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§1. Introduction

1. The language of Symplectic geometry is successfully employed in many branches
of contemporary mathematics, but it is worth to remind that the original develop-
ment of Symplectic geometry was greatly influenced by variational problems. In
Optimal control crucial role was plaid by the Hamiltonian system of Pontryagin’s
Maximum principle, which itself is the object of Symplectic geometry. In further
development of Optimal control priorities were given to Convex analysis. Though
Convex and Functional analysis are very helpful in developing the general theory
of Extremal problems, they are not at all effective for investigating essentially non-
linear problems in higher approximations, when the convex approximation fails.
Therefore, since the discovery of the Maximum principle, there were always at-
tempts of introducing of geometric methods of investigation, though not as univer-
sal as the Convex and Linear methods. These new geometric methods were applied
mainly for obtaining optimality conditions of higher orders and constructing the
optimal synthesis, and today we already have many ingenious devices and beautiful
concrete results.

It seems very probable that there should be a general framework which could
unify different directions of these geometric investigations and merge the Maximum
Principle with the theory of fields of extremals of the classical Calculus of Varia-
tions. We are convinced that the appropriate language for such unification can
be provided by Symplectic geometry, and as a justification for such a conviction
we consider the statement , according to which “the manifold of Lagrange multi-
pliers in the problem of conditional extremum is a Lagrangian manifold”. Thus
two “Lagrangian” objects — Lagrange multipliers, the main object of the theory
of Extremal problems, and Lagrangian submanifolds, main objects of Symplectic
geometry, which existed independently for a long time, can be unified.
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2 A. AGRACHEV AND R. GAMKRELIDZE

2. The present article has an expository character. Its main aim is to demonstrate
the power and productivity of the “symplectic” language in optimization problems
and to draw attention of specialists interested in Control theory to this promising
direction of investigations. All basic notions and facts from Symplectic geometry,
needed in the sequel, are introduced in the article. A big part of our exposition
is devoted to reformulation of well–known results into symplectic language, many
of which became a folklore. In these cases it is almost impossible to give accurate
references, and we do not give them, which should certainly not mean that the
authors claim any originality. We also do not claim that we have indicated all
essential connections of Optimal control with Symplectic geometry. For example,
we omitted matrix Riccati equations, which play essential role in linear–quadratic
optimal problems. These equations define flows on Grassmannians, and in case of
symmetric matrices on Lagrange Grassmannians. Such flows are studied in detail
in many publications. We do not consider in the article such a big and important
theme as the variational methods of investigation of Hamiltonian systems — a good
example of a feedback influence of Optimization on Symplectic geometry.

In the sequel smoothness always means differentiability of appropriate order, a
smooth mapping of manifolds is called submersion (immersion) if its differential
at every point is surjective (injective). Let M me a smooth manifold. We call
a smooth submanifold in M an arbitrary immersed submanifold, i.e. every one–
to–one immersion of a manifold into M . We call a Lipschitz submanifold in M an
arbitrary locally–Lipschitz one–to–one mapping Φ : W −→M of a smooth manifold
W into M . A Lipschitz curve on a Lipschitz manifold is a curve t 7→ Φ(w(t)), where
w(·) is a Lipschitz mapping of a segment into W . To simplify the exposition we
shall indicate in the sequel only the image Φ(W ) assuming that the smooth or
Lipschitz mapping Φ is given.

We assume that every space of smooth mappings of smooth manifolds is always
endowed with the standard topology of uniform convergence of derivatives of all
orders on arbitrary compact sets. We say that a generic smooth mapping has a
given property if the set of all mappings with this property contains a countable
intersection of open everywhere dense subsets in the space of all mappings.

We use in this article standard notations. TxM denotes the tangent space to
M at x ∈ M, T ∗x M is the cotangent space ( conjugate to the space TxM.) The
tangent bundle to M is denoted by TM and is represented as a smooth vector
bundle with base M , total space ∪

x∈M
TxM and the canonical projection v 7→ x, v ∈

TxM . Correspondingly, T ∗M is the cotangent bundle, which plays a special role
in Symplectic geometry. Therefore we introduce a special symbol for the canonical
projection of the total space ∪

x∈M
T ∗M onto the base:

πM : T ∗M −→M, ϑ 7→ x, ϑ ∈ T ∗x M x ∈M.

Let A : E −→ E′ be a linear mapping of linear spaces, then ker A denotes the
kernel of the mapping, im A is its image and rank A = dim (im A). A quadratic
form q : E −→ R is represented as q(e) = b(e, e), where b(e1, e2), e1, e2 ∈ E is a
symmetric bilinear form on E. In this case ker q =

{
e ∈ E

∣∣∣ b(e, e′) = 0 ∀e′ ∈ E
}

.
We write q > 0 (< 0) and we say that the form q is positive (negative), if q(e) >
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0 (< 0) for nonzero e ∈ E. If we substitute symbols > (<) by ≥ (≤) we obtain
nonnegative (nonpositive) forms.

3. The remainder of this section is devoted to some initial facts from Symplectic
geometry; for details we recommend [13].

Let Σ be a finite–dimensional real vector space. A symplectic form on Σ is an
arbitrary real nondegenerate skew–symmetric bilinear form on Σ, i.e. a bilinear
mapping σ : Σ× Σ −→ R such that

σ(z1, z2) = −σ(z2, z1) ∀z1, z2 ∈ Σ,

and the relation σ(z, z′) = 0 ∀z′ ∈ Σ implies z = 0. The space Σ with a given
symplectic form σ on it is called symplectic. It is easily seen that symplectic forms
exist only on even–dimensional spaces and all such forms are transformed into each
other by linear substitutions of variables. More precisely, let dimΣ = 2n, then there
exists a basis e1, . . . , en, f1, . . . , fn in Σ such that

σ(ei, ej) = σ(fi, fj) = 0 ∀i, j; σ(ei, fj) = 0 ∀i 6= j, σ(ei, fi) = 1, i = 1, . . . , n. (1)

Every basis of a symplectic space which satisfies (1) is called a canonical basis.
Let S ⊂ Σ, the subspace

S∠ =
{

z ∈ Σ
∣∣∣σ(e, z) = 0 ∀e ∈ S

}
⊂ Σ.

is called the skew–orthogonal complement to S. For every subspace E ⊂ Σ the
relations

dim E∠ = 2n− dim E, (E∠)∠ = E

hold.
The subspace E is called isotropic if E ⊂ E∠. Every one–dimensional subspace

is isotropic, and the dimension of every isotropic subspace does not exceed n. A
subspace E is called Lagrangian if E = E∠. Thus Lagrangian subspaces in Σ are
exactly the n–dimensional isotropic subspaces.

The symplectic group Sp(Σ) is the group of all linear transformations of the
symplectic space Σ which preserve the symplectic form:

Sp(Σ) =
{

p ∈ GL(Σ)
∣∣∣σ(pz1, pz2) = σ(z1, z2) ∀z1, z2 ∈ Σ

}
.

It is a connected Lie group of dimension n(2n + 1). The elements of this group
are called the symplectic transformations of the space Σ. The Lie algebra of the
Symplectic group is given by the expression

sp(Σ) =
{

A ∈ gl(Σ)
∣∣∣σ(Az1, z2) = σ(Az2, z1) ∀z1, z2 ∈ Σ

}
.

Let h be a real quadratic form on Σ and dzh be the differential of h at the point
z ∈ Σ. Then dzh is a linear form on Σ which depends linearly on z. For every

z ∈ Σ there exists a unique vector
→
h(z) ∈ Σ which satisfies the condition

σ(
→
h(z), ·) = dzh.
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It is easy to show that the linear operator
→
h : Σ −→ Σ belongs to sp(Σ), and the

mapping h 7→
→
h is an isomorphism of the space of quadratic forms onto sp(Σ).

We obtain the linear Hamiltonian system of differential equations ż =
→
h(z) corre-

sponding to the quadratic Hamiltonian h.

Let e1, . . . , en, f1, . . . , fn be a canonical basis in Σ and z =
n∑

i=1

(xiei + ξifi). The

Hamiltonian system takes the standard form in coordinates xi, ξi:

ẋi =
∂h

∂ξi
,

ξ̇i = − ∂h

∂xi
, i = 1, . . . , n.

 (2)

4. Let N be a 2n–dimensional smooth manifold. A smooth nondegenerate closed
differential 2–form σ on N is called a symplectic structure on this manifold. The
nondegeneracy of the form σ : y 7→ σy, y ∈ N , means that σy is a symplectic form
on the tangent space TyN ∀y ∈ N ; “closed” means that dσ = 0, where d is the
exterior differential. A manifold N with a given symplectic structure σ on it is
called a symplectic manifold.

An immersion Φ : W −→ N is called isotropic if Φ∗σ = 0. An isotropic immer-
sion Φ is called Lagrangian if dim W = n. Correspondingly is defined an isotropic
(Lagrangian) smooth submanifold of a symplectic manifold N . It is defined by the
condition that its tangent space at every point y must be an isotropic (Lagrangian)
subspace of the space TyN provided with the symplectic form σy.

The most important symplectic manifolds in many situations are cotangent bun-
dels which carry a natural symplectic structure. To define it suppose M is an n–
dimensional smooth manifold and let πM : T ∗M −→ M be its cotangent bundle.
Let ϑ ∈ T ∗M, v ∈ Tϑ(T ∗M), then πM∗v ∈ TπM (ϑ)M . Denote the pairing of the
vector πM∗v with the covector ϑ ∈ T ∗πM (ϑ)M by sM (v) = ϑ(πM∗v). The correspon-
dence v 7→ sM (v), v ∈ T (T ∗M), defines a differential 1–form sM on T ∗M . The
closed 2–form

σM
def= −dsM

defines the standard symplectic structure on the 2n–dimensional manifold T ∗M .

Remark. To avoid ambiguities we emphasize that the covector ϑ ∈ T ∗M is an
element of the 2n–dimensional manifold T ∗M , (the covector defines the fibre to
which it belongs.) Often we omit the lower index in the symbols sM , σM , if the
manifold M is determined from the context.

A Lipschitz submanifold Φ : W −→ T ∗M is called isotropic if
∫

Φ(γ)

sM = 0 for

every closed Lipschitz curve γ which is contractible in W . It is called Lagrangian
if, additionally, dim W = n. An immersion Φ : W −→ T ∗M is isotropic iff Φ∗sM

is a closed form on W . An isotropic (Lagrangian) immersion is called exact if
the form Φ∗sM is exact on W . Correspondingly, a Lipschitz isotropic submanifold
Φ : W −→ T ∗M is called exact if

∫
Φ(γ)

sM = 0 for every closed Lipschitz curve γ on

W .
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Among n–dimensional submanifolds in T ∗M the smooth sections, i.e. differential
1–forms on M , are singled out. Such a section (1–form) is a Lagrangian submanifold
iff the form is closed. It is an exact Lagrangian submanifold iff the 1–form is exact,
i.e. is a graph of a differential of a smooth function. The fibres T ∗x M, x ∈ M , of
the bundle T ∗M are exact Lagrangian submanifolds as well.

5. Suppose Ni is a 2n–dimensional symplectic manifold with the symplectic form
σi, i = 1, 2. The diffeomorphism P : N1 −→ N2 is called symplectomorphism if
P ∗σ2 = σ1. A well-known theorem of Darboux states that all symplectic manifolds
of equal dimension are locally symplectomorphic:

For ∀zi ∈ Ni there exist neighborhoods Ozi of the points zi in Ni, i = 1, 2 and
a symplectomorphism P : Oz1 −→ Oz2 , P (z1) = z2.

Suppose L is an imbedded Lagrangian submanifold of a symplectic manifold N .
(An immersed submanifold is imbedded if its topology is induced by the topol-
ogy of N .) It turns out that in this case a certain neighborhood of L in N is
symplectomorphic to a neighborhood of the trivial section in T ∗L.

Functions on symplectic manifolds are called Hamiltonians. Let h be a smooth
Hamiltonian on L and dh be its differential (which is an exact 1–form.) Since σ

is a nondegenerate 2–form there exists a uniquely defined vector field
→
h on N ,

satisfying the condition
→
hcσ = σ(

→
h, ·) = dh.

The field
→
h is called a Hamiltonian field corresponding to the Hamiltonian h, and

the differential equation on N , ż =
→
h(z) is the corresponding Hamiltonian system.

According to Darboux’s theorem symlpectic manifold is locally symplectomor-
phic to symplectic space: in the neighborhood of an arbitrary point of the manifold
we can introduce local coordinates such that in these coordinates the form σ has
constant coefficients. If in addition the coordinates correspond to a canonical basis
of the symplectic space then the Hamiltonian system in these coordinates with the
Hamiltonian function h takes the form (2).

Let vτ , τ ∈ [0, t], be a family of smooth vector fields, measurable in τ and
uniformly bounded on every compact in N . Consider the nonstationary differential
equation

d

dτ
z = vτ (z), (3)

and suppose that all its solutions can be extended to the whole interval [0, t]. Then
the equation (3) defines a (nonstationary) flow on N , i.e. a locally Lipschitz, with
respect to τ , family of diffeomorphisms Pτ : N −→ N , τ ∈ [0, t], which satisfies
conditions

∂

∂τ
Pτ (z) = vτ (Pτ (z)), P0(z) ≡ z.

We denote SympN the group of all symplectomorphisms ofN . It is easy to show
that Pτ ∈ SympN ∀τ ∈ [0, t] iff the 1–form vτcσ is closed for almost all τ ∈ [0, t].
At the same time (3) is a (nonstationary) Hamiltonian system iff the form vτcσ is
exact for almost all τ ∈ [0, t]. Thus the flow generated by a Hamiltonian system
consists of symplectomorphisms.
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The Poisson bracket of smooth Hamiltonians h1, h2 is the Hamiltonian

{h1, h2} def= σ(
→
h2,
→
h1) =

→
h1cdh2.

The Poisson bracket defines the structure of a Lie algebra on the space of all Hamil-
tonians: the operation is skew–symmetric and satisfies the Jacobi identity:

{h1, {h2, h3}} − {h2, {h1, h3}} = {{h1, h2}, h3}.

Furthermore
{h1, h2} ◦ P = {h1 ◦ P, h2 ◦ P}

for ∀P ∈ SympN , where h ◦ P (z) = h(P (z)), z ∈ N .
Let Pτ ∈ SympN , 0 ≤ τ ≤ t, be a flow defined by the nonstationary Hamilton-

ian system
d

dτ
z =

→
hτ (z), (4)

and ϕ be a smooth Hamiltonian. Then

∂

∂τ
(ϕ ◦ Pτ ) = {hτ , ϕ} ◦ Pτ . (5)

In particular, the function ϕ is the first integral of the system (4) iff {hτ , ϕ} ≡ 0.
Concluding this introductory section we give the variation formula for a pair of

nonstationary Hamiltonians hτ , gτ .
Let Pτ , P̃τ ∈ SympN , 0 ≤ τ ≤ t, be flows defined by the Hamiltonians hτ , hτ +

gτ :

∂

∂τ
Pτ (z) =

→
hτ (Pτ (z)),

∂

∂τ
P̃τ (z) = (

→
hτ +

→
gτ )(P̃τ (z)), P0(z) = P̃0(z) = z, z ∈ N .

Then P̃τ = Pτ ◦Rτ , where Rτ is the flow generated by the Hamiltonian gτ ◦ Pτ :

∂

∂τ
Rτ (z) =

−→
(gτ ◦ Pτ )(Rτ (z)).

To prove this relation it is sufficient, according to (5), to show that

∂

∂τ
(ϕ ◦ Pτ ◦Rτ ) = {hτ + gτ , ϕ} ◦ Pτ ◦Rτ

for an arbitrary smooth function ϕ on N . Using again (5) we obtain

∂

∂τ
(ϕ ◦ Pτ ◦Rτ ) = (

∂

∂τ
+

∂

∂θ
)(ϕ ◦ Pτ ◦Rθ)

∣∣∣
θ=τ

=

{hτ , ϕ} ◦ Pτ ◦Rτ + {gτ ◦ Pτ , ϕ ◦ Pτ} ◦Rτ = {hτ + gτ , ϕ} ◦ Pτ ◦Rτ .

Propositions, theorems, formulas and figures are numbered independently in each
section. References to other sections use double numbering.
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§2. Lagrange multipliers and Lagrangian submanifolds

1. Consider a standard problem of conditional extremum. Let U, M be smooth
manifolds, f : U −→ M be a smooth mapping, and let ϕ : U −→ R be a smooth
real–valued function. We have to minimize ϕ on a level set of the mapping f .

Put N = R ×M and define the mapping F : U −→ N by the relation F (u) =
(ϕ(u), f(u)), u ∈ U . If at a given point u the function ϕ attains its minimum on the
level set of f then im F and the ray

{
(ϕ(u)− t, f(u)) ∈ N

∣∣∣ t > 0
}

have an empty
intersection. In particular, F (u) is a boundary point of im F .

Let F ′u : TuU −→ TF (u)N be the differential of the mapping F at u (which is a
linear mapping of the corresponding tangent spaces). We remind that a point of
the manifold U is called a regular point of the mapping F if the differential of F at
this point is surjective. If the point is not regular it is called a critical point of the
mapping. The image of a critical point of F is called a critical value of F .

The implicit function theorem implies that the image of a regular point of the
mapping F belongs to the interior of the set im F . Thus if F (u) is a boundary point
of im F then im F ′u 6= TF (u)N . Hence there exists a nonzero covector ω ∈ T ∗F (u)N

which is orthogonal to im F ′u.
Let V be an arbitrary linear space. We shall denote the pairing of a covector

ϑ ∈ V ∗ with a vector v ∈ V simply by ϑv considering the expression as a product
of a row by a column. In particular, the relation ω ⊥ im F ′u can be written as
ωF ′uv = 0 ∀v ∈ TuU , or simply as ωF ′u = 0.

Thus we obtained the simplest form of the Lagrange multiplier rule: if the func-
tion ϕ attains at u an extremal value on the level set of the mapping f then there
exists a nonzero ω ∈ T ∗F (u)N such that ωF ′u = 0.

2. Definition. Let U, N be arbitrary smooth manifods and F : U −→ N be a
smooth mapping. We call a Lagrangian point of the mapping F an arbitrary pair
(ω, u), where u ∈ U and ω ∈ T ∗F (u)N \0 satisfies the equality ωF ′u = 0. The covector
ω is called a Lagrange multiplier and u is called a critical point corresponding to
the Lagrangian point (ω, u). The set of all Lagrangian points of the mapping F is
denoted by CF .

Let F ∗(T ∗N) be a vector bundle over U , induced by the bundle T ∗N under the
mapping F : U −→ N . As usually, we shall denote the total space of a bundle and
the bundle itself with the same letter. According to the definition of the induced
bundle we have

F ∗(T ∗N) =
{

(ϑ, u)
∣∣∣u ∈ U, ϑ ∈ T ∗F (u)N

}
⊂ T ∗N × U.

We identify the manifold U with the trivial section in the bundle F ∗(T ∗N):

U =
{

(0, u)
∣∣∣u ∈ U

}
⊂ F ∗(T ∗N).

Then, CF ⊂ F ∗(T ∗N) \ U .
Let (ϑ, u) ∈ F ∗(T ∗N), hence ϑF ′u ∈ T ∗U .
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Definition. The mapping F is called a Morse mapping if the mapping (ϑ, u) 7→
ϑF ′u, (ϑ, u) ∈ F ∗(T ∗N) \ U is transversal to the trivial section in T ∗U . In other
words, the mapping F is said to be a Morse mapping if the system of equations
ϑF ′u = 0 is regular at ϑ 6= 0.

For N = R, i.e. in case F is a real–valued function, the condition that F is a
Morse mapping is equivalent to the assertion that the Hessian of the function F is
a nondegenerate quadratic form at every critical point.

If the mapping F is a Morse mapping then CF is a smooth submanifold in
F ∗(T ∗N) for every N . Since the dimension of the total space of the bundle
F ∗(T ∗N) is equal to dim U + dim N and the codimension of trivial section in
T ∗U is equal to dim U we obtain

dim CF = dim N.

From Thom’s transversality theorem now easily follows

Proposition 1. . For arbitrary manifolds U, N a generic mapping F : U −→ N
is a Morse mapping.

Let dim N = n and suppose the mapping F : U −→ N is a Morse mapping. If
(ω, u) ∈ CF then (tω, u) ∈ CF ∀t ∈ R \ 0. Hence the n–dimensional submanifold
CF ⊂ F ∗(T ∗N) defines an (n − 1)–dimensional submanifold PCF in the projec-
tivization

PF ∗(T ∗N) = F ∗(T ∗N)/ {(ϑ, u) ∼ (tϑ, u), t ∈ R \ 0}

of the bundle F ∗(T ∗N).
The projection (ω, u) 7→ u maps the manifold CF onto the set of critical points

of F . The latter set is the main object of investigation in the singularity theory of
smooth mappings. According to Thom–Bordman for every typical F the set of its
critical points is a finite union of submanifolds in U of dimensions ≤ (n−1). At the
same time, the set of critical points is not necessarily a smooth submanifold and
has, in general, highly complicated singularities even for generic F . Proposition 1
implies that all these singularities are resolved by simply adjoining the Lagrange
multipliers.

3. Let F : U −→ N be a smooth mapping, u ∈ U . We shall define the notion of the
second derivative of F , which is not quite trivial if we attempt to obtain an invariant
notion, independent of the choice of local coordinates in U and N , and which should
reflect the local structure of F ”in the second order”. For example, if u is regular for
F then, according to the implicit function theorem, F is represented in some local
coordinates as a linear mapping, and there is no sense to speak about the second
derivative. To define the second derivative in a critical point it is appropriate to
complement it, as above, by Lagrange multipliers.

Thus let (ω, u) ∈ CF , v ∈ ker F ′u, and suppose ω and v are smooth sections
of vector bundles F ∗(T ∗N), T∗U respectively, such that ω(u) = ω, v(u) = v.
Consider a smooth function ωF ′v : û 7→ ω(û)F ′ûv(û) on U . It is easily seen that the
differential (ωF ′v)′u of this function at u depends only on ω, v and does not depend
on the sections ω, v.
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Definition. The second derivative of a smooth mapping F at a Lagrangian point
(ω, u) is the linear mapping

ωF ′′u : ker F ′u −→ T ∗uU,

defined by the relation ωF ′′u v = (ωF ′v)′u, v ∈ ker F ′u. The Hessian of F at a
Lagrangian point (ω, u) is defined to be the real–valued quadratic form ωFh

u on
ker F ′u, which is defined by the relation ωFh

u (v) = (ωF ′′u v)v, v ∈ ker F ′u.

It is easily seen that the bilinear form (v1, v2) 7→ (ωF ′′u v1)v2 is symmetric, hence
it is restored by the quadratic form ωFh

u .
The following test for being a Morse mapping is established by a straightforward

computation.

Proposition 2. A smooth mapping F is a Morse mapping iff the linear mapping
ωF ′′u is injective at every Lagrangian point (ω, u).

Suppose (ω, u) ∈ CF . If the Hessian ωFh
u is a nondegenerate quadratic form then

ωF ′′u is injective. The opposite is not always true. For example, for the following
Morse mapping (

u1

u2

)
7→
(

u1

u1u2 + (u2)3

)
, ui ∈ R, i = 1, 2,

for which the origin is a cusp point, the Hessian is equal to zero for ω = (0, 1), u1 =
u2 = 0.

4. Denote by
FC : CF −→ T ∗N

the mapping (ω, u) 7→ ω, (ω, u) ∈ CF . We remind that T ∗N is a symplectic
manifold.

Proposition 3. If F : U −→ N is a Morse mapping then FC is an exact La-
grangian immersion.

Proof. We use local coordinates for proof, and to simplify the exposition we shall
suppose that U, N are vector spaces. Hence we can assume that T ∗U = U∗ ×
U, T ∗N = N∗ ×N , CF =

{
(ξ, u) ∈ N∗ × U

∣∣∣ ξ dF
du = 0

}
,

T(ξ,u)CF =
{

(η, v) ∈ N∗ × U
∣∣∣ η dF

du
+

d

du
(ξ

dF

du
v) = 0

}
, (1)

FC : (ξ, u) 7→ (ξ, F (u)).
According to Proposition 2 the property of F to be a Morse mapping is equivalent

to the relation d
du (ξ dF

du v) 6= 0 for (ξ, u) ∈ CF , v ∈ ker dF
du .

Suppose that FC is not an immersion at (ξ, u). Then ∃ (η, v) ∈ T(ξ,u)CF such
that η = 0, v ∈ ker dF

du . The definition of T(ξ,u)CF implies that d
du (ξ dF

du v) = 0. We
come to the contradiction with the assumption that F is a Morse mapping.

It is left to show that the immersion FC is Lagrangian. We have sN = ξdy, (ξ, y)
∈ N∗ × N = T ∗N , hence F ∗CsN = ξdF = 0. Thus for a Morse mapping F the
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mapping FC : CF −→ T ∗N is an immersion. At the same time, the composition of
FC with the projection πN : T ∗ −→ N can not be an immersion since

πN ◦ FC(αω, u) = πN (αω) = πN (ω) ∀(ω, u) ∈ CF , α ∈ R \ 0.

We have proved that πN◦FC defines a smooth mapping of a (dim N−1)–dimensional
manifold PFC into N .

The following assertion formulates conditions under which the latter mapping is
an immersion.

Proposition 4. Let F be a Morse mapping and (ω, u) ∈ CF . The differential of
the mapping πN ◦ FC has rank dim N − 1 at (ω, u) iff rank F ′u = dim N − 1 and
the Hessian ωFh

u of the mapping F at (ω, u) is a nondegenerate quadratic form.

Proof. We use the notations from the proof of Proposition 3. We have

ker (πN ◦ FC)′(ω,u) = (N∗ × ker F ′u) ∩ T(ξ,u)CF , (2)

where ω = (ξ, F (u)) , cf. (1). Let v ∈ ker F ′u. According to (1) the existence of
a pair (η, v) contained in the space (2) is equivalent to the relation v ∈ ker ωFh

u .
Moreover the pair (η, 0) belongs to the space (2) iff η ⊥ im F ′u.

5. We return to the situation considered in no1, when N = R × M, F (u) =
(ϕ(u), f(u)). Let (ω, u) be a Lagrangian point, ω ∈ T ∗F (u)N, u ∈ U . Then ω =
(α, λ), α ∈ R, λ ∈ T ∗f(u)M , 0 = ωF ′u = λf ′u + αϕ′u. According to the usual
terminology in the theory of extremal problems the Lagrangian point ((α, λ), u)
will be called normal if α 6= 0, and will be called abnormal if α = 0. Consider
the set of normal Lagrangian points. Since the Lagrange multipliers ω = (α, λ)
are defined up to a nonzero multiplier we can normalize them by fixing the value
of α arbitrarily. This procedure reduces the dimension and permits to consider
the normal Lagrangian points as elements of the space f∗(T ∗M) rather then of
F ∗(T ∗N). We shall use the normalization α = −1. Put

Cf,ϕ =
{

(λ, u) ∈ f∗(T ∗M)
∣∣∣u ∈ U, λ ∈ T ∗f(u)M, λf ′u − ϕ′u = 0

}
,

fC : (λ, u) 7→ λ, (λ, u) ∈ Cf,ϕ.

The following assertions are easy modifications of the results of no4.

Proposition 5. If F = (ϕ, f) is a Morse mapping then Cf,ϕ is a smooth sub-
manifold in f∗(T ∗M), and fC : Cf,ϕ −→ T ∗M is a Lagrangian immersion, where
f∗CsM = dϕ.

Proposition 6. Let F = (ϕ, f) be a Morse mapping and (λ, u) ∈ Cf,ϕ. The
differential of the mapping πM ◦fC at (λ, u) is invertible iff f ′u is surjective and the
Hessian of the mapping F at ((−1, λ), u) is a nondegenerate quadratic form.

Let (λ, u) ∈ Cf,ϕ, ω = (−1, λ), and ωFh
u be a Hessian of the mapping F at the

Lagrangian point (ω, u). If the quadratic form ωFh
u is negative definite (positive

definite) then it is easily seen that u is a point of strong local minimum (maximum)
of the function ϕ on the level set of the mapping f . On the other hand, if f ′u is
surjective and the quadratic form ωFh

u is indefinite then u is not a point of a local
extremum of the function ϕ on the level set of the mapping F . Combining these
assertions with Propositions 5,6 we come to the
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Corollary. Let F = (ϕ, f) be a Morse mapping and W be a connected open subset
in Cf,ϕ such that πM ◦ fC

∣∣∣
W

is a diffeomorphism of W onto f(W ) ⊂ M . If there

exists a point (λ0, u0) ∈W such that u0 is a point of a local minimum (maximum)
of the function ϕ on the level set of f then ∀(λ, u) ∈W u is a point of strong local
minimum (maximum) of ϕ on the level set of f . Furthermore,

ϕ(u1)− ϕ(u0) =
∫
γ

sM

for ∀(λi, ui) ∈ W, i = 0, 1 and for every smooth curve γ : [0, 1] −→ fC(W ),
satisfying the condition πM (γ(i)) = f(ui), i = 0, 1.

§3. The problem of optimal control

1. Among many similar formulations of the optimal control problem we choose the
problem with the optimized integral functional, free time, and fixed end–points.

Let M be a smooth manifold and V a subset in Rr. We call admissible controls

locally bounded measurable mappings v(·) : R+ −→ V , where R+ =
{

t ∈ R
∣∣∣ t ≥ 0

}
.

Let g0 : M × V −→ R be a continuous function, smooth in the first variable, and
let g : M × V −→ T∗M be a continuous mapping, smooth in the first variable ,
and subject to the condition g(x, v) ∈ TxM ∀x ∈ M, v ∈ V . In particular, for
every fixed v the mapping x 7→ g(x, v) is a smooth vector field on M . We consider
an initial point x0 ∈ M which will not change in the sequel. For every admissible
control v(·) there exists a unique absolutely continuous curve τ 7→ x(τ ; v(·)) in M ,
defined on a half–interval τ ∈ [0, tv), which satisfies the condition x(0; v(·)) = x0

and is a solution of the differential equation

dx

dτ
= g(x, v(τ)). (1)

Denote by U the set of pairs (t, v(·)), such that x(τ ; v(·)) is defined for τ ∈ [0, t].
Define a function ϕ : U −→ R and a mapping f : U −→M by relations

ϕ(t, v(·)) =

t∫
0

g0(x(τ ; , v(·)), v(τ))dτ, f(t, v(·)) = x(t; v(·)).

Since the infinite–dimensional space U is not necessarily a smooth manifold we can
not apply directly to ϕ and f the results of previous section. Nevertheless we have
in the given situation a reasonable substitute of a smooth structure for U , but to
define it we have to consider generalized controls, cf. [9]. We shall not give here the
appropriate definitions which would lead us too far aside. We only indicate that
the role of the differential at (t, v(·)) for f is taken by the mapping

f ′(t,v) : (θ, w(·)) 7→
t∫

0

P t
τ∗(g(x(τ ; v), v(τ) + w(τ))− g(x(τ ; v), v(τ)))dτ + g(x(t; v))θ,
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where (t + θ, v + w) ∈ U , (and assuming that t is a density point for v(·)). Here
P t

τ is a diffeomorphism of a neighborhood of the point x(τ ; v) on a neighborhood
of x(t; v) which is uniquely defined by the conditions that P τ

τ ≡ x and that the
curves τ 7→ P τ

τ ′(x), τ ∈ [τ ′, t], are absolutely continuous solutions of the differential
equation (1).

Let F = (ϕ, f) : U −→ R ×M . Substituting M by R ×M , the point x0 by
(0, x0) ∈ R×M , and the differential equation (1) by the equation

d

dt
(x0, x) =

(
g0(x, v(τ)), g(x, v(τ))

)
,

we obtain an explicit expression for F ′(t,v) = (ϕ′(t,v), f
′
(t,v)). We call the point (t, v) ∈

U a critical point of F if the image of the mapping F ′(t,v), which belongs to R ×
Tx(t,v)M , does not contain a neighborhood of the origin. It is easily seen that the
image of F ′(t,v) is convex, hence criticality of (t, v) is equivalent to the existence of a
nonzero ω = (α, λ) ∈ R×T ∗x(t,v)M such that ωF ′(t,v)(θ, w) ≤ 0 for ∀(θ, w) satisfying
the condition (t + θ, v + w) ∈ U . We call ω theLagrange multiplier and the triple
ω, (t, v) aLagrange point for F . If (t, v) is a critical point for F then (τ, v) is also
a critical point for F for ∀τ ≤ t. Put λτ = P t∗

τ λ ∈ T ∗x(τ,v)M , then (α, λτ ) is a
Lagrange multiplier corresponding to the critical point (τ, v).

It is easily seen that the curve τ 7→ λτ in T ∗M is a trajectory of a nonstationary
Hamiltonian system on T ∗M corresponding to a nonstationary Hamiltonian

hτ (ξ) = ξg(πMξ, v(τ)) + αg0(πMξ, v(τ)), ξ ∈ T ∗M, 0 ≤ τ ≤ t. (2)

An elementary calculation leads to the following

Proposition 1. The system (α, λ), (t, v) is a Lagrangian point of the mapping
F = (ϕ, f) iff for this system the Pontryagin Maximum Principle holds:

0 = hτ (λτ ) = max
u∈V

(
λτg(x(τ ; v), u) + αg0(x(τ ; v), u)

)
, 0 ≤ τ ≤ t,

where hτ is given by (2) and the curve τ 7→ λτ is a trajectory of the Hamiltonian
system in T ∗M defined by the nonstationary Hamiltonian hτ , τ ∈ [0, t], with the
boundary condition λt = λ.

2. A Lagrangian point (α, λ), (t, v) is called normal if α 6= 0 and abnormal in the
opposite case. As in §2 we normalize the Lagrangian multipliers for normal points
by putting α = −1. Let

Cf,ϕ =
{

(λ, t, v)
∣∣∣ (−1, λ), (t, v) is a Lagrangian point of the mapping (ϕ, f)

}
,

fC : (λ, t, v) 7→ λ, (λ, t, v) ∈ Cf,ϕ.

Put
H(λ) = max

u∈V
(λg(πMλ, u)− g0(πMλ, u)), λ ∈ T ∗M.

Proposition 1 implies im fC ⊂ H−1(0).
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Let (λ, t, v) ∈ Cf,ϕ, then there exists an absolutely continuous curve λτ ∈
T ∗M, 0 ≤ τ ≤ t, such that (λτ , τ, v) ∈ Cf,ϕ ∀τ, λt = λ.

Without any regularity conditions it is difficult to expect that Cf,ϕ could be
provided with the structure of a Lagrangian manifold, and that fC is a Lagrangian
immersion. Still it turns out that if a Lagrangian manifold is contained in H−1(0)
and contains the curve λτ , 0 ≤ τ ≤ t, we can make some essential conclusions
about the optimality of the control v(·) independently from any assumptions about
the analytic nature of Cf,ϕ and fC .

Theorem 1. Let L ⊂ H−1(0) be an exact Lagrangian Lipschitz submanifold in
T ∗M such that the preimage of an arbitrary point in πM (L) under the mapping
πM

∣∣∣
L

: L −→ M is a connected Lipschitz complex in L, and the preimage of an

arbitrary Lipschitz curve in M under the mapping πM

∣∣∣
L

is a Lipschitz complex in

L. Let λτ ∈ L, 0 ≤ τ ≤ t, be an absolutely continuous curve such that (λτ , τ, v) ∈
Cf,ϕ for some admissible control v(·). Then for ∀(t̂, v̂(·)) ∈ U such that x(τ ; v̂) ∈
πM (L), g(x(τ ; v), v(τ)) 6= 0 for 0 ≤ τ ≤ t̂, x̂(t̂; v̂) = x(t; v), the inequality

t∫
0

g0(x(τ ; v), v(τ))dτ ≤
t̂∫

0

g0(x(τ ; v̂), v̂(t))dτ

holds.

Proof. We denote x(τ) = x(τ ; v(τ)), x̂(τ) = x(τ ; v̂(τ)). Under the assumptions
of Theorem 1 one can show that there exists a Lipschitz curve λ̂τ ∈ L and a
nondecreasing Lipschitz function θ(τ), o ≤ τ ≤ 1, such that the following conditions
are satisfied

(1) λ̂0 = λ0, λ̂1 = λ1;
(2) θ(0) = 0, θ(1) = t̂;
(3) πM (λ̂τ ) = x̂(θ(τ)), 0 ≤ τ ≤ 1.

We obtain
t̂∫

0

g0(x̂(θ), v̂(θ))dθ =

1∫
0

θ̇g0(x̂(θ(τ)), v̂(θ(τ))dτ ≥

≥
1∫

0

θ̇λ̂τg(x̂(θ(τ)), v̂(θ(τ))dτ =

1∫
0

λ̂τ
d

dτ
x̂(θ(τ))dτ =

∫
γ̂

sM ,

where γ̂ denotes the curve τ 7→ λ̂τ . ( We used here the relations 0 = H(λ̂τ ) =
max
u∈V

(λ̂τg(x(θ(τ)), u) − g0(x(θ(τ)), u))). Denote by γ the curve τ 7→ λτ . Since the

form sM is exact on L we have∫
γ̂

sM =
∫
γ

sM =

t∫
0

λτ ẋ(τ)dτ =

t∫
0

λτg(x(τ), v(τ))dτ =

t∫
0

g0(x(τ), v(τ))dτ.
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Remark. The exact Lagrangian submanifold L evidently satisfies conditions of
Proposition 2 if the projection πM

∣∣∣
L

is Lipschitz invertible, fig.1; “vertical pieces”
are also permitted, fig.2, but “folds” are not allowed, fig.3.

3. Let (λ, t, v) ∈ Cf,ϕ and λτ , 0 ≤ τ ≤ t, be a trajectory of the Hamiltonian system
defined by the nonstationary Hamiltonian

hτ (ξ) = ξg(π(ξ), v(τ))− g0(π(ξ), v(τ)), ξ ∈ T ∗M,

with the boundary condition λt = λ. We call the curve λτ a normal Pontryagin
extremal corresponding to the control v(·). According to Proposition 1 (λτ , τ, v) ∈
Cf,ϕ for 0 ≤ τ ≤ t.

The simplest case when a Lagrangian manifold can be constructed, which con-
tains a given Pontryagin extremal λτ , is given when the Hamiltonian

H(ξ) = max
u∈V

(ξg(π(ξ), u)− g0(π(ξ), u)), ξ ∈ T ∗M (3)

is smooth. It is easy to show that in this case λ tau is a trajectory of the Hamil-
tonian system defined by the Hamiltonian H.
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The following assertion is a geometric formulation of the classical method of
characteristics for solution of differential equations in partial derivatives of first
order.

Proposition 2. Let H : T ∗M −→ R be a smooth function and L0 ⊂ T ∗M be a
smooth Lagrangian submanifold. Suppose that H ′λ

∣∣∣TλL0 6= 0 ∀λ ∈ L0∩H−1(0). Let
t 7→ p(t, λ) be a trajectory of the Hamiltonian system with Hamiltonian H and the
initial condition p(0, λ) = λ ∈ L0 ∩H−1(0). Then the mapping p, which is defined
on an open set in R × (L0 ∩H−1(0)) and with values in H−1(0), is a Lagrangian
immersion.

Proof. Condition H ′λ

∣∣∣TλL0 is equivalent to the statement that
→
H(λ) is not ske-

worthogonal to TλL0 in the symplectic space Tλ(T ∗M). Since L0 is a Lagrangian

manifold the last statement is equivalent to
→
H(λ) not being tangent to L0. Hence

p is indeed an immersion. Since the Hamiltonian flow preserves the symplectic
structure it is sufficient to check that the immersion (t, λ) 7→ p(t, λ) is Lagrangian
only for t = 0. We have

∂

∂t
p(t, λ)

∣∣∣
t=0

=
→
H(λ), σ(

→
H(λ), ϑ1) = H ′λϑ1 = 0,

σ(ϑ1, ϑ2) = 0 ∀ϑ1, ϑ2 ∈ Tλ(L0 ∩H−1(0)).

Proposition 2 can be used to construct a Lagrangian manifold from Theorem 1
if we take for L0 a Lagrangian submanifold in T ∗x0

M , or more generally, if we take
a Lagrangian submanifold{

λ ∈ T ∗x M
∣∣∣x ∈ X, λ ⊥ TxX

}
, (4)

where X is a smooth submanifold in M . The submanifold (4) is often used in prob-
lems of optimal control with a variable left end–point x(0) ∈ X, and an obvious
generalization of Theorem 1 is valid for this case. For nonsmooth Hamiltonians (3)
there might not exist even a nonsmooth flow consisting of Pontryagin extremals —
the extremals are inevitably intersecting and branching near any singular extremal.
Therefore it is important to emphasize that to apply Theorem 1 it is not at all
necessary to have a Hamiltonian flow of extremals: the corresponding Lagrangian
manifold can be constructed in a different way. It is often possible to construct an
auxiliary Morse mapping, cf. §2, for which the Lagrange multipliers coincide with
the Lagrange multipliers of the optimal problem in consideration and hence consti-
tute a Lagrangian manifold in the level set of the Hamiltonian (3) corresponding
to the value 0. We shall return to this problem later.

After the appropriate Lagrangian submanifold L ⊂ T ∗M is constructed we have
to examine its projection on M . The local properties of the projection π

∣∣∣
L

are

defined by a mutual disposition of the Lagrangian subspaces TλL and Tλ(T ∗π(λ)M)
in Tλ(T ∗M), λ ∈ L.

The next section contains some basic information about the manifold of La-
grangian subspaces of a symplectic space. This information turns out to be useful
not only for investigation of the projections π

∣∣∣
L
, but in many other cases as well.
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§4. Geometry of Lagrange Grassmanians

1. Let Σ be a symplectic vector space with a symplectic form σ with dim Σ = 2n.
We denote by L(Σ) the set of all Lagrangian subspaces in Σ and call it the Lagrange
Grassmannian. The subspaces Λ0,Λ1 ∈ L(Σ) are transversal iff Λ0 ∩ Λ1 = 0. The
set of all Lagrangian subspaces transversal to a given Λ0 ∈ L(Σ) will be denoted
by Λt0 .

If p : Σ −→ Σ is a linear symplectic transformation and Λ ⊂ Σ is a Lagrangian
subspace then pΛ is also Lagrangian. Thus the symplectic group of all symplectic
transformations acts naturally on L(Σ). This action automatically defines an action
of L(Σ) on the sequences of k points from L(Σ):

p : (Λ1, . . . ,Λk) 7→ (pΛ1, . . . , pΛk), p ∈ Sp(Σ), Λi ∈ L(Σ), i = 1, . . . , k, k ≥ 1.

We have dim (pΛi ∩ pΛj) = dim (Λi ∩ Λj).

Proposition 1. The group Sp(Σ) acts transitively on the set{
(Λ0,Λ1)

∣∣∣Λ0,Λ1 ∈ Sp(Σ), Λo ∩ Λ1 = 0
}

of pairs of transversal Lagrangian subspaces. The restriction p 7→ p
∣∣∣
Λ0

defines an

isomorphism of stable subgroups
{

p ∈ Sp(Σ)
∣∣∣ pΛi = Λi, i = 0, 1

}
on GL(Λ0).

Proof. The bilinear form

(λ1, λ0) 7→ σ(λ1, λ0), λi ∈ Λi, i = 0, 1, (1)

defines a nondegenerate pairing of spaces Λ0 and Λ1. Let e1, . . . , en be a basis in
Λ1 and f1, . . . , fn the dual basis in Λ0. Then e1, . . . , en, f1, . . . , fn is a canonical
basis in Σ. Proposition 1 follows from the assertion that a linear transformation in
Σ is symplectic iff it maps a canonical basis into a canonical basis.

Proposition 1 implies that L(Σ) is a homogeneous space of the group Sp(Σ);
in particular, L(Σ) has the structure of a Cω–manifold. We shall indicate a stan-
dard family of coordinate neighborhoods on L(Σ) defined by pairs of transversal
Lagrangian subspaces.

Let Λ0,Λ1 ∈ L(Σ), Λ0 ∩ Λ1 = 0. The pairing (1) defines an isomorphism
Λ0 ≈ Λ∗1. Correspondingly Σ = Λo ⊕ Λ1 ≈ Λ∗1 ⊕ Λ1. The indicated isomorphism
identifies σ with the standard symplectic form

((ξ1, x1), (ξ2,x2)) 7→ ξ2x1 − ξ1x2,

xi ∈ Λ1, ξi ∈ Λ∗1, i = 1, 2.
(2)

The form (2) will be also denoted by σ.
Every n–dimensional subspace H ⊂ Λ∗1 ⊕ Λ1 ≡ Σ transversal to Λ∗1, ( in par-

ticular, every subspace sufficiently close to Λ1 ), is a graph of a linear mapping
QH : Λ1 −→ Λ∗1:

H =
{

(ξ, x) ∈ Λ∗1 ⊕ Λ1

∣∣∣ ξ = QHx
}

.
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It is easy to show that H is a Lagrangian subspace in Λ∗1 ⊕ Λ1 iff Q∗H = QH .
Let I0 : Σ −→ Λ∗1 ⊕ Λ1 be the isomorphism of symplectic spaces defined above,

which sends Λ0 into Λ∗1. Then

Λ 7→ QI0Λ, Λ ∈ Λt0 (3)

is a diffeomorphism of Λt0 onto the space of selfadjoint mappings of Λ1 into Λ∗1¿
Thus Λt0 is a coordinate neighborhood in L(Σ), and the mapping (3) defines local
coordinates. Selfadjoint transformations from Λ1 into Λ∗1 are actually equivalent to
quadratic forms on Λ1: to a mapping Q : Λ1 −→ Λ∗1 there corresponds the form
q : x 7→ (Qx)x, x ∈ Λ1. The space of all real–valued quadratic forms on Λ1 is
denoted P(Λ1). We have

Λt0 ≡ P(Λ1), dim L(Σ) = dimP(Λ1) =
n(n + 1).

2

It is easily seen that L(Σ) = Λt0 . The manifold L(Σ) is compact. Taking into
account the isomorphism Λt0 ≡ P(Λ1) we can say that L(Σ) is a compactification
of the space of quadratic forms of n real variables. We shall now show that the
geometry of the Lagrange Grassmannian considered as a homogeneous space of the
group Sp(Σ) is intimately connected with the geometry of the space of quadratic
forms, which explains the effectiveness of symplectic methods in many problems
where we have to deal with families of quadratic forms.

Consider a subgroup in Sp(Σ) which preserves Λt0 . A linear transformation
of the space Σ preserves Λt0 iff it preserves Λ0. The isomorphism I0 permits to
consider correspondingly L(Λ∗1 ⊕ Λ1) and Λ∗1 instead of L(Σ), and Λ0. A linear
transformation of Λ∗1 ⊕ Λ1 is symplectic and preserving Λ∗1 iff it is represented as

(ξ, x) 7→ (A∗ξ + BA−1x, A−1x)

ξ ∈ Λ∗1, x ∈ Λ1, A ∈ GL(Λ1), B : Λ1 −→ Λ∗1, B∗ = B.
(4)

The mapping (4) transforms the subspace
{

(ξ, x)
∣∣∣ ξ = Qx

}
⊂ Λ∗1⊕Λ1 into subspace{

(ξ, x)
∣∣∣ ξ = (A∗QA + B)x

}
. In other words, the Lagrangian subspace correspond-

ing to the quadratic form q(x) = (Qx)x, x ∈ Λ1 is transformed into the subspace
corresponding to the quadratic form q(Ax) + (Bx)x, obtained from q by coordi-
nate transformation and translation. Thus the symplectic transformations which
preserve Λt0 ≡ P(Λ1) are “variable substitutions” and translations in the space of
quadratic forms of n variables. It turns out that the group Sp(Σ) is generated al-
ready by translations and a single transformation which interchanges the subspaces
Λ0 and Λ1.

Suppose that a scalar product (·|·) is defined on Λ1 which identifies Λ∗1 with Λ1

and Λ∗1 ⊕ Λ1 with Λ1 ⊕ Λ1, so that

σ((y1, x1)|(y2, x2)) = (x1|y2)− (x2|y1), xi, yiΛ1. (5)
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Proposition 2. The symplectic group of the space Λ1⊕Λ1 ≡ Σ with the symplectic
form (5) is generated by transformations

(y, x) 7→ (y + Bx, x), b ∈ gl(Λ1), B = B∗,

and the transformation
J : (y, x) 7→ (−x, y).

Suppose Q : Λ1 −→ Λ1, Q = Q∗. The intersection of the Lagrangian subspace{
(y, x)

∣∣∣ y = Qx
}
⊂ Λ1 ⊕ Λ1 (6)

with 0⊕Λ1 coincides with the subspace 0⊕ker Q. In particular, the subspace (6) is
not transversal to 0⊕Λ1 iff Q is degenerate. If it is nondegenerate then the symplec-
tic mapping J transforms the subspace (6) into the subspace

{
(y, x)

∣∣∣ y = −Q−1x
}

,

corresponding to the operator −Q−1. But, contrary to the operation of matrix
inversion, J is defined for degenerate Q as well. Speaking not quite formally, we
can say that the Lagrange Grassmannian of a 2n–dimensional symplectic space is a
compactification of the space of symmetric n×n–matrices ( the space of quadratic
forms of n variables )for which the inversion of all symmetric matrices, including
the degenerate matrices, is possible: the cone of the “ideal matrices”, which are in-
verses to degenerate matrices, is “attached at the infinity” to the space of symmetric
matrices.

Repeating in the opposite order the identifications of the symplectic spaces we
have made, we obtain

Λt0 \ Λt1 ≈
{

q ∈ P(Λ1)
∣∣∣ ker q 6= 0

}
. (7)

2. Let ∧k(Σ) be the subspace of k–linear skew–symmetric forms on Σ, k = 0, 1, . . . ,

2n; σ ∈ ∧2(Σ). If ω ∈ ∧k(Σ), then ker ω
def=
{

x ∈ Σ
∣∣∣xcω = 0

}
. It is easy to show

that dim ker ω ≤ 2n − k for every nonzero form ω ∈ ∧k(Σ). The form ω is called
decomposable if dim ker ω = 2n−k. A decomposable form is restored by its kernel
up to a nonzero scalar multiplier.

Let P∧k (Σ) = (∧k(Σ)\0)/{ω ≡ αω, ω ∈ Σ, α ∈ R, αω 6= 0} be a projectivization
of the space ∧k(Σ), and denote by ω the image of a nonzero form ω under the
canonical factorization ∧k(Σ) \ 0 −→ P ∧k (Σ). The mapping

ker ω 7→ ω, ω is decomposable in ∧k (Σ), (8)

is a standard projective Plücker imbedding of the Grassmannian of (2n − k)–
dimensional subspaces in Σ. It turns out that for k = n the image of the Lagrange
Grassmannian under the imbedding (8) is an intersection of the image of the stan-
dard Grassmannian with a projective subspace in P ∧k (Σ). Namely, the following
assertion is valid.
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Proposition 3. Let ω ∈ ∧n(Σ) be a decomposable form. Then

ker ω ∈ L(Σ) ⇐⇒ σ ∧ ω = 0.

We consider in more detail the Lagrange Grassmannians for n = 1, 2. Every
one–dimensional subspace in R2 is Lagrangian, hence L(R2) = RP1. Furthermore
Sp(R2 = SL(R2), therefore symplectic transformations coincide with the orienta-
tion preserving projective transformations. Thus L(R2) is an oriented projective
line, topologically — an oriented circle.

To describe L(R4) we use the Plücker imbedding. The form ω ∈ ∧2(R4) is
decomposable iff

ω ∧ ω = 0. (9)

The equation (8) defines a quadric if signature (+ + +−−−) in P ∧2 (R4) = RP5.
To obtain the image of L(R4) under the Plücker imbedding we must intersect the
quadric with the hyperplane, defined by the equation σ ∧ ω = 0. As a result we
obtain a quadric of signature (+ + + − −) in RP4. Topologically this quadric,
and hence also L(R4), are represented as a quotient of S1 × S2 relative to the
equivalence relation (z1, z2) ≈ (−z1,−z2), zi ∈ Si, i = 1, 2. This is a three–
dimensional nonorientable manifold, cf. [10], where two “proves” are given of the
relation L(R4) ≈ S1 × S2.

3. Proposition 1 asserts that the symplectic group acts transitively on pairs of
transversal Lagrangian subspaces. Now we shall consider the action of this group
on triples of Lagrangian subspaces.

Let Λi ∈ L(Σ), i = 0, 1, where Λ0∩Λ1 = 0. The isomorphism introduced in no1,
I0 : Σ −→ Λ∗1⊕Λ1, transforms Λ0 into Λ∗1, hence for ∀Λ ∈ Λt0 we have a selfadjoint
linear mapping of Λ1 into Λ∗1:

I0Λ =
{

(ξ, x) ∈ Λ∗1 ⊕ Λ1

∣∣∣ ξ = QI0Λx
}

.

The subgroup in Sp(Λ∗1⊕Λ) which preserves Λ1 and Λ∗1 consists of transformations
of the form

(ξ, x) 7→ (A∗ξ, A−1x), A ∈ GL(Λ1).

The Lagrangian subspace defined by the equation ξ = Qx is transformed by this
mapping into the subspace defined by the equation ξ = A∗QAx. We correspond to
each Λ ∈ Λt0 the quadratic form

qI0Λ(x) = (QI0Λx)x, x ∈ Λ1.

The given considerations imply that the existence of a symplectic transforma-
tion which carries the triple of Lagrangian subspaces (Λ0,Λ1,Λ) into the triple
(Λ0,Λ1,Λ′) is equivalent to the existence of a linear change of coordinates trans-
forming the form qI0Λ into the form qI0Λ′ .

If q is a real–valued quadratic form on a vector space E we denote by sgn q the
difference between the number of positive and negative squares in the diagonal form
of q:

sgn q = max
{

dim H
∣∣∣ q|H > 0, H ⊂ E

}
−max

{
dim H

∣∣∣q|H < 0, H ⊂ E
}

.
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Hence the forms q and q′ are transformed into each other by a linear change of
variables iff sgn q = sgn q′, dim ker q = dim ker q′. Note that ker qI0Λ = Λ ∩ Λ1.

Denote
µ(Λ0,Λ1,Λ) = sgn qI0Λ.

The number µ(Λ0,Λ1,Λ) is called the Maslov index of the triple of the Lagrangian
subspaces Λ0,Λ1,Λ. We shall give now another, more invariant definition of the
Maslov index, which does not presupposes the assumption about the transversality
of the subspaces Λ and Λ1 to Λ0.

Let Λi ∈ L(Σ), i = 0, 1, 2. Define a quadratic form q on Λ1 ∩ (Λ0 + Λ2) by
relations

q(λ1) = σ(λ0, λ2), λ1 = λ0 + λ2, λi ∈ Λi, i = 0, 1, 2.

The vector λ1 ∈ Λ1 ∩ (Λ0 + Λ2) is in general represented as a sum of vectors from
Λ0 + Λ2 not uniquely, but the skew–scalar product of these vectors depends only
of λ1, which is a direct consequence of the isotropy of Λ0,Λ2. The Maslov index of
the triple Λ0,Λ1,Λ2 is called the number

µ(Λ0,Λ1,Λ2) = sgn q.

It is easily seen that q = qI0Λ1 if Λ2∩Λ0 = Λ1∩Λ0 = 0. The given definition of the
Maslov index uses only the symplectic structure of the space, therefore the index
is a symplectic invariant of the triple of Lagrangian subspaces. We can give still
another definition of the Maslov index, in which the subspaces Λi, i = 0, 1, 2, enter
symmetrically.

Define on the 3n–dimensional space Λ0 ⊕ Λ1 ⊕ Λ2 a quadratic form q̂ by the
relation

q̂(λ0, λ1, λ2) = σ(λ0, λ1)− σ(λ0, λ2) + σ(λ1, λ2).

One can show, cf. [11], that µ(Λ0,Λ1,Λ2) = sgn q̂.
The last representation implies the skew–symmetry of the Maslov index in all

three variables:

µ(Λ0,Λ1,Λ2) = −µ(Λ1,Λ0,Λ2) = −µ(Λ0,Λ2,Λ1).

Somewhat more difficult is to prove the following identity — the chain rule, cf.[11]:

µ(Λ0,Λ1,Λ2)− µ(Λ0,Λ1,Λ3) + µ(Λ0,Λ2,Λ3)− µ(Λ1,Λ2 Λ3) = 0,

∀Λi ∈ L(Σ), i = 0, 1, 2, 3.
(10)

Except the Maslov index there are the following trivial invariants of the triple
Λ0,Λ1,Λ2:

dim(Λi ∩ Λj), 0 ≤ i < j ≤ 2, dim(
2
∩

i=0
Λi).

We have proved that there are no other invariants if Λ0 ∩ Λ1 = Λ0 ∩ Λ2 = 0. It
turns out that this is true without any assumptions.
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Proposition 4. A triple of Lagrangian subspaces (Λ0,Λ1,Λ2) can be transformed
into the triple (Λ′0,Λ

′
1,Λ
′
2) by a symplectic mapping iff

µ(Λ0,Λ1,Λ2) = µ(Λ′0,Λ
′
1,Λ
′
2), dim(Λi ∩ Λj) = dim(Λ′i ∩ Λ′j),

0 ≤ i < j ≤ 2, dim(
2
∩

i=0
Λi) = dim(

2
∩

i=0
Λ′i).

Consider the case n = 1 in more detail. Since L(R2) is an oriented circle the
Maslov index is an invariant of a triple of points on the oriented circle. If two of
the three points coincide the index is zero. Let s0, s1, s2 be three different points
located on S1 in such an order that if we move along S1 in the positive direction we
pass consecutively through the points si1 , si2 , si3 . The pairity of the substitution
(i1, i2, i3) does not depend on the choice of the initial state of the movement. The
Maslov index µ(s1, s2, s3) is equal to 1 if this substitution is even and is equal to
-1 if it is odd.

4. We consider in more detail the tangent spaces TΛL(Σ), Λ ∈ L(Σ). To every

quadratic form h ∈ P(Σ) there corresponds a linear Hamiltonian field
→
h and a

one–parameter subgroup t 7→ et
→
h in Sp(Σ). Consider the linear mapping

h 7→ d

dt
et
→
h Λ
∣∣∣
t=0

, h ∈ P(Σ) (11)

of the space of quadratic forms to TΛL(Σ). The set of all linear Hamiltonian fields
is a Lie algebra of the group Sp(Σ). At the same time the action of the group
Sp(Σ) on L(Σ) is transitive. Hence the mapping (11) is surjective. This mapping
is certainly not invertible since dimP(Σ) = n(2n + 1) and dim L(Σ) = n(n+1)

2 .
It is easy to show that the kernel of the mapping (10) consists of all quadratic
forms which vanish on Λ. Thus to two different forms from P(Σ) correspond equal
vectors from TΛL(Σ) iff the restrictions of these forms on Λ coincide. We obtained
a natural identification of the space TΛL(Σ) with the space P(Λ) of the quadratic
forms on Λ.

The correspondence TΛL(Σ) −→ P(Λ) could be described more explicitly, with-
out considering quadratic forms on Σ. Suppose Λ(t) is a smooth curve in L(Σ),
Λ(0) = Λ. We correspond to every smooth curve λt ∈ Λ(t) the number 1

2σ(dλt
dt

∣∣∣
t=0

,

λ0). The isotropy of the spaces Λ(t) imply that this number depends only on
λ0,

dΛ(t)
dt

∣∣∣
t=0

. In other words, to the tangent vector dΛ(t)
dt

∣∣∣
t=0
∈ TΛL(Σ) there

corresponds the quadratic form

λ0 7→
1
2
σ

(
dλt

dt

∣∣∣
t=0

, λ0

)
, λ ∈ Λ.

It is not difficult to show that that this correspondence coincides with the isomor-
phism TΛL(Σ) ≈ P(Λ) defined above. We shall use this identification in the sequel
without any further mentioning.

The cone of non–negative quadratic forms defines a partial ordering in P(Λ). We
call a curve Λ(t) ∈ L(Σ) monotone non–decreasing, ( monotone non–increasing) if
dΛ(t)

dt ≥ 0 (dΛ(t)
dt ≤ 0) ∀t.
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Suppose that the curve Λ(t) is contained in a coordinate neighborhood of the
manifold L(Σ) ≈ L(Λ∗1 ⊕ Λ1) considered in no1. Thus

Λt =
{

(ξ, x) ∈ Λ∗1 ⊕ Λ1

∣∣∣ ξ = Qtx
}

,

where Qt : Λ1 −→ Λ∗1 is a selfadjoint mapping smoothly depending on T . To the
tangent vector dΛ(t)

dt corresponds a quadratic form on Λ1. It is easily seen that this
is the form

x 7→ −(
dQt

dt
x)x, x ∈ Λ1.

Thus the curve Λt is non–decreasing (non–increasing ) iff dQt
dt ≤ 0 ( dQt

dt ≥ 0 ).
We know that Λt1 is isomorphic to the space of all quadratic forms on Rn,

though not canonically isomorphic. Consider the remaining part of the Lagrange
Grassmannian

MΛ1 = L(Σ) \ Λt1 =
{

Λ ∈ L(Σ)
∣∣∣Λ ∩ Λ1 6= 0

}
,

which according to V.Arnold is called the train of the Lagrangian subspace Λ1.
The relation (7) implies that the intersection of MΛ1 with an arbitrary coordi-
nate neighbirhood Λt0 , where Λ0, is transversal to Λ1, coincides with the set of all
degenerate quadratic forms on Rn. To a subspace Λ, which has a k–dimensional
intersection with Λ1, there corresponds a form with a k–dimensional kernel.

Degenerate forms constitute an algebraic hypersurface in the space of all forms
P(Rn). This hypersurface has singularirties: its singular points are all the forms
which have at least two–dimensional kernel. At the same time the forms with at
least two–dimensional kernel constitute an algebraic subset of codimension 3 in
P(Rn), cf. fig.1, which represents the hypersurface of the degenerate forms in the
three–dimensional space P(R2).

From this we obtain thatMΛ1 is an algebraic hypersurface in L(Σ), and its singular
points constitute an algebraic subset of codimension 3 in MΛ1 . Hence MΛ1 is a
pseudo–manifold.
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Let Λ be a nonsingular point of the hypersurface MΛ. It is not difficult to
show that vectors from TΛL(Σ) corresponding to the positive definite and negative
definite quadratic forms on Λ are not tangent to the hyperplane MΛ1 , cf. fig.5,
where the dispositions of the positive and negative cones in TΛL(Σ) relative toMΛ1

are given for n = 2.

We define a canonical coorientation of the hyperplane MΛ1 in L(Σ) at a non-
singular point Λ, considering as positive that side of the hyperplane towards which
the positive definite elements of TΛL(Σ) are directed and as negative — towards
which the negative definite elements are directed.

The defined coorientation of the train permits to define correctly the intersec-
tion index Λ(·) ·MΛ1 of an arbitrary continuous curve Λ(t) in L(Σ), with endpoints
outside of MΛ1 , with the hypersurface MΛ1 . If Λ(t) is smooth and transversally
intersectingMΛ1 in nonsingular points the index is defined in the usual way: every
intersection point of Λ(t̂) adds +1 or −1 into the value of the intersection index ac-
cording to the direction of the vector dΛ

dt

∣∣∣
t=t̂

respectively to the positive or negative
side of MΛ1 . At the same time, since the singularities of MΛ1 are of codimension
3 in L(Σ), not only the generic curves, but as well as generic homotopies of such
curves, do not intersect the singularities of MΛ1 . Thus with a small change of an
arbitrary continuous curve with endpoints outside of MΛ1 we can bring it into a
transversal position with MΛ1 , with the intersection index not depending on the
perturbation. Furthermore, the intersection index is constant under an arbitrary
homotopy which leaves the endpoints outside MΛ1 .

Let Λ(t), t ∈ S1, be a closed curve. Then the intersection index Λ(·) · MΛ1

does not depend on Λ1. Indeed, for ∀Λ′ ∈ L(Σ) there exists a P ∈ Sp(Σ) such
that Λ′ = PΛ1. Since the definitions of a train and of the intersection index are
invariant under symplectic transformations we have PMΛ1 = MPΛ1 , (PΛ(·)) ·
µPΛ1 = Λ(·) · MΛ1 . The group Sp(Σ) is arcwise connected, hence there exists a
continuous curve Pt ∈ Sp(Σ) such that P0 = id, P1 = P . Taking into account the
homotopic invariance of the intersection index we obtain

Λ(·) · MPtΛ1 = (P−1
t Λ(·)) · MΛ1 = Λ(·) · MΛ1 .



24 A. AGRACHEV AND R. GAMKRELIDZE

Definition. The intersection index Λ(·) · MΛ1 of a closed curve Λ(·) with MΛ1 ,
which does not depend on Λ1, is called the Maslov index of the closed curve and
is denoted Ind Λ(·).

There is a close connection of the described intersection index with the Maslov
index of the triples of Lagrangian subspaces. The latter definition permits to express
explicitly the intersection index without bringing the curve into general position or
solving nonlinear equations.

If a section of the curve Λ(t) for t0 ≤ t ≤ t1 belongs to the coordinate neigh-
borhood Λt0 ≈ P(Λ1), qt is the quadratic form corresponding to Λ(t), and to the
subspace Λ1 corresponds the vanishing form, then it is easily shown that(

Λ
∣∣∣
[t0,t1]

)
· MΛ1 =

1
2
(sgn qt0 − sgn qt1).

Since sgn qt = µ(Λ0,Λ1,Λ(t)) then(
Λ
∣∣∣
[t0,t1]

)
· MΛ1 =

1
2
(µ(Λ0,Λ1,Λ(t0))− µ(Λ0,Λ1,Λ(t1))).

We can subdivide an arbitrary curve Λ(t) into sections Λ
∣∣∣
[ti,ti+1]

, t0 < t1 < . . . <

tl+1 for which Λ(t) is transversal to some ∆i ∈ L(Σ) for ti ≤ t ≤ ti+1. Then

Λ(·) · MΛ1 =
1
2

l∑
i=0

(µ(∆i,Λ1,Λ(ti))− µ(∆i,Λ1,Λ(ti+1)), (12)

where the relation (12) is valid also in case Λ(ti) ∩ Λ1 6= 0, 1 ≤ i ≤ l.

5. For a global study of Σ ≈ Rn∗ ⊕ Rn it is convenient to use a special complex
structure Cn on Rn∗ ⊕ Rn. To do this we put z = ξ + ix, ξ ∈ Rn∗, x ∈ Rn. The

structure Cn has a standard Hermitian form h(z, w) =
n∑

j=1

zjwj . The real part of

h is a usual scalar product

(z1|z2) =
n∑

j=1

(ξj
1ξ

j
2 + xj

1x
j
2), (13)

and the imaginary part coincides with the symplectic form σ. Thus

h(z, w) = (z|w) + iσ(z, w).

The unitary group U(Cn) preserves h, hence it preserves σ, and U(Cn) ⊂ Sp(Rn∗⊕
Rn) = Sp(Σ). We shall show that U(Cn) acts transitively on L(Σ).

It is enough to show that an arbitrary Lagrangian subspace Λ can be obtained by
a unitary transformation from the real subspace Λ0 =

{
ξ + i0

∣∣∣ ξ ∈ Rn∗
}

. Indeed,
suppose e1, . . . , en is an orthonormal basis relative to the real scalar product. Since
Λ is a Lagrangian subspace we have σ(ej , ek) = 0, hence the basis is orthonormal
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also relative to the Hermitian form h. Therefore the transformation which car-
ries over the standard basis of the arithmetic space Cn into e1, . . . , en is unitary.
Furthermore, the unitary transformation U : Cn −→ Cn is carrying over the real
subspace Λ0 ⊂ Cn into itself iff its matrix is real, in other words, when U belongs
to the orthogonal group: O(Rn) ⊂ U(Cn). Thus the Lagrange Grassmannian is the
homogeneous space

ÃL(Σ) ≈ U(Cn)/O(Rn).

Using this representation we can obtain an imbedding of L(Σ) into the space of
complex symmetric n × n–matrices as a Lagrangian submanifold. We emphasize
that the space of complex symmetric, not selfadjoint matrices is considered. A
symplectic structure on this space is given by the imaginary part of the Hermitian
form

(B1, B2) 7→ tr (B1, B2), Bᵀj = Bj , j = 1, 2,

where ᵀ denotes the transposition of a matrix. The imbedding

L(Σ) ≈ U(Cn)/O(Cn)

into the indicated space of matrices is given by the relation

UO(Rn) 7→ UUᵀ, U ∈ U(Cn).

We compute now the fundamental group π1(L(Σ)). Since

π1(U(Cn)) = Z, π1(O(Rn)) = Z2

, we have π1(U(Cn)/O(Rn)) = Z. The mapping UO(Rn) 7→ detU2 from U(Cn)/
O(Rn) into S1 ⊂ C induces an isomorphism of fundamental groups. Thus if with
every closed curve Λ(t) = U(t)O(Rn), t ∈ S1 from L(Σ) ≈ U(Cn)/O(Cn) we
associate the degree of the mapping t 7→ detU2(t) from S1 into S1 we obtain
an isomorphism of π1(L(Σ)) onto Z. There is a simple explicit formula for this
isomorphism:

deg(det U(·)2) =
1
πi

∫
S1

tr

(
dU

dt
U(t)−1

)
dt (14)

We have introduced in the previous no the Maslov index of a closed curve, Ind Λ(·),
which is a homotopy invariant and induces a homomorphism of the fundamental
group π1(L(Σ)) into Z. It turns out that this homomorphism coincides with the
isomorphism (14). To prove this we can compute the Maslov index and the right–
hand side of (14) for an arbitrary nontrivial curve. We omit this simple calculation.
Thus we have

IndΛ(·) =
1
πi

∫
S1

tr (U̇(t)U(t)−1)dt, Λ(t) = U(t)O(Rn).

We give now another integral formula for Maslov index which does not use the rep-
resentation of L(Σ) as a homogeneous space. The expression Λ̇(t) ∈ TΛ(t)L(Σ) is
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interpreted as the quadratic form Λ̇(t) : λt 7→ 1
2σ(λ̇t, λt) λt ∈ Λ(t) on Λ(t). The re-

striction of the scalar product (13) on the subspace Λ(t) determines a representation
of this form as

Λ̇(t)(λ) = (QΛ̇(t)λ|λ), λ ∈ Λ(t),

where QΛ̇(t) : Λ(t) −→ Λ(t) is a symmetric operator. We have

IndΛ(·) =
2
π

∫
S1

tr QΛ̇(t)dt.

Since the tangent space TΛL(Σ) is identified with the space of linear symmetric
operators Q : Λ −→ Λ a Riemannian structure is defined

(Q1|Q2) 7→ tr(Q1Q2), (Q|Q) = tr Q2 =
n∑

j=1

αj(Q)2,

where α1(q), . . . , αn(Q) are the eigenvalues of the linear operator Q : Λ −→ Λ.
Let l(Λ(·)) be the length of the curve Λ(·). Then

l(Λ(·)) =
∫
S1

√√√√ n∑
j=1

αj(QΛ̇(t))2dt, Ind Λ(·) =
2
π

∫
S1

n∑
j=1

αj(QΛ̇(t))dt.

Monotone nondecreasing curves in L(Σ) are characterized by the condition
αj(QΛ̇(t)) ≥ 0, j = 1, . . . , n. For nonnegative αj the inequality

n−
1
2

n∑
j=1

αj ≤

√√√√ n∑
j=1

α2
j ≤

n∑
j=1

αj

holds. Hence for a nondecreasing curve Λ(·) the inequalities

π

2
√

n
Ind Λ(·) ≤ l(Λ(·)) ≤ π

2
Ind Λ(·)

are obtained.

6. Concluding this survey of the geometry of Lagrange Grassmannians we shall
prove a multidimensional generalization of Sturm’s classical theorems about the
zeros of the solutions of differential equations of second order.

Proposition 5. Let Λ(t), t0 ≤ τ ≤ t1, be a continuous curve in L(Σ), ( not
necessarily closed), and suppose that Λ1,Λ2 ∈ L(Σ) satisfy the relations Λi∩Λ(t0) =
Λi ∩ Λ(t1) = 0, i = 1, 2. Then

|Λ(·) · MΛ1 − Λ(·) · MΛ2 | ≤ n.
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Proof. Since Λt1 is arcwise connected we can complement the curve Λ(·) to a closed
curve Λ(·), joining Λ(t1) and Λ(t0) by a curve ∆ ⊂ Λt1 . Then

Λ(·) · MΛ1 = Λ(·) · MΛ1 = Ind Λ(·) = Λ(·) · MΛ2 = Λ(·) · MΛ2 + ∆ · MΛ2 .

At the same time

∆ · MΛ2 =
1
2
(µ(Λ1,Λ2,Λ(t1))− µ(Λ1,Λ0,Λ(t0))).

Hence |∆ · MΛ2 | ≤ n.

Note that we not only estimated the difference of intersection indices, but ex-
pressed this difference explicitly as a function of the endpoints of Λ(·).
Corollary. If Λ(·) is a monotone curve, nondecreasing or nonincreasing, then the
difference between the numbers of its intersection points withMΛ1 andMΛ2 is not
greater then n.

Indeed, every intersection point of a monotone curve with MΛi gives an incre-
ment into the index of the same sign.

Proposition 6. Let Pτ ∈ Sp(Σ), 0 ≤ τ ≤ t, be a continuous curve in Sp(Σ), P0 =
id, and suppose Λ0,Λ′0 ∈ L(Σ). Put Λ(τ) = PτΛ0, Λ′(τ) = PτΛ′0. Then for
∀Λ1 ∈ L(Σ) the inequality

|Λ(·) · MΛ1 − Λ′(·) · MΛ1 | ≤ n (14)

holds.

Proof. We join Λ0 and Λ′0 with a continuous curve ∆ and construct a curvelinear
quadrangle
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The closed curve Λ(·)◦Pt∆◦Λ′(·)−1◦∆−1, which is obtained by a successive passage
of Λ(·), Pt∆, τ 7→ Λ′(t− τ), and the reversed curve of ∆, is contractible. Indeed,
the homotopy (θ, Λ) 7→ P(1−θ)tΛ, θ ∈ [0.1], Λ ∈ L(Σ), contracts the considered
closed curve onto the curve ∆ ◦∆−1. Hence

Ind(Λ(·)◦Pt∆◦Λ′(·)−1 ◦∆−1) = 0, Λ(·) ·MΛ1 +Pt∆ ·MΛ1 = Λ′(·)MΛ1 +∆ ·MΛ1 .

At the same time Pt∆ ·MΛ1 = ∆ ·MP−1
t Λ1

and hence, according to Proposition 5,
|∆ · MP−1

t Λ1
−∆ · MΛ1 | ≤ n.

Remark. Suppose Pτ is an absolutely continuous curve. Then Pτ can be repre-
sented as a flow generated by a nonstationary linear Hamiltonian system in Σ:

∂

∂τ
Pτz =

→
q τ (Pτz), z ∈ Σ,

where
→
q is a linear Hamiltonian field on Σ generated by the quadratic Hamiltonian

qτ . If qτ is nonnegative ( nonpositive ) then for ∀Λ ∈ L(Σ) the curve τ 7→ PτΛ is
monotone nondecreasing ( nonincreasing ), and the intersection index in (14) could
be substituted by the number of the intersection points.

Theorem 1. Let qτ , hτ be quadratic nonstationary Hamiltonians on Σ, where hτ ≥
0, 0 ≤ τ ≤ t, and let Pτ , P̃τ ∈ Sp(Σ) be linear Hamiltonian flows on Σ, generated

by the Hamiltonian fields
→
q τ ,
→
q τ +

→
hτ :

∂

∂τ
Pτ =

→
q τPτ ,

∂

∂τ
P̃τ = (

→
q τ +

→
hτ )P̃τ , P0 = P̃0 = id.

Finally, let Λ(τ), Λ̃(τ) be trajectories of the corresponding flows on L(Σ):

Λ(τ) = PτΛ(0), Λ̃(τ) = P̃τ Λ̃(0), 0 ≤ τ ≤ t.

Then for ∀Λ1 ∈ L, which is transversal to the endpoints of the curves Λ(·), Λ̃(·),
the inequality

Λ(·) · MΛ1 − n ≤ Λ̃(·) · MΛ1

is valid.

Proof.

The variation formula, given in Introduction, implies that P̃τ = PτRτ , where
Rτ is a flow corresponding to the nonnegative nonstationary Hamiltonian rτ : z 7→
hτ (Pτz), z ∈ Σ. In other words,

∂

∂τ
Rτ =

→
r τRτ , 0 ≤ τ ≤ t, R0 = id.

Consider the monotone nondecreasing curve ∆(τ) = Rτ Λ̃(0) and the curve Λ′(τ) =
Pτ∆(t), 0 ≤ τ ≤ t, in L(Σ). The identity P̃τ ≡ PτRτ implies that the closed curve
∆(·) ◦ Λ′(·) ◦ Λ̃(·)−1 is contractible. Hence

Ind(∆ ◦ Λ′ ◦ Λ̃−1) = 0, Λ̃ · MΛ1 = ∆ · MΛ1 + Λ′ · MΛ1 .

At the same time, ∆ · MΛ1 ≥ 0, and, according to Proposition 6, Λ′ · MΛ1 ≥
Λ · MΛ1 − n.
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§5. The Index of the Second Variation and the Maslov Index

1. We shall consider 1–cocycles on manifolds with half–integer values, and start
with definitions. We call a real–valued 1–cochain on the manifold M an arbitrary
real function c defined on the set of all continuous curves on M subject to the
condition

c(γ|[t0,t1]) = c(γ|[t0,t]) + c(γ|[t,t1]) ∀t ∈ (t0, t1),

where γ : [t0, t1] −→ M is an arbitrary continuous curve on M . A 1–cochain is a
1–cocycle if for every x ∈ M there exists a function dx : Ox −→ R, defined on a
neighborhood Ox of x, such that c(γ) = dx(γ(t1))−dx(γ(t0)) for ∀γ : [t0, t1] −→ Ox.
Every 1–cocycle vanishis on all singular cycles, homologous to zero, (in particular,
on all contractible closed curves.) A 1–cocycle is called exact or cohomologous to
zero if there exists a funcion d : M −→ R such that

c(γ) = d(γ(t1))− d(γ(t0))

for every continuous curve γ : [t0, t1] −→ M . Evidently, exact cocycles vanish on
every closed curve. Two cocycles are cohomologous if their difference is exact.

Suppose Π ∈ L(Σ). We define a cocycle IndΠ on L(Σ) such that IndΠΛ(·) =
Λ(·) · MΠ for every curve in L(Σ) with endpoints outside of MΠ, in particular,
IndΠΛ(·) = IndΛ(·) for every closed curve Λ(·). It is sufficient to define IndΠ on
parts of the curve, which belong to some coordinate neighborhoods.

Let Λ(·) be an arbitrary continuous curve in L(Σ) and suppose that Λ(t) ∈ ∆t

for t0 ≤ t ≤ t1, for some ∆ ∈ L(Σ). Put

IndΠ(Λ|[t0,t1]) =
1
2
(µ(∆,Π,Λ(t0))− µ(∆,Π,Λ(t1)). (1)

We have to prove that the right–hand side of (1) does not depend on the choice of
∆. Using the chain rule (4.10) we obtain

IndΠ(Λ|[t0,t1]) =
1
2
(µ(Π,Λ(t0),Λ(t))− µ(∆,Λ(t0),Λ(t1)). (2)

Hence it is remained only to prove that µ(∆,Λ(t0),Λ(t1)) does not depend on the
choice of ∆. Let Λ(t) ∈ ∆t ∩ ∆′t, t0 ≤ t ≤ t1. The chain rule (4.10) and the
equality (4.12) imply

µ(∆,Λ(t0),Λ(t1))− µ(∆′,Λ(t0),Λ(t1)) =

µ(∆′,∆,Λ(t0))− µ(∆′,∆,Λ(t1)) = (Λ|[t0,t1]) · M∆ = 0.

Thus formulas (1) — (2) define a cocycle IndΠ on L(Σ) correctly. Formula (4.12)
implies that if the ends of the curve Λ(·) are outside ofMΠ then IndΠΛ(·) coincides
with the intersection index Λ(·) · MΠ. The cocycles IndΠ are cohomologous for
different Π ∈ L(Σ). Indeed, the equality (2) implies that

IndΠ1(Λ|[t0,t1])− IndΠ2(Λ|[t0,t1]) =
1
2
(µ(Π1,Λ(t0),Λ(t1))− µ(Π2,Λ(t0),Λ(t1))).

(3)

Let (s, t) 7→ Λs(t), s ∈ [0, 1], t ∈ [α, β] be a homotopy of continuous curves in
L(Σ), where dim (Λs(α) ∩ Π) and dim (Λs(β) ∩ Π) do not depend on s ∈ [0, 1]. It
is easy to show that in this case IndΠΛs(·) is also independent on s.
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2. Vector bundle is called symplectic if every fibre carries a symplectic structure
continuously depending on the fibre. A subbundle of a vector bundle is called
Lagrangian if its fibres are Lagrangian subspaces. Cocycles on a Lagrange Grass-
mannian, considered in the previous section, permit to assign to every pair of
Lagrangian subbundles a ”characteristic 1–cocycle” in the base. We shall consider
here the most important particular case of this procedure: we describe the Maslov
cocycle of a Lagrangian immersion.

Let L be a smooth manifold, dimL = dim M , and Φ : L −→ T ∗M be a La-
grangian immersion. For x ∈ L we denote

Σx = TΦ(x)(T ∗M), Πx = TΦ(x)(T ∗πM (Φ(x))M), Λx = Φ∗(TxL).

Then Σx is a symplectic space, Πx, Λx ∈ L(Σx), where Πx is the tangent space at
Φ(x) to the fibre in T ∗M , and Λx is the tangent space to Φ(L) at the same point.

Let x(·) be a continuous curve in L, and [t0, t1] is a segment in the domain of
definition of the curve such that there exists a continuous family of Lagrangian
subspaces ∆t ∈ L(Σx(t)), t0 ≤ t ≤ t1, satisfying conditions

∆t ∩Πx(t) = ∆t ∩ Λx(t) = 0, ∀t ∈ [t0, t1]. (4)

It is clear that for sufficiently small segments such families exist. Put

mΦ(x|[t0,t1]) =
1
2
(
µ(∆t0 ,Πx(t0),Λxt0

)− µ(∆t1 ,Πx(t1),Λx(t))
)
. (5)

The expression (4) does not depend on the choice of the family ∆t. Indeed, the
symplectic group acts transitively on pairs of transversal Lagrangian subspaces,
hence there exists a continuous family of symplectic mappings At : Σx(t) −→ Σx(t0),
such that At∆x(t) = ∆x(0), AtΠx(t) = Πx(0). Therefore, µ(∆t,Πx(t),Λx(t)) =
µ(∆t0 ,Πx(t0), AtΛx(t)). Hence the right–hand side of (5) coincides with IndΠx(t0)(A·
Λx|[t0,t1]).

Suppose that ∆′t ∈ L(Σx(t)) is another family of Lagrangian subspaces satis-
fying conditions (4), and suppose A′t : Σx(t) −→ Σx(to) is a family of symplectic
mappings such that A′t∆

′
x(t) = ∆′x(0), A′tΠx(t) = Πx(0). Then A′t = PtAt, where

P (t) ∈ Sp(Σx(0)), P (0) = id, P (t)Πx(0) = Πx(0), t0 ≤ t ≤ t1. Furthermore,
µ(∆′t,Πx(t),∆x(t)) = µ(∆′0,Πx(0), P (t)AtΛx(t)), therefore, if we substitute in (5)
the family ∆t by the family ∆′t, we obtain for the corresponding index the expres-
sion IndΠx(t0)(P (·)A·Λx|[t0,t1]).

Put Λs(t) = P (st)AtΛx(t), s ∈ [0, 1], t ∈ [t0, t1]. Since the transformation P (τ)
preserves Πx(0) ∀τ the value of the expression dim(Λs(t) ∩ Πx0) does not depend
on s. Hence IndΠx(t)Λ

s(·) also does not depend on s. In particular,

IndΠx(t0)(A· Λx|[t0,t1]) = IndΠx(t0)Λ
0(·) = IndΠx(t0)Λ

1(·) =

IndΠx(t0)(P (·)A· Λx|[t0,t1]).

Thus the right–hand side of (4) does not depend on the choice of ∆t and hence
defines a 1–cocycle mΦ on L. mΦ is called the Maslov cocycle of the Lagrangian
immersion Φ : L −→ T ∗M .
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Consider the composition πM ◦Φ of the immersion Φ with the canonical projec-
tion of T ∗M on M . The critical points of the mapping πM ◦Φ are those x ∈ L for
which Λx ∩Πx 6= 0. For a generic immersion the set{

x ∈ L
∣∣∣Λx ∩Πx 6= 0

}
(6)

is a pseudomanifold of codimension 1 in L with a natural coorientation, cf. [5].
In this case the intersection index of the hypersurface (6) with an arbitrary curve
in L, with endpoints outside of (6), is correctly defined. This index is called the
Maslov–Arnold cocycle. The results of no1 imply that it coincides with mΦ. At
the same time , the cocycle mΦ is always defined — for every immersion and every
continuous curve, and is computed according to simple explicit formulas, which do
not require either the general position considerations nor the location of intersection
points.

3. We shall pass now from arbitrary Lagrangian immersions to manifolds of La-
grangian points described in §2. Let U, M be smooth manifolds, f : U −→M be a
smooth mapping and ϕ : U −→ R be a smooth real–valued function. Suppose that
F = (ϕ, f) : U −→ R×M is a Morse mapping. Let Cf,ϕ be the manifold of (normed)
normal Lagrangian points and fc : Cf,ϕ −→ T ∗M be the corresponding Lagrangian
immersion, cf. §2, no5. Furthermore, let (λ, u) ∈ Cf,ϕ, ω = (−1, λ) ∈ R⊕ T ∗f(u)M .
We remind that ωFh

u denotes the Hessian of the mapping F at the Lagrangian point
(ω, u). Thus ωFh

u is a real–valued quadratic form on the space ker F ′u = ker f ′u.

Theorem 1. Let γ(t) = (λt, ut) ∈ Cf,ϕ, t ∈ [0, 1] be an arbitrary continuous curve
in Cf,ϕ and ωt = (−1, λt). Then

sgn(ω1F
h
u1

)− sgn(ω0F
h
u0

) = 2mfc(γ(·)). (7)

In other words, the Maslov cocycle of the Lagrangian immersion fc : Cf,ϕ −→
T ∗M is the coboundary of the function (λ, u) 7→ 1

2sgn((−1, λ)Fh
u ) on Cf,ϕ with

half–integer values.
Note that the right–hand side of (7) depends only on the dim Mdimensional

manifold of normal Lagrangian points, at the same time the left–hand side contains
the signatures of quadratic forms, defined on spaces of dimensions not less than
dim U − dim M .

In the extremal problems dim M represents the ”number of relations”, dim U is
the number of “variables”, and the quadratic form ωFh

u is the “second variation of
the functional”. Usually the number of variables is much greater than the number
of relations, therefore Theorem 1 gives an effective method to compute the signature
of the second variation.

We considered the finite–dimensional case as a preparation to the study of the op-
timal control problem, cf. §3, in which U is substituted by the infinite–dimensional
space of admissible controls. Therefore it is reasonable to rewrite the equation (7)
in a form which is meaningful, at least formally, in case of an infinite–dimensional
U as well. We have to rewrite only the left–hand side of (7) only since right side
contains the Maslov cocycle of the Lagrangian immersion into T ∗M , which arise in
optimal control problems naturally, as it was shown in §3.
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Let q be a quadratic form on a linear space E. Positive (negative) index of
inertia of q is given by the expression

ind+q = sup
{

dim E′
∣∣∣E′ ⊂ E, q|E′ > 0

}
,(

ind−q = sup
{

dim E′
∣∣∣E′ ⊂ E, q|E′ < 0

})
,

hence sgn q = ind+q− ind−q. If E is infinite–dimensional, ker q is finite–dimensio-
nal, then ind+q or ind−q is infinite and the expression for sgn q has no sense. At
the same time, the left–hand side of (7) is meaningful if at least one of the indices
ind+q, ind−q is finite.

Corollary. Under the conditions of Theorem 1 we have(
ind+(ω1F

h
u1

) +
1
2
dim ker ω1F

h
u1
− 1

2
corank f ′u1

)
−(

ind+(ω0F
h
0 ) +

1
2
dim ker ω0F

h
u0
− 1

2
corank f ′u0

)
= mfc(γ(·)).

(8)

Returning to the optimal control problem of §3 we suppose that the Hamiltonian
(3.3) is smooth and satisfies to the conditions of Proposition 3.2 for L0 = T ∗x0

M .
The Lagrangian immersion in Proposition 3.2

(t, λ) 7→ p(t, λ), t > 0, λ ∈ L0 ∩H−1(0)

substitutes in this case the immersion fc. Let λ0 ∈ L0 ∩ H−1(0). If we put
γ(τ) = (τ, λ0), τ > 0, then the equality (8) turns into a direct generalization of
the classical Morse formula stating that the increment of the inertia index of the
second variation of a regular integral functional along an extremal equals to the
sum of multiplicities of conjugate points of the Jacobi equation. Indeed, the curve
λτ = p(τ, λ0) is a Pontryagin extremal. The solutions of the Jacobi equation along
this extremal are the curves ξτ =

(
∂

∂λp(τ, λ)
∣∣
λ=λ0

)
ξ0, ξτ ∈ Tλτ (T

∗M). The time–
instant t > 0 is conjugate to zero for the Jacobi equation, if there exists a nonzero
solution ξτ of the equation satisfying conditions H ′λ0

ξ0 = 0, πM∗ξ0 = πM∗ξt = 0.
( Condition H ′λ0

ξ0 = 0 arises since we consider the problem with free time.) The
multiplicity of a conjugate point is the dimension of the space of such solutions.
Employing notations of no2 for the considered Lagrangian immersion we obtain
that the multiplicity of a conjugate point t is equal to dim (Λγ(t) ∩ Πγ(t)). This is
equal to the contribution of the point γ(t) into the intersection index of the curve
γ(·) with the hypersurface{

(τ, λ) ∈ R+ × L0

∣∣H(p(τ, λ)) = 0, Λ(τ,λ) ∩Π(τ,λ) 6= 0
}

,

in case when the intersection point is isolated and the intersection has the positive
sign. In the regular case of a variational problem the intersection points, i.e. the
conjugate points of the Jacobi equation, are indeed isolated, but intersections take
negative sign if we adopt the orientations of this paper. Hence the sum of multiplic-
ities of the conjugate points is equal −mpγ(·). In more general cases the conjugate
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points are not necessarily isolated, but the explicit formulas for the Maslov cocycle
given in this section permit to ignore this phenomenon. In addition, the Maslov
index can be computed along any curve, and not necessarily along extremals.

Concluding this section we note that if the index of the second variation is
infinite, formula (8) read from right to left, defines the ”increment of the index
along a curve”, which turns out to be quite useful for developing of the analogs of
the Morse theory for the indefinite functionals.

§6 Bang–bang extremals

1. We return to the Optimal Control problem of §3 and consider the case when
the Maximum principle generates a nonsmooth Hamiltonian. The problem of de-
scription of (possibly nonsmooth) Lagrangian submanifolds contained in the level
sets of such Hamiltonians should play a central role for the optimal synthesis. Here
will be given some preliminary results in this direction, more detailed results will
be published elsewhere.

We start with bang–bang controls. Let ṽ(τ) = vi, τi−1 < τ < τi, i = 1, . . . , l,
where 0 = τ0 < τ1 < . . . < τl, ṽ(τ) = vl+1 for τ > τl. Suppose g(x0, v0) 6= 0
and let x̃(t) = x(τ ; ṽ(·)) be a trajectory of (3.1) corresponding to the control ṽ(·).
Suppose λ̃τ ∈ T ∗x̃(τ)M, 0 ≤ τ ≤ t1, λ̃τ 6= λ̃τ ′ for τ 6= τ ′, is a normal Pontryagin

extremal, corresponding to the control ṽ(·). Thus λ̃τ , 0 ≤ τ ≤ t1, is a trajectory of
the Hamiltonian system in T ∗M defined by the Hamiltonian

hτ (λ) = λg(π(λ), ṽ(τ))− g0(π(λ), ṽ(τ)), λ ∈ T ∗M.

Furthermore,
0 = hτ (λ̃τ ) = H(λ̃τ ), 0 ≤ τ ≤ t1,

where, according to (3.3), we have

H(λ̃τ ) = max
u∈V

(λ̃τg(x̃(τ), u)− g0(x̃(τ), u)).

. Since the control ṽ(·) is piece–wise constant the Hamiltonian hτ (λ) depends on τ
also piece–wise constantly: hτ (λ) = hi(λ), τi−1 < τ < τi. Denote θ = (θ1, . . . , θl),
where θi are real numbers, θ0 = 0. If the vector θ is sufficiently close to τ =
(τ1, . . . , τl) then the control

vθ(τ) = vi for θi−1 < τ < θi, i = 1, . . . , l, vθ(τ) = vl+1 for τ > θl

is well defined. The control vθ(·) defines a Hamiltonian

hθ
t (λ) = hi(λ) for θi−1 < t < θi, i = 1, . . . , l.

In particular, ht(λ) = hτ
t (λ).

Put

f(t, θ) = x(t; vθ(·)), ϕ(t, θ) =

t∫
0

g0(x(τ ; vθ(τ)), vθ(τ)), dτ, F (t, θ) = (ϕ(t, θ), f(t, θ)).

The mapping F is a Lipschitz mapping. Furthermore, it is smooth in the region

D =
{

(t, θ)
∣∣∣t 6= θi, θi−1 < θi, i = 1, . . . , l

}
.
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Proposition 1. Let (t, θ) ∈ D, t ∈ (θi−1, θi), λθ
t ∈ T ∗f(t,θ)M . Then (λθ

t , t, θ) ∈
Cf,ϕ iff hj(λθ

θj
) = 0, j = 1, . . . , i, where τ 7→ λθ

τ is a trajectory of the Hamiltonian
system defined by the Hamiltonian hθ

τ .

Proposition 2. Let t ∈ (τi, τi+1). The restriction of the mapping F on some
neighborhood of the point (t, τ) is a Morse mapping if {hj+1, hj}(λ̃τj ) 6= 0, j =
1, . . . , i.

Propositions 1,2 together with the Proposition 2.5 imply the following

Theorem 1. Suppose that

H(λ) = max
{

hi(λ)
∣∣∣ i =, . . . , l

}
for all λ ∈ T ∗M sufficiently close to the points of the curve λ̃τ , 0 ≤ τ ≤ t1.
Let, furthermore, hj(λ̃τ ) < 0 for τi−1 < τ < τi, j 6= i; hj(λ̃τi) < 0 for j 6=
i, i + 1, and {hi+1, hi}(λ̃τi) 6= 0, i =, 1 . . . , l. Then there exists a neighborhood of{

λ̃τ

∣∣∣0 ≤ τ ≤ t1

}
in T ∗M such that the set

{
λθ

t ∈ O
∣∣∣H(λθ

τ ) = 0, 0 ≤ τ ≤ t
}

(1)

is a Lagrangian submanifold in T ∗M . (We suppose here, as well as in Proposition

1, that ∂
∂τ λθ

τ =
→
hθ

τ (λθ
τ ).)

According to Theorem 3.1 the trajectory x̃(τ), τ ∈ [0, t] is locally optimal if
the submanifold (1) is “well–projected” onto M . To construct the manifold (1) is
much harder than to proof its existence. Neither is it simple to investigate how it
is projected onto M . In case of a smooth Lagrangian submanifold one can avoid
these difficulties by the following assertion:

If the Maslov cocycle vanishes on every part of a given curve then some neigh-
borhood of this curve is well projected onto M .
At the same time, to compute the value of the Maslov cocycle it is sufficient to
know the tangent spaces to the Lagrangian submanifold only in several points of
the curve. Since the Lagrangian submanifold (1) is a Lipschitz manifold, (not
everywhere smooth,) hence the Maslov cocycle is not defined on an arbitrary curve
as the tangent space does not exist at every point of the curve. Nevertheless, it
turns out that the corresponding function with half–integer values can be defined
in a natural way, at least for the extremals λθ

τ . In accordance with the results of §5
the doubled value of this function on the extremal λθ

τ , τ ∈ [t0, t1], coincides with
the difference of the signatures of the Hessians of the mapping F in the Lagrangian
points λθ

t1 , (t1, θ) and λθ
t0 , (t0, θ).

2. We shall need a modification of the Maslov index of a triple of Lagrangian
subspaces. Suppose Λi ∈ L(Σ), i = 0, 1, 2. Put

indΛ0(Λ1,Λ2) =
1
2
(µ(Λ0,Λ1,Λ2)− dim(Λ1 ∩ Λ2) + n), (2)
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where dimΣ = 2n.
According to the definition indΛ0(Λ1,Λ2) is a symplectic invariant of the triple

of Lagrangian subspaces with half–integer values. One can show, cf. [2], §3, that
the invariant (2) is nonnegative and satisfies the triangle inequality:

indΛ0(Λ1,Λ3) ≤ indΛ0(Λ1,Λ2) + indΛ0(Λ2,Λ3) ∀Λi ∈ L(Σ), i = 0, 1, 2, 3.

A continuous curve Λ(τ) ∈ L(Σ), t0 ≤ τ ≤ t1, is called simple if ∃∆ ∈ L(Σ) such
that Λ(τ) ∩∆ = 0 ∀τ ∈ [t0, t1].

Proposition 3. ([2], §3). If Λ(τ), τ ∈ [t0, t1], is a simple nondecreasing curve in
L(Σ) and Π ∈ L(Σ), then

IndΠ(Λ(·)) = indΠ(Λ(t0),Λ(t1)).

In particular, the value of the cocycle IindΠ on the simple nondecreasing curve
depends only on Π and the endpoints of the curve , cf. the expression (5.1) valid
for an arbitrary simple curve.

Now under the assumptions of Theorem 1 suppose that λθ
t belongs to the mani-

fold (1). If, in addition, (t, θ) ∈ D then the manifold (1) is smooth near the point
λθ

τ . Let Λθ
t ⊂ Tλθt

(T ∗M) be the tangent space to the manifold (1) at λθ
t . These

spaces can be described more explicitly.
Let P θ

τ ∈ Symp(T ∗M), τ ≥ 0 be a piecewise smooth curve in Symp(T ∗M),
which is smooth on the intervals (θi−1, θi), i = 1, . . . , l, (θl,+∞) and defined by
conditions

∂

∂τ
P θ

τ (λ) =
→
h i(P θ

τ (λ)), θi−1 < τ < θi, Pθi+0(λ) ≡ λ,

1, . . . , l;
∂

∂τ
P θ

τ (λ) =
→
h l+1(P θ

τ (λ)), θl < τ.

(3)

The subspaces Λθ
t are uniquely determined by the conditions

Λθ
−0 = Πλθ0

, Λθ
θi+0 = span(Λθ

θi−0 +
→
h i+1(λθ

θi)) ∩
→
h i+1(λθ

θi)
∠,

Λθ
τ = P θ

τ∗Λ
θ
θi+0, θi < τ < θi+1, i ≥ 0,

(4)

where Πλ = Tλ(T ∗π(λ)M). The procedure which generates Lagrange subspaces
given in (4) can be considered as a linearization of the method of characteristics
described in Proposition 3.2. Note that Pτ∗Πλ = ΠPτ (λ) ∀τ, λ. Hence the Maslov

class vanishes on the curves Λθ
·

∣∣∣
(θi,θi+1)

, i.e. m(Λθ
·

∣∣∣
(θi,θi+1)

) = 0, i = 0, 1, . . . . Define

m

(
Λθ
·

∣∣∣
[t0,t1)

)
=

∑
t0≤θi<t1

indΠ
λθ
θi

(Λθ
θi−0,Λ

θ
θi+0), ∀t0, t1. (5)

In other words, to find the value of m on the curve τ 7→ λθ
τ we must first paste the

discontinuities of the curve of tangent spaces τ 7→ Λθ
τ with simple nondecreasing

curves in Lagrange Grassmannians and then compute the Maslov cocycle in the
usual way.
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Proposition 4. Let λθ
t be contained in the manifold (1), and suppose Π∩Λθ

t−0 = 0.
(We use here and in the sequel the abbreviated notation Π = Πλθt

.) Then Hessian
of F at the Lagrangian point λθ

t , (t, θ) is nondegenerate and its positive index of
inertia is computed according to the formula

ind∗(ωFh
(t,θ)) = m

(
Λθ
·

∣∣∣
[0,t)

)
− n

2
, (6)

where ω = (−1, λθ
t ).

Corollary. Under the assumptions of Proposition 4 and provided m(Λθ
·

∣∣∣
[0,t)

) > n
2

the control vθ
∣∣∣
[0,t]

is not locally optimal.

Since dim(Λθ
θi−0∩Λθ

θi+0) = n−1 every summand in the right side of (2) is 0, or 1
2 ,

or 1. At the same time indΠ(Λθ
θi−0,Λ

θ
θi+0) = 1

2 iff dim(Π∩Λθ
θi−0) 6= dim(Π∩Λθ

θi+0).
Note also that

dim(Λθ
τ ∩Π) ≥ n− i for θi−1 < τ < θi,

and for a local injectivity of the mapping λ 7→ π(λ) of the manifold (1) into M at
the point λθ

t it is necessary that Λθ ∩Π = 0. Thus local injectivity can hold only in
case t > θn−1. For t ≤ θn−1 the mapping λ 7→ π(λ), though not locally injective,
is still “good” (in the sense of Theorem 3.1) near the point λθ

t , if the intersection
Λθ

t+0 ∩Π has the minimal possible dimension.

Theorem 2. Suppose that under the assumptions of Theorem 1 and for every
τi ≤ t the relations

indΠ(Λτ
τi−0,Λ

τ
τi+0) =


1
2
, 0 ≤ i ≤ n− 1

0, i ≥ n,

hold, then there exists a neighborhood L of the curve λ̂
∣∣∣
[0,t]

in the manifold (1)

satisfying the conditions of Theorem 3.1.

Remark. It is easy to show that under the condition Λτ
τ−0 ∩ Π = Λτ

τ+0 ∩ Π = 0
the local injectivity of the mapping λ 7→ π(λ) of the Lagrangian manifold (1) into
M near the point λ̂τ is equivalent to the equality indΠ(Λτ

τ−0,Λ
τ
τ+0) = 0. Typical

locations of the trajectories x(·, vθ) = π(λθ
· ) for different values of indΠ(Λτ

τ−0,Λ
τ
τ+0)

are represented on the figure.
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Standard topological considerations lead to the following global version of The-
orem 2. Suppose W is a closed subset in{

(t, θ) ∈ R+ × Rl
+

∣∣θi−1 < θi, i = 1, . . . , l, θ0 = 0
}

, where (t, θ) ∈W =⇒ (τ, θ) ∈W ∀τ ∈ [0, t], and put

LW =
{

λθ
t ∈ T ∗M

∣∣∣ (t, θ) ∈W,
∂

∂τ
λθ

τ =
→
hθ

τ (λθ
τ ), h(λθ

τ ) = H(λθ
τ ) = 0, 0 ≤ τ ≤ t

}
.

To every λθ
t ∈ LW we assign a Lagrangian subspace Λθ

t in Tλθt
(T ∗M) defined by

the relations (3), (4).

Theorem 3. Suppose for every λθ
t ∈ LW , θi ≤ t the following relations hold:

(1) {hi, hi−1}(λθ
θi

) 6= 0 for i > 0;

(2) indΠ(Λθ
θi−0,Λ

θ
θi+0) =


1
2

if 0 ≤ i ≤ n− 1

0 if i ≥ n.
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If LW is arcwise connected and π(LW ) is simply connected then there exists a
Lagrangian submanifold L ⊃ LW in T ∗M satisfying the conditions of Theorem 3.1

§7 Jacobi curves

1. The results of §6 can be applied, first of all, to the case when the set V of
control parameters is finite. In this case the sets of admissible velocities g(x, V )
are also finite, and hence the optimal control problem is badly formulated: the set
of admissible trajectories is not closed in the uniform metric, (except the trivial
case when g(x, V ) is a single point,) though V is compact. As is well known the
natural completion (relaxation) of the initial system is the system with the sets of
admissible controls conv g(x, V ), x ∈ M . All Pontryagin extremals are preserved
under the relaxation, but new ones appear, the so–called singular extremals.

After evident changes in notations the relaxed problem takes the form

ẋ =
r∑

j=0

vjgj(x), vj ≥ 0,

r∑
j=0

vj = 1, x(0) = x0. (1)

The functional

ϕ(t, v(·)) =

t∫
0

r∑
j=0

vj(τ)g0
j (x(τ), v(·))dτ (2)

is minimized on the level set of the mapping f : (t, v(·)) 7→ x(t, v(·)). Here v(·) =
(v0(·), v1(·), . . . , vr(·)) is an admissible control. The space of all admissible controls,
i.e. of measurable vector–functions on R+ with values in

∆r =

(v0, . . . , vr)
∣∣∣ vj ≥ 0,

r∑
j=0

vj = 1

 ,

denote by V. Every problem with right–hand side affine in controls and with a
convex polyhedron as the set of control parameters can be represented as (1), (2).

Let λτ , 0 ≤ τ ≤ t1, be a normal Pontryagin extremal for the problem (1),
(2), corresponding to an admissible control v(·) = (v0(·) . . . , vr(·)). Then λτ is a
trajectory of the nonstationary Hamiltonian system generated by the Hamiltonian

hτ (λ) =
r∑

j=0

vj(τ)(λgj(π(λ))− g0
j (π(λ))), λ ∈ T ∗M.

Additionally,we have

0 = hτ (λτ ) = H(λτ ), o ≤ τ ≤ t,

where H(λ) = max
0≤j≤r

(λgj(π(λ))− g0
j (π(λ))).

The mapping Φ : Rk −→ V is called a smooth family of variations of the control
v(·) if there exist smooth mappings

A : Rk −→ L1(R+; ∆r), a : Rk −→ L1(R+;R+), A(0) = v(·), a(0)(t) = t (t ∈ [0, t1]),
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such that Φ(z)(t) = A(z)(
t∫

0

a(τ)dτ), ∀z ∈ Rk, t ≥ 0.

The dimension of the family k can be arbitrary.
If Φ is a smooth family of variations of v(·) then λ(t1), (t1, 0) is a normal La-

grange point of the mapping

FΦ : (t, z) 7→ (ϕ(t,Φ(z)), f(t, Φ(z))), t > 0, z ∈ Rk.

Definition. Positive index of an extremal λτ , τ ∈ [0, t1], is called the supremum
of the positive indices of inertia of Hessians of the mappings FΦ at the Lagrange
point λ(t1), (t1, 0), over all smooth families Φ of variations of the control v(·).

The positive index of the extremal λτ is denoted by ind+λ. It is a nonnegative
integer or +∞.

Let x(τ) = x(τ ; v(·)) = π(λτ ), 0 ≤ τ ≤ t1. Denote by Ψ(v) the set of all
Pontryagin extremals λτ satisfying the relation π(λτ ) = x(τ), τ ∈ [0, t1]. Then
Ψ(v) is a convex closed subset of dimension not greater than n in the space of
sections of the bundle T ∗M

∣∣∣
x(·)

.

Proposition 1. Suppose v(·) is locally optimal control in the L1–norm of the prob-
lem (1), (2) on the segment [0, t1]. If Ψ(v) = {λ·} then ind+λ· = 0; if Ψ(v) is com-
pact and dim Ψ(v) = m > 0, then there exists a λ· ∈ Ψ(v) such that ind+λ· ≤ m−1.

Remark. If dim Ψ(v) > 1 then there exist deeper conditions of optimality which
take into account the dependence of ind+λ· from λ· ∈ Ψ(v), cf. [2].

2. According to a procedure already tested, the index of the extremal λ· should
be computed through the Maslov index or its corresponding generalization for the
case of a possibly nonsmooth Lagrangian submanifold, which contains λ· and is
contained in H−1(0). All we need to know about the Lagrangian submanifold to
compute the index is the knowledge of its tangent spaces at the points λτ . For
the particular case of bang–bang controls the corresponding computations were
done in §6, no2. Note that explicit formulas (6.1), (6.2) for tangent Lagrangian
spaces were dependent only on linearizations of Hamiltonian flows corresponding
to Hamiltonians hτ along the extremal. Furthermore, these formulas correctly de-
fine a family in τ of Lagrangian subspaces, independently from the existence of the
appropriate Lagrangian submanifold: we remind that the existence of a Lagrangian
submanifold was proved under sufficiently strong conditions of regularity. We can
not guarantee that an arbitrary (not necessarily a bang–bang) extremal λ· is con-
tained in an appropriate Lagrangian submanifold in H−1(0). But it turns out that
if ind+λ· < +∞ then there exists a corresponding family of Lagrangian subspaces
Λτ ⊂ Tλτ

(T ∗M) “tangent” to H−1(0). Construction of these subspaces and an
explicit expression for ind+λ· generalize formulas (6.3)–(6.6).

Let Pt ∈ Symp(T ∗M), 0 ≤ t ≤ t1, be a Hamiltonian flow defined by a nonsta-
tionary Hamiltonian ht, P0 = id. Instead of constructing the Lagrangian Subspaces
Λt directly, we shall describe subspaces Λt = P−1

t∗ Λt contained in the fixed Lagrange
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Grassmannian L(Tλ0(T
∗M)) for ∀t ∈ [0, t1]. Denote

hj(λ) = λgj(π(λ))− g0(π(λ)), λ ∈ T ∗M, j = 0, 1, . . . , r,

Γt = span

{→
h j(λt)

∣∣∣vj(t) > 0, 0 ≤ j ≤ r

}
;

The subspace Γt is contained in Tλt
(T ∗M), 0 ≤ t ≤ t1.

Let T ⊂ [0, t1] be the set of density points of the measurable vector–function
v(τ) on the interval (0, t1), hence the set [0, t1] \ T is of measure zero.

Proposition 2. If ind+λ· < +∞ then Γt is an isotropic subspace in Tλt
(T ∗M)

for ∀t ∈ T .

From here on we suppose that Γt, t ∈ T are isotropic subspaces. Put Γt =
P−1

t∗ Γt ⊂ Tλ0
(T ∗M). Since the transformations Pt∗ are symplectic Γt is isotropic

for ∀t ∈ T .
Further developments will take place in a fixed symplectic space Σ = Tλ0

(T ∗M).
Among the Lagrange subspaces of Σ a special role is plaid by the tangent spaces
to the fiber at the point λ0. We shall denote it by Π = Tλ0

(T ∗x0
M). Let Λ be a

Lagrange subspace, Γ an isotropic subspace in Σ. Put

ΛΓ = (Λ + Γ) ∩ Γ∠ = Λ ∩ Γ∠ + Γ

. It is easily seen that ΛΓ is a Lagrange subspace in Σ, and the mapping Λ 7→ ΛΓ is a
projection of L(Σ) on the submanifold in L(Σ) consisting of all Lagrange subspaces
containing Γ. The mapping Λ 7→ ΛΓ is discontinuous on L(Σ), but its restriction
on every submanifold of the form

{
Λ ∈ L(Σ)

∣∣∣ dim(Λ ∩ Γ) = const
}

is smooth.
We go now to the construction of Lagrangian subspaces Λt. We shall describe

the curve t 7→ Λt in L(Σ) using special piecewise–constant approximations of the
curve. Let D = {τ1, . . . , τk} ⊂ T , where τ1 < . . . < τk, τk+1 = t1. Define a
piecewise–constant curve Λ(D)t, 0 ≤ t ≤ t1, in L(Σ) by

Λ(D)t = Π, 0 ≤ t ≤ τ1; Λ(D)t = Λ(D)Γτi
τi , τi < t ≤ τi+1, i = 1, . . . , k,

and put

IndΠΛ(D) =
k∑

i=1

indΠ(Λ(D)τi ,Λ(D)τi+1),

r(D) = dim(π∗
k∑

i=1

Γτi)−
1
2
dim(π∗Λ(D)t1).

(3)

It is easily seen that 0 ≤ r(D) ≤ n
2 . The expression (3) coincides with IndΠ of a

continuous curve in L(Σ), which is obtained by successively connecting the values
of L(D)· with simple nondecreasing curves, cf. Proposition 6.3. Denote by D the
directed set of finite subsets of T with inclusions of subsets as the partial order.

Theorem 1. The following relations hold:
(1) IndΠΛ(D1)· − r(D1) ≤ IndΠΛ(D2)· − r(D2), ∀D1 ⊂ D2 ∈ D.
(2) ind+λ· = sup

D∈D
(IndΠΛ(D)· − r(d)).
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Theorem 2. Suppose that ind+λ· < +∞ Then
(1) For ∀t ∈ [0, t1] the limit D − limΛ(D)t = Λt exists.
(2) The curve t 7→ Λt in L(Σ) has at most denumerable set of points of discon-

tinuity and for every t ∈ (0, t1] (t ∈ [0, t1)) the limit lim
τ→t−0

Λτ , ( lim
τ→t+0

Λτ )

exists.
(3) The curve Λ· is differentiable almost everywhere on [0, t1], and at every

point of differentiability dΛt
dt ≥ 0.

.

Definition. Suppose ind+λ· < +∞. The curve Λt in L(Σ), which exists according
to Theorem 2, is called a Jacobi curve corresponding to the extremal λ·.

It follows from Theorem 2 that a Jacobi curve has properties similar to those of
a monotone real–valued function. We already have dealt with smooth monotone
curves on L(Σ). Using the properties of the invariant (6.2), it is possible to describe
a wider class of curves for which a theory could be developed very similar to that
of monotone real–valued functions. For example, the assertion (1) of Theorem 2
is based on a “Lagrange” analogue of compactness principle of Helly. Basic facts
of this method are briefly described in [4]. We call Λt a Jacobi curve since it
generalizes solutions of the Jacobi equation of the classical calculus of variations.
Under sufficiently week assumptions of regularity every Jacobi curve turns out to be
piecewise smooth and on the intervals of differentiability it satisfies to differential
equation for which the right–hand side can be explicitely expressed through Γt, cf.
[2], [3]. Put Λt = Pt∗Λt. If v(·) is a bang–bang control, i.e. if v(τ) ≡ vθ(τ) for some
θ, cf. §6, we obtain Λt ≡ Λθ

t .

3. All our basic constructions until now were invariant under smooth coordinate
transformations in M . As a final theme we shall discuss the action on Jacobi
curves of another important class of transformations of Control systems, the so–
called feedback transformations. We remind the basic definition.

If the inequalities vj ≥ 0 are omited in (1) we come to the system

ẋ =
r∑

j=0

vjgj(x),
r∑

j=0

vj = 1, x(0) = x0, (4)

for which the admissible velocities form affine subspaces. Let bij(x), x ∈M, i, j =

0, 1, . . . , r, be smooth functions on M , where
r∑

i=0

bij(x) ≡ 1, j = 0, 1, . . . , r, and

the (1 + r) × (1 + r)–matrix b(x) = (bij(x))r
i,j=0 is nondegenerate for ∀x ∈ M .

Put vj =
r∑

j=0

biju
j , j = 0, 1, . . . , r, where the uj are considered as new control

parameters, we come to the system

ẋ =
r∑

j=0

uj(
r∑

i=0

bijgi(x)),
r∑

j=0

uj = 1, x(0) = x0. (5)

The system (5) is said to be obtained from (4) by feedback transformation. It is
clear that the admissible trajectories of systems (4) and (5) coincide, so that they
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are equivalent indeed. After the feedback transformation the functional (2) takes
the form

t∫
o

r∑
j=0

uj

(
r∑

i=0

bijg
0
i (x(τ ;u(·)))

)
dτ. (6)

It is easily seen that every (normal) Pontryagin extremal of the problem (4), (2) is
a (normal) Pontryagin extremal of the problem (5), (6) and conversely.

Let λt, 0 ≤ t ≤ t1, be a normal Pontryagin extremal, x(t) = π(λt). Then
hj(λt) = hb

j(λt) = 0, 0 ≤ t ≤ t1, j = 0, 1, . . . , r, where hj(λ) = λgj(π(λ)) −
g0(π(λ)), hb

j(λ) =
r∑

i=0

bijhi(λ). An elementary calculation shows that
→
h b

j(λt) =
r∑

i=0

bij(x(t))
→
h i(λ). Put

Γt = span

{→
h j(λt)

∣∣∣ j = 0, . . . , r

}
= span

{→
h b

j(λt)
∣∣∣ j = 0, . . . , r

}
.

We suppose that, as in no2, Γt is an isotropic subspace in Tλt
(T ∗M), i.e. {hi, hj}(λt) =

0, i, j = 0, . . . , r, t ∈ [0, t1].
Suppose

d

dt
x =

r∑
j=0

vj(t)gj(x) =
r∑

j=0

uj(t)
r∑

j=0

bij(x)gi(x),

and put ht =
r∑

j=0

vj(t)hj , h
b

t =
r∑

j=0

uj(t)hb
j . Let Pt, P b

t ∈ Symp(T ∗M), 0 ≤ t ≤ t1,

be Hamiltonian flows generated by nonstationary Hamiltonians ht and h
b

t , P0 =
P b

0 = id, and suppose Γt = P−1
t∗ Γt, Γb

t = (P b
t )−1
∗ Γt are isotropic subspaces in

Tλ0
(T ∗M) = Σ, 0 ≤ t ≤ t1.
Applying to the families of isotropic subspaces the same procedure as in no2 we

can correspond to every finite subset D ⊂ (0, t1) locally–constant curves Λ(D)t and
Λ(D)b

t in L(Σ). It is very probable that the following assertion holds:
If Λt = D − limΛ(D)t exists for every t ∈ [0, t] then Λb

t = D − limΛ(D)b
t also

exists for ∀t ∈ [0, t], and

Pt∗Λt = P b
T∗Λ

b
t , t ∈ [0, t1],

i.e. the curve Λt
def= Pt∗Λt is preserved by the feedback transformation.

We cannot prove the assertion in the formulated generality, but under some ad-
ditional assumptions of regularity it is possible not only to prove the assertion,
but also represent Λt as a solution of an explicitly written linear Hamiltonian sys-
tem. We shall give here the corresponding calculations under sufficiently strong
conditions of regularity.

Put hjt = hj ◦ Pt, ht = ht ◦ Pt. Then Γt = span

{→
h jt(λ0)

∣∣∣ j = 0, . . . , r

}
.

Finally, let h−jt = ∂
∂thjt = {ht, hjt}. Consider the family of (r + 1) × (r + 1)–

matrices A(t) = ‖ aij(t) ‖ , t ∈ [0, t1], where

aij(t) = {hi, {ht, hj}}(λt) = {hit, h
−
jt}(λ0), i, j = 0, . . . , r.
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Differentiating with respect to t of the identity {hi, hj}(λt) = 0 gives the relations
aij(t) = aji(t), ∀i, j, A(t)v(t) ≡ 0. Hence the matrix A(t) is symmetric and of rank
not greater than r. We call an extremal λt nondegenerate if rank A(t) = r, 0 ≤
t ≤ t1. It is easily seen that the property of an extremal to be nondegenerate is
preserved under the feedback transformations.

Proposition 3. If the extremal λt is nondegenerate then for ∀t ∈ [0, t1] the limit
Λt = D− limΛ(D)t exists, where the curve t 7→ Λt in L(Σ)is Lipschitz on the half–
interval (0, t1], and the curve Λt = Pt∗Λt is preserved under the feedback transfor-
mations.

We call the curve Λt the Jacobi curve associated with the nondegenerate extremal
λt of the problem (4), (2). To find the Hamiltonian system which is satisfied by
the Jacobi curve Λt we remark that since λt is nondegenerate the kernel of the
symmetric matrix A(t) coincides with the strait line in Rr+1 through the vector
v(t). Hence a symmetric (r + 1) × (r + 1)–matrix A(t) = ‖αij(t) ‖ exists which
satisfies the condition (A(t)A(t)w − w) ∈ Rv(t) for ∀w ∈ Rr+1.

Let, as above, Π = Tλ0
(T ∗x0

M) be a Lagrangian submanifold in the symplectic
space Σ = Tλ0

(T ∗M) with the symplectic form σ.

Proposition 4. Under the assumptions of Proposition 3 we have

Λt =

zt ∈ Σ
∣∣∣ d

dτ
zτ =

r∑
i,j=0

αij(τ)σ(
→
h−iτ (λ0), zτ )

→
h−jτ (λ0), 0 ≤ τ ≤ t, z0 ∈ ΠΓ0

 ,

t ∈ (0, t1], Λ0 = Π.

In other words, Λt = QtΠΓ0 , where Qτ ∈ Sp(Σ) is a linear Hamiltonian flow in Σ
corresponding to the quadratic nonstationary Hamiltonian

qτ (z) =
1
2

r∑
i,j=0

αij(τ)(dh−iτ )z(dh−jτ )z, Q0 = id.

Let Λb
t be a Jacobi curve associated with the same extremal λt for the problem

(5), (6), which is obtained from the problem (4), (2) by the feedback transformation.
Proposition 3 implies that P b

t∗Λ
b
t = Pt∗Λt, 0 ≤ t ≤ t1. Thus Λt = (P−1

t ◦ P b
t )∗Λb

t .
Observe that (P−1

t ◦ P b
t )∗ is a symplectic transformation of Σ which preserves Π

for ∀t ∈ [0, t1]. Therefore the following Corollary holds.

Corollary. Let λt be a nondegenerate Pontryagin extremal and Λt, 0 ≤ t ≤ t1,

be the associated Jacobi curve. The expressions IndΠ(Λ
∣∣∣
[τ,t]

), 0 < τ < t ≤ t1,

are invariants of feedback transformations, as well as of arbitrary smooth variable
substitutions in M .
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1989 (1991), Birkhäuser, Boston, Mass..

S t ek lov In st ., u l .Vav ilova 4 2 , M o scow G S P -1 , 1 1 7 9 6 6 , R u ss ia

E-mail address: gam@post.mian.su


