∈ S such that

v =

ℓ∑

i=0

λivi, λi ≥ 0,

n∑

i=0

λi = 1.

If ϕ :M → R is a function defined on a smooth manifold M , we say that ϕ is locally Lipschitz
is ϕ is locally Lipschitz in any coordinate chart, as a function defined on Rn.

The classical Rademacher theorem implies that a locally Lipschitz function ϕ : M → R is
differentiable almost everywhere. Still we can introduce a weak notion of differential that is defined
at every point.

If ϕ : M → R is locally Lipschitz, any point q ∈ M is the limit of differentiability points. In
what follows, whenever we write dqϕ, it is implicitly understood that q ∈ M is a differentiability
point of ϕ.

Definition 11.17. Let ϕ : M → R be a locally Lipschitz function. The (Clarke) generalized
differential of ϕ at the point q ∈M is the set

∂qϕ := conv{ξ ∈ T ∗
qM | ξ = lim

qn→q
dqnϕ} (11.8)

Notice that, by definition, ∂qϕ is a subset of T ∗
qM . It is closed by definition and bounded since the

function is locally Lipschitz, hence compact.

Exercise 11.18. (i). Show that the mapping q 7→ ∂qϕ is upper semicontinuous in the following
sense: if qn → q in M and ξn → ξ in T ∗M where ξn ∈ ∂qnϕ, then ξ ∈ ∂qϕ.

(ii). We say that q is regular for ϕ if 0 /∈ ∂qϕ. Prove that the set of regular point for ϕ is open
in M .
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From the very definition of generalized differential we have the following result.

Lemma 11.19. Let ϕ : M → R be a locally Lipschitz function and q ∈ M . The following are
equivalent:

(i) ∂qϕ = {ξ} is a singleton,

(ii) dqϕ = ξ and the map x 7→ dxϕ is continuous at q, i.e., for every sequence of differentiability
point qn → q we have dqnϕ→ dqϕ.

Remark 11.20. Let A be a subset of Rn of measure zero and consider the set of half-lines Lv =
{q + tv, t ≥ 0} emanating from q and parametrized by v ∈ Sn−1. It follows from Fubini’s theorem
that for almost every v ∈ Sn−1 the one-dimensional measure of the intersection A ∩ Lv is zero.

If we apply this fact to the case when A is the set at which a locally Lipschitz function ϕ : Rn →
R fails to be differentiable, we deduce that for almost all v ∈ Sn−1, the function t 7→ ϕ(q + tv) is
differentiable for a.e. t ≥ 0.

Example 11.21. Let ϕ : R→ R defined by

(i) ϕ(x) = |x|. Then ∂0ϕ = [−1, 1],

(ii) ϕ(x) = x, if x < 0 and ϕ(x) = 2x, if x ≥ 0. In this case ∂0ϕ = [1, 2].

In particular in the first example 0 is a minimum for ϕ and 0 ∈ ∂0ϕ. In the second case the function
is locally invertible near the origin and ∂0ϕ is separated from zero. In what follows we will prove
that these fact corresponds to general results (cf. Proposition 11.25 and Theorem 11.29).

The following is a classical hyperplane separation theorem for closed convex sets in Rn.

Lemma 11.22. Let K and C be two disjoint, closed, convex sets in Rn, and suppose that K is
compact. Then there exists ε > 0 and a vector v ∈ Sn−1 such that

〈x, v〉 > 〈y, v〉+ ε, ∀x ∈ K, ∀ y ∈ C. (11.9)

We also recall here another useful result from convex analysis.

Lemma 11.23 (Carathéodory). Let S ⊂ Rn and x ∈ conv(S). Then there exists x0, . . . , xn ∈ S
such that x ∈ conv{x0, . . . , xn}.

The notion of generalized gradient permits to extend some classical properties of critical points
of smooth functions.

Proposition 11.24. Let ϕ : M → R be locally Lipschitz and q be a local minimum for ϕ. Then
0 ∈ ∂qϕ.

Proof. Since the claim is a local property we can assume without loss of generality thatM = Rn. As
usual we will identify vectors and covectors with elements of Rn and the duality covectors-vectors
is given by the Euclidean scalar product, that we still denote 〈·, ·〉.

Assume by contradiction that 0 /∈ ∂qϕ and let us show that q cannot be a minimum for ϕ. To
this aim, we prove that there exists a direction w in Sn−1 such that the scalar map t 7→ ϕ(q + tw)
has no minimum at t = 0.
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The set ∂qϕ is a compact convex set that does not contain the origin, hence by Lemma 11.22,
there exist ε > 0 and v ∈ Sn−1 such that

〈ξ, v〉 < −ε, ∀ ξ ∈ ∂qϕ.

By definition of generalized differential, one can find open neighborhoods Oq of q in Rn and Vv of
v in Sn−1 such that for all differentiability point q′ ∈ Oq of ϕ one has

〈
dq′ϕ, v

′〉 ≤ −ε/2, ∀ v′ ∈ Vv.

Fix q′ ∈ Oq where ϕ is differentiable and a vector w ∈ Vv such that the set of differentiable points
with the line {q + tw} has full measure (cf. Remark 11.20). Then we can compute for t > 0

ϕ(q + tw)− ϕ(q) =
∫ t

0
〈dq+swϕ,w〉 ds ≤ −εt/2.

Thus ϕ cannot have a minimum at q.

The following proposition gives an estimate for the generalized differential of some special class
of function.

Proposition 11.25. Let ϕω : M → R be a family of C1 functions, with ω ∈ Ω a compact set.
Assume that the following maps are continuous:

(ω, q) 7→ ϕω(q), (ω, q) 7→ dqϕω

Then the function a(q) := min
ω∈Ω

ϕω(q) is locally Lipschitz on M and

∂qa ⊂ conv{dqϕω| ∀ω ∈ Ω s.t. ϕω(q) = a(q)}. (11.10)

Proof. As in the proof of Proposition 11.24 we can assume that M = Rn. Notice that, if we denote
by Ωq = {ω ∈ Ω, ϕω(q) = a(q)} we have by compactness of Ω that Ωq is non empy for every q ∈M
and we can rewrite the claim as follows

∂qa ⊂ conv{dqϕω|ω ∈ Ωq}. (11.11)

We divide the proof into two steps. In step (i) we prove that a is locally Lipschitz and then in (ii)
we show the estimate (11.11).

(i). Fix a compact K ⊂M . Since every ϕω is Lipschitz on K and Ω is compact, there exists a
common Lipschitz constant CK > 0, i.e. the following inequality holds

ϕω(q)− ϕω(q′) ≤ CK |q − q′|, ∀ q, q′ ∈ K, ω ∈ Ω,

Clearly we have

min
ω∈Ω

ϕω(q)− ϕω(q′) ≤ CK |q − q′|, ∀ q, q′ ∈ K, ω ∈ Ω,

and since the last inequality holds for all ω ∈ Ω we can pass to the min with respect to ω in the
left hand side and

a(q)− a(q′) ≤ CK |q − q′|, ∀ q, q′ ∈ K.
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Since the constant CK depends only on the compact setK we can exchange in the previous reasoning
the role of q and q′, that gives

|a(q)− a(q′)| ≤ CK |q − q′|, ∀ q, q′ ∈ K.
(ii). Define Dq := conv{dqϕω| ∀ω ∈ Ωq}. Let us first prove prove that dqa ∈ Dq for every

differentiability point q of a.
Fix any ξ /∈ Dq. By Lemma 11.22 applied to the pair Dq and {ξ}, there exist ε > 0 and

v ∈ Sn−1 such that
〈dqϕω, v〉 > 〈ξ, v〉 + ε, ∀ω ∈ Ωq,

By continuity of the map (ω, q) 7→ dqϕω, there exists a neighborhood Oq of q and V neighborhood
of Ωq such that 〈

dq′ϕω′ , v
〉
> 〈ξ, v〉 + ε/2, ∀ q′ ∈ Oq, ∀ω′ ∈ V,

An integration argument let us to prove that there exists δ > 0 such that for ω ∈ V
1

t
(ϕω(q + tv)− ϕω(q)) > 〈ξ, v〉+ ε/4, ∀ 0 < t < δ.

Clearly we have
1

t
(ϕω(q + tv)− a(q)) ≥ 〈ξ, v〉+ ε/4, ∀ 0 < t < δ.

and since the minimum in a(q+ tv) = minω∈Ω ϕω(q+ tv) is attained for ω in Ωq+tv ⊂ V for t small
enough, we can pass to the minimum w.r.t. ω ∈ V in the left hand side, proving that there exists
t0 > 0 such that

1

t
(a(q + tv)− a(q)) ≥ 〈ξ, v〉 + ε/4, ∀ 0 < t < t0.

Passing to the limit for t→ 0 we get

〈dqa, v〉 ≥ 〈ξ, v〉 + ε/4 (11.12)

If dqa /∈ Dq we can choose ξ = dqa in the above reasoning and (11.12) gives the contradiction
〈dqa, v〉 ≥ 〈dqa, v〉+ ε/4. Hence dqa ∈ D for every differentiability point q of a.

Now suppose that one has a sequence qn → q, where qn are differentiability points of a. Then
dqna ∈ Dqn for all n from the first part of the proof. We want to show that, whenever the limit
ξ = limn→∞ dqna exists, then ξ ∈ Dq. This is a consequence of the fact that the map (ω, q) 7→ dqϕω
is continuous (in particular upper semicontinuous in the sense of Exercise 11.18) and the fact that
Ω is compact.

Exercise 11.26. Complete the second part of the proof of Proposition 11.25. Hint: use Carathéodory
lemma.

11.3.1 Locally Lipschitz map and Lipschitz submanifolds

As for scalar functions, a map f :M → N between smooth manifolds is said to be locally Lipschitz if
for any coordinate chart inM and N the corresponding function from Rn to Rn is locally Lipschitz.

For a locally Lipschitz map between manifolds f :M → N the (Clarke) generalized differential
is defined as follows

∂qf := conv{L ∈ Hom(TqM,Tf(q)N)|L = lim
qn→q

Dqnf, qn diff. point of f},

The following lemma shows how the standard chain rule extends to the Lipschitz case.
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Lemma 11.27. Let M be a smooth manifold and f :M → N be a locally Lipschitz map.

(a) If φ :M →M is a diffeomorphism and q ∈M we have

∂q(f ◦ φ) = ∂ϕ(q)f ·Dqφ. (11.13)

(b) If ϕ : N →W is a C1 map, and q ∈M we have

∂q(ϕ ◦ f) = Df(q)ϕ · ∂qf. (11.14)

Moreover the generalized differential, as a set, is upper semicontinuous. More precisely for every
neighborhood Ω ∈ Hom(TqM,Tf(q)N) of ∂qf there exists a neighborhood Oq of q such that ∂q′f ∈ Ω,
for every q′ ∈ Oq.

Sketch of the proof. For a detailed proof of this result see ??. Here we only give the main ideas.

(a). Since φ is a diffeomorphism, it sends every differentiability point q of f ◦ φ to a differen-
tiability point φ(q) for f . Then (11.13) is true at differentiability point and passing to the limit
it is also valid for sub-differential (one proves both inclusions using φ and φ−1). Part (b) can be
proved along the same lines. The semicontinuity can be proved by using the hyperplane separation
theorem and the Carathéodory Lemma.

Definition 11.28. Let f : M → N be a locally Lipschitz map. A point q ∈ M is said critical for
f if ∂qf contains a non-surjective map. If q ∈M is not critical it is said regular.

Notice that by the semicountinuity property of Lemma 11.27, it follows that the set of regular
point of a locally Lipschitz map f is open.

Theorem 11.29. Let f : Rn → Rn be a locally Lipschitz map and q ∈ M be a regular point.
Then there exists neighborhood Of(q) and a locally Lipschitz map g : Of(q) ⊂ Rn → Rn such that
f ◦ g = g ◦ f = Id.

Remark 11.30. The classical C1 version of the inverse function theorem (cf. Theorem ??) can be
proved from Theorem 11.29 and the chain rule (Lemma 11.27). Indeed Theorem 11.29 implies
that there exists a locally Lipschitz inverse g and using the chain rule it is easy to show that the
sub-differential of g contains only one element (this implies that it is differentiable at that point)
and the differential of g is the inverse of the differential of f .

Before proving Theorem 11.29 we need the following technical lemma.

Lemma 11.31. Let f : Rn → Rn be a locally Lipschitz map and q ∈ M be a regular point. Then
there exists a neighborhood Oq of q and ε > 0 such that

∀ v ∈ Sn−1, ∃ ξv ∈ Sn−1 s.t. 〈ξv, ∂xf(v)〉 > ε, ∀x ∈ Oq. (11.15)

Moreover |f(x)− f(y)| ≥ ε|x− y|, for all x, y ∈ Oq.

We stress that (11.15) means that the inequality 〈ξv, L(v)〉 > ε holds for every x ∈ Oq and every
element L ∈ ∂xf .
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Proof. Notice that, since q is a regular point, the set ∂qf contains only invertible linear maps. For
every v ∈ Sn−1, the set ∂qf(v) is compact and convex, and does not contain the zero linear map. By
the hyperplane separation theorem we can find ξv such that 〈ξv, ∂qf(v)〉 > ε(v). The map x 7→ ∂xf
is upper semicontinuous, hence there exists a neighborhood Oq of q such that 〈ξv, ∂xf(v)〉 > ε(v)
for all x ∈ Oq. Since Sn−1 is compact, there exists a uniform ε = min{ε(v), v ∈ Sn−1} that satisfies
(11.15).

To prove the second statement of the Lemma, write y = x+sv, where s = |x−y| and v ∈ Sn−1.
Consider a vector v′ ∈ Sn−1 close to v such that almost every point in the direction of v′ is a point
of differentiability (cf. Remark 11.20), and set y′ = x + sv′ and ξv′ the vector associated to v′

defined by (11.15). Then we can write

f(y′)− f(x) =
∫ s

0
(Dx+tv′f)v

′dt.

and we have the inequality

|f(y′)− f(x)| ≥
〈
ξv′ , f(y

′)− f(x)
〉

=

∫ s

0

〈
ξv′ , (Dx+tv′f)v

′〉 dt

≥ ε|y′ − x|

Since ε does not depend on v, we can pass to the limit for v′ → v in the above inequality (in
particular y′ → y) and the Lemma is proved.

Proof of Theorem 11.29. The inequality proved in Lemma 11.31 implies that f is injective in the
neighborhood Oq of the point q. If we show that f(Oq) covers a neighborhood Of(q) of the point
f(q), then the inverse function g : Of(q) → Rn is well defined and locally Lipschitz.

Without loss of generality, up to restricting the neighborhood Oq, we can assume that every
point in Oq is regular for f and moreover that the estimate of the Lemma 11.31 holds also on the
topological boundary ∂Oq. Lemma 11.31 also implies that

dist(f(q), ∂f(Oq)) ≥ εdist(q, ∂Oq) > 0,

where dist(x,A) = infy∈A |x−y| denotes the Euclidean distance from x to the set A. Then consider
a neighborhood W ⊂ f(Oq) of f(q) such that |y − f(q)| < dist(y, ∂f(Oq)), for every y ∈ W . Fix
an arbitrary ȳ ∈W and let us show that the equation f(x) = ȳ has a solution. Define the function

ψ : Oq → R, ψ(x) = |f(x)− ȳ|2

By construction ψ(q) < ψ(z), for all z ∈ ∂Oq, hence by continuity ψ attains the minimum on some
point x̄ ∈ Oq. By Proposition 11.24, we have 0 ∈ ∂x̄ψ. Moreover, using the chain rule

∂x̄ψ = (f(x̄)− ȳ)T · ∂x̄f

Since x̄ is a regular point of f , the linear map ∂x̄f is invertible. Thus 0 ∈ ∂x̄ψ implies f(x̄) = ȳ.

We say that c ∈ R is a regular value of a locally Lipschitz function ϕ : M → R if ϕ−1(c) 6= ∅
and every x ∈ ϕ−1(c) is a regular point.
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Corollary 11.32. Let ϕ :M → R be locally Lipschitz and assume that c ∈ R is a regular value for
ϕ. Then ϕ−1(c) is a Lipschitz submanifold of M of codimension 1.

Proof. We show that in any small neighborhood Ox of every x ∈ ϕ−1(c) the set Ox ∩ ϕ−1(c) can
be described as the zero locus of a locally Lipschitz function. Since ∂xϕ does not contain 0, by the
hyperplane separation theorem there exists v1 ∈ Sn−1, such that 〈∂xϕ, v1〉 > 0 for every x in the
compact neighborhood Ox ∩ ϕ−1(y).

Let us complete v1 to an orthonormal basis {v1, v2, . . . , vn} of Rn and consider the map

f : Ox → Rn, f(x′) =




ϕ(x′)− c
〈v2, x′〉

...
〈vn, x′〉




By construction f is locally Lipschitz and x is a regular point of f . Hence there exists, by Theorem
11.29 a Lipschitz inverse g of f . In particular the inverse map is a Lipschitz function that transforms
the hyperplane {y1 = 0} into ϕ−1(c). Hence the level set ϕ−1(c) is a Lipschitz submanifold.

11.3.2 A non-smooth version of Sard Lemma

In this section we prove a Sard-type result for the special class of Lipschitz functions we considered
in the previous section.

We first recall the statement of the classical Sard lemma. We denote by Cf the critical point
of a smooth map f : M → N , i.e. the set of points x in M at which the differential of f is not
surjective.

Theorem 11.33 (Sard lemma). Let f : Rn → Rm be a Ck function, with k ≥ max{n−m+ 1, 1}.
Then the set f(Cf ) of critical values of f has measure zero in Rm.

Notice that the classical Sard Lemma does not apply to C1 functions ϕ : Rn → R, whenever
n ≥ 1. The following version of Sard lemma is due to Rifford.

Theorem 11.34 (Rifford [86]). Let M be a smooth manifold and ϕω :M → R a family of smooth
functions, with ω ∈ Ω. Assume that

(i) Ω =
⋃
i∈NNi is the union of smooth submanifold, and is compact,

(ii) the maps (ω, q) 7→ ϕω(q) and (ω, q) 7→ dqϕω are continuous on Ω×M ,

(iii) the maps ψi : Ni ×M → R, (ω, q) 7→ ϕω(q) are smooth.

Then the set of critical values of the function a(q) = min
ω∈Ω

ϕω(q) has measure zero in R.

Proof. We are going to define a countable set of smooth functions Φα indexed by α = (α0, . . . , αn) ∈
Nn+1, where n = dimM , such that to every critical point q of a there corresponds a critical point
zq of some Φα. Moreover we have Φα(zq) = a(q).
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Denote by Λn = {(λ0, . . . , λn)|λi ≥ 0,
∑
λi = 1}. For every α = (α0, . . . , αn) ∈ Nn+1 let us

consider the map

Φα : Nα0 × . . .×Nαn × Λn ×M → R

Φα(ω0, . . . , ωn, λ0, . . . , λn, q) =
n∑

i=0

λiϕωi(q). (11.16)

By computing partial derivatives, it is easy to see that a point z = (ω0, . . . , ωn, λ0, . . . , λn, q) is
critical for Φα id and only if it satisfies the following relations:





∑n
i=0 λi

∂ψαi

∂ω
(ωi, q) = 0, i = 0, . . . , n,

∑n
i=0 λidqϕωi = 0 i = 0, . . . , n,

ϕω0(q) = . . . = ϕωn(q)

(11.17)

Recall that ψi is simply the restriction of the map (ω, q) 7→ ϕω(q) for ω ∈ Ni.

Let us now show that every critical point q of a can be associated to a critical point zq of some
Φα. By Proposition 11.25, the function a is locally Lipschitz. Assume that q is a critical point of
a, then we have

0 ∈ ∂qa ⊂ conv{dqϕω| ∀ω ∈ Ω s.t. ϕω(q) = a(q)}.
By Carathéodory lemma there exist n+ 1 element ω̄0, . . . , ω̄n and n+ 1 scalars λ̄0, . . . , λ̄n such

that λ̄i ≥ 0,
∑n

i=0 λ̄i = 1 and

0 =

n∑

i=0

λ̄idqϕω̄i , ϕω̄i(q) = a(q), ∀ i = 0, . . . , n.

Moreover, let us choose for every i = 0, . . . , n an index ᾱi ∈ N such that ω̄i ∈ Nᾱi . Since ϕω̄i(q) =
a(q) = minΩ ϕω(q), ω̄i is critical for the map ψαi , namely we have

∂ψαi

∂ω
(ω̄i, q) = 0.

This implies that zq = (ω̄0, . . . , ω̄n, λ̄0, . . . , λ̄n, q) satisfies the relations (11.17) for the function Φᾱ,
with ᾱ = (ᾱ0, . . . , ᾱn). Moreover it is easy to check that Φᾱ(zq) = a(q) since

Φᾱ(zq) =

n∑

i=0

λ̄iϕω̄i(q) =

(
n∑

i=0

λ̄i

)
a(q) = a(q).

Then if Ca denotes the set of critical points of a and Cα the set of critical point of Φα we have

meas(a(Ca)) ≤ meas


 ⋃

α∈Nn+1

Φα(Cα)


 ≤

∑

α∈Nn+1

meas(Φα(Cα)) = 0,

since meas(Φα(Cα)) = 0 for all α by classical Sard lemma.
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We want to apply the previous result in the case of functions that are infimum of smooth
functions on level sets of a submersion.

Theorem 11.35. Let F : N → M be a smooth map between finite dimensional manifolds and
ϕ : N → R be a smooth function. Assume that

(i) F is a submersion

(ii) for all q ∈M the set Nq = {x ∈ N, ϕ(x) = min
y∈F−1(q)

ϕ(y)} is a non empty compact set.

Then the set of critical values of the function a(q) = min
x∈F−1(q)

ϕ(x) has measure zero in R.

Proof. Denote by Ca the set of critical points of a and a(Ca) is the set of its critical values. Let
us first show that for every point q ∈ M there exist an open neighborhood Oq of q such that
meas(a(Ca) ∩Oqn) = 0.

From assumption (i), it follows that for every q ∈ M the set F−1(q) is a smooth submanifold
in N . Let us now consider an auxiliary non negative function ψ : N → R such that

(A0) Aα := ψ−1([0, α]) is compact for every α > 0.

and select moreover a constant c > 0 such that the following assumptions are satisfied:

(A1) Nq ⊂ intAc,

(A2) c is a regular level of ψ
∣∣
F−1(q)

.

The existence of such a c > 0 is guaranteed by the fact that (A1) is satisfied for all c big enough
since Nq is compact and Ac contains any compact as c→ +∞. Moreover, by classical Sard lemma
(cf. Theorem 11.33), almost every c is a regular value for the smooth function ψ

∣∣
F−1(q)

.

By continuity, there exists a neighborhood Oq of the point q such that assumptions (A0)-(A2)
are satisfied for every q′ ∈ Oq, for c > 0 and ψ fixed. We observe that (A2) is equivalent to require
that level set of F are transversal to level of ψ. We can infer that F−1(Oq)∩Ac is a smooth manifold
with boundary that has the structure of locally trivial bundle. Maybe restricting the neighborhood
of q then we can assume

F−1(q) ∩Ac = Ω, F−1(Oq) ∩Ac ≃ Oq × Ω,

where Ω is a smooth manifold with boundary. In this neighborhood we can split variables in N as
follows x = (ω, q) with ω ∈ Ω and q ∈M and the restriction a|Oq is written as

a|Oq : Oq → R, a(q) = min
ω∈Ω

ϕ(ω, q).

Notice that Ω is compact and is the union of its interior and its boundary, which are smooth by
assumptions (A0)-(A2). We can then apply the Theorem 11.34 to a|Oq , that gives meas(a(Ca∩Oq) =
0 for every q ∈M .

We have built a covering of M =
⋃
q∈M Oq. Since M is a smooth manifold, from every covering

it is possible to extract a countable covering, i.e. there exists a sequence qn of points in M such
that

M =
⋃

n∈N
Oqn
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In particular this implies that

meas(a(Ca)) ≤
∑

n∈N
meas(a(Ca) ∩Oqn) = 0

since meas(a(Ca ∩Oq) = 0 for every q.

Remark 11.36. Notice that we do not assume that N is compact. In that case the proof is easier
since every submersion F : N →M with N compact automatically endows N with a locally trivial
bundle structure.

11.4 Regularity of sub-Riemannian spheres

We end this chapter by applying the previous theory to get information about the regularity of
sub-Riemannian spheres. Before proving the main result we need two lemmas.

Lemma 11.37. Fix q0 ∈ M and let K ⊂ T ∗
q0M \ (H−1(0) ∩ T ∗

q0M) be a compact set such that all
normal extremals associated with λ0 ∈ K are not abnormal. Then there exists ε = ε(K) such that
tλ0 is a regular point for the expq0 for all 0 < t ≤ ε.
Proof. By Corollary ?? for every strongly normal extremal γ(t) = exp(tλ0), with λ0 ∈ T ∗

q0M , there
exists ε = ε(λ0) > 0 such that γ|]0,ε] does not contain points conjugate to q0, or equivalently, tλ0
is a regular point for the expq0 for all 0 < t ≤ ε. Since K is compact, it follows that there exists
ε = ε(K) such that the above property holds uniformly on K.

Lemma 11.38. Let q0 ∈ M and K ⊂ M be a compact set such that every point of K is reached
from q0 by only strictly normal minimizers. Define the set

C = {λ0 ∈ T ∗
q0M | λ0 minimizer, exp(λ0) ∈ K}.

Then C is compact.

Proof. It is enough to show that C is bounded. Assume by contradiction that there exists a
sequence λn ∈ C of covectors (and the associate sequence of minimizing trajectories γn, associated
with controls un) such that |λn| → +∞, where | · | is some norm in T ∗

q0M . Since these minimizers
are normal they satisfy the relation

λnDunF = un, ∀n ∈ N. (11.18)

and dividing by |λn| one obtain the identity

λn
|λn|

DunF =
un
|λn|

, ∀n ∈ N. (11.19)

Using compactness of minimizers whose endpoints stay in a compact region, we can assume that
un → u. Morever the sequence λn/|λn| is bounded and we can assume that λn/|λn| → λ for some
final covector λ. Using that DunF → DuF and the fact that |λn| → +∞, passing to the limit
for n → ∞ in (11.19) we obtain λDuF = 0. This implies in particular that the minimizers γn
converge to a minimizer γ (associated to λ) that is abnormal and reaches a point of K that is a
contradiction.
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Theorem 11.39 (Rifford [87]). Let M be a sub-Riemannian manifold, q0 ∈ M and r0 > 0 such
that every point different from q0 in the compact ball B̄q0(r0) is not reached by abnormal minimizers.
Then the sphere Sq0(r) is a Lipschitz submanifold of M for almost every r ≤ r0.
Proof. Let us fix δ > 0 and consider the annulus Aδ = Br0(q0) \Bδ(q0). Define the set

C = {λ0 ∈ T ∗
q0M | λ0 minimizer, exp(λ0) ∈ Aδ}

By Lemma 11.38 the set C0 := C is compact. Moreover define

C1 := {λ0 ∈ C0 ∩H−1([0, ε0])},
for some ε0 > 0 that is chosen later. Notice that C1 is compact. For every λ0 ∈ T ∗M let us consider
the control u associated with γ(t) = exp(tλ0) and denote by

Φλ0 := (P−1
0,t )∗ : T

∗
q0M → T ∗

expq0
(λ0)

M,

the pullback of the flow defined by the control u, computed at q0.
For a fixed λ0 ∈ C0, using that C1 is compact, let us choose ε = ε(λ0) satisfying the following

property: for every λ1 ∈ C1, the covector Φλ0(λ1) ∈ T ∗
expq0

(λ0)
M , is a regular point of expexpq0

(λ0).

Being C0 also compact, we can define ε0 = min{ε(λ0), λ0 ∈ C0}. Define the map

Ψ : C0 × C1 → Dδ ⊂M, Ψ(λ0, λ1) = expexpq0
(λ0)(Φλ0(λ1)).

By construction Ψ is a submersion. We want to apply Theorem 11.35 to the submersion Ψ and
the scalar function

H : C0 × C1 → R, H(λ0, λ1) = H(λ0) +H(λ1).

Let us show that the assumption of Theorem 11.35 are satisfied. Indeed we have to show that the
set

Nq = {(λ0, λ1) ∈ C0 × C1 |H(λ0, λ1) = min
Ψ(λ0,λ1)=q

H(λ0, λ1)}, ∀ q ∈ Aδ,

is non empty and compact. Let us first notice that

Ψ(λ0, sλ0) = expq0((1 + s)λ0), H(λ0, sλ0) = (1 + s2)H(λ0).

By definition of C0, for each q ∈ Aδ there exists λ̄0 ∈ C0 such that expq0(λ̄0) = q and such that
the corresponding trajectory is a minimizer. Moreover we can always write this unique minimizer
as the union of two minimizers. It follows that

min
Ψ(λ0,λ1)=q

H(λ0, λ1) = min
expq0

(λ0)=q
H(λ0) = f(q), ∀ q ∈ Aδ.

This implies that Nq is non empty for every q. Moreover one can show that Nq is compact. By
applying Theorem 11.35 one gets that the function

a(q) = min
Ψ(λ0,λ1)=q

H(λ0, λ1) = f(q),

is locally Lipschitz in Aδ and the set of its critical values has measure zero in Aδ. Since δ > 0 is
arbitrary we let δ → 0 and we have that f is locally Lipschitz in Bq0(r0) \ {q0} and the set of its
critical values has measure zero. In particular almost every r ≤ r0 is a regular value for f. Then,
applying Corollary 11.32, the sphere f−1(r2/2) is a Lipschitz submanifold for almost every r ≤ r0.
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11.5 Geodesic completeness and Hopf-Rinow theorem

In this section we prove a sub-Riemannian version of the Hopf-Rinow theorem. Namely, in absence
of abnormal minimizers, the geodesic completeness of M implies the completeness of M as a metric
space.

Theorem 11.40 (sub-Riemannian Hopf-Rinow). Let M be a sub-Riemannian manifold that does
not admit abnormal length minimizers. If there exists a point x ∈ M such that the exponential
map expx is defined on the whole T ∗

xM , then M is complete with respect to the sub-Riemannian
distance.

Proof. For the fixed x ∈M , let us consider

A = {r > 0 |B(x, r) is compact }, R := supA.

As in the proof of Theorem 3.44, one can show that A 6= ∅ and that A is open (by using the local
compactness of the topology and repeating the proof of (ii.a)). Assume now that R < +∞ and let
us show that R ∈ A. By openness of A this will give a contradiction and A =]0,+∞[.

We have to show that B̄(x,R) is compact, i.e., for every sequence yi in B̄(x,R) we can extract
a convergent subsequence. Define ri := d(yi, x). It is not restrictive to assume that ri → R (if it is
not the case, the sequence stays in a compact ball and the existence of a convergent subsequence
is clear). Since the ball B̄(x, ri) is compact, by Theorem 3.40 there exists a length minimizing
trajectory γi : [0, ri]→M joining x and yi, parametrized by unit speed.

Due to the completeness of the vector field ~H, we can extend each curve γi, parametrized by
length, to the common interval [0, R]. By construction this sequence of trajectory is normal

γi(t) = exp(tλi) = π ◦ et ~H(λi),

for some λi ∈ TxM , and is contained in the compact set B̄(x,R). Since there is no abnormal
minimizer, by Lemma 11.38 the sequence {λi} is bounded in T ∗

xM , thus there exists a subsequence
λin converging to λ. Then rinλin → Rλ and by continuity of exp we have that {yi} has a convergent
subsequence

yin = γin(rin) = exp(rinλin)→ exp(Rλ) =: y

To end the proof, one should just notice that an arbitrary Cauchy sequence in M is bounded,
hence contained in a suitable ball centered at x, which is compact since R = +∞. Thus it admits
a convergent subsequence.

As an immediate corollary we have the following version of geodesic completeness theorem.

Corollary 11.41. Let M be a sub-Riemannian manifold that does not admit abnormal length
minimizers. If the vector field ~H is complete on T ∗M , then M is complete with respect to the
sub-Riemannian distance.

11.6 Equivalence of sub-Riemannian distances*
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Chapter 12

Abnormal extremals and second
variation

In this chapter we are going to discuss in more details abnormal extremals and how the regularity
of the sub-Riemannian distance is affected by the presence of these extremals.

12.1 Second variation

We want to introduce the notion of Hessian (and second derivative) for smooth maps between
manifolds. We first discuss the case of the second differential of a map between linear spaces.

Let F : V →M be a smooth map from a linear space V on a smooth manifold M . As we know,
the first differential of F at a point x ∈ V

DxF : V → TF (x)M, DxF (v) =
d

dt

∣∣∣∣
t=0

F (x+ tv), v ∈ V,

and is a well defined linear map independent on the linear structure on V . This is not the case for
the second differential. Indeed it is easy to see that the second order derivative

D2
xF (v) =

d2

dt2

∣∣∣∣
t=0

F (x+ tv) (12.1)

has not invariant meaning if DxF (v) 6= 0. Indeed in this case the curve γ : t 7→ F (x + tv) is
a smooth curve in M with nonzero tangent vector. Then there exists some local coordinates on
M such that the curve γ is a straight line. Hence the second derivative D2

xF (v) vanish in these
coordinates.

In general, the linear structure on V let us to define the second differential of F as a quadratic
map

D2
xF : kerDxF → TF (x)M (12.2)

On the other hand the map (12.2) is not independent on the choice of the linear structure on
V and this construction cannot be used if the source of F is a smooth manifold.

Assume now that F : N → M is a map between smooth manifolds. The first differential is a
linear map between the tangent spaces

DxF : TxN → TF (x)M, x ∈ N.
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and the definition of second order derivative should be modified using smooth curves with fixed
tangent vector (that belong to the kernel of DxF ):

D2
xF (v) =

d2

dt2

∣∣∣∣
t=0

F (γ(t)), γ(0) = x, γ̇(0) = v ∈ kerDxF, (12.3)

Computing in coordinates we find that

d2

dt2

∣∣∣∣
t=0

F (γ(t)) =
d2F

dx2
(γ̇(0), γ̇(0)) +

dF

dx
γ̈(0) (12.4)

that shows that term (12.4) is defined only up to imDxF .
Thus is intrinsically defined only a certain part of the second differential, which is called the

Hessian of F, i.e. the quadratic map

HessxF : kerDxF → TF (x)M/ imDxF

12.2 Abnormal extremals and regularity of the distance

In the previuos chapter we proved that if we have abnormal minimizer that reach some point q,
then the sub-Riemannian distance is not smooth at q. If we also have that no normal minimizers
reach q we can say that it is not even Lipschitz.

Proposition 12.1. Assume that there are no normal minimizers that join q0 to q̂. Then f is not
Lipschitz in a neighborhood of q̂. Moreover

lim
q→q̂
q∈Σ

|dqf| = +∞. (12.5)

In the previous theorem | · | is an arbitrary norm of the fibers of T ∗M .

Proof. Consider a sequence of smooth points qn ∈ Σ such that qn → q̂. Since qn are smooth we
know that there exists unique controls un and covectors λn such that

λnDunF = un, λn = dqnf.

Assume by contradiction that |dqnf| ≤ M then, using compactness we find that un → u, λn → λ
with λDuF = u, that means that the associate geodesic reach q̂. In other words, there exists a
normal minimizer that goes at q̂, that is a contradiction.

Let us now consider the end-point map F : U → M . As we explained in the previous section,
its Hessian at a point u ∈ U is the quadratic vector function

HessuF : kerDuF → CokerDuF = TF (u)M/imDuF.

Remark 12.2. Recall that λDuF = 0 if and only if λ ∈ (imDuF )
⊥. In other words, for every

abnormal extremal there is a well defined scalar quadratic form

λHessuF : kerDuF → R

Notice that the dimension of the space imDuF
⊥ of such covectors coincide with dimCokerDuF .
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Definition 12.3. Let Q : V → R be a quadratic form defined on a vector space V . The index of
Q is the maximal dimension of a negative subspace of Q:

ind−Q = sup{dimW | Q
∣∣
W\{0} < 0}. (12.6)

Recall that in the finite-dimensional case this number coincide with the number of negative eigen-
values in the diagonal form of Q.

The following notion of index of the map F will be also useful:

Definition 12.4. Let F : U →M and u ∈ U be a critical point for F . The index of F at u is

InduF = min
λ∈imDuF⊥

λ 6=0

ind−(λHessuF )− codim imDuF

Remark 12.5. If codim imDuF = 1, then there exists a unique (up to scalar multiplication) non
zero λ ⊥ imDuF , hence InduF = ind−(λHessuF )− 1.

Theorem 12.6. If InduF ≥ 1, then u is not a strictly abnormal minimizer.

We state without proof the following result (see Lemma 20.8 of [8])

Lemma 12.7. Let Q : RN → Rn be a vector valued quadratic form. Assume that Ind0Q ≥ 0. Then
there exists a regular point x ∈ Rn of Q such that Q(x) = 0.

Definition 12.8. Let Φ : E → Rn be a smooth map defined on a linear space E and r > 0. We
say that Φ is r-solid at a point x ∈ E if there exists a constant C > 0, ε̄ > 0 and a neighborhood
U of x such that for all ε < ε̄ there exists δ(ε) > 0 satisfying

BΦ̂(x)(Cε
r) ⊂ Φ̂(Bx(ε)), (12.7)

for all maps Φ̂ ∈ C0(E,Rn) such that ‖Φ̂ − Φ‖C0(U,Rn) < δ.

Exercise 12.9. Prove that if x is a regular point of Φ, then Φ is 1-solid at x.
(Hint: Use implicit function theorem to prove that Φ satisfies (12.7) and Brower theorem to show
that the same holds for some small perturbation)

Proposition 12.10. Assume that IndxΦ ≥ 0. Then Φ is 2-solid at x.

Proof. We can assume that x = 0 and that Φ(0) = 0. We divide the proof in two steps: first
we prove that there exists a finite dimensional subspace E′ ⊂ E such that the restriction Φ

∣∣
E′

satisfies the assumptions of the theorem. Then we prove the proposition under the assumption
that dimE < +∞.

(i). Denote k := dimCokerD0Φ and consider the Hessian

Hess0Φ : kerD0Φ→ CokerD0Φ

We can rewrite the assumption on the index of Φ as follows

ind−λHess0Φ ≥ k, ∀λ ∈ imD0Φ
⊥ \ {0}. (12.8)
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Since property (12.8) is invariant by multiplication of the covector by a positive scalar we are
reduced to the sphere

λ ∈ Sk−1 = {λ ∈ imD0Φ
⊥, |λ| = 1}.

By definition of index, for every λ ∈ Sk−1, there exists a subspace Eλ ⊂ E, dimEλ = k such that

λHessuΦ
∣∣
Eλ\{0} < 0

By the continuity of the form with respect to λ, there exists a neighborhood Oλ of λ such that
Eλ′ = Eλ for every λ′ ∈ Oλ.

By compactness we can choose a finite covering of Sk−1 made by open subsets

Sk−1 = Oλ1 ∪ . . . ∪OλN
Then it is sufficient to consider the finitedimensional subspace

E′ =
N⊕

j=1

Eλj

(ii). Assume dimE <∞ and split

E = E1 ⊕E2 E2 := kerD0Φ

The Hessian is a map
Hess0Φ : E2 → Rn/D0Φ(E1)

According to Lemma 12.7 there exists e2 ∈ E2, regular point of Hess0Φ, such that

Hess0Φ(e2) = 0 =⇒ D2
0Φ(e2) = D0Φ(e1), for some e1 ∈ E1.

Define the map Q : E → Rn by the formula

Q(v1 + v2) := D0Φ(v1) +
1

2
D2

0Φ(v2), v = v1 + v2 ∈ E = E1 ⊕ E2.

and the vector e := −e1/2+ e2. From our assumptions it follows that e is a regular point of Q and
Q(e) = 0. In particular there exists c > 0 such that

B0(c) ⊂ Q(B0(1))

and the same holds for some perturbation of the map Q (see Exercice 12.9). Consider then the
map

Φε : v1 + v2 7→
1

ε2
Φ(ε2v1 + εv2) (12.9)

Using that v2 ∈ kerD0Φ we compute the Taylor expansion with respect to ε

Φε(v1 + v2) = Q(v1 + v2) +O(ε) (12.10)

hence for small ε the image of Φε contain a ball around 0 from which it follows that

Bφ(0)(cε
2) ⊂ Φ(B0(ε)) (12.11)

Moreover as soon as ε is fixed we can perturb the map Φ and still the estimate (12.11) holds.
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Actually we proved the following statement, that is stronger than 2-solideness of Φ:

Lemma 12.11. Under the assumptions of the Theorem 12.10, there exists C > 0 such that for
every ε small enough

BΦ(0)(Cε
2) ⊂ Φ(B′

0(ε
2)×B′′

0 (ε)) (12.12)

where B′ and B′′ denotes the balls in E1 and E2 respectively.

The key point is that, in the subspace where the differential of Φ vanish, the ball of radius ε is
mapped into a ball of radius ε2, while the restriction on the other subspace “preserves” the order,
as the estimates (12.9) and (12.10) show. 1

Proof of Theorem 12.6. We prove that if InduF ≥ 1, where u is a strictly abnormal geodesic, then
u cannot be a minimizer. It is sufficient to show that the “extended” endpoint map

Φ : U → R×M, Φ(u) =

(
J(u)
F (u)

)
,

is locally open at u. Recall that duJ = λDuF , for some λ ∈ TF (u)M , if and only if duJ
∣∣
kerDuF

= 0
(see also Proposition 8.12). Since u is strictly abnormal, it follows that

duJ
∣∣
kerDuF

6= 0. (12.13)

Moreover from the definition of Φ and (12.13) one has

kerDuΦ = ker duJ ∩ kerDuF, dim im duJ = 1.

Moreover, a covector λ̄ = (α, λ) in R × T ∗
F (u)M annihilates the image of DuΦ if and only if α = 0

and λ ∈ imDuF
⊥, indeed if

0 = λ̄DuΦ = αduJ + λDuF

with α 6= 0, this would imply that u is also normal. In other words we proved the equality

imDuΦ
⊥ = {(0, λ) ∈ R× T ∗

F (u)M |λ ∈ imDuF
⊥} (12.14)

Combining (12.13) and (12.14) one obtains for every λ̄ = (0, λ) ∈ imDuΦ
⊥

λ̄HessuΦ = λHessuF
∣∣
ker duJ∩kerDuF

(12.15)

Moreover codim imDuΦ = codim imDuF since dim imDuΦ = dim imDuF +1 by (12.13) and DuΦ
takes values in R× TF (u)M . Then for every λ̄ = (0, λ) ∈ imDuΦ

⊥

ind−(λ̄HessuΦ)− codim imDuΦ = ind−(λHessuF
∣∣
ker duJ∩kerDuF

)− codim imDuF

≥ ind−(λHessuF )− 1− codim imDuF

and passing to the infimum with respect to λ̄ we get

InduΦ ≥ InduF − 1 ≥ 0.

By Proposition 12.10 this implies that Φ is locally open at u. Hence u cannot be a minimizer.

1B0(c) ⊂ Φε(B(1)) ⇔ B0(cε
2) ⊂ Φ(ε2v1 + εv2), vi ∈ Bi(1) ⇔ B0(cε

2) ⊂ Φ(B′
ε2 ×B′′

ε )

323



Now we prove that, under the same assumptions on the index of the endpoint map given in
Theorem 12.6, the sub-Riemannian is Lipschitz even if some abnormal minimizers are present.

Theorem 12.12. Let K ⊂ Bq0(r0) be a compact and assume that InduF ≥ 1 for every abnormal
minimizer u such that F (u) ∈ K. Then f is Lipschitz on K.

Proof. Recall that if there are no abnormal minimizers reaching K, Theorem 11.39 ensures that f
is Lipschitz on K. Then, using compactness of the set of all minimizers, it is sufficient to prove the
estimate in neighborhood of a point q = F (u), where u is abnormal.

Since InduF ≥ 1 by assumption, Theorem 12.6 implies that every abnormal minimizer u is not
strictly abnormal, i.e., has also a normal lift. We have

HessuF : kerDuF → CokerDuF, with InduF ≥ 1.

and, since u is also normal, it follows that duJ = λDuF for some λ ∈ T ∗
F (u)M , hence kerDuF ⊂

ker duJ . The assumption of Lemma 12.11 are satisfied, hence splitting the the space of controls

L2
k([0, 1]) = E1 ⊕ E2, E2 := kerDuF

we have that there exists C0 > 0 and R > 0 such that for 0 ≤ ε < R we have

Bq(C0ε
2) ⊂ F (Bε), Bε := B′u(ε2)× B′′u(ε), q = F (u), (12.16)

where B′u(r) and B′′u(r) are the ball of radius r in E1 and E2 respectively, and Bq(r) is the ball of
radius r in coordinates on M .

Let us also observe that, since J is smooth on B′u(ε2)× B′′u(ε), with duJ = 0 on E2, by Taylor
expansion we can find constants C1, C2 > 0 such that for every u′ = (u′1, u

′
2) ∈ Bε one has (we write

u = (u1, u2))

J(u′)− J(u) ≤ C1‖u′1 − u1‖+ C2‖u′2 − u2‖2

Pick then any point q′ ∈ K such that |q′ − q| = C0ε
2, with 0 ≤ ε < R. Then (12.16) implies

that there exists u′ = (u′1, u
′
2) ∈ Bε such that F (u′) = q′. Using that f(q′) ≤ J(u′) and f(q) = J(u),

since u is a minimizer, we have

f(q′)− f(q) ≤ J(u′)− J(u) ≤ C1‖u′1 − u1‖+ C2‖u′2 − u2‖2 (12.17)

≤ Cε2 = C ′|q′ − q| (12.18)

where we can choose C = max{C1, C2} and C ′ = C/C0.

Since K is compact, and the set of control u associated with minimizers that reach the compact
set K is also compact, the constants R > 0 and C0, C1, C2 can be chosen uniformly with respect to
q ∈ K. Hence we can exchange the role of q′ and q in the above reasoning and get

|f(q′)− f(q)| ≤ C ′|q′ − q|,

for every pair of points q, q′ such that |q′ − q| ≤ C0R
2.
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12.3 Goh and generalized Legendre conditions

In this section we present some necessary conditions for the index of the quadratic form along an
abnormal extremal to be finite.

Theorem 12.13. Let u be an abnormal minimizer and let λ1 ∈ T ∗
F (u)M satisfy λ1DuF = 0.

Assume that ind−λ1HessuF < +∞. Then the following condition are satisfied :

(i) 〈λ(t), [fi, fj](γ(t))〉 ≡ 0, for a.e. t, ∀ i, j = 1, . . . , k, (Goh condition)

(ii)
〈
λ(t), [[fu(t), fv], fv](γ(t))

〉
≥ 0, for a.e. t, ∀ v ∈ Rk, (Generalized Legendre condition)

where λ(t) and γ(t) = π(λ(t)) are respectively the extremal and the trajectory associated to λ1.

Remark 12.14. Notice that, in the statement of the previous theorem, if λ1 satisfies the assump-
tion λ1DuF = 0, then also −λ1 satisfies the same assumptions. Since ind−(−λ1HessuF ) =
ind+λ1HessuF this implies that the statement holds under the assumption ind+λ1HessuF < +∞.
Indeed the proof shows that as soon as the Goh condition is not satisfied, both the positive and
the negative index of this form are infinity.

Notice that these condition are related to the properties of the distribution of the sub-Rieman-
nian structure and not to the metric. Indeed recall that the extremal λ(t) is abnormal if and only
if it satisfies

λ̇(t) =

k∑

i=1

ui(t)~hi(λ(t)), 〈λ(t), fi(γ(t))〉 = 0, ∀ i = 1, . . . , k,

i.e. λ(t) satifies the Hamiltonian equation and belongs to D⊥
γ(t). Goh condition are equivalent to

require that λ(t) ∈ (D2
γ(t))

⊥.

Corollary 12.15. Assume that the sub-Riemannian structure is 2-generating, i.e. D2
q = TqM for

all q ∈ M . Then there are no strictly abnormal minimizers. In particular f is locally Lipschitz on
M .

Proof. Since D2
q = TqM implies (D2

γ(t))
⊥ = 0 for every q ∈M , no abnormal extremal can satisfy the

Goh condition. Hence by Theorem 12.13 it follows that InduF = +∞, for any abnormal minimizer
u. In particular, from Theorem 12.6 it follows that the minimizer cannot be strictly abnormal
Hence f is globally Lipschitz by Theorem 12.12.

Remark 12.16. Notice that f is locally Lipschitz onM if and only if the sub-Riemannian structure is
2-generating. Indeed if the structure is not 2-generating at a point q, then from Ball-Box Theorem
(Theorem 10.62) it follows that the squared distance f is not Lipschitz at the base point q0.

On the other hand, on the set where f is positive, we have that f is Lipschitz if and only if the
sub-Riemannian distance d(q0, ·) is.

Before going into the proof of the Goh conditions (Theorem 12.13) we discuss an important
corollary.

Theorem 12.17. Assume that Dq0 6= D2
q0 . Then for every ε > 0 there exists a normal extremal

path γ starting from q0 such that ℓ(γ) = ε and γ is not a length-minimizer.
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Before the proof, this is the idea: fix an element ξ ∈ D⊥
q0 \ (D2

q0)
⊥ which is non empty by

assumptions. We want to build an abnormal minimizing trajectory that has ξ as initial covector
and that is the limit of a sequence of stricly normal lenth-minimizers. In this way this abnormal
will have finite index (the abnormal quadratic form will be the limit of positive ones) and then by
Goh condition ξ · D2

q0 = 0, which is a contradiction.

Proof. Assume by contradiction that there exists T > 0 such that all normal extremal paths γλ
associated with initial covector λ ∈ H−1(1/2)∩T ∗

q0M minimize on the segment [0, T ]. Since restric-
tion of length-minimizers are still length-minimizers, by suitably reducing T > 0, we can assume,
thanks to Lemma 3.34, that there exists2 a compact set K such that {γλ(T ) |λ ∈ H−1(1/2)} ⊂ K.

Fix an element ξ ∈ D⊥
q0 \ (D2

q0)
⊥, which is non empty by assumptions. Then consider, given any

λ0 ∈ H−1(1/2)∩T ∗
q0M , the family of normal extremal paths (and corresponding normal trajectories)

λs(t) = et
~H(λ0 + sξ), γs(t) = π(λs(t)), t ∈ [0, T ].

and let us be the control associated with γs, and defined on [0, T ]. Due to Theorem 11.4, there exists
a positive sequence sn → +∞ such that qn := γsn(T ) is a smooth point for the squared distance
from q0, for every n ∈ N. By compactness of minimizers reaching K, there exists a subsequence of
sn, that we still denote by the same symbol, and a minimizing control ū such that usn → ū, when
n→∞. In particular γsn is a strictly normal length-minimizer for every n ∈ N.

Denote Φnt = P
usn
0,t the non autonomous flow generated by the control usn . The family λsn(t)

satisfies

λsn(t) = et
~H(λ0 + snξ) = (Φnt )

∗(λ0 + snξ).

Moreover, by continuity of the flow with respect to convergence of controls, we have that Φnt → Φt
for n → ∞, where Φt denotes the flow associated with the control ū. Hence we have that the
rescaled family

1

sn
λsn(t) = (Φnt )

∗
(

1

sn
λ0 + ξ

)

converges for n → ∞ to the limit extremal λ̄(t) = Φ∗
t ξ. Notice that λ̄(t) is, by construction, an

abnormal extremal associated to the minimizing control ū, and with initial covector ξ.

The fact that usn is a strictly normal minimizer says that the Hessian of the energy J restricted
to the level set F−1(qn) is non negative. Recall that

HessuJ |F−1(q) = I − λ1D2
uF,

where λ1 ∈ TF (u)M is the final covector of the extremal lift. In particular we have for every n ∈ N
and every control v the following inequality

‖v‖2 − λsn(T )D2
usn

F (v, v) ≥ 0.

This immediately implies
1

sn
‖v‖2 − 1

sn
λsn(T )D

2
usn

F (v, v) ≥ 0,

2indeed it is enough to fix an arbitrary compact K with q0 ∈ int(K) such that the corresponding δK defined by
Lemma 3.34 is smaller than T .
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and passing to the limit for n→∞ one gets

−λ̄(T )D2
ūF (v, v) ≥ 0.

In particular one has that

ind+λ̄(T )HessūF = ind−(−λ̄(T )D2
ūF ) = 0.

Hence the abnormal extremal has finite (positive) index and we can apply Goh conditions (see
Theorem 12.13 and Remark 12.14). Thus ξ is orthogonal to D2

q0 , which is a contradiction since

ξ ∈ D⊥
q0 \ (D2

q0)
⊥.

Remark 12.18 (About the assumptions of Theorem 12.17). Assume that the sub-Riemannian struc-
ture is bracket-generating and is not Riemannian in an open set O ⊂M , i.e., Dq0 6= Tq0M for every
q ∈ O. Then there exists a dense set D ⊂ O such that Dq0 6= D2

q0 for every q ∈ D.
Indeed assume that Dq 6= D2

q for all q in an open set A, then it is easy to see that Diq = Dq 6= TqM
for all q ∈ A, since the structure is not Riemannian. Hence the structure is not bracket-generating
in A, which gives a contradiction.

12.3.1 Proof of Goh condition - (i) of Theorem 12.13

Proof of Theorem 12.13. Denote by u the abnormal control and by Pt =
−→exp

∫ t
0 fu(s)ds the nonau-

tonomous flow generated by u. Following the argument used in the proof of Proposition 8.4 we can
write the end-point map as the composition

E(u+ v) = P1(G(v)), DuE = P1∗D0G,

and reduced the problem to the expansion of G, which is easier. Indeed denoting gti := P−1
t∗ fi, the

map G can be interpreted as the end-point map for the system

q̇(t) = gtv(t)(q(t)) =
k∑

i=1

vi(t)g
t
i(q(t))

and the Hessian of F can be computed easily starting from the Hessian of G at v = 0

HessuF = P1∗Hess0G

from which we get, using that λ0 = P ∗
1 λ1,

λ1HessuF = λ1P1∗Hess0G = λ0Hess0G

Moreover computing

〈λ(t), [fi, fj](γ(t))〉 =
〈
λ0, P

−1
t∗ [fi, fj ](γ(t))

〉

=
〈
λ0, [g

t
i , g

t
j ](γ(0))

〉

the Goh and generalized Legendre conditions can also be rewritten as

〈
λ0, [g

t
i , g

t
j ]γ(0)

〉
≡ 0, for a.e. t ∈ [0, 1], ∀ i, j = 1, . . . , k, (G.1)

〈λ0, [[gtu(t), gti ], gti ]](γ(0))〉 ≥ 0, for a.e. t ∈ [0, 1], ∀ i = 1, . . . , k. (L.1)
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Now we want to compute the Hessian of the map G. Using the Volterra expansion computed
in Chapter 6 we have

G(v(·)) ≃ q0 ◦


Id +

∫ 1

0
gtv(t)dt+

∫∫

0≤τ≤t≤1

gτv(τ) ◦ gtv(t)dτdt


+O(‖v‖3)

where we used that gtv is linear with respect to v to estimate the remainder.
This expansion let us to recover immediately the linear part, i.e. the expressions for the first

differential, which can be interpreted geometrically as the integral mean

D0G(v) =

∫ 1

0
gtv(t)(q0)dt,

On the other hand the expression for the quadratic part, i.e. the second differential

D2
0G(v) = 2 q0 ◦

∫∫

0≤τ≤t≤1

gτv(τ) ◦ gtv(t)dτdt.

has not an immediate geometrical interpretation. Recall that the second differential D2
0G is defined

on the set

kerD0G = {v ∈ L2
k[0, 1],

∫ 1

0
gtv(t)(q0)dt = 0} (12.19)

and, for such a v, D2
0G(v) belong to the tangent space Tq0M . Indeed, using Lemma 8.28, and that

v belong to the set (12.19), we can symmetrize the second derivative, getting the formula

D2
0G(v) =

∫∫

0≤τ≤t≤1

[gτv(τ), g
t
v(t)](q0)dτdt,

which shows that the second differential is computed by the integral mean of the commutator of
the vector field gtv(t) for different times.

Now consider an element λ0 ∈ imD0G
⊥, i.e. that satisfies

〈
λ0, g

t
v(q0)

〉
= 0, for a.e. t ∈ [0, 1],∀ v ∈ Rk.

Then we can compute the Hessian

λ0Hess0G(v) =

∫∫

0≤τ≤t≤1

〈λ0, [gτv(τ), gtv(t)](q0)〉dτdt (12.20)

Remark 12.19. Denoting by K the bilinear form

K(τ, t)(v,w) =
〈
λ0, [g

τ
v , g

t
w](q0)

〉
,

the Goh and generalized Legendre conditions are rewritten as follows

K(t, t)(v,w) = 0, ∀ v,w ∈ Rk, for a.e. t ∈ [0, 1], (G.2)

∂K

∂τ
(τ, t)

∣∣∣∣
τ=t

(v, v) ≥ 0, ∀ v ∈ Rk, for a.e. t ∈ [0, 1]. (L.2)

328



Indeed, the first one easily follows from (G.1). Moreover recall that gtv = P−1
t∗ fv, hence the map

t 7→ gtv is Lipschitz for every fixed v. By definition of Pt =
−→exp

∫ t
0 fu(t)dt it follows that

∂

∂t
gtv = [gtu(t), g

t
v]

which shows that (L.2) is equivalent to (L.1).

Finally we want to express the Hessian of G in Hamiltonian terms. To this end, consider the
family of functions on T ∗M which are linear on fibers, associated to the vector fields gtv :

htv(λ) :=
〈
λ, gtv(q)

〉
, λ ∈ T ∗M, q = π(λ).

and define, for a fixed element λ0 ∈ imD0G
⊥:

ηtv :=
~htv(λ0) ∈ Tλ0T ∗M (12.21)

Using the identities

σλ(~h
t
v ,
~htw) = {htv, htw}(λ) =

〈
λ, [gtv , g

t
w](q)

〉
, q = π(λ)

and computing at the point λ0 ∈ T ∗
q0M we find

σλ0(η
t
v, η

t
w) =

〈
λ0, [g

t
v , g

t
w](q0)

〉

and we get the final expression for the Hessian

λ0Hess0G(v(·)) =
∫∫

0≤τ≤t≤1

σλ0(η
τ
v(τ), η

t
v(t))dtdτ. (12.22)

where the control v ∈ kerD0G satisfies the relation (notice that π∗ηtv = gtv(q0))

π∗

∫ 1

0
ηtv(t)dt =

∫ 1

0
π∗η

t
v(t)dt = 0

Moreover the “Hamiltonian” version of Goh and Legendre conditions is expressed as follows:

σλ0(η
t
v, η

t
w) = 0, ∀ v,w ∈ Rk, for a.e. t ∈ [0, 1], (G.3)

σλ0(η̇
t
v, η

t
v) ≥ 0, ∀ v ∈ Rk, for a.e. t ∈ [0, 1]. (L.3)

We are reduced to prove, under the assumption ind−λ0Hess0G < +∞, that (G.3) and (L.3) hold.
Actually we will prove that Goh and generalized Legendre conditions are necessary conditions for
the restriction of the quadratic form to the subspace of controls in kerD0G that are concentrated
on small segments [t, t+ s].

In what follows we fix once for all t ∈ [0, 1[. Consider an arbitrary vector control function
v : [0, 1]→ Rk with compact support in [0, 1] and build, for s > 0 small enough, the control

vs(τ) = v

(
τ − t
s

)
, supp vs ⊂ [t, t+ s]. (12.23)
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The idea is to apply the Hessian to this particular control functions and then compute the asymp-
totics for s→ 0.

indice finito allora e finito anche qui sopra.
Actually, since the index of a quadratic form is finite if and only if the same holds for the

restriction of the quadratic form to a subspace of finite codimension, it is not restrictive to restrict
also to the subspace of zero average controls

Es := {vs ∈ kerD0G, vs defined by (12.23),

∫ 1

0
v(τ)dτ = 0}.

Notice that this space depend on the choice of t, while codimEs does not depend on s.

Remark 12.20. We will use the following identity (writing σ for σλ0), which holds for arbitrary
control functions v,w : [0, 1]→ Rk

∫∫

α≤τ≤t≤β

σ(ητv(τ), η
t
w(t))dtdτ =

∫ β

α
σ(

∫ t

α
ητv(τ)dτ, η

t
w(t))dt =

∫ β

α
σ(ητv(τ),

∫ β

τ
ηtw(t)dt)dτ. (12.24)

For the specific choice w(t) =
∫ t
0 v(τ)dτ we have also the integration by parts formula

∫ β

α
ηtv(t)dt = ηβw(β) − η

α
w(α) −

∫ β

α
η̇tw(t)dt. (12.25)

Combining (12.22) and (13.21), we rewrite the Hessian applied to vs as follows

λ0Hess0G(vs(·)) =
∫ t+s

t
σ(

∫ τ

t
ηθvs(θ)dθ, η

τ
vs(τ)

)dτ. (12.26)

Notice that the control vs is concentrated on the segment [t, t + s], thus we have restricted the
extrema of the integral. The integration by parts formula (12.25), using our boundary conditions,
gives ∫ τ

t
ηθvs(θ)dθ = ητws(τ)

−
∫ τ

t
η̇θws(θ)

dθ. (12.27)

where we defined

ws(θ) =

∫ θ

t
vs(τ)dτ, θ ∈ [t, t+ s].

Combining (12.26) and (12.27) one has

λ0Hess0G(vs(·)) =
∫ t+s

t
σ(ητws(τ)

, ητvs(τ))dτ −
∫ t+s

t
σ(

∫ τ

t
η̇θws(θ)

dθ, ητvs(τ))dτ

=

∫ t+s

t
σ(ητws(τ)

, ητvs(τ))dτ −
∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
ηθvs(θ)dθ)dτ (12.28)

where the second equality uses (13.21).
Next consider the second term in (12.28) and apply again the integration by part formula (recall

that ws(t+ s) = 0)
∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
ηθvs(θ)dθ)dτ = −

∫ t+s

t
σ(η̇τws(τ)

, ητws(τ)
)dτ

−
∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
η̇θws(θ)

dθ)dτ.

330



Collecting together all these results one obtains

λ0Hess0G(vs(·)) =
∫ t+s

t
σ(ητws(τ)

,ητvs(τ))dτ

+

∫ t+s

t
σ(η̇τws(τ)

, ητws(τ)
)dτ

+

∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
η̇θws(θ)

dθ)dτ

This is indeed a homogeneous decomposition of λ0Hess0G(vs(·)) with respect to s, in the following
sense. Since

ws(θ) = sw

(
θ − t
s

)
,

we can perform the change of variable

ζ =
τ − t
s

, τ ∈ [t, t+ s],

and obtain the following expression for the Hessian:

λ0Hess0G(vs(·)) = s2
∫ 1

0
σ(ηt+sθw(θ) ,η

t+sθ
v(θ) )dθ

+s3
∫ 1

0
σ(η̇t+sθw(θ) , η

t+sθ
w(θ) )dθ (12.29)

+ s4
∫ 1

0
σ(η̇t+sθw(θ) ,

∫ 1

θ
η̇t+sζw(ζ)dζ)dθ

We recall that here vs is defined through a control v compactly supported in [0, 1] by (12.23) and
w is the primitive of v, that is also compactly supported on [0, 1].

In particular we can write

λ0Hess0G(vs(·)) = s2
∫ 1

0
σ(ηtw(θ), η

t
v(θ))dθ +O(s3). (12.30)

By assumption ind−λ0Hess0G < +∞. This implies that the quadratic form given by its principal
part

w(·) 7→
∫ 1

0
σ(ηtw(θ), η

t
ẇ(θ))dθ, (12.31)

has also finite index. Indeed, assume that (12.31) has infinite negative index. Then by continuity
every sufficiently small perturbation of (12.31) would have infinite index too. Hence, for s small
enough, the quadratic form λ0Hess0G would also have infinite index, contradicting our assumption
on (12.30).

To prove Goh condition, it is then sufficient to show that if (12.31) has finite index then the
integrand is zero, which is guaranteed by the following

Lemma 12.21. Let A : Rk × Rk → R be a skew-symmetric bilinear form and define the qudratic
form

Q : U → R, Q(w(·)) =
∫ 1

0
A(w(t), ẇ(t))dt,

where U := {w(·) ∈ Lip[0, 1], w(0) = w(1) = 0}. Then ind−Q < +∞ if and only if A ≡ 0.
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Proof. Clearly if A = 0, then Q = 0 and ind−Q = 0. Assume then that A 6= 0 and we prove that
ind−Q = +∞. We divide the proof into steps

(i). The bilinear form B : U × U → R defined by

B(w1(·), w2(·)) =
∫ 1

0
A(w1(t), ẇ2(t))dt

is symmetric. Indeed, integrating by parts and using the boundary conditions we get

B(w1, w2) =

∫ 1

0
A(w1(t), ẇ2(t))dt

= −
∫ 1

0
A(ẇ1(t), w2(t))dt

=

∫ 1

0
A(w2(t), ẇ1(t))dt = B(w2, w1)

(ii). Q is not identically zero. Since Q is the quadratic form associated to B and from the
polarization formula

B(w1, w2) =
1

4
(Q(w1 + w2)−Q(w1 − w2))

it easily follows that Q ≡ 0 if and only if B ≡ 0. Then it is sufficient to prove that B is not zero.

Assume that there exists x, y ∈ Rk such that A(x, y) 6= 0, and consider a smooth nonconstant
function

α : R→ R, s.t. α(0) = α(1) = α̇(0) = α̇(1) = 0.

Then α̇(t)z, α(t)z ∈ U for every z ∈ Rk and we can compute

B(α̇(·)x, α(·)y) =
∫ 1

0
A(α̇(t)x, α̇(t)y)dt

= A(x, y)

∫ 1

0
α̇(t)2dt 6= 0.

(iii). Q has the same number of positive and negative eigenvalues. Indeed it is easy to see that
Q satisfies the identity

Q(w(1− ·)) = −Q(w(·))
from which (iii) follows.

(iv). Q is non zero on a infinite dimensional subspace.

Consider some w ∈ U such that Q(w) = α 6= 0. For every x = (x1, . . . , xN ) ∈ RN one can built
the function

wx(t) = xi w(Nt− i), t ∈ [
i

N
,
i+ 1

N
], i = 1, . . . , N.

An easy computations shows that

Q(wx) = α

N∑

i=1

x2i

In particular there exists a subspace of arbitrary large dimension where Q is nondegenerate.
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12.3.2 Proof of generalized Legendre condition - (ii) of Theorem 12.13

Applying Lemma 12.21 for any t we prove that the s2 order term in (12.29) vanish and we get to

λ0Hess0G(v(·)) = s3
∫ 1

0
σ(η̇t+sθw(θ) , η

t+sθ
w(θ) )dθ +O(s4)

= s3
∫ 1

0
σ(η̇t+sθw(θ) , η

t
w(θ))dθ +O(s4)

where the last equalily follows from the fact that ηtv is Lipschitz with respect to t (see also (12.21)),
i.e.

ηt+sθv = ηtv +O(s)

On the other hand η̇tv is only measurable bounded, but the Lebesgue points of u are the same of η̇.
In particular if t is a Lebesgue point of η̇, the quantity η̇tw(·) is well defined and we can write

λ0Hess0G(v(·)) = s3
∫ 1

0
σ(η̇tw(θ), η

t
w(θ))dθ

− s3
(∫ 1

0
σ(η̇t+sθw(θ) , η

t
w(θ))− σ(η̇tw(θ), ηtw(θ))dθ

)
+O(s4)

Using the linearity of σ and the boundedness of the vector fields we can estimate

∣∣∣∣
∫ 1

0
σ(η̇t+sθw(θ) , η

t
w(θ))− σ(η̇tw(θ), ηtw(θ))dθ

∣∣∣∣ ≤ C
∫ 1

0
|η̇t+sθw(θ) − η̇tw(θ)|dθ

≤ C sup
|v|≤1

1

s

∫ s

0
|η̇t+τv − η̇tv |dτ −→

s→0
0

where the last term tends to zero by definition of Lebesgue point. Hence we come to

λ0Hess0G(v(·)) = s3
∫ 1

0
σ(η̇tw(θ), η

t
w(θ))dθ + o(s3) (12.32)

To prove the generalized Legendre condition we have to prove that the integrand is a non
negative quadratic form. This follows from the following Lemma, which can be proved similarly to
Lemma 12.21.

Lemma 12.22. Let Q : Rk → R be a quadratic form on Rk and

U := {w(·) ∈ Lip[0, 1], w(0) = w(1) = 0}.

The quadratic form

Q : U → R, Q(w(·)) =
∫ 1

0
Q(w(t))dt

has finite index if and only if Q is non negative.
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12.3.3 More on Goh and generalized Legendre conditions

If Goh condition is satisfied, the generalized Legendre condition can also be characterized as an
intrinsic property of the module. Indeed one can see that the quadratic map

Uγ(t) → R, v 7→
〈
λ(t), [[fu(t), fv], fv](γ(t))

〉

is well defined and does not depend on the extension of fv to a vector field fv(t) on U.

Notice that, using the notation hv(λ) = 〈λ, fv(q)〉 an abnormal extremal satisfies

hv(λt) ≡ 0, ∀ v ∈ Rk

Recalling that the Poisson bracket between linear functions on T ∗M is computed by the Lie bracket

{hv, hw}(λ) = 〈λ, [fv, fw](q)〉

we can rewrite the Goh condition as follows

{hv , hw}(λ(t)) ≡ 0, ∀ v,w ∈ Rk (12.33)

while strong Legendre conditions reads

{{hu(t), hv}, hv} ≥ 0, ∀ v ∈ Rk (12.34)

Taking derivative of (12.33) with respect to t we find

{hu(t), {hv , hw}}(λ(t)) ≡ 0, ∀ v,w ∈ Rk

and using Jacobi identity of the Poisson bracket we get that the bilinear form

(v,w) 7→ {{hu(t), hv}, hw}(λ) (12.35)

is symmetric. Hence the generalized Legendre condition says that the quadratic form associated to
(12.35) is nonnegative.

Now we want to characterize the trajectories that satisfy these conditions. Recall that, if λ(t)
is an abnormal geodesic, we have

λ̇(t) = ~hu(t)(λ(t)), hi(λ(t)) ≡ 0, 0 ≤ t ≤ 1. (12.36)

where ~hu(t) =
∑k

i=1 ui(t)
~hi(t). Moreover for any smooth function a : T ∗M → R

d

dt
a(λ(t)) = {hu(t), a}(λ(t)) =

k∑

i=1

ui(t){hi, a}(λ(t))

Notation. We will denote the iterated Poisson brackets

hi1...ik(λ) = {hi1 , . . . , {hik−1
, hik}}(λ) (12.37)

=
〈
λ, [fi1 , . . . , [fik−1

, fik ]](q)
〉
, q = π(λ) (12.38)
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Differentiating the identities in (12.36), using (12.37), we get

hi(λ(t)) = 0 ⇒
k∑

j=1

uj(t)hji(λ(t)) = 0, ∀ t. (12.39)

If k is odd we always have a nontrivial solution of the system, if k is even is possible only for
those λ that satisfy det{hij(λ)} = 0. But we want to characterize only those controls that satisfy
Goh conditions, i.e. such that

hij(λ(t)) ≡ 0. (12.40)

Hence you cannot recover the control u from the linear system (12.39). We differentiate again
equations (12.40) and we find

k∑

l=1

ul(t)hlij(λ(t)) ≡ 0. (12.41)

For every fixed t, these are k(k − 1)/2 equations in k variables u1, . . . , uk. Hence

(i) If k = 2, we have 1 equation in 2 variables and we can recover the control u1, u2 up to a scalar
mutilplier, if at least one of the coefficients does not vanish. Since we can always deal with
lengh-parametrized curve this uniquely determine the control u.

(ii) If k ≥ 3, we have that the system is overdetermined.

Remark 12.23. For generic systems it is proved that, when k ≥ 3, Goh conditions are not satisfied.
On the other hand, in the case of Carnot groups, for big codimension of the distribution, abnormal
minimizers always appear.

12.4 Rank 2 distributions and nice abnormal extremals

Consider a rank 2 distribution generated by a local frame f1, f2 and let h1, h2 be the associated
linear Hamiltonian. An abnormal extremal λ(t) associated with a control u(t) satisfies the system
of equations

λ̇(t) = u1(t)~h1(λ(t)) + u2(t)~h2(λ(t)),

h1(λ(t)) = h2(λ(t)) = 0. (12.42)

Define the linear Hamiltonian associated with the h12(λ(t)) = 〈λ, [f1, f2](q)〉. Notice that in this
special framework the Goh condition is rewritten as h12(λ(t)) = 0 for a.e. t.

Equivalently, every abnormal extremal satisfies Goh conditions if and only if

λ(t) ∈ (D2)⊥.

Lemma 12.24. Every nontrivial abnormal extremal on a rank 2 sub-Riemannian structure satisfies
the Goh condition.

Proof. Indeed differentiating the identity (12.42) one gets (we omit t in the notation for simplicity)

u2{h2, h1} = u2h21(λ) = 0,

u1{h1, h2} = −u1h21(λ) = 0,

Since at least one among u1 and u2 is not identically zero, we have that h12(λ(t)) ≡ 0, that is Goh
condition.
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From now on we focus on a special class of abnormal extremals.

Definition 12.25. An abnormal extremal λ(t) is called nice abnormal if, for every t ∈ [0, 1], it
satisfies

λ(t) ∈ (D2)⊥ \ (D3)⊥.

Remark 12.26. Assume that λ(t) is a nice abnormal extremal. The system (12.41) obtained by
differentiating twice the equations (12.42) reads

u1h112(λ) = u2h221(λ). (12.43)

Under our assumption, at least one coefficient in (12.43) is nonzero and we can uniquely recover
the control u = (u1, u2) up to a scalar as follows

u1(t) = h221(λ(t)), u2(t) = h112(λ(t)). (12.44)

If we plug this control into the original equation we find that λ(t) is a solution of

λ̇ = h221(λ)~h1(λ) + h112(λ)~h2(λ). (12.45)

Let us now introduce the quadratic Hamitonian

H0 = h221h1 + h112h2. (12.46)

Theorem 12.27. Any abnormal extremal belong to (D2)⊥. Moreover we have that λ(t) ∈ (D2)⊥ \
(D3)⊥ for all t ∈ [0, 1] if and only if λ(t) satisfies

λ̇(t) = ~H0(λ(t)) (12.47)

with initial condition λ0 ∈ (D2
q )

⊥ \ (D3
q )

⊥.

Remark 12.28. Notice that, as soon as n > 3, the set (D2
q)

⊥ \ (D3
q )

⊥ is nonempty for an open dense
set of q ∈ M . Indeed assume that we have D2

q = D3
q for any q in a open neighborhood Oq0 of a

point q0 in M . Then it follows that

D2
q0 = D3

q0 = D4
q0 = . . .

and the structure cannot be bracket generating, since dimDiq0 < dimM for every i > 1. The case
n = 3 will be treated separately.

Proof. Using that any abnormal extremal belong to the subset {h1(λ(t)) = h2(λ(t)) = 0}, it is easy
to show that an abnormal extremal λ(t) satisfies (12.45) if and only if it is an integral curve of the
Hamiltonian vector field ~H0.

It remains to prove that a solution of the system

λ̇(t) = ~H(λ(t)), λ0 ∈ (D2)⊥ \ (D3)⊥, (12.48)

satisfies λ(t) ∈ (D2)⊥ \ (D3)⊥ for every t. First notice that the solution cannot intersect the set
(D3)⊥ since these are equilibrium points of the system (12.48) (since at these points the Hamiltonian
has a root of order two).

336



We are reduced to prove that (D2)⊥ is an invariant subset for ~H. Hence we prove that the
functions h1, h2, h12 are constantly zero when computed on the extremal.

To do this we find the differential equation satisfied by these Hamiltonians. Recall that, for any

smooth function a : T ∗M → R and any solution of the Hamiltonian system λ(t) = et
~Hλ0, we have

ȧ = {H, a}. Hence we get

ḣ12 = {h221h1 + h112h2, h12}
= {h221, h12}h1 + {h112, h12}h2 + h112h221 + h212h112︸ ︷︷ ︸

=0= c1h1 + c2h2

for some smooth coefficients c1 and c2. We see that there exists smooth functions a1, a2, a12 and
b1, b2, b12 such that 




ḣ1 = a1h1 + a2h2 + a12h12

ḣ2 = b1h1 + b2h2 + b12h12

ḣ12 = c1h1 + c2h2

(12.49)

If we plug the solution λ(t) into the equation of (12.48), i.e. if we consider it as a system of differen-
tial equations for the scalar functions hi(t) := hi(λ(t)), with variable coefficients ai(λ(t)), bi(λ(t)),
ci(λ(t)), we find that h1(t), h2(t), h12(t) satisfy a nonautonomous homogeneous linear system of
differential equation with zero initial condition, since λ0 ∈ (D2)⊥, i.e.

h1(λ0) = h2(λ0) = h12(λ0) = 0. (12.50)

Hence

h1(λ(t)) = h2(λ(t)) = h12(λ(t)) = 0, ∀ t.

We also can prove easily that nice abnormals satisfy the generalized Legendre condition. Recall
that if λ(t) is an abnormal extremal, then −λ(t) is also an abnormal extremal.

Lemma 12.29. Let λ(t) be a nice abnormal. Then λ(t) or −λ(t) satisfy the generalized Legendre
condition.

Proof. Let u(t) be the control associated with the extremal λ(t). It is sufficient to prove that the
quadratic form

Qt : v 7→
〈
λ(t), [[fu(t), fv], fv]

〉
, v ∈ R2 (12.51)

is non negative definite. We already proved (cf. ??) that the bilinear form

Bt : (v,w) 7→
〈
λ(t), [[fu(t), fv], fw]

〉
, v, w ∈ R2 (12.52)

is symmetric. From (12.52) it is easy to see that u(t) ∈ kerBt for every t. Hence Qt is degenerate
for every t. On the other hand if the quadratic form is identically zero we have λ(t) ∈ (D3)⊥, which
is a contradiction.

Hence the quadratic form has rank 1 and is semi-definite and we can choose ±λ0 in such a way
that (12.51) is positive at t = 0. Since the sign of the quadratic form does not change along the
curve (it is continuous and it cannot vanish) we have that it is positive for all t.
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12.5 Optimality of nice abnormal in rank 2 structures

Up to now we proved that every nice abnormal extremal in a rank 2 sub-Riemannian structure
automatically satisfies the necessary condition for optimality. Now we prove that actually they are
strict local minimizers.

Theorem 12.30. Let λ(t) be a nice abnormal extremal and let γ(t) be corresponding abnormal
trajectory. Then there exists s > 0 such that γ|[0,s] is a strict local length minimizer in the L2-
topology for the controls (equivalently the H1-topology for trajectories).

Remark 12.31. Notice that this property of γ does not depend on the metric but only on the
distribution. In particular the value of s will be independent on the metric structure defined on
the distribution.

It follows that, as soon as the metric is fixed, small pieces of nice abnormal are also global
minimizers.

Before proving Theorem 12.30 we prove the following technical result.

Lemma 12.32. Let Φ : E → Rn be a smooth map defined on a Hilbert space E such that Φ(0) = 0,
where 0 is a critical point for Φ

λD0Φ = 0, λ ∈ Rn∗, λ 6= 0.

Assume that λHess0φ is a positive definite quadratic form. Then for every v such that 〈λ, v〉 < 0,
there exists a neighborhood of zero O ⊂ E such that

Φ(x) /∈ R+v, ∀x ∈ O,x 6= 0, R+ = {α ∈ R, α > 0}.

In particular the map Φ is not locally open and x = 0 is an isolated point on its level set.

Proof. In the first part of the proof we build some particular set of coordinates that simplifies the
proof, exploiting the fact that the Hessian is well defined independently on the coordinates.

Split the domain and the range of the map as follows

E = E1 ⊕ E2, E2 = kerD0Φ, (12.53)

Rn = Rk1 ⊕ Rk2 , Rk1 = imD0Φ, (12.54)

where we select the complement Rk2 in such a way that v ∈ Rk2 (notice that by our assumption
v /∈ Rk1). Accordingly to the notation introduced, let us write

Φ(x1, x2) = (Φ1(x1, x2),Φ2(x1, x2)), xi ∈ Ei, i = 1, 2.

Since Φ1 is a submersion by construction, the Implicit function theorem implies that by a smooth
change of coordinates we can linearize Φ1 and assume that Φ has the form

Φ(x1, x2) = (D0Φ(x1),Φ2(x1, x2)),

since x2 ∈ E2 = kerD0Φ. Notice that, by construction of the coordinate set, the function x2 7→
Φ2(0, x2) coincides with the restriction of Φ to the kernel of its differential, modulo its image.
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Hence for every scalar function a : Rk2 → R such that d0a = λ we have the equality

λHess0Φ = Hess0(a ◦ Φ2(0, ·)) > 0

In particular the function a ◦ Φ2(0, y) is non negative in a neighborhood of 0.
Assume now that Φ(x1, x2) = sv for some s ≥ 0. Since v ∈ Rk2 it follows that

D0Φ(x1) = 0 =⇒ x1 = 0, and Φ2(0, x2) = sv.

In particular we have

d

ds

∣∣∣∣
s=0

a(Φ2(0, x2)) =
d

ds

∣∣∣∣
s=0

a(sv) = 〈λ, v〉 ≤ 0 ⇒ a(sv) ≤ 0 for s ≥ 0

which is a contradiction.

Let λ(t) be an abnormal extremal and let γ(t) be corresponding abnormal trajectory.

γ̇ = u1f1(γ) + u2f2(γ). (12.55)

In what follows we always assume that γ̄
.
= {γ(t) : t ∈ [0, 1]} is a smooth one-dimensional

submanifold of M , with or without border. Then either the curve γ has no self-intersection or γ̄ is
diffeomorfic to S1. In both cases we can chose a basis f1, f2 in a neighborhood of γ̄ in such a way
that γ is the integral curve of f1

γ̇ = f1(γ)

Then γ is the solution of (12.55) with associated control ũ = (1, 0). Notice that a change of the
frame on M corresponds to a smooth change of coordinates on the end-point map. With analogous
reasoning as in the previous section, we describe the end point map

F : (u1, u2) 7→ γ(1)

as the composition
F = ef1 ◦G

where G is the end point map for the system

q̇ = (u1 − 1)e−tf1∗ f1 + u2e
−tf1∗ f2. (12.56)

Since e−tf1∗ f1 = f1, denoting gt := e−tf1∗ f2 and defining the primitives

w(t) =

∫ t

0
(1− u1(τ))dτ, v(t) =

∫ t

0
u2(τ)dτ, (12.57)

we can rewrite the system, whose endpoint map is G, as follows

q̇ = −ẇf1(q) + v̇gt(q).

The Hessian of G is computed

λ0Hess0G(u1, v̇) =

∫ 1

0
〈λ0, [

∫ t

0
−ẇ(τ)f1 + v̇(τ)gτdτ,−ẇ(t)f1 + v̇(t)gt](q0)〉dt. (12.58)
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Recall that

D0G(u1, v̇) =

∫ 1

0
−ẇ(t)f1(q0) + v̇(t)gt(q0)dt

= −w(1)f1(q0) +
∫ 1

0
v̇(t)gt(q0)dt

and the condition λ0 ∈ imD0G
⊥ is rewritten as

〈λ0, f1(q0)〉 = 〈λ0, gt(q0)〉 = 0, ∀ t. (12.59)

Notice that since equality (12.59) is valid for all t then we have that

〈λ0, ġt(q0)〉 = 〈λ0, [f1, gt](q0)〉 = 0, (12.60)

Then we can rewrite our quadratic form only as a function of v̇, since all terms containing ẇ
disappear

λ0Hess0G(v̇) =

∫ 1

0
〈λ0, [

∫ t

0
v̇(τ)gτdτ, v̇(t)gt](q0)〉dt (12.61)

with the extra condition ∫ 1

0
v̇(t)gt(q0)dt = w(1)f1(q0). (12.62)

Now we rearrange these formulas, using integration by parts, rewriting the Hessian as a quadratic
form on the space of primitives

v(t) =

∫ t

0
v̇(τ)dτ

Using the equality ∫ t

0
v̇(τ)gτdτ = v(t)gt −

∫ t

0
v(τ)ġτdτ (12.63)

we have

λ0Hess0G(v̇) =

∫ 1

0
〈λ0, [v(t)gt, v̇(t)gt](q0)〉dt

−
∫ 1

0
〈λ0, [

∫ t

0
v(τ)ġτdτ, v̇(t)gt](q0)〉dt

The first addend is zero since [gt, gt] = 0. Exchanging the order of integration in the second term

∫ 1

0
〈λ0, [

∫ t

0
v(τ)ġτdτ, v̇(t)gt](q0)〉dt =

∫ 1

0
〈λ0, [v(t)ġt,

∫ 1

t
v̇(τ)gτdτ ](q0)〉dt

and then integrating by parts

∫ 1

t
v̇(τ)gτdτ = v(1)g1 − v(t)gt −

∫ 1

t
v(τ)ġτdτ
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we get to

λHess0G(v̇) =

∫ 1

0
〈λ0, [ġt, gt](q0)〉v(t)2dt

+

∫ 1

0
〈λ0, [

∫ t

0
v(τ)ġτ , v(t)ġt − v(1)g1](q0)〉dt (12.64)

which can also be rewritten as follows

λHess0G(v̇) =

∫ 1

0
〈λ0, [ġt, gt](q0)〉v(t)2 dt

+

∫ 1

0
〈λ0, [

∫ t

1
v(τ)ġτ dτ + v(1)g1, v(t)ġt](q0) dt. (12.65)

Moreover, again integrating by parts the extra condition (12.62), we find

∫ 1

0
v(t)ġt(q0)dt = −w(1)f1(q0) + v(1)g1(q0) (12.66)

Remark 12.33. Notice that we cannot plug in the expression (12.66) directly into the formula since
this equality is valid only at the point q0, while in (12.64) we have to compute the bracket.

Notice that the vectors f1(q1) and f2(q1) are linearly independent, then also

f1(q0) = e−f1∗ (f1(q1)), and g1(q0) = e−f1∗ (f2(q1)),

are linearly independent. From (12.66) it follows that for every pair (w, v) in the kernel the following
estimates are valid

|w(1)| ≤ C‖v‖L2 , |v(1)| ≤ C‖v‖L2 . (12.67)

Theorem 12.34. Let γ : [0, 1]→M be an abnormal trajectory and assume that the quadratic form
(12.64) satisfies

λ0Hess0G(v̇) ≥ α‖v‖2L2 . (12.68)

Then the curve is locally minimizer in the L2 topology of controls.

Remark 12.35. Notice that the estimate (12.68) depends only on v, while the map G is a smooth
map of v̇ and ẇ. Hence Lemma 12.32 does not apply.

Moreover, the statement of Lemma 12.32 violates for the endpoint map, since it is locally open
as soon as the bracket generating condition is satisfied (this is equivalent to the Chow-Rashevsky
Theorem). Moreover the final point of the trajectory is never isolated in the level set.

What we are going to use is part of the proof of this Lemma, to show that the statements holds
for the restriction of the endpoint map to some subset of controls

Proof of Theorem 12.34. Our goal is to prove that there are no curves shorter than γ that join q0
to q1 = γ(1).

To this extent we consider the restriction of the endpoint map to the set of curves that are
shorter or have the same lenght than the original curve. Hence we need to fix some sub-Riemannian
structure on M .
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We can then assume the orthonormal frame f1, f2 to be fixed and that the length of our curve
is exactly 1 (we can always dilate all the distances on our manifold and the local optimality of the
curve is not affected).

The set of curves of length less or equal than 1 can be parametrized, using Lemma 3.15, by the
set

{(u1, u2)|u21 + u22 ≤ 1}
Following the notation (12.57), notice that

{(u1, u2)|u21 + u22 ≤ 1} ⊂ {(w, v)| ẇ ≥ 0}.

We want to show that, for some function a ∈ C∞(M) such that dqa = λ ∈ imD0F
⊥, we have

a ◦ F
∣∣
D
(ẇ, v̇) = λHess0F (ẇ, v̇) +R(w, v), where

R(w, v)

‖v‖2 −→
‖(ẇ,v̇)‖→0

0 (12.69)

in the domain
D = {(ẇ, v̇) ∈ kerD0F, ẇ ≥ 0}

Indeed if we prove (12.69) we have that the point (ẇ, v̇) = (0, 0) is locally optimal for F . This
means that the curve γ, i.e. the curve associated to controls u1 = 1, u2 = 0, is also locally optimal.

Using the identity

−→exp
∫ t

0
v̇(τ)f2dτ = ev(t)f2

and applying the variations formula (6.29) to the endpoint map F we get

F (ẇ, v̇) = q0 ◦ −→exp
∫ 1

0
(1− ẇ(t))f1 + v̇(t)f2 dt

= q0 ◦ −→exp
∫ 1

0
(1− ẇ(t))e−v(t)f2∗ f1 dt ◦ ev(1)f2

Hence we can express the endpoint map as a smooth function of the pair (ẇ, v).
Now, to compute (12.69), we can assume that the function a is constant on the trajectories of

f2 (since we only fix its differential at one point) so that

ev(1)f2 ◦ a = a

which simplifies our estimates:

a ◦ F (ẇ, v̇) = q0 ◦ −→exp
∫ 1

0
(1− ẇ(t))e−v(t)f2∗ f1 dt a

Writing

(1− ẇ(t))e−v(t)f2∗ f1 = f1 +X0(v(t)) + ẇ(t)X1(v(t)) (12.70)

and using the variation formula (6.30), setting Y i
t = e

(t−1)f1
∗ Xi for i = 0, 1, we get (recall that

q1 = q0 ◦ ef1(q0))

a ◦ F (ẇ, v̇) = q1 ◦ −→exp
∫ 1

0
Y 0
t (v(t)) + ẇ(t)Y 1

t (v(t))dt a, Y 0
t (0) = Y 1

t (0) = 0,

Expanding the chronological exponential we find that
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(a) the zero order term vanish since Y 0
t (0) = Y 1

t (0) = 0,

(b) all first order terms vanish since the vector fields f1 and [f1, f2] spans the image of the
differential (hence are orthogonal to λ = dqa)

(c) the second order terms are in the Hessian, since our domain D is contained in the kernel of
the differential

In other words it remains to show that every term in v,w of order greater or equal than 3 in the
expansion can be estimated with o(‖v‖2).3

Let us prove first the claim for monomial of order three:

∫ 1

0
ẇ(t)v2(t)dt = o(‖v‖2),

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)v(τ)dτdt = o(‖v‖2)

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)

∫ τ

0
ẇ(s)dsdτdt = o(‖v‖2)

Using that ẇ ≥ 0, which is the key assumption, and the fact that (ẇ, v̇) ∈ kerD0F , which gives
the estimates (12.67), we compute

∣∣∣∣
∫ 1

0
ẇ(t)v2(t)dt

∣∣∣∣ ≤
∫ 1

0
|ẇ(t)|v2(t)dt

=

∫ 1

0
ẇ(t)v2(t)dt

= w(1)v2(1)−
∫ 1

0
w(t)v(t)v̇(t)dt

≤ ‖v‖3 + ε‖v‖2,

where we estimate for the second term follows from
∣∣∣∣
∫ 1

0
w(t)v(t)v̇(t)dt

∣∣∣∣ ≤ maxw(t)

∣∣∣∣
∫ 1

0
v(t)v̇(t)dt

∣∣∣∣
≤ w(1)‖v‖‖v̇‖
≤ C‖v̇‖‖v‖2

The second integral can be rewritten

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)v(τ)dτdt = w(1)

∫ 1

0
ẇ(t)v(t)dt −

∫ 1

0
w(t)v(t)ẇ(t)dt

and then we estimate
∣∣∣∣
∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)v(τ)dτdt

∣∣∣∣ ≤ 2|w(1)|
∫ 1

0
v(t)ẇ(t)dt

≤ C‖ẇ‖‖v‖2

3where o(‖v‖2) have the same meaning as in (12.69).
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Finally, the last integral is very easy to estimate using the equality

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)

∫ τ

0
ẇ(s)dsdτdt =

1

6

∫ 1

0
ẇ(t)3dt

≤ C‖ẇ‖‖v‖2

Starting from these estimate it is easy to show that any mixed monomial of order greater that three
satisfies these estimates as well.

Applying these results to a small piece of abnormal trajectory we can prove that small pieces
of nice abnormals are minimizers

Proof of Theorem 12.30 . If we apply the arguments above to a small piece γs = γ|[0,s] of the curve
γ it is easy to see that the Hessian rescale as follows,

λ0Hess0Gs(v) =

∫ s

0
〈λ0, [gt, ġt](q0)〉v(t)2dt

+

∫ s

0
〈λ0, [

∫ t

0
v(τ)ġτdτ, v(t)ġt − v(s)gs](q0)〉dt

Since the generalized Legendre condition ensures4 that (see also Lemma 12.29)

〈λ0, [gt, ġt](q0)〉 ≥ C > 0

then the norm

‖v‖g =
(∫ s

0
〈λ0, [gt, ġt](q0)〉v(t)2dt

)1/2

(12.71)

is equivalent to the standard L2-norm. Hence the Hessian can be rewritten as

λHess0Gs(v) = ‖v‖g + 〈Tv, v〉 (12.72)

where T is a compact operator in L2 of the form

(Tv)(t) =

∫ s

0
K(t, τ)v(τ)dτ

Since ‖T‖2 = ‖K‖2L2 → 0 for s → 0, it follows that the Hessian is positive definite for small
s > 0.

12.6 Conjugate points along abnormals

In this section, we give an effective way to check the inequality (12.68) that implies local minimality
of the nice abnormal geodesic according to Theorem 12.34.

4it is semidefinite and we already know that f1 is in the kernel
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We define Q1(v) := λHess0G(v̇). Quadratic form Q1 is continuous in the topology defined by
the norm ‖v‖L2 . The closure of the domain of Q1 in this topology is the space

D(Q1) =

{
v ∈ L2[0, 1] :

∫ 1

0
v(t)ġt(q0) dt ∈ span{f1(q0), g1(q0)}

}
.

The extension of Q1 to this closure is denoted by the same symbol Q1. We set:

l(t) = 〈λ0, [ġt, gt](q0)〉, Xt = v1g1 +

∫ t

1
v(τ)ġτ dτ

and we rewrite the form Q1 in these more compact notations:

Q1(v) =

∫ 1

0
l(t)v(t)2 dt+

∫ 1

0
〈λ0, [Xt, Ẋt](q0)〉 dt,

Ẋt = v(t)ġt, X1 ∧ g1 = 0, X0(q0) ∧ f1(q0) = 0. (1)

Moreover, we introduce the family of quadratic forms Qs, for 0 < s ≤ 1, as follows

Qs(v) :=

∫ s

0
l(t)v(t)2 dt+

∫ s

0
〈λ0, [Xt, Ẋt](q0)〉 dt,

Ẋt = v(t)ġt, Xs ∧ gs = 0, X0(q0) ∧ f1(q0) = 0. (1)

Recall that l(t) is a strictly positive continuous function. In particular,
∫ 1
0 l(t)v(t)

2 dt is the
square of a norm of v that is equivalent to the standard L2-norm. Next statement is proved by the
same arguments as Proposition ??. We leave details to the reader.

Proposition 12.36. The form Q1 is positive definite if and only if kerQs = 0, ∀s ∈ (0, 1].

Definition 12.37. A time moment s ∈ (0, 1] is called conjugate to 0 for the abnormal geodesic γ
if kerQs 6= 0.

We are going to characterize conjugate times in terms of an appropriate “Jacobi equation”.

Let ξ1 ∈ Tλ0(T ∗M) and ζt ∈ Tλ0(T ∗M) be the values at λ0 of the Hamiltonian lifts of the vector
fields f1 and gt. Recall that the Hamiltonian lift of a field f ∈ VecM is the Hamiltonian vector
field associated to the Hamiltonian function λ 7→ 〈λ, f(q)〉, λ ∈ T ∗

qM, q ∈M . We have:

Qs(v) =

∫ s

0
l(t)v(t)2 dt+

∫ s

0
σ(x(t), ẋ(t)) dt,

ẋ(t) = v(t)ζ̇t, x(s) ∧ ζs = 0, π∗x(0) ∧ π∗ξ1 = 0, (2)

where σ is the standard symplectic product on Tλ0(T
∗M) and π : T ∗M → M is the standard

projection. Moreover

l(t) = σ(ζ̇t, ζt), 0 ≤ t ≤ 1. (12.73)

Let E = span{ξ1, ζt, 0 ≤ t ≤ 1}. We use only the restriction of σ to E in the expression of Qs
and we are going to get rid of unnecessary variables. Namely, we set: Σ

.
= E/(ker σ|E).
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Lemma 12.38. dimΣ ≤ 2 (dim span{f1(q0), gt(q0), 0 ≤ t ≤ 1} − 1).

Proof. Dimension of Σ is equal to twice the codimension of a maximal isotropic subspace of σ|E .
We have: σ(ξ1, ζt) = 〈λ0, [f1, gt](q0)]〉 = 0, ∀t ∈ [0, 1], hence ξ1 ∈ ker σ|E . Moreover, π∗(E) =
span{f1(q0), gt(q0), 0 ≤ t ≤ 1} and E ∩ ker π∗ is an isotropic subspace of σ|E .

We denote by ζ
t
∈ Σ the projection of ζt to Σ and by Π ⊂ Σ the projection of E ∩ kerπ∗. Note

that the projection of ξ1 to Σ is 0; moreover, equality (12.73) implies that ζ
t
6= 0, ∀t ∈ [0, 1]. The

final expression of Qs is as follows:

Qs(v) =

∫ s

0
l(t)v(t)2 dt+

∫ s

0
σ(x(t), ẋ(t)) dt,

ẋ(t) = v(t)ζ̇
t
, x(s) ∧ ζ

s
= 0, x(0) ∈ Π. (4)

We have: v ∈ kerQs if and only if
∫ s

0

(
l(t)v(t) + σ(x(t), ζ̇

t
)
)
w(t) dt = 0,

for any w(·) such that ∫ s

0
ζ̇
t
w(t) dt ∈ Π+ Rζ

s
. (5)

We obtain that v ∈ kerQs if and only if there exists ν ∈ Π∠ ∩ ζ∠
s
such that

l(t)v(t) + σ(x(t), ζ̇
t
) = σ(ν, ζ̇

t
), 0 ≤ t ≤ s.

We set y(t) = x(t)− ν and obtain the following:

Theorem 12.39. A time moment s ∈ (0, 1] is conjugate to 0 if and only if there exists a nontrivial
solution of the equation

l(t)ẏ = σ(ζ̇
t
, y)ζ̇

t
(12.74)

that satisfy the following boundary conditions:

∃ ν ∈ Π∠ ∩ ζ∠
s

such that (y(s) + ν) ∧ ζ
s
= 0, (y(0) + ν) ∈ Π. (12.75)

Remark 12.40. Notice that identity (12.73) implies that y(t) = ζ
t
for t ∈ [0, 1] is a solution to the

equation (12.74). However this solution may violate the boundary conditions.

Let us consider the special case: dim span{f1(q0), gt(q0), 0 ≤ t ≤ 1} = 2; this is what we
automatically have for abnormal geodesics in a 3-dimensional sub-Riemannian manifold. In this
case, dimE = 2, dimΠ = 1; hence Π∠ = Π, ζ∠

s
= Rζ

s
and Π∠ ∩ ζ∠

s
= 0. Then ν in the boundary

conditions (12.75) must be 0 and y(s) = cζ
s
, where c is a nonzero constant. Hence y(t) = cζ

t
for

0 ≤ t ≤ 1 and y(0) = cζ
0
/∈ Π. We obtain:

Corollary 12.41. If dim span{f1(q0), gt(q0), 0 ≤ t ≤ 1} = 2, then the segment [0, 1] does not
contain conjugate time moments and assumption of Theorem 12.34 is satisfied.

We can apply this corollary to the isoperimetric problem studied in Section 4.4.2. Abnormal
geodesics correspond to connected components of the zero locus of the function b (see notations in
Sec. 4.4.2). All these abnormal geodesics are nice if and only if zero is a regular value of b. Take a
compact connected component of b−1(0); this is a smooth closed curve. Our corollary together with
Theorem 12.34 implies that this closed curve passed once, twice, three times or arbitrary number
of times is a locally optimal solution of the isoperimetric problem. Moreover, this is true for any
Riemannian metric on the surface M !
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12.6.1 Abnormals in dimension 3

Nice abnormals for the isoperimetric problem on surfaces

Recall the isoperimetric problem: given two points x0, x1 on a 2-dimensional Riemannian manifold
N , a 1-form ν ∈ Λ1N and c ∈ R, we have to find (if it exists) the minimum:

min{ℓ(γ), γ(0) = x0, γ(T ) = x1,

∫

γ
ν = c} (12.76)

As shown in Section 4.4.2, this problem can be reformulated as a sub-Riemannian problem on the
extended manifold

M = N × R = {(x, y), x ∈ N, y ∈ R},
where the sub-Riemannian structure is defined by the contact form

D = ker (dy − ν)

and the sub-Riemannian length of a curve coincides with the Riemannian length of its projection
on N . If we write dν = b dV , where b is a smooth function and dV denote the Riemannian volume
on N , we have that the Martinet surface is defined by the cilynder

M = R× b−1(0),

where, generically, the set b−1(0) is a regular level of b.

Since the distribution is well behaved with the projection on N by construction, it follows
that the distribution is always transversal to the Martinet surface and all abnormal are nice, since
D3
q = TqM for all q.

Thus the projection of abnormal geodesics on N are the connected components of the set b−1(0)
and we can recover the whole abnormal extremal integrating the 1-form ν to find the missing
component. In other words the abnormal extremals are spirals onM with step equal to

∫
A dν, (if

dν is the volume form on N , it coincide with the area of the region A inside the curve defined on
N by the connected component of b−1(0)).

Corollary 12.42. Let M be a sub-Riemannian manifold, dimM = 3, and let γ : [0, 1] → M be
a nice abnormal geodesic. Then γ is a strict local minimizer for the L2 control topology, for any
metric.

Remark 12.43. Notice that we do not require that the curve does not self-intersect since in the 3D
case this is automatically guaranteed by the fact that nice abnormal are integral curves of a smooth
vector fields on M .

A non nice abnormal extremal

In this section we give an example of non nice (and indeed not smooth) abnormal extremal.

Consider the isoperimetric problem on R2 = {(x1, x2), xi ∈ R} defined by the 1-form ν such
that

dν = x1x2dx1dx2.
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Here b(x1, x2) = x1x2 and the set b−1(0) consists of the union of the two axes, with moreover
db|0 = 0.

Let us fix x̄1, x̄2 > 0 and consider the curve joining (0, x̄2) and (x̄1, 0) that is the union of two
segment contained in the coordinate axes

γ : [−x̄2, x̄1]→ R2, γ(t) =

{
(0,−t), t ∈ [−x̄2, 0],
(t, 0), t ∈ [0, x̄1].

Proposition 12.44. The curve γ is a projection of an abnormal extremal that is not a length
minimizer.

Proof of Proposition 12.44. Let us built a family of “variations” γε,δ of the curve γ defined as in
Figure 12.1. Namely in γε,δ we cut a corner of size ε at the origin and we turn around a small circle
of radius δ before reaching the endpoint. Denoting by Dε and Dδ the two region enclosed by the
curve it is easy to see that the isoperimetric condition rewrites as follows

0 =

∫

γε,δ

ν =

∫

Dε

dν −
∫

Dδ

dν

It is then easy using that dν = x1x2dx1dx2 to show that there exists c1, c2 > 0 such that

∫

Dε

dν = c1ε
4,

∫

Dδ

dν = c2δ
3

while

ℓ(γε,δ)− ℓ(γ) = 2πδ − (2−
√
2)ε (12.77)

Choosing ε in such a way that c1ε
4 = c2δ

3 it is an easy exercise to show that the quantity (12.77)
is negative when δ > 0 is very small.

Remark 12.45. If you consider some plane curve γ̃ that is a projection of a normal extremal having
the same endpoint γ and contained in the set {(x1, x2) ∈ R2, x1 > 0, x2 > 0}, then γ̃ must have self
intersections. Indeed it is easy to see that if it is not the case then the isoperimetric condition

∫

γ̃
ν = 0

cannot be satisfied.

It is still an open problem to find which is the length minimizer joining these two points. We
know that it should be a projection of a normal extremal (hence smooth) but for instance we do
not know how many self-intersection it has.

12.6.2 Higher dimension

Now consider another important special case that is typical if dimension of the ambient manifold
is greater than 3. Namely, assume that, for some k ≥ 2, the vector fields

f1, f2, (adf1)f2, . . . , (adf1)
k−1f2 (12.78)
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Dε

Dδ

x2

x1

Figure 12.1: An abnormal extremal that is not length minimizer

are linearly independent in any point of a neighborhood of our nice abnormal geodesic γ, while
(adf1)

kf2 is a linear combination of the vector fields (12.78) in any point of this neighborhood; in
other words,

(adf1)
kf2 =

k−1∑

i=0

ai(adf1)
if2 + αf1,

where ai, α are smooth functions. In this case, all closed to γ solutions of the equation q̇ = f1(q)
are abnormal geodesics.

A direct calculation based on the fact that 〈λt, (adf i1)f2)(γ(t)〉 = 0, 0 ≤ t ≤ 1, gives the identity:

ζ
(k)
t =

k−1∑

i=0

ai(γ(t))ζ
(i) + α(γ(t))ξ1. 0 ≤ t ≤ 1. (12.79)

Identity (12.79) implies that dimE = k and Π = 0. The boundary conditions (12.75) take the
form:

y(0) ∈ ζ∠
s
, (y(s)− y(0)) ∧ ζ

s
= 0. (12.80)

The caracterization of conjugate points is especially simple and geometrically clear if the ambient
manifold has dimension 4. Let ∆ be a rank 2 equiregular distribution in a 4-dimensional manifold
(the Engel distribution). Then abnormal geodesics form a 1-foliation of the manifold and condition
(12.78) is satisfied with k = 2. Moreover, dimE = 3, dimΣ = 2 and ζ∠

s
= Rζ

s
. Recall that

y(t) = ζ
t
, 0 ≤ t ≤ s, is a solution to (12.74). Hence boundary conditions (12.80) are equivalent to

the condition
ζ
s
∧ ζ

0
= 0. (12.81)

It is easy to re-write relation (12.81) in the intrinsic way without special notations we used to
simplify calculations. We have the following characterization of conjugate times.

Lemma 12.46. A time moment t is conjugate to 0 for the abnormal geodesic γ if and only if

etf1∗ Dγ(0) = Dγ(t).

The flow etf1 preserves D2 and f1 but it does not preserve D. The plane etf1∗ D rotates around
the line Rf1 inside D2 with a nonvanishing angular velocity. Conjugate moment is a moment when
the plane makes a complete revolution. Collecting all the information we obtain:
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Theorem 12.47. Let D be the Engel distribution, f1 be a horizontal vector field such that [f1,D2] =
D2 and γ̇ = f1(γ). Then γ is an abnormal geodesic. Moreover

(i) if etf1∗ Dγ(0) 6= Dγ(t), ∀t ∈ (0, 1], then γ is a local length minimizer for any sub-Riemannian
structure on D

(ii) If etf1∗ Dγ(0) = Dγ(t) for some t ∈ (0, 1) and γ is not a normal geodesic, then γ is not a local
length minimizer.

12.7 Equivalence of local minimality

Now we prove that, under the assumption that our trajectory is smooth, it is equivalent to be
locally optimal in the H1-topology or in the uniform topology for the trajectories.

Recall that a curve γ̄ is called a C0-local length-minimizer if ℓ(γ̄) ≤ ℓ(γ) for every curve γ
that is C0-close to γ satisfying the same boundary conditions, while it is called a H1-local length-
minimizer if ℓ(γ̄) ≤ ℓ(γ) for every curve γ such that the control u corresponding to γ is close in
the L2 topology to the control ū associated with γ̄ and γ satisfies the same boundary conditions.

Any C0-local minimizer is automatically a H1-local minimizer. Indeed it is possible to show
that for every v,w in a neighborhood of a fixed control u there exists a constant C > 0 such that

|γv(t)− γw(t)| ≤ C‖u− v‖L2 , ∀ t ∈ [0, T ],

where γv and γw are the trajectories associated to controls v,w respectively.

Theorem 12.48. LetM be a sub-Riemannian structure that is the restriction to D of a Riemannian
structure (M,g). Assume γ̄ is of class C1 and has no self intersections. If γ̄ is a (strict) local
minimizer in the L2 topology for the controls then γ̄ is also a (strict) local minimizer in the C0

topology for the trajectories.

Proof. Since γ̄ has no self intersections, we can look for a preferred system of coordinates on an
open neighborhood Ω in M of the set V = {γ̄(t) : t ∈ [0, 1]}. For every ε > 0, define the cylinder
in Rn = {(x, y) : x ∈ R, y ∈ Rn−1} as follows

Iε ×Bn−1
ε = {(x, y) ∈ Rn : x ∈]− ε, 1 + ε[, y ∈ Rn−1, |y| < ε}, (12.82)

We need the following technical lemma.

Lemma 12.49. There exists ε > 0 and a coordinate map Φ : Iε × Bn−1
ε → Ω such that for all

t ∈ [0, 1]

(a) Φ(t, 0) = γ̄(t),

(b) the Riemannian metric Φ∗g is the identity matrix at (t, 0),i.e., along γ̄.

Proof of the Lemma. As in the proof of Theorem ??, for every ε > 0 we can find coordinates in
the cylinder Iε×Bn−1

ε such that, in these coordinates, our curve γ̄ is rectified γ̄(t) = (t, 0) and has
length one.

Our normalization of the curve γ̄ implies that for the matrix representing the Riemannian metric
Φ∗g in these coordinates satisfies

Φ∗g =

(
G11 G12

G21 G22

)
, with G11(x, 0) = 1
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where Gij , for i, j = 1, 2, are the blocks of Φ∗g corresponding to the splitting Rn = R × Rn−1

defined in (12.82). For every point (x, 0) let us consider the orthogonal complement T (x, 0) of the
tangent vector e1 = ∂x to γ̄ with respect to G. It can be written as follows (in this proof 〈·, ·〉 is
the Euclidean product in Rn)

T (x, 0) =
{
(〈vx, y〉 , y) , y ∈ Rn−1

}

for some family5 of vectors vx ∈ Rn−1, depending smoothly with respect to x. Let us consider now
the smooth change of coordinates

Ψ : Rn → Rn, Ψ(x, y) = (x− 〈vx, y〉 , y)

Fix ε > 0 small enough such that the restriction of Ψ to Iε × Bn−1
ε is invertible. Notice that this

is possible since

detDΨ(x, y) = 1−
〈
∂vx
∂x

, y

〉
.

It is not difficult to check that, in the new variables (that we still denote by the same symbol), one
has

G(x, 0) =

(
1 0
0 M(x, 0)

)
,

where M(x, 0) is a positive definite matrix for all x ∈ Iε. With a linear change of cooordinates in
the y space

(x, y) 7→ (x,M(x, 0)1/2y)

we can finally normalize the matrix in such a way that G(x, 0) = Id for all x ∈ Iε.

We are now ready to prove the theorem. We check the equivalence between the two notions of
local minimality in the coordinate set, denoted (x, y), defined by the previous lemma. Notice that
the notion of local minimality is independent on the coordinates.

Given an admissible curve γ(t) = (x(t), y(t)) contained in the cylinder Iε×Bn−1
ε and satisfying

γ(0) = (0, 0) and γ(1) = (1, 0) and denoting the reference trajectory γ̄(t) = (t, 0) we have that

‖γ − γ̄‖2H1 =

∫ 1

0
|ẋ(t)− 1|2 + |ẏ(t)|2dt

=

∫ 1

0
|ẋ(t)|2 + |ẏ(t)|2dt− 2

∫ 1

0
ẋ(t)dt+ 1

=

∫ 1

0
|ẋ(t)|2 + |ẏ(t)|2dt− 1

where we used that x(0) = 0 and x(1) = 1 since γ satisfies the boundary conditions. If we denote
by

J(γ) =

∫ 1

0
〈G(γ(t))γ̇(t), γ̇(t)〉 dt, Je(γ) =

∫ 1

0
|ẋ(t)|2 + |ẏ(t)|2dt (12.83)

respectively the energy of γ and the “Euclidean” energy, we have ‖γ − γ̄‖2H1 = Je(γ) − 1 and the
H1-local minimality can be rewritten as follows:

5Indeed it is easily checked that vx = −G1
21(x, 0), where G1

21 denotes the first column of the (n − 1) × (n − 1)
matrix G21.
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(∗) there exists ε > 0 such that for every γ admissible and Je(γ) ≤ 1 + ε one has J(γ) ≥ 1.

Next we build the following neighborhood of γ̄: for every δ > 0 define Aδ as the set of admissible
curves γ(t) = (x(t), y(t)) in Iε × Bn−1

ε such that the dilated curve γδ(t) = (x(t), 1δy(t)) is still
contained in the cylinder. This implies that in particular that γ is contained in Iε ×Bn−1

δε . Notice
that Aδ ⊂ Aδ′ whenever δ < δ′. Moreover, every curve that is εδ close to γ̄ in the C0-topology is
contained in Aδ.

It is then sufficient to prove that, for δ > 0 small enough, for every γ ∈ Aδ one has ℓ(γ) ≥ ℓ(γ̄).
Indeed it is enough to check that J(γ) ≥ J(γ̄). Let us consider two cases

(i) γ ∈ Aδ and Je(γ) ≤ 1 + ε. In this case (∗) implies that J(γ) ≥ 1.

(ii) γ ∈ Aδ and Je(γ) > 1 + ε. In this case we have G(x, 0) = Id and, by smoothness of G, we
can write for (x, y) ∈ Iε ×Bn−1

δε and δ → 0

〈G(x, y)v, v〉 = (1 +O(δ)) 〈v, v〉 ,

where O(δ) is uniform with respect to (x, y). Since γ ∈ Aδ implies that γ is contained in
Iε ×Bn−1

δε we can deduce for δ → 0

J(γ) = Je(γ)(1 +O(δ)) ≥ (1 + ε)(1 +O(δ))

and one can choose δ̄ > 0 small enough such that the last quantity is strictly bigger than one.

This proves that there exists δ̄ > 0 such every admissible curve γ ∈ Aδ̄ is longer than γ̄.

Remark 12.50. Notice that this result implies in particular Theorem 4.61, since normal extremals
are always smooth. Nevertheless, the argument of Theorem 4.61 can be adapted for more general
coercive functional (see [8]), while this proof use specific estimates that hold only for our explicit
cost (i.e., the distance).

12.8 Non optimality of corners

Is any sub-Riemannian shortest path smooth? We still do not know if this is always true. We
know that normal geodesics are smooth as well as nice abnormal. It is easy to construct abnormal
extremal paths but all known examples are not shortest. See, for instance, an example of the
nonsmooth abnormal in Sec. 12.6.1: it is a local length minimizer in the L∞-topology for controls
but it is not a shortest path (and not a local length minimizer in the Lp-topology ∀ p < ∞). The
following important regularity result shows that “corners” are not shortest paths.

Theorem 12.51 (Hakavuori, Le Donne [60]). Any piecewise smooth parameterized by the length
shortest path is of class C1.

Proof. Let q ∈ M, γi : [0, ti] → M, i = 1, 2, are smooth horizontal curves, γ1(0) = γ2(0) =
q, |γ̇1(t)| = |γ̇2(t)| = 1, γ̇1(0) + γ̇2(0) 6= 0. We have to show that the concatenation of the curves
t 7→ γ1(ε − t) and t 7→ γ2(t), 0 ≤ t ≤ ε, is not a shortest path between γ1(ε) and γ2(ε) for an
arbitrary small ε > 0.

First we consider the main case of linearly independent γ̇1(0) and γ̇2(0) and then explain what
to do in the simpler case γ̇1(0) = γ̇2(0) when the concatenation of the curves has a cusp. The proof
of the main case is divided in several steps.
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1. Let fi be horizontal vector fields such that

γ̇i(t) = fi(γi(t)), 0 ≤ t ≤ 1, i = 1, 2.

Assume that d(γ1(t), γ2(t)) = 2t for all sufficiently small t > 0, where d(·, ·) is the sub-Riemannian
distance. We are going to show that this assumption leads to a contradiction.

Let δε : Oq → Oq, ε > 0, be the dilation associated to some privileged coordinates in a neighbor-
hood Oq of the point q in M (see Chapter 10). We set dε(q1, q2) =

1
εd(δε(q1), δε(q2)), q1, q2 ∈ Oq,

and denote:
f εi = εδ 1

ε
∗fi, γεi (t) = etf

ε
i , i = 1, 2;

then dε(γ
ε
1(t), γ

ε
2(t)) = 2t. Moreover, f εi converges to f̂i in the C∞-topology and dε uniformly

converges to d̂ as ε → 0, where the vector fields f̂i, i = 1, 2, are two of generators of the Carnot
algebra acting on the nonholonomic tangent space at q and d̂(·, ·) is the metric on the nonholonomic

tangent space at q (see Section 10.4). We obtain that d̂
(
etf̂1(q), etf̂2(q)

)
= 2t.

2. Nonholonomic tangent space is a homogeneous space of the Carnot group and the distance
d̂(q̂1, q̂2) is, by definition, minimum of the Carnot group distances between elements of the stable
subgroups of the points q̂1, q̂2 for this action. We keep symbol d̂ for the Carnot group distance;

then d̂
(
(̂etf̂1 , etf̂2

)
= 2t (it cannot be greater than 2t because the length of the concatenation of

the curves τ → e(t−τ)f̂1 and τ → eτ f̂2 , 0 ≤ τ ≤ t, equals 2t).
3. The Carnot algebra may have more than two generators. Let us consider the subalgebra

generated by f̂1, f̂2 and the correspondent Carnot subgroup. Given two points in the subgroup, the
distance between the points in the subgroup is greater or equal than the distance in the ambient
group.

4. We arrived to the key step of the proof and would like to simplify notations. Let G be a
Carnot group with a Carnot algebra g. We assume that g is a step k Carnot algebra with two
generators, i. e.

g = g1 ⊕ · · · ⊕ gk, g = Lie{g1}, g1 = span{x1, x2}.
We also assume that |x1| = |x2| = 1 but x1 might not be orthogonal to x2. We denote the sub-
Riemannian distance in G by d(·, ·) (without “hat”). The statement of Theorem 1 in the no cusps
case is reduced to the following:

Proposition 12.52. d(ex1 , ex2) < 2.

Proof. We prove this statement by induction in k. For k = 2, G is the Heisenberg group where
we already know all shortest paths and they are smooth.

Induction step. Assume that the statement is valid for the (k − 1)-step Carnot groups. Note
that gk is contained in the center of G and egk takes part of the center of G. Then G/egk is a
Carnot group with a step (k − 1) Carnot algebra g1 ⊕ · · · ⊕ gk−1. Moreover, the sub-Riemannian
distance between two points in G/egk is simply minimum of the distances between the points of
the correspondent residue classes. Taking into account the left-invariance of the distance, we can
write:

d(eg1q1, e
g2q2) = min

z∈gk
d(ezq1, q2).

Our induction assumption implies that there exists z ∈ gk such that

d(ezex1 , ex2) = 2− ν,
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where ν > 0. Moreover, left-invariance of the distance implies that d(ezex1 , ex2) = d(1, e−x1e−zex2).
We have to show that the distance between ex1 and ex2 is smaller than the length of the

concatenation of the curves t 7→ e(1−t)x1 and t 7→ etx2 , 0 ≤ t ≤ 1. The trick is to demonstrate it
playing with non-horizontal curves. First we insert a short piece of the form t 7→ e−tε

kz, 0 ≤ t ≤ 1.

−εkzx1 x2

ex1 ex2

1

x1

x2

Figure 12.2: Adding one piece

New curve contains a horizontal part of the length 2 but the distance between its endpoints is
smaller than 2. I claim that d(ex1 , e−ε

kzex2) ≤ 2− εν. Indeed, d(ex1 , e−εkzex2) = d(1, e−x1e−ε
kzex2)

and
e−x1e−ε

kzex2 = e(ε−1)x1
(
e−εx1e−ε

kzeεx2
)
e(1−ε)x2 .

We have: e−εx1e−ε
kzeεx2 = δε (e

x1e−zex2), where δ· is the dilation of the Carnot group. Moreover,
d(1, δε(q)) = εd(1, q), ∀q ∈ G. The triangle inequality for left-invariant metrics reads: d(1, ab) ≤
d(1, a) + d(1, b), therefore

d(1, e−x1e−zex2) ≤ d(1, e(ε−1)x1) + ε(2 − ν) + d(1, e(1−ε)x2)

= (1 − ε) + ε(2 − ν) + (1− ε) = 2− εν.
Now we would like to compensate the deviation of the endpoint of the curve produced by

the inserted piece e−ε
kz. To this end, we insert some pieces of the form eε

kyi , where yi ∈ gk−1.

Each piece costs O(ε
k

k−1 ) of the distance since eε
kyi = δ

ε
k

k−1
(eyi). Hence the distance between the

endpoints of the resulting curve remains smaller than 2 if ε is small enough.
It is actually sufficient to insert three pieces as follows:
We are looking for y1, y2, y3 such that

ex1eε
ky1e−x1e−ε

kze
1
2
x2eε

ky2e
1
2
x2eε

ky3 = ex2

for all ε > 0. To find them we use the fact that e−ε
kz commutes with all elements of the group and

re-write the last equation in the form:
(
ex1eε

ky1e−x1
)(

e
1
2
x2eε

ky2e−
1
2
x2
)(

ex2eε
ky3e−x2

)
= eε

kz

Now we use a universal identity: exeye−x = e(e
adxy). Moreover, since g is a step k nilpotent Lie

algebra and yi ∈ gk−1, we obtain:

eadxjyi = yi +
1

2
[xj , yi], i = 1, 2, 3, j = 1, 2.
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εky2

x1

−εkz

x2
2

x2
2

εky3εky1

Figure 12.3: Adding more pieces

All elements yi, [xj, yi] are mutually commuting because k ≥ 3 and [yi, yj] ∈ g2k−2 = 0. Hence
product of the exponents equals the exponent of the sum and we arrive to the equation:

e
εk(

3∑
i=1

yi+
1
2
[x1,y1]+

1
4
[x2,y2]+

1
2
[x2,y3])

= eε
kz

that is equivalent to the system

3∑

i=1

yi = 0, [x1, y1] +
1

2
[x2, y2] + [x2, y3] = 2z.

We insert y3 = −y1 − y2 in the second equation and obtain:

[x1 − x2, y1]−
1

2
[x2, y2] = 2z.

Existence of the desired y1, y2 now follows from the relations:

g1 = span{x1, x2} = span{x1 − x2, x2}, [g1, gk−1] = gk ∋ z.

�

Now we return to the beginning of the proof of Theorem 1 and consider the case of a cusp:
γ̇1(0) = γ̇2(0). In this case, there exists a horizontal field f1 and smooth control t 7→ u(t) such that

γ̇t(t) = f1(γ1(t)), γ̇2(t) = f1(γ2(t)) + tfu(t)(γ2(t)).

If the concatenation of the curves t 7→ γ1(ε − t) and t 7→ γ2(t), 0 ≤ t ≤ ε, is a shortest path
then d(γ1(t), γ2(t)) = 2t. We apply the blow-up procedure and lift to the Carnot group as in steps

1, 2 of the proof in the no cusp case and obtain that d̂
(
etf̂1 , −→exp

∫ t
0 f̂1 + τ f̂u(τ) dτ

)
= 2t. We have:

d̂

(
etf̂1 , −→exp

∫ t

0
f̂1 + τ f̂u(τ) dτ

)
= d̂

(
1, e−tf̂1−→exp

∫ t

0
f̂1 + τ f̂u(τ) dτ

)
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since d̂ is a left-invariant metric. Moreover,

e−tf̂1−→exp
∫ t

0
f̂1 + τ f̂u(τ) dτ = −→exp

∫ t

0
gtτ dτ,

where gtτ = τe(t−τ)adf̂1 f̂u(τ), according to the variations formula (see Chapter 6). If the Carnot
group is of step k, then:

gtτ =
k−1∑

i=0

τ(t− τ)i
i!

(adf̂1)
if̂u(τ).

The i-th term of the sum belongs to the (i + 1)-th level of the Carnot algebra and has order ti+1

as t→ 0.
Hence the i-th level component of −→exp

∫ t
0 g

t
τ dτ in a privileged coordinates on the Carnot group

has order ti+1 as t→ 0. Indeed, this component is the value at t of a started at the origin solution
of the ordinary differential equation whose right-hand side has order ti as t→ 0.

The ball-box estimates imply that d̂
(
1, −→exp

∫ t
0 g

t
τ dτ

)
≤ Ct

k
k+1 for some constant C. The

obtained contradition completes the proof of the theorem. �
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Chapter 13

Some model spaces

In this chapter we are going to construct explicitly the full set of optimal arclength geodesics
starting from a point for certain relevant sub-Riemannian structures. This is what is called the
problem of constructing the optimal synthesis.

We start with a class of problems in which all computations can be done explicitly, namely
Carnot groups of step 2. In this setting we give a general formula for Pontryagin extremals and
explicitly computes them in the case of multi-dimensional Heisenberg groups, together with the
optimal synthesis. For free Carnot groups of step two we provide a description of the intersection
of the cut locus with the vertical space and we give an explicit formula for the sub-Riemannian
distance from the origin to those points.

Then we present a techniques to identify the cut locus, that generalize a classical technique used
in Riemannian geometry due to Hadamard. We then apply in full detail this technique to compute
the optimal synthesis for two cases: (i) the Grushin plane; (ii) the left-invariant sub-Riemannian
structure on SU(2) with the metric induced by the Killing form. The same technique can be applied
to study SO(3) and SL(2) (again with the metric induced by the Killing form). These last two
cases are left as exercise. The optimal synthesis for SO(3) together with the one for SO+(2, 1)
is then obtained using an alternative (and more geometric) approach based on the Gauss-Bonnet
Theorem.

We conclude by treating two relevant cases namely the left-invariant sub-Riemannian structure
on SE(2) and the Martinet distribution. For these cases we compute geodesics (that can be
obtained explicitly in terms of elliptic functions) and we state the results concerning the cut locus.
Their proof require an estimation of the conjugate locus that can be obtained via a fine analysis of
properties of elliptic functions and it is outside the purpose of this book.

Let us recall the definition of cut time and cut locus.

Definition 13.1. Consider a sub-Riemannian manifold complete as metric space. Let γ be an
archlength geodesic. The cut time along γ is

tcut := sup{t > 0 : γ|[0,t] is length-minimizing}.

If tcut < +∞ we say that γ(tcut) is the cut point of γ(0) along γ. If tcut = +∞ we say that γ has no
cut point. We denote by Cutq0 the set of all cut points of geodesics starting from a point q0 ∈M .

Remark 13.2. Notice that with this definition, the starting point is never included in the cut locus.

357



Definition 13.3. Consider a sub-Riemannian manifold complete as metric space and fix a point
q0 ∈M . The optimal synthesis from q0 is the collection of all arclength geodesics starting from q0
together with their cut time.

Given a sub-Riemannian manifold, constructing explicitly the optimal synthesis from a point
q0 is in general a very difficult problem. The main difficulties are the following:

(A) the integration of the Hamiltonian equations giving normal Pontryagin extremals. In most
cases such equations are not integrable;

(B) the identification of abnormal extremals and the study of their optimality;

(C) the evaluation of the cut time for every Pontryagin extremal. Such problem is particularly
difficult since in principle for every point of M one should find all Pontryagin extremals
reaching that point (and hence in particular one should be able to invert the exponential
map) and then one should choose the one having the smaller cost (i.e., the smaller distance
from q0).

For the reasons explained above, only few optimal syntheses are known in sub-Riemannian geom-
etry. Such examples all concern left-invariant sub-Riemannian structures on Lie groups or their
projections to homogenous spaces.

13.1 Carnot groups of step 2

A Carnot groups of step 2 is a Lie group structure G on Rn such that its Lie algebra g satisfies (cf.
also Section 7.5)

g = g1 ⊕ g2, [g1, g1] = g2, [g1, g2] = [g2, g2] = 0. (13.1)

The group G is endowed by the left-invariant sub-Riemannian structure induced by the choice of a
scalar product 〈· | ·〉 on the distribution g1, that is bracket-generating of step 2 thanks to (13.1).

Consider a basis of left-invariant vector fields (on Rn) of g such that

g1 = span{X1, . . . ,Xk}, g2 = span{Z1, . . . , Zn−k},

where {X1, . . . ,Xk} define an orthonormal frame for 〈· | ·〉 on the distribution g1. Such a basis will
be referred also as an adapted basis. We can write the commutation relations as follows




[Xi,Xj ] =

∑n−k
ℓ=1 c

ℓ
ijZℓ, i, j = 1, . . . , k, with cℓij = −cℓji,

[Xi, Zj ] = [Zj , Zℓ] = 0, i = 1, . . . , k, j, ℓ = 1, . . . , n− k.
(13.2)

Given an adapted basis, we can introduce the family of skew-symmetric matrices {C1, . . . , Cn−k}
encoding the structure constants of the Lie algebra, defined by Cℓ = (cℓij), for ℓ = 1, . . . , n− k, and
the corresponding the subspace of skew-symmetric operators on g1 that are represented by linear
combination of this family of matrices

C := span{C1, . . . , Cn−k} ⊂ so(g1) (13.3)

We stress that since the vector fields of the basis are left-invariant, then cℓij are constant.
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Definition 13.4. A Carnot algebra of step 2 is called free if C = so(g1) and the matrices Cℓ = (cℓij),
for ℓ = 1, . . . , n− k, defines a basis of C.

A representation of the Lie algebra defined above is given by the family of vector fields on
Rn = Rk ⊕ Rn−k (using coordinates g = (x, y) ∈ Rk ⊕ Rn−k)

Xi =
∂

∂xi
− 1

2

k∑

j=1

n−k∑

ℓ=1

cℓijxj
∂

∂zℓ
, i = 1, . . . , k, (13.4)

Zℓ =
∂

∂zℓ
, ℓ = 1, . . . , n− k. (13.5)

The group law on G, when identified with Rn = Rk ⊕ Rn−k, reads as follows

(x, y) ∗ (x′, y′) =
(
x+ x′, z + z′ +

1

2
Cx · x′

)
,

where we denoted for the (n− k)-tuple C = (C1, . . . , Cn−k) of k × k matrices, the product

Cx · x′ = (C1x · x′, . . . , Cn−kx · x′) ∈ Rn−k.

and a · b denotes here the Euclidean inner product between two vectors a, b ∈ Rk. The choice of the
linearly independent vector fields {X1, . . . ,Xk, Z1, . . . , Zn−k} induce corresponding coordinates on
T ∗G

hi(λ) = 〈λ,Xi(g)〉 , wℓ(λ) = 〈λ,Zℓ(g)〉 .
The functions {hi, wℓ} defines a system of global coordinates on the fibers of T ∗G. In what follows
it is convenient to use (x, y, h,w) as global coordinates on the whole T ∗G, identified with R2n.

Normal extremal trajectories are projections on M of integral curves of the sub-Riemannian
Hamiltonian in T ∗G:

H =
1

2

k∑

i=1

h2i . (13.6)

Suppose now that λ(t) = (x(t), z(t), h(t), w(t)) ∈ T ∗G is a normal Pontryagin extremal. The
equation λ̇(t) = ~H(λ(t)) is rewritten as follows

{
ẋi = hi

żℓ = −1
2

∑k
i,j=1 c

ℓ
ijhixj

{
ḣi = −

∑n−k
ℓ=1

∑k
j=1 c

ℓ
ijhjwℓ

ẇℓ = 0
(13.7)

where we used the relation ui(t) = hi(λ(t)) satisfied by normal extremals and the property ȧ =
{H, a} for the derivative of a smooth function a along solutions of the Hamiltonian vector field ~H,
giving {

ḣi = {H,hi} = −
∑k

j=1{hi, hj}hj = −
∑n−k

ℓ=1

∑k
j=1 c

ℓ
ijhjwℓ

ẇℓ = {H,wℓ} = 0.
(13.8)

Recall moreover that H is constant along solutions, in particulat H = 1/2 along extremals
parametrized by arclength. From (13.8) we easily get that wℓ is constant for every ℓ = 1, . . . , n−k,
hence the first equation rewrites as an autonomous linear equation for h = (h1, . . . , hk) ∈ Rk

ḣ = −
(
n−k∑

ℓ=1

wℓCℓ

)
h,
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It follows that

h(t) = e−tΩwh(0), Ωw :=

n−k∑

ℓ=1

wℓCℓ. (13.9)

From this expression one finds the x-component

x(t) = x(0) +

∫ t

0
e−sΩwh(0)ds.

Finally, injecting the above expression in the equation of z, one can recover the full normal extremal
trajectory by integration.

13.2 Multi-dimensional Heisenberg groups

In this section we specify the previous analysis and provide explicit computation for the case of
multidimensional Heisenberg groups. These are step-2 Carnot group structures on R2l+1 where

g = g1 ⊕ g2, dim g1 = 2l, dim g2 = 1. (13.10)

In particular the subspace C has dimension one and is spanned by a unique nonzero element in
so(g1). Choosing a suitable basis

g1 = span{X1, . . . ,X2l}, g2 = span{Z},

where {X1, . . . ,X2l} is chosen as an orthonormal basis for the scalar product 〈· | ·〉 on the distribu-
tion g1, we have that there exists a matrix C = (cij) satisfying





D = span{X1, . . . ,X2l},
[Xi,Xj ] = cijZ, i, j = 1, . . . , 2l, where cij = −cji,
[Xi, Z] = 0, i = 1, . . . , 2l.

(13.11)

Notice that this structure is free if and only if l = 1 and is contact if and only if C is non-degenerate.

Recall that C is a real skew-symmetric matrix, hence there exist α1, . . . , αl ∈ R such that

spec(C) = {±iα1, . . . ,±iαl}.

Up to an orthogonal transformation in the distribution, we can choose the orthonormal basis of g1 in
such a way that the matrix C has the following (block-diagonal) canonical form for skew-symmetric
matrices

C =



A1 0

. . .

0 Al


 , where Ai :=

(
0 αi
−αi 0

)
, αi ≥ 0. (13.12)

Remark 13.5. Notice that αi > 0 for at least one value of i, otherwise the matrix C would be zero.
In what follows we restrict our attention to the case when all coefficients αi are strictly positive.
This is equivalent to require that the structure is of contact type.
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According to this decomposition we denote by {X1, . . . ,Xl, Y1, . . . , Yl, Z} the orthonormal basis
of g1, where the vector fields satisfy the relations





g1 = span{X1, . . . ,Xl, Y1, . . . , Yl},
[Xi, Yi] = αiZ, i = 1, . . . , l,

[Xi, Yj ] = 0, i 6= j,

[Xi, Z] = [Yi, Z] = 0, i = 1, . . . , l,

(13.13)

Denoting points q = (x, y, z) ∈ R2l+1, the group law is written in coordinates as follows

q · q′ =
(
x+ x′, y + y′, z + z′ +

1

2

l∑

i=1

αi(xix
′
i − yiy′i)

)
. (13.14)

Finally, from (13.14), we get the coordinate expression of the left-invariant vector fields of the Lie
algebra, namely

Xi = ∂xi −
1

2
αiyi∂z, i = 1, . . . , l,

Yi = ∂yi +
1

2
αixi∂z, i = 1, . . . , l, (13.15)

Z = ∂z.

where x = (x1, . . . , xl), y = (y1, . . . , yl) ∈ Rl and z ∈ R.

13.2.1 Pontryagin extremals in the contact case

Next we compute the exponential map expq0 where q0 is the origin. Thanks to left-invariance of
the structure this permits to recover normal geodesics starting from every point. With an abuse of
notation, we define the hamiltonians (linear on fibers)

ui(λ) = 〈λ,Xi(q)〉 , vi(λ) = 〈λ, Yi(q)〉 , w(λ) = 〈λ,Z(q)〉 .

Suppose now that λ(t) = (x(t), y(t), z(t), u(t), v(t), w(t)) ∈ T ∗G is a normal Pontryagin extremal.
The equation λ̇(t) = ~H(λ(t)) is rewritten as follows





ẋi = ui

ẏi = vi

ż = −1
2

∑l
i=1 αi(uiyi − vixi)





u̇i = −αiwvi
v̇i = αiwui

ẇ = 0

(13.16)

Remark 13.6. Notice that from (13.16) it follows that the sub-Riemannian length of a geodesic co-
incide with the Euclidean length of its projection on the horizontal subspace (x1, . . . , xn, y1, . . . , yn).

ℓ(γ) =

∫ T

0

(
l∑

i=1

(u2i (t) + v2i (t))

)1/2

dt.
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Now we solve (13.16) with initial conditions (corresponding to arclength parametrized trajec-
tories starting from the origin)

(x0, y0, z0) = (0, 0, 0), (13.17)

(u0, v0, w0) = (u01, . . . , u
0
l , v

0
1 , . . . , v

0
l , w

0) ∈ S2l−1 × R. (13.18)

Notice that w = w0 is constant along the trajectory. We consider separately the two cases:

(a). If w 6= 0, we have

ui(t) = u0i cos(αiwt)− v0i sin(αiwt),
vi(t) = u0i sin(αiwt) + v0i cos(αiwt), (13.19)

w(t) = w.

From (13.16) one easily gets

xi(t) =
1

αiw
(u0i sin(αiwt) + v0i cos(αiwt)− v0i ),

yi(t) =
1

αiw
(−u0i cos(αiwt) + v0i sin(αiwt) + u0i ), (13.20)

z(t) =
1

2

l∑

i=1

αi
(u0i )

2 + (v0i )
2

α2
iw

2
(αiwt− sin(αiwt)).

(b). If w = 0, we find equations of horizontal straight lines in direction of the vector (u0, v0):

xi(t) = u0i t, yi(t) = v0i t, z(t) = 0.

To recover symmetry properties of the exponential map it is useful to rewrite (13.20) in the following
version of polar coordinates, using the following change of variables

u0i = −ri sin θi, v0i = ri cos θi, i = 1, . . . , l. (13.21)

In these new coordinates (13.20) becomes (case w 6= 0)

xi(t) =
ri
αiw

(cos(αiwt+ θi)− cos(θi)),

yi(t) =
ri
αiw

(sin(αiwt+ θi)− sin(θi)), (13.22)

z(t) =
1

2

l∑

i=1

r2i
αiw2

(αiwt− sin(αiwt)),

and the condition (u0, v0) ∈ S2l−1 implies that r = (r1, . . . , rl) ∈ Sl. This permits also to rewrite
the z component as follows

z(t) =
1

2w2

(
wt−

l∑

i=1

r2i
αi

sin(αiwt)

)
. (13.23)
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z(t) = α1A1(t) + α2A2(t)

(x1(t), y1(t))

(x2(t), y2(t))

A1(t)

A2(t)

Figure 13.1: Projection of a non-horizontal geodesic: case l = 2 and 0 < α2 < α1.

Remark 13.7. From equations (13.22) we easily see that the projection of a geodesic on every
2-plane (xi, yi) is a circle, with radius ρi, center ci, and period Ti, given by

ρi =
ri

αi|w|
ci = −

ri
αiw

(cos θi, sin θi), Ti =
2π

αi|w|
, ∀ i = 1, . . . , l (13.24)

Moreover, generalizing the analogous property of the 3D Heisenberg group, from (13.16) one
can see that the z component of the geodesic at time t is the weighted sum (with coefficients αi)
of the areas Ai(t) of the circles spanned by the vectors (xi(t), yi(t)) in R2 (see Figure 13.1). More
precisely we have the identities

z(t) =

l∑

i=1

αiAi(t), Ai(t) :=
r2i

2α2
iw

2
(αiwt− sin(αiwt)). (13.25)

Remark 13.8. Prove the following simmetry identity for the exponential map on multi-dimensional
Heisenberg groups: exp0(t, r, θ,−w) = exp(−t, r, θ + π,w).

13.2.2 Optimal synthesis

We start the analysis of the optimal synthesis with the following general lemma. Recall that here
we assume αi > 0 for every i = 1, . . . , l.

Lemma 13.9. Let γ(t) = exp0(r, θ, w) be an arclength parametrized normal trajectory starting
from the origin. The cut time t∗(γ) along γ is equal to the first conjugate time and satisfies

t∗(γ) =
2π

|w|maxi αi
, (13.26)

with the understanding that t∗(γ) = +∞, if w = 0.
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Proof. The case w = 0 is trivial. Indeed the geodesic is a straight line and, by Remark 13.6, the
trajectory is optimal for all times hence t∗(γ) = +∞. We can assume then w 6= 0. Moreover,
thanks to Remark 13.8, and up to relabeling coordinates, it is not restrictive to assume that w > 0
and α1 ≥ α2 ≥ . . . ≥ αl > 0.

Since all αi > 0 are strictly positive, there are no abnormal minimizers. First we prove that at
the point γ(t∗) there is at least a one parametric family of trajectory reaching this point and with
the same length. Thanks to Theorem 8.71, this will impy that the cut time is less or equal than t∗(γ)
given in (13.26). Then we prove that for every t < tc the restriction γ|[0,t] a is length-minimizer,
proving that the formula given in (13.26) is the cut time.

(i). By assumption, α1 = maxi αi. From (13.22) it is easily seen that projection on the (x1, y1)-
plane of the trajectory γ satisfies

x1(t∗) = y1(t∗) = 0.

Define the variation θφ := (θ1 + φ, θ2, . . . , θl) for φ ∈ [0, 2π], and consider the trajectories

γφ(t) = exp0(t, r, θφ, w), φ ∈ [0, 2π].

It is easily seen from equation (13.22) that all these curves have the same endpoints. Indeed
neither (xi, yi), for i > 1, nor z depends on this variable. Then it follows that t∗ is a critical time
for exponential map, hence a conjugate time.

(ii). Since w > 0, our geodesic is not contained in the hyperplane {z = 0}. Moreover, for every
i = 1, . . . , l, the projection of every non horizontal geodesic on on the plane (xi, yi) is a circle. In
particular, the distance from the origin of the projected curve is easily computed by

ηi(t) :=
√
xi(t)2 + yi(t)2 = sinc

(
αiwt

2

)
rit, where sinc(x) :=

sinx

x
.

Let now t0 < t∗, we want to show that there is no length-parametrized geodesic starting from the
origin γ̃ 6= γ reaching the point γ(t0) in time t0.

Assume by contradiction that there exists γ̃(t) = exp0(t, r̃, θ̃, w̃) with r̃ ∈ Sl such that γ(t0) =
γ̃(t0). Then for every i = 1, . . . , l we have ηi(t0) = η̃i(t0) which means

sinc

(
αiwt0
2

)
rit0 = sinc

(
αiw̃t0
2

)
r̃it0 i = 1, . . . , l. (13.27)

Notice that, once w̃ is fixed, r̃i are uniquely determined by (13.27) (here t0 is fixed). Moreover, θ̃i
also are uniquely determined (mod 2π) by relations (13.24). Finally, from the assumption that γ̃
also reach optimally the point γ̃(t0), it follows that

t0 < t∗(γ̃) =
2π

α1w̃
=⇒ αiw̃t0

2
< π ∀ i = 1, . . . , l. (13.28)

Assume w̃ > w (the case w̃ < w being analogous). Since sinc(x) is a strictly decreasing function on
[0, π], this implies r̃i > ri for every i = 1, . . . , l. In particular

l∑

i=1

r̃2i >
l∑

i=1

r2i = 1

contradicting the fact that r̃ ∈ Sl. Then, since all frequences are positive there are no abnormal
extremals, Theorem 8.71 and Corollary 8.73 permits to conclude that γ(t0) is not a cut point.
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The next proposition computes the sub-Riemannian distance from the origin to a point con-
tained in the vertical axis, which is always contained in the cut locus.

Proposition 13.10. Let (0, z) ∈ R2l ×R ≃ R2l+1, and let α1, α2, · · · , αl be the (possibly repeated)
frequences of the Heisenberg sub-Riemannian structure. Then (0, z) ∈ Cut0 and

d((0, 0), (0, z))2 =
4π|z|

maxi αi
. (13.29)

Proof. Without loss of generality we can assume α1 ≥ α2 ≥ · · · ≥ αr > 0. Consider the trajectory
γ(t) = exp0(r, θ, w) with r = (r1, r2) = (1, 0, . . . , 0) ∈ Sl and θ = (θ1, . . . , θl), w > 0 arbitrary.
Then by Lemma 13.9 the curve γ|[0,t∗] is a length-minimizer for t∗ given by (13.26). It follows that

d(γ(0), γ(t∗)) = t∗. (13.30)

Thanks to (13.22) it follows easily that

x1(t∗) = y1(t∗) = x2(t∗) = y2(t∗) = 0, z(t∗) =
π

α1w2
=
α1

4π
t2∗. (13.31)

Plugging the last formula in (13.30) and writing t∗ as a function of z one gets (13.29).

The exact computation of the cut locus is possible thanks to the characterization of the cut
time for every geodesic

Exercise 13.11. Prove the folllowing facts

(a) Assume that α1 = . . . = αl. Then Cut0 = {(0, z) ∈ R2l+1 : z ∈ R \ {0}}.

(b) Assume that l = 2 and 0 < α2 < α1. Prove that

Cut0 = {(0, 0, x2, y2, z) ∈ R5 : |z| ≥ (x22 + y22)K(α1, α2), (x2, y2, z) ∈ R3 \ {0}}, (13.32)

where K(α1, α2) is a positive constant satisfying K(α1, α2)→ 0 for α2 → 0 and K(α1, α2)→
+∞ for α2 → α1.

(c) Assume that l = 2 and 0 = α2 < α1. Compute Cut0.

Generalize the previous formulas to all other cases for 0 = αl ≤ . . . ≤ αl, and compute the dimension
of Cut0 in terms of the frequences α1, α2, · · · , αl.

13.3 Free Carnot groups of step 2

Recall from Definition 13.4 that the Carnot group of step 2 is free if the matrices C1, . . . , Cn−k
define a basis of the space of skew-symmetric matrices. In particular n = k + k(k−1)

2 and it is
convenient to treat Rn = Rk ⊕ Rn−k as the sum

Rn = Rk ⊕ (Rk ∧ Rk).

In what follows we denote by Gk := Rk⊕∧2Rk the free Carnot groups of step 2 and we identify ∧2Rk
with the vector space of skew-symmetric real matrices, that is v ∧ w = vw∗ − wv∗ for v,w ∈ Rk.
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It is convenient to employ the following notation: we denote points (x,Z) ∈ Gk, where x ∈ Rk

and Z is a skew-symmetric matrix. We fix the canonical basis {Eℓmj}1≤ℓ<m≤k of so(Rk) and we
write Z =

∑
ℓ<m ZℓmEℓm.

As discussed in Section 13.1 we can can choose a suitable basis in such a way that the sub-
Riemannian structure is generated by the set of global orthonormal vector fields:

Xi := ∂xi −
1

2

∑

1≤ℓ<m≤k
(ei ∧ x)ℓm∂Zℓm

, i = 1, . . . , k, (13.33)

where {e1, . . . , ek} is the standard basis of Rk. More precisely, the horizontal distribution is defined
by D := span{X1, . . . ,Xk} and the sub-Riemannian metric by g(Xi,Xj) = δij .

For all i < j, we have [Xi,Xj ] = ∂Zij . In particular, the vector fields (13.33) generate the free,
nilpotent Lie algebra of step 2 with k generators:

g = g1 ⊕ g2, where g1 = span{X1, . . . ,Xk}, g2 = span{∂Zij}i<j . (13.34)

There Lie group structure on Gk such that the vector fields Xi are left-invariant is given by the
polynomial product law

(x,Z) ⋆ (x′, Z ′) =
(
x+ x′, Z + Z ′ +

1

2
x ∧ x′

)
. (13.35)

Notice moreover that the matrices C1, . . . , Cn−k coincide in this case with the standard basis of
so(k) hence the matrix Ωw defined in (13.9) is simply an arbitrary skew-symmetric matrix and the
w component of the initial covector are coordinates on the space so(k)

Ωw =
∑

1≤ℓ<m≤k
wℓmCℓm =

∑

1≤ℓ<m≤k
wℓmEℓm.

For this reason in what follows we drop the w from the notation and simply write Ω for Ωw.

Example 13.12. The case k = 2 is the well-known Heisenberg group. Indeed, we can identify
(x,Z) ∈ R2 ⊕ ∧2R2 with (x, z) ∈ R2 ⊕ R, so that the generating vector fields (13.33) read

X1 = ∂x1 −
x2
2
∂z, X2 = ∂x2 +

x1
2
∂z. (13.36)

Example 13.13. The case k = 3 can be dealt with by identifying (x,Z) ∈ R3 ⊕ ∧2R3 with
(x, t) ∈ R3 ⊕ R3. More precisely, any 3 × 3 skew-symmetric matrix can be written as Z = v ∧ w,
and is identified with the cross product z = v×w. Notice that v×w does not depend on the choice
of the representatives v,w such that Z = v ∧ w.

Under this identification, the tautological action of Z on R3 reads

Zx = (v ∧w)x = x× (v × w) = x× z, ∀x ∈ R3, (13.37)

and the generating vector fields (13.33) are

X1 = ∂x1 +
x3
2
∂z2 −

x2
2
∂z3 , X2 = ∂x2 +

x1
2
∂z3 −

x3
2
∂z1 , X3 = ∂x3 +

x2
2
∂z1 −

x1
2
∂z2 . (13.38)
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The goal of this section is to compute the intersection of the cut locus from the origin with the
vertical space V = {(0, Z) | Z ∈ ∧2Rk}. In particular we give the explicit formula of the distance
from the origin to every point of V .

Suppose now that λ(t) = (x(t), z(t), h(t), w(t)) ∈ T ∗G is a normal Pontryagin extremal. Then
thanks to the previous analysis we have

h(t) = e−tΩh(0), Ω ∈ so(k).

From this expression one finds the x-component

x(t) =

∫ t

0
e−sΩh(0)ds.

The vertical part of the horizontal trajectory can be recovered integrating

Ż(t) =
1

2
x(t) ∧ h(t). (13.39)

that gives the following formula (recall Z(0) = 0)

Z(t) =
1

2

∫ 1

0

∫ t

0
e−sΩh(0) ∧ e−tΩh(0)dsdt, (13.40)

=
1

2

∫ 1

0

∫ t

0
(e−sΩPetΩ − e−tΩPe−sΩ)dsdt. (13.41)

where we denoted by P the symmetric matrix h(0)h(0)∗.
For a fixed geodesic, there exists a good set of coordinates such that the matrix Ω is written in

normal form. The main linear algebra ingredient is given by the following lemma.

Lemma 13.14. Let Ω ∈ so(n), x0 ∈ Rn and define the set

Θ := {Ω′ ∈ so(n) | etΩ′

x0 = etΩx0, for all t ≥ 0}.

There exists Ω ∈ Θ with all nonzero eigenvalues that are simple and such that ker Ω has maximal
dimension.

Proof. Since Ω is skew-symmetric there exists α1, . . . , αr such that spec(Ω) = {±iα1, . . . ,±iαr, 0}.
Let us decompose Rn in real eigenspaces

Rn = E0 ⊕
r⊕

j=1

Ej , E0 = ker Ω, Ej = ker(Ω + iαj)⊕ ker(Ω − iαj),

and work in an adapted basis inducing coordinates adapted to the splitting. In this basis Ω has a
block-diagonal form Ω = diag{Ω1, . . . ,Ωr, 0} and we similarly decompose x0 = (x0,1, . . . , x0,r, x0,0).
Notice that thanks to the block structure we have etΩx0 = (etΩ1x0,1, . . . , e

tΩrx0,r, 0).
For every j > 0 such that x0,j 6= 0 we the corresponding block Ωj can be put to zero without

changing the value of etΩx0.
If there exists a block with multiple eigenvalues (i.e., there exists j > 0 such that dimEj > 2)

then, thanks to Exercice 13.15 we have dim span{etΩjx0,j | t ∈ R} = dim span{x0,Ωx0} = 2, thus
we can write

Ej = span{x0,j,Ωjx0,j} ⊕ span{x0,j ,Ωjx0,j}⊥. (13.42)

367



Choosing a basis in Ej corresponding to the splitting (13.42), we can put to zero the block of
Ωj corresponding to span{x0,j ,Ωjx0,j}⊥ and the new matrix has ±iαj as simple eigenvalues, and
kernel of dimension dim(Ej)− 2. This proves the existence of the matrix Ω.

Exercise 13.15. Let Ω ∈ so(n) and assume spec(Ω) = {±iα}. Then for x0 ∈ Rn

span{etΩx0 | t ∈ R} = span{x0,Ωx0}.

From the previous discussion it follows that, for a given geodesic, there exists a linear change
of coordinates in the space such that the matrix Ω is presented as a block-diagonal matrix

Ω = (Ω1, . . . ,Ωℓ,O),

where O is a block zero matrix and

Ωi =

(
0 αi
−αi 0

)
= αJ

where J denotes the 2× 2 symplectic matrix J =

(
0 1
−1 0

)
.

13.3.1 Intersection of the cut locus with the vertical subspace

First we prove that every vertical points in Gk is contained in the cut locus.

Lemma 13.16. The set of points {(0, Z) | Z ∈ ∧2Rk \ {0}} is contained in Cut0.

Proof. Fix a point (0, Z) ∈ Gk with Z 6= 0. Thanks to Exercice13.17 there exists a non zero
orthogonal matrix M ∈ SO(k) such that MZM∗ = Z and M equal to the identity on kerZ. Let
now γ(t) = (x(t), Z(t)) be a length-minimizer joining the origin to (0, Z). The existence of such a
geodesic is guaranteed by completeness of the sub-Riemannian structure. Let us show that there
exists (at least) two length-minimizers reaching (0, Z).

Consider the curve γ(t) = (Mx(t),MZ(t)M∗). Notice that γ(0) = (0, 0) and, by properties of
M , one has γ(1) = (0,MZM∗) = (0, Z). Moreover ℓ(γ) = ℓ(γ). Since M 6= I we have γ 6= γ.
Thus γ and γ are two horizontal length-minimizers joining the same end-points. This proves the
claim.

Exercise 13.17. Let Z ∈ so(k) be a non zero skew-symmetric matrix.

(a). Prove that there exists an orthogonal matrix M ∈ SO(k),M 6= I, such that MZM∗ = Z.

(b). Prove that the matrix M can be chosen to be the identity on kerZ.

(c). Show that the set of matrices satisfying properties (a) and (b) is a Lie group and compute
its dimension.

We then compute the distance from the origin of vertical points in Gk. A very close formula
appears as the second statement of [36, Thm. 2], and differs from ours by a factor 4π.
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Proposition 13.18. Let (0, Z) ∈ Gk, and let α1 ≥ α2 ≥ · · · ≥ αr > 0 be the (possibly repeated)
absolute values of the non-zero eigenvalues of Z. Then,

d((0, 0), (0, Z))2 = 4π
r∑

i=1

iαi. (13.43)

Proof. Without loss of generality, Let γ(t) = (x(t), Z(t)) be a geodesic from the origin such that
x(1) = 0 and Z(1) = Z, with h(t) = e−Ωth0, where we set h0 := h(0). By (13.40), we have

∫ 1

0
e−tΩh0 dt = x(1) = 0. (13.44)

Thus, the non-zero eigenvalues of Ω are of the form ±i2πφ, with φ ∈ N. By Lemma 13.14, and up to
an orthogonal transformation, we may assume that Ω = (2πφ1J, . . . , 2πφℓJ, 0k−2ℓ), with all simple
eigenvalues, 2ℓ = rank (Ω), and with distinct φi ∈ N. We split accordingly h0 = (h0,1, . . . , h0,ℓ, h0,0),
with h0,i ∈ R2 for i = 1, . . . , ℓ and h0,0 ∈ Rk−2ℓ. Using the canonical form and the fact that φ ∈ N,
it is not difficult to explicitly integrate the vertical part of the geodesic equations (13.40). We
obtain

Z(1) =

( |h0,1|2
4πφ1

J, . . . ,
|h0,ℓ|2
4πφℓ

J, 0k−2ℓ

)
. (13.45)

Then |h0,j |2 = 4πφjαj for all j = 1, . . . , r. The squared length of γ is

ℓ(γ)2 =

(∫ 1

0
|u(t)|dt

)2

= |h0|2 =
r∑

j=1

|h0,j |2 = 4π
r∑

j=1

φjαj . (13.46)

The minimum of this quantity over all choice of φj ∈ N and all distinct is obtained when φj = j,
for all j = 1, . . . , r.

For more details we refer to [?] (see also [36]).

13.4 An extended Hadamard technique to compute the cut locus

Let us consider a sub-Riemannian structure, complete as metric space and fix q0 ∈ M . Assume
that we are able to solve the problems (A) and (B) above. This usually is not so hard when one is
considering left-invariant structures on Lie groups of small dimension. More precisely assume that:

• we are able to to get the explicit expression of normal geodesics;

• we are able to prove that all strict abnormal extremals are not optimal.

Let expq0(t, θ) be the standard exponential map providing geodesic parametrized by arclength
(here θ ∈ Λq0 = T ∗

q0M ∩H−1(1/2)). With a slight abuse of notation, let expq0(λ) be the exponential
map at time 1 (here λ ∈ T ∗

q0M). Notice that expq0(t, θ) = expq0(λ) with λ = t θ.

A useful method to evaluate the cut time for every normal extremal consists in a suitable use
of a classical result stating that if a smooth map between two connected manifolds of the same
dimension is proper and has nowhere vanishing Jacobian then it is a covering.
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q1
Γq1
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Figure 13.2: Uniqueness of the lift for a covering map.

Definition 13.19. A continuous map f :M1 →M2 between smooth manifold is proper if f−1(K)
is compact in M1 for any K compact in M2.

To prove that a continuous map is proper it is sufficient to show that a sequence escaping out
from any compact in M1 escapes out from any compact in M2. When M1 and M2 are subsets of
two compact manifolds with the induced topologies, then to prove that f is proper, it is sufficient
to prove that ∂M1 is mapped in ∂M2 through f .

Definition 13.20. A continous (resp. smooth) map f : M1 → M2 between connected smooth
manifolds is a continuous (resp. smooth) covering map if for every y ∈ M2, there exists an open
neighborhood V of y, such that f−1(V ) is a union of disjoint open sets in M1, each of which is
mapped homeomorphically (resp. diffeomorphically) onto V .

We recall some important properties of covering maps:

P1: The number of preimages of a point is a discrete set whose cardinality is independent from
the point.

P2: Given a continuous curve γ : [0, 1] → M2 and a point q1 in M1 such that f(q1) = γ(0), then
there exists a unique continuous curve Γq1 : [0, 1]→M1 such that Γq1(0) = q1 and f(Γq1) = γ
(see Figure 13.2). The curve Γq1 is called the lift of γ (through q1).

P3: Consider two homotopic loop γ, γ′ : [0, 1] → M2 and a point q1 in M1 such that f(q1) =
γ(0) = γ′(0). Let Γq1 and Γ′

q1 the corresponding lift. Then the final point of Γq1 and Γ′
q1 are

the same, namely Γq1(1) = Γ′
q1(1).
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Theorem 13.21. Let M1 and M2 two smooth connected differentiable manifolds and f :M1 →M2

be smooth. If

• f is proper,

• the Jacobian of f vanishes nowhere,

then f is a covering.

Proof. We recall that any proper continuous map f :M1 →M2 between smooth manifold is closed,
i.e., f(C) is closed in M2 for every closed set C ⊂M1.

Since f is a local diffeomorphism, it is open. Since f is proper, it is closed. Hence f(M1) is
open and closed in M2 and, by connectedness, f is surjective. Fix y ∈ M2. Since f is a local
diffeomorphism, each point of f−1(y) has a neighborhood on which f is injective, so f−1(y) is a
discrete set. Since the singleton {y} is compact and f is proper, then f−1(y) is compact, hence
finite. Set f−1(y) = {x1, . . . , xk}. Fix Ui a neighborhood of xi where f is a diffeomorphism.
It is not restrictive to suppose that Ui ∩ Uj = ∅ for i 6= j. Set V = ∩ki=1f(Ui). Since each
f(Ui) is a neighborhood of y, V is a neighborhood of y also. By replacing V with the connected
component of V \ f(M1 \ ∪iUi) (which is open since f is closed) containing y, we can moreover
assume that V is connected and f−1(V ) ⊂ ∪iUi. Hence if one set U i := Ui ∩ f−1(V ) one can
check that f−1(V ) = ∪iU i, disjoint union of its connected components, and that f : U i → V is a
diffeomorphism, as desired.

Often one would like to prove that f is indeed a diffeomorphism (at least this is what we will
need later, with the exponential map playing the role of f). Once it is known that the map f is a
covering map, to show that it is injective one should prove that it is a 1-sheet covering, i.e., that
the preimage of each point is a single point. The following corollary provides a criterium.

Corollary 13.22 (of Theorem 13.21). Under the assumptions of Theorem 13.21, if M2 is simply
connected, then f is a diffeomorphism.

Proof. It is enough to show that the map f is injective. Let x1 6= x2 inM1 such that f(x1) = f(x2).
Take a continuous curve α : [0, 1] →M1 such that α(0) = x1 and α(1) = x1 homotopic to a point.
Its image γ := f ◦ α : [0, 1] → M2 is a closed loop in M2 such that γ(0) = γ(1) = y. Since M2 is
simply connected there exists a continous map

Γ : [0, 1] × [0, 1]→M2

such that Γ(0, t) = y and Γ(1, t) = γ(t). For s sufficiently closed to 0 the curve γs(t) = Γ(s, t) stays
in the set V where f is a covering hence f−1(γ) is the union on k closed loop and it should be
homotopic to a point. This gives a contradiction.

Another criterium is given by the following result

Corollary 13.23 (of Theorem 13.21). Under the assumptions of Theorem 13.21, ifM2 is not simply
connected, but it is homeomorphic to S1 ×N , where N is simply connected, and we find a loop in
M1 that project via f in a loop in M2 that is homotopic to S1, then f is a global diffeomorphism.
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Figure 13.3: Proof of Corollary 13.23

Proof. Assume by contradiction that the number of pre-images of a point is not one. We refer to
Figure 13.3. Let Γ : [0, 1]→M1 be loop inM1, q1 = Γ(0) and let γ be the corresponding projection
in M2 as in the statement of the Corollary. Let q̄1 be another preimages of γ(0). We are going to
prove that q1 = q̄1.

Consider a continuous curve Γ̄ : [0, 1] → M1 connecting q1 and q̄1 (this is possible since M1 is
connected a manifold and hence path connected). Consider its projection on M2 that is γ̄ := f(Γ̄).
Because of the topology of M2, γ̄ is a loop winded n times around S1 (n = 0, 1, 2 . . .).

If γ̄ is homotopic to S1 then it is homotopic to γ. Hence since Γ(0) = Γ̄(0) = q1 and because of
property P3 we have that Γ̄(1) = Γ(1). As a consequence q1 = q̄1.

If γ̄ is winded n times around S1 with (n > 1) then we consider the loop Γn : [0, n] → M1

obtained concatenating n times Γ. Let us call γn its projection onM2. We have that γ̄ is homotopic
to γn. The same reasoning as before gives again q1 = q̄1.

If γ̄ is winded 0 times around S1 (i.e., if it is contractible) we consider a contractible loop
Γ0 : [0, 1] → M1 such that Γ0(0) = Γ0(1) = q1. Let γ0 be its projection. Since a covering is a
continuous map, the projection of a contractible loop is a contractible loop. Hence γ0 is contractible
and we have that γ̄ and γ0 are homotopic. The same reasoning as before gives again q1 = q̄1.

Finding the cut locus via Theorem 13.21 consists in the following steps. Notice that the method
is slightly different if the structure is Riemannian at the starting point (i.e. if the rank of the sub-
Riemannian structure at q0 is n) or not. Recall that if the structure is Riemannian at q0, then Λq0
has the topology of Sn−1 while if the structure has rank k < n at q0 then Λq0 has the topology of
Sk−1 × Rn−k.

Step 1 Study the symmetries of the problem to identify points that are reached at the same time by
more than one geodesic. This analysis has the purpose of having a guess about the cut locus
and hence of the cut time for each geodesic.
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Let us call the conjectured cut locus Cutq0 and the conjectured cut times tcut(θ), θ ∈ Λq0
(notice that it may happen that tcut(θ) is +∞).

Notice that if Cutq0 has a boundary then the points on the boundary are expected to be
conjugate points (since the set Cutq0 comes from the symmetries of the problem it is usually
not difficult to verify that the points on his boundary are conjugate points). Conjugate points
on the boundary of Cutq0 must be included in Cutq0 .

We have two cases:

– If the structure is Riemannian at q0 define N1 = {t θ | θ ∈ Λq0 , t ∈ [0, tcut(θ))} ⊂ T ∗
q0M .

Notice that in this case N1 is an open star-shaped set always covering a neighborhood
of the origin in T ∗

q0M .

– If the structure is not Riemannian at q0 define N1 = {t θ | θ ∈ Λq0 , t ∈ (0, tcut(θ))};
Notice that in this case N1 is an open set that looks like a star-shaped set to which it
was removed the starting point and the annihilator of the distribution.

Define N2 = expq0(N1). Verify that N2 = M \ Cutq0 . If this is not the case then the

conjectured cut locus and cut times were wrong. Indeed if there exists q ∈ N2 \ (M \ Cutq0)
then in q is reached by a geodesic at its conjectured cut time and by another geodesic before
its conjectured cut time and hence the conjectured cut times was wrong. On the other side if
there exists q ∈ (M \ Cutq0) \N2 then expq0 |N1 is not covering M up to the conjectured cut
locus.

Remark 13.24. Notice that if the structure is Riemannian at q0 and the conjectured cut locus
is the right one, then N2 is contractible (can be contracted to q0 along the geodesics) and
hence it is simply connected.

Remark 13.25. Consider the problem of finding the optimal synthesis starting from 0 for
standard Riemannian metric on the circle S1 = [−π, π]/ ∼ where ∼ is the identification of −π
and π. We have only two geodesics parametrized by arclength: q+(t) = t and q−(t) = −t. By
symmetry the two geodesics meet at t = 0, π, 2π, 3π, . . . etc. Assume that we make the (false)
conjecture that the cut time is tcut = 3π (instead than tcut = π). We have Cut0 = S1 \ {π}.
In this case Step 1 fails because N2 = S1 6= S1 \ Cut0.

Step 2 Prove that the Jacobian of expq0 vanishes nowhere in N1 (i.e., there are no conjugate points
in N2 for exp|N1). In the following, for simplicity, we assume that there are no non-trivial
abnormal extremals. If there are non-strict abnormal extremals (and non trivial too) then
there are always conjugate points (cf. Remark 8.42). In this case one can apply the technique
explained here to the larger subset of N1 not containing points mapped to the support of
the abnormal. In this way one can obtain the optimal synthesis outside the support of the
abnormal and one should study the abnormal separately. See the bibliographical note for
some references.

Step 3 Prove that expq0 |N1 is proper.

Step 4 (R) If the structure is Riemannian at q0 and the conjectured cut locus is the right one, then N2

should be simply connected (cf. Remark 13.24). After having verified that N2 is simply con-
nected, Corollary 13.22 (with N1, N2, expq0 playing the role ofM1,M2, f) permits to conclude
that expq0 |N1 is a diffeomorfism and hence that the conjectured cut times and cut locus are
the true ones.
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Step 4 (SR) If the structure is not Riemannian at q0, Theorem 13.21 permits to prove that expq0 |N1 is a
covering but one cannot conclude that f is a diffeomorphism using Corollary 13.22 unless N2 is
simply connected. IfN2 is not simply connected, to conclude that expq0 |N1 is a diffeomorphism
one could for instance try to apply Corollary 13.23. Notice that if n = 3 and the structure is
not Riemannian at q0 then N2 is never simply connected.

Writing γθ(·) = expq0(·, θ)[0,tcut(θ)] the optimal synthesis is then the collection of trajectories

{
γθ(·) | θ ∈ H−1(1/2)

}
.

Remark 13.26. The main difference between the case in which q0 is a Riemannian point and when
it is not, is that in the second case q0 should be remove it from N1. This should be done to satisfy
the hypothesis of Theorem 13.21 and in particular to guarantee that i) N1 is a manifold ii) there
are no conjugate points in N1 (the starting point is always a conjugate point when the structure is
not Riemannian at the starting point itself).

Notice that when q0 is a Riemannian point, the starting point is not a conjugate point. Moreover
N1 is a manifold even without removing q0. Thanks to the fact that in this case N1 is star-shaped,
N2 is simply connected and one obtain directly that the exponential map is a diffeomorphism.

We are now going to apply this technique to a structure that is Riemannian at the starting
point and to a structure that is not Riemannian at the starting point.

13.5 The Grushin structure

The Grushin plane is the free almost-Riemannain structure on R2 for which a global orthonormal
frame is given by

F1 =

(
1
0

)
, F2 =

(
0
x

)
.

Such a structure is Riemannian out of the y axis that is called the singular set. The only abnormal
extremals are the trivial ones lying on the singularity. Indeed out of the singularity we are in
the Riemannian setting and a curve whose support is entirely contained in the singular set is not
admissible. We are then reduced to study normal Pontryagin extremals.

Writing p = (p1, p2), the maximized Hamiltonian is given by

H(x, y, p1, p2) =
1

2
(〈p, F1〉2 + 〈p, F2〉2) =

1

2
(p21 + x2p22), (13.47)

and the corresponding Hamiltonian equations are:

ẋ = p1, ṗ1 = −x p22,
ẏ = x2p2, ṗ2 = 0.

Normal Pontryagin extremals parameterized by arclength are projections on the (x, y) plane of
solutions of these equations, lying on the level set H = 1/2.
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13.5.1 Optimal Synthesis starting from a Riemannian point

Let us construct the optimal synthesis starting from a point (x0, 0), x0 6= 0 (taking the second
coordinate zero is not restrictive due to the invariance of the structure by y-translations). In this
case the condition H(x(0), y(0), p1(0), p2(0)) = 1/2 becomes p21 + x20 p

2
2 = 1 and it is convenient

to set p1 = cos(θ), p2 = sin(θ)/x0, θ ∈ S1. The expression of the normal Pontryagin extremals
parameterized by arclenght is q(t, θ) = exp(x0,0)(t, θ) = (x(t, θ), y(t, θ)) where





x(t, 0) = t+ x0, y(t, 0) = 0,

y(t, π) = −t+ x0, y(t, π) = 0,

x(t) = x0
sin(θ + t sin(θ)

x0
)

sin(θ)
,

y(t) = x0
2t+ 2x0 cos(θ)− x0

sin(2θ+2 t sin(θ)
x0

)

sin(θ)

4 sin(θ)





if θ /∈ {0, π}

(13.48)

Theorem 13.27. The cut time for the geodesic q(·, θ) is

tcut(θ) =

∣∣∣∣x0
π

sin(θ)

∣∣∣∣ .

For θ = 0 or θ = π this formula should be interpreted in the sense that the corresponding geodesic
q(·, 0) and q(·, π) are optimal in [0,∞).

Let us fix θ ∈ (0, π) (being the case θ ∈ (π, 2π) symmetric). For θ /∈ π/2, the cut point
q(tcut(θ), θ) is reached exactly by two optimal geodesics. Namely the geodesics: q(·, θ) and the
geodesics q(·, π − θ).

For θ = π/2 the cut point q(tcut(θ), θ) is reached exactly by one optimal geodesic for which
tcut(θ) is also a conjugate point.

By direct computation one gets

Corollary 13.28. The cut locus starting from (x0, 0) is

Cutx0 = {(−x0, y) ∈ R2 | y ∈ (−∞,−π
2
x20] ∪ [

π

2
x20,∞)}.

the points (−x0,±π
2x

2
0) are also conjugate points.

The optimal synthesis for Grushin plane with x0 = −1 is depicted in Figure 13.4.

Proof of Theorem 13.27

We are going to apply the extended Hadamard technique to the case in which the starting point is
Riemannian.

Step 1: Construction of the conjectured cut locus and of the sets N1 and N2.
By a direct computation one immediately obtains:
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B

A

starting point

cut point that
is also conjugate

cut locus

optimal geodesics

Figure 13.4: A: the optimal synthesis for the Grushin plane starting from the point (−1, 0), together
with the sub-Riemannian sphere of radius 4. B: all geodesics up to length 6 with the corresponding
wave front.
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Lemma 13.29. For θ 6= {0, π}, we have

q

(∣∣∣∣x0
π

sin(θ)

∣∣∣∣ , θ, x0
)

= q

(∣∣∣∣x0
π

sin(θ)

∣∣∣∣ , π − θ, x0
)

= (−x0,
π

2
x20

1

sin(θ)2
).

Moreover the determinant of the differential of the exponential map is:

D(t, θ, x0) =

(
∂tx(t, θ) ∂θx(t, θ)
∂ty(t, θ) ∂θy(t, θ)

)
=





t2 + t3

3x0
+ tx0 if θ = 0,

−t2 + t3

3x0
+ tx0 if θ = π,

x0


x0

sin

(

t sin(θ)
x0

)

sin(θ)
−t cos(θ) cos

(
θ+

t sin(θ)
x0

)



sin2(θ)
, if θ /∈ {0, π}.

In particular D(|x0π|, π/2, x0) = 0.

We then conjecture that the cut time of the geodesic q(t, θ) is tcut(θ) =
∣∣∣x0 π

sin(θ)

∣∣∣ and that the cut

locus is

Cutx0 = {(−x0, y) ∈ R2 | y ∈ (−∞,−π
2
x20] ∪ [

π

2
x20,∞)}.

We have then in polar coordinates

N1 = {(ρ, θ) | ρ <
∣∣∣∣x0

π

sin(θ)

∣∣∣∣}.

In cartesian coordinates

N1 = {(p1, p2) ∈ T ∗R2 : |p2| < π}.
And

N2 = exp(N1) = {(x, y) ∈ R2 | (x, y) /∈ Cutx0}
Step 2: Study of the conjugate points
In this step we have to prove that there are no conjugate points in N1. In other words we have to
prove the following Lemma:

Lemma 13.30. The geodesic q(·, θ) has no conjugate points in [0, tcut(θ)).

Proof. Since the zeros of D(·, θ, x0) are not explicitly computable we proceed in the following way.
By symmetry we can assume x0 > 0 and θ ∈ [0, π]. We have that

• D(0, θ, x0) = 0. Notice however that this does not mean that t = 0 is a conjugate time.
Indeed in x0 the structure is Riemannian and D(0, θ, x0) vanishes only as a consequence of
the choice of polar coordinates.

• D(tcut(θ), θ, x0) = πx20
cos2 θ
sin3 θ

. This quantity is always larger than zero except for θ = π/2
where it is zero.

• ∂tD(t, θ, x0) =
(x0 + t cos θ)

(
sin(θ + t sin θ

x0
)
)

sin θ
. Notice that this function is positive in t = 0.

Let us study when this function is zero in the interval (0, tcut(θ)). We have two type of zeros.
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– Type one when x0 + t cos θ = 0, which means t = − x0
cos θ . This value belongs to

(0, tcut(θ)) when θ ∈ (θ̄, π] where θ̄ = − arctan(π) ≃ 1.88. One immediately verify that
this zero correspond to a minimum of D(·, θ, x0) and that the value of this minimum is
positive.

– Type two when θ + t sin θ
x0

= kπ with k = 0, 1, 2, . . . which means t = x0
sin θ (kπ − θ). This

value belongs to (0, tcut(θ)) if and only if k = 1. One immediately verify that this zero
correspond to a maximum of D(·, θ, x0) and that the value of this maximum is positive.

By this analysis it follows that D(·, θ, x0) is a function that is zero in zero; it has positive derivative
in zero; it is positive at tcut(θ) (zero only when θ = π/2); it has a maximum and a minimum
(possible only a maximum) in which it is positive.

It follows that D(·, θ, x0) is never zero in (0, tcut(θ)). Since t = 0 is not a conjugate point, it
follows that there are no conjugate points in [0, tcut(θ)).

Step 3 We are now going to prove that the map exp : N1 → N2 is proper. But this is obvious since

• all points of the form (p1,±π) are mapped in points of Cutx0 ;

• the image of any sequence in N1 with p1 → ∞ (resp. p1 → −∞) is mapped in a sequence
tending to the point (0,∞) (resp. (0,−∞)).

Step 4 (R) Since N2 is simply connected, the application of Corollary 13.22 permits to conclude
that exp is a diffeomorphism between N1 to N2. As a consequence the conjectured cut locus and
cut times are the true ones.

13.5.2 Optimal Synthesis starting from a singular point

Let us construct the optimal synthesis starting from a singular point. By invariance of the structure
by y-translations we can assume that the starting point is the origin. In this case the condition
H(x(0), y(0), p1(0), p2(0)) = 1/2 becomes p21 = 1. We have then p1 = ±1. Setting p2(0) =
a, the expression of the normal Pontryagin extremals parameterized by arclenght is q±(t, a) =
(x±(t, a), y(t, a)) where





x±(t, 0) = ±t, y(t, 0) = 0,

x±(t) = ±sin(at)

a
, y(t) =

2at− sin(2at)

4a2

}
if a 6= 0

(13.49)

Theorem 13.31. The cut time for the geodesic q±(·, a) is

tcut(a) =
π

|a|
For a = 0 this formula should be interpreted in the sense that the corresponding geodesics q±(·, 0)
are optimal in [0,+∞). The cut locus is

Cut(0,0) = {(0, y) ∈ R2 | y 6= 0}.
and each point of the cut locus is reached exactly by two optimal geodesic.

The optimal synthesis starting from the origin for Grushin plane is depicted in Figure 13.5.
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A

B

Figure 13.5: A: the optimal synthesis for the Grushin plane starting from the origin, together with
the sub-Riemannian sphere for t = 1. B: all geodesics up to time 1 with the corresponding wave
front.
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Proof of Theorem 13.31

We give a proof of Theorem 13.31 by making a direct computation, without using the extended
Hadamard technique. See also Exercise 13.32.

Due to the fact that the family of geodesics {q−(·, a)}a∈R can be obtained from the family
{q+(·, a)}a∈R by reflection with respect to the y axis, any geodesic starting from the origin has lost
its optimality after intersection with the y axis. From the expression of x±(t, a) one gets that for
a given value of a, the first intersection with the y axis occurs at time t = π/|a|.

Moreover the family {q±(·, a)}a∈R+ can be obtained from the family {q±(·, a)}a∈R− by reflection
with respect to the x axis. Notice that the positive (resp. negative) part of the x axis is the support
of the geodesic q+(·, 0) (resp. q−(·, 0)) and no other geodesic starting from the origin can intersect
again the x axis since y(t, a) is monotone in t.

Then we can restrict ourself to the octant x ≥ 0 y ≥ 0 and we would like to prove the following:

Claim. For every x̄ > 0 and ȳ ≥ 0 there exists a unique a ≥ 0 and t ∈ (0, π/a] such that

x+(t, a) = x̄ (13.50)

y(t, a) = ȳ. (13.51)

Proof of the Claim. Fix a. Let us try to find t(a) from equation (13.50). We have that such an
equation has no solutions if 1/a < x̄ and has two (possibly coinciding) solutions if 1/a ≥ x̄. Such
solutions are

t1(a) =
arcsin(ax̄)

a
,

t2(a) =
π − arcsin(ax̄)

a
.

Notice that t1(a) ≤ t2(a) and t1(a) = t2(a) if and only if 1/a = x̄.
Let us compute y(t1(a), a) and y(t2(a), a). We have

y(t1(a), a) =
1

4a2
(
2 arcsin(ax̄)− sin(2 arcsin(ax̄))

)
.

Using the formula sin(2 arcsin ξ) = 2ξ
√

1− ξ2, we have

y(t1(a), a) =
1

4a2
(
2 arcsin(ax̄)− 2ax̄

√
1− a2x̄2

)
.

It is not difficult to check that such function is continuous and monotone increasing in the interval
a ∈ [0, 1x̄ ]. It take all values from 0 to πx̄2/4.

Similarly

y(t2(a), a) =
1

4a2
(
2π − 2 arcsin(ax̄) + 2ax̄

√
1− a2x̄2

)
.

It is not difficult to check that such function is continuous and monotone decreasing in the interval
a ∈ [0, 1x̄ ]. It take all values from ∞ to πx̄2/4.

The functions y(t1(a), a) and y(t2(a), a) are pictured in Figure 13.6.
Concluding, given x̄ and ȳ, we have two cases.

• If ȳ ≤ πx̄2/4 then it is in the image of y(t1(a), a). Since y(t1(a), a) is monotone, one can
invert it and getting the required unique value of a. The corresponding value of t is then
obtained from t1(a).
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1/x̄

πx̄2/4
y(t1(a), a)

y

a

y(t2(a), a)

Figure 13.6: Proof of Theorem 13.31.

• If ȳ > πx̄2/4 then it is in the image of y(t2(a), a). Since y(t2(a), a) is monotone, one can
invert it and getting the required unique value of a. The corresponding value of t is then
obtained from t2(a).

Exercise 13.32. Prove Theorem 13.31 using the extended Hadamard technique. Notice that in this
case N1 is not connected, hence one should apply twice the technique to its connected components.

13.6 The standard sub-Riemannian structure on SU(2)

The Lie group SU(2) is the group of unitary unimodular 2× 2 complex matrices

SU(2) =

{(
α β

−β α

)
∈ Mat(2,C) | |α|2 + |β|2 = 1

}
.

The Lie algebra of SU(2) is the algebra of antihermitian traceless 2× 2 complex matrices

su(2) =

{(
iα β

−β −iα

)
∈ Mat(2,C) | α ∈ R, β ∈ C

}
.

A basis of su(2) is {p1, p2, k} where

p1 =
1

2

(
0 1
−1 0

)
p2 =

1

2

(
0 i
i 0

)
k =

1

2

(
i 0
0 −i

)
, (13.52)

whose commutation relations are [p1, p2] = k, [p2, k] = p1, [k, p1] = p2.

381



For su(2) we have Kil(X,Y ) = 4Tr(XY ). In particular, Kil(pi, pj) = −2δij , Kil(pi, k) = 0,
Kil(k, k) = −2. Hence

〈· | ·〉 = −1

2
Kil(·, ·)

is a positive definite bi-invariant metric on su(2) (cf. Section 7.2.3 and Exercice 7.41).
If we define

d = span{p1, p2}, s = span{k}
and we provide d with the metric 〈· | ·〉 |d we get a sub-Riemannian structre of the type d⊕ s (cf.
7.8.1).

Remark 13.33. Observe that all the d⊕ s structures that one can define on SU(2) are equivalent.
For instance, one could set d = span {p2, k} and s = span {p1}.

Recall that SU(2) ≃ S3 =

{(
α
β

)
∈ C2 | |α|2 + |β|2 = 1

}
via the map

φ :

SU(2) → S3
(

α β

−β α

)
7→

(
α
β

)
.

In the following we often write elements of SU(2) as pairs of complex numbers.
Notice that in this representation the sub-group eRk is

{(
α
0

)
| |α|2 = 1

}
.

Expression of geodesics

Let us write an initial covector in su(2) as x0+y0, where x0 ∈ d and y0 ∈ s. To parametrize geodesics
by arclength, i.e. to be on the level set 1

2 of the Hamiltonian, we have to require 〈x0 | x0〉 = 1. It is
then convenient to write

x0 + y0 = cos(θ)p1 + sin(θ)p2︸ ︷︷ ︸
x0

+ ck︸︷︷︸
y0

, θ ∈ S1, c ∈ R.

Using formula (7.44), we have that the normal Pontryagin extremals starting from the identity are
(here λ = (θ, c))

expId(t, λ) = g(θ, c; t) := et(x0+y0)e−ty0 = e(cos(θ)p1+sin(θ)p2+ck)te−ckt =

=




c sin( ct
2
) sin(

√
1+c2 t

2
)√

1+c2
+ cos( ct2 ) cos(

√
1 + c2 t2 ) + i

(
c cos( ct

2
) sin(

√
1+c2 t

2
)√

1+c2
− sin( ct2 ) cos(

√
1 + c2 t2)

)

sin(
√
1+c2 t

2
)√

1+c2

(
cos( ct2 + θ) + i sin( ct2 + θ)

)


 .

Remark 13.34. We have the following cylindrical symmetry reflecting the invariance of the sub-
Riemannan structure with respect to rotations along the k axis.

g(θ, c; t) =

(
1 0
0 eiθ

)
g(0, c, t);
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Theorem 13.35. The cut time for the geodesic g(θ, c, t) coincides with its first conjugate time. It
is independent from θ and it is given by the formula

tcut(c) =
2π√
1 + c2

.

Moreover g(θ, c; tcut(c)) is independent from θ. Hence each cut point is reached by an infinite
number of geodesics (a one parameter family parameterized by θ).

Since the largest cut time is obtained for c = 0 we have

Corollary 13.36. The diameter of SU(2) with the standard sub-Riemannian structure is 2π.

By a direct computation one gets

Corollary 13.37. The cut locus starting from the identity is

Cutid = eRk \ {id} =
{(

α
0

)
| |α|2 = 1, α 6= 0

}
.

Moreover each cut point is also a conjugate point.

Remark 13.38. Notice that with our definition of cut locus, the starting point is never a cut point.

Proof of Theorem 13.35. We are going to apply the extended Hadamard technique.

Step 1: Construction of the conjectured cut locus and of the sets N1 and N2.

By a direct computation one immediately obtain:

Lemma 13.39. For every θ1, θ2 ∈ S1, we have

g

(
θ1, c;

2π√
1 + c2

)
= g

(
θ1, c;

2π√
1 + c2

)
=

(
− cos

(
πc√
c2+1

)
+ i sin

(
πc√
c2+1

)

0

)

Moreover the determinant of the differential of the exponential map is zero if and only if

sin

(√
1 + c2

t

2

)(
2 sin

(√
1 + c2

t

2

)
−
√
1 + c2t cos

(√
1 + c2

t

2

))
= 0. (13.53)

In particular 2π√
1+c2

is a conjugate time for the geodesic g (θ, c; ·).

We then conjecture that the cut time of the geodesic g(θ, c; ·) is tcut(c) =
2π√
1+c2

and that the

cut locus is

Cutid = eRk =

{(
α
0

)
| |α|2 = 1, α 6= 0

}
.

We define
N1 = {ap1 + bp2 + ck ∈ su(2) | (a, b) 6= (0, 0), |c| ≤

√
2π − 1}

and
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N2 = exp(N1) = {g ∈ SU(2) | g /∈ CutId}
Step 2: Study of the conjugate points
We are going to prove that the differential of the exponential map never vanishes in N1 and hence
that there are no conjugate points in N2 for expId|N1 . Conjugate times are given by formula (13.53).
The first term vanishes at times 2mπ√

1+c2
, where m = 1, 2, . . .. The second term vanishes at times

2xm√
1+c2

where {x1, x2, . . .} is the ordered set of the strictly positive solutions of x = tan(x). Since

x1 ∼ 4.49 > π, the first positive time at which the geodesic g(θ, c; ·) is conjugate is tcut(c), Hence
the differential of the exponential map never vanishes in N1.

Step 3 We are now going to prove that the map exp : N1 → N2 is proper. But this is obvious
since all points of ∂N1 are mapped in points of ∂N2.

Step 4 (SR) By Theorem 13.21 we know that exp : N1 → N2 is a covering. It remains to prove
that it is a 1-covering. As already mentioned we cannot apply Corollary 13.22 since N2 is not
simply connected. Let us show that the hypotheses of Corollary 13.23 are verified. The topology
of N2 is those of S1×R2. We are left to find a loop in N1 that is mapped via the exponential map
in a loop homotopic to S1. Indeed as we know from Chapter 10, the nilpotent approximation of
every 3D-contact structure is the Heisenberg group. For the Heisenberg group a loop ℓ2 winding
once the cut locus is the image through the exponential map of a loop ℓ1.

Since for regular maps, the structure of the preimage of a set does not change for small per-
turbation of the map it follows that for SU(2) a small loop winding Cutid is the image through
the exponential map of a loop ℓ1. Then Corollary 13.23 permits to conclude that exp|N1 is a
diffeomorphism. As a consequence the conjectured cut locus and cut times are the true ones.

Remark 13.40. The argument above apply to any 3 dimensional structure that is genuinely sub-
Riemannian at the starting point.

Exercise 13.41. Corollary 13.36 says that the diameter of SU(2) for the standard sub-Riemannian
structure is 2π. Prove that the diameter of SU(2) for the standard Riemannian structure (i.e., the
structure for which {p1, p2, k} is an orthonormal frame) is 2π as well.

A representation of the cut locus for SU(2) is given in Figure 13.7.

Exercise 13.42. Consider the d ⊕ s sub-Riemannian structure on SO(3) introduced in Section
7.8.2. By using the techniques presented in this chapter construct the optimal synthesis. Represent
SO(3) as a full three dimensional ball with opposite points on the boundary identified. Call
this “boundary” RP 2. Prove that the cut locus is the union of the subgroup eRe3 = es without
the identity and RP 2. Compute the diameter of SO(3) for this structure. Compare it with the
diameter of SO(3) for the standard Riemannian structure (i.e. the structure for which {e1, e2, e3}
is an orthonormal frame). An alternative technique to compute this optimal synthesis is provided
in Section 13.7.

Exercise 13.43. Let G = SL(2) and consider the left-invariant sub-Riemannian structure for
which an orthonormal frame is given by

X1(g) = Lg∗

(
1 0
0 −1

)
, X2(g) = Lg∗

(
0 1
1 0

)
.

Prove that this structure is of type d⊕ s for the metric induced by the Killing form. Construct the
optimal synthesis starting from the identity.
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Figure 13.7: We recall a standard construction for representing S2 in a two dimensional space and
S3 in a three dimensional one. Consider S2 ⊂ R3 and flatten it on the equator plane, pushing
the northern hemisphere down and the southern hemisphere up, getting two disks D2 joined along
their circular boundaries. The construction is drawn in the up-left side of the figure. Similarly,
consider S3 ⊂ C2 ≃ R4: it can be viewed as two balls joined along their boundaries. In this case
the boundaries are two spheres S2. A picture of S3 is drawn in the up-right side of the figure.
In this representation, the cut locus is given the the great circle passing through the identity, the
north and the south pole (the identity should then be removed, cf. Remark 13.2).
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13.7 Optimal synthesis on the groups SO(3) and SO+(2, 1).

In this section we find the time optimal synthesis for the structures on SO(3) and SO+(2, 1)
introduced in Section 7.8.3. Here, instead of using the extended Hadamard technique, we use a
more geometric approach using the Gauss-Bonnet theorem.

To describe these synthesis it is very convenient to use the interpretation of geodesics as parallel
transports along curves of a constant geodesic curvature in the unit sphere S2 and the Lobachevsky
plane H (see Section 7.8.3).

According to the general scheme, we use nontrivial symmetries of the structure that preserve the
endpoints of the geodesics in order to characterize the cut locus. In the cases under consideration,
the sub-Riemannian space is identified with the spherical bundle of the surface. This allows us to
give a nice and clear description of the cut locus in terms of natural symmetries of the surface.
As we’ll see, the Gauss-Bonnet formula plays a key role. Here we give a brief description of the
cut locus; detailed proofs can be found in [24, 23, 25] but we advise the reader to recover them by
him(her)self.

The projection of a geodesic to the surface is a curve of a constant geodesic curvature. First
we describe symmetries of the surface that preserve endpoints of the curve. We use two essentially
different types of symmetries. The first one concerns the case when the curve is closed, i.e. the
initial point is equal to the final one. In this case, the initial and final velocities are also equal.
The symmetries are just rotations of the surface around the initial point of the curve. We obtain
a one-parametric family of symmetries where the angle of rotation is a parameter of the family.

The second type concerns any curve. If the endpoints of the curve are different then the
symmetry is the reflection of the surface with respect to the geodesic (of the Riemannian surface)
that contains both endpoints. If the endpoints are equal (the curve is closed) then the symmetry is
the reflection of the surface with respect to the geodesic that is tangent to the curve at the initial
point.

Now we turn to the parallel transport. Let γ : [0, 1] → M be a curve of constant geodesic
curvature ρ ∈ R and the length ℓ > 0. Let v0 ∈ Sγ(0)M and let θ0 be the angle between γ̇(0) and
v0 Then the parallel transport of v0 along γ is a vector v1 ∈ Sγ(1)M such that the angle between
γ̇(1) and v1 equals θ0 + ρℓ.

A rotation around a point does not change neither the geodesic curvature nor the length of the
curve; hence the parallel transport along the curve does not change as well. Let γ(1) = γ(0) and
Γ ⊂M be a compact domain such that γ = ∂Γ. The Gauss-Bonnet formula implies a relation:

ρℓ = 2π ±Area(Γ).

Let q ∈ M ; it follows that the rotation of the circle SqM on any angle can be realized as the
parallel transport along a closed curve of a constant geodesic curvature (recall that angles are
defined modulo 2π). We see that for any v0, v1 ∈ SqM there exists a one-parametric family of
sub-Riemannian geodesics of the same length that connect v0 with v1.

Now we consider reflections. Let ξ be the shortest path connecting γ(1) with γ(0) and φ be the
angle between γ̇(0) and ξ̇(1). Then the angle between γ̇(1) and ξ̇(0) equals −φ (see Figure 13.8).

The reflection of M with respect to the geodesic changes the sign of the geodesic curvature
curvature and the sign of φ.

To compute the parallel transport along the curve γ and along the reflected curve we choose
the directions of ξ̇(1) and ξ̇(0) as the origins in the circles Sγ(0)M and Sγ(1)M . Then the direction
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γ(1)

γ

φ

γ(0)

ξ

−φ

Figure 13.8: Construction of the optimal synthesis on SO(3) and SO+(2, 1). Definition of the angle
φ. (The picture refers to SO(3))

of γ̇(0) is −φ and the direction of γ̇(1) is +φ. Hence the parallel transport of ξ̇(1) along γ has the
direction

φ+ ρℓ+ φ = ρℓ+ 2φ.

The parallel transport of the same vector along the reflected curve has the direction −ρℓ−2φ. The
parallel transports along the both curves coincide if and only if

2(ρℓ+ 2φ) ≡ 0 mod 2π.

Let us consider the curve γ̄ = γ ∪ ξ and the domain Γ ⊂M such that γ̄ = ∂Γ (see the figure).
The Gauss-Bonnet formula (1.27) applied to Γ gives a relation:

ρℓ+ 2φ±Area(Γ) = 2π.

If M is the unit sphere, then ρℓ+2φ = 2π−Area(Γ). The case ρℓ+2φ = π is a natural candidate
to cut. If M is the Lobachevsky plane, then ρℓ + 2φ = 2π + Area(Γ) and a natural candidate to
cut is the case ρℓ+ 2φ = 3π. Both cases are characterized by the identity:

Area(Γ) = π.

We are now ready to describe the optimal synthesis. Let M be either unit sphere in the three-
dimensional Euclidean space or hyperbolic plane in the Minkowsky space.

1. Geodesics are parallel transports along curves of a constant geodesic curvature in M , and
curves of a constant geodesic curvature are just the intersections of M ⊂ R3 with affine
planes.
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2. Let t 7→ γ(t) is a parameterized curve of a constant geodesic curvature in M and Γt ⊂M be
the smaller domain among two domains whose boundary is the concatenation of γ|[0,t] and
the shortest path connecting γ(t) with γ(0). We assume that γ is oriented in such a way that
Γt stays to the right from γ (as in the figure). The cut time tγ for the parallel transport along
γ is as follows:

tγ = min{t > 0 : γ(t) = γ(0) or Area(Γt) = π}.

If M = S2, then the maximal length until the cut point (the sub-Riemannian diameter of
SO(3)) is equal to

√
3π and is achieved when the equations γ(t) = γ(0) and Area(Γt) = π happen

simultaneously. If M = H, then the surface is not compact and the diameter is equal to +∞.

13.8 Synthesis for the group of Euclidean transformations of the
plane SE(2)

The group of (positively oriented) Euclidean transformations of the plane is

SE(2) =








cos(θ) − sin(θ) x1
sin(θ) cos(θ) x2

0 0 1


 , θ ∈ S1, x1, x2 ∈ R



 .

The name of this group comes from the fact that if we represent a point of R2 as a vector
(y1, y2, 1)

t then the action of a matrix of SE(2) produces a rotation of angle θ and a translation of
(x1, x2) (cf. Section 7.2.2). The Lie algebra of SE(2) is

se(2) = span {e1, e2, er} ,

where

e1 =




0 0 1
0 0 0

0 0 0


 , e2 =




0 0 0
0 0 1

0 0 0


 , er =




0 −1 0
1 0 0

0 0 0


 .

The commutation relations are:

[e1, e2] = 0, [e1, er] = −e2, [e2, er] = e1. (13.54)

The sub-Riemannian problem on SE(2) is obtained by declaring {e1, er} to be an orthonormal
frame. In this way the sub-Riemannian problem can be written as (here T > 0 and g0, g1 are two
fixed points in SE(2)),

ġ = g(ue1 + ver), (13.55)
∫ T

0

√
u(t)2 + v(t)2 dt,→ min, (13.56)

g(0) = g0, g(T ) = g1. (13.57)

Notice that since we are in dimension 3 and with one bracket one get the Lie algebra se(2),
this problem is a contact sub-Riemannian problem and hence there are no non-trivial abnormal
extremals.
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In coordinates q = (x1, x2, θ) this problem become

q̇ = uX1(q) + vXr(q), (13.58)
∫ T

0

√
u(t)2 + v(t)2 dt→ min, (13.59)

q(0) = q0, q(T ) = q1. (13.60)

where

X1 =




cos(θ)
sin(θ)

0


 , Xr =




0
0
1


 . (13.61)

Notice that if we define

−X2 = [X1,Xr] =




sin(θ)
− cos(θ)

0


 ,

the commutation relations are the same as (13.54) i.e., [X1,X2] = 0, [X1,Xr] = −X2 and [X2,Xr] =
X1.

Exercise 13.44. Prove that every left-invariant sub-Riemannian structure on SE(2) is isometric
to the structure presented above, modulus a dilation in the (x1, x2) plane.

13.8.1 Mechanical interpretation

Recall that a point (x1, x2, θ) ∈ SE(2) can be represented as a unit vector on the plane applied
to the point (x1, x2) with an angle θ with respect to the x1 axis (see Figure 13.9 (A)). Then the
optimal control problem (13.58)-(13.61) can be interpreted as the problem of controlling a car with
two wheels on the plane. More precisely x1 and x2 are the coordinates of the center of the car, θ is
the orientation of the car with respect to the x1 direction (see Figure 13.9 (B)). The first control
u makes the two wheels rotating in the same directions and makes the car going forward with
velocity u; the second control v makes the two wheels rotating in opposite direction and makes
the car rotating with angular velocity v (see Figure 13.9 (C)). An admissible trajectory in SE(2)
can be represented as a planar trajectory with two type of arrows: an “empty” arrow giving the
direction of the parameterization of the curve and a “bold” arrow indicating the orientation of the
car (see Figure 13.9 (D)). Notice that in the drawn trajectory there is a cusp point where the car
stops to go forward and starts to go backward. Indeed a smooth admissible trajectory in SE(2)
can have cusp points in this representation.

13.8.2 Geodesics

The maximized Hamiltonian for the problem (13.58), (13.59), (13.60), (13.61) is

H(q, p) =
1

2

(
〈p,X1〉2 + 〈p,X2〉2

)
.

Setting p = (p1, p2, pθ), p1 = P cos(pa), p2 = P sin(pa) we have

H =
1

2

(
(p1 cos θ + p2 sin θ)

2 + p2θ
)
=

1

2

(
P 2 cos2(θ − pa) + p2θ

)
.
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orientation of the car
orientation of the parameterization

Figure 13.9: Mechanical interpretation of the problem on SE(2).

The Hamiltonian equations are then

ẋ1 =
∂H

∂p1
= P cos(θ − pa) cos θ, ṗ1 = −

∂H

∂x1
= 0,

ẋ2 =
∂H

∂p2
= P cos(θ − pa) sin θ, ṗ2 = −

∂H

∂x2
= 0,

θ̇ =
∂H

∂pθ
= pθ, ṗθ = −

∂H

∂θ
=

1

2
P 2 sin(2(θ − pa)).

Notice that this Hamiltonian system is integrable in the sense of Liouville, since we have enough
constants of the motion in involution (i.e. H, p1, p2 or equivalently H,P, θ). The last two equations
gives rise to

θ̈ =
1

2
P 2 sin(2(θ − pa)).

Now setting θ̄ = 2(θ − pa) ∈ 2S1 = R/(4πZ) that is the double covering of the standard circle
S1 = R/(2πZ), we get the equation

¨̄θ = P 2 sin θ̄. (13.62)

This is the equation of a planar pendulum of mass 1, length 1, where P 2 represents the gravity (see

Figure 13.10). In the following we will have to remember that ˙̄θ = 2pθ.

Initial conditions. By invariance by rototranslation we can assume x1(0) = 0, x2(0) = 0, θ(0) = 0
which means θ̄(0) = −2pa. Geodesics are then parameterized by p1, p2 (which are constants) and by
pθ(0) (or alternatively by P, pa, pθ(0)). If we require that geodesics are parametrized by arclenght,
we have H(0) = 1

2 hence the initial covector belongs to the cylinder

p21 + pθ(0)
2 = 1, i.e., P 2 cos2 pa + pθ(0)

2 = 1.

Fixed an initial covector p(0) on the cylinder H(0) = 1/2 one get P, pa, pθ(0). Then one has to
consider the pendulum equation (13.62) with gravity P 2 and initial condition

θ̄(0) = −2pa, ˙̄θ(0) = 2pθ(0).
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M = 1

θ̄

ℓ = 1

gravity = P 2

Figure 13.10: The inverted pendulum

Once that the pendulum equation has been solved one obtains

θ(t) =
θ̄(t)

2
+ pa (13.63)

x1(t) =

∫ t

0
ẋ1(s) ds = P

∫ t

0
cos(θ(s)− pa) cos θ(s) ds = P

∫ t

0
cos

(
θ̄(s)

2

)
cos

(
θ̄(t)

2
+ pa

)
ds

(13.64)

x2(t) =

∫ t

0
ẋ2(s) ds = P

∫ t

0
cos(θ(s)− pa) sin θ(s) ds = P

∫ t

0
cos

(
θ̄(s)

2

)
sin

(
θ̄(t)

2
+ pa

)
ds

(13.65)

Qualitative behaviour of the geodesics.
Equation (13.62) admits an explicit solution in terms of elliptic functions. However the qualitative
behaviour of the solutions can be understood without integrating it explicitly.

In particular this equation admits a constant of the motion (the energy of the pendulum)

Hp =
1

2
˙̄θ2 + P 2 cos θ̄.

Notice that this constant of the motion is not independent from H. Indeed a simple computation
gives:

Hp = 4H − P 2.

Since we are working on the level set H = 1/2, it will be much more convenient to work directly
with H that here we write in terms of the new variables

H =
1

2

(
P 2 cos2

(
θ̄

2

)
+ p2θ

)
.

The level sets of H are plotted in Figure 13.11. We are interested to the level set H = 1/2.
Depending on the value of (P, pa, pθ(0)) different types of the trajectories of the pendulum are
possible. Notice that

• when θ̄ passes monotonically through π, then the projection on the (x1, x2) plane of the
geodesic has a cusp.
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Figure 13.11: Trajectories of the inverted pendulum

• Geodesics are parameterized by (P, pa, pθ(0)) ∈ H−1(1/2). Changing P correspond to change
the gravity of the pendulum. This changes the period of the trajectories oscillating close the
stable equilibrium and the time between two cusps. Notice that P enters also in the equations
for x1(t) and x2(t). Changing pa and pθ(0) corresponds to change the starting point on the
pendulum trajectory.

Classification of normal Pontryagin extremals.
We have the following type of trajectories (see Figure 13.12):

• Trajectories with P > 0 and corresponding to the rotating pendulum. In this case θ̄(t)
increases monotonically. Notice that the projection of the geodesics on the plane (x1, x2) has
a cusp each time that θ̄ passes through π + 2kπ with k ∈ N.

• Trajectories with P > 0 and corresponding to the oscillating pendulum. In this case θ̄(t) is
oscillating either around π or around −π. Notice that the projection of the geodesics on the
plane (x1, x2) has a cusp each time that θ̄ passes through π or −π. One can easily check that
these trajectories have an inflection point between two cusps.

• Trajectories with P > 0 and staying on the separatrix (but not on the unstable equilibria).
The projection on the (x1, x2) plane of these trajectories has at most one cusp.

• Trajectories with P > 0 and staying on one of the unstable equilibria. In this case we have
pθ = 0 and pa = 0 (or pa = 2π). As a consequence we have θ(t) = 0, x1(t) = ±t, x2(t) = 0.

• Trajectories corresponding to P = 0 in this case each level set of the pendulum is an horizontal
line and equation (13.62) is reduced to θ̈(t) = 0. then we have θ̄(t) = −2pa + 2pθ(0)t, with
pθ(0) = ±1. As a consequence we have θ(t) = ±t, x1(t) = 0, x2(t) = 0.
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zero gravity pendulum

unstable equilibrium

rotating pendulum

separatrix

oscillating pendulum

Figure 13.12: Geodesics for SE(2)

Remark 13.45. Notice that trajectoreis with P > 0 and staying at one of the two stable equilibria
have H = 0 and they are abnormal extremals. For these trajectories θ̄ = ±π, pa = ∓π/2. Hence
x1(t) ≡ 0, x2(t) ≡ 0, θ(t) ≡ 0. This is the trivial trajectory staying fixed at the identity.

Optimality of geodesics.
Let q(·) = (x1(·), x2(·), θ(·)) defined on [0, T ] be a geodesic parameterized by arclength. Define the
two mapping of geodesics

S : q(·) 7→ qS(·) and T : q(·) 7→ qT(·)
in the following way. In the mechanical representation given above, consider the segment ℓ join-
ing (x1(0), x2(0)) and (x1(T ), x2(T )) and the line ℓ⊥ passing through the middle point of ℓ and
orthogonal to ℓ.

Map S the trajectory qS(·) is the trajectory obtained by considering the reflection of q(·) with respect

to ℓ⊥.

Map T The trajectory qT(·) is the trajectory obtained by considering the reflection of q(·) with respect
to the middle point of ℓ.

In both cases the “bold arrows” should be reflected accordingly. The “empty arrows” giving the
direction of the parameterization should be oriented in such a way that the initial (resp. final) point
of qS(·) is q(0) (resp. q(T )). The same holds for qT(·). See Figure 13.13.
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ℓ

ℓ

ℓ⊥

q(0)

q(0)
map S map T

q(T ) q(T )

Figure 13.13: Maps S and T. Courtesy of Y. Sachkov.

Remark 13.46. Notice that if q(·) is defined in [0, T ] then in general Sq(·) is different from S
(
q(·)|[0,t]

)

for t ∈ (0, T ). The same applies to Tq(·).

Definition 13.47. Let q(·) defined on [0, T ] be a geodesic. We say that q(T ) is a Maxwell point
corresponding to S (resp. T) if q(·) 6= qS(·) (resp. q(·) 6= qT(·)), q(0) = qS(0) and q(T ) = qS(T ) (resp.
q(T ) = qT(T )).

Examples of Maxwell points for S and T are shown at Figures 13.14. We have the following

Theorem 13.48 (Yuri Sachkov). A geodesic q(.) on the interval [0, T ], is optimal if and only if
each point q(t), t ∈ (0, T ), is neither a Maxwell points corresponding to S or T for q(·)|[0,t] nor the
limit of a sequence of Maxwell points.

The cut locus for the sub-Riemannian problem on SE(2) has been computed by Y. Sachkov
and it is pictured in Figure 13.15.

13.9 The Martinet sub-Riemannian structure

Let us write a point of R3 as (x, y, z). The Martinet sub-Riemannian structure is the structure in
R3 for which an orthonormal frame is given by

X1 =




1
0
y2

2


 , X2 =




0
0
1


 . (13.66)

Remark 13.49. This problem can be formulated as an isoperimetric problem in the sense of Sec-

tion 4.4.2. In this case the base manifold is given by the points (x, y) ∈ R2 and the form A = y2

2 dx.
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q(0)

q(T ) q(T )

q(0)
TS

Figure 13.14: Cut loci corresponding to S and T. Courtesy of Y. Sachkov.

Cut Locus

Cut Locus

Id

R2 seen as an open disc

S1

SE(2) ∼ R2 × S1

seen as a full torus with no boundary

Figure 13.15: Cut locus (dark region) from the identity for the sub-Riemannian problem on SE(2).
Courtesy of Y. Sachkov. In this picture SE(2) (that has the topology of R2×S1) is represented as
a solid torus without boundary given by B2 × S1, where B2 is the 2D disc without boundary.
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In other words the trajectory realizing the sub-Riemannian distance for the Martinet problem be-
tween (0, 0, 0) and (x1, y1, z1) is a curve γ(t) = (x(t), y(t), z(t)) defined in [0, T ] steering (0, 0, 0) to
(x1, y1, z1), for which ∫

γ
A =

∫ T

0
A(γ̇(t))dt =

∫ T

0

y(t)

2
ẋ(t)dt = z1,

and whose projection in the (x, y)-plane is the shortest for the Euclidean distance.

This structure is bracket generating, but it is not equiregular. Indeed we have

X3 := [X1,X2] =




0
0
−y


 , [X3,X2] =




0
0
1


 .

Hence the structure is 3D-contact out of {y = 0} and to get the full tangent space in every point
one need one more bracket.

In the following two sections we are going to construct the Pontryagin extremals. We already
know Section 4.4.2 that the support of abnormal extremals should be contained in the set {A = 0}
that is the plane {y = 0}. Such set is called the Martinet surface. Let us use the notation
p = (px, py, pz).

13.9.1 Abnormal extremals

For abnormal extremals we have for every t,

0 = 〈p(t),X1(q(t)〉 = px(t) +
y(t)2

2
pz(t),

0 = 〈p(t),X2(q(t)〉 = py(t).

Differentiating with respect to t we obtain for almost every t

0 = u2(t)〈p(t), [X2,X1](q(t))〉 = −u2(t)〈p(t),X3(q(t))〉 = u2(t)pz(t)y(t),

0 = u1(t)〈p(t), [X1,X2](q(t))〉 = u1(t)〈p(t),X3(q(t))〉 = −u1(t)pz(t)y(t).

Hence if γ : [a, b]→ R3 is an abnormal extremal, either it is trivial (i.e., γ(t) ≡ γ(0)) or we have

〈p(t),X3(q(t))〉 = pz(t)y(t) ≡ 0. (13.67)

Since (px, py, px) cannot vanish, we have that γ is contained in the Martinet surface i.e., γ([a, b]) ⊂
{y = 0}.

To obtain the controls corresponding to γ let us differentiate once more (13.67). We have for
almost every t

0 = u1(t)〈p(t), [X1,X3](q(t))〉 + u2(t)〈p(t), [X2,X3](q(t))〉 = −u2(t)pz(t)

where we used the fact that [X1,X3] = 0 and [X2,X3] = (0, 0,−1)t. Since again (px, py, px) cannot
vanish we obtain

u2(t) = 0 for almost every t.

Indeed we already knew this fact since the only way to stay on the Martinet surface is to have
u2 = 0 almost everywhere. The value of u1 is then obtained by requiring that γ is parametrized
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by arlength, i.e. |u1(t)| = 1 for almost every t. Notice that we have many of such trajectories:
indeed the control u1 can be any measurable function satisfying |u1(t)| = 1. Such control can
switch arbitrarily between 1 and −1. Because of Remark 13.49 only trajectories corresponding to
a control that is almost everywhere constant are optimal. We then obtain the following.

Proposition 13.50. Arclength parametrized trajectories admitting an abnormal lift are Lipschitz
trajectories γ : [a, b] → R3 lying on the Martinet surface and corresponding to u2 ≡ 0 almost
everywhere. Among these trajectories, only those for which u1 is constantly equal to +1 or −1 are
optimal.

13.9.2 Normal extremals

For normal extremals, the maximized Hamiltonian is given by

H(q, p) =
1

2
(h1(q, p)

2 + h2(q, p)
2),

where

h1(q, p) = px +
y2

2
pz, h2(q, p) = py.

The Hamiltonian equations are then

ẋ =
∂H

∂px
= h1, ṗx = −∂H

∂x
= 0, (13.68)

ẏ =
∂H

∂py
= py, ṗy = −

∂H

∂y
= −h1y pz, (13.69)

ż =
∂H

∂pz
= h1

y2

2
, ṗz = −

∂H

∂z
= 0. (13.70)

Notice that this Hamiltonian system is integrable in the sense of Liouville, since we have enough
constants of the motion in involution (i.e. H, px, pz).

From (13.70) we have that pz is constant. Let us set pz = a. We can solve (13.68) and (13.69)
since these equations are independent from z. Let us use as coordinates (x, y, h1, h2). We have

ẋ = h1, ḣ1 = ṗx + y ẏ︸︷︷︸
py

a = a y h2, (13.71)

ẏ = py = h2, ḣ2 = ṗy = −a y h1. (13.72)

Now if consider normal extremals parametrized by arclength, we have

1

2
= H(q(t), p(t)) = h1(t)

2 + h2(t)
2.

It is then convinient to set

h1(t) = cos θ(t), h2(t) = sin θ(t).
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ℓ = 1

θ
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g = a

Figure 13.16: The pendulum for the Martinet distribution

The equations for h1 and h2 in (13.71) and (13.72) give then

− sin(θ)θ̇ = ay sin(θ),

cos(θ)θ̇ = −ay cos(θ),

from which we have
θ̇ = −ay. (13.73)

This equation together with ẏ = h2 = sin θ (see the equation for ẏ in (13.72)) gives

θ̈ = −a sin θ (13.74)

We obtain again a pendulum equation for a pendulum of unit mass, unit length and gravity a. See
Figure 13.16.

Initial conditions
We are going to consider normal Pontryagin extremals starting from the point (x, y, z) = (0, 0, 0).
Arclength geodesics are then parameterized by θ0 := θ(0) (giving py(0) and px) and by a. Notice
that from (13.73) we have that θ̇(0) = 0.

Once equation the pendulum equation has been solved, one gets

x(t) =

∫ t

0
ẋ(s) ds =

∫ t

0
h1(q(s), p(s)) ds =

∫ t

0
cos θ(s) ds, (13.75)

y(t) =

∫ t

0
ẏ(s) ds =

∫ t

0
h2(q(s), p(s)) ds =

∫ t

0
sin θ(s) ds, (13.76)

z(t) =

∫ t

0
ż(s) ds =

∫ t

0
h1(q(s), p(s))

y2(s)

2
ds =

∫ t

0
cos(θ(s))

y2(s)

2
ds. (13.77)

The solution of the pendulum equation and the corresponding expressions for x(t), y(t) and z(t) can
be expressed in terms of elliptic functions. Here we are going to make a short qualitative analysis.

We already know that the pendulum equation admits the constant of the motion

Hp(θ, θ̇) =
1

2
θ̇2 − a cos(θ).
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Hp > a/2

Hp = 0

Hp = −a/2

Hp = a/2

θ
π

θ̇

−π

Figure 13.17: The phase portrait of the pendulum for the Martinet problem

Level sets of Hp are plotted in Figure 13.17.

Case a = 0. In this case the level set of Hp are horizontal lines. We have θ̈ ≡ 0 hence θ̇(t) =const.
This constant is indeed zero since θ̇(0) = 0. Then θ(t) = θ0. From (13.75)-(13.77) we have

x(t) = t cos(θ0), y(t) = t sin(θ0), z(t) = cos(θ0) sin
2(θ0)

t3

6
.

For θ0 ∈ {0, π} this trajectory is lying on the Martinet surface and it is both normal and abnormal.

Case a 6= 0 and θ0 = 0. This is the trajectory staying at the stable equilibrium of the pendulum.
In this case we have θ(t) ≡ 0 and

x(t) = t, y(t) = 0, z(t) = 0.

This trajectory is lying on the Martinet surface and it is both normal and abnormal.

Case a 6= 0 and θ0 = π. This is the trajectory staying at the unstable equilibrium of the pendulum.
In this case we have θ(t) ≡ π and

x(t) = −t, y(t) = 0, z(t) = 0.

As the previous one, this trajectory is lying on the Martinet surface and it is both normal and
abnormal. Notice that the heteroclinic orbit is not realized because of the initial condition θ̇(0) = 0.

Notice that all Pontryagin extremals studied up to now have a projection on the (x, y) plane
that is a straight line. Because of Remark 13.49 they are automatically optimal.
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All other Pontryagin extremals are expressed in terms of Elliptic functions and are given by the
Theorem below.

To this purpose let sn(φ,m), cn(φ,m), dn(φ,m) be the standard Jacobi elliptic functions with
parameter m ∈ [0, 1] and recall the definition of:

• the complete elliptic integral of the first kind

K(m) :=

∫ π/2

0

(
1−m sin2(θ)

)− 1
2 dθ

• the Jacobi epsilon function [?, p. 62]

Eps(φ,m) :=

∫ φ

0
dn2(w,m) dw.

Let us define the following functions of t, θ0, a (here we assume a > 0, θ0 ∈ (0, π)).

k =

√
1− cos(θ0)

2
, (13.78)

k′ =

√
1 + cos(θ0)

2
, (13.79)

u(t, k, a) = K(k2) + t
√
a, (13.80)

Υ(t, k, a) = Eps(u(t, k, a), k2)− Eps(K(k2), k2), (13.81)

Theorem 13.51 (Agrachev, Bonnard, Chyba, Kupka). The normal geodesics starting from the
origin for θ0 ∈ (0, π) and a > 0 are given by:

x(t) = −t+ 2√
a
Υ(t, k, a) (13.82)

y(t) = −2 k√
a
cn(u(t, k, a), k2) (13.83)

z(t) =
2

3a3/2

[
(2k2 − 1)Υ(t, k, a) + k′2t

√
a+ 2k2sn(u(t, k, a), k2)cn(u(t, k, a), k2)dn(u(t, k, a), k2)

]

(13.84)

For negative values of θ0 and/or a, the formulas are obtained from the previous ones considering
that a change in sign of θ0 produces a change of sign in the coordinate y and a change of sign of a
produces a change of sign in the coordinates x and z.

Remark 13.52. These geodesics can be easily drawn using a commercial software having elliptic
functions and integrals implemented, as for instance Mathematica. The Jacobi epsilon function can
be written in terms of more common elliptic integrals using the formula (see for instance [?, p.63])

Eps(φ,m) = E(am(φ,m),m).

Here E(α,m) :=
∫ α
0

(
1 − m sin2(θ)

) 1
2 dθ, is the elliptic integral of the second kind and am is the

Jacobi amplitude defined as the inverse of the elliptic integral of the first kind, i.e. if φ = F (α,m) :=∫ α
0

(
1−m sin2(θ)

)− 1
2 dθ, then α = am(φ,m).
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The optimality of these geodesics is not easy to be studied (the method presented at the be-
ginning of the chapter does not apply directly because of the presence of abnormal minimizers, see
also the Bibliographical note). However this study was completed in the ’90s. And we have the
following result.

Theorem 13.53 (Agrachev, Bonnard, Chyba, Kupka). Normal Pontryagin Extremals correspond-
ing to a = 0 or to θ0 = 0 (i.e. those for which the projection on the (x, y) plane is a straight line
are optimal for every time. All other Pontryagin extremals are optimal up to their first intersection
with the Martinet surface {y = 0}. The cut time is given by the formula

tcut =




2K(k2)√

a
, fora > 0,

2K(k′2)√−a , fora < 0.

The Martinet sphere for t = 1 is drawn in Figure 13.18. Its intersection with the Martinet
surface (that is also the cut locus) is drown in Figure 13.19 A. In Figure 13.19 B it is pictured the
point on the cylinder H = 1/2 that are mapped in the cut locus at t = 1 namely the points

a = (2K(k2))2 and a = −(2K(k′2))2.

Notice that, due to the presence of the abnormal, the cut locus is the image via the exponential
map of an unbounded curve on the cylinder H = 1/2. Points on this curve that having high values
of a correspond to the part of the sphere that become tangent to the abnormal as pictured.

13.10 Bibliographical Note

Explicit computations of Pontryagin extremals and the cut locus for the Heisenberg group and its
higher dimensional generalizations are well known. [1, ?, 1, ?, ?, ?, ?]

The technique explained in Section 13.4 to compute the cut locus is an extension of a classical
technique due to Hadamard that was used in Riemannian geometry, in particular to study the op-
timal synthesis on surfaces with negative curvature (see [58]). Its sub-Riemannian variant was used
to construct the optimal syntheses in several cases. See for instance [2, 81, 90, 91]. This technique
cannot be adapted to structures containing strict abnormal minimizers since these trajectories are
not seen from the exponential map. In principle one could apply the technique to normal Pontrya-
gin extremals and then one could compare the length of normal and abnormal at points reached
by both type of trajectories. However there are no known examples in which such an idea has
been successfully employed. With some additional work, the extended Hadamard technique can
be adapted to the presence of non-strict abnormal extremals. This program was successful for the
construction of the optimal synthesis for the Martinet sub-Riemannian structure and in particular
to prove Theorem 13.53. See [2].

The shape of the synthesis for the Grushin plane starting from a Riemannian point was drawn
in [4, 31]. However we present here for the first time computations in full detail. The optimal
synthesis for SU(2), SO(3), SL(2) were constructed in [33] but using a different technique. These
optimal syntheses, together with the one for SO+(2, 1), were also constructed in [23, 24, 25] using
the Gauss-Bonnet theorem. We follow this approach in Section 13.7.

The detailed analysis of geodesics for sub-Riemannian structure on SE(2) was done by Yuri
Sachkov in [74, 90, 91] that also proved Theorem 13.48 in full details.
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cut locus

cut locus

cut locus

cut locus

the Martinet surface (y = 0)

the Martinet sphere

the Martinet sphere inside

section with the Martinet surfacesection with the x = 0 plane

Figure 13.18: The Martinet sphere for t = 1.
402



B

A

a

θ0 = π

θ0 = 0

z

x

Figure 13.19: A: the intersection of the Martinet sphere for t = 1 with the Martinet surface, that
is also the cut locus. B: the cut locus seen on the cotangent bundle on H = 1

2 .
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The optimal synthesis for the Martinet sub-Riemannian structure was constructed in [2]. In
the same paper one can also find the proof of Theorem 13.53. See also [26].
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Chapter 14

Curves in the Lagrange Grassmannian

In this chapter we introduce the manifold of Lagrangian subspaces of a symplectic vector space.
After a description of its geometric properties, we discuss how to define the curvature for regular
curves in the Lagrange Grassmannian, that are curves with non-degenerate derivative. Then we
discuss the non-regular case, where a reduction procedure let us to reduce to a regular curve in a
reduced symplectic space.

14.1 The geometry of the Lagrange Grassmannian

In this section we recall some basic facts about Grassmanians of k-dimensional subspaces of an
n-dimensional vector space and then we consider, for a vector space endowed with a symplectic
structure, the submanifold of its Lagrangian subspaces.

Definition 14.1. Let V be an n-dimensional vector space. The Grassmanian of k-planes on V is
the set

Gk(V ) := {W | W ⊂ V is a subspace, dim(W ) = k}.

It is a standard fact that Gk(V ) is a compact manifold of dimension k(n − k).

Now we describe the tangent space to this manifold.

Proposition 14.2. Let W ∈ Gk(V ). We have a canonical isomorphism

TWGk(V ) ≃ Hom(W,V/W ).

Proof. Consider a smooth curve on Gk(V ) which starts from W , i.e. a smooth family of k-
dimensional subspaces defined by a moving frame

W (t) = span{e1(t), . . . , ek(t)}, W (0) =W.

We want to associate in a canonical way with the tangent vector Ẇ (0) a linear operator from W
to the quotient V/W . Fix w ∈W and consider any smooth extension w(t) ∈W (t), with w(0) = w.
Then define the map

W → V/W, w 7→ ẇ(0) (mod W ). (14.1)
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We are left to prove that the map (14.1) is well defined, i.e. independent on the choices of rep-
resentatives. Indeed if we consider another extension w1(t) of w satisfying w1(t) ∈ W (t) we can
write

w1(t) = w(t) +

k∑

i=1

αi(t)ei(t),

for some smooth coefficients αi(t) such that αi(0) = 0 for every i. It follows that

ẇ1(t) = ẇ(t) +
k∑

i=1

α̇i(t)ei(t) +
k∑

i=1

αi(t)ėi(t), (14.2)

and evaluating (14.2) at t = 0 one has

ẇ1(0) = ẇ(0) +

k∑

i=1

α̇i(0)ei(0).

This shows that ẇ1(0) = ẇ(0) (mod W ), hence the map (14.1) is well defined. In the same way one
can prove that the map does not depend on the moving frame defining W (t).

Finally, it is easy to show that the map that associates the tangent vector to the curve W (t)
with the linear operator W → V/W is surjective, hence it is an isomorphism since the two space
have the same dimension.

Let us now consider a symplectic vector space (Σ, σ), i.e. a 2n-dimensional vector space Σ
endowed with a non degenerate symplectic form σ ∈ Λ2(Σ).

Definition 14.3. A vector subspace Π ⊂ Σ of a symplectic space is called

(i) symplectic if σ|Π is nondegenerate,

(ii) isotropic if σ|Π ≡ 0,

(iii) Lagrangian if σ|Π ≡ 0 and dimΠ = n.

Notice that in general for every subspace Π ⊂ Σ, by nondegeneracy of the symplectic form σ, one
has

dimΠ+ dimΠ∠ = dimΣ. (14.3)

where as usual we denote the symplectic orthogonal by Π∠ = {x ∈ Σ |σ(x, y) = 0, ∀ y ∈ Π}.

Exercise 14.4. Prove the following properties for a vector subspace Π ⊂ Σ:

(i) Π is symplectic iff Π ∩Π∠ = {0},

(ii) Π is isotropic iff Π ⊂ Π∠,

(iii) Π is Lagrangian iff Π = Π∠.

Exercise 14.5. Prove that, given two subspaces A,B ⊂ Σ, one has the identities (A + B)∠ =
A∠ ∩B∠ and (A ∩B)∠ = A∠ +B∠.
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Example 14.6. Any symplectic vector space admits Lagrangian subspaces. Indeed fix any non-
zero element e1 := e 6= 0 in Σ. Choose iteratively

ei ∈ span{e1, . . . , ei−1}∠ \ span{e1, . . . , ei−1}, i = 2, . . . , n. (14.4)

Then Π := span{e1, . . . , en} is a Lagrangian subspace by construction. Notice that the choice (14.4)
is possible by (14.3)

Lemma 14.7. Let Π = span{e1, . . . , en} be a Lagrangian subspace of Σ. Then there exists vectors
f1, . . . , fn ∈ Σ such that

(i) Σ = Π⊕∆, ∆ := span{f1, . . . , fn},

(ii) σ(ei, fj) = δij , σ(ei, ej) = σ(fi, fj) = 0, ∀ i, j = 1, . . . , n.

Proof. We prove the lemma by induction. By nondegeneracy of σ there exists a non-zero x ∈ Σ
such that σ(en, x) 6= 0. Then we define the vector

fn :=
x

σ(en, x)
, =⇒ σ(en, fn) = 1.

The last equality implies that σ restricted to span{en, fn} is nondegerate, hence by (a) of Exercise
14.4

span{en, fn} ∩ span{en, fn}∠ = 0, (14.5)

And we can apply induction on the 2(n − 1) subspace Σ′ := span{en, fn}∠. Notice that (14.5)
implies that σ is non degenerate also on Σ′.

Remark 14.8. In particular the complementary subspace ∆ = span{f1, . . . , fn} defined in Lemma
14.7 is Lagrangian and transversal to Π

Σ = Π⊕∆.

Considering coordinates induced from the basis chosen for this splitting we can write Σ = Rn∗⊕Rn,
(denoting Rn∗ denotes the set of row vectors). More precisely x = (ζ, z) if

x =

n∑

i=1

ζ iei + zifi, ζ =
(
ζ1 · · · ζn

)
, z =



z1

...
zn


 ,

and using canonical form of σ on our basis (see Lemma 14.7) we find that in coordinates, if
x1 = (ζ1, z1), x2 = (ζ2, z2) we get

σ(x1, x2) = ζ1z2 − ζ2z1, (14.6)

where we denote with ζz the standard rows by columns product.

Lemma 14.7 shows that the group of symplectomorphisms acts transitively on pairs of transver-
sal Lagrangian subspaces. The next exercise, whose proof is an adaptation of the previous one,
describes all the orbits of the action of the group of symplectomorphisms on pairs of subspaces of
a symplectic vector spaces.

Exercise 14.9. Let Λ1,Λ2 be two subspaces in a symplectic vector space Σ, and assume that
dimΛ1 ∩ Λ2 = k. Show that there exists Darboux coordinates (p, q) in Σ such that

Λ1 = {(p, 0)}, Λ2 = {((p1, . . . , pk, 0, . . . , 0), (0, . . . , 0, qk+1, . . . , qn)}.
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14.1.1 The Lagrange Grassmannian

Definition 14.10. The Lagrange Grassmannian L(Σ) of a symplectic vector space Σ is the set of
its n-dimensional Lagrangian subspaces.

Proposition 14.11. L(Σ) is a compact submanifold of the Grassmannian Gn(Σ) of n-dimensional
subspaces. Moreover

dimL(Σ) =
n(n+ 1)

2
. (14.7)

Proof. Recall that Gn(Σ) is a n
2-dimensional compact manifold. Clearly L(Σ) ⊂ Gn(Σ) as a subset.

Consider the set of all Lagrangian subspaces that are transversal to a given one

∆⋔ = {Λ ∈ L(Σ) : Λ ∩∆ = 0}.

Clearly ∆⋔ ⊂ L(Σ) is an open subset and since by Lemma 14.7 every Lagrangian subspace admits
a Lagrangian complement

L(Σ) =
⋃

∆∈L(Σ)

∆⋔.

It is then sufficient to find some coordinates on these open subsets. Every n-dimensional subspace
Λ ⊂ Σ which is transversal to ∆ is the graph of a linear map from Π to ∆. More precisely there
exists a matrix SΛ such that

Λ ∩∆ = 0⇔ Λ = {(zT , SΛz), z ∈ Rn}.

(Here we used the coordinates induced by the splitting Σ = Π⊕∆.) Moreover it is easily seen that

Λ ∈ L(Σ)⇔ SΛ = (SΛ)
T .

Indeed we have that Λ ∈ L(Σ) if and only if σ|Λ = 0 and using (14.6) this is rewritten as

σ((zT1 , SΛz1), (z
T
2 , SΛz2)) = zT1 SΛz2 − zT2 SΛz1 = 0,

which means exactly SΛ symmetric. Hence the open set of all subspaces that are transversal to Λ
is parametrized by the set of symmetric matrices, that gives coordinates in this open set. This also
proves that the dimension of L(Σ) coincide with the dimension of the space of symmetric matrices,
hence (14.7). Notice also that, being L(Σ) a closed set in a compact manifold, it is compact.

Now we describe the tangent space to the Lagrange Grassmannian.

Proposition 14.12. Let Λ ∈ L(Σ). Then we have a canonical isomorphism

TΛL(Σ) ≃ Q(Λ),

where Q(Λ) denote the set of quadratic forms on Λ.

Proof. Consider a smooth curve Λ(t) in L(Σ) such that Λ(0) = Λ and Λ̇(0) ∈ TΛL(Σ) its tangent
vector. As before consider a point x ∈ Λ and a smooth extension x(t) ∈ Λ(t) and denote with
ẋ := ẋ(0). We define the map

Λ̇ : x 7→ σ(x, ẋ), (14.8)
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that is nothing else but the quadratic map associated to the self adjoint map x 7→ ẋ by the
symplectic structure. We show that in coordinates Λ̇ is a well defined quadratic map, independent
on all choices. Indeed

Λ(t) = {(zT , SΛ(t)z), z ∈ Rn},
and the curve x(t) can be written

x(t) = (z(t)T , SΛ(t)z(t)), x = x(0) = (zT , SΛz),

for some curve z(t) where z = z(0). Taking derivative we get

ẋ(t) = (ż(t)T , ṠΛ(t)z(t) + SΛ(t)ż(t)),

and evaluating at t = 0 (we simply omit t when we evaluate at t = 0) we have

x = (zT , SΛz), ẋ = (żT , ṠΛz + SΛż),

and finally get, using the simmetry of SΛ, that

σ(x, ẋ) = zT (ṠΛz + SΛż)− żTSΛz
= zT ṠΛz + zTSΛż − żTSΛz
= zT ṠΛz. (14.9)

Exercise 14.13. Let Λ(t) ∈ L(Σ) such that Λ = Λ(0) and σ be the symplectic form. Prove that
the map S : Λ × Λ → R defined by S(x, y) = σ(x, ẏ), where ẏ = ẏ(0) is the tangent vector to a
smooth extension y(t) ∈ Λ(t) of y, is a symmetric bilinear map.

Remark 14.14. We have the following natural interpretation of this result: since L(Σ) is a subman-
ifold of the Grassmanian Gn(Σ), its tangent space TΛL(Σ) is naturally identified by the inclusion
with a subspace of the Grassmannian

i : L(Σ) →֒ Gn(Σ), i∗ : TΛL(Σ) →֒ TΛGn(Σ) ≃ Hom(Λ,Σ/Λ),

where the last isomorphism is Proposition 14.2. Being Λ a Lagrangian subspace of Σ, the symplectic
structure identifies in a canonical way the factor space Σ/Λ with the dual space Λ∗ defining

Σ/Λ ≃ Λ∗, 〈[z]Λ, x〉 = σ(z, x). (14.10)

Hence the tangent space to the Lagrange Grassmanian consist of those linear maps in the space
Hom(Λ,Λ∗) that are self-adjoint, which are naturally identified with quadratic forms on Λ itself. 1

Remark 14.15. Given a curve Λ(t) in L(Σ), the above procedure associates to the tangent vector
Λ̇(t) a family of quadratic forms Λ̇(t), for every t.

We end this section by computing the tangent vector to a special class of curves that will play
a major role in the sequel, i.e. the curve on L(Σ) induced by the action on Λ by the flow of the
linear Hamiltonian vector field ~h associated with a quadratic Hamiltonian h ∈ C∞(Σ). (Recall that
a Hamiltonian vector field transform Lagrangian subspaces into Lagrangian subspaces.)

1any quadratic form on a vector space q ∈ Q(V ) can be identified with a self-adjoint linear map L : V → V ∗,
L(v) = B(v, ·) where B is the symmetric bilinear map such that q(v) = B(v, v).
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Proposition 14.16. Let Λ ∈ L(Σ) and define Λ(t) = et
~h(Λ). Then Λ̇ = 2h|Λ.

Proof. Consider x ∈ Λ and the smooth extension x(t) = et
~h(x). Then ẋ = ~h(x) and by definition

of Hamiltonian vector field we find

σ(x, ẋ) = σ(x,~h(x))

= 〈dxh, x〉
= 2h(x),

where in the last equality we used that h is quadratic on fibers.

14.2 Regular curves in Lagrange Grassmannian

The isomorphism between tangent vector to the Lagrange Grassmannian with quadratic forms
makes sense to the following definition (we denote by Λ̇ the tangent vector to the curve at the point
Λ as a quadratic map)

Definition 14.17. Let Λ(t) ∈ L(Σ) be a smooth curve in the Lagrange Grassmannian. We say
that the curve is

(i) monotone increasing (descreasing) if Λ̇(t) ≥ 0 (Λ̇(t) ≤ 0).

(ii) strictly monotone increasing (decreasing) if the inequality in (i) is strict.

(iii) regular if its derivative Λ̇(t) is a non degenerate quadratic form.

Remark 14.18. Notice that if Λ(t) = {(p, S(t)p), p ∈ Rn} in some coordinate set, then it follows
from the proof of Proposition 14.12 that the quadratic form Λ̇(t) is represented by the matrix ṠΛ(t)
(see also (14.9)). In particular the curve is regular if and only if det ṠΛ(t) 6= 0.

The main goal of this section is the construction of a canonical Lagrangian complement. (i.e.
another curve Λ◦(t) in the Lagrange Grassmannian defined by Λ(t) and such that Σ = Λ(t)⊕Λ◦(t).)

Consider an arbitrary Lagrangian splitting Σ = Λ(0) ⊕∆ defined by a complement ∆ to Λ(0)
(see Lemma 14.7) and fix coordinates in such a way that that

Σ = {(p, q), p, q ∈ Rn}, Λ(0) = {(p, 0), p ∈ Rn}, ∆ = {(0, q), q ∈ Rn}.

In these coordinates our regular curve is described by a one parametric family of symmetric matrices
S(t)

Λ(t) = {(p, S(t)p), p ∈ Rn},
such that S(0) = 0 and Ṡ(0) is invertible. All Lagrangian complement to Λ(0) are parametrized by
a symmetrix matrix B as follows

∆B = {(Bq, q), q ∈ Rn}, B = BT .

The following lemma shows how the coordinate expression of our curve Λ(t) change in the new
coordinate set defined by the splitting Σ = Λ(0) ⊕∆B .
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Lemma 14.19. Let SB(t) the one parametric family of symmetric matrices defining Λ(t) in coor-
dinates w.r.t. the splitting Λ(0)⊕∆B. Then the following identity holds

SB(t) = (S(t)−1 −B)−1. (14.11)

Proof. It is easy to show that, if (p, q) and (p′, q′) denotes coordinates with respect to the splitting
defined by the subspaces ∆ and ∆B we have

{
p′ = p−Bq
q′ = q

(14.12)

The matrix SB(t) by definition is the matrix that satisfies the identity q′ = SB(t)p
′. Using that

q = S(t)p by definition of Λ(t), from (14.12) we find

q′ = q = S(t)p = S(t)(p′ +Bq′),

and with straightforward computations we finally get

SB(t) = (I − S(t)B)−1S(t) = (S(t)−1 −B)−1.

Since Ṡ(t) represents the tangent vectors to the regular curve Λ(t), its properties are invariant
with respect to change of coordinates. Hence it is natural to look for a change of coordinates (i.e.
a choice of the matrix B) that simplifies the second derivative our curve.

Corollary 14.20. There exists a unique symmetric matrix B such that S̈B(0) = 0.

Proof. Recall that for a one parametric family of matrices X(t) we have

d

dt
X(t)−1 = −X(t)−1Ẋ(t)X(t)−1.

Applying twice this identity to (14.11) (we omit t to denote the value at t = 0) we get

d

dt

∣∣∣∣
t=0

SB(t) = −(S−1 −B)−1

(
d

dt

∣∣∣∣
t=0

S−1(t)

)
(S−1 −B)−1

= (S−1 −B)−1S−1ṠS−1(S−1 −B)−1

= (I − SB)−1Ṡ(I −BS)−1.

Hence for the second derivative evaluated at t = 0 (remember that in our coordinates S(0) = 0)
one gets

S̈B = S̈ + 2ṠBṠ,

and using that Ṡ is non degerate, we can choose B = −1
2 Ṡ

−1S̈Ṡ−1.

We set Λ◦(0) := ∆B, where B is determined by (14.13). Notice that by construction Λ◦(0) is
a Lagrangian subspace and it is transversal to Λ(0). The same argument can be applied to define
Λ◦(t) for every t.
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Definition 14.21. Let Λ(t) be a regular curve, the curve Λ◦(t) defined by the condition above is
called derivative curve of Λ(t).

Exercise 14.22. Prove that, if Λ(t) = {(p, S(t)p), p ∈ Rn} (without the condition S(0) = 0), then
the derivative curve Λ◦(t) = {(p, S◦(t)p), p ∈ Rn}, satisfies

S◦(t) = B(t)−1 + S(t), where B(t) := −1

2
Ṡ(t)−1S̈(t)Ṡ(t)−1, (14.13)

provided Λ◦(t) is transversal to the subspace ∆ = {(0, q), q ∈ Rn}. (Actually this condition is
equivalent to the invertibility of B(t).) Notice that if S(0) = 0 then S◦(0) = B(0)−1.

Remark 14.23. The set Λtr of all n-dimensional spaces transversal to a fixed subspace Λ is an affine
space over Hom(Σ/Λ,Λ). Indeed given two elements ∆1,∆2 ∈ Λtr we can associate with their
difference the operator

∆2 −∆1 7→ A ∈ Hom(Σ/Λ,Λ), A([z]Λ) = z2 − z1 ∈ Λ, (14.14)

where zi ∈ ∆i ∩ [z]Λ are uniquely identified.
If Λ is Lagrangian, we have identification Σ/Λ ≃ Λ∗ given by the symplectic structure (see

(14.10)) that Λ⋔, that coincide by definition with the intersection Λtr ∩L(Σ) is an affine space over
HomS(Λ∗,Λ), the space of selfadjoint maps between Λ∗ and Λ, that it isomorphic to Q(Λ∗).

Notice that if we fix a distinguished complement of Λ, i.e. Σ = Λ ⊕∆, then we have also the
identification Σ/Λ ≃ ∆ and Λ⋔ ≃ Q(Λ∗) ≃ Q(∆).

Exercise 14.24. Prove that the operator A defined by (14.14), in the case when Λ is Lagrangian,
is a self-adjoint operator.

Remark 14.25. Assume that the splitting Σ = Λ⊕∆ is fixed. Then our curve Λ(t) in L(Σ), such that
Λ(0) = Λ, is characterized by a family of symmetric matrices S(t) satisfying Λ(t) = {(p, S(t)p), p ∈
Rn}, with S(0) = 0.

By regularity of the curve, Λ(t) ∈ Λ⋔ for t > 0 small enough, hence we can consider its
coordinate presentation in the affine space on the vector space of quadratic forms defined on ∆ (see
Remark 14.23) that is given by S−1(t) and write the Laurent expansion of this curve in the affine
space

S(t)−1 =

(
tṠ +

t2

2
S̈ +O(t3)

)−1

=
1

t
Ṡ−1

(
I +

t

2
S̈Ṡ−1 +O(t2)

)−1

=
1

t
Ṡ−1−1

2
Ṡ−1S̈Ṡ−1

︸ ︷︷ ︸
B

+O(t).

It is not occasional that the matrix B coincides with the free term of this expansion. Indeed the
formula (14.11) for the change of coordinates can be rewritten as follows

SB(t)
−1 = S−1(t)−B, (14.15)

and the choice of B corresponds exactly to the choice of a coordinate set where the curve Λ(t) has
no free term in this expansion (i.e. SB(t)

−1 has no term of order zero). This is equivalent to say
that a regular curve let us to choose a privileged origin in the affine space of Lagrangian subspaces
that are transversal to the curve itself.
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14.3 Curvature of a regular curve

Now we want to define the curvature of a regular curve in the Lagrange Grassmannian. Let Λ(t)
be a regular curve and consider its derivative curve Λ◦(t).

The tangent vectors to Λ(t) and Λ◦(t), as explained in Section 14.1, can be interpreted in a a
canonical way as a quadratic form on the space Λ(t) and Λ◦(t) respectively

Λ̇(t) ∈ Q(Λ(t)), Λ̇
◦
(t) ∈ Q(Λ◦(t)).

Being Λ◦(t) a canonical Lagrangian complement to Λ(t) we have the identifications through the
symplectic form2

Λ(t)∗ ≃ Λ◦(t), Λ◦(t)∗ ≃ Λ(t),

and the quadratic forms Λ̇(t), Λ̇
◦
(t) can be treated as (self-adjoint) mappings:

Λ̇(t) : Λ(t)→ Λ◦(t), Λ̇
◦
(t) : Λ◦(t)→ Λ(t). (14.16)

Definition 14.26. The operator RΛ(t) := Λ̇
◦
(t)◦Λ̇(t) : Λ(t)→ Λ(t) is called the curvature operator

of the regular curve Λ(t).

Remark 14.27. In the monotonic case, when |Λ̇(t)| defines a scalar product on Λ(t), the operator
R(t) is, by definition, symmetric with respect to this scalar product. Moreover R(t), as quadratic
form, has the same signature and rank as Λ̇

◦
(t) sign(Λ̇

◦
(t)).

Definition 14.28. Let Λ1,Λ2 be two transversal Lagrangian subspaces of Σ. We denote

πΛ1Λ2 : Σ→ Λ2, (14.17)

the projection on Λ2 parallel to Λ1, i.e. the linear operator such that

πΛ1Λ2 |Λ1 = 0 πΛ1Λ2 |Λ2 = Id.

Exercise 14.29. Assume Λ1 and Λ2 be two Lagrangian subspaces in Σ and assume that, in some
coordinate set, Λi = {(x, Six),∈ Rn} for i = 1, 2 . Prove that Σ = Λ1 ⊕ Λ2 if and only if
ker(S1 − S2) = {0}. In this case show that the following matrix expression for πΛ1Λ2 :

πΛ1Λ2 =

(
S−1
12 S1 −S−1

12

S2S
−1
12 S1 −S2S−1

12

)
, S12 := S1 − S2. (14.18)

From the very definition of the derivative of our curve we can get the following geometric
characterization of the curvature of a curve.

Proposition 14.30. Let Λ(t) a regular curve in L(Σ) and Λ◦(t) its derivative curve. Then

Λ̇(t)(xt) = πΛ(t)Λ◦(t)(ẋt), Λ̇
◦
(t)(xt) = −πΛ◦(t)Λ(t)(ẋt).

In particular the curvature is the composition RΛ(t) = Λ̇
◦
(t) ◦ Λ̇(t).

2if Σ = Λ⊕∆ is a splitting of a vector space then Σ/Λ ≃ ∆. If moreover the splitting is Lagrangian in a symplectic
space, the symplectic form identifies Σ/Λ ≃ Λ∗, hence Λ∗ ≃ ∆.
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Proof. Recall that, by definition, the linear operator Λ̇ : Λ → Σ/Λ associated with the quadratic
form is the map x 7→ ẋ (mod Λ). Hence to build the map Λ → Λ◦ it is enough to compute the
projection of ẋ onto the complement Λ◦, that is exactly πΛΛ◦(ẋ). Notice that the minus sign in
equation (14.30) is a consequence of the skew symmetry of the symplectic product. More precisely,
the sign in the identification Λ◦ ≃ Λ∗ depends on the position of the argument.

The curvature RΛ(t) of the curve Λ(t) is a kind of relative velocity between the two curves Λ(t)
and Λ◦(t). In particular notice that if the two curves moves in the same direction we have RΛ(t) > 0.

Now we compute the expression of the curvature RΛ(t) in coordinates.

Proposition 14.31. Assume that Λ(t) = {(p, S(t)p)} is a regular curve in L(Σ). Then we have
the following coordinate expression for the curvature of Λ (we omit t in the formula)

RΛ = ((2Ṡ)−1S̈)̇− ((2Ṡ)−1S̈)2 (14.19)

=
1

2
Ṡ−1...

S − 3

4
(Ṡ−1S̈)2. (14.20)

Proof. Assume that both Λ(t) and Λ◦(t) are contained in the same coordinate chart with

Λ(t) = {(p, S(t)p)}, Λ◦(t) = {(p, S◦(t)p)}.

We start the proof by computing the expression of the linear operator associated with the derivative
Λ̇ : Λ → Λ◦ (we omit t when we compute at t = 0). For each element (p, Sp) ∈ Λ and any
extension (p(t), S(t)p(t)) one can apply the matrix representing the operator πΛΛ◦ (see (14.18)) to
the derivative at t = 0 and find

πΛΛ◦(p, Sp) = (p′, S◦p′), p′ = −(S − S◦)−1Ṡp.

Exchanging the role of Λ and Λ◦, and taking into account of the minus sign one finds that the
coordinate representation of R is given by

R = (S◦ − S)−1Ṡ◦(S◦ − S)−1Ṡ. (14.21)

We prove formula (14.20) under the extra assumption that S(0) = 0. Notice that this is
equivalent to the choice of a particular coordinate set in L(Σ) and, being the expression of R
coordinate independent by construction, this is not restrictive.

Under this extra assumption, it follows from (14.13) that

Λ(t) = {(p, S(t)p)}, Λ◦(t) = {(p, S◦(t)p)},

where S◦(t) = B(t)−1 + S(t) and we denote by B(t) := −1
2 Ṡ(t)

−1S̈(t)Ṡ(t)−1.
Hence we have, assuming S(0) = 0 and omitting t when t = 0

R = (S◦ − S)−1Ṡ◦(S◦ − S)−1Ṡ

= B

(
d

dt

∣∣∣∣
t=0

B(t)−1 + S(t)

)
BṠ

= (BṠ)2 − ḂṠ.

Plugging B = −1
2 Ṡ

−1S̈Ṡ−1 into the last formula, after some computations one gets to (14.20).
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Remark 14.32. The formula for the curvature RΛ(t) of a curve Λ(t) in L(Σ) takes a very simple
form in a particular coordinate set given by the splitting Σ = Λ(0)⊕ Λ◦(0), i.e. such that

Λ(0) = {(p, 0), p ∈ Rn}, Λ◦(0) = {(0, q), q ∈ Rn}.

Indeed using a symplectic change of coordinates in Σ that preserves both Λ and Λ◦ (i.e. of the kind
p′ = Ap, q′ = (A−1)∗q) we can choose the matrix A in such a way that Ṡ(0) = I. Moreover we
know from Proposition that the fact that Λ◦ = {(0, q), q ∈ Rn} is equivalent to S̈(0) = 0. Hence
one finds from (14.20) that

R =
1

2

...
S

When the curve Λ(t) is strictly monotone, the curvature R represents a well defined operator on
Λ(0), naturally endowed with the sign definite quadratic form Λ̇(0). Hence in these coordinates the
eigenvalues of

...
S (and not only the trace and the determinant) are invariants of the curve.

Exercise 14.33. Let f : R→ R be a smooth function. The Schwartzian derivative of f is defined
as

Sf :=

(
f ′′

2f ′

)′
−
(
f ′′

2f ′

)2

(14.22)

Prove that Sf = 0 if and only if f(t) =
at+ b

ct+ d
for some a, b, c, d ∈ R.

Remark 14.34. The previous proposition says that the curvature R is the matrix version of the
Schwartzian derivative of the matrix S (cfr. (14.19) and (14.22)).

Example 14.35. Let Σ be a 2-dimensional symplectic space. In this case L(Σ) ≃ P1(R) is the real
projective line. Let us compute the curvature of a curve in L(Σ) with constant (angular) velocity
α > 0. We have

Λ(t) = {(p, S(t)p), p ∈ R}, S(t) = tan(αt) ∈ R.

From the explicit expression it easy to find the relation

Ṡ(t) = α(1 + S2(t)), ⇒ S̈(t)

2Ṡ(t)
= αS(t),

from which one gets that R(t) = αṠ(t)− α2S2(t) = α2, i.e. the curve has constant curvature.

We end this section with a useful formula on the curvature of a reparametrized curve.

Proposition 14.36. Let ϕ : R→ R a diffeomorphism and define the curve Λϕ(t) := Λ(ϕ(t)). Then

RΛϕ(t) = ϕ̇2(t)RΛ(ϕ(t)) +Rϕ(t)Id. (14.23)

Proof. It is a simple check that the Schwartzian derivative of the composition of two function f
and g satisfies

S(f ◦ g) = (Sf ◦ g)(g′)2 + Sg.
Notice that Rϕ(t) makes sense as the curvature of the regular curve ϕ : R→ R ⊂ P1 in the Lagrange
Grassmannian L(R2).
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Exercise 14.37. (Another formula for the curvature). Let Λ0,Λ1 ∈ L(Σ) be such that Σ = Λ0⊕Λ1

and fix two tangent vectors ξ0 ∈ TΛ0L(Σ) and ξ1 ∈ TΛ1L(Σ). As in (14.16) we can treat each tangent
vector as a linear operator

ξ0 : Λ0 → Λ1, ξ1 : Λ1 → Λ0, (14.24)

and define the cross-ratio [ξ1, ξ0] = −ξ1 ◦ ξ0. If in some coordinates Λi = {(p, Sip)} for i = 0, 1 we
have3

[ξ1, ξ0] = (S1 − S0)−1Ṡ1(S1 − S0)−1Ṡ0.

Let now Λ(t) a regular curve in L(Σ). By regularity Σ = Λ(0)⊕Λ(t) for all t > 0 small enough,
hence the cross ratio

[Λ̇(t), Λ̇(0)] : Λ(0)→ Λ(0),

is well defined. Prove the following expansion for t→ 0

[Λ̇(t), Λ̇(0)] ≃ 1

t2
Id+

1

3
RΛ(0) +O(t). (14.25)

14.4 Reduction of non-regular curves in Lagrange Grassmannian

In this section we want to extend the notion of curvature to non-regular curves. As we will see
in the next chapter, it is always possible to associate with an extremal a family of Lagrangian
subspaces in a symplectic space, i.e. a curve in a Lagrangian Grassmannian. This curve turns
out to be regular if and only if the extremal is an extremal of a Riemannian structure. Hence, if
we want to apply this theory for a genuine sub-Riemannian case we need some tools to deal with
non-regular curves in the Lagrangian Grassmannian.

Let (Σ, σ) be a symplectic vector space and L(Σ) denote the Lagrange Grassmannian. We start
by describing a natural subspace of L(Σ) associated with an isotropic subspace Γ of Σ. This will
allow us to define a reduction procedure for a non regular curve.

Let Γ be a k-dimensional isotropic subspace of Σ, i.e. σ
∣∣
Γ
= 0. This means that Γ ⊂ Γ∠. In

particular Γ∠/Γ is a 2(n − k) dimensional symplectic space with the restriction of σ.

Lemma 14.38. There is a natural identification of L(Γ∠/Γ) as a subspace of L(Σ):

L(Γ∠/Γ) ≃ {Λ ∈ L(Σ),Γ ⊂ Λ} ⊂ L(Σ). (14.26)

Moroever we have a natural projection

πΓ : L(Σ)→ L(Γ∠/Γ), Λ 7→ ΛΓ,

where ΛΓ := (Λ ∩ Γ∠) + Γ = (Λ + Γ) ∩ Γ∠.

Proof. Assume that Λ ∈ L(Σ) and Γ ⊂ Λ. Then, since Λ is Lagrangian, Λ = Λ∠ ⊂ Γ∠, hence the
identification (14.26).

Assume now that Λ ∈ L(Γ∠/Γ) and let us show that πΓ(Λ) = Λ, i.e. πΓ is a projection. Indeed
from the inclusions Γ ⊂ Λ ⊂ Γ∠ one has πΓ(Λ) = ΛΓ = (Λ ∩ Γ∠) + Γ = Λ+ Γ = Λ.

3here Ṡi denotes the matrix associated with ξi.
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We are left to check that ΛΓ is Lagrangian, i.e. (ΛΓ)∠ = ΛΓ.

(ΛΓ)∠ = ((Λ ∩ Γ∠) + Γ)∠

= (Λ ∩ Γ∠)∠ ∩ Γ∠

= (Λ + Γ) ∩ Γ∠ = ΛΓ,

where we repeatedly used Exercise 14.5. (The identity (Λ ∩ Γ∠) + Γ = (Λ + Γ) ∩ Γ∠ is also a
consequence of the same exercise.)

Remark 14.39. Let Γ⋔ = {Λ ∈ L(Σ),Λ ∩ Γ = {0}}. The restriction πΓ
∣∣
Γ⋔ is smooth. Indeed it can

be shown that πΓ is defined by a rational function, since it is expressed via the solution of a linear
system.

The following example shows that the projection πΓ is not globally continous on L(Σ).

Example 14.40. Consider the symplectic structure σ on R4, with Darboux basis {e1, e2, f1, f2},
i.e. σ(ei, fj) = δij . Let Γ = span{e1} be a one dimensional isotropic subspace and define

Λε = span{e1 + εf2, e2 + εf1}, ∀ ε > 0.

It is easy to see that Λε is Lagrangian for every ε and that

ΛΓ
ε = span{e1, f2}, ∀ ε > 0, (14.27)

ΛΓ
0 = span{e1, e2}.

Indeed f2 ∈ e∠1 , that implies e1 + εf2 ∈ Λε ∩ Γ∠, therefore f2 ∈ Λε ∩ Γ∠. By definition of reduced
curve f2 ∈ ΛΓ

ε and (14.27) holds. The case ε = 0 is trivial.

14.5 Ample curves

In this section we introduce ample curves.

Definition 14.41. Let Λ(t) ∈ L(Σ) be a smooth curve in the Lagrange Grassmannian. The curve
Λ(t) is ample at t = t0 if there exists N ∈ N such that

Σ = span{λ(i)(t0)| λ(t) ∈ Λ(t), λ(t) smooth, 0 ≤ i ≤ N}. (14.28)

In other words we require that all derivatives up to order N of all smooth sections of our curve in
L(Σ) span all the possible directions.

As usual, we can choose coordinates in such a way that, for some family of symmetric matrices
S(t), one has

Σ = {(p, q)| p, q ∈ Rn}, Λ(t) = {(p, S(t)p)| p ∈ Rn}.
Exercise 14.42. Assume that Λ(t) = {(p, S(t)p), p ∈ Rn} with S(0) = 0. Prove that the curve is
ample at t = 0 if and only if there exists N ∈ N such that all the columns of the derivative of S(t)
up to order N (and computed at t = 0) span a maximal subspace:

rank{Ṡ(0), S̈(0), . . . , S(N)(0)} = n. (14.29)

In particular, a curve Λ(t) is regular at t0 if and only if is ample at t0 with N = 1.
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An important property of ample and monotone curves is described in the following lemma.

Lemma 14.43. Let Λ(t) ∈ L(Σ) a monotone, ample curve at t0. Then, there exists ε > 0 such
that Λ(t) ∩ Λ(t0) = {0} for 0 < |t− t0| < ε.

Proof. Without loss of generality, assume t0 = 0. Choose a Lagrangian splitting Σ = Λ⊕ Π, with
Λ = J(0). For |t| < ε, the curve is contained in the chart defined by such a splitting. In coordinates,
Λ(t) = {(p, S(t)p)| p ∈ Rn}, with S(t) symmetric and S(0) = 0. The curve is monotone, then Ṡ(t)
is a semidefinite symmetric matrix. It follows that S(t) is semidefinite too.

Suppose that, for some t, Λ(t) ∩ Λ(0) 6= {0} (assume t > 0). This means that ∃ v ∈ Rn such
that S(t)v = 0. Indeed also v∗S(t)v = 0. The function τ 7→ v∗S(τ)v is monotone, vanishing at
τ = 0 and τ = t. Therefore v∗S(τ)v = 0 for all 0 ≤ τ ≤ t. Being a semidefinite, symmetric matrix,
v∗S(τ)v = 0 if and only if S(τ)v = 0. Therefore, we conclude that v ∈ kerS(τ) for 0 ≤ τ ≤ t. This
implies that, for any i ∈ N, v ∈ kerS(i)(0), which is a contradiction, since the curve is ample at
0.

Exercise 14.44. Prove that a monotone curve Λ(t) is ample at t0 if and only if one of the equivalent
conditions is satisfied

(i) the family of matrices S(t) − S(t0) is nondegenerate for t 6= t0 close enough, and the same
remains true if we replace S(t) by its N -th Taylor polynomial, for some N in N.

(ii) the map t 7→ det(S(t)− S(t0)) has a finite order root at t = t0.

Let us now consider an analytic monotone curve on L(Σ). Without loss of generality we can
assume the curve to be non increasing, i.e. Λ̇(t) ≥ 0. By monotonicity

Λ(0) ∩ Λ(t) =
⋂

0≤τ≤t
Λ(τ) =: Υt

Clearly Υt is a decreasing family of subspaces, i.e. Υt ⊂ Υτ if τ ≤ t. Hence the family Υt for t→ 0
stabilizes and the limit subspace Υ is well defined

Υ := lim
t→0

Υt

The symplectic reduction of the curve by the isotropic subspace Υ defines a new curve Λ̃(t) :=
Λ(t)Υ ∈ L(Υ∠/Υ).

Proposition 14.45. If Λ(t) is analytic and monotone in L(Σ), then Λ̃(t) is ample L(Υ∠/Υ).

Proof. By construction, in the reduced space Υ∠/Υ we removed the intersection of Λ(t) with Λ(0).
Hence

Λ̃(0) ∩ Λ̃(t) = {0}, in L(Υ∠/Υ) (14.30)

In particular, if S̃(t) denotes the symmetric matrix representing Λ̃(t) such that S̃(0) = Λ̃(t0), it
follows that S̃(t) is non degenerate for 0 < |t| < ε. The analyticity of the curve guarantees that
the Taylor polynomial (of a suitable order N) is also non degenerate.
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14.6 From ample to regular

In this section we prove the main result of this chapter, i.e. that any ample monotone curve can
be reduced to a regular one.

Theorem 14.46. Let Λ(t) be a smooth ample monotone curve and set Γ := ker Λ̇(0). Then the

reduced curve t 7→ ΛΓ(t) is a smooth regular curve. In particular Λ̇
Γ
(0) > 0.

Before proving Theorem 14.46, let us discuss two useful lemmas.

Lemma 14.47. Let v1(t), . . . , vk(t) ∈ Rn and define V (t) as the n × k matrix whose columns are
the vectors vi(t). Define the matrix S(t) :=

∫ t
0 V (τ)V (τ)∗dτ . Then the following are equivalent:

(i) S(t) is invertible (and positive definite),

(ii) span{vi(τ)| i = 1, . . . , k; τ ∈ [0, t]} = Rn.

Proof. Fix t > 0 and let us assume S(t) is not invertible. Since S(t) is non negative then there
exists a nonzero x ∈ Rn such that 〈S(t)x, x〉 = 0. On the other hand

〈S(t)x, x〉 =
∫ t

0
〈V (τ)V (τ)∗x, x〉 dτ =

∫ t

0
‖V (τ)∗x‖2dτ

This implies that V (τ)∗x = 0 (or equivalently x∗V (τ) = 0) for τ ∈ [0, t], i.e. the nonzero vector x∗

is orthogonal to im τ∈[0,t]V (τ) = span{vi(τ)| i = 1, . . . , k, τ ∈ [0, t]} = Rn, that is a contradiction.
The converse is similar.

Lemma 14.48. Let A,B two positive and symmetric matrices such that 0 < A < B. Then we
have also 0 < B−1 < A−1.

Proof. Assume first that A and B commute. Then A and B can be simultaneously diagonalized
and the statement is trivial for diagonal matrices.

In the general case, since A is symmetric and positive, we can consider its square root A1/2,
which is also symmetric and positive. We can write

0 < 〈Av, v〉 < 〈Bv, v〉

By setting w = A1/2v in the above inequality and using 〈Av, v〉 =
〈
A1/2v,A1/2v

〉
one gets

0 < 〈w,w〉 <
〈
A−1/2BA−1/2w,w

〉
,

which is equivalent to I < A−1/2BA−1/2. Since the identity matrix commutes with every other
matrix, we obtain

0 < A1/2B−1A1/2 = (A−1/2BA−1/2)−1 < I

which is equivalent to 0 < B−1 < A−1 reasoning as before.

Proof of Theorem 14.46. By assumption the curve t 7→ Λ(t) is ample, hence Λ(t) ∩ Γ = {0} and
t 7→ ΛΓ(t) is smooth for t > 0 small enough. We divide the proof into three parts: (i) we compute
the coordinate presentation of the reduced curve. (ii) we show that the reduced curve, extended
by continuity at t = 0, is smooth. (iii) we prove that the reduced curve is regular.
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(i). Let us consider Darboux coordinates in the symplectic space Σ such that

Σ = {(p, q) : p, q ∈ Rn}, Λ(t) = {(p, S(t)p)| p ∈ Rn}, S(0) = 0.

Morover we can assume also Rn = Rk ⊕ Rn−k, where Γ = {0} ⊕ Rn−k. According to this splitting
we have the decomposition p = (p1, p2) and q = (q1, q2). The subspaces Γ and Γ∠ are described by
the equations

Γ = {(p, q) : p1 = 0, q = 0}, Γ∠ = {(p, q) : q2 = 0}
and (p1, q1) are natural coordinates for the reduced space Γ∠/Γ. Up to a symplectic change of
coordinates preserving the splitting Rn = Rk ⊕ Rn−k we can assume that

S(t) =

(
S11(t) S12(t)
S∗
12(t) S22(t)

)
, with Ṡ(0) =

(
Ik 0
0 0

)
. (14.31)

where Ik is the k × k identity matrix. Finally, from the fact that S is monotone and ample, that
implies S(t) > 0 for each t > 0, it follows

S11(t) > 0, S22(t) > 0, ∀ t > 0. (14.32)

Then we can compute the coordinate expression of the reduced curve, i.e. the matrix SΓ(t) such
that

ΛΓ(t) = {(p1, SΓ(t)p1), p1 ∈ Rk}.
From the identity

Λ(t) ∩ Γ∠ = {(p, S(t)p), S(t)p ∈ Rk} =
{(

S−1(t)

(
q1
0

)
,

(
q1
0

))
, q1 ∈ Rk

}
(14.33)

one gets the key relation SΓ(t)−1 = (S(t)−1)11.
Thus the matrix expression of the reduced curve ΛΓ(t) in L(Γ∠/Γ) is recovered simply by

considering it as a map of (p1, q1) only, i.e.

S(t)p =

(
S11 S12
S∗
12 S22

)(
p1
p2

)
=

(
S11p1 + S12p2
S∗
12p1 + S22p2

)

from which we get S(t)p ∈ Rk if and only if S∗
12(t)p1 + S22(t)p2 = 0. Then

ΛΓ(t) = {(p1, S11p1 + S12p2) : S
∗
12(t)p1 + S22(t)p2 = 0}

= {(p1, (S11 − S12S−1
22 S

∗
12)p1)}

that means
SΓ = S11 − S12S−1

22 S
∗
12. (14.34)

(ii). By the coordinate presentation of SΓ(t) the only term that can give rise to singularities is
the inverse matrix S−1

22 (t). In particular, since by assumption t 7→ detS22(t) has a finite order zero
at t = 0, the a priori singularity can be only a finite order pole.

To prove that the curve is smooth it is enough the to show that SΓ(t) → 0 for t → 0, i.e. the
curve remains bounded. This follows from the following

Claim I. As quadratic forms on Rk, we have the inequality 0 ≤ SΓ(t) ≤ S11(t).
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Indeed S(t) symmetric and positive one has that its inverse S(t)−1 is symmetric and positive also.
This implies that SΓ(t)−1 = (S(t)−1)11 > 0 and so is SΓ(t). This proves the left inequality of the
Claim I.

Moreover using (14.34) and the fact that S22 is positive definite (and so S−1
22 ) one gets

〈
(S11 − SΓ)p1, p1

〉
=
〈
S12S

−1
22 S

∗
12p1, p1

〉
=
〈
S−1
22 (S

∗
12p1), (S

∗
12p1)

〉
≥ 0.

Since S(t)→ 0 for t→ 0, clearly S11(t)→ 0 when t→ 0, that proves that SΓ(t)→ 0 also.
(iii). We are reduced to show that the derivative of t 7→ SΓ(t) at 0 is non degenerate matrix,

which is equivalent to show that t 7→ SΓ(t)−1 has a simple pole at t = 0.
We need the following lemma, whose proof is postponed at the end of the proof of Theorem

14.46.

Lemma 14.49. Let A(t) be a smooth family of symmetric nonnegative n × n matrices. If the
condition rank(A, Ȧ, . . . , A(N))|t=0 = n is satisfied for some N , then there exists ε0 > 0 such that
εtA(0) <

∫ t
0 A(τ)dτ for all ε < ε0 and t > 0 small enough.

Applying the Lemma to the family A(t) = Ṡ(t) one obtains (see also (14.31))

〈S(t)p, p〉 > εt|p1|2

for all 0 < ε < ε0, any p ∈ Rn and any small time t > 0.
Now let p1 ∈ Rk be arbitrary and extend it to a vector p = (p1, p2) ∈ Rn such that (p, S(t)p) ∈

Λ(t) ∩ Γ∠ (i.e. S(t)p = (q1 0)T or equivalently S(t)−1(q1, 0) = (p1, p2)). This implies in particular
that SΓ(t)p1 = q1 and 〈

SΓ(t)p1, p1
〉
= 〈S(t)p, p〉 ≥ εt|p1|2,

This identity can be rewritten as SΓ(t) > εt Ik > 0 and implies by Lemma 14.48

0 < SΓ(t)−1 <
1

εt
Ik

which completes the proof.

Proof of Lemma 14.49. We reduce the proof of the Lemma to the following statement:

Claim II. There exists c, N̂ > 0 such that for any sufficiently small ε, t > 0

det

(∫ t

0
A(τ) − εA(0) dτ

)
> c tN̂ .

Moreover c, N̂ depends only on the 2N -th Taylor polynomial of A(t).

Indeed fix t0 > 0. Since A(t) ≥ 0 and A(t) is not the zero family, then
∫ t0
0 A(τ)dτ > 0. Hence, for

a fixed t0, there exists ε small enough such that
∫ t0
0 A(τ) − εA(0) dτ > 0. Assume now that the

matrix St =
∫ t
0 A(τ) − εA(0) dτ > 0 is not strictly positive for some 0 < t < t0, then detS(τ) = 0

for some τ ∈ [t, t0], that is a contradiction.

We now prove Claim II. We may assume that t 7→ A(t) is analytic. Indeed, by continuity
of the determinant, the statement remains true if we substitute A(t) by its Taylor polynomial of
sufficiently big order.
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An analytic one parameter family of symmetric matrices t 7→ A(t) can be simultaneously di-
agonalized (see ??), in the sense that there exists an analytic (with respect to t) family of vectors
vi(t), with i = 1, . . . , n, such that

〈A(t)x, x〉 =
n∑

i=1

〈vi(t), x〉2 .

In other words A(t) = V (t)V (t)∗, where V (t) is the n × n matrix whose columns are the vectors
vi(t). (Notice that some of these vector can vanish at 0 or even vanish identically.)

Let us now consider the flag E1 ⊂ E2 ⊂ . . . ⊂ EN = Rn defined as follows

Ei = span{v(l)j , 1 ≤ j ≤ n, 0 ≤ l ≤ i}.
Notice that this flag is finite by our assumption on the rank of the consecutive derivatives of A(t)
and N is the same as in the statement of the Lemma. We then choose coordinates in Rn adapted
to this flag (i.e. the spaces Ei are coordinate subspaces) and define the following integers (here
e1, . . . , en is the standard basis of Rn)

mi = min{j : ei ∈ Ej}, i = 1, . . . , n.

In other words, when written in this new coordinate set, mi is the order of the first nonzero term in
the Taylor expansion of the i-th row of the matrix V (t). Then we introduce a quasi-homogeneous
family of matrices V̂ (t): the i-th row of V̂ (t) is the mi-homogeneous part of the i-the row of V (t).
Then we define Â(t) := V̂ (t)V̂ (t)∗. The columns of the matrix Â(t) satisfies the assumption of
Lemma 14.47, then

∫ t
0 Â(τ)dτ > 0 for every t > 0.

If we denote the entries A(t) = {aij(t)}ni,j=1 and Â(t) = {âij(t)}ni,j=1 we obtain

âij(t) = cijt
mi+mj , aij(t) = âij(t) +O(tmi+mj+1),

for suitable constants cij (some of them may be zero).
Then we let Aε(t) := A(t)− εA(0) = {aεij(t)}ni,j=1. Of course aεij(t) = cεijt

mi+mj +O(tmi+mj+1)
where

cεij =

{
(1− ε)cij , if mi +mj = 0,

cij , if mi +mj > 0.

From the equality ∫ t

0
aεij(τ)dτ = tmi+mj+1

(
cεij

mi +mj + 1
+O(t)

)

one gets

det

(∫ t

0
Aε(τ)dτ

)
= tn+2

∑N
i=1mi

(
det

(
cεij

mi +mj + 1

)
+O(t)

)

On the other hand

det

(∫ t

0
Â(τ)dτ

)
= tn+2

∑N
i=1mi

(
det

(
cij

mi +mj + 1

)
+O(t)

)
> 0

hence det
(

cεij
mi+mj+1

)
> 0 for small ε. The proof is completed by setting

c := det

(
cij

mi +mj + 1

)
, N̂ := n+ 2

N∑

i=1

mi

422



14.7 Conjugate points in L(Σ)

In this section we introduce the notion of conjugate point for a curve in the Lagrange Grassmannian.
In the next chapter we explain why this notion coincide with the one given for extremal paths in
sub-Riemannian geometry.

Definition 14.50. Let Λ(t) be a monotone curve in L(Σ). We say that Λ(t) is conjugate to Λ(0)
if Λ(t) ∩ Λ(0) 6= {0}.

As a consequence of Lemma 14.43, we have the following immediate corollary.

Corollary 14.51. Conjugate points on a monotone and ample curve in L(Σ) are isolated.

The following two results describe general properties of conjugate points

Theorem 14.52. Let Λ(t),∆(t) two ample monotone curves in L(Σ) defined on R such that

(i) Σ = Λ(t)⊕∆(t) for every t ≥ 0,

(ii) Λ̇(t) ≤ 0, ∆̇(t) ≥ 0, as quadratic forms.

Then there exists no τ > 0 such that Λ(τ) is conjugate to Λ(0). Moreover ∃ limt→+∞Λ(t) = Λ(∞).

Proof. Fix coordinates induced by some Lagrangian splitting of Σ in such a way that SΛ(0) = 0 and
S∆(0) = I. The monotonicity assumption implies that t 7→ SΛ(t) (resp. t 7→ S∆(t)) is a monotone
increasing (resp. decreasing) curve in the space of symmetric matrices. Moreover the tranversality
of Λ(t) and ∆(t) implies that S∆(t)− SΛ(t) is a non degenerate matrix for all t. Hence

0 < SΛ(t) < S∆(t) < I, for all t > 0.

In particular Λ(t) never leaves the coordinate neighborhood under consideration, the subspace Λ(t)
is always traversal to Λ(0) for t > 0 and has a limit Λ(∞) whose coordinate representation is
SΛ(∞) = limt→+∞ SΛ(t).

Theorem 14.53. Let Λs(t), for t, s ∈ [0, 1] be an homotopy of curves in L(Σ) such that Λs(0) = Λ
for s ∈ [0, 1]. Assume that

(i) Λs(·) is monotone and ample for every s ∈ [0, 1],

(ii) Λ0(·),Λ1(·) and Λs(1), for s ∈ [0, 1], contains no conjugate points to Λ.

Then no curve t 7→ Λs(t) contains conjugate points to Λ.

Proof. Let us consider the open chart Λ⋔ defined by all the Lagrangian subspaces traversal to Λ.
The statement is equivalent to prove that Λs(t) ∈ Λ⋔ for all t > 0 and s ∈ [0, 1]. Let us fix
coordinates induced by some Lagrangian splitting Σ = Λ⊕∆ in such a way that Λ = {(p, 0)} and

Λs(t) = {(Bs(t)q, q)}

for all s and t > 0 (at least for t small enough, indeed by ampleness Λs(t) ∈ Λ⋔ for t small).
Moreover we can assume that Bs(t) is a monotone increasing family of symmetric matrices.
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Notice that xTBs(τ)x→ −∞ for every x ∈ Rn when τ → 0+, due to the fact that Λs(0) = Λ is
out of the coordinate chart. Moreover, a necessary condition for Λs(t) to be conjugate to Λ is that
there exists a nonzero x such that xTBs(τ)x→∞ for τ → t.

It is then enough to show that, for all x ∈ Rn the function (t, s) 7→ xTBs(t)x is bounded.
Indeed by assumptions t 7→ xTB0(t)x and t 7→ xTB1(t)x are monotone increasing and bounded up
to t = 1. Hence the continuous family of values Ms := xTBs(1)x is weel defined and bounded for
all s. The monotonicity implies that actually xTBs(t)x < +∞ for all values of t, s ∈ [0, 1]. (See
also Figure 14.7).

−∞

+∞

xTB0(1)x
xTB1(1)x

xTBs(1)x

xTBs(t)x

s

b

Figure 14.1: Proof of Theorem 14.53

14.8 Comparison theorems for regular curves

In this last section we prove two comparison theorems for regular monotone curves in the Lagrange
Grassmannian.

Corollary 14.54. Let Λ(t) be a monotone and regular curve in the Lagrange Grassmannian such
that RΛ(t) ≤ 0. Then Λ(t) contains no conjugate points to Λ(0).

Proof. This is a direct consequence of Theorem 14.52

Theorem 14.55. Let Λ(t) be a monotone and regular curve in the Lagrange Grassmannian. As-
sume that there exists k ≥ 0 such that for all t ≥ 0

(i) RΛ(t) ≤ k Id. Then, if Λ(t) is conjugate to Λ(0), we have t ≥ π√
k
.

(ii) 1
ntraceRΛ(t) ≥ k. Then for every t ≥ 0 there exists τ ∈ [t, t+ π√

k
] such that Λ(τ) is conjugate

to Λ(0).
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We stress that assumption (i) means that all the eigenvalues of RΛ(t) are smaller or equal than
k, while (ii) requires only that the average of the eigenvalues is bigger or equal than k.

Remark 14.56. Notice that the estimates of Theorem 14.55 are sharp, as it is immediately seen by
considering the example of a 1-dimensional curve of constant velocity (see Example 14.35).

Proof. (i). Consider the real function

ϕ : R→]0,
π√
k
[, ϕ(t) =

1√
k
(arctan

√
kt+

π

2
)

Using that ϕ̇(t) = (1 + kt2)−1 it is easy to show that the Schwarzian derivative of ϕ is

Rϕ(t) = −
k

(1 + kt2)2
.

Thus using ϕ as a reparametrization we find, by Proposition 14.36

RΛϕ(t) = ϕ̇2RΛ(ϕ(t)) +Rϕ(t)Id

=
1

(1 + kt2)2
(RΛ(ϕ(t)) − kId) ≤ 0.

By Corollary 14.54 the curve Λ ◦ ϕ has no conjugate points, i.e. Λ has no conjugate points in the
interval ]0, π√

k
[.

(ii). We prove the claim by showing that the curve Λ(t), on every interval of length π/
√
k has

non trivial intersection with every subspace (hence in particular with Λ(0)). This is equivalent to
prove that Λ(t) is not contained in a single coordinate chart for a whole interval of length π/

√
k.

Assume by contradiction that Λ(t) is contained in one coordinate chart. Then there exists
coordinates such that Λ(t) = {(p, S(t)p)} and we can write the coordinate expression for the
curvature:

RΛ(t) = Ḃ(t)−B(t)2, where B(t) = (2S(t))−1S̈(t).

Let now b(t) := traceB(t). Computing the trace in both sides of equality

Ḃ(t) = B2(t) +RΛ(t),

we get
ḃ(t) = trace(B2(t)) + traceRΛ(t). (14.35)

Lemma 14.57. For every n× n symmetric matrix S the following inequality holds true

trace(S2) ≥ 1

n
(traceS)2. (14.36)

Proof. For every symmetric matrix S there exists a matrix M such that MSM = D is diagonal.
Since trace(MAM−1) = trace(A) for every matrix A, it is enough to prove the inequality (14.36)
for a diagonal matrix D = diag(λ1, . . . , λn). In this case (14.36) reduces to the Cauchy-Schwartz
inequality

n∑

i=1

λ2i ≥
1

n

(
n∑

i=1

λi

)2

.
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Applying Lemma 14.57 to (14.35) and using the assumption (ii) one gets

ḃ(t) ≥ 1

n
b2(t) + nk, (14.37)

By standard results in ODE theory we have b(t) ≥ ϕ(t) , where ϕ(t) is the solution of the differential
equation

ϕ̇(t) =
1

n
ϕ2(t) + nk (14.38)

The solution for (14.38), with initial datum ϕ(t0) = 0, is explicit and given by

ϕ(t) = n
√
k tan(

√
k(t− t0)).

This solution is defined on an interval of measure π/
√
k. Thus the inequality b(t) ≥ ϕ(t) completes

the proof.
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Chapter 15

Jacobi curves

Now we are ready to introduce the main object of this part of the book, i.e. the Jacobi curve
associated with a normal extremal. Heuristically, we would like to extract geometric properties of
the sub-Riemannian structure by studying the symplectic invariants of its geodesic flow, that is the
flow of ~H. The simplest idea is to look for invariants in its linearization.

As we explain in the next sections, this object is naturally related to geodesic variations, and
generalizes the notion of Jacobi fields in Riemannian geometry to more general geometric structures.

In this chapter we consider a sub-Riemannian structure (M,U, f) on a smooth n-dimensional
manifold M and we denote as usual by H : T ∗M → R its sub-Riemannian Hamiltonian.

15.1 From Jacobi fields to Jacobi curves

Fix a covector λ ∈ T ∗M , with π(λ) = q, and consider the normal extremal starting from q and
associated with λ, i.e.

λ(t) = et
~H(λ), γ(t) = π(λ(t)). (i.e. λ(t) ∈ T ∗

γ(t)M.)

For any ξ ∈ Tλ(T ∗M) we can define a vector field along the extremal λ(t) as follows

X(t) := et
~H

∗ ξ ∈ Tλ(t)(T ∗M)

The set of vector fields obtained in this way is a 2n-dimensional vector space which is the space of
Jacobi fields along the extremal. For an Hamiltonian H corresponding to a Riemannian structure,
the projection π∗ gives an isomorphisms between the space of Jacobi fields along the extremal and
the classical space of Jacobi fields along the geodesic γ(t) = π(λ(t)).

Notice that this definition, equivalent to the standard one in Riemannian geometry, does
not need curvature or connection, and can be extended naturally for any strongly normal sub-
Riemannian geodesic.

In Riemannian geometry, the study of one half of this vector space, namely the subspace of
classical Jacobi fields vanishing at zero, carries informations about conjugate points along the
given geodesic. By the aforementioned isomorphism, this corresponds to the subspace of Jacobi
fields along the extremal such that π∗X(0) = 0. This motivates the following construction: For
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any λ ∈ T ∗M , we denote Vλ := kerπ∗|λ the vertical subspace. We could study the whole family of
(classical) Jacobi fields (vanishing at zero) by means of the family of subspaces along the extremal

L(t) := et
~H

∗ Vλ ⊂ Tλ(t)(T ∗M).

Notice that actually, being et
~H

∗ a symplectic transformation and Vλ a Lagrangian subspace, the
subspace L(t) is a Lagrangian subspace of Tλ(t)(T

∗M).

15.1.1 Jacobi curves

The theory of curves in the Lagrange Grassmannian developed in Chapter ?? is an efficient tool
to study family of Lagrangian subspaces contained in a single symplectic vector space. It is then
convenient to modify the construction of the previous section in order to collect the informations
about the linearization of the Hamiltonian flow into a family of Lagrangian subspaces at a fixed
tangent space.

By definition, the pushforward of the flow of ~H maps the tangent space to T ∗M at the point
λ(t) back to the tangent space to T ∗M at λ:

e−t
~H

∗ : Tλ(t)(T
∗M)→ Tλ(T

∗M).

If we then restrict the action of the pushforward e−t ~H∗ to the vertical subspace at λ(t), i.e. the
tangent space Tλ(t)(T

∗
γ(t)M) at the point λ(t) to the fiber T ∗

γ(t)M , we define a one parameter family

of n-dimensional subspaces in the 2n-dimensional vector space Tλ(T
∗M). This family of subspaces

is a curve in the Lagrangian Grassmannian L(Tλ(T
∗M)).

Notation. In the following we use the notation Vλ := Tλ(T
∗
qM) for the vertical subspace at

the point λ ∈ T ∗M , i.e. the tangent space at λ to the fiber T ∗
qM , where q = π(λ). Being the

tangent space to a vector space, sometimes it will be useful to identify the vertical space Vλ with
the vector space itself, namely Vλ ≃ T ∗

qM .

Definition 15.1. Let λ ∈ T ∗M . The Jacobi curve at the point λ is defined as follows

Jλ(t) := e−t
~H

∗ Vλ(t), (15.1)

where λ(t) := et
~H(λ) and γ(t) = π(λ(t)). Notice that Jλ(t) ⊂ Tλ(T ∗M) and Jλ(0) = Vλ = Tλ(T

∗
qM)

is vertical.

As discussed in Chapter 14, the tangent vector to a curve in the Lagrange Gassmannian can be
interpreted as a quadratic form. In the case of a Jacobi curve Jλ(t) its tangent vector is a quadratic
form J̇λ(t) : Jλ(t)→ R.

Proposition 15.2. The Jacobi curve Jλ(t) satisfies the following properties:

(i) Jλ(t+ s) = e−t ~H∗ Jλ(t)(s), for all t, s ≥ 0,

(ii) J̇λ(0) = −2H|T ∗
qM as quadratic forms on Vλ ≃ T ∗

qM .

(iii) rank J̇λ(t) = rankH|T ∗
γ(t)

M
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Proof. Claim (i) is a consequence of the semigroup property of the family {e−t ~H∗ }t≥0.

To prove (ii), introduce canonical coordinates (p, x) in the cotangent bundle. Fix ξ ∈ Vλ. The

smooth family of vectors defined by ξ(t) = e−t ~H∗ ξ (considering ξ as a constant vertical vector field)
is a smooth extension of ξ, i.e. it satisfies ξ(0) = ξ and ξ(t) ∈ Jλ(t). Therefore, by (14.8)

J̇λ(0)ξ = σ(ξ, ξ̇) = σ

(
ξ,
d

dt

∣∣∣∣
t=0

e−t
~H

∗ ξ

)
= σ(ξ, [ ~H, ξ]). (15.2)

To compute the last quantity we use the following elementary, although very useful, property of
the symplectic form σ.

Lemma 15.3. Let ξ ∈ Vλ a vertical vector. Then, for any η ∈ Tλ(T ∗M)

σ(ξ, η) = 〈ξ, π∗η〉, (15.3)

where we used the canonical identification Vλ = T ∗
qM .

Proof. In any Darboux basis induced by canonical local coordinates (p, x) on T ∗M , we have σ =∑n
i=1 dpi ∧ dxi and ξ =

∑n
i=1 ξ

i∂pi . The result follows immediately.

To complete the proof of point (ii) it is enough to compute in coordinates

π∗[ ~H, ξ] = π∗

[
∂H

∂p

∂

∂x
− ∂H

∂x

∂

∂p
, ξ
∂

∂p

]
= −∂

2H

∂p2
ξ
∂

∂x
,

Hence by Lemma 15.3 and the fact that H is quadratic on fibers one gets

σ(ξ, [ ~H, ξ]) = −
〈
ξ,
∂2H

∂p2
ξ

〉
= −2H(ξ).

(iii). The statement for t = 0 is a direct consequence of (ii). Using property (i) it is easily seen that
the quadratic forms associated with the derivatives at different times are related by the formula

J̇λ(t) ◦ et
~H

∗ = J̇λ(t)(0). (15.4)

Since e−t ~H∗ is a symplectic transformation, it preserves the sign and the rank of the quadratic form.1

Remark 15.4. Notice that claim (iii) of Proposition 15.2 implies that rank of the derivative of the
Jacobi curve is equal to the rank of the sub-Riemannian structure. Hence the curve is regular if and
only if it is associated with a Riemannian structure. In this case of course it is strictly monotone,
namely J̇λ(t) < 0 for all t.

Corollary 15.5. The Jacobi curve Jλ(t) associated with a sub-Riemannian extremal is monotone
nonincreasing for every λ ∈ T ∗M .

1Notice that J̇λ(t), J̇λ(t)(0) are defined on Jλ(t), Jλ(t)(0) respectively, and Jλ(t) = e−t ~H
∗ Jλ(t)(0).
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15.2 Conjugate points and optimality

At this stage we have two possible definition for conjugate points along normal geodesics. On one
hand we have singular points of the exponential map along the extremal path, on the other hand
we can consider conjugate points of the associated Jacobi curve. The next result show that actually
the two definition coincide.

Proposition 15.6. Let γ(t) = expq(tλ) be a normal geodesic starting from q with initial covector
λ. Denote by Jλ(t) its Jacobi curve. Then for s > 0

γ(s) is conjugate to γ(0) ⇐⇒ Jλ(s) is conjugate to Jλ(0).

Proof. By Definition 8.41, γ(s) is conjugate to γ(0) if sλ is a critical point of the exponential
map expq. This is equivalent to say that the differential of the map from T ∗

qM to M defined by

λ 7→ π ◦es ~H (λ) is not surjective at the point λ, i.e. the image of the differential es
~H

∗ has a nontrivial
intersection with the kernel of the projection π∗

es
~H

∗ Jλ(0) ∩ Tλ(s)T ∗
γ(s)M 6= {0}. (15.5)

Applying the linear invertible transformation e−s ~H∗ to both subspaces one gets that (15.5) is equiv-
alent to

Jλ(0) ∩ Jλ(s) 6= {0}

which means by definition that Jλ(s) is conjugate to Jλ(0).

The next result shows that, as soon as we have a segment of points that are conjugate to the
initial one, the segment is also abnormal.

Theorem 15.7. Let γ : [0, 1]→M be a normal extremal path such that γ|[0,s] is not abnormal for
all 0 < s ≤ 1. Assume γ|[t0,t1] is a curve of conjugate points to γ(0). Then the restriction γ|[t0,t1]
is also abnormal.

Remark 15.8. Recall that if a curve γ : [0, T ] → M is a strictly normal trajectory, it can happen
that a piece of it is abnormal as well. If the trajectory is strongly normal, then if t0, t1 satisfy the
assumptions of Theorem 15.7 necessarily t0 > 0.

Proof. Let us denote by Jλ(t) the Jacobi curve associated with γ(t). From Proposition 15.6 it
follows that Jλ(t) ∩ Jλ(0) 6= {0} for each t ∈ [t0, t1]. We now show that actually this implies

Jλ(0) ∩
⋂

t∈[t0,t1]
Jλ(t) 6= {0}. (15.6)

We can assume that the whole piece of the Jacobi curve Jλ(t), with t0 ≤ t ≤ t1, is contained in a
single coordinate chart. Otherwise we can cover [t0, t1] with such intervals and repeat the argument
on each of them. Let us fix coordinates given by a Lagrangian splitting in such a way that

Jλ(t) = {(p, S(t)p), p ∈ Rn}, Jλ(0) = {(p, 0), p ∈ Rn}
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Moreover we can assume that S(t) ≤ 0 for every t0 ≤ t ≤ t1, i.e. is non positive definite and
monotone decreasing, 2 In particular Jλ(t1) ∩ Jλ(0) 6= {0} if and only if there exists a vector v
such that S(t1)v = 0. Since the map t 7→ vTS(t)v is nonpositive and decreasing this means that
S(t)v = 0 for all t ∈ [t0, t1], thus

Jλ(0) ∩ Jλ(t1) ⊂ Jλ(0) ∩
⋂

t∈[t0,t1]
Jλ(t) (15.7)

that implies that actually we have the equality in (15.7).
We are left to show that if a Jacobi curve Jλ(t) is such that every t is a conjugate point for

0 ≤ τ ≤ τ , then the corresponding extremal is also abnormal. Indeed let us fix an element ξ 6= 0
such that

ξ ∈
⋂

t∈[0,τ ]
Jλ(t)

which is non-empty by the above discussion. Then we consider the vertical vector field

ξ(t) = et
~H

∗ ξ ∈ Tλ(t)(T ∗
γ(t)M), 0 ≤ t ≤ τ.

By construction, the vector field ξ is preserved by the Hamiltonian field, i.e. et
~H

∗ ξ = ξ, that implies
[ ~H, ξ](λ(t)) = 0. Then the statement is proved by the following

Exercise 15.9. Define η(t) = ξ(λ(t)) ∈ T ∗
γ(t)M (by canonical identification Tλ(T

∗
qM) ≃ T ∗

qM).

Show that the identity [ ~H, ξ](λ(t)) = 0 rewrites in coordinates as follows

k∑

i=1

hi(η(t))
2 = 0, η̇(t) =

k∑

i=1

hi(λ(t))~hi(η(t)). (15.8)

Exercise 15.9 shows that η(t) is a family of covectors associated with the extremal path corre-
sponding to controls ui(t) = hi(λ(t)) and such that hi(η(t)) = 0, that means that it is abnormal.

Corollary 15.10. Let Jλ(t) be the Jacobi curve associated with λ ∈ T ∗M and γ(t) = π(λ(t)) the
associated sub-Riemannian extremal path. Then γ|[0,τ ] is not abnormal for all 0 ≤ τ ≤ t if and only
if Jλ(τ) ∩ Jλ(0) = {0} for all 0 ≤ τ ≤ t.

15.3 Reduction of the Jacobi curves by homogeneity

The Jacobi curve at point λ ∈ T ∗M parametrizes all the possible geodesic variations of the geodesic
associated with an initial covector λ. Since the variations in the direction of the motion are always
trivial, i.e. the trajectory remains the same up to parametrizations, one can reduce the space of
variation to an (n− 1)-dimensional one.

This idea is formalized by considering a reduction of the Jacobi curve in a smaller symplectic
space. As we show in the next section, this is a natural consequence of the homogeneity of the
sub-Riemannian Hamiltonian.

2Indeed it is proved that the only invariant of a pair of two Lagrangian subspaces in a symplectic space is the
dimension of the intersection, i.e. the rank of the difference rank(S(t)− S(0)). Add exercise
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Remark 15.11. This procedure was already exploited in Section 8.11, obtained by a direct argument
via Proposition 8.38. Indeed one can recognize that the procedure that reduced the equation for
conjugate points of one dimension corresponds exactly to the reduction by homogeneity of the
Jacobi curve associated to the problem.

We start with a technical lemma, whose proof is left as an exercise.

Lemma 15.12. Let Σ = Σ1 ⊕ Σ2 be a splitting of the symplectic space, with σ = σ1 ⊕ σ2. Let
Λi ∈ L(Σi) and define the curve Λ(t) := Λ1(t)⊕ Λ2(t) ∈ L(Σ). Then one has the splittings:

Λ̇(t) = Λ̇1(t)⊕ Λ̇2(t),

RΛ(t) = RΛ1(t)⊕RΛ2(t).

Consider now a Jacobi curve associated with λ ∈ T ∗M :

Jλ(t) = e−t
~H

∗ Vλ(t), Vλ = Tλ(T
∗
π(λ)M).

Denote by δα : T ∗M → T ∗M the fiberwise dilation δα(λ) = αλ, where α > 0 .

Definition 15.13. The Euler vector field ~E ∈ Vec(T ∗M) is the vertical vector field defined by

~E(λ) =
d

ds

∣∣∣∣
s=1

δs(λ), λ ∈ T ∗M.

It is easy to see that in canonical coordinates (x, ξ) it satisfies ~E =
∑n

i=1 ξi
∂
∂ξi

and the following
identity holds

et
~Eλ = etλ, i.e. et

~E(ξ, x) = (etξ, x).

Exercise 15.14. Prove that the Euler vector field is characterized by the identity

i ~E σ = s, s = Liouville 1-form in T ∗M.

Lemma 15.15. We have the identity e−t ~H∗ ~E = ~E − t ~H. In particular [ ~H, ~E] = − ~H.

Proof. The homogeneity property (8.50) of the Hamiltonian can be rewritten as follows

et
~H(δsλ) = δs(e

st ~H(λ)), ∀ s, t > 0.

Applying δ−s to both sides and changing t into −t one gets the identity

δ−s ◦ e−t ~H ◦ δs = e−st
~H . (15.9)

Computing the 2nd order mixed partial derivative at (t, s) = (0, 1) in (15.9) one gets, by (2.27),

that [ ~H, ~E] = − ~H. Thus, by (2.31) we have e−t ~H∗ ~E = ~E− t ~H, since every higher order commutator
vanishes.

Proposition 15.16. The subspace Σ̃ = span{~E, ~H} is invariant under the action of the Hamilto-
nian flow. Moreover {~E, ~H} is a Darboux basis on Σ̃ ∩H−1(1/2).
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Proof. The fact that Σ̃ is an invariant subspace is a consequence of the identities

e−t
~H

∗ ~E = ~E − t ~H, e−t
~H

∗ ~H = 0.

Moreover, on the level set H−1(1/2), we have by homogeneity of H w.r.t. p:

σ( ~E, ~H) = ~E(H) =
d

dt

∣∣∣∣
t=0

H(et
~E(p, x)) = p

∂H

∂p
= 2H = 1. (15.10)

It follows that {~E, ~H} is a Darboux basis for Σ̃.

In particular we can consider the the symplectic splitting Σ = Σ̃⊕ Σ̃∠.

Exercise 15.17. Prove the following intrinsic characterization of the skew-orthogonal to Σ̃:

Σ̃∠ = {ξ ∈ T ∗
λ (T

∗M) : 〈dλH, ξ〉 = 〈sλ, ξ〉 = 0}.

The assumptions of Lemma 15.12 are satisfied and we could split our Jacobi curve.

Definition 15.18. The reduced Jacobi curve is defined as follows

Ĵλ(t) := Jλ(t) ∩ Σ̃∠. (15.11)

Notice that, if we put V̂λ := Vλ ∩ TλH−1(1/2), we get

Ĵλ(0) = V̂λ, Ĵλ(t) = e−t
~H

∗ V̂λ.

Moreover we have the splitting

Jλ(t) = Ĵλ(t)⊕ R( ~E − t ~H).

We stress again that Ĵλ(t) is a curve of (n−1)-dimensional Lagrangian subspaces in the (2n−2)-
dimensional vector space Σ̃∠.

Exercise 15.19. With the notation above

(i) Show that the curvature of the curve Jλ(t) ∩ Σ̃ in Σ̃ is always zero.

(ii) Prove that Jλ(0) ∩ Jλ(s) 6= {0} if and only if Ĵλ(0) ∩ Ĵλ(s) 6= {0}.
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Chapter 16

Riemannian curvature

On a manifold, in general there is no canonical method for identifying tangent spaces at different
points, (or more generally fibers of a vector bundle at different points). Thus, we have to expect
that a notion of derivative for vector fields (or sections of a vector bundle), has to depend on certain
choices.

In our presentation we introduce the general notion of Ehresmann connection and we then we
discuss how this notion is related with the notion of parallel transport and covariant derivative
usually introduced in classical Riemannian geometry.

16.1 Ehresmann connection

Given a smooth fiber bundle E, with base M and canonical projection π : E → M , we denote by
Eq = π−1(q) the fiber at the point q ∈ M . The vertical distribution is by definition the collection
of subspaces in TE that are tangent to the fibers

V = {Vz}z∈E , Vz := kerπ∗,z = TzEπ(z) ⊂ TzE.

Definition 16.1. Let E be a smooth fiber bundle. An Ehresmann connection on E is a smooth
vector distribution H in E satisfying

H = {Hz}z∈E , TzE = Vz ⊕Hz.

Notice that V, being the kernel of the pushforward π∗, is canonically associated with the fibre
bundle. Defining a connection means exactly to define a canonical complement to this distribution.
For this reason H is also called horizontal distribution.

Definition 16.2. Let X ∈ Vec(M). The horizontal lift of X is the unique vector field∇X ∈ Vec(E)
such that

∇X(z) ∈ Hz, π∗∇X = X, ∀ z ∈ E. (16.1)

The uniqueness follows from the fact that π∗,z : TzE → Tπ(z)M is an isomorphism when restricted
to Hz. Indeed π∗,z is a surjective linear map with ker π∗,z = Vz.

Notation. In the following we will refer also at ∇ as the connection on E.
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Given a smooth curve γ : [0, T ] → M on the manifold M , the connection let us to define
the parallel transport along γ, i.e. a way to identify tangent vectors belonging to tangent spaces
at different points of the curve. Let Xt be a nonautonomous smooth vector field defined on a
neighborhood of γ, that is an extension of the velocity vector field of the curve1, i.e. such that

γ̇(t) = Xt(γ(t)), ∀ t ∈ [0, T ].

Then consider the non autonomous vector field ∇Xt ∈ Vec(E) obtained by its lift.

Definition 16.3. Let γ : [0, T ]→M be a smooth curve. The parallel transport along γ is the map
Φ defined by the flow of ∇Xt

Φt0,t1 := −→exp
∫ t1

t0

∇Xsds : Eγ(t0) → Eγ(t1), for 0 < t0 < t1 < T. (16.2)

In the general case we need some extra assumptions on the vector field to ensure that (16.2)
exists (even for small time t > 0) since the existence time of a solution also depend on the point
on the fiber. For instance if we the fibers are compact, then it is possible to find such t > 0.

Exercise 16.4. Show that the parallel transport map sends fibers to fibers and does not depend
on the extension of the vector field Xt. (Hint: consider two extensions and use the existence and
uniqueness of the flow.)

16.1.1 Curvature of an Ehresmann connection

Assume that π : E → M is a smooth fiber bundle and let ∇ be a connection on E, defining the
splitting E = V ⊕H. Given an element z ∈ E we will also denote by zhor (resp. zver) its projection
on the horizontal (resp. vertical) subspace at that point.

The commutator of two vertical vector field is always vertical. The curvature operator associated
with the connection computes if the same holds true for two horizontal vector fields.

Definition 16.5. Let E be a smooth fiber bundle and ∇ a connection on E. Let X,Y ∈ Vec(M)
and define

R(X,Y ) := [∇X ,∇Y ]ver (16.3)

The operator R is called the curvature of the connection.

Notice that, given a vector field on E, its horizontal part coincide, by definition, with the lift
of its projection. In particular

[∇X ,∇Y ]hor = ∇[X,Y ], (i.e. π∗[∇X ,∇Y ] = [X,Y ])

Hence R(X,Y ) computes the nontrivial part of the bracket between the lift of X and Y and R ≡ 0
if and only if the horizontal distribution H is involutive.

The curvature R(X,Y ) is also rewritten in the following more classical way

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

= ∇X∇Y −∇X∇Y −∇[X,Y ].

Next we show that R is actually a tensor on TqM , i.e. the value of R(X,Y ) at q depends only
on the value of X and Y at the point q.

1this is always possible with a (maybe non autonomous) vector field.
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Proposition 16.6. R is a skew symmetric tensor on M .

Proof. The skew-symmetry is immediate. To prove that the value of R(X,Y ) at q depends only
on the value of X and Y at the point q, it is sufficient to prove that R is linear on functions. By
skew-symmetry, we are reduced to prove that R is linear in the first argument, namely

R(aX, Y ) = aR(X,Y ), where a ∈ C∞(M).

Notice that the symbol a in the right hand side stands for the function π∗a = a ◦π in C∞(E), that
is constant on fibers.

By definition of lift of a vector field it is easy to prove the identities ∇aX = a∇X and ∇Xa = Xa
for every a ∈ C∞(M). Applying the definition of ∇ and the Leibnitz rule for the Lie bracket one
gets

R(aX, Y ) = [∇aX ,∇Y ]−∇[aX,Y ]

= a[∇X ,∇Y ]− (∇Y a)∇X −∇a[X,Y ]−(Y a)X

= a[∇X ,∇Y ]− (Y a)∇X − a∇[X,Y ] + (Y a)∇X
= aR(X,Y ).

16.1.2 Linear Ehresmann connections

Assume now that E is a vector bundle on M (i.e. each fiber Eq = π−1(q) has a natural structure
of vector space). In this case it is natural to introduce a notion of linear Ehresmann connection ∇
on E.

Given a vector bundle π : E →M , we denote by C∞
L (E) the set of smooth functions on E that

are linear on fibers.

Remark 16.7. For a vector bundle π : E → M , the base manifold M can be considered immersed
in E as the zero section (see also Example 2.48). The “dual” version of this identification is the
inclusion i : C∞(M) → C∞(E). Indeed any function in C∞(M) can be considered as a functions
in C∞(E) which is constant on fibers, i.e. more precisely a ∈ C∞(M) 7→ π∗a ∈ C∞(E).

Exercise 16.8. Show that a vector field on E is the lift of a vector field on M if and only if, as a
differential operator on C∞(E), it maps the subspace C∞(M) into itself.

After this discussion it is natural to give the following definition.

Definition 16.9. A linear connection on a vector bundle E on the base M is an Ehresmann
connection ∇ such that the lift ∇X of a vector field X ∈ Vec(M) satisfies the following property:
for every a ∈ C∞

L (E) it holds ∇Xa ∈ C∞
L (E).

Remark 16.10. Given a local basis of vector fields X1, . . . ,Xn on M we can build dual coordinates
(u1, . . . , un) on the fibers of E defining the functions ui(z) = 〈z,Xi(q)〉 where q = π(z). In this way

E = {(u, q), q ∈M,u ∈ Rn},
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and the tangent space to E is splitted in TzE ≃ TqM ⊕ TzEq. A connection on E is determined by
the lift of the vector fields Xi, i = 1, . . . , n on the base manifold (recall that π∗∇Xi = Xi)

∇Xi = Xi +

n∑

j=1

aij(u, q)∂uj , i = 1, . . . , n, (16.4)

where aij ∈ C∞(E) are suitable smooth functions. Then ∇ is linear if and only if for every i, j the
function aij(u, q) =

∑n
k=1 Γ

k
ij(q)uk is linear with respect to u .

The smooth functions Γkij are also called the Christoffel symbols of the linear connection.

Exercise 16.11. Let γ be a smooth curve on the manifold such that γ̇(t) =
∑n

i=1 vi(t)Xi(γ(t)).
Show that the differential equation ξ̇(t) = ∇γ̇(t)ξ(t) for the parallel transport along γ are written

as u̇j =
∑

i,k Γ
k
ijviuk where (u1, . . . , un) are the vertical coordinates of ξ.

Notice that, for a linear connection, the parallel transport is defined by a first order linear
(nonautonomous) ODE. The existence of the flow is then guaranteed from stantard results form
ODE theory. Moreover, when it exists, the map Φt0,t1 is a linear transformation between fibers.

16.1.3 Covariant derivative and torsion for linear connections

Once a connection on a linear vector bundle E is given, we have a well defined linear parallel
transport map

Φt0,t1 := −→exp
∫ t1

t0

∇Xsds : Eγ(t0) → Eγ(t1), for 0 < t0 < t1 < T. (16.5)

If we consider the dual map of the parallel transport one can naturally introduce a non autonomous
linear flow on the dual bundle (notice the exchange of t0, t1 in the integral)

Φ∗
t0,t1 :=

(
−→exp

∫ t0

t1

∇Xsds

)∗
: E∗

γ(t0)
→ E∗

γ(t1)
, for 0 < t0 < t1 < T. (16.6)

The infinitesimal generator of this “adjoint” flow defines a linear parallel transport, hence a linear
connection, on the dual bundle E∗.

In what follows we will restrict our attention to the case of the vector bundle E = T ∗M and
we assume that a linear connection ∇ on T ∗M is given. Notice that, by the above discussion, all
the constructions can be equivalently performed on the dual bundle E∗ = TM .

For every vector field Y ∈ Vec(M) let us denote with Y ∗ ∈ C∞(T ∗M) the function

Y ∗(λ) = 〈λ, Y (q)〉 , q = π(z),

namely the smooth function on E associated with Y that is linear on fibers. This identification
between vector fields onM and linear functions on T ∗M permits us to define the covariant derivative
of vector fields.

Definition 16.12. Let X,Y ∈ Vec(M). We define ∇XY = Z if and only if ∇XY ∗ = Z∗ with
Z ∈ Vec(M).
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Notice that the definition is well-posed since ∇ is linear, hence ∇XY ∗ is a linear function and
there exists Z ∈ Vec(M) such that ∇XY ∗ = Z∗.2

Lemma 16.13. Let {X1, . . . ,Xn} be a local frame on M . Then ∇XiXj = ΓkijXk, where Γkij are
the Christoffel symbols of the connection ∇.

Proof. Let us prove this in the coordinates dual to our frame. In these coordinates, the linear
connection is specified by the lifts

∇Xi = Xi + Γkijuk∂uj , where uj(λ) = 〈λ,Xj〉 .

Moreover X∗
j = uj . Hence it is immediate to show ∇XiX

∗
j = ΓkijX

∗
k , and the lemma is proved.

We now introduce the torsion tensor of a linear connection on T ∗M . As usual, σ denotes the
canonical symplectic structure on T ∗M .

Definition 16.14. The torsion of a linear connection ∇ is the map T : Vec(M)2 → Vec(M) defined
by the identity

T (X,Y )∗ := σ(∇X ,∇Y ), ∀X,Y ∈ Vec(M). (16.7)

It is easy to check that T is actually a tensor, i.e. the value of T (X,Y ) at a point q depends only
on the values of X,Y at the point. The torsion computes how much the horizontal distribution H
is far from being Lagrangian. In particular H is Lagrangian if and only if T ≡ 0.

The classical formula for the torsion tensor, in terms of the covariant derivative, is recovered in
the following lemma.

Lemma 16.15. The torsion tensor satisfies the identity

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (16.8)

Proof. We have to prove that T (X,Y )∗ = ∇XY ∗ −∇YX∗ − [X,Y ]∗. Notice that by definition of
the Liouville 1-form s ∈ Λ1(T ∗M), sλ = λ ◦π∗ we have X∗(λ) = 〈λ,X〉 = 〈sλ,∇X〉. Then we have,
using that σ = ds and the Cartan formula (4.77)

T (X,Y )∗ = ds(∇X ,∇Y )
= ∇X 〈s,∇Y 〉 − ∇Y 〈s,∇X〉 − 〈s, [∇X ,∇Y ]〉
= ∇X 〈s,∇Y 〉 − ∇Y 〈s,∇X〉 −

〈
s,∇[X,Y ]

〉

= ∇XY ∗ −∇YX∗ − [X,Y ]∗,

where in the second equality we used that 〈s, [∇X ,∇Y ]〉 = 〈s, [∇X ,∇Y ]hor〉 =
〈
s,∇[X,Y ]

〉
since the

Liouville form by definition depends only on the horizontal part of the vector.

Exercise 16.16. Show that a linear connection ∇ on a vector bundle E satisfies the following
Leibnitz rule

∇X(aY ) = a∇XY + (Xa)Y, for each a ∈ C∞(M).

2There is no confusion in the notation above since, by definition, ∇X it is well defined when applied to smooth
functions on T ∗M . Whenever it is applied to a vector field we follow the aforementioned convention.
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16.2 Riemannian connection

In this section we want to introduce the Levi-Civita connection on a Riemannian manifold M by
defining an Ehresmann connection on T ∗M via the Jacobi curve approach.

Recall that every Jacobi curve associated with a trajectory on a Riemannian manifold is regular.
Moreover, as showed in Chapter 14, every regular curve in the Lagrangian Grassmannian admits
a derivative curve, which defines a canonical complement to the curve itself. Hence, following
this approach, it is natural to introduce the Riemannian connection at λ ∈ T ∗M as the canonical
complement to the Jacobi curve defined at λ.

Definition 16.17. The Levi-Civita connection on T ∗M is the Ehresmann connection H is defined
by

Hλ = J◦
λ(0), λ ∈ T ∗M,

where as usual Jλ(t) denotes the Jacobi curve defined at the point λ ∈ T ∗M and J◦
λ denotes its

derivative curve.

The next proposition characterizes the Levi-Civita connection as the unique linear connection
on T ∗M that is linear, metric preserving and torsion free.

Proposition 16.18. The Levi-Civita connection satisfies the following properties:

(i) is a linear connection,

(ii) is torsion free,

(iii) is metric preserving, i.e. ∇XH = 0 for each vector field X ∈ Vec(M).

Proof. (i). It is enough to prove that the connection Hλ is 1-homogeneous, i.e.

Hcλ = δc∗Hλ, ∀ c > 0. (16.9)

Indeed in this case the functions aij ∈ C∞(T ∗M) defining the connection (see (16.4)) are 1-
homogeneous, hence linear as a consequence of Exercise 16.19.

Let us prove (16.9). The differential of the dilation on the fibers δc : T
∗M → T ∗M satisfies the

property δc∗(Tλ(T ∗
qM)) = Tcλ(T

∗
qM). From this identity and differentiating the identity

et
~H ◦ δc = δc ◦ ect ~H , ∀ c > 0, (16.10)

one easily gets that

Jcλ(t) = δc∗Jλ(ct), ∀ t ≥ 0, λ ∈ T ∗M. (16.11)

Indeed one has the following chain of identities

Jcλ(t) = e−t
~H

∗ (Tcλ(T
∗
qM))

= e−t
~H

∗ ◦ δc∗(Tλ(T ∗
qM)) (by (16.10))

= δc∗ ◦ e−ct ~H∗ (Tλ(T
∗
qM))

= δc∗Jλ(ct).
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Now we show that the same relation holds true also for the derivative curve, i.e.

J◦
cλ(t) = δc∗J

◦
λ(ct), ∀ t ≥ 0, λ ∈ T ∗M. (16.12)

Indeed one can check in coordinates (we denote as usual Jλ(t) = {(p, Sλ(t)p), p ∈ Rn}) that the
identity (16.11) is written as Scλ(t) =

1
cSλ(ct) thus Scλ(t)

−1 = cSλ(ct)
−1. From here3 one also gets

Bcλ(t) = cBλ(ct) and (16.12) follows from the identity S◦(t) = B−1(t) + S(t). (See also Exercise
14.22). In particular at t = 0 the identity (16.12) says that Hcλ = δc∗Hλ.

(ii). It is a direct consequence of the fact that J◦
λ(0) is a Lagrangian subspace of Tλ(T

∗M) for
every λ ∈ T ∗M , hence the symplectic form vanishes when applied to two horizontal vectors.

(iii). Again, for every X ∈ Vec(M), both ∇X and ~H are horizontal vector field. Since the
horizontal space is Lagrangian

∇XH = σ(∇X , ~H) = 0.

Exercise 16.19. Let f : Rn → R be a smooth function that satisfies f(αx) = αf(x) for every
x ∈ Rn and α ≥ 0. Then f is linear.

The following theorem says that a connection satisfying the three properties above is unique.
Then it characterize the Levi-Civita connection in terms of the structure constants of the Lie algebra
defined by an orthonormal frame.

Theorem 16.20. There is a unique Ehresmann connection ∇ satisfying the properties (i), (ii), and
(iii) of Proposition 16.18, that is the Levi-Civita connection. Its Christoffel symbols are computed
by

Γkij =
1

2
(ckij − cijk + cjki), (16.13)

where ckij are the smooth functions defined by the identity [Xi,Xj ] =
∑n

k=1 c
k
ijXk.

Proof. Let X1, . . . ,Xn be a local orthonormal frame for the Riemannian structure and let us con-
sider coordinates (q, u) in T ∗M , where the fiberwise coordinates u = (u1, . . . , un) are dual to the
orthonormal frame. From the linearity of the connection it follows that there exist smooth functions
Γkij :M → R (depending on q only) such that

∇Xi = Xi +
n∑

j=1

Γkijuk∂uj , i = 1, . . . , n.

In particular ∇XiXj = ΓkijXk. In these coordinates the Hamiltonian vector field associated with

the Riemannian Hamiltonian H = 1
2

∑n
i=1 u

2
i reads (see also Exercise ??)

~H =

n∑

i,j,k=1

uiXi + ckijuiuk∂uj ,

while the symplectic form σ is written (ν1, . . . , νn denotes the dual basis to X1, . . . ,Xn)

σ =

n∑

i,j,k=1

duk ∧ νk − ckijukνi ∧ νk.

3recall that B is the zero order term of the expansion of S−1.
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Since the horizontal space is Lagrangian, one has the relations

0 = σ(∇Xi ,∇Xj ) =
n∑

k=1

(Γkij − Γkji − ckij)uk, ∀ i, j = 1, . . . , n,

hence ckij = Γkij − Γkji for all i, j, k. Moreover the connection is metric, i.e. it satisfies

0 = ∇XiH =
n∑

j,k=1

Γkijukuj , ∀ i = 1, . . . , n.

The last identity implies that Γkij is skew-symmetric with respect to the pair (j, k), i.e. Γkij = −Γjik.
Thus combining the two identities one gets

ckij − cijk + cjki = (Γkij − Γkji)− (Γijk + Γikj) + (Γjki − Γjik)

= Γkij − Γjik = 2Γkij .

Remark 16.21. Notice that in the classical approach one can recover formula (16.13) from the
following particular case of the Koszul formula

Γkij = g(∇XiXj ,Xk) =
1

2
(g([Xi,Xj ],Xk)− g([Xj ,Xk],Xi) + g([Xk,Xi],Xj)) ,

that holds for every orthonormal basis X1, . . . ,Xn. Notice also that the Hamiltonian vector field is
written in coordinates ~H =

∑n
i=1 ui∇Xi , which gives another proof of the fact that it is horizontal.

Let X,Y,Z,W ∈ Vec(M). We define R(X,Y )Z =W if R(X,Y )Z∗ =W ∗.

Proposition 16.22 (Bianchi identity). For every X,Y,Z ∈ Vec(M) the following identity holds

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0. (16.14)

Proof. We will show that (16.14) is a consequence of the Jacobi identity (2.32). Using that ∇ is a
torsion free connection we can write

[X, [Y,Z]] = ∇X [Y,Z]−∇[Y,Z]X

= ∇X∇Y Z −∇X∇ZY −∇[Y,Z]X,

[Z, [X,Y ]] = ∇Z∇XY −∇Z∇YX −∇[X,Y ]Z,

[Y, [Z,X]] = ∇Y∇ZX −∇Y∇XZ −∇[Z,X]Y,

Then

0 = [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

= ∇X∇Y Z −∇X∇ZY −∇[Y,Z]X

+∇Z∇XY −∇Z∇YX −∇[X,Y ]Z

+∇Y∇ZX −∇Y∇XZ −∇[Z,X]Y

= R(X,Y )Z +R(Y,Z)X +R(Z,X)Y.
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Exercise 16.23. Prove the second Bianchi identity

(∇XR)(Y,Z,W ) + (∇YR)(Z,X,W ) + (∇ZR)(X,Y,W ) = 0, ∀X,Y,Z,W ∈ Vec(M).

(Hint: Expand the identity ∇[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y ]]W = 0 .)

Let us denote (X,Y,Z,W ) := 〈R(X,Y )Z,W 〉. Following this notation, the first Bianchi identity
can be rewritten as follows:

(X,Y,Z,W ) + (Z,X, Y,W ) + (Y,Z,X,W ) = 0, ∀X,Y,Z,W ∈ Vec(M). (16.15)

Remark 16.24. The property of the Riemann tensor can be reformulated as follows

(X,Y,Z,W ) = −(Y,X,Z,W ), (X,Y,Z,W ) = −(X,Y,W,Z). (16.16)

Proposition 16.25. For every X,Y,Z,W ∈ Vec(M) we have (X,Y,Z,W ) = (Z,W,X, Y ).

Proof. Using (16.15) four times we can write the identities

(X,Y,Z,W ) + (Z,X, Y,W ) + (Y,Z,X,W ) = 0,

(Y,Z,W,X) + (W,Y,Z,X) + (Z,W, Y,X) = 0,

(Z,W,X, Y ) + (X,Z,W, Y ) + (W,X,Z, Y ) = 0,

(W,X, Y,Z) + (Y,W,X,Z) + (X,Y,W,Z) = 0.

Summing all together and using the skew symmetry (16.16), one gets (X,Z,W, Y ) = (W,Y,X,Z).

Proposition 16.26. Assume that (X,Y,X,W ) = 0 for every X,Y,W ∈ Vec(M). Then

(X,Y,Z,W ) = 0 ∀X,Y,Z,W ∈ Vec(M).

Proof. By assumptions and the skew-simmetry properties (16.16) of the Riemann tensor we have
that (X,Y,Z,W ) = 0 whenever any two of the vector fields coincide. In particular

0 = (X,Y +W,Z, Y +W ) = (X,Y,Z,W ) + (X,W,Z, Y ). (16.17)

since the two extra terms that should appear in the expansion vanish by assumptions. Then (16.17)
can be rewritten as

(X,Y,Z,W ) = (Z,X, Y,W ),

i.e. the quantity (X,Y,Z,W ) is invariant by ciclic permutations of X,Y,Z. But the cyclic sum of
terms is zero by (16.15), hence (X,Y,Z,W ) = 0.

We end this section by summarizing the symmetry property of the Riemann curvature as follows

Corollary 16.27. There is a well defined map

R : ∧2TqM → ∧2TqM, R(X ∧ Y ) := R(X,Y ).

Moreover R̄ is skew-adjoint with respect to the induced scalar product on ∧2TqM , that means

〈
R(X ∧ Y ), Z ∧W

〉
=
〈
X ∧ Y,R(Z ∧W )

〉
.

443



16.3 Relation with Hamiltonian curvature

In this section we compute the curvature of the Jacobi curve associated with a Riemannian geodesic
and we describe the relation with the Riemann curvature discussed in the previous section. As we
show, the curvature associated to a geodesic is a kind of sectional curvature operator in the direction
of the geodesic itself.

Definition 16.28. The Hamiltonian curvature tensor at λ ∈ T ∗M is the operator

Rλ := RJλ(0) : Vλ → Vλ.

In other words Rλ is the curvature of the Jacobi curve associated with λ at t = 0.

Proposition 16.29. Let ξ ∈ Vλ and V be a smooth vertical vector field extending ξ. Then

Rλ(ξ) = −[ ~H, [ ~H, V ]hor]ver(λ)

Proof. This is a direct consequence of Proposition 14.30. Indeed recall that the curvature of the
Jacobi curve is expressed through the composition

Rλ = J̇
◦
λ(0) ◦ J̇λ(0).

Moreover, being Jλ(0) = Vλ and J◦
λ(0) = Hλ we have that

πJ(0)J◦(0)(ξ) = ξhor, πJ◦(0)J(0)(η) = ηver.

FInally we can extend vectors in Jλ(0) (resp. J◦
λ(0)) by applying the Hamiltonian vector field

since Jλ(t) = et
~H

∗ Jλ(0) (resp. J◦
λ(t) = et

~H
∗ J◦

λ(0)). From these remarks we obtain the following
formulas

J̇λ(0)ξ = [ ~H, V ]hor, J̇
◦
λ(0)η = −[ ~H,W ]ver

for some V vertical (resp. W horizontal) extension of the vector ξ ∈ Vλ (reps. η ∈ Hλ).

Another immediate property of the curvature tensor is the homogeneity with respect to the
rescaling of the covector (that corresponds to reparametrization of the trajectory). Indeed by
choosing ϕ(t) = ct, with c > 0, in Proposition 14.36 one gets

Corollary 16.30. For every c > 0 we have Rcλ = c2Rλ.

If we use the Riemannian product to identify the tangent and the cotangent space at a point,
we recognize that Rλ is nothing but the sectional curvature operator where one entry is the tangent
vector γ̇ of the geodesic.

Let us denote by I : TM → T ∗M the isomorphism defined by the Riemannian scalar product
〈·|·〉. In particular I(v) = λ for λ ∈ T ∗

qM and v ∈ TqM if 〈λ,w〉 = 〈v|w〉 for all w ∈ TqM .
Let denote Hq = H|T ∗

qM . Recall that the differential of Hq can be interpreted as a linear map
DHq : T ∗

qM → TqM that sends λ ∈ T ∗
qM into DλHq seen as a linear functional on T ∗

qM , i.e. a
tangent vector. This map is actually the inverse of the isomorphism I.

Lemma 16.31. DλHq = I−1(λ).

Proof. It is a simple consequence of the formula H(λ) = 1
2

〈
λ, I−1(λ)

〉
.
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Corollary 16.32. Assume I(v) = λ, then ~H(λ) = ∇v.

Proof. Indeed, since ~H is an horizontal vector field, it is sufficient to show that π∗ ~H(λ) = v, which
is a consequence of Lemma 16.31. Indeed for every vertical vector ξ ∈ Tλ(T ∗

qM) one has

〈ξ, v〉 =
〈
ξ, I−1(λ)

〉
= DλH(ξ) = σ(ξ, ~H(λ)) =

〈
ξ, π∗ ~H(λ)

〉
.

By arbitrary of ξ ∈ Tλ(T ∗
qM) one has the equality v = π∗ ~H(λ).

Theorem 16.33. We have the following identity

RI(X)(I(Y )) = R(X,Y )X, ∀X,Y ∈ TqM. (16.18)

Proof. We have to compute the quantity

RI(X)(I(Y )) = −[ ~H, [ ~H, IY ]hor]ver(I(X))

First notice that π∗[ ~H, I(Y )] = −Y hence [ ~H, I(Y )]hor = −∇Y . Then

−[ ~H, [ ~H, I(Y )]hor]ver(I(X)) = [∇X ,∇Y ]ver(I(X)) = R(X,Y )(X).

Definition 16.34. The Ricci tensor at λ is defined as the trace of the curvature operator at λ,
Ric(λ) := trace Rλ.

Exercise 16.35. Prove the following expression for the Ricci tensor, where X1, . . . ,Xn is a local
orthonormal frame and γ̇(0) = v = I−1(λ) is the tangent vector to the geodesic:

Ric(λ) =

n∑

i=1

〈R(v,Xi)v|Xi〉

=

n∑

i=1

σλ([ ~H,∇Xi ],∇Xi).

This shows that Ric(λ) = Ric(v) coincide with the classical Riemannian Ricci tensor.

16.4 Locally flat spaces

In this section we want to show that the Riemannian curvature is the only obstruction for a Rie-
mannian manifold to be locally Euclidean. Finally we show that the Riemannian curvature is also
completely recovered by the Hamiltonian curvature Rλ.

A Riemannian manifold M is called flat if R(X,Y ) = 0 for every X,Y ∈ Vec(M).

Theorem 16.36. M is flat if and only if M is locally isometric to Rn.
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Proof. If M is locally isometric to Rn, then its curvature tensor at every point in a neighborhood
is identically zero.

Then let us assume that the Riemann tensor R vanishes identically and prove that M is locally
Euclidean. We will do that by showing that there exists coordinate such that the Hamiltonian, in
these set of coordinates, is written as the Hamiltonian of the Euclidean Rn.

Since R is identically zero the horizontal distribution (defined by the Levi Civita connection)
is involutive. Hence, by Frobenius theorem, there exists a horizontal Lagrangian foliation of T ∗M ,
i.e. for each λ ∈ T ∗M , there exists a leaf Lλ of the foliation passing through this point that is
tangent to the horizontal space Hλ. In particular each leaf is transversal to the fiber T ∗

qM , where
q = π(λ).

Fix a point q0 ∈M and a neighborhood Oq0 where R is identically zero. Define the map

Ψ : π−1(Oq0)→ T ∗
q0M, λ ∈ π−1(Oq0) 7→ Lλ ∩ T ∗

q0M

that assigns to each λ the intersection of the leaf passing through this point and T ∗
q0M .

Exercise 16.37. Show that Ψ is a linear, orthogonal transformation, i.e. H(Ψ(λ)) = H(λ) for all
λ ∈ π−1(Oq0). (Hint: use the linearity of the connection and the fact that ~H is horizontal).

Fix now a basis {ν1, . . . , νn} in T ∗
q0M that is orthonormal (with respect to the dual metric).

Being Ψ linear on fibers, we can write

Ψ(λ) =
n∑

i=1

ψi(λ)νi, where ψi(λ) = 〈λ,Xi(q)〉

for a suitable basis of vector fields X1, . . . ,Xn in the neighborhood Oq0 . Moreover X1, . . . ,Xn is
an orthonormal basis since Ψ is an orthogonal map.

We want to show that {X1, . . . ,Xn} is an orthonormal basis of vector fields that commutes
everywhere.

Let us show that the fact that the foliation is Lagrangian implies [Xi,Xj ] = 0 for all i, j =
1, . . . , n.

Indeed the tautological 1-form is written in these coordinates as s =
∑n

i=1 ψi νi and

σ = ds =

n∑

i=1

dψi ∧ νi + ψidνi. (16.19)

Since on each leaf the function ψi is constant by definition (hence dψi|L = 0), we have that
σ|L =

∑
i ψi dνi. In particular each leaf is Lagrangian if and only if dνi = 0 for i = 1, . . . , n. Then,

from the Cartan formula, one gets

0 = dνi(Xj ,Xk) = −νi([Xj ,Xk]), ∀ i, j, k.

This proves that [Xi,Xj ] = 0 for each i, j = 1, . . . , n. Hence, in the coordinate set (ψ, q), we have
H(ψ, q) = 1

2 |ψ|2.

The next result shows that the Hamiltonian curvature can detect if a manifold is flat or not.

Corollary 16.38. M is flat if and only if Rλ = 0 for every λ ∈ T ∗M .
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Proof. Assume that M is flat. Then R is identically zero and a fortiori Rλ = 0 from (16.18).

Let us prove the converse. Recall that Rλ = 0 implies, again by (16.18), that

(X,Y,X,W ) = 0, ∀X,Y,W ∈ Vec(M).

Then the statement is a consequence of Proposition 16.26.

Exercise 16.39. Prove that actually the Riemann tensor R is completely determined by R.

16.5 Example: curvature of the 2D Riemannian case

In this section we apply the definition of curvature discussed in this chapter to a two dimensional
Riemannian surface. As we explain, we recover that the Riemannian curvature tensor is determined
by the Gauss curvature of the manifold.

Let M be a 2-dimensional surface and f1, f2 ∈ Vec(M) be a local orthonormal frame for the
Riemannian metric. The Riemannian Hamiltonian H is written as follows (we use canonical coor-
dinates λ = (p, x) on T ∗M)

H(p, x) =
1

2
(〈p, f1(x)〉2 + 〈p, f2(x)〉2) (16.20)

Here, for a covector λ = (p, x) ∈ T ∗M , the symplectic vector space Σλ = Tλ(T
∗M) is 4-dimensional.

Recall that, being M 2-dimensional, the level set H−1(1/2)∩T ∗
qM is a circle. Hence, there is a

well defined vector field that produces rotation on the reduced fiber. Let us define the angle θ on
the level H−1(1/2) ∩ T ∗

xM by setting

〈p, f1(x)〉 = cos θ, 〈p, f2(x)〉 = sin θ,

in such a way that θ = 0 corresponds to the direction of f1. Denote by ∂θ the rotation in the fiber
of the unit tangent bundle and by ~E, the Euler vector field. Denote finally by ~H ′ := [∂θ, ~H ].

Notice that Σλ = Vλ ⊕Hλ where Vλ = span{~E, ∂θ} and Hλ = span{ ~H, ~H ′}.

Lemma 16.40. The vector fields {~E, ∂θ, ~H, ~H ′} at λ form a Darboux basis for Σλ.

Proof. We want to compute the following symplectic products of the vector fields:

σ(∂θ, ~E) = 0, σ(∂θ, ~H) = 0, σ( ~E, ~H) = 1. (16.21)

σ(∂θ, ~H
′) = 1, σ( ~E, ~H ′) = 0, σ( ~H, ~H ′) = 0. (16.22)

Indeed, let us prove first (16.21). The first equality follows from the fact that both vectors belong
to the vertical subspace, that is Lagrangian. The second one is a consequence of the fact that, by
construction, ∂θ is tangent to the level set of H, i.e. σ(∂θ, ~H) = ∂θ( ~H) = 〈dH, ∂θ〉 = 0. The last
identity is (15.10).

As a preliminary step for the proof of (16.22) notice that, if s = i ~Eσ denotes the tautological
Liouville form, one has

〈s, ~H〉 = 1, 〈s, ~H ′〉 = 0. (16.23)
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These two identities follows from

〈s, ~H〉 = σ( ~E, ~H) = 1, (16.24)

〈s, ~H ′〉 = 〈s, [∂θ, ~H]〉 = ds(∂θ, ~H) = σ(∂θ, ~H) = 0, (16.25)

where in the second line we used the Cartan formula (4.77) and the fact that ∂θ is vertical.
Let us now prove (16.22). Being [∂θ, ~H

′] = [∂θ, [∂θ, ~H ]] = − ~H, we have again by Cartan formula
and (16.23)

σ(∂θ, ~H
′) = ds(∂θ, ~H

′) = −〈s, [∂θ, ~H ′]〉 = 〈s, ~H〉 = σ( ~E, ~H) = 1

Moreover by (16.23)

σ( ~E, ~H ′) = 〈s, ~H ′〉 = 0.

The last computation is similar. Let us write

σ( ~H, ~H ′) = 〈dH, ~H ′〉 = 〈dH, [∂θ, ~H ]〉,

and apply the Cartan formula to the last term (with dH as 1-form).

dH([∂θ, ~H ]) = d2H(∂θ, ~H)− ∂θ〈dH, ~H〉+ ~H 〈dH, ∂θ〉 = 0

since the three terms are all equal to zero.

Now we compute the curvature via the Jacobi curve, reduced by homogeneity. Notice that
by Lemma 16.40 we can remove the symplectic space spanned by {~E, ~H} and, being {~E, ~H}∠ =
{∂θ, ~H ′}, we have

Ĵλ(t) = span{e−t ~H∗ ∂θ}.
Then we define the generator of the Jacobi curve

Vt = e−t
~H

∗ ∂θ, V̇t = e−t
~H

∗ [ ~H, ∂θ] = −e−t ~H∗ ~H ′

Notice that

σ(Vt, V̇t) = −1, for every t ≥ 0. (16.26)

Indeed it is true for t = 0 and the equality is valid for all t since the transformation et
~H

∗ is symplectic.
To compute the curvature of the Jacobi curve let us write

Vt = α(t)V0 − β(t)V̇0 (16.27)

We claim that the matrix S(t) representing the 1-dimensional Jacobi curve (that actually is a
scalar), is given in these coordinates by

S(t) =
β(t)

α(t)
=
σ(V0, Vt)

σ(V̇0, Vt)
.

Indeed the identity

Vt = α(t)V0 − β(t)V̇0 = α(t)

(
V0 −

β(t)

α(t)
V̇0

)
, (16.28)

448



tells us that the matrix representing the vector space spanned by Vt is the graph of the linear map
V0 7→ −β(t)

α(t) V̇0. Moreover, using that V0 and V̇0 is a Darboux basis, it is easy to compute

σ(V0, Vt) = α(t)σ(V0, V0)︸ ︷︷ ︸
=0

−β(t)σ(V0, V̇0)︸ ︷︷ ︸
=−1

= β(t), (16.29)

σ(V̇0, Vt) = α(t)σ(V̇0, V0)︸ ︷︷ ︸
=1

−β(t)σ(V̇0, V̇0)︸ ︷︷ ︸
=0

= α(t). (16.30)

Differentiating the identity (16.26) with respect to t one gets the relations

σ(Vt, V̈t) = 0, σ(Vt, V
(3)
t ) = −σ(V̇t, V̈t)

Notice that these quantities are constant with respect to t. Collecting the above results one can
compute the asymptotic expansion of S(t) with respect to t

S(t) =
−t+ t3

6
σ(V0,

...
V 0) +O(t5)

1 +
t2

2
σ(V̇0, V̈0) +O(t4)

(16.31)

=

(
−t+ t3

6
σ(V0,

...
V 0) +O(t5)

)(
1− t2

2
σ(V̇0, V̈0) +O(t4)

)
(16.32)

and one gets for the derivative of S(t) at t = 0

Ṡ(0) = −1, S̈(0) = 0,
...
S (0) = 2σ(V̇0, V̈0).

The formula for the curvature R is finally computed in terms of S(t) as follows:

R = −1

2

...
S (0) = σ(V̈0, V̇0) (16.33)

Using that Vt = e−t ~H∗ ∂θ we can expand Vt as follows

Vt = ∂θ + t[ ~H, ∂θ] +
t2

2
[ ~H, [ ~H, ∂θ]] +O(t3)

hence (16.33) is rewritten as

R = σ([ ~H, [ ~H, ∂θ]], [ ~H, ∂θ]) (16.34)

= σ([ ~H, ~H ′], ~H ′) (16.35)

To end this section, we compute the curvature R with respect to the orthonormal frame f1, f2.
Denote the Hamiltonians

hi(p, x) = 〈p, fi(x)〉 , i = 1, 2.

The PMP reads 



ẋ = h1f1(x) + h2f2(x)

ḣ1 = {H,h1} = {h2, h1}h2
ḣ2 = {H,h2} = −{h2, h1}h1

(16.36)
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Moreover {h2, h1}(p, x) = 〈p, [f2, f1](x)〉. Assume that

[f1, f2] = a1f1 + a2f2, ai ∈ C∞(M).

Then
{h2, h1} = −a1h1 − a2h2.

If we restrict to h1 = cos θ and h2 = sin θ equations (16.36) become

{
ẋ = cos θf1 + sin θf2

θ̇ = a1 cos θ + a2 sin θ

and it is easy to compute the following expression for ~H and commutators4

~H = h1f1 + h2f2 + (a1h1 + a2h2)∂θ,

~H ′ = −h2f1 + h1f2 + (−a1h2 + a2h1)∂θ,

[ ~H, ~H ′] = (f1a2 − f2a1 − a21 − a22)∂θ.

Recall that
κ = f1a2 − f2a1 − a21 − a22,

is the Gaussian curvature of the surface M (see also Chapter 4). Since σ(∂θ, ~H
′) = 1 one gets

R = σ([ ~H, ~H ′], ~H ′) = σ(κ∂θ, ~H
′) = κ.

Exercise 16.41. In this exercise we recover the previous computations introducing dual coordinates
to our frame. Let ν1, ν2 be the dual basis to f1, f2 and set

fθ := h1f1 + h2f2, νθ := h1ν1 + h2ν2.

Define the smooth function b := a1h1 + a2h2 on T ∗M . In these notation

~H = fθ + b∂θ, ~H ′ = fθ′ + b′∂θ,

where ′ denotes the derivative with respect to θ. Then, using that in these coordinates the tauto-
logical form is s = νθ, show that the symplectic form is written as

σ = ds = dθ ∧ νθ′ − b ν1 ∧ ν2,

and compute the following expressions

i ~H′σ = (b′ − b)νθ′ − dθ,
[ ~H, ~H ′] = (fθb

′ − fθ′b− b2 − b′2)∂θ,

showing that this gives an alternative proof of the above computation of the curvature.

4here we still use the notation h1, h2 as functions of θ satisfying ∂θh1 = −h2, ∂θh2 = h1
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Chapter 17

Curvature in 3D contact
sub-Riemannian geometry

The main goal of this chapter is to compute the curvature of the three dimensional contact sub-
Riemannian case. Then we will discuss how the invariant contained in the sub-Riemannian curva-
ture classify 3D left-invariant structures on Lie groups.

17.1 3D contact sub-Riemannian manifolds

In this section we consider a sub-Riemannian manifold M of dimension 3 whose distribution is
defined as the kernel of a contact 1-form ω ∈ Λ1(M), i.e. Dq = kerωq for all q ∈M . Let us also fix
a local orthonormal frame f1, f2 such that

Dq = kerωq = span{f1(q), f2(q)}

Recall that the 1-form ω ∈ Λ1(M) defines a contact distribution if and only if ω ∧ dω 6= 0 is never
vanishing.

Exercise 17.1. Let M be a 3D manifold, ω ∈ Λ1M and D = kerω. The following are equivalent:

(i) ω is a contact 1-form,

(ii) dω
∣∣
D 6= 0,

(iii) ∀ f1, f2 ∈ D linearly independent, then [f1, f2] /∈ D.
Remark 17.2. The contact form ω is defined up to a smooth function, i.e. if ω is a contact form,
aω is a contact form for every a ∈ C∞(M). This let us to normalize the contact form by requiring
that

dω
∣∣
D = ν1 ∧ ν2, (i.e. dω(f1, f2) = 1.)

where ν1, ν2 is the dual basis to f1, f2. This is equivalent to say that dω is equal to the area form
induced on the distribution by the sub-Riemannian scalar product.

Definition 17.3. The Reeb vector field of the contact structure is the unique vector field f0 ∈
Vec(M) that satisfies

dω(f0, ·) = 0, ω(f0) = 1
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In particular f0 is transversal to the distribution and the triple {f0, f1, f2} defines a basis of
TqM at every point q ∈M . Notice that ω, ν1, ν2 is the dual basis to this frame.

Remark 17.4. The flow generated by the Reeb vector field etf0 : M → M is a group of diffeomor-
phisms that satisfy (etf0)∗ω = ω. Indeed

Lf0ω = d(if0ω) + if0dω = 0

since if0ω = ω(f0) = 1 is constant and if0dω = dω(f0, ·) = 0.

In what follows, to simplify the notation, we will replace the contact form ω by ν0, as the dual
element to the vector field f0. We can write the structure equations of this basis of 1-forms





dν0 = ν1 ∧ ν2
dν1 = c101ν0 ∧ ν1 + c102ν0 ∧ ν2 + c112ν1 ∧ ν2
dν2 = c201ν0 ∧ ν1 + c202ν0 ∧ ν2 + c212ν1 ∧ ν2

(17.1)

The structure constants ckij are smooth functions on the manifold. Recall that the equation

dνk =
2∑

i,j=0

ckijνi ∧ νj if and only if [fj , fi] =
2∑

k=0

ckijfk.

Introduce the coordinates (h0, h1, h2) in each fiber of T ∗M induced by the dual frame

λ = h0ν0 + h1ν1 + h2ν2

where hi(λ) = 〈λ, fi(q)〉 are the Hamiltonians linear on fibers associated to fi, for i = 0, 1, 2. The
sub-Riemannian Hamiltonian is written as follows

H =
1

2
(h21 + h22).

We now compute the Poisson bracket {H,h0}, denoting with {H,h0}q its restriction to the fiber
T ∗
qM .

Proposition 17.5. The Poisson bracket {H,h0}q is a quadratic form. Moreover we have

{H,h0} = c101h
2
1 + (c201 + c102)h1h2 + c202h

2
2, (17.2)

c101 + c202 = 0. (17.3)

Notice that ∆⊥
q ⊂ ker {H,h0}q and {H,h0}q can be treated as a quadratic form on T ∗

qM/∆⊥
q = ∆∗

q.

Proof. Using the equality {hi, hj}(λ) = 〈λ, [fi, fj ](q)〉 we get

{H,h0} =
1

2
{h21 + h22, h0} = h1{h1, h0}+ h2{h2, h0}

= h1(c
1
01h1 + c201h2) + h2(c

1
02h1 + c202h2)

= c101h
2
1 + (c201 + c102)h1h2 + c202h

2
2.
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Differentiating the first equation in (17.1) one gets:

0 = d2ν0 = dν1 ∧ ν2 − ν1 ∧ ν2
= (c101ν0 ∧ ν1) ∧ ν2 − ν1 ∧ (c202ν0 ∧ ν2)
= (c101 + c202)ν0 ∧ ν1 ∧ ν2

which proves (17.3).

Remark 17.6. Being {H,h0}q a quadratic form on the Euclidean plane Dq (using the canonical
identification of the vector space Dq with its dual D∗

q given by the scalar product), it can be
interpreted as a symmetric operator on the plane itself. In particular its determinant and its trace
are well defined. From (17.3) we get

trace {H,h0}q = c101 + c202 = 0.

This identity is a consequence of the fact that the flow defined by the normalized Reeb f0 preserves
not only the distribution but also the area form on it.

It is natural then to define our first invariant as the positive eigenvalue of this operator, namely:

χ(q) =
√
−det{H,h0}q. (17.4)

Notice that the function χ measures an intrinsic quantity since both H and h0 are defined only
by the sub-Riemannian structure and are independent by the choice of the orthonormal frame.
Indeed the quantity {H,h0} compute the derivative of H along the flow of ~h0, i.e. the obstruction
to the fact that the flow of the Reeb field f0 (which preserves the distribution and the volume form
on it) to preserve the metric. Notice that, by definition χ ≥ 0.

Corollary 17.7. Assume that the vector field f0 is complete. Then {etf0}t∈R is a group of sub-
Riemannian isometries if and only if χ ≡ 0.

In the case when χ ≡ 0 one can consider (locally) the quotient of M with respect to the action
of this group, i.e. the space of trajectories described by f0. The two dimensional surface defined
by the quotient strucure is endowed with a well defined Riemannian metric.

The sub-Riemannian structure on M coincide with the isoperimetric Dido problem constructed
on this surface. The Heisenberg case corresponds with the case when the surface has zero Gaussian
curvature.

17.2 Canonical frames

In this section we want to show that it is always possible to select a canonical orthonormal frame
for the sub-Riemannian structure. In this way we are able to find missing discrete invariants and to
classify sub-Riemannian structures simply knowing structure constants ckij for the canonical frame.
We study separately the two cases χ 6= 0 and χ = 0.

We start by rewriting and improving Proposition 17.5 when χ 6= 0.
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Proposition 17.8. Let M be a 3D contact sub-Riemannian manifold and q ∈ M . If χ(q) 6= 0,
then there exists a local frame such that

{h, h0} = 2χh1h2. (17.5)

In particular, in the Lie group case with left-invariant stucture, there exists a unique (up to a sign)
canonical frame (f0, f1, f2) such that

[f1, f0] = c201f2,

[f2, f0] = c102f1, (17.6)

[f2, f1] = c112f1 + c212f2 + f0.

Moreover we have

χ =
c201 + c102

2
, κ = −(c112)2 − (c212)

2 +
c201 − c102

2
. (17.7)

Proof. From Proposition 17.5 we know that the Poisson bracket {h, h0}q is a non degenerate sym-
metric operator with zero trace. Hence we have a well defined, up to a sign, orthonormal frame by
setting f1, f2 as the orthonormal isotropic vectors of this operator (remember that f0 depends only
on the structure and not on the orthonormal frame on the distribution). It is easily seen that in
both of these cases we obtain the expression (17.5).

Remark 17.9. Notice that, if we change sign to f1 or f2, then c
2
12 or c112, respectively, change sign in

(17.6), while c102 and c201 are unaffected. Hence equalities (17.7) do not depend on the orientation
of the sub-Riemannian structure.

If χ = 0 the above procedure cannot apply. Indeed both trace and determinant of the operator
vanish, hence we have {h, h0}q = 0. From (17.2) we get the identities

c101 = c202 = 0, c201 + c102 = 0. (17.8)

so that commutators (??) simplify in (where c = c201)

[f1, f0] = cf2,

[f2, f0] = −cf1, (17.9)

[f2, f1] = c112f1 + c212f2 + f0.

We want to show, with an explicit construction, that also in this case there always exists a
rotation of our frame, by an angle that smoothly depends on the point, such that in the new frame
κ is the only structure constant which appear in (17.9).

Lemma 17.10. Let f1, f2 be an orthonormal frame on M . If we denote with f̂1, f̂2 the frame
obtained from the previous one with a rotation by an angle θ(q) and with ĉkij structure constants of
rotated frame, we have:

ĉ112 = cos θ(c112 − f1(θ))− sin θ(c212 − f2(θ)),
ĉ212 = sin θ(c112 − f1(θ)) + cos θ(c212 − f2(θ)).
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Now we can prove the main result of this section.

Proposition 17.11. Let M be a 3D simply connected contact sub-Riemannian manifold such that
χ = 0. Then there exists a rotation of the original frame f̂1, f̂2 such that:

[f̂1, f0] = κf̂2,

[f̂2, f0] = −κf̂1, (17.10)

[f̂2, f̂1] = f0.

Proof. Using Lemma 17.10 we can rewrite the statement in the following way: there exists a
function θ :M → R such that

f1(θ) = c112, f2(θ) = c212. (17.11)

Indeed, this would imply ĉ112 = ĉ212 = 0 and κ = c.

Let us introduce simplified notations c112 = α1, c
2
12 = α2. Then

κ = f2(α1)− f1(α2)− (α1)
2 − (α2)

2 + c. (17.12)

If (ν0, ν1, ν2) denotes the dual basis to (f0, f1, f2) we have

dθ = f0(θ)ν0 + f1(θ)ν1 + f2(θ)ν2.

and from (17.9) we get:

f0(θ) = ([f2, f1]− α1f1 − α2f2)(θ)

= f2(α1)− f1(α2)− α2
1 − α2

2

= κ− c.

Suppose now that (17.11) are satisfied, we get

dθ = (κ− c)ν0 + α1ν1 + α2ν2 =: η. (17.13)

with the r.h.s. independent from θ.

To prove the theorem we have to show that η is an exact 1-form. Since the manifold is simply
connected, it is sufficient to prove that η is closed. If we denote νij := νi ∧ νj dual equations of
(17.9) are:

dν0 = ν12,

dν1 = −cν02 + α1ν12,

dν2 = cν01 − α2ν12.

and differentiating we get two nontrivial relations:

f1(c) + cα2 + f0(α1) = 0, (17.14)

f2(c) − cα1 + f0(α2) = 0. (17.15)
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Recollecting all these computations we prove the closure of η

dη = d(κ − c) ∧ ν0 + (κ− c)dν0 + dα1 ∧ ν1 + α1dν1 + dα2 ∧ ν2 + α2dν2

= −dc ∧ ν0 + (κ− c)ν12+
+ f0(α1)ν01 − f2(α1)ν12 + α1(α1ν12 − cν02)

+ f0(α2)ν02 + f1(α2)ν12 + α2(cν01 − α2ν12)

= (f0(α1) + α2c+ f1(c))ν01

+ (f0(α2)− α1c+ f2(c))ν02

+ (κ− c− f2(α1) + f1(α2) + α2
1 + α2

2)ν12

= 0.

where in the last equality we use (17.12) and (17.14)-(17.15).

17.3 Curvature of a 3D contact structure

In this section we compute the sub-Riemannian curvature of a 3D contact structure with a technique
similar to that used in Section 16.5 for the 2D Riemannian case. Let us consider the level set
{H = 1/2} = {h21 + h22 = 1} and define the coordinate θ in such a way that

h1 = cos θ, h2 = sin θ.

On the bundle T ∗M ∩ H−1(1/2) we introduce coordinates (x, θ, h0). Notice that each fiber is
topologically a cylinder S1 × R.

The sub-Riemannian Hamiltonian equation written in these coordinates are





ẋ = h1f1(x) + h2f2(x)

ḣ1 = {H,h1} = {h2, h1}h2
ḣ2 = {H,h2} = −{h2, h1}h1
ḣ0 = {H,h0}

(17.16)

Computing the Poisson bracket {h2, h1} = h0 + c112h1 + c212h2 and introducing the two functions
a, b : T ∗M → R given by

a = {H,h0} =
2∑

i,j=1

cj0ihihj , b := c112h1 + c212h2.

we can rewrite the system, when restricted to H−1(1/2), as follows





ẋ = cos θf1 + sin θf2

θ̇ = −h0 − b
ḣ0 = a

(17.17)

Notice that, while a is intrinsic, the function b depends on the choice of the orthonormal frame.
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In particular we have for the Hamiltonian vector field in the coordinates (q, θ, h0) (where we
use h1, h2 as a shorthand for cos θ and sin θ):

~H = h1f1 + h2f2 − (h0 + b)∂θ + a∂h0 (17.18)

[∂θ, ~H ] = ~H ′ = −h2f1 + h1f2 + a′∂h0 − b′∂θ (17.19)

where we denoted by ′ the derivative with respect to θ, e.g. h′1 = −h2 and h′2 = h1.

Now consider the symplectic vector space Σλ = Tλ(T
∗M). The vertical subspace Vλ is generated

by the vectors ∂θ, ∂h0 ,
~E. Hence the Jacobi curve is

Jλ(t) = span{e−t ~H∗ ∂θ, e
−t ~H
∗ ∂h0 , e

−t ~H
∗ ~E}

The first reduction, by homogeneity, let us to split the space Σλ = span{~E, ~H}⊕ span{~E, ~H}∠ and
consider the reduced Jacobi curve Λ(t) := Ĵλ(t) in the 4-dimensional symplectic space

Λ(t) := e−t
~H

∗ V̂λ/R ~H = span{e−t ~H∗ ∂θ, e
−t ~H
∗ ∂h0}/R ~H

Next we describe the second reduction of the Jacobi curve, the one related with the fact that
the curve is non-regular. Indeed notice that the rank of Ĵλ(t) is 1. To find the new reduced curve,
we need to compute the kernel of the derivative of the curve at t = 0

Γ := ker Λ̇(0)

From the definition of Λ̇ := Λ̇(0) it follows that

Λ̇(∂θ) = π∗[ ~H, ∂θ] = h2f1 − h1f2
Λ̇(∂h0) = π∗[ ~H, ∂h0 ] = π∗(∂θ) = 0

Hence Γ = R∂h0 and Γ∠ is 3-dimensional in V̂λ/R ~H.

Proposition 17.12. We have the following characterizations:

(i) Γ∠ = span{∂h0 , ∂θ, ~H ′} in V̂λ/R ~H,

(ii) {∂θ, ~H ′} is a Darboux basis for Γ∠/Γ.

Proof. Since ∂h0 and ∂θ are vertical to prove (i) it is enough to show that ~H ′ is skew-orthongonal
to ∂h0 . It is easy to compute, by Cartan formula

σ(∂h0 ,
~H ′) = ∂h0〈s, ~H ′〉 − ~H ′ 〈s, ∂h0〉 − 〈s, [∂h0 , ~H ′]〉 = 0,

since all the three terms vanish. Indeed 〈s, ~H ′〉 = σ( ~E, ~H ′) = 0 and 〈s, ∂h0〉 = 〈s, [∂h0 , ~H ′]〉 = 0
since ∂h0 and [∂h0 ,

~H ′] are both vertical, as can be computed from (17.19).

To complete the proof of (ii) it is enough to show, using [∂θ, ~H
′] = − ~H, that

σ(∂θ, ~H
′) = ∂θ〈s, ~H ′〉 − ~H ′ 〈s, ∂θ〉 − 〈s, [∂θ, ~H ′]〉 = 〈s, ~H〉 = 1.
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Next we compute the curvature in terms of the Hamiltonian vector field and its commutators.
For a vector field W we use the notations

Ẇ := [ ~H,W ], W ′ := [∂θ,W ].

Let us consider the vector field Vt = e−t ~H∗ ∂h0 . Notice that

V̇0 = ∂θ, V̈0 = − ~H ′.

The fact that ∂θ and ∂h0 are vertical implies that

σ(Vt, V̇t) = 0, ∀ t ≥ 0

Differentiating the above identity at t = 0 we get (from now on, we omit t when we evaluate at
t = 0)

σ(V̇ , V̇ ) + σ(V, V̈ ) = 0 =⇒ σ(V, V̈ ) = 0.

Differentiating once more the last identity and using σ(V̇ , V̈ ) = −σ(∂θ, ~H ′) = −1 one gets

σ(V̇ , V̈ ) + σ(V, V (3)) = 0 =⇒ σ(V, V (3)) = 1.

With similar computations one can show that σ(V̇ , V (3)) = σ(V, V (4)) = 0. Evaluating all deriva-
tives of order 4 one can see that

r := σ(V̈ , V (3)) = −σ(V̇ , V (4)) = σ(V, V (5)).

Proposition 17.13. The sub-Riemannian curvature is

R =
1

10
σ([ ~H, ~H ′], ~H ′) = − r

10

Proof. The second equality follows from the definition of r and the fact that V̈ = − ~H ′ and V (3) =
[ ~H, ~H ′].

To prove the first identity we have to compute the Schwartzian derivative of the bi-reduced
curve, in the symplectic basis (V̇ ,−V̈ ) of the space Γ∠/Γ (notice the minus sign).

Recall that Λ(t) = span{Vt, V̇t}. To compute the 1-dimensional reduced curve ΛΓ(t) in the
symplectic space Γ∠/Γ we need to compute the intersection of Λ(t) with Γ∠ (for all t). In other
words we look for x(t) such that

σ(V̇t + x(t)Vt, V0) = 0 =⇒ x(t) = −σ(V̇t, V0)
σ(Vt, V0)

. (17.20)

Then we write this vector as a linear combination of the Darboux basis (cf. (16.28) for the 2D
Riemannian case)

V̇t + x(t)Vt = α(t)V̇0 − β(t)V̈0 + ξ(t)V0 (17.21)

To see it as a curve in the space Γ/Γ∠ we simply ignore the coefficient along V0. In these coordinates
the matrix S(t), which is a scalar, representing the curve is

S(t) =
β(t)

α(t)
(17.22)
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Notice that this is a one-dimensional non-degenerate curve. These coefficients are computed by the
symplectic products

α(t) = −σ(V̇t + x(t)Vt, V̈0) (17.23)

β(t) = −σ(V̇t + x(t)Vt, V̇0) (17.24)

Combining (17.23),(17.24) with (17.22) and (17.20) one gets

S(t) =
σ(V̇t, V̇0)σ(Vt, V0)− σ(Vt, V̇0)σ(V̇t, V0)
σ(V̇t, V̈0)σ(V̇t, V̇0)− σ(V̇t, V̈0)σ(V̇t, V̇0)

(17.25)

After some computations, by Taylor expansion one gets

S(t) =
t

4
− t3

120
r +O(t4) (17.26)

Since S̈0 = 0 the curvature is computer by

R =

...
S 0

2Ṡ0
= − r

10

We end this section by computing the expression of the curvature in terms of the orthonormal
frame for the distribution and the Reeb vector filed. As usual we restrict to the level set H−1(1/2)
where

h21 + h22 = 1, h1 = cos θ, h2 = sin θ.

In the following we use the notation

fθ = h1f1 + h2f2, νθ = h1ν1 + h2ν2.

If h = (h1, h2) = (cos θ, sin θ) we denote by h′ = (−h2, h1) = (− sin θ, cos θ) its derivative with
respect to θ and, more in general, we denote F ′ := ∂θF for a smooth function F on T ∗M .

To express the quantity r = σ([ ~H, ~H ′], ~H ′) we start by computing the commutator [ ~H, ~H ′].
From (17.18) and (17.19) one gets

[ ~H, ~H ′] = −f0 + h0fθ + (f2c
1
12 − f1c212 − (h0 + b)b− (b′)2 + a′)∂θ.

Next we write, following this notation, the symplectic form σ = ds. The Liouville form s is
expressed, in the dual basis ν0, ν1, ν2 to the basis of vector fields f1, f2, f0 as follows

s = h0ν0 + νθ

hence the symplectic form σ is written as follows

σ = dh0 ∧ ν0 + h0 νθ ∧ νθ′ + dθ ∧ νθ′ + dνθ

where we used that dν0 = ν1 ∧ ν2 = νθ ∧ νθ′ . Computing the symplectic product then one finds the
value of

10R = h20 +
3

2
a′ + κ
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where

κ = f2c
1
12 − f1c212 − (c112)

2 − (c212)
2 +

c201 − c102
2

(17.27)

By homogeneity, the function R is defined on the whole T ∗M , and not only for λ ∈ H−1(1/2).
For every λ = (h0, h1, h2) ∈ T ∗

xM

10R = h20 +
3

2
a′ + κ(h21 + h22)

Remark 17.14. The restriction of R to the 1-dimensional subspace λ ∈ D⊥ (that corresponds to
λ = (h0, 0, 0)), is a strictly positive quadratic form. Moreover it is equal to 1/10 when evaluated on
the Reeb vector field. Hence the curvatureR encodes both the contact form ω and its normalization.

On the orthogonal complement (with respect to R) {h0 = 0} we have that R is treated as a
quadratic form

R =
3

2
a′ + κ(h21 + h22).

Remark 17.15. (i). If a 6= 0 there always exists a frame such that

a = 2χh1h2

and in this frame we can express R as a quadratic form on the whole T ∗M

R = h20 + (κ+ 3χ)h21 + (κ− 3χ)h22.

It is easily seen from this formulas that we can recover the two invariants χ, κ considering

trace(10R
∣∣
h0=0

) = 2κ, discr(10R
∣∣
h0=0

) = 36χ.

(ii). When a = 0 the eigenvalues of R coincide and χ = 0. In this case κ represents the Riemannian
curvature of the surface defined by the quotient of M with respect to the flow of the Reeb vector
field.

Indeed the flow etf0∗ preserves the metric and it is easy to see that the identities

etf0∗ fi = fi, i = 1, 2.

implies [f0, f1] = [f0, f2] = 0. Hence c201, c
1
02 = 0 and the expression of κ reduces to the Riemannian

curvature of a surface whose orthonormal frame is f1, f2.

Exercise 17.16. Let f1, f2 be an orthonormal frame forM and denote by f̂1, f̂2 the frame obtained
rotating f1, f2 by an angle θ = θ(q). Show that the structure constants ĉkijof rotated frame satisfies

ĉ112 = cos θ(c112 − f1(θ))− sin θ(c212 − f2(θ)),
ĉ212 = sin θ(c112 − f1(θ)) + cos θ(c212 − f2(θ)).

Exercise 17.17. Show that the expression (17.27) for κ does not depend on the choice of an
orthonormal frame f1, f2 for the sub-Riemannian structure.
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17.4 Application: classification of 3D left-invariant structures*

In this section we exploit the local invariants χ, κ introduced before to provide a complete classifi-
cation of left-invariant structures on 3D Lie groups. A sub-Riemannian structure on a Lie group is
said to be left-invariant if its distribution and the inner product are preserved by left translations
on the group. A left-invariant distribution is uniquely determined by a two dimensional subspace
of the Lie algebra of the group. The distribution is bracket generating (and contact) if and only if
the subspace is not a Lie subalgebra.

A standard result on the classification of 3D Lie algebras (see, for instance, [66]) reduce the
analysis on the Lie algebras of the following Lie groups:

H3, the Heisenberg group,

A+(R)⊕ R, where A+(R) is the group of orientation preserving affine maps on R,

SOLV +, SOLV − are Lie groups whose Lie algebra is solvable and has 2-dim square,

SE(2) and SH(2) are the groups of orientation preserving motions of Euclidean and Hyper-
bolic plane respectively,

SL(2) and SU(2) are the three dimensional simple Lie groups.

Moreover it is easy to show that in each of these cases but one all left-invariant bracket generating
distributions are equivalent by automorphisms of the Lie algebra. The only case where there exists
two non-equivalent distributions is the Lie algebra sl(2). More precisely a 2-dimensional subspace
of sl(2) is called elliptic (hyperbolic) if the restriction of the Killing form on this subspace is sign-
definite (sign-indefinite). Accordingly, we use notation SLe(2) and SLh(2) to specify on which
subspace the sub-Riemannian structure on SL(2) is defined.

For a left-invariant structure on a Lie group the invariants χ and κ are constant functions and
allow us to distinguish non isometric structures. To complete the classification we can restrict
ourselves to normalized sub-Riemannian structures, i.e. structures that satisfy

χ = κ = 0, or χ2 + κ2 = 1. (17.28)

Indeed χ and κ are homogeneous with respect to dilations of the orthonormal frame, that means
rescaling of distances on the manifold. Thus we can always rescale our structure in such a way that
(17.28) is satisfied.

To find missing discrete invariants, i.e. to distinguish between normalized structures with same
χ and κ, we then show that it is always possible to select a canonical orthonormal frame for the sub-
Riemannian structure such that all structure constants of the Lie algebra of this frame are invariant
with respect to local isometries. Then the commutator relations of the Lie algebra generated by
the canonical frame determine in a unique way the sub-Riemannian structure.

Falbel and Gorodski in [49] present a complete classification of sub-Riemannian homogeneous
spaces (i.e. sub-Riemannian structures which admits a transitive Lie group of isometries acting
smoothly on the manifold) in dimension 3 and 4, by means of invariants associated with an adapted
connection.

In what follows we recover these result in the case of 3D Lie groups, using our invariants χ and
κ, which coincide, up to a normalization factor, with those used in [49] and denoted τ0 and K.
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Theorem 17.18. All left-invariant sub-Riemannian structures on 3D Lie groups are classified up
to local isometries and dilations as in Figure 17.1, where a structure is identified by the point (κ, χ)
and two distinct points represent non locally isometric structures.

Moreover

(i) If χ = κ = 0 then the structure is locally isometric to the Heisenberg group,

(ii) If χ2 + κ2 = 1 then there exist no more than three non isometric normalized sub-Riemannian
structures with these invariants; in particular there exists a unique normalized structure on a
unimodular Lie group (for every choice of χ, κ).

(iii) If χ 6= 0 or χ = 0, κ ≥ 0, then two structures are locally isometric if and only if their Lie
algebras are isomorphic.

Figure 17.1: Classification

In other words every left-invariant sub-Riemannian structure is locally isometric to a normal-
ized one that appear in Figure 17.1, where we draw points on different circles since we consider
equivalence classes of structures up to dilations. In this way it is easier to understand how many
normalized structures there exist for some fixed value of the local invariants. Notice that unimod-
ular Lie groups are those that appear in the middle circle (except for A+(R)⊕ R).

From the proof of Theorem 17.18 we get also a uniformization-like theorem for “constant cur-
vature” manifolds in the sub-Riemannian setting:

Corollary 17.19. Let M be a complete simply connected 3D contact sub-Riemannian manifold.
Assume that χ = 0 and κ is costant on M . Then M is isometric to a left-invariant sub-Riemannian
structure. More precisely:
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(i) if κ = 0 it is isometric to the Heisenberg group H3,

(ii) if κ = 1 it is isometric to the group SU(2) with Killing metric,

(iii) if κ = −1 it is isometric to the group S̃L(2) with elliptic type Killing metric,

where S̃L(2) is the universal covering of SL(2).

Another byproduct of the classification is the fact that there exist non isomorphic Lie groups
with locally isometric sub-Riemannian structures. Indeed, as a consequence of Theorem 17.18, we
get that there exists a unique normalized left-invariant structure defined on A+(R) ⊕ R having
χ = 0, κ = −1. Thus A+(R)⊕ R is locally isometric to the group SL(2) with elliptic type Killing
metric by Corollary 17.19.

This fact was already noted in [49] as a consequence of the classification. In this paper we
explicitly compute the global sub-Riemannian isometry between A+(R) ⊕ R and the universal
covering of SL(2) by means of Nagano principle. We then show that this map is well defined on the
quotient, giving a global isometry between the group A+(R) × S1 and the group SL(2), endowed
with the sub-Riemannian structure defined by the restriction of the Killing form on the elliptic
distribution.

The group A+(R)⊕R can be interpreted as the subgroup of the affine maps on the plane that
acts as an orientation preserving affinity on one axis and as translations on the other one1

A+(R)⊕ R :=







a 0 b
0 1 c
0 0 1


 , a > 0, b, c ∈ R



 .

The standard left-invariant sub-Riemannian structure on A+(R)⊕R is defined by the orthonor-
mal frame D = span{e2, e1 + e3}, where

e1 =



0 0 1
0 0 0
0 0 0


 , e2 =



−1 0 0
0 0 0
0 0 0


 , e3 =



0 0 0
0 0 1
0 0 0


 ,

is a basis of the Lie algebra of the group, satisfying [e1, e2] = e1.

The subgroup A+(R) is topologically homeomorphic to the half-plane {(a, b) ∈ R2, a > 0} which
can be descirbed in standard polar coordinates as {(ρ, θ)| ρ > 0,−π/2 < θ < π/2}.

Theorem 17.20. The diffeomorphism Ψ : A+(R)× S1 −→ SL(2) defined by

Ψ(ρ, θ, ϕ) =
1√

ρ cos θ

(
cosϕ sinϕ

ρ sin(θ − ϕ) ρ cos(θ − ϕ)

)
, (17.29)

where (ρ, θ) ∈ A+(R) and ϕ ∈ S1, is a global sub-Riemannian isometry.

1We can recover the action as an affine map identifying (x, y) ∈ R2 with (x, y, 1)T and





a 0 b
0 1 c
0 0 1









x
y
1



 =





ax+ b
y + c
1



 .
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Using this global sub-Riemannian isometry as a change of coordinates one can recover the
geometry of the sub-Riemannian structure on the group A+(R)× S1, starting from the analogous
properties of SL(2) (e.g. explicit expression of the sub-Riemannian distance, the cut locus).

Remark 17.21 (Comments). χ and κ are functions defined on the manifold; they reflect intrinsic
geometric properties of the sub-Riemannian structure and are preserved by the sub-Riemannian
isometries. In particular, χ and κ are constant functions for left-invariant structures on Lie groups
(since left translations are isometries).

17.5 Proof of Theorem 17.18

Now we use the results of the previous sections to prove Theorem 17.18.
In this section G denotes a 3D Lie group, with Lie algebra g, endowed with a left-invariant

sub-Riemannian structure defined by the orthonormal frame f1, f2, i.e.

D = span{f1, f2} ⊂ g, span{f1, f2, [f1, f2]} = g.

Recall that for a 3D left-invariant structure to be bracket generating is equivalent to be contact,
moreover the Reeb field f0 is also a left-invariant vector field by construction.

From the fact that, for left-invariant structures, local invariants are constant functions (see
Remark ??) we obtain a necessary condition for two structures to be locally isometric.

Proposition 17.22. Let G,H be 3D Lie groups with locally isometric sub-Riemannian structures.
Then χG = χH and κG = κH .

Notice that this condition is not sufficient. It turns out that there can be up to three mutually
non locally isometric normalized structures with the same invariants χ, κ.

Remark 17.23. It is easy to see that χ and κ are homogeneous of degree 2 with respect to dilations
of the frame. Indeed assume that the sub-Riemannian structure (M,D,g) is locally defined by the
orthonormal frame f1, f2, i.e.

D = span{f1, f2}, g(fi, fj) = δij .

Consider now the dilated structure (M,D, g̃) defined by the orthonormal frame λf1, λf2

D = span{f1, f2}, g̃(fi, fj) =
1

λ2
δij , λ > 0.

If χ, κ and χ̃, κ̃ denote the invariants of the two structures respectively, we find

χ̃ = λ2χ, κ̃ = λ2κ, λ > 0.

A dilation of the orthonormal frame corresponds to a multiplication by a factor λ > 0 of all
distances in our manifold. Since we are interested in a classification by local isometries, we can
always suppose (for a suitable dilation of the orthonormal frame) that the local invariants of our
structure satisfy

χ = κ = 0, or χ2 + κ2 = 1,

and we study equivalence classes with respect to local isometries.

Since χ is non negative by definition (see Remark ??), we study separately the two cases χ > 0
and χ = 0.
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17.5.1 Case χ > 0

Let G be a 3D Lie group with a left-invariant sub-Riemannian structure such that χ 6= 0. From
Proposition 17.8 we can assume that D = span{f1, f2} where f1, f2 is the canonical frame of the
structure. From (17.6) we obtain the dual equations

dν0 = ν1 ∧ ν2,
dν1 = c102ν0 ∧ ν2 + c112ν1 ∧ ν2, (17.30)

dν2 = c201ν0 ∧ ν1 + c112ν1 ∧ ν2.

Using d2 = 0 we obtain structure equations

{
c102c

2
12 = 0,

c201c
1
12 = 0.

(17.31)

We know that the structure constants of the canonical frame are invariant by local isometries
(up to change signs of c112, c

2
12, see Remark 17.9). Hence, every different choice of coefficients in

(17.6) which satisfy also (17.31) will belong to a different class of non-isometric structures.

Taking into account that χ > 0 implies that c201 and c
1
02 cannot be both non positive (see (17.7)),

we have the following cases:

(i) c112 = 0 and c212 = 0. In this first case we get

[f1, f0] = c201f2,

[f2, f0] = c102f1,

[f2, f1] = f0,

and formulas (17.7) imply

χ =
c201 + c102

2
> 0, κ =

c201 − c102
2

.

In addition, we find the relations between the invariants

χ+ κ = c201, χ− κ = c102.

We have the following subcases:

(a) If c102 = 0 we get the Lie algebra se(2) of the group SE(2) of the Euclidean isometries
of R2, and it holds χ = κ.

(b) If c201 = 0 we get the Lie algebra sh(2) of the group SH(2) of the Hyperbolic isometries
of R2, and it holds χ = −κ.

(c) If c201 > 0 and c102 < 0 we get the Lie algebra su(2) and χ− κ < 0.

(d) If c201 < 0 and c102 > 0 we get the Lie algebra sl(2) with χ+ κ < 0.

(e) If c201 > 0 and c102 > 0 we get the Lie algebra sl(2) with χ+ κ > 0, χ− κ > 0.
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(ii) c102 = 0 and c112 = 0. In this case we have

[f1, f0] = c201f2,

[f2, f0] = 0, (17.32)

[f2, f1] = c212f2 + f0,

and necessarily c201 6= 0. Moreover we get

χ =
c201
2
> 0, κ = −(c212)2 +

c201
2
,

from which it follows

χ− κ ≥ 0.

The Lie algebra g = span{f1, f2, f3} defined by (17.32) satisfies dim [g, g] = 2, hence it can
be interpreted as the operator A = ad f1 which acts on the subspace span{f0, f2}. Moreover,
it can be easily computed that

trace A = −c212, detA = c201 > 0,

and we can find the useful relation

2
trace2A

detA
= 1− κ

χ
. (17.33)

(iii) c201 = 0 and c212 = 0. In this last case we get

[f1, f0] = 0,

[f2, f0] = c102f1, (17.34)

[f2, f1] = c112f1 + f0,

and c102 6= 0. Moreover we get

χ =
c102
2
> 0, κ = −(c112)2 −

c102
2
,

from which it follows

χ+ κ ≤ 0.

As before, the Lie algebra g = span{f1, f2, f3} defined by (17.34) has two-dimensional square
and it can be interpreted as the operator A = ad f2 which acts on the plane span{f0, f1}. It
can be easily seen that it holds

trace A = c112, detA = −c102 < 0,

and we have an analogous relation

2
trace2A

detA
= 1 +

κ

χ
. (17.35)
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Remark 17.24. Lie algebras of cases (ii) and (iii) are solvable algebras and we will denote respec-
tively solv+ and solv−, where the sign depends on the determinant of the operator it represents.
In particular, formulas (17.33) and (17.35) permits to recover the ratio between invariants (hence
to determine a unique normalized structure) only from intrinsic properties of the operator. Notice
that if c212 = 0 we recover the normalized structure (i)-(a) while if c112 = 0 we get the case (i)-(b).

Remark 17.25. The algebra sl(2) is the only case where we can define two nonequivalent distri-
butions which corresponds to the case that Killing form restricted on the distribution is positive
definite (case (d)) or indefinite (case (e)). We will refer to the first one as the elliptic structure on
sl(2), denoted sle(2), and with hyperbolic structure in the other case, denoting slh(2).

17.5.2 Case χ = 0

A direct consequence of Proposition 17.11 for left-invariant structures is the following

Corollary 17.26. Let G,H be Lie groups with left-invariant sub-Riemannian structures and as-
sume χG = χH = 0. Then G and H are locally isometric if and only if κG = κH .

Thanks to this result it is very easy to complete our classification. Indeed it is sufficient to find
all left-invariant structures such that χ = 0 and to compare their second invariant κ.

A straightforward calculation leads to the following list of the left-invariant structures on simply
connected three dimensional Lie groups with χ = 0:

- H3 is the Heisenberg nilpotent group; then κ = 0.

- SU(2) with the Killing inner product; then κ > 0.

- S̃L(2) with the elliptic distribution and Killing inner product; then κ < 0.

- A+(R)⊕ R; then κ < 0.

Remark 17.27. In particular, we have the following:

(i) All left-invariant sub-Riemannian structures on H3 are locally isometric,

(ii) There exists on A+(R)⊕R a unique (modulo dilations) left-invariant sub-Riemannian struc-
ture, which is locally isometric to SLe(2) with the Killing metric.

Proof of Theorem 17.18 is now completed and we can recollect our result as in Figure 17.1,
where we associate to every normalized structure a point in the (κ, χ) plane: either χ = κ = 0, or
(κ, χ) belong to the semicircle

{(κ, χ) ∈ R2, χ2 + κ2 = 1, χ > 0}.

Notice that different points means that sub-Riemannian structures are not locally isometric.
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17.6 Proof of Theorem 17.20

In this section we want to write explicitly the sub-Riemannian isometry between SL(2) and A+(R)×
S1.

Consider the Lie algebra sl(2) = {A ∈M2(R), trace(A) = 0} = span{g1, g2, g3}, where

g1 =
1

2

(
1 0
0 −1

)
, g2 =

1

2

(
0 1
1 0

)
, g3 =

1

2

(
0 1
−1 0

)
.

The sub-Riemannian structure on SL(2) defined by the Killing form on the elliptic distribution is
given by the orthonormal frame

∆sl = span{g1, g2}, and g0 := −g3, (17.36)

is the Reeb vector field. Notice that this frame is already canonical since equations (17.10) are
satisfied. Indeed

[g1, g0] = −g2 = κg2.

Recall that the universal covering of SL(2), which we denote S̃L(2), is a simply connected Lie
group with Lie algebra sl(2). Hence (17.36) define a left-invariant structure also on the universal
covering.

On the other hand we consider the following coordinates on the Lie group A+(R)⊕R, that are
well-adapted for our further calculations

A+(R)⊕ R :=







−y 0 x
0 1 z
0 0 1


 , y < 0, x, z ∈ R



 . (17.37)

It is easy to see that, in these coordinates, the group law reads

(x, y, z)(x′, y′, z′) = (x− yx′,−yy′, z + z′),

and its Lie algebra a(R)⊕ R is generated by the vector fields

e1 = −y∂x, e2 = −y∂y, e3 = ∂z,

with the only nontrivial commutator relation [e1, e2] = e1.

The left-invariant structure on A+(R)⊕ R is defined by the orthonormal frame

Da = span{f1, f2},
f1 := e2 = −y∂y, (17.38)

f2 := e1 + e3 = −y∂x + ∂z.

With straightforward calculations we compute the Reeb vector field f0 = −e3 = −∂z.
This frame is not canonical since it does not satisfy equations (17.10). Hence we can apply

Proposition 17.11 to find the canonical frame, that will be no more left-invariant.

Following the notation of Proposition 17.11 we have

468



Lemma 17.28. The canonical orthonormal frame on A+(R)⊕ R has the form:

f̂1 = y sin z ∂x − y cos z ∂y − sin z ∂z,

f̂2 = −y cos z ∂x − y sin z ∂y + cos z ∂z. (17.39)

Proof. It is equivalent to show that the rotation defined in the proof of Proposition 17.11 is
θ(x, y, z) = z. The dual basis to our frame {f1, f2, f0} is given by

ν1 = −
1

y
dy, ν2 = −

1

y
dx, ν0 = −

1

y
dx− dz.

Moreover we have [f1, f0] = [f2, f0] = 0 and [f2, f1] = f2 + f0 so that, in equation (17.13) we get
c = 0, α1 = 0, α2 = 1. Hence

dθ = −ν0 + ν2 = dz.

Now we have two canonical frames {f̂1, f̂2, f0} and {g1, g2, g0}, whose Lie algebras satisfy the
same commutator relations:

[f̂1, f0] = −f̂2, [g1, g0] = −g2,
[f̂2, f0] = f̂1, [g2, g0] = g1, (17.40)

[f̂2, f̂1] = f0, [g2, g1] = 0.

Let us consider the two control systems

q̇ = u1f̂1(q) + u2f̂2(q) + u0f0(q), q ∈ A+(R)⊕ R,

ẋ = u1g1(x) + u2g2(x) + u0g0(x), x ∈ S̃L(2).

and denote with xu(t), qu(t), t ∈ [0, T ] the solutions of the equations relative to the same control
u = (u1, u2, u0). Nagano Principle (see [?] and also [82, 95, 96]) ensure that the map

Ψ̃ : A+(R)⊕ R→ S̃L(2), qu(T ) 7→ xu(T ). (17.41)

that sends the final point of the first system to the final point of the second one, is well-defined
and does not depend on the control u.

Thus we can find the endpoint map of both systems relative to constant controls, i.e. considering
maps

F̃ : R3 → A+(R)⊕R, (t1, t2, t0) 7→ et0f0 ◦ et2f̂2 ◦ et1f̂1(1A), (17.42)

G̃ : R3 → SL(2), (t1, t2, t0) 7→ et0g0 ◦ et2g2 ◦ et1g1(1SL). (17.43)

where we denote with 1A and 1SL identity element of A+(R)⊕ R and S̃L(2), respectively.
The composition of these two maps makes the following diagram commutative

A+(R)⊕R Ψ̃ //

Ψ

%%▲
▲▲

▲▲
▲▲

▲▲
▲

F̃−1

��

S̃L(2)

π

��
R3 G̃ // SL(2)

(17.44)
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where π : S̃L(2)→ SL(2) is the canonical projection and we set Ψ := π ◦ Ψ̃.

To simplify computation we introduce the rescaled maps

F (t) := F̃ (2t), G(t) := G̃(2t), t = (t1, t2, t0),

and solving differential equations we get from (17.42) the following expressions

F (t1, t2, t0) =

(
2e−2t1 tanh t2

1 + tanh2 t2
, −e−2t1 1− tanh2 t2

1 + tanh2 t2
, 2(arctan(tanh t2)− t0)

)
. (17.45)

The function F is globally invertible on its image and its inverse

F−1(x, y, z) =

(
−1

2
log
√
x2 + y2, arctanh(

y +
√
x2 + y2

x
), arctan(

y +
√
x2 + y2

x
)− z

2

)
.

is defined for every y < 0 and for every x (it is extended by continuity at x = 0).

On the other hand, the map (17.43) can be expressed by the product of exponential matrices
as follows

G(t1, t2, t0) =

(
et1 0
0 e−t2

)(
cosh t2 sinh t2
sinh t2 cosh t2

)(
cos t0 − sin t0
sin t0 cos t0

)
. (17.46)

To simplify the computations, we consider standard polar coordinates (ρ, θ) on the half-plane
{(x, y), y < 0}, where −π/2 < θ < π/2 is the angle that the point (x, y) defines with y-axis. In
particular, it is easy to see that the expression that appear in F−1 is naturally related to these
coordinates:

ξ = ξ(θ) := tan
θ

2
=




y +

√
x2 + y2

x
, if x 6= 0,

0, if x = 0.

Hence we can rewrite

F−1(ρ, θ, z) =

(
−1

2
log ρ, arctanh ξ, arctan ξ − z

2

)
.

and compute the composition Ψ = G ◦ F−1 : A+(R) ⊕ R −→ SL(2). Once we substitute these
expressions in (17.46), the third factor is a rotation matrix by an angle arctan ξ − z/2. Splitting
this matrix in two consecutive rotations and using standard trigonometric identities cos(arctan ξ) =

1√
1+ξ2

, sin(arctan ξ) = ξ√
1+ξ2

, cosh(arctanh ξ) = 1√
1−ξ2

, sinh(arctanh ξ) = ξ√
1−ξ2

, for ξ ∈ (−1, 1),
we obtain:

Ψ(ρ, θ, z) =

=

(
ρ−1/2 0

0 ρ1/2

)



1√
1− ξ2

ξ√
1− ξ2

ξ√
1− ξ2

1√
1− ξ2







1√
1 + ξ2

− ξ√
1 + ξ2

ξ√
1 + ξ2

1√
1 + ξ2







cos
z

2
sin

z

2

− sin
z

2
cos

z

2


 .
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Then using identities: cos θ =
1− ξ2
1 + ξ2

, sin θ =
2ξ

1 + ξ2
, we get

Ψ(ρ, θ, z) =

(
ρ−1/2 0

0 ρ1/2

)



1 + ξ2√
1− ξ4

0

2ξ√
1− ξ4

1− ξ2√
1− ξ4







cos
z

2
sin

z

2

− sin
z

2
cos

z

2




=

√
1 + ξ2

1− ξ2
(
ρ−1/2 0

0 ρ1/2

)


1 0
2ξ

1 + ξ2
1− ξ2
1 + ξ2







cos
z

2
sin

z

2

− sin
z

2
cos

z

2




=
1√

ρ cos θ

(
1 0
0 ρ

)(
1 0

sin θ cos θ

)



cos
z

2
sin

z

2

− sin
z

2
cos

z

2




=
1√

ρ cos θ




cos
z

2
sin

z

2

ρ sin(θ − z

2
) ρ cos(θ − z

2
)


 .

Lemma 17.29. The set Ψ−1(I) is a normal subgroup of A+(R)⊕ R.

Proof. It is easy to show that Ψ−1(I) = {F (0, 0, 2kπ), k ∈ Z}. From (17.45) we see that F (0, 0, 2kπ) =
(0,−1,−4kπ) and (17.37) implies that this is a normal subgroup. Indeed it is enoough to prove
that Ψ−1(I) is a subgroup of the centre, that follows from the identity



1 0 0
0 1 4kπ
0 0 1





−y 0 x
0 1 z
0 0 1


 =



−y 0 x
0 1 z + 4kπ
0 0 1


 =



−y 0 x
0 1 z
0 0 1





1 0 0
0 1 4kπ
0 0 1


 .

Remark 17.30. With a standard topological argument it is possible to prove that actually Ψ−1(A)
is a discrete countable set for every A ∈ SL(2), and Ψ is a representation of A+(R)⊕R as universal
covering of SL(2).

By Lemma 17.29 the map Ψ is well defined isomorphism between the quotient

A+(R)⊕R

Ψ−1(I)
≃ A+(R)× S1,

and the group SL(2), defined by restriction of Ψ on z ∈ [−2π, 2π].
If we consider the new variable ϕ = z/2, defined on [−π, π], we can finally write the global

isometry as

Ψ(ρ, θ, ϕ) =
1√

ρ cos θ

(
cosϕ sinϕ

ρ sin(θ − ϕ) ρ cos(θ − ϕ)

)
, (17.47)

where (ρ, θ) ∈ A+(R) and ϕ ∈ S1.
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Remark 17.31. In the coordinate set defined above we have that 1A = (1, 0, 0) and

Ψ(1A) = Ψ(1, 0, 0) =

(
1 0
0 1

)
= 1SL.

On the other hand Ψ is not a homomorphism since in A+(R)⊕R it holds

(√2
2
,
π

4
, π
)(√2

2
,−π

4
,−π

)
= 1A,

while it can be easily checked from (17.47) that

Ψ
(√2
2
,
π

4
, π
)
Ψ
(√2
2
,−π

4
,−π

)
=

(
2 0

1/2 1/2

)
6= 1SL.
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Chapter 18

Asymptotic expansion of the 3D
contact exponential map

In this chapter we study the small time asymptotics of the exponential map in the three-dimensional
contact case and see how the structure of the cut and the conjugate locus is encoded in the curvature.

Let us consider the sub-Riemannian Hamiltonian of a 3D contact structure (cf. Section 17.3)

~H = h1f1 + h2f2 − (h0 + b)∂θ + a∂h0 (18.1)

written in the dual coordinates (h0, h1, h2) of a local frame f0, f1, f2, where ν0 is the normalized
contact form, f0 is the Reeb vector field and f1, f2 is a local orthonormal frame for the sub-
Riemannian structure. As usual the coordinate θ on the level set H−1(1/2) is defined such a way
that h1 = cos θ and h2 = sin θ.

In this chapter it will be convenient to introduce the notation ρ := −h0 for the function linear
on fibers of T ∗M associated with the opposite of the Reeb vector field. The Hamiltonian system
(18.1) on the level set H−1(1/2) is rewritten in the following form:





q̇ = cos θf1 + sin θf2

θ̇ = ρ− b
ρ̇ = −a

(18.2)

The exponential map starting from the initial point q0 ∈M is the map that to each time t > 0
and every initial covector (θ0, ρ0) ∈ T ∗

q0M ∩H−1(1/2) assigns the first component of the solution
at time t of the system (18.2), denoted by expq0(t, θ0, ρ0), or simply exp(t, θ0, ρ0).

Conjugate points are points where the differential of the exponential map is not surjective, i.e.
solutions to the equation

∂exp

∂θ0
∧ ∂exp
∂ρ0

∧ ∂exp
∂t

= 0. (18.3)

The variation of the exponential map along time is always nonzero and independent with respect
to variations of the covectors in the set H−1(1/2) (see also Section 8.11 and Proposition 8.38). This
implies that (18.3) is equivalent to

∂exp

∂θ0
∧ ∂exp
∂ρ0

= 0. (18.4)
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18.1 Nilpotent case

The nilpotent case, i.e. the Heisenberg group, corresponds to the case when the functions a and b
vanish identically, i.e. the system





q̇ = cos θf1 + sin θf2

θ̇ = ρ

ρ̇ = 0

(18.5)

Let us first recover, in this notation, the conjugate locus in the case of the Heisenberg group.
Let us denote coordinates on the manifold R3 as follows

q = (x, y), x = (x1, x2) ∈ R2, y ∈ R. (18.6)

Notice moreover that in this case the Reeb vector field is proportional to ∂y and its dual coordinate
ρ is constant along trajectories. There are two possible cases:

(i) ρ = 0. Then the solution is a straight line contained in the plane y = 0 and is optimal for all
time.

(ii) ρ 6= 0. In this case we claim that the equation (18.4) is equivalent to the following

∂x

∂θ0
∧ ∂x

∂ρ0
= 0. (18.7)

By the Gauss’ Lemma (Proposition 8.38) the covector p = (px, ρ) at the final point annihilates
the differential of the exponential map restricted to the level set, i.e.

〈
p,
∂exp

∂θ0

〉
=

〈
px,

∂x

∂θ0

〉
+ ρ

∂y

∂θ0
= 0 (18.8)

〈
p,
∂exp

∂ρ0

〉
=

〈
px,

∂x

∂ρ0

〉
+ ρ

∂y

∂ρ0
= 0 (18.9)

and since ρ 6= 0 it follows that among the three vectors



∂x1
∂θ0

∂x1
∂ρ0







∂x2
∂θ0

∂x2
∂ρ0







∂y

∂θ0

∂y

∂ρ0


 (18.10)

the third one is always a linear combination of the first two.

Proposition 18.1. The first conjugate time is tc(θ0, ρ0) = 2π/|ρ0|.
Proof. In the standard coordinates (x1, x2, y) the two vector fields f1 and f2 defining the orthonor-
mal frame are

f1 = ∂x1 −
x2
2
∂y, f2 = ∂x2 +

x1
2
∂y

Thus, the first two coordinates of the horizontal part of the Hamiltonian system satisfy
{
ẋ1 = cos θ

ẋ2 = sin θ
(18.11)
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It is then easy to integrate the x-part of the exponential map being θ(t) = θ0 + ρt (recall that
ρ ≡ ρ0 and, without loss of generality we can assume ρ > 0)

x(t; θ0, ρ0) =

∫ t

0

(
cos(θ0 + ρs)
sin(θ0 + ρs)

)
ds =

∫ θ0+t

θ0

(
cos ρs
sin ρs

)
ds (18.12)

Due to the symmetry of the Heisenberg group, the determinant of the Jacobian map will not
depend on θ0. Hence to compute the determinant of the Jacobian it is enough to compute partial
derivatives at θ0 = 0

∂x

∂θ0
=

(
cos ρt− 1
sin ρt

)

∂x

∂ρ0
= − 1

ρ2

(
sin ρt

1− cos ρt

)
+
t

ρ

(
cos ρt
sin ρt

)

and denoting by τ := ρt one can compute

∂x

∂θ0
∧ ∂x

∂ρ0
=

1

ρ2
det

(
cos τ − 1 τ cos τ − sin τ
sin τ −1 + τ sin τ + cos τ

)
,

=
1

ρ2
(τ sin τ + 2cos τ − 2).

The fact that tc = 2π/|ρ| follows from Exercise 18.2.

Exercise 18.2. Prove that τc = 2π is the first positive root of the equation τ sin τ +2cos τ −2 = 0.
Moreover show that τc is a simple root.

18.2 General case: second order asymptotic expansion

Let us consider the Hamiltonian system for the general 3D contact case





q̇ = fθ := cos θf1 + sin θf2

θ̇ = ρ− b
ρ̇ = −a

(18.13)

We are going to study the asymptotic expansion for our system for the initial parameter ρ0 → ±∞.
To this aim, it is convenient to introduce the change of variables r := 1/ρ and denote by ν :=
r(0) = 1/ρ0 its initial value. Notice that ρ is no more constant in the general case and ρ0 → ∞
implies ν → 0.

The main result of this section says that the conjugate time for the perturbed system is a
perturbation of the conjugate time of the nilpotent case, where the perturbation has no term of
order 2.

Proposition 18.3. The conjugate time tc(θ0, ν) is a smooth function of the parameter ν for ν > 0.
Moreover for ν → 0

tc(θ0, ν) = 2π|ν|+O(|ν|3).
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Proof. Let us introduce a new time variable τ such that dt
dτ = r. If we now denote by Ḟ the

derivative of a function F with respect to the new time τ , the system (18.13) is rewritten in the
new coordinate system (q, θ, r) (where we recall r = 1/ρ), as follows





q̇ = rfθ

θ̇ = 1− rb
ṙ = r3a

ṫ = r

(18.14)

To compute the asymptotics of the conjugate time, it is also convenient to consider a system of
coordinates, depending on a parameter ε, corresponding to the quasi-homogeneous blow up of the
sub-Riemannian structure at q0 and converging to the nilpotent approximation. In other words we
consider the change of coordinates Φε such that fθ 7→ 1

εf
ε
θ where

f εθ = f̂ + εf (0) + ε2f (1) + . . .

Accordingly to this change of coordinates we have the equalities

fi =
1

ε
f εi , f0 =

1

ε2
f ε0 , b =

1

ε
bε, a =

1

ε2
aε

where f ε0 is the Reeb vector field defined by the orthonormal frame f ε1 , f
ε
2 (and analogously for

aε, bε).

Let us now define, for fixed ε, the variable w such that r = εw.

Proposition 18.4. The system (18.14) is rewritten in these variables as follows





q̇ = wf εθ
θ̇ = 1− wbε
ẇ = εw3aε

ṫ = εw

(18.15)

Notice that the dynamical system is written in a coordinate system that depends on ε. Moreover
the initial asymptotic for ρ0 → ∞, corresponding to r → 0, is now reduced to fix an initial value
w(0) = 1 and send ε→ 0.

Consider some linearly adapted coordinates (x, y), with x ∈ R2 and y ∈ R (cf. Definition 10.28).
If we denote by qε = (xε, yε) the solution of the horizontal part of the ε-system (18.15), conjugate
points are solutions of the equation

∂qε

∂θ0
∧ ∂qε

∂w0

∣∣∣∣
w0=1

= 0.

As in Section 18.1, one can check that this condition is equivalent to

∂xε

∂θ0
∧ ∂xε

∂w0

∣∣∣∣
w0=1

= 0.
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Notice that the original parameters (t, θ0, ρ0) parametrizing the trajectories in the exponential map
correspond to a conjugate point if the corresponding parameters (τ, θ0, ε) satisfy

ϕ(τ, ε, θ0) :=
∂xε

∂θ0
∧ ∂xε

∂w0

∣∣∣∣
w0=1

= 0 (18.16)

For ε = 0, i.e. the nilpotent approximation, the first conjugate time is τc = 2π, and moreover it is
a simple root. Thus one gets

ϕ(2π, 0, θ0) = 0,
∂ϕ

∂τ
(2π, 0, θ0) 6= 0. (18.17)

Hence the implicit function theorem guarantees that there exists a smooth function τc(ε, θ0) such
that τc(0, θ0) = 2π and

ϕ(τc(ε, θ0), ε, θ0) = 0. (18.18)

In other words τc(ε, θ0) computes the conjugate time τ associated with parameters ε, θ0. By smooth-
ness of τc one immediately has the expansion for ε→ 0

τc(ε, θ0) = 2π +O(ε).

Now the statement of the proposition is rewritten in terms of the function τc as follows

τc(ε, θ0) = 2π +O(ε2). (18.19)

Differentiating the identity (18.18) with respect to ε one has

∂ϕ

∂τ

∂τc
∂ε

+
∂ϕ

∂ε
= 0,

hence, thanks to (18.17), the expansion (18.19) holds if and only if
∂ϕ

∂ε
(2π, 0, θ0) = 0.

Moreover differentiating the expression (18.16) with respect to ε one has

∂ϕ

∂ε
(2π, 0, θ0) =

∂2xε

∂ε∂θ0
∧ ∂xε

∂w0
− ∂2xε

∂ε∂w0
∧ ∂x

ε

∂θ0

∣∣∣∣
w0=1,ε=0,τ=2π

The second one vanishes since at ε = 0 is the Heisenberg case, whose horizontal part at τ = 2π
does not depend on θ0. Hence we are reduced to prove that

∂2xε

∂ε∂θ0

∣∣∣∣
ε=0,τ=2π

= 0. (18.20)

which is a consequence of the following lemma.

Lemma 18.5. The quantity
∂xε

∂ε

∣∣∣∣
ε=0,τ=2π

does not depend on θ0.

Proof of Lemma. To prove the lemma it will be enough to find the first order expansion in ε of the
solution of the system (18.15).
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Recall that when ε = 0 the system corresponds to the Heisenberg case, i.e. we have aε|ε=0 =
0, bε|ε=0 = 0. This gives the expansion of w (recall that w(0) = w0 = 1)

w(t) = w(0) +

∫ t

0
εaε(τ)w3(τ)dτ ⇒ w = 1 +O(ε2)

Analogously we have bε = ε 〈β, u〉+O(ε2), where 〈β, u〉 = β1u1+β2u2 and β denotes the (constant)
coefficient of weight zero in the expansion of b with respect to ε.

Denoting u(θ) = (cos θ, sin θ), the equation for θ then is reduced to

θ̇ = 1− ε 〈β, u(θ)〉+O(ε2), θ(0) = θ0.

This equation can be integrated and one gets

∂θ

∂ε

∣∣∣∣
ε=0

= −
∫ t

0
〈β, u(θ(τ))〉 dτ =

〈
β, u′(θ0 + t)− u′(θ0)

〉
(18.21)

where u′(θ) = (− sin θ, cos θ).
Next we are going to use (18.21) to compute the derivative of xε wrt ε. The equation for the

horizontal part of (18.15) can be expanded in ε as follows

ẋε = u(θ) + εf
(0)
u(θ)(x) +O(ε2)

where the first term is Heisenberg, and f
(0)
u(θ) is the term of weight zero of fu, which is linear with

respect to x1 and x2 because of the weight.
1 To compute the derivative of the solution with respect

to parameter we use the following general fact

Lemma 18.6. Let φ(ε, t) denote the solution of the differential equation ẏ = F (ε, y) with fixed
initial condition y(0) = y0. Then the derivative ∂φ

∂ε satisfies the following linear ODE

d

dt

∂φ

∂ε
(ε, t) =

∂F

∂y
(ε, φ(ε, t))

∂φ

∂ε
(ε, t) +

∂F

∂ε
(ε, φ(ε, t))

We apply the above lemma when y = (x, θ) and F = (F x, F θ) and we compute at ε = 0. In
particular we need the solution of the original system at ε = 0

φ(0, t) = (x̄(t), θ̄(t)), θ̄(t) = θ0 + t, x̄(t) = u′(θ0)− u′(θ0 + t).

Then by Lemma 18.6 we have

d

dt

∂x

∂ε
=
∂F x

∂x

∂x

∂ε
+
∂F x

∂θ

∂θ

∂ε
+
∂F x

∂ε

Computing the derivatives at ε = 0 gives

∂F x

∂x

∣∣∣∣
ε=0

= 0,
∂F x

∂θ

∣∣∣∣
ε=0

= u′(θ̄(t)),
∂F x

∂ε

∣∣∣∣
ε=0

= f
(0)

u(θ̄(t))
(x̄(t))

1Recall that this is the zero order part of the vector field fu along ∂x, hence only x variables appear and have
order 1.
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and we obtain the equation for ∂x
∂ε

d

dt

∂x

∂ε

∣∣∣∣
ε=0

=
∂θ

∂ε

∣∣∣∣
ε=0

u′(θ0 + t) + f
(0)
u(θ0+t)

(u′(θ0)− u′(θ0 + t))

If we set s = θ0 + t we can rewrite this equation

d

ds

∂x

∂ε

∣∣∣∣
ε=0

=
∂θ

∂ε
u′(s) + f

(0)
u(s)(u

′(θ0)− u′(s))

and integrating one has

∂x

∂ε

∣∣∣∣
(2π,0)

=

∫ θ0+2π

θ0

〈
β, u′(s)− u′(θ0)

〉
u′(s)ds

+

∫ θ0+2π

θ0

f
(0)
u(s)(u

′(θ0)− u′(s))ds

In the last expression it is easy to see that all terms where θ0 appears are zero, while the others
vanish since we compute integrals of periodic functions over a period (which does not dep on θ0).
This finishes the proof of Lemma 18.5, hence the proof of the Proposition 18.3.

18.3 General case: higher order asymptotic expansion

Next we continue our analysis about the structure of the conjugate locus for a 3D contact structure
by studying the higher order asymptotic. In this section we determine the coefficient of order 3 in
the asymptotic expansion of the conjugate locus. Namely we have the following result, whose proof
is postponed to Section 18.3.1.

Theorem 18.7. In a system of local coordinates around q0 ∈M one has the expansion

Conq0(θ0, ν) = q0 ± πf0|ν|2 ± π(a′fθ0 − afθ′0)|ν|
3 +O(|ν|4), ν → 0±. (18.22)

If we choose coordinates such that a = 2χh1h2 one gets

Conq0(θ0, ν) = q0 ± πf0|ν|2 ± 2πχ(q0)(cos
3 θf2 − sin3 θf1)|ν|3 +O(|ν|4), ν → 0±. (18.23)

Moreover for the conjugate length we have the expansion

ℓc(θ0, ν) = 2π|ν| − πκ|ν|3 +O(|ν|4), ν → 0±. (18.24)

Analogous formulas can be obtained for the asymptotics of the cut locus at a point q0 where
the invariant χ is non vanishing.

Theorem 18.8. Assume χ(q0) 6= 0. In a system of local coordinates around q0 ∈ M such that
a = 2χu1u2 one gets

Cutq0(θ, ν) = q0 ± πν2f0(q0)± 2πχ(q0) cos θf1(q0)ν
3 +O(ν4), ν → 0±

Moreover the cut length satisfies

ℓcut(θ, ν) = 2π|ν| − π(κ+ 2χ sin2 θ)|ν|3 +O(ν4), ν → 0± (18.25)
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cut
conjugate

Figure 18.1: Asymptotic structure of cut and conjugate locus

We can collect the information given by the asymptotics of the conjugate and the cut loci in
Figure 18.1.

All geometrical information about the structure of these sets is encoded in a pair of quadratic
forms defined on the fiber at the base point q0, namely the curvature R and the sub-Riemannian
Hamiltonian H.

Recall that the sub-Riemannian Hamiltonian encodes the information about the distribution
and about the metric defined on it (see Exercise 4.34).

Let us consider the kernel of the sub-Riemannian Hamiltonian

kerH = {λ ∈ T ∗
qM : 〈λ, v〉 = 0, ∀ v ∈ Dq} = D⊥

q . (18.26)

The restriction of R to the 1-dimensional subspace D⊥
q for every q ∈ M , is a strictly positive

quadratic form. Moreover it is equal to 1/10 when evaluated on the Reeb vector field. Hence the
curvature R encodes both the contact form ω and its normalization.

If we denote by D∗
q the orthogonal complement of D⊥

q in the fiber with respect to R2, we have
that R is a quadratic form on D∗

q and, by using the Euclidean metric defined by H on Dq, as a
symmetric operator.

As we explained in the previous chapter, at each q0 where χ(q0) 6= 0 there always exists a frame
such that

{H,h0} = 2χh1h2

2this is indeed isomorphic to the space of linear functionals defined on Dq.
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and in this frame we can express the restriction of R to D∗
q (corresponding to the set {h0 = 0}) on

this subspace as follows (see Section 17.3)

10R = (κ+ 3χ)h21 + (κ− 3χ)h22.

From this formulae it is easy to recover the two invariants χ, κ considering

trace(10R
∣∣
h0=0

) = 2κ, discr(10R
∣∣
h0=0

) = 36χ2,

where the discriminant of an operatorQ, defined on a two-dimensional space, is defined as the square
of the difference of its eigenvalues, and can be compute by the formula discr(Q) = trace2(Q) −
4 det(Q).

The cubic term of the conjugate locus (for a fixed value of ν) parametrizes an astroid. The
cuspidal directions of the astroid are given by the eigenvectors of R, and the cut locus intersect the
conjugate locus exactly at the cuspidal points in the direction of the eigenvector of R corresponding
to the larger eigenvalue.

Finally the “size” of the cut locus increases for bigger values of χ, while κ is involved in the
length of curves arriving at cut/conjugate locus

Remark 18.9. The expression of the cut locus given in Theorem 18.8 gives the truncation up to
order 3 of the asymptotics of the cut locus of the exponential map. It is possible to show that this
is actually the exact cut locus corresponding to the truncated exponential map at order 3, which
is the object of the next sections (see Section 18.3.4).

18.3.1 Proof of Theorem 18.7: asymptotics of the exponential map

The proof of Theorem 18.7 requires a careful analysis of the asymptotic of the exponential map.
Let us consider again our Hamiltonian system in the form (18.14)





q̇ = rfθ

θ̇ = 1− rb
ṙ = r3a

ṫ = r

(18.27)

where we recall that equations are written with respect to the time τ . In particular, since we restrict
on the level set H−1(1/2), the trajectories are parametrized by length and the time t coincides with
the length of the curve. Thus in what follows we replace the variable t by ℓ.

Next, we consider a last change of the time variable. Namely we parametrize trajectories by
the coordinate θ. In other words we rewrite again the equations in such a way that θ̇ = 1 and the
dot will denote derivative with respect to θ. The equations are rewritten in the following form:





q̇ =
r

1− rbfθ
θ̇ = 1

ṙ =
r3

1− rba
ℓ̇ =

r

1− rb

(18.28)
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where we recall that fθ = cos θf1 + sin θf2. Moreover we define F (t; θ0, ν) := q(t+ θ0; θ0, ν), where
q(θ0; θ0, ν) = q0. This means that the curve that corresponds to initial parameter θ0 start from q0
at time equal to θ0.

Notice that in (18.28) we can solve the equation for r = r(τ) and substitute it in the first
equation. In this way we can write the trajectory as an integral curve of the nonautonomous vector
field

F (t; θ0, ν) = q0 ◦Qθ0,νt , Qθ0,νt = −→exp
∫ θ0+t

θ0

r(τ)

1− r(τ)b(τ)fτdτ.

To simplify the notation in what follows we denote the flow Qθ0,νt simply by Qt and by Vt the non
autonomous vector field defined by this flow

Qt =
−→exp

∫ θ0+t

θ0

Vτdτ, Vτ :=
r(τ)

1− r(τ)b(τ)fτ . (18.29)

We start by analyzing the asymptotics of the end point map after time t = 2π.

Lemma 18.10. F (2π; θ0, ν) = q0 − πf0(q0)ν2 +O(ν3)

Proof. From (18.28), recalling that r(0) = ν, it is easy to see that r satisfies the identity

r(t) = ν + r̃(t)ν3 = ν +O(ν3)

for some smooth function r̃(t). Thus, to find the second order term in ν of the endpoint map
F (2π; θ, ν), we can then assume that r is constantly equal to ν = r(0).

Using the Volterra expansion (cf. (6.13))

−→exp
∫ θ0+2π

θ0

Vτdτ =


Id +

∫ θ0+2π

θ0

Vτdτ +

∫∫

θ0≤τ2≤τ1≤θ0+2π

Vτ2 ◦ Vτ1dτ1dτ2 + . . .


 (18.30)

and substituting r(τ) ≡ ν we have the following expansion for the first term in (18.30):

∫ θ0+2π

θ0

Vτdτ =

∫ θ0+2π

θ0

ν

1− νb(τ)fτdτ =

∫ θ0+2π

θ0

ν(1 + νb(τ) +O(ν2))fτ dτ,

= ν

∫ θ0+2π

θ0

fτdτ + ν2
∫ θ0+2π

θ0

b(τ)fτdτ +O(ν3)

= ν2
∫ θ0+2π

θ0

b(τ)fτdτ +O(ν3)

Notice that the first order term in ν vanishes since we integrate over a period and
∫ θ0+2π
θ0

fτdτ = 0.
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The second term in (18.30) can be rewritten using Lemma 8.28

∫∫

0≤τ2≤τ1≤t

Vτ2 ◦ Vτ1dτ1dτ2 =
1

2

∫ θ0+2π

θ0

Vτdτ ◦
∫ θ0+2π

θ0

Vτdτ +

∫∫

θ0≤τ2≤τ1≤θ0+2π

[Vτ2 , Vτ1 ]dτ1dτ2

=
ν2

2



∫ θ0+2π

θ0

fτdτ ◦
∫ θ0+2π

θ0

fτdτ +

∫∫

θ0≤τ2≤τ1≤θ0+2π

[fτ2 , fτ1 ]dτ1dτ2




=
ν2

2

∫∫

θ0≤τ2≤τ1≤θ0+2π

[fτ2 , fτ1 ]dτ1dτ2

where we used again
∫ θ0+2π
θ0

fτdτ = 0. Notice that higher order terms in the Volterra expansions

are O(ν3). Collecting together the two expansions and recalling that

[f2, f1] = f0 + α1f1 + α2f2

one easily obtains

F (2π; θ0, ν) = q0 + ν2
(∫ θ0+2π

θ0

b(t)ft dt+
1

2

[∫ t

θ0

fτdτ, ft

]
dt

)
+O(ν3)

= q0 − πν2f0(q0) +O(ν3) (18.31)

Notice that the factor π in (18.31) comes out from the evaluation of integrals of kind
∫ θ0+2π
θ0

cos2 τdτ

and
∫ θ0+2π
θ0

sin2 τdτ .

Next we prove a symmetry of the exponential map

Lemma 18.11. F (t; θ0, ν) = F (t; θ0 + π,−ν)

Proof. It is a direct consequence of our geodesic equation. Recall that F (t; θ0, ν) = q(t+ θ0; θ0, ν),
is the solution of the system, with initial condition q(θ0; θ0, ν) = q0.

Applying the transformation t 7→ t + π and ν → −ν we see that the right hand side of q̇ in
(18.28) is preserved while the right hand side of ṙ change sign (we use that ui(t + π) = −ui(t),
hence a(t + π) = a(t) and b(t + π) = −b(t)). Then, if (q(t), r(t)) is a solution of the system then
(q(t+ π),−r(t+ π)) is also a solution. The lemma follows.

The symmetry property just proved permits to characterize all odd terms in the expansion in
ν of the exponential map at t = 2π, as follows.

Corollary 18.12. Consider the expansion

F (2π; θ, ν) ≃
∞∑

n=0

qn(θ)ν
n.

We have the following identities

(i) qn(θ + π) = (−1)nqn(θ),
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(ii) q2n+1(θ) = −
1

2

∫ θ+π

θ

dq2n+1

dθ
(τ)dτ .

Proof. This is an immediate consequence of Lemma 18.11 and the identity

2q2n+1(θ) = q2n+1(θ)− q2n+1(θ + π) = −
∫ θ+π

θ

dq2n+1

dθ
(τ)dτ.

We already computed the terms q1(θ) and q2(θ). To find q3(θ) we start by computing the
derivative of the map F with respect to θ.

Lemma 18.13.
∂F

∂θ0
(2π; θ0, ν) = −π[f0, fθ0 ]q0ν3 +O(ν4)

Proof. We stress that, since we are now interested to third order term in ν, we can no more assume
that r(τ) is constant. Differentiating (3.69) with respect to θ gives two terms as follows:

∂F

∂θ0
=

∂

∂θ0
(q0 ◦Qt) = q0 ◦

∂

∂θ0

(
−→exp

∫ θ+2π

θ
Vτdτ

)

= q0◦ (Q2π ◦ Vθ0+2π − Vθ0 ◦Q2π) (18.32)

Next let us rewrite

Q2π ◦ Vθ0+2π = Q2π ◦ Vθ0+2π ◦Q−1
2π ◦Q2π

= AdQ2π ◦ Vθ0+2π

so that (18.32) can be rewritten as

∂F

∂θ0
= q0 ◦ (AdQ2π ◦ Vθ0+2π − Vθ0) ◦Q2π (18.33)

Thanks to Lemma 18.10 we can write

Q2π = Id− πν2f0 +O(ν3) (18.34)

that implies the following asymptotics for the action of its adjoint by (6.24)

AdQ2π = Id− πν2ad f0 +O(ν3)

We are left to compute the asymptotic expansion of (18.33). To this goal, recall that r = r(τ)
satisfies

ṙ =
r3

1− rba = r3a+O(r4)

hence we can compute its term of order 3 with respect to ν

r(t) = ν + ν3
∫ t

θ0

a(τ)dτ +O(ν4) (18.35)

This in particular implies that r(θ0 + 2π) = ν +O(ν4) since
∫ θ0+2π
θ0

a(t)dt = 0.
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This allows us to replace r(·) with ν in the term Vθ0+2π since r(θ+ 2π) = ν +O(ν4). Moreover
using that b(θ0 + 2π) = b(θ0) and fθ0+2π = fθ0 we get

AdQ2π ◦ Vθ0+2π − Vθ0 = (Id− πν2ad f0 +O(ν3))

(
ν

1− νbfθ0
)
−
(

ν

1− νbfθ0
)
+O(ν4)

= −πν2ad f0(νfθ0) +O(ν4) (18.36)

and finally plugging (18.34) and (18.36) into (18.33) one obtains

∂F

∂θ
= q0 ◦

(
−πν2ad f0(νfθ0) +O(ν4)

)
◦ (Id +O(ν))

= q0 ◦ (−πν3[f0, fθ0 ] +O(ν4))

18.3.2 Asymptotics of the conjugate locus

In this section we finally prove Theorem 18.7, by computing the expansion of the conjugate time
tc(θ0, ν). We know from Proposition 18.3 that

τc(θ0, ν) = 2π + ν2s(θ0) +O(ν3)

By definition of conjugate point, the function s = s(θ0) is characterized as the solution of the
equation

∂F

∂s
∧ ∂F
∂θ
∧ ∂F
∂ν

∣∣∣∣
(2π+ν2s,θ,ν)

= 0, (18.37)

where s is considered as a parameter. Notice that the derivative with respect to s is computed by

∂F

∂s
=
∂F

∂t

∂t

∂s
= (νfθ +O(ν2))ν2 ≃ ν3fθ +O(ν4)

Moreover, from the expansion of F with respect to ν one has

∂F

∂ν
= −2πνf0 +O(ν2)

Thus
F (2π + ν2s; θ, ν) = F (2π, θ, ν) + ν3sfθ +O(ν4)

and differentiation with respect to θ0 together with Lemma 18.13 gives

∂F

∂θ
(2π + ν2s; θ, ν) = ν3(π[fθ, f0] + sfθ′) +O(ν4)

where as usual fθ′ denotes the derivative with respect to θ.
Then, collecting together all these computations, the equation for conjugate points (18.37) can

be rewritten as
fθ ∧ (sfθ′ + π[fθ, f0]) ∧ f0 = O(ν) (18.38)

Since fθ, fθ′ are an orthonormal frame on D and f0 is transversal to the distribution, (18.38) is
equivalent to

fθ ∧ (sfθ′ + π[fθ, f0]) = O(ν)
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that implies

s(θ) = π 〈[f0, fθ], fθ′〉+O(ν)

where 〈·, ·〉 denotes the the scalar product on the distribution. Hence

tc(θ, ν) = 2π + πν2 〈[f0, fθ], fθ′〉q0 +O(ν3)

To find the expression of conjugate locus, we evaluate the ecponential map at time tc(θ, ν).

We first consider the asymptotic of the conjugate locus. Using again that the first order term
with respect to ν of ∂tF is νfθ we have

F (2π + ν2s(θ0), θ0, ν) = F (2π; θ0, ν) + ν3s(θ0)fθ0 +O(ν4)

Hence, by Corollary 18.12 and Lemma 18.10 one gets

Conq0(θ0, ν) = q0 − πν2f0(q0)−
ν3

2

∫ θ0+π

θ0

dq3
dτ

dτ + ν3s(θ0)fθ0 +O(ν4)

Moreover, since
∂F

∂θ0
(2π, ν, θ0) = ν3[fθ0 , f0] +O(ν4)

we have by definition that q3(θ) = [fθ, f0] and

Conq0(θ0, ν) = q0 − ν2f0(q0)−
ν3

2

∫ θ0+π

θ0

π[fθ0 , f0]dτ + ν3s(θ0)fθ0

= q0 − ν2f0(q0)−
ν3

2

∫ θ0+π

θ0

π[fθ0 , f0] + s′(t)fθ0 + s(t)fθ′0dt (18.39)

where the last identify follows by writing fθ′′ = −fθ and integrating by parts. Using that

s(θ) = π 〈[f0, fθ], fθ′〉
s′(θ) = π 〈[f0, fθ′ ], fθ′〉 − π 〈[f0, fθ], fθ〉 = 2πa

we can rewrite (18.39) as follows

π[fθ0 , f0] + s′(t)fθ0 + s(t)fθ′0 = π[fθ0 , f0] + 2πafθ0 + π
〈
[f0, fθ0 ], fθ′0

〉
fθ′0

= π 〈[fθ0 , f0], fθ0〉 fθ0 + 2πafθ0

= 3πafθ0

Finally

Conq0(θ0, ν) = q0 − ν2f0(q0)−
3ν3

2
π

∫ θ0+π

θ0

a(τ)fτdτ +O(ν4)

= q0 − ν2f0(q0) + ν3π(a′fθ0 − afθ′0) +O(ν4)
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18.3.3 Asymptotics of the conjugate length

Similarly, we consider conjugate length. Recall that

ℓc(θ0, ν) =

∫ θ0+tc(θ0,ν)

θ0

r(t)

1− r(t)Qθ0,νt b(t)
dt

where we replaced b(t) by its value along the flow Qθ0,νt b(t).

As a first step, notice that we can reduce to an integral over a period, up to higher order terms
with respect to ν. Namely

ℓc(θ0, ν) =

∫ θ0+2π

θ0

r(t)

1− r(t)Qθ0,νt b(t)
dt+ ν3s(θ0) +O(ν4) (18.40)

Indeed tc(θ0, ν) = 2π+ν2s(θ)+O(ν3) and the first order term w.r.t. ν in the integrand is exactly ν

by (18.35). In what follows we use again the notation Qt := Qθ0,νt , and we compute the expansion
in ν of the integral appearing in (18.40).

First notice that

r(t)

1− r(t)Qtb(t)
= r(t)

(
1 + r(t)Qtb(t) + r2(t)[Qtb(t) ◦Qtb(t)] +O(r(t)3)

)

Using that r(t) = ν +O(ν3) and Qtb(t) = b(t) +O(ν) we have that

r(t)

1− r(t)Qtb(t)
= r(t) + r2(t)Qtb(t) + r3(t)b(t)2 +O(ν4)

Now each addend of the sum expands as follows

r(t) = ν + ν3
∫ t

0
a(t)dt+O(ν4) (18.41)

r2(t)Qt(ν)b(t) = (ν2 +O(ν4))

(
Id + ν

∫ t

0
fτdτ +O(ν)

)
b(t) (18.42)

= ν2b(t) + ν3
∫ t

0
fτdτb(t) +O(ν4) (18.43)

r3(t)b(t)2 = ν3b(t)2 +O(ν4) (18.44)

Integrating the sum over the interval [θ0, θ0 +2π] and considering terms only up to O(ν4) we have

ℓc(θ0, ν) = 2πν +

(∫ θ0+2π

θ0

[∫ t

0
a(τ)dτ +

∫ t

0
fτdτ

]
b(t) + b2(t)dt

)
ν3 +O(ν4)

where the coefficient in ν2 vanishes since
∫ θ0+2π
θ0

b(τ)dτ = 0. A straightforward computation of the
integrals ends the proof of the theorem.
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18.3.4 Stability of the conjugate locus

In this section we want to prove that the third order Taylor polynomial of the exponential map
corresponds to a stable map in the sense of singularity theory. More precisely it can be treated
as a one parameter family of maps between 2-dimensional manifolds that has only singular points
of “cusp” and “fold” type. As a consequence the original exponential map can be treated as a
perturbation of the (truncated) stable one.

The classic Whitney theorem on the stability of maps between 2-dimensional manifolds then
implies that the structure of their singularity will be the same, and actually the singular set of the
perturbed one is the image under an homeomorphism of the singular set of the truncated map.

Fix some local coordinates (x0, x1, x2) around the point q0 such that

q0 = (0, 0, 0), fi(q0) = ∂xi , ∀ i = 0, 1, 2.

Lemma 18.14. In these coordinates we have

1

π
F (2π + πη2τ, θ, ν) = (x0(τ, θ, ν), x1(τ, θ, ν), x2(τ, θ, ν))

= (−ν2, (τ − c102) cos(θ)ν3, (τ + c201) sin(θ)ν
3) +O(ν4) (18.45)

Let us define the new variable ζ =
√
−x0(τ, θ, ν) =

√
ν2 +O(ν4) = ν + O(ν3) and apply the

smooth change of variables (τ, θ, ν) 7→ (τ, θ, ζ). The map (18.45) is rewritten as follows

1

π
F (2π + πη2τ, θ, ν) = (−ζ2, (τ − c102) cos(θ)ζ3 +O(ζ4), (τ + c201) sin(θ)ζ

3 +O(ζ4)) (18.46)

Notice that the first coordinate function of this map is constant in the new variables, when ζ is
constant. The map (18.46) can be interpreted as a family of maps, parametrized by ζ, depending
on two variables

1

π
F (2π + πη2τ, θ, ν) = (−ζ2, ζ3Φζ(τ, θ)) (18.47)

where we have defined

Φζ(τ, θ) = ((τ − c102) cos(θ), (τ + c201) sin(θ)) +O(ζ) (18.48)

The critical set of the map Φ0(τ, θ) is a smooth closed curve in R× S1 defined by the equation

τ = c102 sin
2(θ)− c201 cos2(θ). (18.49)

The critical values of this map, that is the image under the map Φ0 of the set defined by (18.49),
is the astroid

A0 = {2χ(− sin3(θ), cos3(θ)), θ ∈ S1} (18.50)

The restriction to Φ0 to the set A0 is a one-to-one map. Moreover every critical point of Φ0 is a fold
or a cusp. This implies that Φ0 is a Whitney map. Hence it is stable, in the sense of Thom-Mather
theory, see [101, 56].

In other words, for any compact K ⊂ R × S1 big enough, there exists ε > 0 such that for all
ζ ∈]0, ε[, the map Φζ |K is equivalent to Φ0|K , under a smooth family of change of coordinates in
the source and in the image. Moreover, this family can be chosen to be smooth with respect to the
parameter ζ.

Collecting these results, we have proved that the shape of the conjugate locus described in
Figure 18.1 obtained via third order approximation of the end-point map is indeed a picture of the
true shape.
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Theorem 18.15. Suppose M is a 3D contact sub-Riemannian structure and χ(q0) 6= 0. Then
there exists ε > 0 such that for every closed ball B = B(q0, r) with r ≤ ε there exists an open set
U ⊂ B \ {q0} and a diffeomorphism Ψ : U → R3 × {±1} such that B ∩ Conq0 ⊂ U and

Ψ(B ∩Conq0) = {(ζ2, cos3(θ)ζ3,− sin3(θ)ζ3) : ζ > 0, θ ∈ S1} × {±1}.

In particular, each of the two connected components of B ∩ Conq0 contains 4 cuspidal edges.

A similar statement concerning the stability of the cut locus can be found in [6].
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Chapter 19

The volume in sub-Riemannian
geometry

19.1 The Popp volume

For an equiregular sub-Riemannian manifold M , Popp’s volume is a smooth volume which is
canonically associated with the sub-Riemannian structure, and it is a natural generalization of
the Riemannian one. In this chapter we define the Popp volume and we prove a general formula
for its expression, written in terms of a frame adapted to the sub-Riemannian distribution.

As a first application of this result, we prove an explicit formula for the canonical sub-Laplacian,
namely the one associated with Popp’s volume. Finally, we discuss sub-Riemannian isometries, and
we prove that they preserve Popp’s volume.

19.2 Popp volume for equiregular sub-Riemannian manifolds

Recall that a distribution D is equiregular if the growth vector is constant, i.e. for each i =
1, 2, . . . ,m, ki(q) = dim(Diq) does not depend on q ∈M . In this case the subspaces Diq are fibres of
the higher order distributions Di ⊂ TM .

For equiregular distributions we will simply talk about growth vector and step of the distribu-
tion, without any reference to the point q.

Next, we introduce the nilpotentization of the distribution at the point q, which is fundamental
for the definition of Popp’s volume.

Definition 19.1. Let D be an equiregular distribution of step m. The nilpotentization of D at the
point q ∈M is the graded vector space

grq(D) = Dq ⊕D2
q/Dq ⊕ . . .⊕Dmq /Dm−1

q .

The vector space grq(D) can be endowed with a Lie algebra structure, which respects the
grading. Then, there is a unique connected, simply connected group, Grq(D), such that its Lie
algebra is grq(D). The global, left-invariant vector fields obtained by the group action on any
orthonormal basis of Dq ⊂ grq(D) define a sub-Riemannian structure on Grq(D), which is called
the nilpotent approximation of the sub-Riemannian structure at the point q.

In what follows, we provide the definition of Popp’s volume. Our presentation follows closely
the one that can be found in [15]. (See also [78]). The definition rests on the following lemmas.
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Lemma 19.2. Let E be an inner product space and V a vector space. Let π : E → V be a surjective
linear map. Then π induces an inner product on V such that the norm of v ∈ V is

‖v‖V = min{‖e‖E s.t. π(e) = v} . (19.1)

Proof. It is easy to check that Eq. (19.1) defines a norm on V . Moreover, since ‖ · ‖E is induced
by an inner product, i.e. it satisfies the parallelogram identity, it follows that ‖ · ‖V satisfies the
parallelogram identity too. Notice that this is equivalent to consider the inner product on V defined
by the linear isomorphism π : (ker π)⊥ → V . Indeed the norm of v ∈ V is the norm of the shortest
element e ∈ π−1(v).

Lemma 19.3. Let E be a vector space of dimension n with a flag of linear subspaces {0} = F 0 ⊂
F 1 ⊂ F 2 ⊂ . . . ⊂ Fm = E. Let gr(F ) = F 1 ⊕ F 2/F 1 ⊕ . . . ⊕ Fm/Fm−1 be the associated graded
vector space. Then there is a canonical isomorphism θ : ∧nE → ∧ngr(F ).

Proof. We only give a sketch of the proof. For 0 ≤ i ≤ m, let ki := dimF i. Let X1, . . . ,Xn be a
adapted basis for E, i.e. X1, . . . ,Xki is a basis for F i. We define the linear map θ̂ : E → gr(F )
which, for 0 ≤ j ≤ m−1, takes Xkj+1, . . . ,Xkj+1

to the corresponding equivalence class in F j+1/F j .
This map is indeed a non-canonical isomorphism, which depends on the choice of the adapted basis.
In turn, θ̂ induces a map θ : ∧nE → ∧ngr(F ), which sends X1 ∧ . . . ∧Xn to θ̂(X1) ∧ . . . ∧ θ̂(Xn).
The proof that θ does not depend on the choice of the adapted basis is “dual” to the proof of [78,
Lemma 10.4].

The idea behind Popp’s volume is to define an inner product on each Diq/Di−1
q which, in turn,

induces an inner product on the orthogonal direct sum grq(D). The latter has a natural volume
form, which is the canonical volume of an inner product space obtained by wedging the elements an
orthonormal dual basis. Then, we employ Lemma 19.3 to define an element of (∧nTqM)∗ ≃ ∧nT ∗

qM ,
which is Popp’s volume form computed at q.

Fix q ∈ M . Then, let v,w ∈ Dq, and let V,W be any horizontal extensions of v,w. Namely,
V,W ∈ Γ(D) and V (q) = v, W (q) = w. The linear map π : Dq ⊗Dq → D2

q/Dq

π(v ⊗ w) := [V,W ]q mod Dq , (19.2)

is well defined, and does not depend on the choice the horizontal extensions. Indeed let Ṽ and
W̃ be two different horizontal extensions of v and w respectively. Then, in terms of a local frame
X1, . . . ,Xk of D

Ṽ = V +

k∑

i=1

fiXi , W̃ =W +

k∑

i=1

giXi , (19.3)

where, for 1 ≤ i ≤ k, fi, gi ∈ C∞(M) and fi(q) = gi(q) = 0. Therefore

[Ṽ , W̃ ] = [V,W ] +
k∑

i=1

(V (gi)−W (fi))Xi +
k∑

i,j=1

figj [Xi,Xj ] . (19.4)

Thus, evaluating at q, [Ṽ , W̃ ]q = [V,W ]q mod Dq, as claimed. Similarly, let 1 ≤ i ≤ m. The linear
maps πi : ⊗iDq → Diq/Di−1

q

πi(v1 ⊗ · · · ⊗ vi) = [V1, [V2, . . . , [Vi−1, Vi]]]q mod Di−1
q , (19.5)
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are well defined and do not depend on the choice of the horizontal extensions V1, . . . , Vi of v1, . . . , vi.

By the bracket-generating condition, πi are surjective and, by Lemma 19.2, they induce an
inner product space structure on Diq/Di−1

q . Therefore, the nilpotentization of the distribution at q,
namely

grq(D) = Dq ⊕D2
q/Dq ⊕ . . .⊕Dmq /Dm−1

q , (19.6)

is an inner product space, as the orthogonal direct sum of a finite number of inner product spaces.
As such, it is endowed with a canonical volume (defined up to a sign) µq ∈ ∧ngrq(D)∗, which is the
volume form obtained by wedging the elements of an orthonormal dual basis.

Finally, Popp’s volume (computed at the point q) is obtained by transporting the volume of
grq(D) to TqM through the map θq : ∧nTqM → ∧ngrq(D) defined in Lemma 19.3. Namely

Pq = θ∗q(µq) = µq ◦ θq , (19.7)

where θ∗q denotes the dual map and we employ the canonical identification (∧nTqM)∗ ≃ ∧nT ∗
qM .

Eq. (19.7) is defined only in the domain of the chosen local frame. Since M is orientable, with
a standard argument, these n-forms can be glued together to obtain Popp’s volume P ∈ Ωn(M).
The smoothness of P follows directly from Theorem 19.5.

Remark 19.4. The definition of Popp’s volume can be restated as follows. Let (M,D) be an oriented
sub-Riemannian manifold. Popp’s volume is the unique volume P such that, for all q ∈ M , the
following diagram is commutative:

(M,D) P−−−−→ (∧nTqM)∗

grq

y
yθ∗q

grq(D) −−−−→µ (∧ngrq(D))∗

where µ associates the inner product space grq(D) with its canonical volume µq, and θ
∗
q is the dual

of the map defined in Lemma 19.3.

19.3 A formula for Popp volume

In this section we prove an explicit formula for the Popp volume.

We say that a local frame X1, . . . ,Xn is adapted if X1, . . . ,Xki is a local frame for Di, where
ki := dimDi, and X1, . . . ,Xk are orthonormal. It is useful to define the functions clij ∈ C∞(M) by

[Xi,Xj ] =

n∑

l=1

clijXl . (19.8)

With a standard abuse of notation we call them structure constants. For j = 2, . . . ,m we define
the adapted structure constants bli1... ij ∈ C∞(M) as follows:

[Xi1 , [Xi2 , . . . , [Xij−1 ,Xij ]]] =

kj∑

l=kj−1+1

bli1i2... ijXl mod Dj−1 , (19.9)
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where 1 ≤ i1, . . . , ij ≤ k. These are a generalization of the clij , with an important difference: the
structure constants of Eq. (19.8) are obtained by considering the Lie bracket of all the fields of
the local frame, namely 1 ≤ i, j, l ≤ n. On the other hand, the adapted structure constants of
Eq. (19.9) are obtained by taking the iterated Lie brackets of the first k elements of the adapted
frame only (i.e. the local orthonormal frame for D), and considering the appropriate equivalence
class. For j = 2, the adapted structure constants can be directly compared to the standard ones.
Namely blij = clij when both are defined, that is for 1 ≤ i, j ≤ k, l ≥ k + 1.

Then, we define the kj − kj−1 dimensional square matrix Bj as follows:

[Bj]
hl =

k∑

i1,i2,...,ij=1

bhi1i2...ijb
l
i1i2...ij , j = 1, . . . ,m , (19.10)

with the understanding that B1 is the k × k identity matrix. It turns out that each Bj is positive
definite.

Theorem 19.5. Let X1, . . . ,Xn be a local adapted frame, and let ν1, . . . , νn be the dual frame.
Then Popp’s volume P satisfies

P =
1√∏
j detBj

ν1 ∧ . . . ∧ νn , (19.11)

where Bj is defined by (19.10) in terms of the adapted structure constants (19.9).

To clarify the geometric meaning of Eq. (19.11), let us consider more closely the case m = 2.
If D is a step 2 distribution, we can build a local adapted frame {X1, . . . ,Xk,Xk+1, . . . ,Xn} by
completing any local orthonormal frame {X1, . . . ,Xk} of the distribution to a local frame of the
whole tangent bundle. Even though it may not be evident, it turns out that B−1

2 (q) is the Gram
matrix of the vectors Xk+1, . . . ,Xn, seen as elements of TqM/Dq. The latter has a natural structure
of inner product space, induced by the surjective linear map [ , ] : Dq ⊗ Dq → TqM/Dq (see
Lemma 19.2). Therefore, the function appearing at the beginning of Eq. (19.11) is the volume
of the parallelotope whose edges are X1, . . . ,Xn, seen as elements of the orthogonal direct sum
grq(D) = Dq ⊕ TqM/Dq.

Proof of Theorem 19.5

We are now ready to prove Theorem 19.5. For convenience, we first prove it for a distribution of step
m = 2. Then, we discuss the general case. In the following subsections, everything is understood
to be computed at a fixed point q ∈ M . Namely, by gr(D) we mean the nilpotentization of D at
the point q, and by Di we mean the fibre Diq of the appropriate higher order distribution.

Step 2 distribution

If D is a step 2 distribution, then D2 = TM . The growth vector is G = (k, n). We choose n − k
independent vector fields {Yl}nl=k+1 such that X1, . . . ,Xk, Yk+1, . . . , Yn is a local adapted frame for
TM . Then

[Xi,Xj ] =
n∑

l=k+1

blijYl mod D . (19.12)
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For each l = k + 1, . . . , n, we can think to blij as the components of an Euclidean vector in Rk
2
,

which we denote by the symbol bl. According to the general construction of Popp’s volume, we
need first to compute the inner product on the orthogonal direct sum gr(D) = D ⊕ D2/D. By
Lemma 19.2, the norm on D2/D is induced by the linear map π : ⊗2D → D2/D

π(Xi ⊗Xj) = [Xi,Xj ] mod D . (19.13)

The vector space ⊗2D inherits an inner product from the one on D, namely ∀X,Y,Z,W ∈ D,
〈X ⊗ Y,Z ⊗W 〉 = 〈X,Z〉〈Y,W 〉. π is surjective, then we identify the range D2/D with ker π⊥ ⊂
⊗2D, and define an inner product on D2/D by this identification. In order to compute explicitly
the norm on D2/D (and then, by polarization, the inner product), let Y ∈ D2/D. Then

‖D2/D‖Y = min{‖ ⊗2 D‖Z s.t. π(Z) = Y } . (19.14)

Let Y =
∑n

l=k+1 c
lYl and Z =

∑k
i,j=1 aijXi ⊗Xj ∈ ⊗2D. We can think to aij as the components

of a vector a ∈ Rk
2
. Then, Eq. (19.14) writes

‖D2/D‖Y = min{|a| s.t. a · bl = cl, l = k + 1, . . . , n} , (19.15)

where |a| is the Euclidean norm of a, and the dot denotes the Euclidean inner product. Indeed,
‖D2/D‖Y is the Euclidean distance of the origin from the affine subspace of Rk

2
defined by the

equations a · bl = cl for l = k + 1, . . . , n. In order to find an explicit expression for ‖D2/D‖2Y in
terms of the bl, we employ the Lagrange multipliers technique. Then, we look for extremals of

L(a, bk+1, . . . , bn, λk+1, . . . , λn) = |a|2 − 2
n∑

l=k+1

λl(a · bl − cl) . (19.16)

We obtain the following system




n∑

l=k+1

λl · bl − a = 0,

n∑

l=k+1

λlb
l · br = cr , r = k + 1, . . . , n.

(19.17)

Let us define the n − k square matrix B, with components Bhl = bh · bl. B is a Gram matrix,
which is positive definite iff the bl are n − k linearly independent vectors. These vectors are
exactly the rows of the representative matrix of the linear map π : ⊗2D → D2/D, which has rank
n − k. Therefore B is symmetric and positive definite, hence invertible. It is now easy to write
the solution of system (19.17) by employing the matrix B−1, which has components B−1

hl . Indeed
a straightforward computation leads to

‖D2/D‖2csYs = chB−1
hl c

l . (19.18)

By polarization, the inner product on D2/D is defined, in the basis Yl, by

〈Yl, Yh〉D2/D = B−1
lh . (19.19)

Observe that B−1 is the Gram matrix of the vectors Yk+1, . . . , Yn seen as elements of D2/D. Then,
by the definition of Popp’s volume, if ν1, . . . , νk, µk+1, . . . , µn is the dual basis associated with
X1, . . . ,Xk, Yk+1, . . . , Yn, the following formula holds true

P =
1√

detB
ν1 ∧ · · · ∧ νk ∧ µk+1 ∧ · · · ∧ µn . (19.20)
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General case

In the general case, the procedure above can be carried out with no difficulty. Let X1, . . . ,Xn

be a local adapted frame for the flag D0 ⊂ D ⊂ D2 ⊂ · · · ⊂ Dm. As usual ki = dim(Di). For
j = 2, . . . ,m we define the adapted structure constants bli1... ij ∈ C∞(M) by

[Xi1 , [Xi2 , . . . , [Xij−1 ,Xij ]]] =

kj∑

l=kj−1+1

bli1i2... ijXl mod Dj−1 , (19.21)

where 1 ≤ i1, . . . , ij ≤ k. Again, bli1...ij can be seen as the components of a vector bl ∈ Rk
j
.

Recall that for each j we defined the surjective linear map πj : ⊗jD → Dj/Dj−1

πj(Xi1 ⊗Xi2 ⊗ · · · ⊗Xij ) = [Xi1 , [Xi2 , . . . , [Xij−1 ,Xij ]]] mod Dj−1 . (19.22)

Then, we compute the norm of an element of Dj/Dj−1 exactly as in the previous case. It is
convenient to define, for each 1 ≤ j ≤ m, the kj−kj−1 dimensional square matrix Bj, of components

[Bj]
hl =

k∑

i1,i2,...,ij=1

bhi1i2...ijb
l
i1i2...ij . (19.23)

with the understanding that B1 is the k×k identity matrix. Each one of these matrices is symmetric
and positive definite, hence invertible, due to the surjectivity of πj. The same computation of the
previous case, applied to each Dj/Dj−1 shows that the matrices B−1

j are precisely the Gram matrices

of the vectors Xkj−1+1, . . . ,Xkj ∈ Dj/Dj−1, in other words

〈Xkj−1+l,Xkj−1+h〉Dj/Dj−1 = B−1
lh . (19.24)

Therefore, if ν1, . . . , νn is the dual frame associated with X1, . . . ,Xn, Popp’s volume is

P =
1√∏m

j=1 detBj
ν1 ∧ . . . ∧ νn . (19.25)

19.4 Popp volume and isometries

In the last part of the paper we discuss the conditions under which a local isometry preserves Popp’s
volume. In the Riemannian setting, an isometry is a diffeomorphism such that its differential is an
isometry for the Riemannian metric. The concept is easily generalized to the sub-Riemannian case.

Definition 19.6. A (local) diffeomorphism φ : M → M is a (local) isometry if its differential
φ∗ : TM → TM preserves the sub-Riemannian structure (D, 〈· | ·〉), namely

i) φ∗(Dq) = Dφ(q) for all q ∈M ,

ii) 〈φ∗X |φ∗Y 〉φ(q) = 〈X |Y 〉q for all q ∈M , X,Y ∈ Dq .

Remark 19.7. Condition i), which is trivial in the Riemannian case, is necessary to define isometries
in the sub-Riemannian case. Actually, it also implies that all the higher order distributions are
preserved by φ∗, i.e. φ∗(Diq) = Diφ(q), for 1 ≤ i ≤ m.
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Definition 19.8. Let M be a manifold equipped with a volume form µ ∈ Ωn(M). We say that a
(local) diffeomorphism φ :M →M is a (local) volume preserving transformation if φ∗µ = µ.

In the Riemannian case, local isometries are also volume preserving transformations for the
Riemannian volume. Then, it is natural to ask whether this is true also in the sub-Riemannian
setting, for some choice of the volume. The next proposition states that the answer is positive if
we choose Popp’s volume.

Proposition 19.9. Sub-Riemannian (local) isometries are volume preserving transformations for
Popp’s volume.

Proposition 19.9 may be false for volumes different than Popp’s one. We have the following.

Proposition 19.10. Let Iso(M) be the group of isometries of the sub-Riemannian manifold M . If
Iso(M) acts transitively on M , then Popp’s volume is the unique volume (up to multiplication by
scalar constant) such that Proposition 19.9 holds true.

Definition 19.11. LetM be a Lie group. A sub-Riemannian structure (M,D, 〈· | ·〉) is left invariant
if ∀g ∈M , the left action Lg :M →M is an isometry.

As a trivial consequence of Proposition 19.9 we recover a well-known result (see again [78]).

Corollary 19.12. Let (M,D, 〈· | ·〉) be a left-invariant sub-Riemannian structure. Then Popp’s
volume is left invariant, i.e. L∗

gP = P for every g ∈M .

This section is devoted to the proof of Propositions 19.9 and 19.10.

Proof of Proposition 19.9

Let φ ∈ Iso(M) be a (local) isometry, and 1 ≤ i ≤ m. The differential φ∗ induces a linear map

φ̃∗ : ⊗iDq → ⊗iDφ(q) . (19.26)

Moreover φ∗ preserves the flag D ⊂ . . . ⊂ Dm. Therefore, it induces a linear map

φ̂∗ : Diq/Di−1
q → Diφ(q)/Di−1

φ(q) . (19.27)

The key to the proof of Proposition 19.9 is the following lemma.

Lemma 19.13. φ̃∗ and φ̂∗ are isometries of inner product spaces.

Proof. The proof for φ̃∗ is trivial. The proof for φ̂∗ is as follows. Remember that the inner product
on Di/Di−1 is induced by the surjective maps πi : ⊗iD → Di/Di−1 defined by Eq. (19.5). Namely,
let Y ∈ Diq/Di−1

q . Then

‖Y ‖Di
q/Di−1

q
= min{‖Z‖⊗Dq s.t. πi(Z) = Y } . (19.28)

As a consequence of the properties of the Lie brackets, πi ◦ φ̃∗ = φ̂∗ ◦ πi. Therefore

‖Y ‖Di
q/Di−1

q
= min{‖φ̃∗Z‖⊗Dφ(q)

s.t. πi(φ̃∗Z) = φ̂∗Y } = ‖φ̂∗Y ‖Di
φ(q)

/Di−1
φ(q)

. (19.29)

By polarization, φ̂∗ is an isometry.
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Since grq(D) = ⊕mi=1Diq/Di−1
q is an orthogonal direct sum, φ̂∗ : grq(D) → grφ(q)(D) is also an

isometry of inner product spaces.
Finally, Popp’s volume is the canonical volume of grq(D) when the latter is identified with TqM

through any choice of a local adapted frame. Since φ∗ is equal to φ̂∗ under such an identification,
and the latter is an isometry of inner product spaces, the result follows.

Proof of Proposition 19.10

Let µ be a volume form such that φ∗µ = µ for any isometry φ ∈ Iso(M). There exists f ∈ C∞(M),
f 6= 0 such that P = fµ. It follows that, for any φ ∈ Iso(M)

fµ = P = φ∗P = (f ◦ φ)φ∗µ = (f ◦ φ)µ , (19.30)

where we used the Iso(M)-invariance of Popp’s volume. Then also f is Iso(M)-invariant, namely
φ∗f = f for any φ ∈ Iso(M). By hypothesis, the action of Iso(M) is transitive, then f is constant.

19.5 Hausdorff dimension and Hausdorff volume*

Bibliographical notes

The problem to define a canonical volume on a sub-Riemannian manifold was first pointed out
by Brockett in his seminal paper [36], motivated by the construction of a Laplace operator on a
3D sub-Riemannian manifold canonically associated with the metric structure, analogous to the
Laplace-Beltrami operator on a Riemannian manifold.

Recently, Montgomery addressed this problem in the general case (see [78, Chapter 10]). Popp’s
volume was first defined by Octavian Popp but introduced only in [78] (see also [3, 15]).

498



Chapter 20

The sub-Riemannian heat equation

In this chapter we derive the sub-Riemannian heat equation and we briefly discuss the strictly
related question of how to define an intrinsic volume in sub-Riemannian geometry. We then discuss
(without proofs) the well-posedness of the Cauchy problem, the smoothness of its solution and
the relation with the Lie bracket generating condition (Hörmander theorem). In the last part of
the chapter we present en elementary method to compute the fundamental solution of the heat
equation on the Heisenberg group (the famous Gaveau-Hulanicki formula) and we briefly discuss
the relation between the small-time heat kernel asymptotic and the sub-Riemannian distance.

20.1 The heat equation

To write the heat equation in a sub-Riemannian manifold, let us recall how to write it in the Rie-
mannian context and let us see which mathematical structures are missing in the sub-Riemannian
one.

20.1.1 The heat equation in the Riemannian context

Let (M,g) be an oriented1 Riemannian manifold of dimension n and let R the Riemannian volume
form defined by

R(X1, . . . ,Xn) = 1, where {X1, . . . ,Xn} is a local orthonormal frame.

In coordinates if g is represented by a matrix (gij), we have

R =
√
det(gij) dx1 ∧ . . . ∧ dxn.

Let φ be a quantity (depending on the position q and on the time t) subjects to a diffusion
process. For example it may represent the temperature of a body, the concentration of a chemical
product, the noise etc..... Let F be a time dependent vector field representing the flux of the
quantity φ, i.e., how much of φ is flowing through the unity of surface in unitary time.

Our purpose is to get a partial differential equation describing the evolution of φ. The Rieman-
nian heat equation is obtained by postulating the following two facts:

1we chose an oriented manifold for simplicity of presentation. In the non-orientable case, a never vanishing globally
defined n form does not exist, but one can repeat the same arguments using densities. See for instance [99], Section
2.2.
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(R1) the flux is proportional to minus the gradient of φ i.e., normalizing the proportionality con-
stant to one, we assume that

F = −grad(φ); (20.1)

(R2) the quantity φ satisfies a conservation law, i.e. for every bounded open set V having a smooth
boundary ∂V we have the following: the rate of decreasing of φ inside V is equal to the rate
of flowing of φ via F, out of V , through ∂V . In formulas this is written as

− d

dt

∫

V
φ R =

∫

∂V
F · ν dS. (20.2)

ν

∂V

V

Here ν is the external (Riemannian) normal to ∂V and dS is the element of area induced
by R on M , thanks to the Riemannian structure, i.e., dS = R(ν, ·). The quantity F · ν is a
notation for gq(F(q, t), ν(q)).

Applying the Riemannian divergence theorem to (20.2) and using (20.1) we have then

− d

dt

∫

V
φ R =

∫

∂V
F · ν dS =

∫

V
divR(F)R = −

∫

V
divR(grad(φ))R.

By the arbitrarity of V and defining the Riemannian Laplacian (usually called the Laplace-Beltrami
operator) as

△φ = divR(grad(φ)), (20.3)

we get the heat equation
∂

∂t
φ(q, t) = △φ(q, t).

Useful expressions for the Riemannian Laplacian

In this section we get some useful expressions for △. To this purpose we have to recall what are
grad and divR in formula (20.3).

We recall that the gradient of a smooth function ϕ : M → R is a vector field pointing in the
direction of the greatest rate of increase of ϕ and its magnitude is the derivative of ϕ in that
direction. In formulas it is the unique vector field grad(ϕ) satisfying for every q ∈M ,

gq(grad(ϕ), v) = dϕ(v), for every v ∈ TqM. (20.4)

In coordinates, if g is represented by a matrix (gij), and calling (gij) its inverse, we have

grad(ϕ)i =

n∑

j=1

gij∂jϕ. (20.5)
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If {X1, . . . ,Xn} is a local orthonormal frame for g, we have the useful formula

grad(ϕ) =
n∑

i=1

Xi(ϕ)Xi. (20.6)

Exercise 20.1. Prove that if the Riemannian metric is defined globally via a generating family
{X1, . . . ,Xm} with m ≥ n, in the sense of Chapter 3, then grad(ϕ) =

∑m
i=1Xi(ϕ)Xi.

Recall that the divergence of a smooth vector field X says how much the flow of X is increasing
or decreasing the volume. It is defined in the following way. The Lie derivative in the direction
of X of the volume form is still a n-form and hence point-wise proportional to the volume form
itself. The “point-wise” constant of proportionality is a smooth function that by definition is the
divergence of X. In formulas

LXR = divR(X)R.
Now using dR = 0 and the Cartan formula we have that LXR = iXdR+d(iXR) = d(iXR). Hence
the divergence of a vector field X can be defined by

d(iXR) = divR(X)R. (20.7)

In coordinates, if R = h(x)dx1 ∧ . . . dxn we have

divR(X) =
1

h(x)

n∑

i=1

∂i(h(x)X
i). (20.8)

Remark 20.2. Notice that to define the divergence of a vector field it is not necessary a Riemannian
structure, but only a volume form (i.e., a smooth n-form globally defined).

If we put together formula 20.5 and formula 20.8, with X = grad(ϕ) we get the well known
expression for the Laplace Beltrami operator,

△(ϕ) = divR(grad(ϕ)) =
1

h(x)

n∑

i,j=1

∂i(h(x)g
ij∂jϕ). (20.9)

Combining formula 20.6 with the property div(aX) = adiv(X) +X(a) where X is a vector field
and a is a function, we get

△(ϕ) =

n∑

i=1

(
X2
i ϕ+ divR(Xi)Xi(ϕ)

)
where {X1, . . . Xn} is a local orthonormal frame. (20.10)

Similarly, defining the Riemannian structure via a generating family we get

△(ϕ) =

m∑

i=1

(
X2
i ϕ+ divR(Xi)Xi(ϕ)

)
where {X1, . . . Xm}, m ≥ n, is a generating family (20.11)

Remark 20.3. Notice that one could consider a diffusion process on a Riemannian manifold mea-
suring the gradient with the Riemannian structure and the volume with a volume form ω 6= R. In
this case one would get a heat equation of the form

∂

∂t
φ(q, t) = △φ(q, t), where △φ = divω(grad(φ)),

(to do this explicitly use Lemma 20.4 below). From Formula 20.10 one gets that the choice of the
volume form does not affect the second order terms, but only the first order ones.
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20.1.2 The heat equation in the sub-Riemannian context

Let M be a sub-Riemannian manifold of dimension n. To write a heat-like equation in the sub-
Riemannian context we follow what we did in the Riemannian case. However many ingredients are
missing and we have to reason in a different way to derive the heat equation. We denote by φ the
quantity subject to the diffusion process, and we postulate that:

(SR1) the heat flows in the direction where φ is varying more but only among horizontal directions;

(SR2) the quantity φ satisfies a conservation law, i.e. for every bounded open set V having a smooth
and orientable boundary ∂V , the rate of decreasing of φ inside V is equal to the rate of flowing
of φ, out of V , through ∂V .

For (SR1) we need:

A. a notion of horizontal gradient;

for (SR2) we need:

B. a way of computing the volume;

C. a way to express the conservation law without using the Riemannian normal ν to ∂V , the
scalar product between ν and the flux and the Riemannian divergence theorem.

Let us now discuss A, B, and C.

A. The horizontal gradient

In sub-Riemannian geometry the gradient of a smooth function ϕ : M → R is a horizontal vector
field (called horizontal gradient) pointing in the horizontal direction of the greatest rate of increase
of ϕ and its magnitude is the derivative of ϕ in that direction. In formulas it is the unique vector
field gradH(ϕ) satisfying for every q ∈M ,

〈gradH(ϕ) | v〉q = dϕ(v), for every v ∈ DqM. (20.12)

Here 〈· | ·〉q is the scalar product induced by the sub-Riemannian structure on Dq (see Exercise 3.8).
If {X1, . . . ,Xm} is a generating family then

gradH(ϕ) =

m∑

i=1

Xi(ϕ)Xi.

B. Measuring the volume

As in the Riemannian case, let us assume for simplicity that M is oriented. The construction of
a canonical volume form in sub-Riemannian geometry (i.e. a volume form obtained using only
the sub-Riemannian structure) is a subtle problem. In Chapter 19 we have seen that, in the
equiregular case, a construction exists and the volume form obtained in that way is called Popp’s
volume. However other constructions are possible. Being (M,d) a metric space one can for instance
use the Hausdorff volume or the Spherical Hausdorff volume. In certain cases, different construction
give rise to the same volume form (up to a multiplicative constant). In others cases give rise to
a different volume form. We are not going to discuss here the details of this problem. Let us
just recall that the three situations that one can meet are (see the bibligraphical note for some
references):
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Ω

ΠF (t,Ω)

F

Figure 20.1:

• rank-varying or non-equiregular cases. In the first case a construction of a canonical smooth
volume form is not known.

• equiregular cases for which the nilpotent approximation is the same in every point. In this
case Popp’s volume is in a sense the only canonical volume (up to a multiplicative constant)
that one can build;2

• equiregular cases for which the nilpotent approximation changes with the point. In this case
one can build an infinite number of canonical volumes and Popp’s volume is only one of the
possible constructions.

For left-invariant sub-Riemannian structures on Lie groups, the nilpotent approximation is the same
at each point and we are in the second case. For these structures Popp’s volume is a left-invariant
volume form and hence it coincide (up to a multiplicative constant) with the left Haar measure on
the group that is a canonical volume that can be built on any Lie group.

Due to these difficulties, in the following we assume that a volume form ω (i.e., a smooth n-form
globally defined) is assigned independently of the sub-Riemannian structure.

C. Conservation laws without a Riemannian structure

The next step is to express the conservation of the heat without a Riemannian structure. This can
be done thanks to the following Lemma, whose proof is left for exercise.

Lemma 20.4. Let M be a smooth manifold provided with a smooth volume form ω. Let Ω be an
embedded bounded sub-manifold (possible with boundary) of codimension 1. Let F (q, t) be a time
dependent complete smooth vector field and P0,t be the corresponding flow. Consider the cylinder
formed by the images of Ω translated by the flow of F for times between 0 and t (see Figure 20.1):

ΠF (t,Ω) = {P0,t(Ω) | s ∈ [0, t]}.

Then
d

dt

∣∣∣∣
t=0

∫

ΠF (t,Ω)
ω =

∫

Ω
iF (q,0) ω(q).

2roughly speaking Popp’s volume is the unique volume form (up to a multiplicative constant) that at every point
q depends only on the nilpotent approximation of the sub-Riemannian structure at the point q.
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The heat equation

The postulate (SR1) consist then in declaring that the heat is flowing via a flux F given by

F = −gradH(φ).

The postulate (SR2) is then written as

− d

dt

∫

V
φ ω =

d

dt

∫

ΠF(t,∂V )

ω =

∫

∂V
iF ω,

where in the last equality we have used the result of the lemma.
Now, using the Stokes theorem, the definition of divergence 20.7 and using that F = −gradHφ

we have ∫

∂V
iF ω =

∫

V
d(iF ω) =

∫

V
divω(F)ω = −

∫

V
div(gradH(φ))ω.

Definition 20.5. Let M be a sub-Riemannian manifolds and let ω be a volume on M . The
operator △Hφ = divω(gradH(φ)) is called the sub-Riemannian Laplacian.

By the arbitrarity of V we get the sub-Riemannian heat equation

∂

∂t
φ(q, t) = △Hφ(q, t).

20.1.3 Few properties of the sub-Riemannian Laplacian: the Hörmander theo-
rem and the existence of the heat kernel

Remark 20.6. Notice that the expression of the sub-Riemannian Laplacian does not change if we
multiply the volume by a (non zero) constant. In the equiregular case and when the nilpotent
approximation of the sub-Riemannian structure does not depend on the point, the sub-Riemannian
Laplacian computed with respect to the Popp volume is called the intrinsic sub-Laplacian.

△intrφ = divP(gradH(φ)).

The same computation of the Riemannian case provides the following expression for the sub-
Riemannian Laplacian,

△H(φ) =

m∑

i=1

(
X2
i φ+ divω(Xi)Xi(φ)

)
where {X1, . . . Xm}, is a generating family. (20.13)

In the Riemannian case, the operator ∆H is elliptic, i.e., in coordinates it has the expression

△H =

n∑

i,j=0

aij(x)∂i∂j + first order terms,

where the matrix (aij) is symmetric and positive definite for every x.
In the sub-Riemannian (and not-Riemannian) case, ∆H it is not elliptic since the matrix (aij)

can have several zero eigenvalues. However, a theorem of Hörmander says that thanks to the Lie
bracket generating condition ∆H is hypoelliptic. More precisely we have the following.
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Theorem 20.7 (Hörmander). Let {Y0, Y1 . . . Yk} be a set of Lie bracket generating vector fields on
a smooth manifold M . Then the operator L = Y0 +

∑k
i=1 Y

2
i is hypoellptic which means that if ϕ

is a distribution defined on an open set Ω ⊂M , such that Lϕ is C∞, then ϕ is C∞ in Ω.

Notice that:

• Elliptic operators with C∞ coefficients are hypoelliptic.

• The heat operator△−∂t, where△ is the Laplace-Beltrami operator on a Riemannian manifold
M is not elliptic, since the matrix of coefficients of the second order derivatives in R×M has
one zero eigenvalue (the one corresponding to t), but it is hypoelliptic since if {X1 . . . Xn} is
an orthonormal frame, then Y0 =

∑n
i=1 divR(Xi)Xi(φ) − ∂t and Y1 := X1, . . . , Yn := Xn are

Lie Bracket generating in R×M .

• The sub-Riemannian heat operator△H−∂t is hypoelliptic since if {X1 . . . Xm} is a generating
family, then Y0 =

∑m
i=1 divω(Xi)Xi(φ) − ∂t and Y1 := X1, . . . , Ym := Xm are Lie Bracket

generating in R × M . (The hypoellipticity of △H alone is consequence of the fact that
{X1, . . . ,Xm} are Lie Bracket generating on M .)

One of the most important consequences of the Hörmander theorem is that the heat evolution
smooths out immediately every initial condition. Indeed if one can guarantee that a solution of
(∆H − ∂t)ϕ = 0 exists in distributional sense in an open set Ω of R ×M , then, being 0 ∈ C∞, it
follows that ϕ is C∞ in Ω.

A standard result for the existence of a solution in L2(M,ω) is given by the following theorem.3

Theorem 20.8. Let M be a smooth manifold and ω a volume on M . If ∆ is a non negative and
essentially self-adjoint operator on L2(M,ω), then, there exists a unique solution to the Cauchy
problem

{
(∂t −△)φ = 0
φ(q, 0) = φ0(q) ∈ L2(M,ω),

(20.14)

on [0,∞[×M . Moreover for each t ∈ [0,∞[ this solution belongs to L2(M,ω).

It is immediate to prove that ∆H is non-negative and symmetric on L2(M,ω). If in addition
one can prove that ∆H is essentially self-adjoint, then thanks to the Hörmander theorem, one has
that the solution of (20.14) is indeed C∞ in ]0,∞[×M .

The discussion of the theory of self-adjoint operators is out of the purpose of this book. How-
ever the essential self-adjointness of ∆H is guaranteed by the completeness of the sub-Riemannian
manifold as metric space.

Theorem 20.9 (Strichartz). Consider a sub-Riemannian manifold that is complete as metric space.
Let ω be a volume on M . Then ∆H defined on C∞c (M) is essentially self-adjoint in L2(M,ω).

Typical cases in which the sub-Riemannian manifold is complete are left-invariant structure on
Lie groups, sub-Riemannian manifold obtained as restriction of complete Riemannian manifolds,
sub-Riemannian structures defined in Rn having as generating family a set of sub-linear vector
fields.

3By L2(M,ω) we mean functions from M to R which are square integrable with respect to the volume ω
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When the manifold is not complete as metric space (as for instance the standard Euclidean
structure on the unitary disc in R2), then to study the Cauchy problem (20.14) one need to specify
more the problem (e.g., boundary conditions).

As a consequence of the hypoellipticity of △H − ∂t, of Therem 20.8 and of Theorem 20.9, we
have

Corollary 20.10. Consider a sub-Riemannian manifold that is complete as metric space. Let ω
be a volume on M . There exists a unique solution to the Cauchy problem (20.14), that is C∞ in
]0,∞[×M .

Under the hypothesis of completeness of the manifold one can also guarantee the existence of a
convolution kernel.

Theorem 20.11 (Strichartz). Consider a sub-Riemannian manifold that is complete as metric
space. Let ω be a volume on M . Then the unique solution to the Cauchy problem (20.14) on
]0,∞[×M can be written as

φ(q, t) =

∫

M
φ0(q̄)Kt(q, q̄)ω(q̄)

where Kt(q, q̄) is a positive function defined on ]0,∞[×M ×M which is smooth, symmetric for the
exchange of q and q̄ and such that for every fixed t, q, we have Kt(q, ·) ∈ L2(M,ω).

The function Kt(q, q̄) is called the Kernel of the heat equation.

20.1.4 The heat equation in the non-Lie-bracket generating case

If the sub-Riemannian structure is not Lie-bracket generated, i.e., when we are dealing with a
proto-sub-Riemannian structure in the sense of Section 3.1.5 then the operator △H can be defined
as above, but in general it is not hypoelliptic and the heat evolution does not smooth the initial
condition.

Consider for example the the proto-sub-Riemannian structure on R3 for which an orthonormal
frame is given by {∂x, ∂y} (here we are calling (x, y, z) the points of R3). Take as volume the
Lebesgue volume on R3. Then △H = ∂2x + ∂2y on R3. This operator is not obtained from Lie-
bracket generating vector fields. Consider the corresponding heat operator ∆H − ∂t on [0,∞[×R3.
Since the z direction is not appearing in this operator, any discontinuity in the z variable is not
smoothed by the evolution. For instance if ψ(x, y, t) is a solution of the heat equation ∆H − ∂t = 0
on [0,∞[×R2, then ψ(x, y, t)θ(z) is a solution of the heat equation on [0,∞[×R3, where θ is the
Heaviside function.

20.2 The heat-kernel on the Heisenberg group

In this section we construct the heat kernel on the Heisenberg sub-Riemannian structure. To this
purpose it is convenient to see this structure as a left-invariant structure on a matrix representation
of the Heisenberg group. This point of view is useful because permits to fully exploit the left-
invariance of the structure (construction of a canonical volume form, looking for a special form of
the heat kernel that behave well for left-translations etc...).
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20.2.1 The Heisenberg group as a group of matrices

The Heisenberg group H1 can be seen as the 3-dimensional group of matrices

H1 =








1 x z + 1
2xy

0 1 y
0 0 1


 | x, y, z ∈ R



 ,

endowed with the standard matrix product. H1 is indeed R3, endowed with the group law

(x1, y1, z1) · (x2, y2, z2) =
(
x1 + x2, y1 + y2, z1 + z2 +

1

2
(x1y2 − x2y1)

)
. (20.15)

This group law comes from the matrix product after making the identification

(x, y, z) ∼




1 x z + 1
2xy

0 1 y
0 0 1


 .

The identity of the group is the element (0, 0, 0) and the inverse element is given by the formula

(x, y, z)−1 = (−x,−y,−z).
A basis of its Lie algebra of H1 is {p1, p2, k} where

p1 =




0 1 0
0 0 0
0 0 0


 , p2 =




0 0 0
0 0 1
0 0 0


 , k =




0 0 1
0 0 0
0 0 0


 . (20.16)

They satisfy the following commutation rules: [p1, p2] = k, [p1, k] = [p2, k] = 0, hence H1 is a 2-step
nilpotent group.

Remark 20.12. Notice that if one write an element of the algebra as xp1 + yp2 + zk, one has that

exp(xp1 + yp2 + zk) =




1 x z + 1
2xy

0 1 y
0 0 1


 . (20.17)

Hence the coordinates (x, y, z) are the coordinates on the Lie algebra related to the basis {p1, p2, k},
transported on the group via the exponential map. They are called coordinates of the “first type”.
As we will see later, coordinate x, y, w = z + 1

2xy, that are more adapted to the group, are also
useful.

The standard sub-Riemannian structure on H1 is the one having as generating family:

X1(g) = gp1, X2(g) = gp2.

With a straightforward computation one get the following coordinate expression for the generating
family:

X1 = ∂x −
y

2
∂z, X2 = ∂y +

x

2
∂z,

that we already met several times in the previous chapters.

Let Lg (resp. Rg) be the left (resp. right) multiplication on H1:

Lg : H
1 ∋ h 7→ gh (resp. Rg : H1 ∋ h 7→ hg).
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Exercise 20.13. Prove that, up to a multiplicative constant, there exist one and only one 3-form
dhL on H1 which is left-invariant, i.e. such that L∗

gdhL = dhL and that in coordinates coincide (up
to a constant) with the Lebesgue measure dx∧dy∧dz. Prove the same for a right-invariant 3-form
dhR.

The left- and right-invariant forms built in the exercise above are the left and right Haar
measures on H1. Since they coincide up to a multiplicative constant, the Heisenberg group is
said to be “unimodular”. In the following we normalise the left and right Haar measures on the
sub-Riemannian structure in such a way that

dhL(X1,X2, [X1,X2]) = dhR(X1,X2, [X1,X2]) = 1. (20.18)

The 3-form obtained in this way on H1 coincide with the Lebesgue measure on R3 and in the
following we call it simply the “Haar measure”

dh = dx ∧ dy ∧ dz. (20.19)

As already remarked above, since we are on a Lie group this 3-form coincides (up to a multiplicative
constant) with Popp’s measure.

Exercise 20.14. Prove that (20.19) is indeed Popp’s measure (i.e. that the multiplicative constant
is indeed one).

Exercise 20.15. Prove that the two conditions (20.18) are invariant by change of the orthonormal
frame.

20.2.2 The heat equation on the Heisenberg group

Given a volume form ω on R3, the sub-Riemannian Laplacian for the Heisenberg sub-Riemannian
structure is given by the formula,

△H(φ) =
(
X2

1 +X2
2 + divω(X1)X1 + divω(X2)X2

)
φ. (20.20)

If we take as volume the Haar volume dh, and using the fact that X1 and X2 are divergence free
with respect to dh, we get for the sub-Riemannian Laplacian

△H(φ) = (X1)
2 + (X2)

2 = (∂x −
y

2
∂z)

2 + (∂y +
x

2
∂z)

2. (20.21)

The heat equation on the Heisenberg group is then

∂tφ(x, y, z, t) = △H(φ) =
(
(∂x −

y

2
∂z)

2 + (∂y +
x

2
∂z)

2
)
φ(x, y, z, t)

For this equation, we are looking for the heat kernel, namely a function Kt(q, q̄) such that the
solution to the Cauchy problem

{
(△H − ∂t)φ = 0
φ(q, 0) = φ0(q) ∈ L2(R3, dh)

(20.22)
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can be expressed as

φ(q, t) =

∫

R3

Kt(q, q̄)φ0(q̄)dh(q̄), t > 0. (20.23)

The existence of a heat kernel that is smooth, positive and symmetric is guaranteed by Theorem
20.9 since the Heisenberg group (as sub-Riemannian structure) is complete. Its explicit expression
(indeed in a form of a Fourier transform) is given by the following Theorem.

Theorem 20.16 (Gaveau, Hulanicki). The heat kernel for the heat equation for the standard sub-
Riemannian structure on the Heisenberg group namely for equation in R3

∂tφ(x, y, z, t) =
(
(∂x −

y

2
∂z)

2 + (∂y +
x

2
∂z)

2
)
φ(x, y, z, t)

is given by the formula (here q = (x, y, z) and “·” is the group law (20.15))

Kt(q, q̄) = Pt(q
−1 · q̄),

where

Pt(x, y, z) =
1

(2πt)2

∫

R

2τ

sinh(2τ)
exp

(
− τ(x2 + y2)

2t tanh(2τ)

)
cos(2

zτ

t
)dτ, t > 0. (20.24)

Formula 20.24 is called the Gaveau-Hulanicki fundamential solution for the Heisenberg group.
Notice that Pt(q) = Kt(q, 0) hence it represents the evolution at time t of an initial condition that
at time zero is concentrated in the origin (a Dirac delta).

Pt(q) = Kt(q, 0) =

∫

R3

Kt(q, q̄)δ0(q̄)dh(q̄).

20.2.3 Construction of the Gaveau-Hunalicki fundamental solution

The construction of the Gaveau-Hulanicki fundamental solution on the Heisenberg group was an
important achievement of the end of the seventies (see the bibliographical note). Here we propose
an elementary direct method divided in the following step:

STEP 1. We look for a special form for Kt(q, q̄) using the group law.

STEP 2. We make a change of variables in such a way that the coefficients of the heat equation depend
only on one variable instead than two.

STEP 3. By using the Fourier transform in two variables, we transform the heat equation (that was a
PDE in three spatial variable plus the time) in a heat equation with an harmonic potential
in one variable plus the time.

STEP 4. We find the kernel for the heat equation with the harmonic potential, thanks to the Mehler
formula for Hermite polynomials.

STEP 5. We come back to the original variables.
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Let us make these steps one by one.

STEP 1 Due to invariance under the group law, we expect that forKt(q, q̄) = Kt(h·q, h·q̄) for every
h ∈ H1. Taking h = q−1 we then look for a heat kernel having the propery Kt(q, q̄) = Kt(0, q

−1q̄).
Hence setting q = (x, y, z) and q̄ = (x̄, ȳ, z̄) we can write

Kt(q, q̄) = Pt(q
−1 · q̄) = Pt(x̄− x, ȳ − y, z̄ − z) = Pt(x− x̄, y − ȳ, z − z̄), (20.25)

for a suitable function Pt(·) called the fundamental solution. In the last equality we have used the
symmetry of the heat kernel.

STEP 2 Let us make the change the variable z → w, where

w = z +
1

2
xy

(cf. Remark 20.12). In the new variables we have that the Haar measure is dh = dx ∧ dy ∧ dw.
The generating family and the sub-Riemannian Laplacian become

X1 =




1
0
0


 = ∂x, (20.26)

X2 =




0
1
x


 = ∂y + x∂w, (20.27)

△H(φ) = (X1)
2 + (X2)

2 = ∂2x + (∂y + x∂w)
2. (20.28)

The new coordinates are very useful since now the coefficients of the different terms in △H depend
only on one variable. We are then looking for the solution to the Cauchy problem

{
∂tϕ(x, y, w, t) = △H(ϕ(x, y, w, t)) =

(
∂2x + (∂y + x∂w)

2
)
ϕ(x, y, w, t)

ϕ(x, y, w, 0) = ϕ0(x, y, w) ∈ L2(R3, dh)
(20.29)

where ϕ(x, y, w, t) = φ(x, y, w − 1
2xy, t).

STEP 3 By making the Fourier transform in y and w, we have ∂y → iµ, ∂w → iν and the Cauchy
problem become {

∂tϕ̂(x, µ, ν, t) =
(
∂2x − (µ + νx)2

)
ϕ̂(x, µ, ν, t)

ϕ̂(x, µ, ν, 0) = ϕ̂0(x, µ, ν).
(20.30)

By making the change of variable x→ θ, where µ+ νx = νθ, i.e., θ = x+ µ
ν we get:

{
∂tϕ̄

µ,ν(θ, t) =
(
∂2θ − ν2θ2

)
ϕ̄µ,ν(θ, t)

ϕ̄µ,ν(θ, 0) = ϕ̄µ,ν0 (θ),
(20.31)

where we set ϕ̄µ,ν(θ, t) := ϕ̂(θ − µ
ν , µ, ν, t), and ϕ̄

µ,ν
0 (θ) = ϕ̂0(θ − µ

ν , µ, ν).

STEP 4. We have the following

Theorem 20.17. The solution of the Cauchy problem for the evolution of the heat in an harmonic
potential, i.e. {

∂tψ(θ, t) =
(
∂2θ − ν2θ2

)
ψ(θ, t)

ψ(θ, 0) = ψ0(θ) ∈ L2(R, dθ)
(20.32)
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can be written in the form of a convolution kernel

ψ(θ, t) =

∫

R
Qνt (θ, θ̄)ψ0(θ̄)dθ̄, t > 0.

where

Qνt (θ, θ̄) :=

√
ν

2π sinh(2νt)
exp

(
−1

2

ν cosh(2νt)

sinh(2νt)
(θ2 + θ̄2) +

νθθ̄

sinh(2νt)

)
. (20.33)

Remark 20.18. In the case ν = 0 we interpret Q0
t (θ, θ̄) in the limit

limν→0Q
ν
t (θ, θ̄) =

1√
4πt

exp

(
−|θ − θ̄|

2

4t

)
. (20.34)

Proof. For ν = 0, equation (20.32) is the standard heat equation on R and the heat kernel is given
by formula (20.34). See for instance [48]. In the following of this proof we assume ν > 0. The
eigenvalues and the eigenfunctions of the operator ∂2θ − ν2θ2 on R are4

Ej = −2ν(j + 1/2),

Φνj (θ) =
1√
2jj!

(ν
π

) 1
4
exp

(
−νθ

2

2

)
Hj(
√
ν θ),

where Hj are the Hermite polynomials Hj(θ) = (−1)j exp(θ2) dj
dθj

exp(−θ2). Being {Φνj }j∈N an

orthonormal frame of L2(R), we can write

ψ(θ, t) =
∑

j

Cj(t)Φ
ν
j (θ).

Using equation (20.32), we obtain that

Cj(t) = Cj(0) exp(tEj)

where Cj(0) =
∫
RΦνj (θ̄)ψ0(θ̄) dθ̄. Hence

ψ(θ, t) =

∫

R
Qνt (θ, θ̄)ψ0(θ̄) dθ̄

where

Qνt (θ, θ̄) =
∑

j

Φνj (θ)Φ
ν
j (θ̄) exp(tEj).

After some algebraic manipulations and using the Mehler formula5 for Hermite polynomials

∑

j

Hj(ξ)Hj(ξ̄)

2jj!
(w)j = (1− w2)−

1
2 exp

(
2ξξ̄w − (ξ2 + ξ̄2)w2

1− w2

)
, ∀ w ∈ (−1, 1),

4see for instance https://en.wikipedia.org/wiki/Quantum harmonic oscillator
5See for instance https://en.wikipedia.org/wiki/Hermite polynomials
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with ξ =
√
νθ, ξ̄ =

√
νθ̄, w = exp(−2νt), one get formula (20.33). In the case ν < 0 we get the

same result. �

Using Theorem 20.17 we can write the solution to 20.32 as

ϕ̄µ,ν(θ, t) =

∫

R
Qνt (θ, θ̄)ϕ̄

µ,ν
0 (θ̄)dθ̄.

STEP 5 We now come back to the original variables step by step. We have

ϕ̂(x, µ, ν, t) = ϕ̄µ,ν(x+
µ

ν
, t) =

∫

R
Qνt (x+

µ

ν
, θ̄)ϕ̄µ,ν0 (θ̄)dθ̄ =

∫

R
Qνt (x+

µ

ν
, x̄+

µ

ν
)ϕ̂0(x̄, µ, ν)dx̄.

In the last equality we made the change of integration variable θ̄ → x̄ with θ̄ = x̄+ µ
ν and we used

the fact that ϕ̂µ,ν0 (x̄+ µ
ν ) = ϕ̂0(x̄, µ, ν).

Now, using the fact that ϕ̂0(x̄, µ, ν) is the Fourier transform of the initial condition, i.e.

ϕ̂0(x̄, µ, ν) =

∫

R

∫

R
ϕ0(x̄, ȳ, w̄)e

−iµȳe−iνw̄dȳ dw̄,

and making the inverse Fourier transform we get

ϕ(x, y, w, t) =
1

(2π)2

∫

R

∫

R
ϕ̂(x, µ, ν, t)eiµyeiνwdµ dν

=

∫

R3

(
1

(2π)2

∫

R

∫

R
Qνt (x+

µ

ν
, x̄+

µ

ν
)eiµ(y−ȳ)eiν(w−w̄)dµ dν

)
ϕ0(x̄, ȳ, w̄)dx̄ dȳ dw̄.

Coming back to the variable x, y, z, we have

φ(x, y, z, t) = ϕ(x, y, z +
1

2
xy, t) =

∫

R3

Kt(x, y, z, x̄, ȳ, z̄)φ0(x̄, ȳ, z̄)dx̄ dȳ dz̄.

where

Kt(x, y, z, x̄, ȳ, z̄) =
1

(2π)2

∫

R

∫

R
Qνt (x+

µ

ν
, x̄+

µ

ν
)eiµ(y−ȳ)eiν(z−z̄+

1
2
(xy−x̄ȳ))dµ dν.

We have then (cf. (20.25))

Pt(x, y, z) = Kt(x, y, z; 0, 0, 0) =
1

(2π)2

∫

R

∫

R
Qνt (x+

µ

ν
,
µ

ν
)eiµyeiν(z+

1
2
xy)dµ dν.

To simplify this formula and in particular to get rid of one of the two integrals let us set A(ν, t) =√
ν

2π sinh(2νt) and let us write explicitly from (20.33)

Qνt (x+
µ

ν
,
µ

ν
) = A(ν, t) exp

(
− ν

2 tanh(2νt)

((
x+

µ

ν

)2
+
µ2

ν2

)
+
ν
(
x+ µ

ν

) µ
ν

sinh(2νt)

)

= A(ν, t) exp

(
− ν

2 tanh(2νt)
x2 + (µνx+ µ2)α(ν, t)

)
,
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where

α(ν, t) =
1

ν

(
1

sinh(2νt)
− 1

tanh(2νt)

)
=

1

ν

(
1− cosh(2νt)

sinh(2νt)

)
= −1

ν
tanh(νt) < 0, ∀t > 0 and ν ∈ R.

If we notice that µνx+ µ2 =
(
µ+ ν

2x
)2 − ν2

4 x
2, we can rewrite

Qνt (x+
µ

ν
,
µ

ν
) = A(ν, t) exp

(
−
(

ν

2 tanh(2νt)
+
ν2α(ν, t)

4

)
x2
)
exp

(
α(ν, t)

(
µ+

ν

2
x
)2)

.

Since

−
(

ν

2 tanh(2νt)
+
ν2α(ν, t)

4

)
= −ν

4

1

tanh(νt)
,

we have then

Pt(x, y, z) =
1

(2π)2

∫

R

∫

R
A(ν, t) exp

(
−ν
4

1

tanh(νt)
x2
)
exp

(
α(ν, t)

(
µ+

ν

2
x
)2)

eiµyeiν(z+
1
2
xy)dµ dν.

Let us make the change of variable µ→ ω = µ+ ν
2x implying that dω = dµ. We have

Pt(x, y, z) =
1

(2π)2

∫

R

∫

R
A(ν, t) exp

(
−ν
4

1

tanh(νt)
x2
)
exp

(
α(ν, t)ω2

)
ei(ω−

ν
2
x)yeiν(z+

1
2
xy)dω dν

=
1

(2π)2

∫

R

∫

R
A(ν, t) exp

(
−ν
4

1

tanh(νt)
x2
)
eiνz exp

(
α(ν, t)ω2

)
eiωy︸ ︷︷ ︸

T0

dω dν.

Now the variable ω appear only in the term in T0. The integral in dω can then be calculated.
Indeed being α(ν, t) < 0 we have that

∫

R
exp

(
α(ν, t)ω2

)
eiωydω =

√
π

−α(ν, t) exp
(

y2

4α(ν, t)

)
.

Hence

Pt(x, y, z) =
1

(2π)2

∫

R

√
π

−α(ν, t)︸ ︷︷ ︸
T1

T2︷ ︸︸ ︷
exp

(
y2

4α(ν, t)

)
A(ν, t)︸ ︷︷ ︸

T3

T4︷ ︸︸ ︷
exp

(
−ν
4

1

tanh(νt)
x2
)
eiνz dν.

Let us now compute

T1 × T3 =

√
π

−α(ν, t)A(ν, t) =
√

νπ

tanh(νt)

√
ν

2π sinh(2νt)
=

ν

2 sinh(νt)

T2 × T4 = exp

(
y2

4(−) 1ν tanh(νt)

)
exp

(
−ν
4

1

tanh(νt)
x2
)

= exp

(
−ν
4

1

tanh(νt)
(x2 + y2)

)

Hence

Pt(x, y, z) =
1

(2π)2

∫

R

ν

2 sinh(νt)
exp

(
−ν
4

1

tanh(νt)
(x2 + y2)

)
eiνz dν.
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Finally we make the change of variables ν → τ = νt
2 implying dν = 2

t dτ and we get

Pt(x, y, z) =
1

(2π)2

∫

R

2
t τ

2 sinh(2τ)
exp

(
−

2
t τ

4

1

tanh(2τ)
(x2 + y2)

)
ei

2
t
τz 2

t
d τ.

Now being the integrand an even function of τ we can substitute ei
2
t
τz with cos(2t τz) and we get

Pt(x, y, z) =
1

(2πt)2

∫

R

2τ

sinh(2τ)
exp

(
− τ(x

2 + y2)

2t tanh(2τ)

)
cos(2

zτ

t
)dτ. (20.35)

Exercise 20.19. With the same technique explained above, find the heat kernel for the heat
equation on the Grushin plane where the Laplacian is calculated with respect to Euclidean volume.

20.2.4 Small-time asymptotics for the Gaveau-Hulanicki fundamental solution

The integral representation (20.24) can be computed explicitly on the origin and on the z axis. Let
q0 = (0, 0, 0) and qz = (0, 0, z). We have

Kt(q0, q0) = Pt(0, 0, 0) =
1

16t2
(20.36)

Kt(q0, qz) = Pt(0, 0, z) =
1

8t2
(
1 + cosh

(
πz
t

)) =
1

4t2
exp

(
−d

2(q0, qz)

4t

)
fz(t) (20.37)

In the last equality we have used the fact that for the Heisenberg group d(q0, qz) =
√

4π|z|. Here

fz(t) :=
e

2πz
t

(
e

πz
t + 1

)2

is a function that for z 6= 0 is smooth as function of t and satisfies fz(0) = 1. A more detailed
analysis (cf. also the Bibliographical Note) permits to get for every fixed q = (x, y, z) such that
x2 + y2 6= 0

Kt(q0, q) = Pt(x, y, z) =
C +O(t)

t3/2
exp

(
−d

2(q0, q)

4t

)
. (20.38)

Notice that the asymptotics (20.36), (20.37), (20.38) are deeply different with respect to those
in the Euclidean case. Indeed the heat kernel for the standard heat equation in Rn is given by the
formula

Kt(q0, q) =
1

(4πt)n/2
exp

(
−dE(q0, q)

2

4t

)
. (20.39)

Here q0, q ∈ Rn and dE is the standard Euclidean norm. Comparing (20.39) with (20.36), (20.37),
(20.38), one has the impression that the heat diffusion on the Heisenberg group at the origin and
on the points on the z axis, is similar to the one in an Euclidean space of dimension 4 (i.e. beside

constants ∼ 1
t2 exp(−

d2(q0,q)
4t ) for t→ 0). While on all the other points it is similar to the one in an

Euclidean space of dimension 3, (i.e. beside constants ∼ 1
t(3/2)

exp(−d2(q0,q)
4t ) for t→ 0). Indeed the
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difference of asymptotics between the Heisenberg and the Euclidean case at the origin is related to
the fact that the Hausdorff dimension of the Heisenberg group is 4, while its topological dimension
is 3 (See Chapter ??). While the difference of asymptotics on the z axis (without the origin) is
related to the fact that these are points reached by a one parameter family of optimal geodesics
starting from the origin and hence they are at the same time cut and conjugate points. For more
details see the bibliographical note.

It is interesting to remark that on a Riemannian manifold of dimension n the asymptotics are
similar to the Euclidean ones for points close enough. Indeed for every q close enough to q0 we

have Kt(q0, q) = C+O(t)

(4πt)n/2 exp
(
−d2(q0,q)

4t

)
for some C = C(q0, q) > 0 depending on the point and

C(q0, q0) = 1. However if q is a point that is in the cut locus from q0 (situation that never occurs

when q is close enough to q0) thenKt(q0, q) =
C+O(t)
tm exp

(
−d2(q0,q)

4t

)
, where C > 0 andm ≥ n/2 are

constants whose value depend on the structure of optimal geodesics starting from q0 and arriving
in a neighborhood of q.

20.3 Bibliographical Note

The problem of existence of an intrinsic volume in sub-Riemannian geometry and hence of a Lapla-
cian was first formulated by Brockett in [36]. The problem was then studied by Montgomery in [78]
who introduced the Popp measure, and in [3]. Concerning the uniqueness of an intrinsic volume
see [1, 32].

For the heat equation in Riemannian geometry, we refer to [89] and references therein. For an
elementary introduction in Rn we refer to the book of Evans [48].

Theorem 20.9 has been proved in [93, 94]. This result has been first proved in the Riemannian
context in [52, 53]. In [93, 94] one finds also the proof of Theorem 20.11. For the proof of Theorem
20.8, see for instance [51]. Hörmander theorem was proved in [63]. Today there are althernative
proofs based on stochastic analysis. See for instance [59, 41, 42].

The fundamental solution of the heat equation on the Heisenberg group was obtained by Gaveau
using a kind of Hamilton-Jacobi theory [54] and by Hulanicki using non-commutative Fourier anal-
ysis [64]. For this second method applied on other 3-dimensional Lee groups see also [3, 17, 27].
The elementary method presented here, that uses the standard Fourier transform after a change of
coordinates that make the sub-Laplacian depending only on one variable, is original.

The small time heat kernel estimates for the Heisenberg group (20.36), (20.37), (20.38) have been
obtained in [54]. For more general sub-Riemannian structures, small time heat kernel estimates
on the diagonal (i.e., for Pt(q, q)) and their relation with the Hausdorff dimension were studied in
[21, 22], see also [11]. Small time heat kernel estimates out of the diagonal (i.e., for Pt(q, q

′) with
q 6= q′) and their relation with the sub-Riemannian distance were studied in [20] (out of the cut
locus) and in [12, 13, 14] on the cut locus, adapting a technique due to Molchanov [75].
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[BL11] Ugo Boscain and Camille Laurent. The Laplace-Beltrami operator in almost-
Riemannian geometry. arXiv:1105.4687v1 [math.SP], Preprint, 2011.

[BNR17] Ugo Boscain, Robert Neel, and Luca Rizzi. Intrinsic random walks and sub-Laplacians
in sub-Riemannian geometry. Adv. Math., 314:124–184, 2017.

[Bon12] Michel Bonnefont. The subelliptic heat kernels on SL(2,R) and on its universal covering
˜SL(2,R): integral representations and some functional inequalities. Potential Anal.,

36(2):275–300, 2012.

518



[Boo86] William M. Boothby. An introduction to differentiable manifolds and Riemannian ge-
ometry, volume 120 of Pure and Applied Mathematics. Academic Press, Inc., Orlando,
FL, second edition, 1986.

[BP07a] Alberto Bressan and Benedetto Piccoli. Introduction to the mathematical theory of
control, volume 2 of AIMS Series on Applied Mathematics. American Institute of
Mathematical Sciences (AIMS), Springfield, MO, 2007.

[BP07b] Alberto Bressan and Benedetto Piccoli. Introduction to the mathematical theory of
control, volume 2 of AIMS Series on Applied Mathematics. American Institute of
Mathematical Sciences (AIMS), Springfield, MO, 2007.

[BR86] Asim O. Barut and Ryszard R
‘
aczka. Theory of group representations and applications.

World Scientific Publishing Co., Singapore, second edition, 1986.
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[Hör67] Lars Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147–
171, 1967.

[Hul76] A. Hulanicki. The distribution of energy in the Brownian motion in the Gaussian field
and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group.
Studia Math., 56(2):165–173, 1976.

[Jac39] C. G. J. Jacobi. Note von der geodätischen Linie auf einem Ellipsoid und den verschiede-
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