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Topics in sub-Riemannian geometry

A. A. Agrachev

Abstract. Sub-Riemannian geometry is the geometry of spaces with non-
holonomic constraints. This paper presents an informal survey of some
topics in this area, starting with the construction of geodesic curves and
ending with a recent definition of curvature.
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Introduction

This survey is concerned with the recent development of the old idea of the
distance between two points as the length of the shortest path in the class of all
possible paths connecting the points. Here the adjective ‘possible’ is not accidental:
the indicated development has mainly to do with that.

In Euclidean geometry shortest (length-minimizing) paths are straight-line inter-
vals, satisfying the usual axioms. In the Riemannian world, Euclidean geometry
is just one of countless possibilities. Nevertheless, any Riemannian metric can be
well approximated by a Euclidean metric for very small distances: when looked
at through a more and more powerful microscope, a neighbourhood of any point
becomes less and less distinguishable from a Euclidean neighbourhood. In the limit,
instead of the original space we obtain the space of initial velocities of paths issuing
from the given point, and this space is Euclidean.

Riemann’s construction was based on previous work by Gauss, who had investi-
gated surfaces in 3-dimensional Euclidean space. The distance between two points
on a surface is equal to the length of the shortest path on the surface that connects
these points. The initial velocities of smooth curves on the surface that issue from
a given point form the tangent plane to the surface, which is a Euclidean plane.
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The planes tangent to the surface at two distinct points are isometric, but in the
general case small neighbourhoods of these points on the surface are non-isometric.
They are certainly non-isometric if the Gaussian curvature takes distinct values at
these two points.

Riemann generalized Gauss’ construction to higher dimensions and explained
that everything could be done intrinsically, and embedding in a Euclidean space
was not needed. In fact, to measure the lengths of curves, it is sufficient to know the
Euclidean lengths of their velocities. A Riemannian manifold is a smooth manifold
such that its tangent space at each point carries its own Euclidean structure, and
these structures depend smoothly on the point.

For an inhabitant of a Riemannian space residing at some point, tangent vectors
are directions in which he can move or send information or from which he can
receive information. He can measure the lengths of vectors and the angles between
vectors tangent to the same point in accordance with the Euclidean rules, and in
general, this is all that he can do. Still, in principle, this inhabitant can recover
the geometry of the space by making these simple measurements along different
smooth curves.

In a sub-Riemannian space we can neither move nor send information in all the
directions, nor can we receive information from everywhere. There are constraints
(imposed by God, by a moral imperative, by a government, or just by the laws of
Nature). A sub-Riemannian space is a smooth manifold such that some admissible
subspace, endowed with a Euclidean structure, is selected in the tangent space to
each point, and the admissible subspace and the Euclidean structure in it depend
smoothly on the point.

Admissible paths are paths with admissible velocities. The distance between two
points is the greatest lower bound of the lengths of paths connecting these points.
We will assume that any two points on a connected component of the manifold
can be connected by an admissible path. At first sight this condition may look
odd and difficult to satisfy, but in actual fact it is not. The crucial thing is that
the admissible subspaces vary from point to point, and our condition holds for
a more-or-less general dependence of the subspace on the point. More precisely, it
fails only for a very special choice of the admissible subspaces.

Let k be the dimension of the admissible subspaces and assume that the manifold
is connected and has dimension n >k. As inhabitants of such a sub-Riemannian
world, we move and send and receive information in accordance with the rules of
the k-dimensional Euclidean space, but notwithstanding, we can in principle reach
each point in the n-dimensional manifold. Some coordinates in the sub-Riemannian
space are ‘clandestine’ and poorly discernible at short distances. This is a remark-
able, but not yet fully exploited source for occult speculations based on mysterious
hidden dimensions, and also for theoretical physicists, who are perpetually search-
ing for new wild formalisms!

In mechanics this is the natural geometry of systems with non-holonomic con-
straints: skates, wheels, rolling balls, bearings, and so on. This geometry could also
be useful in models for social behaviour within a restrictive bureaucratic and legal
system, by showing how the degree of freedom can be increased without violating
the existing rules.
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All this relates to certain natural applications, and the reader himself can indi-
cate many others. On the other hand, a mathematician’s business is to develop the
geometry itself, for otherwise we will have nothing in our hands to apply. Currently
this is an extensive and rapidly developing area, though it has only been in recent
years that mathematicians have appeared who specialize in sub-Riemannian geom-
etry. Authors from the most diverse areas have left their mark here: hyperbolic,
conformal, and CR-geometry, hypoelliptic operators, non-commutative harmonic
analysis, variational calculus and geometric measure theory, optimal control, and
non-holonomic mechanics. This paper does not pretend to be an exhaustive survey
of the basics of sub-Riemannian geometry: we have only touched on topics which
are close to this author.

I have tried to write in an informal narrative manner, hopefully without infring-
ing on accuracy. References are deferred to the comments after each section, in
order to keep the presentation fluent. The aim of this survey is to expose this
beautiful and fascinating field to as wide a circle of mathematicians as possible and
perhaps to attract new researchers or at least bring some intellectual pleasure to
the reader.

1. Geodesic curves

Let ∆ ⊂ TM be a smooth vector distribution on a manifold M , and let ∆
be the space of smooth vector fields on M taking values in ∆. Vector fields in
∆ are also said to be horizontal. Let ∆q = ∆ ∩ TqM for q ∈ M . A smooth
curve γ : [t0, t1] → M is called a horizontal or admissible curve if γ̇(t) ∈ ∆γ(t) for
t0 6 t 6 t1. It is also natural to regard a concatenation of several admissible curves
as an admissible curve. (Generally speaking, it is not smooth, but only piecewise
smooth.) An even more flexible and convenient class of admissible curves comprises
the Lipschitz admissible curves, which are Lipschitz curves γ : [t0, t1] → M such that
γ̇(t) ∈ ∆γ(t) for almost all t ∈ [t0, t1]. These curves are solutions of non-autonomous
differential equations of the form q̇ = Vt(q), where Vt ∈ ∆, t0 6 t 6 t1, and the
map (q, t) 7→ Vt(q) is measurable and locally bounded.

We define an equivalence relation on M by saying that two points are equivalent
if they can be connected by an admissible curve. Sussmann’s remarkable ‘orbit
theorem’ says that equivalence classes are immersed submanifolds of M . This
result, which is not very hard to prove but is very important, provides a kind of
description of the tangent spaces to these submanifolds, and we now present it.

Recall that a vector field V on M is said to be complete if solutions of the dif-
ferential equation q̇ = V (q) are defined on the whole real line R, and that all fields
with compact support are complete. Let V be a complete field and let the map
P t : q(0) 7→ q(t) shift each point in M by the time t along the solution of the equa-
tion q̇ = V (q) going through this point. Then P t : M → M is a diffeomorphism,
and

P t+s = P t ◦ P s ∀ t, s ∈ R.

The one-parameter diffeomorphism group P t, t ∈ R, is the flow generated by the
field V . It can be conveniently denoted as an exponential: P t .= etV . The flow
generated by a horizontal vector field is said to be horizontal.
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Let us now consider the subgroup generated by the horizontal flows in the
diffeomorphism group of M , that is:

P
.= {et1f1 ◦ · · · ◦ etkfk( · ) : fi ∈ ∆, ti ∈ R, i = 1, . . . , k, k = 1, 2, . . .}.

The orbits of the action of P on M clearly lie in our equivalence classes. In fact, the
orbits coincide with equivalence classes, and the tangent space to the orbit through
a point q ∈ M has the form

TqP(q) = span{(P∗V )(q) : P ∈ P, V ∈ ∆}.

Indeed, let P1∗V1, . . . , Pk∗Vk be a basis of the space on the right-hand side of
this equality. Then the germ of the k-dimensional submanifold

{es1P1∗V1 ◦ · · · ◦ eskPk∗Vk : the si are close to zero} (1.1)

lies in the orbit P(q), and in fact, esP∗V = P ◦ esV ◦ P−1.
Moreover, the germs of the form (1.1) at all the points q ∈ M serve as a basis of

a certain topology on M which is in general stronger than the original topology. The
connected components of M with this strong topology are immersed submanifolds,
essentially by definition. In fact, the ‘neighbourhoods’ (1.1) are coordinate charts
on these submanifolds. Horizontal curves are continuous in the strong topology,
so the connected components coincide with our equivalence classes. This is just
Sussmann’s orbit theorem.

Since horizontal vector fields are tangent to orbits at all points, the commutators
of these fields are also tangent. In the final analysis we get that

Lieq ∆ .= span{[V1, [V2, [ · · · , Vk]] · · · ](q) : Vi ∈ ∆, i = 1, . . . , k, k = 1, 2, . . .}

lies in TqP(q). In particular, if Lieq ∆ = TqM , then the orbit containing q is an
open subspace of M (in the original ‘weak’ topology). Throughout what follows we
assume that

Lieq ∆ = TqM ∀ q ∈ M. (1.2)

Experts in different fields have different names for distributions satisfying (1.2):
‘bracket-generating’, ‘totally non-holonomic’, or ‘satisfying Hörmander’s condition’.

In view of the foregoing, the condition (1.2) ensures that the action of the
group P is transitive on M . This is called the Rashevskii–Chow theorem.

Remark 1. If both M and the distribution ∆ are real-analytic, then we have not
only the inclusion Lieq ∆ ⊂ TqP(q) but even the equality Lieq ∆ = TqP(q). This
can be seen, for example, from the analyticity of solutions of ordinary differential
equations with analytic right-hand side. In this case, the condition (1.2) is not only
sufficient but also necessary for P to act on M transitively.

Definition 1. A smooth vector subbundle ∆ ⊂ TM endowed with a Euclidean
structure and satisfying (1.2) is called a sub-Riemannian structure.
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The scalar product of two vectors v1, v2 ∈ ∆q will be denoted by ⟨v1|v2⟩, and
the length of a vector v ∈ ∆q by |v| = ⟨v|v⟩1/2. The length of a horizontal curve
γ : [t0, t1] → M is given by

length(γ) =
∫ t1

t0

|γ̇(t)| dt.

It is clear that the length of a curve is unchanged by a reparametrization.
The sub-Riemannian distance between two points q0, q1 ∈ M (also called the

Carnot–Carathéodory distance, following the trend started by Gromov) is defined
as follows:

δ(q0, q1) = inf{length(γ) : γ : [0, 1] → M is horizontal, γ(0) = q0, γ(1) = q1}.

If ∆ = TM , then this is the usual Riemannian distance, but if ∆ $ TqM , then
it has some quite unusual properties. In any case, a sub-Riemannian metric, like
a Riemannian metric, induces the standard topology on M . In fact, analysing (1.2),
we easily see that points close to q0 can be joined to q0 by short horizontal paths.

Hence small sub-Riemannian balls are compact. Moreover, as in the Riemannian
case, a sub-Riemannian metric space is complete if and only if all the balls are
compact. Furthermore, in each compact ball its centre can be connected with each
point in the ball by a length-minimizing horizontal path. In other words, if the ball
with radius r and centre q0 is compact and q1 lies at a distance at most r from q0,
then we can replace inf by min in the definition of δ(q0, q1).

We see that it is important to know how to describe shortest paths. As in the
Riemannian case, it is slightly easier to describe geodesic curves, that is, horizontal
curves γ : [0, 1] → M such that γ

∣∣
[t,s]

is a length-minimizing path between γ(t)
and γ(s) for any sufficiently close t and s, although such a γ is not necessarily
length minimizing from γ(0) to γ(1).

Recall that in the Riemannian case a geodesic is characterized by the initial
point and the initial velocity. On the other hand, if ∆ $ TqM , then geodesic
curves issuing from q cannot be characterized by their initial velocities, as is at
once clear. Indeed, we know that the length-minimizing paths from q fill a whole
neighbourhood of q, while their initial velocities lie in ∆q. We just do not have
enough initial velocities! To save the situation, we can pass from velocities to
momenta, that is, from the tangent bundle to the cotangent bundle.

Let p ∈ T ∗q M and let hq(p) = max{⟨p, v⟩ : v ∈ ∆q, |v| 6 1} be the norm on
∆∗ = T ∗q M/∆q dual to the Euclidean norm on ∆q. Varying now not only p but
also q, we obtain a non-negative function h : T ∗M → R. Furthermore, h−1(0) = ∆⊥

is the orthogonal complement of ∆, and the restriction of h to T ∗M \∆⊥ is a smooth
function.

It is easy to see that h2
∣∣
T∗q M

is a non-negative quadratic form. It is important to

note that in the general case this form is degenerate, and ker h2
∣∣
T∗q M

= ∆⊥
q . Thus

the level sets h−1(c) ∩ T ∗q M , where c > 0, are homothetic elliptic cylinders with
generating subspace ∆⊥

q .
Recall that T ∗M carries a canonical symplectic structure. Let π : T ∗M → M be

the standard projection: π(T ∗q M) = q. First we define the tautological differential
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1-form s on T ∗M : sλ = λ ◦ π∗ ∈ T ∗λ (T ∗M), λ ∈ T ∗M , and then we define the
symplectic structure σ = ds. In the local coordinates (p, q) on T ∗M , where q =
(q1, . . . , qn) and λ = p1 dq1 + · · · + pn dqn, the tautological form can be expressed
by s = p1 dq1 + · · ·+ pn dqn, in accordance with its name, and the symplectic form
is σ = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn.

Recall also that a characteristic (or a characteristic curve) of a differential form
is a curve whose velocity at each point lies in the kernel of the form. The sym-
plectic form σ is non-degenerate and thus has no characteristics, but in general the
restriction of σ to a level set of h has characteristics. Characteristics of σ

∣∣
h−1(c)

are
called sub-Riemannian extremals. Here we distinguish between normal extremals
(c > 0) and abnormal extremals (c = 0). These extremals are curves in T ∗M .

Theorem 1. Each geodesic curve is the projection on M of some extremal.

A geodesic is said to be normal if it is the projection of a normal extremal, and
it is abnormal if it is the projection of an abnormal extremal. Generally speaking,
a geodesic can be normal and abnormal at the same time.

Let us now look more closely at extremals, starting with normal ones. For
r > 0 the dilation λ 7→ rλ, λ ∈ T ∗q M , q ∈ M , takes characteristics of σ

∣∣
h−1(c)

to
characteristics of σ

∣∣
h−1(rc)

, and hence we can confine ourselves to normal extremals
lying in h−1(1). Note that h−1(1) is a codimension-one submanifold of T ∗M , and
its tangent space at λ is the kernel of the linear form dλh. Thus, ker σ

∣∣
h−1(1)

is
the skew-orthogonal complement of ker dλh. This is the straight line generated by
h⃗(λ), where σ( · , h⃗(λ)) = dh.

The vector field h⃗ on T ∗M is just the Hamiltonian field with Hamiltonian
h : T ∗M → R. Thus, normal extremals are trajectories of the Hamiltonian system
λ̇ = h⃗(λ). The theorem stated above says that any geodesic is the projection of
some extremal. For normal extremals we also have the converse result.

Proposition 1. The projection of any trajectory of the Hamiltonian system λ̇ =
h⃗(λ) is a geodesic curve.

The codimension of h−1(0) = ∆⊥ in T ∗M is greater than 1, and the rank
of σ

∣∣
h−1(0)

can vary from point to point, so abnormal extremals are more difficult
to describe. Note that, in accordance with their definition, abnormal extremals
depend only on the distribution ∆, but not on the Euclidean structure on it. In
addition, their projections are not necessarily geodesic curves.

It is time to give concrete examples of sub-Riemannian structures and their
geodesics. The simplest class of sub-Riemannian spaces comes from planar isoperi-
metric problems when they are properly interpreted.

Let ω be a smooth differential 1-form on R2:

ωx = a1(x) dx1 + a2(x) dx2, x = (x1, x2) ∈ R2. (1.3)

We consider the problem of minimizing the lengths of curves γ : [0, 1] → R2 that
connect two fixed points in the plane and satisfy the additional condition

∫
γ

ω = c,
where c is a fixed constant. This problem is related in a natural way to a certain



Topics in sub-Riemannian geometry 995

special sub-Riemannian structure in

R3 = {(x, y) : x ∈ R2, y ∈ R}.

Let q = (x, y) ∈ R3, and let ∆q = ker(dy − ωx). The 2-dimensional subspaces
∆q, q ∈ R3, form a distribution ∆ in R3. The restriction to ∆q of the projection
(x, y) 7→ x is an invertible map, so the standard Euclidean structure (dx1)2+(dx2)2

in R2 induces a sub-Riemannian structure in R3 with ∆ as the distribution.
A curve t 7→ (x(t), y(t)) is horizontal if and only if ẏ(t) = ⟨ωx(t), ẋ(t)⟩. That is,

a horizontal curve has the form

t 7→
(

γ(t), y0 +
∫

γ|[0,t]

ω

)
,

where γ is an arbitrary Lipschitz curve in the plane. Furthermore, the sub-
Riemannian length of the horizontal curve is equal to the length of γ. We see that
the original isoperimetric problem is equivalent to the problem of minimizing the
sub-Riemannian lengths of horizontal curves connecting two fixed points in R3.

We can describe the geodesics of this sub-Riemannian structure. Of course, it is
sufficient to describe their projections on R2. Note first of all that for two forms ω
whose difference is a closed form the result will be the same. In fact, the difference∫

γ

(ω + dϕ)−
∫

γ

ω = ϕ(γ(1))− ϕ(γ(0))

depends only on the endpoints of γ.
We see that to describe the projections of geodesic curves on the plane it is

sufficient to know the form

dω = b(x) dx1 ∧ dx2, where b =
∂a2

∂x1
− ∂a1

∂x2
.

In fact, for this problem the condition of total non-holonomicity (1.2) is equivalent

to the following: at each point x ∈ R2 at least one partial derivative
∂i+jb

(∂x1)i(∂x2)j

is non-zero.

Proposition 2. A curve γ : [0, 1] → R2 is the projection of a normal geodesic on
the plane if and only if for all t ∈ [0, 1] and some constant ν ∈ R the curvature of γ
at γ(t) is equal to νb(γ(t)).

The curve γ is the projection of an abnormal extremal if and only if b(γ(t)) = 0
for 0 6 t 6 1. If in addition dγ(t)b ̸= 0 for 0 6 t 6 1, then γ is the projection of an
abnormal geodesic.

We can consider a slightly more general problem by replacing R2 by some Rie-
mannian 2-manifold N . Then Proposition 2 remains valid after the replacement of
the curvature of the plane curve by the geodesic curvature of the curve in N .

We can generalize the problem further by taking a principal 1-dimensional bun-
dle over N (with structure group R or S1) instead of the Cartesian product N × R.
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Then the role of ω will be played by a connection on the principal bundle, and hor-
izontal curves will be parallel translations along curves on the base. Proposition 2
will still be valid with b the curvature of the connection.

We see that the projections of normal geodesics on N are trajectories of point
charges in the magnetic field b, and the constant ν plays the role of the charge
of a particle. It is important to note that the abnormal geodesics described in
Proposition 2 are independent of the choice of a Riemannian metric on the surface!

In the next example we will again minimize the length of a curve connecting
two points in the plane, but under different additional conditions. Consider a ball
which rolls along the plane without slipping or spinning. The instantaneous state
of this system is given by the point of tangency of the ball and the plane and by
the orientation of the ball. Thus, the state space M is R2×SO(3). The no-slipping
condition means that the point of tangency has the same velocity vectors on the
plane and on the sphere, and the no-spinning condition means that at each moment
of time the angular velocity vector of the rotation of the ball is parallel to the
plane on which the ball rolls. These conditions define a 2-dimensional distribution
∆ ⊂ TM of admissible velocities.

It is easy to see that the ball with fixed initial orientation can roll in a unique
admissible way along an arbitrary plane curve. In other words, there is a natural
bijection between admissible (horizontal) curves starting at a fixed point of the
state space M and plane curves starting at the projection of this point on R2. That
is, the terminal orientation of the ball is determined by its initial orientation and
the path in R2 along which it rolls. The problem is to find the length-minimizing
path in the class of plane paths with given endpoints such that after rolling along
these paths, the ball takes the prescribed orientation.

In this problem, projections of normal geodesics on R2 are Euler elasticas, very
well-known curves. Euler obtained them as equilibrium states of an elastic rod,
and in the problem of a ball rolling on the plane they were discovered by Jurdjevic.
Geometrically, elasticas can be characterized as smooth curves in the Euclidean
plane whose curvature is an affine function of the coordinates. In other words,
γ : [0, 1] → R2 is an Euler elastica if and only if there exist a ∈ R2 and a ∈ R
such that the curvature of γ at a point γ(t) is ⟨a|γ(t)⟩ + a for all t ∈ [0, 1]. We
note that elasticas with this characterization are a particular case of the curves
we encountered above in our consideration of the isoperimetric problem. It turns
out that normal geodesics correspond to a ball rolling along trajectories of charged
particles in an affine magnetic field.

Elasticas can also be characterized in a more traditional way. To do this we
identify R2 with the complex plane C. Let γ : [0, t1] be a curve parametrized by
arc length. Then γ̇(t) = eiθ(t), θ ∈ R. The curve γ is an elastica if and only if
θ̈ = a sin(bθ + c), 0 6 t 6 t1, for some constants a, b, and c. In other words,
elasticas parametrized by arc length are curves whose velocities have directions
satisfying the equation of motion of a mathematical pendulum. Figure 1, which
gives various types of elastica, was taken from Euler’s book [16]. Elasticas with
points of inflection correspond to oscillatory motion of the pendulum (when the
pendulum changes its direction of motion), and elasticas without points of inflection
correspond to rotational motion.
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Figure 1

In this problem abnormal geodesics are not very interesting: they correspond to
the ball rolling simply along straight lines. Thus, abnormal geodesics are at the
same time normal geodesics, the most degenerate ones.

The last example in this section is a ball rolling on the plane without slipping,
but with possible spinning. The state space is the same as in the previous exam-
ple, but the horizontal distribution is 3-dimensional. As before, we can roll the
ball along an arbitrary plane curve, but the angular velocity of the rotation can be
arbitrary. By definition, the length of the velocity vector of a horizontal curve is
equal to the length of the angular velocity of the rotation.

In this problem we can no longer recover horizontal curves in M from their
initial points and their projections on R2, in any case if we are talking about
non-parametrized curves. But if we confine ourselves to horizontal curves parame-
trized by arc length, then under a certain reasonable additional condition we can
recover them from the initial point and the parametrized projection on R2. In
fact, the projection on R2 is a curve γ : [0, 1] → R2 such that |γ̇(t)| 6 1. The
non-slipping condition means that the length of the orthogonal projection of the
angular velocity of the rotation at time t on the horizontal plane is equal to |γ̇(t)|.
Since we have assumed that this angular velocity has length 1, we can uniquely
recover the length of the vertical component of the angular velocity. And if we
have fixed the direction of rotation about the vertical axis, then we can uniquely
recover the whole angular velocity.

In summary: we can roll the ball without slipping and with unit angular velocity
in a unique way along each curve γ : [0, t1] → R2 with |γ̇(t)| 6 1, provided that the
ball can spin about the vertical axis only clockwise (or anticlockwise). It remains
to describe the geodesics in this problem, which are very simple.
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A curve γ : [0, t1] → R2 is the projection of a geodesic curve parametrized by arc
length if and only if by using a rotation and a translation of the plane it can be
transformed into a curve of the form

γ(t) =
(
at, b sin(ct + d)

)
, 0 6 t 6 t1,

where a2 + (bc)2 6 1.
The ball rolls along a sinusoid, or (if a = 0) oscillates along a straight-line interval

while simultaneously spinning about the vertical axis. The spinning compensates
for the variable rolling velocity, but the direction of spin always remains the same.
In this problem the abnormal geodesics are the same as in the preceding problem:
rolling without spinning along a straight line.

Comments. Sussmann’s orbit theorem was proved in [27], but its corollary, the
Rashevskii–Chow theorem, appeared much earlier (see [23] and [15]). The analytic
version of the orbit theorem is due to Nagano [21]. Theorem 1 is an easy consequence
of Pontryagin’s maximum principle [22], and details of its proof together with the
proofs of Propositions 1 and 2 can be found in [3], for instance. The book [20] treats
the same questions from a slightly different point of view. The fact that geodesics
in the problem of a ball rolling on the plane without spinning are Euler elasticas
was discovered by Jurdjevic (see [18]), and further information can be found in [26].
Figure 1 with elasticas was taken from Euler’s book [16]. Geodesics in the problem
of rolling with spinning were investigated in [10].

2. Balls

Now we turn away from Euclidean balls rolling on the plane and try to figure
out what balls look like in the most general sub-Riemannian metric space. First of
all we are interested in balls with small radius, which are quite different from small
Riemannian balls. Recall that the ball (sphere) with radius r > 0 and centre q ∈ M
is the set Bq(r) = {x ∈ M : δ(q, x) 6 r} (the set Sq(r) = {x ∈ M : δ(q, x) = r}),
where δ is the sub-Riemannian distance. Since the sub-Riemannian metric induces
the standard topology in M , we have Sq(r) = ∂Bq(r) as in the Riemannian case,
but then we encounter significant differences.

Following Gromov, we look at a small ball ‘through a microscope’. Namely, we
look at the ball Bq(εr) and multiply all distances in it by the factor 1/ε, after
which we let ε go to zero. In other words, we look at the family of metric spaces(
Bq(εr), δ/ε

)
and its Gromov–Hausdorff limit as ε → 0. By definition, this limit

(which always exists in the case of a sub-Riemannian space) is the ball of radius r
in the metric tangent space of (M, δ) at a point q. We denote this ball, together
with the metric in it, by (B̂q(r), δ̂ ). Thus,

(B̂q(r), δ̂ ) = lim
ε→0

(
Bq(εr),

1
ε
δ

)
.

Clearly, (B̂q(r1), δ̂ ) ⊂ (B̂q(r2), δ̂ ) for r1 < r2. The union M̂q =
⋃

r>0 B̂q(r)
equipped with the metric δ̂ is the tangent space of (M, δ) at q.



Topics in sub-Riemannian geometry 999

In the Riemannian case the tangent space TqM of M carries a Euclidean
structure. The Euclidean space TqM coincides with the metric tangent space
(M̂q, δ̂ ), as is obvious. To describe the metric tangent space in the general sub-
Riemannian case we must start by defining the flag of the distribution ∆ at q.

The flag of the distribution is the sequence of subspaces

∆q = ∆1
q ⊂ · · · ⊂ ∆m

q = TqM

which are defined as follows:

∆k
q = span{[V1, [V2, . . . , Vl] . . . ](q) : Vi ∈ ∆, i = 1, . . . , l, l 6 k}, 0 6 k 6 m.

The dimension of ∆k
q can depend on q, but it is clear that dim ∆k

q is lower semi-
continuous as a function of q. The distribution ∆ is said to be equiregular at q
if the quantities dim ∆k

x, k = 1, . . . ,m, are constant in a neighbourhood of q. Since
the functions dim ∆k

x are semicontinuous and integer-valued, ∆ is equiregular on
a dense open subset of M .

We shall describe M̂q in detail only at equiregular points of ∆, though the
construction of M̂q at other points is not much more complicated. First of all we
note that we do not need all sections of the distribution to calculate the flag: we can
just take some local basis of this distribution. In fact, let Vi ∈ ∆, i = 1, . . . , d, and
let ∆q = span{Vi(q), i = 1, . . . , d}. Then any horizontal field V in a neighbourhood
of q has a representation V =

∑d
i=1 aiVi, where the ai are smooth functions. By

the Leibniz rule [V, aW ] = a[V,W ] + (V a)W , we now easily deduce that

∆k
q = span{[Vi1 , [Vi2 , . . . , Vil

] . . . ] : 1 6 i1, . . . , il 6 d, l 6 k}.

Here (V a)(x) .= ⟨dxa, V (x)⟩ is the derivative of the function a in the direction of V .
Assume now that ∆ is equiregular at q. Then we have a whole flag of distributions

∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆m defined in some neighbourhood of q. Let V ∈ ∆
i

and
W ∈ ∆

j
. Then we use the same Leibniz rule to show that [V,W ](q) ∈ ∆i+j

q ,
and moreover the projection of [V,W ](q) on ∆i+j

q /∆i+j−1
q depends only on the

projection of V (q) on ∆i
q/∆i−1

q and the projection of W (q) on ∆j
q/∆j−1

q .
In other words, the commutator of vector fields induces a Lie algebra structure

on the graded space

Lq =
m⊕

i=1

(∆i
q/∆i−1

q )

(we set ∆0
q = 0 by definition). It is easy to see that Lq is a nilpotent Lie algebra.

Furthermore, this graded nilpotent Lie algebra is generated by the first term of
the grading ∆1

q = ∆q. We also recall that, by the definition of a sub-Riemannian
structure, ∆q is endowed with a Euclidean scalar product.

A finite-dimensional graded nilpotent Lie algebra generated by the first term
of the grading, which is endowed with a Euclidean structure, is called a Carnot
algebra. The simply connected Lie group corresponding to a Carnot algebra is
called a Carnot group.

Let Gq be the Carnot group associated with the Carnot algebra Lq. Each sub-
space of a Lie algebra is a left-invariant distribution on the corresponding Lie group.
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Thus, ∆q ⊂ Lq is a left-invariant distribution on the Lie group Gq, and it defines on
this group a left-invariant sub-Riemannian structure (and therefore a left-invariant
sub-Riemannian metric). We call this metric the canonical metric on the Carnot
group.

Theorem 2 (Gromov–Mitchell Theorem). Assume that ∆ is equiregular at a point
q ∈ M . Then the metric tangent space (M̂q, δ̂ ) is isometric to the Carnot group Gq

endowed with the canonical metric.

This is a fairly accurate description of the metric tangent space, although it is
too abstract so far. We now explain how we obtain this space by passing to the
limit as we look at a neighbourhood of the point q in (M, δ) through a more and
more powerful microscope.

Let x1, . . . , xn be local coordinates on M in a neighbourhood of q such that
xι(q) = 0 for ι = 1, . . . , n. We say that these coordinates are compatible with the
flag ∆1

q ⊂ · · · ⊂ ∆m
q = TqM if in these coordinates the subspaces ∆i

q are coordinate
subspaces of Rn, more precisely, if ∆i

q is represented by the subspace Rk1⊕· · ·⊕Rki

for i = 1, . . . ,m, where

Rki = {(0, . . . , 0, xk1+···+ki−1+1, . . . , xk1+···+ki , 0, . . . , 0) : xι ∈ R},

ki = dim(∆i
q/∆i−1

q ). In what follows we assume that we have chosen coordinates
compatible with the flag.

We know that horizontal paths can take us to all the points, but different direc-
tions have different weight: for greater i it is more difficult to go in the direction
of Rki . Using horizontal curves of small length ε, we advance by a (Euclidean)
distance of order ε in the direction of Rk1 , but only by a distance of order ε2 in the
direction of Rk2 , of order ε3 in the direction of Rk3 , and so on.

This can be formalized as follows. We introduce a grading in the algebra of
real polynomials in n variables by assigning the following weights to the variables:
w(xι) = i for k1 + · · · + ki−1 < ι 6 k1 + · · · + ki, i = 1, . . . ,m. Correspondingly,
w(xι1 · · ·xιl) = w(xι1) + · · · + w(xιl). We regard polynomials as differential oper-
ators of order zero with polynomial coefficients, and we extend this grading to the
whole algebra of linear differential operators with polynomial coefficients by setting

w

(
xα∂l

(∂x)β

)
= w(xα) − w(xβ), where xα = xα1 · · ·xαj and xβ = xβ1 · · ·xβl are

arbitrary monomials and (∂x)β = ∂xβ1 · · · ∂xβl .
We say that a linear differential operator with polynomial coefficients is quasi-

homogeneous with weight ν if all the monomial operators in it have weight ν. In
this way the whole space of differential operators with polynomial coefficients is
decomposed into the direct sum of the spaces of quasi-homogeneous operators with
different weights. It is easy to see that the composition of two quasi-homogeneous
operators D1 and D2 is quasi-homogeneous and w(D1 ◦D2) = w(D1) + w(D2).

Vector fields are differential operators of order 1. For a pair of quasi-homogeneous
vector fields we have w([V1, V2]) = w(V1) + w(V2). Note that a quasi-homogeneous
vector field has weight at least −m, and if its weight is non-negative, then the field
vanishes at q. Moreover, if w(V ) > −i, then V (q) ∈ ∆i

q.
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Now we define a decreasing filtration on the Lie algebra of smooth vector fields
on Rn:

Vec(Rn) = Vec−m(k1, . . . , km) ⊃ Vec1−m(k1, . . . , km)

⊃ · · · ⊃ Vecν(k1, . . . , km) ⊃ · · · ,

where Vecν(k1, . . . , km) is the subspace of fields whose Taylor series expansion con-
tains only monomial fields with weight at least ν.

Definition 2. Coordinates compatible with the flag are said to be privileged if
∆ ⊂ Vec−1(k1, . . . , km).

Exercise. Show that for m = 2 any coordinates compatible with the flag are
privileged, but this is not so for m > 3.

Theorem 3. For any totally non-holonomic germ of a distribution there are priv-
ileged coordinates.

As we promised, ‘looking through a microscope’ is an anisotropic dilation of
privileged coordinates according to their weights. Namely, let the dilation

ηs : Rk1 ⊕ · · · ⊕ Rkm → Rk1 ⊕ · · · ⊕ Rkm , s > 0,

be defined by
ηs(x1 ⊕ · · · ⊕ xm) = sx1 ⊕ s2x2 ⊕ · · · ⊕ smxm.

A polynomial φ is quasi-homogeneous with weight ν if and only if φ ◦ ηs = sνφ for
s > 0. A polynomial vector field V is quasi-homogeneous with weight ν if and only
if ηs∗V = s−νV for s > 0.

Let V1, . . . , Vk1 ∈ ∆ be an orthonormal basis of our sub-Riemannian structure in
a fixed coordinate neighbourhood, and let δ( · , · ) be the sub-Riemannian distance
corresponding to this structure. Then for each ε > 0 the fields εV1, . . . , εVk1 form an
orthonormal basis of the rescaled sub-Riemannian structure corresponding to the
distance δ/ε. Furthermore, the limit limε→0 ε(η1/ε)∗V = V̂ exists for each V ∈ ∆,
where V̂ is the quasi-homogeneous field with weight −1 which is equal to the sum
of the monomial fields with weight −1 in the Taylor expansion of V . In fact, this
is because we are working in privileged coordinates, and the Taylor expansion of V
contains no monomial fields with weight < −1.

Rescaling the distance while simultaneously dilating a neighbourhood of q, we get
by passing to the limit that the metric tangent space (M̂q, δ̂ ) is the sub-Riemannian
space represented by the sub-Riemannian structure in Rn with orthonormal basis
V̂1, . . . , V̂k1 formed by the quasi-homogeneous fields with weight −1.

As we know, a commutator of quasi-homogeneous fields is quasi-homogeneous,
and upon taking the commutator the weights are added. Hence the fields V̂1, . . . , V̂k1

generate a graded nilpotent Lie algebra such that all the iterated commutators
of these fields with order greater than m vanish. It is easy to show that if the
distribution ∆ is equiregular, then this graded Lie algebra has dimension n and is
isomorphic to the algebra Lq =

⊕m
i=1(∆

i
q/∆i−1

q ) described above. In the general,
non-equiregular case the fields V̂1, . . . , V̂k1 can generate a Lie algebra of dimension
greater than n.
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Let

Π(k1, . . . , km; ε) = {x1 ⊕ · · · ⊕ xm : xi ∈ Rni , |xi| 6 εi, i = 1, . . . ,m}.

As a crude conclusion from our looking through a microscope, we can say that for
small ε > 0 a sub-Riemannian ball has the following upper and lower estimates:

cΠ(k1, . . . , km; ε) ⊂ Bq(ε) ⊂ c′Π(k1, . . . , km; ε),

where c and c′ are constants independent of ε.
To fill a cube of fixed size we require about (1/ε)k1+2k2+···+mkm translated

‘boxes’ Π(k1, . . . , km; ε) (as ε → 0). Hence the Hausdorff dimension of the
sub-Riemannian space is k1 + 2k2 + · · · + mkm. We see that the Hausdorff
dimension is strictly greater than the topological dimension in all cases except the
Riemannian case. We can say that a sub-Riemannian metric space has a fractal
nature, while topologically it is a quite ordinary manifold.

Example 1. Consider a sub-Riemannian structure in R3 with a distribution of
rank 2. It is easy to see that such a distribution is equiregular at a point q if and
only if it defines a contact structure in a neighbourhood of q. Then ∆2

q = R3.
Elementary calculations show that, up to a metric-preserving isomorphism, the
Heisenberg group is the unique 3-dimensional Carnot group. This is the simplest
non-Riemannian sub-Riemannian space. Let V1, V2 ∈ ∆ be a left-invariant
orthonormal basis of the distribution ∆ in this case. Then V1, V2, [V1, V2] is a basis
of the Heisenberg Lie algebra, and [V1, V2] commutes with both V1 and V2.

In § 1 we considered 3-dimensional sub-Riemannian structures connected with
planar isoperimetric problems. It is easy to see that the Heisenberg group corre-
sponds to the most famous of these problems, Dido’s problem, in which the func-
tion b characterizing the isoperimetric problem is a constant. In Fig. 2 we show
how a sub-Riemannian sphere looks in a section on the Heisenberg group.

Figure 2

Because of quasi-homogeneity and left invariance, all the spheres in a Carnot
group have the same structure and can be obtained one from another using a dilation
and a left translation on the group. We see that these spheres, which can have an
arbitrarily small radius, have non-smooth points, the points where they intersect
the vertical axis; this axis is the translation of the centre of the group that contains
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the centre of the ball. The presence of non-smooth points is not accidental: the
simplest properties of the set of geodesic curves starting from the centre of the ball
imply that there must exist non-smooth points.

We fix q0 ∈ M and consider the function c(q) = δ(q0, q). The balls with centre q0

are Lebesgue sets of c, and the corresponding spheres are level sets of c. We can
show that if Tq0M ̸= ∆q0 , then any sphere Sq0(r) with sufficiently small radius
contains non-smooth points of c. On the other hand, c is smooth on a dense open
subset of a neighbourhood of q0. This is perhaps all we know about the distance
function c in the case of an arbitrary sub-Riemannian structure, apart from the
obvious Hölder property with exponent 1/m in the case when ∆m = TM . Of
course, in special cases we know much more.

Let us explain the connection between the analytic properties of the distance
function and geodesic curves. Recall that a horizontal path γ : [0, t] → M is said
to be length minimizing if the length of γ is equal to the distance between γ(0)
and γ(t). We say that a length-minimizing path γ is extendable if there exists
a length-minimizing path γ : [0, t ] → M , t > t, such that γ = γ

∣∣
[0,t]

and γ(t ) ̸= γ(t).

Theorem 4. Let q be a point in a compact ball with centre q0 . Then the function
c is smooth at q if and only if a unique length-minimizing path joins q to q0 , this
path is extendable, and it is a strictly normal geodesic.

At points where c fails to be smooth the nature of its non-smoothness depends
essentially on whether the length-minimizing paths terminating at this point are
normal or abnormal. Recall that a function on M is said to be semiconcave (semi-
convex) if in local coordinates it can be represented as the sum of a concave (convex)
function and a smooth function. It is easy to see that this property is independent
of the choice of local coordinates. Clearly, any semiconcave (semiconvex) function
is locally Lipschitz, and furthermore, it has a second derivative almost everywhere
according to Alexandrov’s well-known result.

Theorem 5. If a point q in a compact ball with centre q0 can be joined to q0

only by strictly normal length-minimizing paths, then c is semiconcave in some
neighbourhood of q .

In the picture of a ball in the Heisenberg group (see Fig. 2) we easily see that
the distance function is semiconcave: the tangent cone of the ball at a non-smooth
point is the complement of a convex cone.

Theorem 6. If all non-constant length-minimizing paths starting at a point q0 are
strictly normal, then the sphere Sq0(r) is a Lipschitz submanifold of M for almost
all r > 0 such that the ball Bq0(r) is compact.

As a counterpoint to the ‘normal’ situation, we give the following result.

Proposition 3. If a point q lies in a compact ball with centre q0 and is joined
to q0 only by strictly abnormal length-minimizing paths, then |dqn

c| → ∞ for any
sequence {qn} of smooth points of c that converges to q . In particular, the func-
tion c(q) is not locally Lipschitz in a neighbourhood of q .

We obtain the simplest sub-Riemannian space with abnormal geodesics by con-
sidering the isoperimetric problem in R2 with the 1-form ω = (x1)2 dx2 (see (1.3)).
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Then the function b : R2 → R determined by the conditions dxω = b(x) dx1 ∧ dx2

is linear: b(x) = 2x1, and by Proposition 2 the projections of abnormal geodesics
on R2 are intervals of the line {(0, x2) : x2 ∈ R}. It is easy to see that the abnormal
geodesics themselves are intervals of straight lines {(0, x2, c) ∈ R3 : x2 ∈ R}, where
c ∈ R can be an arbitrary constant. In this case the abnormal geodesics are at the
same time normal. In fact, straight-line intervals are length-minimizing paths for
the Euclidean metric, even without imposing an isoperimetric condition.

The vector fields V1 =
∂

∂x1
and V2 =

∂

∂x2
+ (x1)2

∂

∂y
form an orthonormal basis

of this structure in R3. The structure is not equiregular at points in the plane
{(0, x2, y) : x2, y ∈ R}. At the point q = (0, x2, y) the flag of the distribution has
the form

∆̂1
q = ∆̂2

q = {(ξ1, ξ2, 0) : ξ1, ξ2 ∈ R}, ∆̂3
q = R3.

This example is in some way universal: while the Heisenberg group describes
the metric tangent space at any equiregular point of a sub-Riemannian metric on
a 3-manifold, this example describes the metric tangent space at each point q such
that ∆1

q = ∆2
q ̸= ∆3

q. In accordance with our notation above, this is the case k1 = 2,
k2 = 0, k3 = 1.

The above model is called the Martinet flat sub-Riemannian structure, and the
plane {(0, x2, y) : x2, y ∈ R} is called the Martinet plane. All spheres with centres
on the Martinet plane have the same shape, and the set of non-smooth points of the
sub-Riemannian distance from a point on the Martinet plane is the plane itself. Let
us take the sphere with radius r and centre at the origin. It is smooth outside the
Martinet plane, and its intersection with the Martinet plane appears as depicted in
Fig. 3.

Figure 3

This intersection is a closed curve which fails to be smooth at two points on
the sphere that are joined to the centre by abnormal geodesics. Each of the two
smooth pieces of the curve is tangent to an abnormal geodesic at one end-point
and makes a non-zero angle with it at the other. Note that the distance to the
centre increases at a constant rate along each length-minimizing curve when it is
parametrized by arc length, for instance, along our abnormal geodesic. On the
other hand, the abnormal geodesic is tangent to a curve on the sphere (which is
a level set of the distance to the centre). Hence it is immediate that the distance to
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the centre cannot be a Lipschitz function in a neighbourhood of the corresponding
point of the sphere. On the other hand, the sphere itself is a Lipschitz manifold in
this case.

Metric tangent spaces are certainly very important, but still very special exam-
ples of sub-Riemannian spaces. What can be said about generic spaces? Here we
say that a certain property is generic if it holds for each structure in some open dense
subset in the Whitney C∞-topology of the space of sub-Riemannian structures on
the given manifold.

It is easy to suppose that a geodesic cannot be both normal and abnormal in the
generic case. Moreover, if two abnormal extremals have the same projection, then
these extremals are proportional in T ∗M and differ by a multiplicative constant. In
this case we say that all the extremals (normal and abnormal alike) have corank 1.
In fact, this property holds not only for individual generic structures, but also for
families of sub-Riemannian structures which depend smoothly on a finite number
of real parameters. That is taken to mean that all extremals of all structures in
a generic family have corank 1, which means (according to the usual terminology
of singularity theory) that the set of sub-Riemannian structures not all of whose
extremals have corank 1 is a subset of infinite codimension in the space of all
sub-Riemannian structures.

The condition that all extremals have corank 1 has certain implications for
the local structure of spheres, which we will now describe. Let TqM ⊃ E0 be
a co-oriented hyperplane in the tangent space. (By definition, this means that one
of the two half-spaces into which the hyperplane partitions TqM is regarded as
positive and the other as negative.) Thus, TqM = E− ∪ E0 ∪ E+, where E± are
open half-spaces.

Let q ∈ Sq0(r). We will say that E0 is a tangent hyperplane to the ball Bq0(r)
at the point q if for each smooth curve φ : (−1, 1) → M with φ(0) = q that is
transversal to E0 there exists an ε > 0 such that φ(−ε, 0) ⊂ Bq0(r) and φ(0, ε) ∩
Bq0(r) = ∅. Clearly, a ball can have at most one tangent hyperplane at q, but it
may also have none, for instance, as at points of the abnormal length-minimizing
curve in the Martinet flat structure considered above.

Proposition 4. If all the geodesics have corank 1 and q0 is joined to q by an
extendable length-minimizing path, then the ball Bq0(r) has a tangent hyperplane E0

at q . Let γ be a length-minimizing path with endpoints γ(0) = q0 and γ(r) = q which
is parametrized by arc length. If γ is a normal geodesic, then γ̇(r) ∈ E+ . If γ is an
abnormal geodesic differentiable at the point r , then γ̇(r) ∈ E0 .

We look more closely at the case of generic sub-Riemannian structures in R3. For
an orthonormal basis V1(x), V2(x), x ∈ R3, the equation det(V1, V2, [V1, V2]) = 0
defines a smooth surface Σ, called the Martinet surface:

Σ = {x ∈ R3 : det(V1(x), V2(x), [V1, V2](x)) = 0}.

Our structure is equiregular at all points in R3\Σ, and not equiregular at the points
in Σ.

At all points in Σ except for a discrete subset of the surface, the distribution

∆x = span{V1(x), V2(x)}
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is transversal to Σ, so the subspace ∆x∩TxΣ is 1-dimensional. The non-exceptional
points x are characterized by the condition ∆1

x = ∆2
x ̸= ∆3

x and are called Martinet
points. The lines ∆x ∩ TxΣ, x ∈ Σ, form a direction field on Σ (with isolated
singularities). The integral curves of this direction field are abnormal geodesics:
a non-constant admissible curve is an abnormal geodesic if and only if it lies entirely
on the Martinet surface.

Let x be a Martinet point; by Proposition 4 small spheres with centre x have
tangent planes at points of the abnormal geodesic passing through x, and the
intersection of the sphere with the Martinet surface appears roughly as shown in
Fig. 4.

Figure 4

In the generic case this intersection is distinct from the set of non-smooth points
of the sphere. Moreover, simple topological considerations suggest that in this case
the set of non-smooth points of the sphere cannot be a closed curve, but must
consist of two contractible connected components.

Let us now consider small spheres with centre at a point x ∈ R3 \Σ. The metric
tangent space at x is isometric to the Heisenberg group discussed above, and it is
highly symmetric. In passing from a sphere in the metric tangent space to a small
generic sphere, the symmetry breaks down and the structure of the singularities
changes.

The structure of the singularities of a sphere is closely connected with the singu-
larities of the family of geodesic curves issuing from its centre. Let us explain this.
In our case all the geodesic curves are normal, and therefore are the projections on
M = R3 of the trajectories of the Hamiltonian system

λ̇ = h⃗(λ), λ ∈ T ∗M, h(λ) = 1

(see § 1). It is easy to see that these projections are parametrized by arc length.
Geodesics from x are the projections of trajectories with the initial condition λ(0) =
T ∗x M ∩ h−1(1).

Let π : T ∗M → M be the standard projection: π(T ∗x M) = x. We set Hx =
T ∗x M ∩ h−1(1) and consider the exponential map

Ex : (t, λ) 7→ π ◦ et⃗h(λ), t > 0, λ ∈ Hx. (2.1)
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Note that the curves t 7→ Ex(t, λ) are geodesics issuing from x, and each compact
ball Bx(r) is the image of the set [0, r]×Hx under the exponential map: Bx(r) =
Ex([0, r] × Hx). Furthermore, Sx(r) ⊂ Ex(r, Hx). This inclusion is always strict,
because not all geodesic curves with length r are length minimizing no matter how
small r is.

How can we distinguish between a normal geodesic that is length minimizing
and one that is not? The recipe is generally the same as in classical Riemannian
geometry. A small interval of a geodesic curve

γ(t) = Ex(t, λ), t > 0, (2.2)

is length minimizing by definition. A strictly normal geodesic ceases to be length
minimizing after going through a cut point or the first conjugate point. These
points are very important for us, also because, according to Theorem 4, the
distance function fails to be smooth just at the endpoints of non-extendable length-
minimizing curves.

Definition 3. The cut time along the geodesic curve (2.2) is the number

t = min{t > 0: ∃λ′ ∈ Hx, λ′ ̸= λ, γ(t) = Ex(t, λ′)},

and the point γ(t) = E (t, λ) is called a cut point.
A conjugate time along γ is a number t̂ > 0 such that (t̂, λ) is a critical point of

the map Ex, and the point γ(t̂) = E (t̂, λ) is called a conjugate point.

That is, a cut point is a point at which the geodesic first meets another geodesic
from x which has the same length. Conjugate points are points on the ‘enveloping
surface’ of the family of geodesics from x. Using a slightly outdated language, we
can say that at a conjugate point the geodesic meets an infinitesimally close geodesic
from x. These two types of points play slightly different roles: a geodesic stops being
length-minimizing past a cut point, but it remains locally length minimizing (that
is, shorter than all the C0-close admissible paths with the same endpoints) up to
the first conjugate point. Past the first conjugate point it is no longer locally length
minimizing.

On the Heisenberg group geodesic curves are circular helices, and their ‘envelop-
ing surface’ degenerates into a straight line (the vertical coordinate axis), and fur-
thermore their cut points and first conjugate points coincide, so that a geodesic
ceases to be globally and locally length minimizing at the same time. In the generic
case this is not so, and the endpoints of almost all non-extendable length-minimizing
curves are cut points which are not conjugate points.

The set of terminal points of all non-extendable length-minimizing curves issuing
from x is called the cut locus, and the set of first conjugate points is called the first
caustic. We can show that the cut locus lies in the closure of the set of cut points,
and this holds not just in the 3-dimensional problem under consideration, but also
for any sub-Riemannian structure all of whose length-minimizing paths are strictly
normal. We note that the initial point x also lies in the closure of the set of cut
points, provided that ∆x ̸= TxM .
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In the next section we will consider details of the structure of the cut locus and
the first caustic in a neighbourhood of x for a germ of a generic 3-dimensional
sub-Riemannian structure (see Fig. 9 in the next section).

Comments. Theorem 2 was proved in [19] (see also [17]), and Theorem 3 was
proved in [8] and [11] (see also the subsequent paper [9]). The proofs of Theorem 4
and Proposition 3 can be found [3], as well as the proof of Theorem 6, which is due
to Rifford [25]. Theorem 5 is a consequence of a more general result due to Cannarsa
and Rifford [12]. A sphere in the Heisenberg group was described in [28], one of the
first papers on sub-Riemannian geometry, and a sphere in a flat Martinet structure
was described in [6]. That sub-Riemannian structures all of whose extremals have
corank 1 are typical was shown in [14], and Proposition 4 was proved in [2].

3. Curvature

For who can make that straight,
which he hath made crooked?1

The definition of sub-Riemannian curvature is based on an idea going back essen-
tially to Gauss with his geodesic triangles. Let A, B, and C be three sufficiently
close points on a sub-Riemannian manifold. We connect A and B with C by
length-minimizing paths. Assume that these paths are normal geodesics. Then in
the case of negative curvature the picture must be roughly as in Fig. 5, and for
positive curvature it must be as in Fig. 6.

Figure 5 Figure 6

In other words, the greater the curvature, the larger the vector difference between
the velocities of the corresponding geodesics at C. This idea can be rigorously
expressed using the following construction.

This construction does not involve all normal geodesics, but only ample ones. We
explain the meaning of this term a little later; here it is sufficient to know that for
any q0 ∈ M almost all geodesics from q0 are ample. Recall that normal geodesics are
the projections on M of trajectories of the Hamiltonian system λ̇ = h⃗(λ), h(λ) = 1,
and these geodesics are automatically parametrized by arc length.

The Hamiltonian h is homogeneous of degree 1 on fibres of the cotangent bundle,
so the trajectories of the system λ̇ = h⃗(λ), h(λ) = c, with an arbitrary c > 0 have
the same projections on M , with the same parametrization. In many respects it
is more convenient to work with the Hamiltonian h2(λ)/2, which is quadratic on

1Ecclesiastes 7:13.
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fibres, and with the corresponding Hamiltonian system

λ̇ = h(λ)⃗h(λ), λ ∈ T ∗M. (3.1)

The projections of trajectories of this system on M are the same geodesics, and the
parameter on them is proportional to arc length but does not necessarily coincide
with it. These projections are easy to express in terms of the exponential map (2.1).
If λ(0) ∈ T ∗q0

M and h(λ(0)) = c > 0, then the projection of a trajectory t 7→ λ(t)
is the geodesic t 7→ Eq0(ct, λ(0)/c). On the other hand, if h(λ(0)) = 0, then λ(0) is
a fixed point.

Thus, let γ : t 7→ γ(t), γ(0) = q0, be an ample geodesic with parameter propor-
tional to arc length. Fix a sufficiently small t > 0; then for each q in some neigh-
bourhood of q0 in M there exists a unique length-minimizing path γq : [0, t] → M
with parameter proportional to arc length such that γq(0) = q and γq(t) = γ(t)
(see Fig. 7).

Figure 7

Consider the function q 7→ bt(q)
.= |γ̇q(t) − γ̇(t)|2/2, which is a smooth func-

tion defined in a neighbourhood of q0. In addition, it clearly takes its minimum
value at q0. Thus, dq0bt = 0, and the Hessian D2

q0
bt is a well-defined non-negative

quadratic form on Tq0M . We will extract the curvature from the asymptotic
behaviour of the family of quadratic forms D2

q0
bt

∣∣
∆q0

as t → 0.
To understand the nature of this behaviour we start by calculating bt at points

of the geodesic γ. We obtain

γγ(s)(τ) = γ

(
s +

t− s

t
τ

)
, 0 6 τ 6 t,

bt(γ(s)) =
s2

2t2
|γ̇(t)|2 =

s2

2t2
|γ̇(0)|2.

Hence D2
q0

bt(γ̇(0)) = |γ̇(0)|2/t2.

Exercise. Let M be a Euclidean space (that is, Rn with the Euclidean metric).
Then the function bt is the same for all the geodesics starting from q0:

bt(q) =
|q − q0|2

2t2
, D2

q0
bt(v) =

1
t2
|v|2, v ∈ Rn.

Next we take the general Riemannian case. According to Riemann’s original
construction, the Riemannian curvature measures the infinitesimal deviation of the
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square of the Riemannian distance from the square of the Euclidean distance, so
the formula below should come as no surprise. In the Riemannian case all geodesics
are ample, and the following asymptotic relation holds:

D2
q0

bt(v) =
1
t2
|v|2 +

1
3
⟨R(v|γ̇)γ̇|v⟩+ O(t), v ∈ Tq0M,

as t → 0. Here R is the Riemann tensor: if |γ̇(0)| = |v| = 1 and ⟨γ̇(0)|v⟩ = 0, then
⟨R(v|γ̇)γ̇|v⟩ is the sectional curvature in the direction of span{γ̇(0), v}.

Finally, we consider the most general sub-Riemannian case.

Theorem 7. Let γ be an ample geodesic. Then there exist quadratic forms Q
and Rγ on ∆q0 such that Q(v) > |v|2 for v ∈ ∆q0 and

D2
q0

bt(v) =
1
t2

Qγ(v) +
1
3
Rγ(v) + O(t), v ∈ ∆q0 ,

as t → 0.

The quadratic form Rγ is called the curvature form in the direction of the
geodesic γ, and the positive-definite form Qγ involved in the first term of the asymp-
totic formula is a dimension invariant and characterizes the anisotropy of the
sub-Riemannian metric at small distances. The equality

Qγ(v) = |v|2 ∀ v ∈ ∆q0

holds if and only if ∆q0 = Tq0M , that is, only in the Riemannian case.
Now we give the definition of an ample geodesic and at the same time find

out how to calculate the spectrum of the form Q and try to clarify its geometric
meaning. In fact, ampleness depends only on the distribution and the germ of
a horizontal curve: it has nothing to do with the Euclidean structure on ∆ and the
fact that γ is a normal geodesic.

Definition 4. The germ of a smooth horizontal curve at a point q0 is said to be
ample if there exists a k > 0 such that the k-jet of the germ is distinct from
the k-jets of the projections on M of abnormal extremals.

This is too abstract a definition, so we make it concrete and find effective checks
for ampleness. Let Φt : M → M , t ∈ R, be a horizontal flow such that Φt(q0) = γ(t),
t > 0. In other words, γ is a trajectory of Φt. Taking the subspaces ∆γ(t) ⊂ Tγ(t)M ,
we shift them to q0 with the help of the flow. This gives us the family of subspaces

∆t
q0

= (Φt)−1
∗ ∆γ(t), ∆t

q0
⊂ Tq0M.

It is easy to show that γ
∣∣
[0,t]

is the projection on M of an abnormal extremal if and
only if span{∆τ

q0
, 0 6 τ 6 t} is a proper subspace of Tq0M .

We now define the flag of ∆ along the horizontal curve γ:

∆(i+1)
γ =

di

dti
∆t

q0

∣∣∣∣
t=0

, i = 0, 1, 2, . . . .
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Here by definition the ith derivative of a family of subspaces is understood to be
the linear span of the ith derivatives of all the sections t 7→ v(t) ∈ ∆t

q0
, t > 0. It is

easy to see that
∆q0 = ∆(1)

γ ⊂ ∆(2)
γ ⊂ · · · ⊂ ∆(i)

γ ⊂ · · · , (3.2)

and the subspaces ∆(i)
γ depend only on ∆ and γ, and not on the choice of the

flow Φt. Moreover, the germ of γ is ample if and only if there exists a k such that
∆(k)

γ = Tq0M .
Of course, we need not differentiate all the sections ∆t

q0
to calculate ∆i

γ , nor is
it necessary to find the family ∆t

q0
itself. Let Φt = etX and ∆q = span{V1(q), . . . ,

Vd(q)}, where X and V1, . . . , Vd are horizontal vector fields. Recall that
d

dt
e−tX
∗ V =

e−tX
∗ [X, V ], from which it is easy to get that

∆(i+1)
γ = span{[X, . . . , [X︸ ︷︷ ︸

j

, Vl] . . . ] : 0 6 j 6 i, 1 6 l 6 d}.

We see that the flag (3.2) is a microlocal version of the flag of a distribution,
which we considered in § 2. In the construction of the flag of a distribution we
take all the iterated commutators of horizontal vector fields, but for the flag along
a curve we iterate only commutators with the fixed field generating this curve. Of
course, the flags along distinct horizontal curves going out from a given point can
be distinct. We are mostly interested in flags along normal geodesic curves.

Let ξ ∈ T ∗q0
M , and let ξ denote the geodesic corresponding to the solution of (3.1)

with the initial condition λ(0) = ξ. In other words, ξ(t) = E

(
h(ξ)t,

1
h(ξ)

ξ

)
if

h(ξ) ̸= 0, and ξ(t) ≡ q0 if h(ξ) = 0. With each ξ ∈ T ∗q0
M we associate the flag

∆q0 = ∆(1)

ξ
⊂ ∆(2)

ξ
⊂ · · · ⊂ Tq0M.

Proposition 5. The integer-valued functions

ξ 7→ dim ∆(i)

ξ
, ξ ∈ T ∗q0

M, i = 1, 2, . . . , (3.3)

are lower semicontinuous on T ∗q0
M . In addition, there exists a Zariski-open subset

Oq0 of T ∗q0
M such that for each ξ ∈ Oq0 the geodesic curve ξ is ample, and the

functions ξ 7→ dim ∆(i)

ξ
, i = 1, 2, . . . , are constant on Oq0 and are equal to their

maximum values on T ∗q0
M .

Next we turn to the spectrum of the quadratic form Qγ . We calculate it not for
an arbitrary ample germ, but only for germs satisfying the additional (but not too
restrictive) condition of equiregularity. Let us explain this condition.

So far we have fixed a point q0 ∈ M and considered the germs of all normal
geodesics starting from this point. Now we fix a geodesic γ : [0, t1] → M and
consider its germs at different points. Namely, for each s ∈ [0, t1) we set γs(t) =
γ(s + t). Then ∆(1)

γs ⊂ ∆(2)
γs ⊂ T ∗γ(s)M . It is easy to see that the integer-valued

functions s 7→ dim ∆(i)
γs are lower semicontinuous. They are locally constant on an
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open dense subset of the half-open interval [0, t1). The germ of γ at zero is said to
be equiregular if the functions s 7→ dim ∆(i)

γs , i = 1, 2, . . . , are locally constant in
a neighbourhood of zero, so that dim ∆(i)

γs = dim∆(i)
γ for all sufficiently small s > 0.

We illustrate these concepts using the sub-Riemannian structures in R3 that
we considered in § 2. If the initial point q0 = x lies outside the Martinet surface,
then all non-constant geodesics are ample and equiregular, and the flags along their
germs coincide with the flag of the distribution at q0. In particular, ∆(2)

ξ
= R3. But

if q0 = x is a Martinet point, then all geodesics which are not abnormal are ample,
but none of them are equiregular. For ξ ∈ Oq0 we get that ∆(2)

ξ
= ∆(1)

ξ
= ∆q0 and

∆(3)

ξ
= R3. To pass to equiregular germs we must move slightly along the geodesic,

thereby leaving the Martinet surface.
In the general case we can supplement Proposition 5 in the following way: for

all q0 in some open dense subset of M , ample geodesics ξ , ξ ∈ Oq0 , are equiregular.
We now concentrate on the equiregular case. Let dim ∆q0 = d and let ∆m

γ =

Tq0M . We set d1 = d and di+1 = dim∆(i+1)
γ −dim ∆(i)

γ for i = 1, . . . ,m− 1. In the
equiregular case the sequence of numbers d1, . . . , dm is non-increasing: di+1 6 di

for 1 6 i 6 m−1. We form the Young diagram with columns of lengths d1, . . . , dm:
see Fig. 8.

Figure 8

Let the rows of this diagram have lengths n1, . . . , nd. Then

spec Qγ = {n2
1, . . . , n

2
d}. (3.4)

Recall that Qγ is a quadratic form on the d-dimensional Euclidean space ∆q0 , and
its spectrum consists of the eigenvalues of the corresponding symmetric operator
on ∆q0 . Some of the integers n1, . . . , nd may be repeated, with the number of
repetitions corresponding to the multiplicity of the eigenvalue.

Remark 2. For a non-equiregular germ of an ample geodesic the eigenvalues of the
form Qγ need not be integers. For instance, if M = R3, then for the germs of ample
geodesics at a Martinet point we have spec Qγ = {1, 9/4}.
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The geometric meaning of the form Qγ can be well illustrated by the notion
of the geodesic dimension of the sub-Riemannian space M at the point q0. Here is
the definition.

Consider a compact subset C of M with non-empty interior (for example, a ball
with small radius and centre q0). We join all points in C to q0 by length-minimizing
geodesics, with parameter proportional to arc length and ranging in the same inter-
val [0, 1] for all geodesics. Thus, a point x ∈ C is connected with q0 by a geodesic
curve γx : [0, 1] → M such that γx(0) = q0 and γx(1) = x. If q0 and x can be
joined by several length-minimizing paths, then we take all of them, so that γx is
not a single geodesic but a set of geodesics.

We now want to contract C to q0 along the length-minimizing paths. Let Ct =
{γx(t) : x ∈ C} for 0 6 t 6 1; then C1 = C and C0 = {q0}. Assume that a volume
form is defined on M , so that the volumes vol(Ct) > 0 are defined for 0 < t 6 1.
The geodesic dimension of the sub-Riemannian space M at q0 is equal to the limit

lim
t→0

1
t

log vol(Ct)

if it exists and is independent of the choice of the set C and the volume form.
In other words, the geodesic dimension is the order of convergence to zero of the
volume of Ct as t → 0.

Theorem 8. Assume that for ξ ∈ Oq0 the geodesics ξ are equiregular and the
abnormal length-minimizing paths from a point q0 sweep out a subset of M of mea-
sure zero. Then the geodesic dimension of the sub-Riemannian space M at q0 is
equal to tr Qξ for any ξ ∈ Oq0 .

Some explanations: we have already mentioned that the condition of equiregu-
larity of the geodesics ξ for ξ ∈ Oq0 holds for all q0 in an open dense subset of M .
As regards the condition on the abnormal length-minimizing paths issuing from q0,
it holds at all points in all the known examples of sub-Riemannian spaces, but we
know of no proof that this is always the case. We know that such paths sweep out
a closed nowhere dense subset of M , but do not know whether it can have positive
measure. This is an important open question in sub-Riemannian geometry.

If the assumptions of the theorem are satisfied, then we have an explicit formula
for the geodesic dimension (see (3.4)): it is equal to

d∑
i=1

n2
i =

m∑
i=1

(2i− 1)di.

It is interesting to compare this formula with the Hausdorff dimension calculated
in § 2. We can do this for m = 2, that is, when ∆(1)

ξ
̸= ∆(2)

ξ
= Tq0M for ξ ∈ Oq0 .

Then the flags along geodesics coincide with the flag of the distribution at q0. Thus,
the Hausdorff dimension of the sub-Riemannian space M is equal to d + 2(n− d),
while its geodesic dimension is d + 3(n − d), where n is the topological dimen-
sion of M . That is, the geodesic dimension is strictly greater than the Hausdorff
dimension.

Recall that the Hausdorff dimension is equal to the order with which the volume
of a ball tends to zero as its radius tends to zero. The inequality obtained is a very
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crude manifestation (on the level of dimensions) of a property of sub-Riemannian
(but not Riemannian) spaces which we have already pointed out: there exist plenty
of arbitrarily short geodesics that are not length-minimizing paths.

For example, as the ball C = Bq0(r) contracts to its centre along length-
minimizing paths, the set Ct sweeps out only a certain part of the ball Bq0(tr),
because as the length decreases there appear more and more geodesics starting
from q0 that are length minimizing (they do not attain the sphere Sq0(r), but do
attain Sq0(tr)). Moreover, Ct ‘flattens’ much more rapidly than the balls Bq0(tr) as
t → 0. All this is already quite clear in the simplest case of the Heisenberg group,
when the topological dimension is three, the Hausdorff dimension is four, and the
geodesic dimension is five.

Let us proceed to a discussion of the curvature forms Rγ . It is easy to show that
γ̇(0) ∈ ker Rγ , so that the quadratic form Rγ is actually defined on the quotient
space ∆q0/Rγ̇(0). It is important to know how Rξ depends on ξ ∈ T ∗q0

M .
We can show that ξ 7→ Rξ(v) is a rational function which is positive homogeneous

of homogeneity degree 2 for each v ∈ ∆q0 . It is finite on Oq0 and can have poles
outside Oq0 . Recall that in the Riemannian case Rξ(v) = ⟨R(v, ξ̇)ξ̇, v⟩, where R is
the Riemannian curvature. That is, in the Riemannian case the function ξ 7→ Rξ(v)
is just a quadratic form, but in the general case it is not.

In general, we know very little about the structure of these functions, and serious
investigations of them have only just begun. If we write the rational function ξ 7→
Rξ(v) in local coordinates, then its coefficients are themselves rational functions of
partial derivatives of the Hamiltonian h. However, the explicit formulae are very
complicated and almost useless for understanding the geometry.

In this paper we confine ourselves to a description of the forms Rξ in the
well-understood case of a contact sub-Riemannian structure on a 3-manifold. In
this case the functions ξ 7→ Rξ(v) are quadratic forms on T ∗q0

M .2

Thus, let ∆ be a contact distribution on a 3-dimensional Riemannian mani-
fold M . Then dim ∆q0 = 2, and Rξ is a quadratic form on the 1-dimensional
Euclidean space ∆q0/Rγ̇(0), that is, in essence a real number (the single eigen-
value of the symmetric operator corresponding to this quadratic form). We denote
this number by r(ξ). Then the function ξ 7→ r(ξ) is itself a quadratic form on
T ∗q0

M . Calculations show that its restriction to the orthogonal complement of ∆q0

is a positive-definite form: r
∣∣
∆⊥q0

> 0.
Therefore, the curvature of a contact sub-Riemannian structure cannot vanish

identically. At first glance this seems to be in contrast to the usual Riemannian
situation, but if we look more closely, we see that, on the contrary, it is in full
agreement. In fact, in a sub-Riemannian but non-Riemannian space we always
have arbitrarily short geodesic curves that are not locally length minimizing. Thus,
the curvature not only cannot be identically equal to zero, but it even must not be
uniformly bounded above on the space of geodesics of fixed length: this is what we
actually have.

Recall that a geodesic ξ has parameter proportional to arc length, and |ξ̇| = h(ξ)
for ξ ∈ T ∗q0

M . Furthermore, h2 is a quadratic form with kernel ∆⊥
q0

. If we add

2This is not so for contact sub-Riemannian structures on manifolds of higher dimension.
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to a given ξ ∈ T ∗q0
M a sufficiently large element of ∆⊥

q0
, then we increase the

curvature without changing the initial velocity on the geodesic ξ, and we make
the first conjugate time (see Definition 3 at the end of § 2) closer to zero.

In actual fact there exists a very close not only qualitative but also quantitative
connection between the quadratic form r(ξ), ξ ∈ T ∗q0

M , and the structure of the
first caustic and the cut locus near the point q0. We describe this connection now.
It will be convenient to renormalize the form r( · ) by taking 5r( · )/2 instead.

A quadratic form on a finite-dimensional vector space can be represented (in
many ways) as a linear combination of squares of linear forms. If the space is
equipped with a Euclidean structure, then we obtain a canonical representation by
taking the squares of the linear forms in a suitable orthonormal basis.

The quadratic form r( · ) is defined on T ∗q0
M , and only the subspace ∆q0 of Tq0M

is endowed with a Euclidean structure. We know that r
∣∣
∆⊥q0

> 0. This information

is sufficient to derive the following canonical representation of the form 5r/2 as
a linear combination of squares:

5
2
r(ξ) = ⟨ξ, f0⟩2 + α1⟨ξ, f1⟩+ α2⟨ξ, f2⟩,

where α1 > α2, and f1 and f2 lie in ∆q0 and form an orthonormal basis in this
Euclidean plane. The vector f0 is transversal to the plane ∆q0 and is determined
up to a sign. If α1 ̸= α2, then f1 and f2 are also determined up to a sign; otherwise
we can take any orthonormal basis in ∆q0 . We leave the simple derivation of this
canonical form to the reader as an exercise.

Note that h2(ξ) = ⟨ξ, f1⟩2 + ⟨ξ, f2⟩2 and ξ̇(0) = ⟨ξ, f1⟩f1 + ⟨ξ, f2⟩f2. We will use
the special notation ν = 1/|⟨ξ, f0⟩| for the reciprocal of the absolute value of the
third coordinate of ξ, which does not affect the initial velocity on the geodesic ξ.
We also set κ = (α1 + α2)/2 and χ = (α1 − α2)/6; the quantities κ and χ are the
principal numerical invariants of the sub-Riemannian structure.

Let lengthconj(γ) be the length of the interval of the geodesic γ up to the first
conjugate point. Then the following asymptotic expression holds as ν → 0:

lengthconj(ξ) = 2πν − πκν3 + O(ν4).

Assume that χ ̸= 0, that is, α1 > α2. Figure 9 shows how the intersection of the
first caustic and the cut locus with a small neighbourhood of q0 looks in this case.

The tangent cone at q0 to both the caustic and the cut locus is equal to the
line Rf0. The first caustic is the union of two pyramids with vertex q0, one corre-
sponding to the positive values of ⟨ξ, f0⟩ and the other to the negative values. Each
pyramid has four cuspidal edges, which asymptotically are semicubical parabolas.
If we take Rf0 to be the vertical axis, then asymptotically the horizontal sections of
the first caustic are asteroids with centre on the axis Rf0, and they are symmetric
asteroids (whose two diagonals are equal). The vertices of these asteroids lie on
straight lines parallel to the axes Rf1 and Rf2.

The first conjugate point on ξ has height πν2 + O(ν4), and the length of the
diagonal of the ‘asteroid’ obtained as the section of the caustic at this height is
4πχν3 +O(ν4). A horizontal section of the cut locus is asymptotically the diagonal
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Figure 9

of the asteroid that connects the vertices lying on a line parallel to Rf1. Here (as
above) we write ‘asymptotically’ to avoid a lengthy and, in our opinion, rather
cumbersome description, which is clear enough from the picture. Alternatively, we
could write: the horizontal section of the cut locus at height πν2 is a smooth curve
connecting the opposite cuspidal edges of the caustic; after scaling the horizontal
(but not the vertical!) coordinates with the factor 1/ν3 and letting ν go to zero,
this curve converges uniformly to the straight-line interval (−2πχf1, 2πχf1).

We see that the curvature Rξ, ξ ∈ T ∗q0
M , completely determines the shape of

the first caustic and the cut locus in a neighbourhood of q0 not just qualitatively,
but also quantitatively. However, we must admit that the mechanisms of this
relationship are poorly understood at present: we have no general results deducing
the properties of the caustic and the cut locus from the structure of the curvature
form.

So far we have considered the curvature at a fixed point q0 ∈ M , but since this
can be an arbitrary point on the manifold, we have thus found the curvature and its
normal form at all points. We obtain the smooth functions q 7→ κ(q) and q 7→ χ(q)
along with the vector field q 7→ f0(q). If χ(q0) = 0, then the shape of the first
caustic and the cut locus differ strongly from our description above, and they can
be fairly accurately recovered from the derivatives of χ at q0. On the other hand, if
χ(q) = 0 for each q ∈ M , then everything is determined by the derivatives of κ. If
χ ≡ 0 and κ ≡ const, then near q0 the first caustic merges with the cut locus and
coincides with a trajectory of the field f0.

As a matter of fact, the class of contact sub-Riemannian structures satisfying
the condition χ ≡ 0 has a very transparent interpretation. This is equivalent to
the condition that the flow generated by f0 consists of sub-Riemannian isometries.
By straightening the field f0 in a neighbourhood of q0 we can represent this neigh-
bourhood as a product of a straight-line interval (a piece of a trajectory of f0) and



Topics in sub-Riemannian geometry 1017

a 2-dimensional domain. The distribution ∆ is transversal to trajectories of f0, and
the sub-Riemannian length of vectors in ∆ depends only on their projections on the
2-dimensional domain, because a shift along the trajectories of f0 is an isometry.
Thus, the sub-Riemannian length of horizontal vectors defines a certain Rieman-
nian structure on the 2-dimensional domain, turning it into a Riemann surface.
Furthermore, the function κ, which is a sub-Riemannian invariant, is constant on
trajectories of f0 and in essence is a function on this Riemann surface.

It turns out that κ is none other than the Gaussian curvature of the Riemann
surface, and the original sub-Riemannian structure is locally isometric to the struc-
ture corresponding to Dido’s problem on the Riemann surface. We recall that
Dido’s problem is a particular kind of isoperimetric problem on a Riemann surface:
in it the exterior differential of the 1-form defining the isoperimetric constraint is
the area form on the Riemann surface. We recall also that the Heisenberg group
corresponds to Dido’s problem on the Euclidean plane, that is, to the case when
χ( · ) ≡ κ( · ) ≡ 0.

We see that a contact sub-Riemannian structure is locally isometric to its metric
tangent space if and only if χ = κ = 0 everywhere, or equivalently, the quadratic
form ξ 7→ r(ξ) with ξ ∈ T ∗q0

M has rank 1 for all q0. We have already explained that
this form cannot vanish.

Comments. The sub-Riemannian curvature was discovered quite recently (see
[4], [5]). Its definition resembles Riemann’s original construction of the curvature
named after him [24]. Theorems 7 and 8 and Proposition 5 were proved in [4]. The
typical 3-dimensional contact structures were thoroughly investigated in [1], [13],
and [7], well before the discovery of sub-Riemannian curvature.
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