CHRONOLOGICAL ALGEBRAS AND NONSTATIONARY
VECTOR FIELDS
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A calculus is developed, reflecting the most general group-theoretic properties of flows, defined
by nonstationary differential equations on manifolds.

INTRODUCTION

The basic object of study in the present paper is flows defined by nonstationary ordinary differential
equations on a smooth manifold. In it there is developed a calculus reflecting the most general group-theoretic
properties of such flows. The development of this calculus was basically stimulated by variational problems of
control theory, especially the many attempts to exfend the maximum principle of L. S. Pontryagin to singular
problems of control (cf. [1, 2, 4, 7-10]). However, we hope that it turns out to be useful also for solving certfain
geometric problems.

As is known, the main difficulty in expressing a flow in terms of the nonstationary vector field defining it
is the circumstance that the fields at different moments of time do not commute, In describing the phenomena
arising here an important role is played by certain nonstandard algebraic constructions. We call the corre-
sponding algebras "chronological," using a term which is used in physics in the analogous nonstationary situa-
tions,

Certain aspects of the "chronological™ calculus are discussed in [3]. Our account is independent of this
paper, but the proofs of certain assertions which are in [3] are omitted, substituting their corresponding ref-
erences.

The first section of this paper is devoted to the description of the necessary algebraic constructions, in
the second section we establish the connection between the algebraic objects introduced earlier and the group
of flows on a manifold,

1. Chronological Algebras

1. Definition and Examples of ch~-Algebras. Let ¥ be some algebra over a fixed field k, i.e., a vector
space over K with a bilinear product

(x, yy—xy, x, ye¥.

To each x€% we associate a linear transformation Ly of the vector space %, acting by the rule Iy = xy.
We denote by [x, y] the commutator of the elements x and y in our algebra, [x,y] = xy — yx.

On the other hand, [1yx, Ly] = Lxly — Lylx is the usual commutator of linear fransformations of the vec-
tor space ¥, turning the collection of all linear transformations & (%) into a Lie algebra over K.

In what follows, we shall always mean by [%] the algebra which one gets from the given algebra % if
one replaces the multiplication xy by the commutation operation [x, y} = Xy — yx.

Definition, The algebra % is called a chronological algebra, or for short, a ch~algebra, if Vx, y¢¥ one
has
Lieor=1Lx Ly], @.1)
i.e., the correspondence x — Ly is a homomorphism of the algebra [%] into the Lie algebra & (%) -

Equation (1.1) is equivalent with the following identity, which singles out chronological algebras from
the set of all algebras more directly:

XYy —y(x2)=(xy—yx)z Vx, y, z6¥.
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In particular, any associative algebra is a chronological algebra,

The condition of agsociativity of the multiplication in an arbitrary algebra can be written in the form

Ixy = LXLye Hence, in order that the chronological algebra % be associative, it is necessary and sufficient
that one have

Lyy=L,L, Vx€X.

In general, a ch-algebra does nof necessarily contain a unit element; however, to any such algebra one
can adjoin a unit. In more detail, let ¥ be a ch-algebra; we consider the direct sum of the vector space Y
with the field of scalars K and we define multiplication in the space %®K by the formula

(x+a)(y+P)=xy+Px+toay+taf Vx, ye¥, o, BEX.

One can verify directly that 949K with this multiplication is a ch-algebra, and the unit of the field K is the unit
element of this algebra, 1& + o) = x + @)l =x + a. A more important property of chronological algebras is the
following,

Proposition 1.1, If 4 is a ch-algebra, then [%] is a Lie algebra. In other words, the commutation opera-
tion defines in an arbitrary chronological algebra the structure of a Lie algebra,

The proof is simple, The definition of ch-algebra says that the correspondence x — Ly is a homomor-
phism of [¥] into the Lie algebra Z(¥). We adjoin to % a unit with the help of the construction described above,
so the correspondence x — Ly becomes an injective homomorphism of the algebra [%] into the Lie algebra
F(AOK).

Consequently, [¥] is isomorphic with some subalgebra of the Lie algebra & (¥®K), which means it itself
is a Lie algebra.

Examples of ch-algebras:

a) we have already remarked that an arbitrary associative algebra is a ch-algebra. Now we shall show
that if the given ch~algebra % is commutative, i.e., satisfies the condition

xXy==yx Vx, yc¥%,
then it is necessarily associative.

In fact, since [x, y] = 0, we get from the definition of ch-algebra that L, .,=71,L, Vx, y. Consequently,
Vx, y, 264

s

x(y2)=x(2y)=L.Ly=L.Ly=2(xy)=(xv) 2.

b) Let us assume that the characteristic of the field K is not equal to 2. Let ¥ be a skew-symmetric ch-
algebra, i.e,, a ch-algebra in which one has the identity

Xy=—yx Vx, ycd.
Then [x, y] = xy — yx = 2xy. Consequently, ¥ is isomorphic with the Lie algebra [%]; in particular, the
ch-algebra ¥ itself is simultaneously a Lie algebra., From the Jacobi identity in the algebra ¥ follows the
2quality Lgy) = [Lx, Lyl. On the other hand, as we know, [Ly, Ly] = L[x,y] = 2Ly). Thus, Ixy = 2Lxy. Con-

sequently, Lyy = 0 for Vx, y6¥. Finally, we get: a skew~symmetric algebra % is a ch-algebra if and only if the
sroduct of any three elements is equal to zero,

(x1)z=0 Vx, y, ze¥

¢) The following example is the most important for us. In contrast with the preceding ones it is not for-
nulated purely algebraically. Here we assume that K is either the field of complex numbers orthe field of
‘eal numbers,

Let £ be some finite-dimensional Lie algebra, We denote by £r the vector space of all absolutely con=
inuous mappings x:[0, co)—2, vanishing for the zero value of the argument. Thus, £ consists of those éle-
nents x{t) of the algebra & which depend absolutely continuously on the time t and are such that x(0) = 0.

The space &r is, of course, a Lie algebra,
[, yl(O)=[x (&), y (O] Vx, y€Lr.

We note that the value of the Lie bracket [x, y] at time t depends only on the values of x and y at this
1oment of time t, and the "prehistory" here is not considered at all. Now we define in £, another binary




operation, the result of applying which to the pair x, y, calculated at time t, depends essentially on the values
x(7), y(7) on the entire segment 0 = 7 = t. Namely, we set

(49) (t):§ (200 £y (@]

0

Integrating by parts, taking account of the skew-symmetry of the Lie bracket, leads to the formula
Xy —ys X =[x, yl.

Thus, the Lie bracket can be reconstructed from the operation "+, Actually, this operation defines a
ch-algebra structure on the space &r. In fact,
t

(1%, 12 (0= [1£ (0, y (N 2 (] v

0

:S[ HX(T), % z(17)] y(r)} dr+ St[x(r), [y(r), {Tz(r)ﬂ dt= X (y=2) (£) — y» (x+2) (£)-

0 ¢

Remark. Actually, we need a more general variant of example ¢) when the algebra ¢ is infinite-dimen-~
sional. However, in the infinite-dimensional case one requires a special refinement of the concept of con-
tinuity, so in this section we restrict the description to the finite-dimensional case only.

Later we shall need to consider graded algebras, so we recall the corresponding definition. By a grading

o

on a given algebra %, we mean a representation of 9 as a direct sum of subspaces, %:ZQX" , satisfying the

n=1

condition %,%,=%,,;, fori,j=1,2,... .7 Analgebra with a given grading will be called a graded algebra.
Each subspace ¥, will be called the homogeneous component of degree n of the graded algebra % , or, for
m—1

short, the n-th component, We say that the element x of % has degree n if xe(Z 9&)\(2 ii,) {the subtraction
i=1 \

=1
is set-theoretic). If 9{:2 %, is a graded algebra, then the algebra [¥] is also graded, where the homogeneous
n=I1

components are the same subspaces 3.

2. Free ch-Algebras. We begin with some standard definitions. The ch-algebras considered below, in
general, do not have units. All the algebras are taken over one and the same fixed field K.

Let S be some set. The ch-algebra % is called the free ch-algebra with generating set S if there exists
an imbedding {:S—% such that for any ch-algebra $ and any mapping [:S—%8 one can find a unique homomor-
phism [,: %% for which one has a commutative diagram

31\):::‘
ih f\
5>98.
Free ch-algebras with generating set S exist, e.g., as the quotient-algebra of the free (nonassociative)
algebra with generating set S by the two-sided ideal generated by elements of the form
% (y2)— g (£2) — (xy — 4.x) 2- (1.2)
Here x, y, z are arbifrary elements of the free nonassociative algebra.

From "abstract nonsense" the uniqueness up to isomorphism of the free ch-algebra with given generating
set S follows instantly.

Further, it is obvious that any ch~algebra 8>S, which is generated by elements of the set 8, is isomor-
phic to a quotient-algebra of the corresponding free algebra by some ideal.

We denote by Ag the free (nonassociative) algebra, and by %s the free ch-algebra with generating set S.
The algebra Ag has a natural grading, under which the elements of the first degree are precisely the linear
combinations of the elements of the set S, The algebra s can be obtained by factorizing Ag by (1.2). Since
this relation is homogeneous, the factorization induces the structure of a graded algebra on %s, where the

TMore correctly this should be called a positive grading, but no other kind of grading will occur for us.
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elements of the first degree are again the linear combinations of elements of the set S {we identify S with the
image of § under the factorization). In addition, the algebra %s is generated by its elements of the first de-
gree, just as Ag is.

We recall that [%s] is the Lie algebra with grading, whose elements are the elements of s, and the com-
mutator is defined by

[, yl=xy—ux Vx, yc¥s.

Let U[%s] be the universal enveloping algebra of the Lie algebra [9s], The grading in [%s] uniquely de-
fines a grading of the algebra U{%s], Consequently, U[%s] is a graded associative algebra,

The correspondence x—~L, (x6%) is a representation of the Lie algebra [%s] by linear transformations of
the algebra %s, considered simply as a vector space. This representation extends uniquely to a representation
of the associative algebra U[%s]. Such a representation we shall also denote by the letter I; namely, an ele-
ment u6U[%s] corresponds to a linear operator L.

Below, we denote multiplication in the associative algebra Ul%s] by a small circle "e," in contrast with
multiplication in the ch-algebra %s, for which we use no special notation.

LEMMA 1,1, The linear span of the set
LU[QIS}S:{L”S [ueU [¥s], sSicUs

coincides with the entire algebra %;.

Proof, If the element u of the graded algebra U{%s] has degree k = 0, then for any s ¢ 8 the element Lys
of the ch-algebra ¥; has degree k + 1, Hence it is natural to use induction on k, Namely, we shall show that
for any k = 0 the elements of degree k + 1 of the graded algebra s lie in the linear span of the set LU[QIS]S'

For k = 0 the assertion is obvious. Let us assume that it is true for all k less than a given n > 0, and we
shall establish it in the case k = n,

It is clear that all elements of the algebra s of degree n + 1 lie in the linear span of elements of the
form xy, where xy€¥%s, while the degree of both x and y does not exceed n. Using the inductive hypothesis, we

H
get that y= 2, L, s, , where u,6U [%s]. Thus,
i=] !

! H 4
Ry =Lot=Le X lusi= D LiLusi= 3 Licouyse
i=1 i=]

f=1

In this calculation we consider x as an element of the Lie algebra [%s]cU¥s] and we use the fact that L
is a representation of the associative algebra U[¥s]. The lemma is proved.

We quickly get a much more precise result,

We denote by S thelinear span of the set S in s. It is clear that the set S forms a basis for the vector
space S, We consider the tensor product Ul¥s]®S  of the vector spaces U[%s] and S, We define the structure
of an algebra on U[%s]®S by defining multiplication with the help of the formula

(1:981) (138 85) = (L1, S1)ou2) DSy,  Var,, us6lJ [Us], 1, 5,ES.

Ve denote the algebra so obtained by ®s. It is turned into a graded algebra if we set the degree of #®s equal
o the degree of u plus 1.

We assert that Bs is a ch-algebra,

Here is the verification:
(11:®51) (128 89) (1£3833)) — (112D 83) (11D51) (#5953)) = ((LuS1)o(Lt,S2) — (LuyS2)o(Lue$1))o183@8 3= [L 1, S1, L, S2]022,@ 5.
)n the other hand,

{(111©81) (12852) — (4:D89) (2,D51)) (2;855) = (LizysionSe— Lty 5 0u,81)015053
= (L(Lu131)°[4u232 - L(Luzs» 0L 4,81)o12;88 5= ({(L0,81) (L1,82) — (LuyS2) (L $1))o 125D 55

THEOREM 1.1, The graded ch-algebra % is isomorphic with the universal ch-algebra.




Proof. We define a map f:S—>%s by the rule f(s)=1gs.

From the definition of a free ch-algebra it follows that there exists a unique homomorphism of ch-alge-
bras f,:%s— D5, satisfying the condition

Fx(8)=1gs vseS=%Ys.
We shall show that fx is an isomorphism, For this, we establish the identity
o LyS)=ngs, vuel[%s], s€S. (1.3)

From (1.3) it follows immediately that the map f, is surjective and, considering Lemma 1, thatit is also injec-
tive,

Equation (1.3) will be proved by induction on the degree of the element u. For degree zero it is valid.
Let us assume that this identity holds for all elements of the algebra U [¥s]| having degree less than a given
n >0, and let the degree of u be equal to n.

The element u can be represented in the form

:
= 2 X;0U;,where X;6[¥s],

i=I

and the degree of xj and vj is less thann, i=1,,.., L

Further, we get from Lemma 1.1 that

Lwijtij’ 'wijEU[mS], fi,-ES-

L
X, =

=
Finally, 2= 3, (Lo, %)V
i,
By virtue of the linearity of (1.3), it suffices to verify it for each summand separately, i.e., one can
assume that u = (Lyt) o v, while the degree of v and w is less than n,
We have
JaLuS)= J o (LetLy8) = J s (Lat) (LoS) = Fy (L) [ (L)
We have used the fact that f, is 2 homomorphism of ch-algebras. Now, using the inductive hypothesis for each
of the two factors separately,
Fallad) £ o (L) = (@81) (15) = (Lot)vs = ugs.
Equation (1.3) and with it the theorem are proved,

Theorem 1,1 makes it possible to construct an additive basis of the algebra %;. By an additive basis of
an arbitrary algebra we mean a basis of the vector space which one gets from this algebra if one "forgets" the
operation of multiplication.

Let the set U%,=U{%s] form a basis for the n-th component of the graded algebra U[¥s], n=1,2,... .

From the proof of Theorem 1 [cf., in particular, (1.3)] it follows that the set {L s|u€%,, s€S} is a basis
of the (n + 1)~st component of the graded ch-algebra %s.

Further, the Poincaré— Birkhoff—Witt theorem gives a method for constructing an additive basis for the
universal enveloping algebra / [9¢], and here in constructing a basis for the n~th component one uses elements
of degree not higher than n of the algebra [¥s]. Finally, we get the following corollary.

COROLLARY 1.1, Let the set 4,=%s form a basis for the linear subspace of the algebra ¥s. consisting

of elements of degree_?mt higher than n, Let us assume in addition that .4, is a homogeneous basis (i.e., each
element of 4, lies in some homogeneous component of the graded algebra % ) and that the set 4, is ordered

in some way.

Let the symbol =2 denote the order relation (not greater than) in 4., and degy be the degree of the ele-
ment y of A.. Then the set




kX
(xe=Lyo.. oLy, S| Gi€dn i=1, 0.0 ke SES, 1= oW, and Y degyy=n
X i=1

forms a basis of the (n + 1)~st component of the algebra %s .

Thus, a method is indicated for the explicit construction of a basis of the (n + 1)-st component of the
algebra % if there is already known a basis for the components of lower degree. A basis for the first com-
ponent is obviously S.

In correspondence with the procedure described, we find a basis for the first four components in the
case when the set S consists of one element, S = {s}:

degree 1) yy = s;

degree 2) y; = Ly,s = s?;

degree 3) y; = Ly,s = s%s, y, = Ly, Ly,s = ss%;

degree 4) y; = Lygs = (sis)s, Vg = Ly4s = (ss? )8, ¥7 = Ly1Ly2 s (s%s), Vg = LY1L§’1LY1 = g(ss?)

We shall use this table again.

Let m be a positive integer. We denote by %, the free ch-algebra with m generators, i.e., the algebra

def
9, in the case when S consists of m elements, ¥,= ¥, ....s ;3. The homogeneous components of the graded alge-
bra ¥, are finite-dimensional vector spaces. Now we get a recursion formula for calculating their dimensions,

(n)

We denote by by, the dimension of the n-th component of the algebra %,,.

From Corollary 1.1, by standard arguments ysually used in combinatorial problems connected with par-
titioning numbers into summands, we get that bgﬂ is equal to the coefficient of t8 in the Taylor series expan-

. —5(B)
sion of the function oft: mE(l — tF) ’m". Whence follows the identity in formal series in the variable t

o

Douvp—pm Il ey 1.4

n=0 n=1

Equation (1.4) allows one to calculate successively the numbers bg). We write the first few:
B =m, o =m?, o ="5 Bm-1), 0 =" (8m®+3m41).

We introduce the notation ¢,(f)= 2, yb“*”t” , which is the generating series for the numbers b® ). Using
= O

2is series, one can transform (1.4) somewhat. Taking logarithms gives

0

m(@mm(f)'); ‘Zb(ﬂ In(l—l‘” :2

n=1 n=1=%

()

s tnk:ili 0 gk Et O ()

1 k=l n=

3

W

]

Thus,

3 gt
@ () =me?=!

Again let S be an arbitrary sef. We proceed to a more detailed study of the Lie algebra [%s]. We note,
rstly, that the algebra (/{%;s], like any universal enveloping algebra, has a natural filtration. Namely, we
mmote by {/, [%s] the linear subspace of [%s| generated by elements of the form yyo .. .°yk, k =1, 4[]
=1,..., k. Inparticular, U, [¥s}|=K, U;[¥s] consists of the elements of the form o +y, where €K, y€[%Us].
he increasing sequence of subspaces [/,[%s] also forms a filtration of the algebra U/ [%s].

This filtration of U[¥s| generates a filtration of the algebra ¥s in the following way., Let [¥s], be a
lear span of elements of the form Lys, where uclU, [¥s], s&S. The algebra ¥s coincides, by virtue of Lemma
1, with the union of the increasing sequence of subspaces [¥s],, which thus give a filtration of it,

In particular, [QJ:S]O=§ s, the subspace [¥s]; is the linear span of the elements of the set S and the elements
the form xs, where x@, sGS.
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Proposition 1,2. The subspace [3s],=[¥s] generates the Lie algebra [¥s]. In other words, any element of
%s can be expressed in terms of elements of [¥s], using only the operations of commutation and addition,

Proof, We note, first of all, that the assertion of Proposition 1.2 is equivalent with the fact that the sub-
space [%s]; ®KU[Us] generates the associative algebra U [%s], i.e., any element of U[¥s] can be expressed
in terms of elements of [Us]; and scalars with the help of the associative multiplication "-" and addition.

To prove Proposition 1,2, we use double induction, The first induction is on the degree of the elements,

Thus, let us assume that for elements of the algebra [9s] of degree no higher than n, everything is
proved. It is required to show that any element of the form Lys, where ueU[%s], s€S, where u has degree n, can
be represented in the form of a sum of commutators of elements of degree =n plus-some element of [¥s]:.

Since for degrees =n the assertion of Proposition 1.2 is assumed to be valid, the element u can be repre-
sented in the form of a sum of elements of the form %y . , . ox), where x:6[%s]1. Hence, without loss of gen~
erality, one can assume that u=x1°v, x16[%s]1.

The second induction is on the degree of x;.

a) Let us assume that x; has the first degree, so one can assume that x; = s, €S. In this case
Lys=Ls,ws="LsL,5=5(L,s)=]s1, Ls]-+(L,8)s:.

Since (L,s) 516 [¥s],. the initial step of the induction is done,

b) Let us assume that our assertion is true in the case when the degree of the element x:1€[¥s]; is not
greater than m. Let x; have degree m + 1, so one can assume that x; = ys;, where sy €8, and the degree of y
is equal to m; correspondingly, u = (ys;) e v. We have

Lys=LiysLys = (y51) (L,8) = [(451), L]+ (LyS) (451)-
Further,
L(LZ'S) (ySl) = L(LvS)Lysl = L{LWS,!/]SI + LyL(ng)Sl = L[Lvs’ ,,lsl + Lyg(va)Sl.

Obviously, Liz,s,8:€[¥s]i- In addition, the element y, having degree less than n, by virtue of the inductive hypo-
thesis of the first induction is the sum of elements of the form z;-, . . °z;, where 2,6|%sl;- Here the degree of
zy does not exceed the degree of y, i.e., m.

Correspondingly, y - (Lys) is the sum of the elements z;-., .. °z7° (LyS) = z; ow, Conseqguently, the ele-
ment LyQ (Lys)syfallsunderthe action of the inductive hypothesis of the second induction,

The proof of the proposition is finished.

We denote by [s£]; any basis of the vector space [%s];. The elements of the set [s£]: generate the whole
Lie algebra [¥s], however they are not independent generators of this Lie algebra. We consider, for example,
the case when the set S consists of one element S = {s}, and the basis [#], is homogeneous (in the sense of
degree). In this case, the first "commutator" relation between elements of the set [#]1 arises in degree 5.
In degree 5 such a relation is unique and can be found by direct calculation. In the notation introduced in the
table on p. 1655 it can be written as follows:

3y5S — BYsS +25S =3[y, Ys — Ys) -+ [ves yal -+ [92s [41s w2]] — o, [91, 85l

One should note that in components of degrees 1-5 the graded Lie algebra [%,] coincides with the free Lie
algebra with generators, let us say y;, V9, V3» V35, Vgs V555 YeS» YiS.

The question arises, is the Lie algebra [%] , or more generally, is the Lie algebra [%s], for arbifrary 8
the free Lie algebra with the corresponding set of generators ? We still do not know the answer to this question.

3. Group of Formal Flows of a Graded ch-Algebra. Let % be a graded ch-algebra over the field K of

characteristic zero, Then 9{:2 ,,. where ¥, is the n-th component of this algebra, n=1,2,... . By the

n=1

completion of the graded algebra & is meant the ch-algebra A=][ %,. The elements of % can be written in

n=1

the form of formal series, %= xzz XpfXn€¥,, n=1,2,.,.;, and the multiplication of such series is defined as

n=1




Ay

oo 0 o n—1
usual a la Cauchy: if xZE Xy y=z Yn, then xy=2 (2 xiyn—l)'
n=1

R=1 n=2 \i=1

The algebra ¥ is imbedded in the obvious way as a subalgebra of ¥ .,

In addition to the ch-algebra % , we shall use for auxiliary constructions the ch-algebra with unit 0K
(cf. p. 1651).

We define a map W:%—9 by the formula

5]

_ 1 - SP m
W(x)=1—e"51=2 —(—L" llzgom(—Lx) X

m=1

The map W is well-defined. In fact, the first nonzero term of the series (—L,)"x6% has degree not
less than m+i. We write the first terms of the series for W(x) separately

1 1
W(x):x—7xx+—6—x(xx)-—. ..
In the homogeneous component of degree 1, the map W coincides with the identity, so W is invertible

(implicit function theorem for formal series), We introduce the notation

Vi(x)=WT1(x}
Now we find a functional equation for V, which allows us to calculate V&) recursively up to higher de-
grees.

£
1—e™®

We denote by y {e)=

(\F

%ek the formal series in the variable e. (B is the k-th Bernoulli

=145+

x>
il

0
number,) We have

P 4 E)
A= ") v )= 175 L) V ().

T= WV (x)=1—e VI (1 —e V) 1= 7
X

Consequently,

V{(x)=21(Lv) x- 1.5)

It is easy to see that V(x) [as well as W(x)] can be represented in the form

V(=2 Vi),

where Vj is a homogeneous (nonassociative) polynomial of degree i in the variable x, Equation (1.5} makes it
nossible to calculate the polynomial V,, vr, with the help of the polynomials Vi with i < n. Here are the first
four polynomials:

1 1 1
Vi(x)=ux, VQ(x)zé Ly, xy x==5 XX, V3(x)-——T(xx)x + 5 X (xx),

Vo= & (60 %) X gy (x (20) £ o 15 2((50) ) 15 (2) (£0)-

We define, finally, the map
FEXE-Y
) the formula
s p=e T Wxty v, yei.

The space ¥ with the nonlinear multiplication operation (x, y) + f(x, y) is called the group of formal flows
f the ch-algebra ¥.

The fact that this is actually a group will be proved a little later; the origin of the name will become clear
rom Sec. 2,

Example. Let us assume that the ch-algebra % is associative. Then the ch-algebra ¥ is also associa-
lve. In this case all the formulas simplify a great deal. For example,




(=

W) =1—e *1=1—er= 2 )

a[*‘*

V(x)=W(x)=—In(1—x 2
fx y):e”(“x%—y:(l—y)x+y:x+y—yx-

Below, we shall need the Campbell—Hausdorffseries of the Lie algebra [¥]. We recall the definition of
this series.

o

Let 8:28,1 be an arbitrary graded Lie algebra over k, ﬁz{xzx Xn| X,68, n=1,2, ...} be its com-

n=1 n=I1

pletion. Further, U/ (2) is the universal enveloplng algebra with the corresponding grading, U(8) is its comple-
tion, The (associative) multiplication in J(¥) will be denoted by a little circle "=," Let x6€, so the element

¥ = L te...ex of the algebra U (Q) is defined,

nl

ca

n=0 " times

It turns out that vx, y€Q the element

In (e’ oeY)——Z( b (e¥oey—1)o.. o{eFoe¥ —1)

™ times

lies in the Lie algebra €=U (2) and can be represented in the form of a series in the variables x and y, con-
taining only the operations of addition, multiplication by scalars, and commutation (but not the associative
multiplication "."},

‘This series is also called the Campbell—Hausdorff series (for details cf. [5]). We write hix, y) = In
(e¥-e)EL. It is easy to see that the operation (x, y) b h(x, y) gives a group structure in the space ¢. We call
this group the Hausdorff group of the algebra &.

We turn to the ch-algebra 9.
Proposition 13. For any x, y6% one has

W (x. y)=F (W (x), W (9)).

From the proposition formulated it follows immediately that the operation &, y) & {{x, y) actually defines
in 4 a group structure, while this group is isomorphic with the Hausdorff group of the Lie algebra [%], and the
isomorphism is established by the maps W and V = W™,

Proof. The necessary equation is established by a direct calculation. In it we use the fact that h{x, y) can
be expressed in terms of commutators of the elements x and y:
W), W) =e "VOW (0) LW ()

—h(L L —1

—e (e (1 e )1 —e e T = 1 TN W (h (x, ).

The assertion of Proposition 1.3 is equivalent, of course, with the equation

VI(f(x, yh=a(V (x), V(9) Vx, yei.
As a corollary, we establish the following useful identity:

VU9 = gV (9 g V), 1.6)

Here is its derivation:
eEVU ) PR () Vg e PV IV () — gV () g V),
The unit element in the group of formal flows, just as in the Hausdorff group, is, obviously, the zero of

the algebra %. We shall give a formula for calculating the inverse element of a given x6¥ in the group of for-
mal flows. From the equation f(y, x} = 0, we get

y=—e"Vin g,

Example. Hereweusethenotationfrom Example ¢) of Paragraph I. Let x(tf), y(t) lie in some graded sub-
algebra of the algebra £r (for example, be polynomials with values in ¢ without free term). It follows from
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Proposition 1.3 that
R(x (@), y(@)=V (f W (x), W () )=V (1 —e "9 1) (¢).

If in this formula one sets x(t) = tx,y, y() = ty,, where x(, y, are some elements of 8, then we get the explicit
Campbell—-Hausdorff formula

h{xg yo)=V(1— e_L[y"C_fo“l)!t:I-
In fact, the right side of the last equation is the "commutator series" of x, and y,.

From the considerations of Sec, 2, it becomes clear that many classification problems of ordinary dif-
ferential equations reduce to the calculation of the space of cosets of the group of formal flows (of the corre-
gponding ch-algebra) by some subgroup. To conclude this section, we give a formula, very useful in con-
sidering such questions,

We want to transform the equation
Jix, W(2)) =Y, where x, Y, 26,
We get
€_sz+W (2)=y, e—sz+ 1—e 21 =y, et (x—D=y—1. 1.7

The map z elz is a linear representation of the Hausdorff group of the Lie algebra [¥] into the space
YoK . it follows from Proposition 1.3 that some subset Z<—% is a subgroup of the Hausdorff group of the Lie
algebra [¥] if and only if W(Z) is a subgroup of the group of formal flows of the ch-algebra . Thus, the study
of cosets of the group of formal flows by some subgroup is reduced fo the study of the orbit space of the linear
representation z + elz of the corresponding subgroup of the Hausdorff group on the hyperplane 9% —1.

2, Nonstationary Vector Fields

1. Preliminary Information. In this paragraph some definitions and formulas used in what follows are
collected., Basically this is standard material, of which there is a detailed account in the form we need in [3].
In the first section of the cited paper one can find all the proofs omitted here,

Let M be some manifold of class C*™, infinitely differentiably imbedded in a d-dimensional real vector
3pace RA, The algebra of all smooth (i,e., infinitely differentiable) functions on M we denote by &; the Cartesian
sroduct of d copies of the vector space ¢ we denote by @d,

Any linear map A of the vector space ¥ info itself corresponds to a linear map of «% into itseif, defined

yy the formula
D1 (A
A : :( E 7(Pi€q)’i::1""’d.
Py Agy

The map of M into RY which is the restriction to M of the identity transformation of the space R4 we
X1
lenote by the letter E. Thus, Vx=| : |6McRY E(x)=x. It is clear that E € &d,
Xd

By the symbol TxM we shall denote the tangent space of the manifold M at the point x € M. Then TxM is a
.pace of dimension dimM in RJ,

A linear map X:® — & is called a differentiation of the algebra ¢ if

X (0105) = (XP) o+ 01 (X D) V1, 26D

“he commutator [X;, X,]=X; X, — X, °X; of two differentiations X; and X, is again a differentiation. The opera-
ion of commutation defines in the space of all differentiations the structure of a Lie algebra, We denote the
Ae algebra of all differentiations of the algebra ¢ by the symbol D(%).

Just as in any Lie algebra, to each element X € D(®) corresponds a linear map adX, acting on arbitrary
* € D(®) according to the rule

(ad X)V =X, ¥].
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def
If one sets [ad X, ad Xz]:e(ad Xi)oad Xg) —(ad Xyead X1) VX, X26D (@), then from the Jacobi identity follows
the equation
lad X, ad Xo]=ad [X,, X,].
A differentiation can be multiplied by elements of the algebra ¢, If X € D(¢) and ¢ ¢ ¢, then by defini-
tion,
@X) =0 (X¢)) V60
It is clear that the map ¢X : & — @ so defined is a differentiation.
As is known, any differentiation of the algebra & is a first order differential operator and acts accord-
ing to the formula
(Xo) (%)= {do(x), XE(x) ) V€M, VoeP.
Here d is the differential of the function ¢ at the point x, XE is the function from &d  obtained by applying X

to the function E (XE(x)€T.M, vxeM) , and the brackets denote application of the linear form dy(x) to the vector
XE ).

Differentiations of the algebra ¢ are also called smooth vector fields (or simply fields) on the manifold M,
and the Lie algebra D($) is the Lie algebra of vector fields on M.

For any x € M, let 7(x) :Rd — M be an orthogonal projector of the space Rd onto TyM. To each vector
h € R~ we make correspond the vector field h € D(¢), acting according to the rule

T () — { do(x), w(x¥) A ).

Thus, _I;E(x) = 7()h.

In ¢ we define a seminorm - llg 1 for arbitrary integral s = 0 and an arbitrary set Uc M, which can
also assume infinite values, defining them by the formula

N

@ s, a0=sup sup la"--ﬂ
91— sup g S
1<sgn

—
)

Ao (x)| Voed.

P
If (p:( : )e@d , thenwe set | ¢|/s,y=max| ¢x{suv. Finally, for any vector field X ¢ D(®), we set IXlls,u =
Q4 *

def
IXEllg,y. For U =M, the indication of the set in the notation for the seminorm will be omitted, || ||;=| - ||+ .
We introduce the topology in ¢, defined by the family of seminorms I« ”s,K’ where s = 0, Kis anarbi-
trary compactum in R4, This topology, called the topology of compact convergence with all derivatives, turns
® into a Frechet space (a complete, metrizable, locally convex space}, and in what follows, we shall always
consider this topology in &,

By & (®) we denofe the associative algebra of continuous linear operators on ¢ info itself, The product
of two linear maps A; and A, is their composition A;<A,. It is easy to prove that any vector field X from D(¢)
is a continuous transformation of the space @, i.e., belongs to Z(®). More exactly, one has

X o <C sy KV XN e |9 llosre VOED.

With each smooth map P of the manifold M into itself we associate a linear transformation P of the space
¢, defining it by the formula
Po—qoP,
where ¢+ P is the composition of the map P and @, (p°P)x) = o(Px)).

One can show that P is a continuous transformation, i.e., that PEZ(®@). IfQ = P, P, is the composition
of the mappings P, and P, then obviously, @ = P, P,.

In what follows, all smooth maps P which appear will, as a rule, be diffeomorphisms of the manifold M.
The corresponding linear transformations Pe%(®) will also be called diffeomorphisms. The collection of all
diffeomorphisms forms a group with respect to composition, Here one has the identity

(Pri=(P).




If P is a diffeomorphism, then by direct calculation one verifies that for any vector field X ¢ D(¢), the
composition PoX P! is also a field. We consider the map X — PoXo P~!as a linear transformation of the
space D(®) and we denote it by Ad P,

~ def -
(AdP) X =PoXPIED (@) VX.
It is easy to see that (As i31) o (Ad iDZ) = Ad (f>1 s 132) for any diffeomorphisms 131, @2.

Later, we shall have to do with families ¢, t € R, of elements of ¢, fo which, in the standard way, one
can carry over the basic constructions of analysis, if one uses the topology in ¢, We note here only the most
necessary ones.

Continuity and differentiability in t of the family ¢ do not require special definitions, since ¢ is a topo-
logical vector space. A family ¢, t ¢ R will be called measurable if vxcM the scalar function t+ ¢;(x) is
measurable, and any measurable family will be called locally integrable if for any given ty, t,, s = 0 and com-~
pact KM

t,

Ve llsxdt< oo’

t

By the integral of a locally integrable family ¢, t € R, between given limits t;, t, we mean the function

g

x»jﬁ @ (x)dv, x6M.

ty

It is easy to prove that the function so defined belongs to ¢, while

ts
‘ J auar

t

i:
<.,\ ” DOy “:,KdT-
L

$,K

We call the family ¢, t € R absolutely continuous if there exists a locally integrable family ¥t such that

¢
CPtzq)tc'F) P, dv., Using the fact that in ¢ there exists a countable everywhere dense set of elements, one can
£

prove, just as for scalar functions, that for almost all t
£

d d (
aF V= g7 ;S Podre=1,.

Now we proceed to the consideration of families of linear transformations Ag, t ¢ R, from & (®), where
all the concepts of analysis, defined above for families ¢, automatically carry over to families of linear trans-
formations, if one defines the corresponding concepts for A; in the "weak" sense,

We define measurability, continuity, differentiability, local integrability, absolute continuity of a family
At, t €R, by requiring that vo€® the family Atp should have the corresponding property.

By the derivative of a family At which is differentiable at the point t; is meant the linear transformation

acting according to the formula
A, g=1lim (% (Atpror — At,) O
° 610

Correspondingly, the integral of a locally summable family At between the limits t; and t; is the linear
transformation defined by the formula
t, 2
jAfdrcp-s Apdr.
14 £

L 1

£y
Using the Banach—Steinhaus theorem, one can prove that the transformations Aéo and J A.dt are con-
tinuous, i.e., belong to £ (D). %

If the family At, t € R is absolutely continuous, then there exists a locally integrable family At such that
¢
AIZA,D-}-y A.de. From the analogous proposition for families gt it follows immediately that (d/dt)At = At for
o

almost all t.
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It is easy to see that if the family Bt is locally integrable and the family At is continuous, then the family
Ao Bt is locally integrable,
Finally, if At and Bt are absolutely continuous families, then the family At Bt is absolutely continuous
also and for it one has the formula for differentiating the product
d d d
at (ApBy) = (d_t At)oBt + At"(ﬂ Bt>~
We shall have to do, basically, with two classes of families of operators from £ (D), nonstationary fields
and flows.

By a nonstationary field on M or simply a field, we mean an arbitrary locally integrable family X¢, t € R
of vector fields on M, X,6D (D) V{ER, A nonstationary field is called bounded if

g
JiX dr< oo Vs3>0, Vi, tER.
iy

One should distinguish a nonstationary field, whichis a family of vector fields from D(¢), from the ele-
ments of this family. Sometimes, when it is important to emphasize this distinction, we denote the nonsta-
tionary field X¢, t €R by one letler X, omitting the index t, similarly to the way in denoting a function one
omits the argument, At the same time it is often convenient to preserve the symbol Xt also for denoting the
entire family of vector fields. This is done in those cases when it is clear from the context whether one is
dealing with the entire family {Xt[t € R} or with the one element of this family corresponding to the given
moment t.

By a flow on M we mean an arbitrary absolutely continuous family of diffeomorphisms i’t, t ¢ R, satis-
fying the condition ?0 =Id., We shall also call the family of diffeomorphisms Py corresponding to the flow }:Dt a
flow.

Let X¢ be some nonstationary field. We consider the linear differential equation

d

=7 A= ApX, 2.1)

with the inifial condition
Ay=1d (2.2)

with respect to the unknown family At of linear transformations from & (®) . By a solution of this equation with
the given initial condition is meant any absolutely continuous family A¢, t € R, satisfying (2.1) for almost all

£ € R and the condition (2.2). The absolute continuity of the solution sought guarantees the equivalence of equa-
tions (2.1)-(2.2) with the integral equation

Ay=1d- [ AXodr. (2.3)
g
The linear differential equation
d
—d—t—‘Bt— _XtDBt

will be called adjoint with (2.1). To it corresponds the integral equation
B,=ld— | X.eB.d-. @.4)
0

We call an absolutely continuous family invertible if v/eR the linealz transformation At has an inverse A; 6% (D)
and the family Af! is also absolutely continuous. An arbitrary flow P; is invertible because using the implicit
function theorem one can show that the family Pfi depends absolutely continuously on t.

Let us assume that some flow iDt is a solution of (2,1). Then the corresponding flow Py in the manifold M
is defined by the ordinary differential equation

%:XtE (x), xEMcR4, @2.5)
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because

dpt# o —
P -d—t—PE P oX E—=(X,E)P

Conversely, if Py is the flow in M, defined by the ordinary differential equation (2.5), then the corresponding
family Pt of elements of £(®) is a solution of (2.1).

If B¢ is an arbitrary solution of {2.4), then vge® the function (¢, x) b Bio&x) = wt) satisfies the linear

homogeneous first order partial differential equation

g
‘(3_(;)L+Xz‘mt:0? @y {X) =@ {x).

Proposition 2,1. Let X be a bounded nonstationary field. Then each of the equations (2.3) and (2.4) has
a unique solution, while these solutions are mutually inverse flows.,

Proof. First, we note that any solution At of (2.3) is a leff inverse for any solution Bt of (2.4). In fact,

A (AeB)= (2 A)oBit Ar(

Bt>;: ApX B, — ApXpeB=0.

Consequently, Ato By = Aye B,y = Id.

In addition, if A; is an invertible solution of (2.3), then the family AE1 is a solution of (2.4), because

= (ApAT") = ApX o AT+ Ap e AT

d

-d—t—' gz—XOA

Thus, taking into account the remarks made before the formulation of Proposition 2.1, this proposition
becomes a consequence of the theorem of existence of solutions for ordinary differential equations,

2. Chronological Exponential and Chronological Logarithm, Definition, Let Xt be a bounded nonstationary
field, The flow P, which is the unique solution of the differential equation

d A N N

=P, =PeX, P,=ldq,
t

is called the right chronological exponential of the absolutely continuous nonstationary field SX dt and we

introduce the special notation

_Correspondingly, we call the absolutely continuous field SX 4t the right chronological logarithm of the
flow Pt and we write

<

(strictly speaking, one should write

t

T
ﬁt:e}’p{g Xod0 |0<< ]andSXTdlen{Pt[O\<r<t};
0

0

t 14
however, we shall use the shortened notation}, Thus ﬁle;p S Xedt = SXTd"» expln P, =P,
0 )
Analogously, a flow Qt, satisfying the equation

it /Q\t:Xto/Q\tv @):Id,
t

t
is called the left chronological exponential of \ X.dv, and the field \ X.dv is called the left chronological
g
0

0
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logarithm of the flow Qt. Here one uses the notation

t H N
0, =éxp S X.d, SXtd’t=1th
Q

0

{the direction of the arrow is from right to left).

From Proposition 2.1) follows the formula

H -1 H
(&pSX,d—.) :&pS—XxdT- @.6)

0 0

As we remarked already, the operation of composition "" turns the collection of all diffeomorphisms of
the manifold M into a group. Correspondingly, the operation which associates with the pair of flows 151:, Qt the
flow Pt-Qt, t ¢t R, defines a group structure on the collection of all flows on M. We call the group so obtained
the group of flows (not formal!) on M.

Let X¢, Yt be two bounded nonstationary fields. Our next goal is to find the absolutely continuous field

In (e—x)p tS X1d~coe;()p tS Y.dr )

1] 0

H t
Temporarily, we denote the flow e;p S Xtd':oe;p S Y.ds by f’t. We have
G 0

t t t 4
4p._4a ( Xp S X cdvoexp S Ytdr) —exp S X dxeX pexp S Ydv
0 0 4] 0

¢

-1 14
1+ Py, =P (( exp § mr) X oexp { Yednt Y,)

0 [

or, using the symbol Ad (cf. p. 1661) and (2.6),

H
d ay Py <
£ p,:p,o((Ad eXpS —Yidr)X,-}—Y,).

0

i T ¢
Consequently, 1?1?’,;5 (( Ad e_x)pS — Yedd ) X+ Y1> dv. In the formula obtained (Ad e?p S —_ der) is a
i 0 0 —
family depending on t € R of linear transformations of the space D(®). Let Z € D(&), Differentiation of Adexp
?
—Y.d<Z with respect to t gives the equation

[}
t

1 ¢
< Ad e(;(p S —V.dvZ = Ed? (exp f —YdvoZoexp j der)
O U
o o o
= ——Yto(Ad exp | ——Ytah*)Z—{—(Ad exp j —YJT) ZoY = —ad Yp(Ad exp j —Yﬂr) Z.
§ b b

Since Z is arbitrary, this equation can be considered, at least formally, as a linear equation for Ad e(gpdf —Y.dr s
0

¢ !
- - 2.7
d%-Adexpj—Y1d1:=——adY,oAdexpj —Y.dr, Adld=Id. @.n
1] 4]

Taking account of the equation written, by analogy with the chronological exponentials of vector fields, we

t
use to denote Ad e;pj‘ —Ydt the symbol "left chronological exponential of —ad Y..":
0

¢ t
Adexp | —Vdr—exp [ —ad¥.dr,
Q0 0
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t t -1
In exactly the same way for a family Ad e;p j Y.dr =(Ad eTipf —der) and arbitrary Z € D(®) one has
4] 0

t
a

. ,
= (Ad exp jyfdr) Z= (Ad exp | der)o(ad Y)Z.
0

Y

9

Hence, we introduce the notation
f ¢
Ad e;p 5 Yidr=exp Y adY.dr.
4] 0

Then one has the analogue of (2.8)

/

(e;p {ad Ym)
0

Taking account of the notation just introduced, the expression for the chronological logarithm of the prod-
uct of two flows assumes the form

1

£
—exp | —adVdr. 2.8)
0

/

14 t 4 T
In (exp [ Xedroexp | Y}dt) = (e}’p [ —adyedox.+ Y,) dr. 2.9)
0 0 0 0

0

The use of the symbols for the chronological exponentials of £adY serves not only for a formal notation
4 4

for the operator Ad from the corresponding flows. Actually, the family Ad e;p f Y.dv (as well as Ad e;p f}’,dr
; .

) 0
also) can be reestablished, at least asymptotically, from the family ad Yt of transformations of D(<).

4
In fact, we set F,==Ad e;;pf}’fdr. One has the equation
0

i
FZ=Z+ | FwadY Zdv, VZED(®).
0
Substituting in this equation in place of Fy-adY;Z the expression ad ¥ 24 f Feoad Ygoad V.Zd0, we get

4

t T

t 1
FZ=Z+\YZdv+ ) dr | dv(FeoadYeeadVe2).
0

0 0
Continuing to act along the same lines, we arrive at the equation
i Ta—1

¢
\qdnj de ... j dr,(adY o ... cadY Z)+ R,
o g

0

1

FZ—Z7+

b3

1

t Tt ¢
where Rm=jdrl e j drt, (Fr ead ¥, o.. cad ¥y Z). Analogously, if one sets G,= Ad e;p j Y.dr, then
0 0 [}

m—1 ¢ To—1
GtZ=Z+21 Var ... ) dv,(ad¥ o ... 0adV Z)+ S,
== ] {3

T

3

-1

4
where §, = (gv, ... | dv,(Fe _ad¥yo ... 0ad Vs 2).
0

ST N—

t
Proposition 2.2, Let us assume that ‘YHYfHOa'r< 1. Then for any integral m, s > 0, compactum KM,
0

and arbitrary Z € D(s) one has the estimates

1665




¢ m—1 ¢
Adexp (VudrZ—Z— 3 [ ax,...
¢}

Tos A=l Q
. dty(adY 0., .cad?, Z ‘
5‘1 ( i e ) 5, K C’g [ X<l|s4297/ 1 "
o m—1t < Cie | Xellswm,udr ”Z”S+m,U’
Adexp [VarZ—2z— 3 (dv,. ’
ot O =10
oo | dr(adYepe.. 0ad Ve Z)
0 3,K ]

where C;, C, depend only on s, m, and K, and U is the neighborhood of radius 2 of the compactum K,

For the proof of this proposition, cf. [3].

Remark, If M is a real analytic manifold, and Y, Z are bounded analytic fields, then the series

Tor—1

H
[ar... [dva(adVepe.. . cad V. 2) E (x)
4] [y

s

2
i

converges under specific conditions, and its sum is (Ad e%jYTd-rZ) E(x).
0

t
Thus, to each bounded nonstationary field Xt corresponds the flow e—;cprTdT , while one has a formula
0

allowing one to calculate the field to which corresponds the composition of the given flows. Here there is an
analogy with Lie theory, In Lie theory, fto each element x of a given Lie algebra £ corresponds an element
eX of the Lie group.

In addition there exists a (Campbell—Hausdorff) formula allowing one for any x, y€8, sufficiently close
to zero, to calculate In (eXeY) with the help of only operations of the Lie algebra, i.e., addition, multiplication
by a scalar, and commutation. As a result, the study of a Lie group basically reduces to the study of its Lie
algebra, a linear object.

¢ ¢
In our case, to calculate (even if only asymptotically) the nonstationary field In (exp \ X dTeexp g Y:d7>
H H 0 4]

in terms of leTdr and fYTdr , One uses, in addition to the operations of addition and commutation, also dif-
Q

0
ferentiation and integration with respect to t. Thus, the operations of the Lie algebra turn out to be insufficient.

Now we describe the chronological algebra, which in this nonstationary situation plays the same role as the Lie
algebra of the given group in the classical Lie theory.

In Example c) of Paragraph 1 of the first section, to each finite-dimensional Lie algebra there corre-
sponds a certain chronological algebra, We apply an analogous construction to the infinite-dimensional Lie
algebra D(®).

Let D(®)T be the linear space of all absolutely continuous nonstationary fields X, t ¢ R, satisfying the
condition X; = 0. In the space D(¢)T we define a multiplication operation, turning this space into a ch-algebra.
This operation is denoted by "+" and is defined by the formula

(X*Y), = § [XT, %n} dz VX, YED (®)r.
[y}

The chronolegical algebra D@ 1 constructedinthis way we call the algebra of nonstationary vector fields.
It is easy to see that

(X+Y), — (¥=X),=[X;, Y] VX, YED (D).
We introduce in addition a commutative associative algebra ¢T. The algebra &7 consists of those measurable

families of functions ¢, ¢ € & VZ/€R | such that the scalar function |l @t”s,K is bounded on each finite segment in
R, for any s = 0 and arbitrary compactum K<=M.

The operation of multiplication in the algebra &7 is the usual pointwise multiplication of functions.
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We define an action of the algebra ¢ on the space of nonstationary fields D(®)T by the formula
f
(@-X),= S s ;.T X.dr, Vo&dr, XeD (O)r.

0
Such an action turns the space D(¢)T into a module over the algebra ¢T, and the identity
(CPW)X:CP'UPX) Vo, ‘Pe@r, VXﬁD ((D)T (2.10)
is verified directly.

Further, the Lie algebra D(®) consists of differentiations of the algebra &. This action of D(¢) on the
algebra ¢ extends in an obvious way to an action of D(@)T on &,

(Xg)y=X,q;, VXED (D)r, Voeds.
Here an arbitrary nonstationary field X ¢ D{¢)T becomes a differentiation of the algebra @,
X0 = (X P+ (X9), Vg, ped,. (2.11)
The actions of the algebra &7 on D(¢) and converseljr of D(¢)T on the algebra ep just described are

connected by the following relation:

X Y)=¢(X+Y) - (X9)-V, VX, VED (D), ob;. 2.12)
Equation (2.12) can be verified by direct calculation:

¢

(X (- y))t:S | Ko tegg Ve de=\ o [Xo G ¥e|det (X)L ¥ dem (9 (X)), 4 (X ) 1),

0 0 0

Now we are in the situation to define the structure of a chronological algebra in the space D (D);@Pr, ex-
tending correspondingly the operation "s" from the ch-algebra D(¢)7T to the whole Space D(d))T@JCIJT,

Namely, we set

Cp=0y, @EX=0p-X,
Xoo=¢- X +X¢, Vo, pedr, X6D (D).

It follows easily from (2.10), (2.11), (2.12) that the operation "«" so defined actually turns D (®);@®; into a
ch-algebra, We denote this algebra by the symbol 7.

All the operations noted above with vector fields and functions can be expressed in terms of the operation
"+"in §r. For example, YXED (®)r, ¢6dy, Xo=Xxp—p+X.

The ch-algebra ¥r has a ynit [in contrast with the ch-algebra D(¢)T]. The unit is the function from @7
identically equal to one,

Further, let X¢, Yy ¢ D(¢)T be such that (d /dt)Xt and (d/dt)Y¢ are bounded nonstationary fields. Then,
obviously, (d /dt)(X*Y)t is also a bounded nonstationary field. Consequently, the subspace of D(¢)T consisting
of fields, the derivative with respect to t of which is a bounded field, is a ch-subalgebra of D(e)7. We denote
this subalgebra by BD(¢).

We censider, finally, the ch-algebra BD(¢)tle], consisting of polynomials in the variable & with coef-

ficients in BD(¢)7. The elements of the algebra BD(®)1[e] are expressions of the form ZXZ-&“, where Xj ¢
le=1
BD(®)T (we consider only polynomials with zero free term). One multiplies polynomials in the usual way:

=1 j=1 k=2 \ilj—p

The algebra BD(d)7[e] has the obvious grading, where the component of degree m is the subspace {Xe™|
X € BD(®)p[e]}

The completion of the graded ch-algebra BD(®)7[e] is the algebra consisting of formal series of the form

EXie‘, Xj € BD(¢)7, which are multiplied a la Cauchy:

{am]
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(SeobEre)-S 0

To denote this completion, we shall use the symbol BD(®)1[[e]].

We have already described the chronological algebras we need and now we can return to the considera-
tion of the formula expressing the chronological logarithm of the product of two flows in terms of the chrono-
logical logarithms of the factors. First, from the equation

T \

! 4 f -1
in ( exp | Xedvoexp | mf) — ( Adexp | Yede) XedtVodr
0 0 B}

Q

¢ ¢ t ¢
it follows easily that if the nonstationary fields | X.dv, [ Y<dt belong to BD(¢)T, then ﬁ<e¥p Yerroe;pyder)e
0 0 !

0 0
BD (®)r also. Further, one has
-1

S s f \ L%
In <exp ‘g Xtdr) = —é) Adexp j‘ Xod6X dr. @.13)
0

In fact,

t T f}
exp ‘g (—Ad exp i Xede) dreexp joXtdr

3 T -1 > T —3 !
—exp | ((Ad exp | Xede) (— Adexp | XedB)XT—{—XT) dt = exp jo (— X+ X )dr=1d.
0 [¢} [}

\

¢ -1 ¢
From (2.13) we get that In <exp Yerr) lies in BD(®)T, provided (5 err)eBD (@)
0

k]
Consequently, the flows whose right chronological logarithms lie in BD(®) form a subgroup of the group
of all flows, Correspondingly, the map

b4

¢
(j X.dr, j Yta’-r) celn (e;p y erroe;p j Yrdt) (2.14)
0 0 4]

[4

defines a group operation in the space BD(¢)T.
¢
Let (f err)eBD (@)r. We consider the families of nonstationary fields depending on the variable ¢ ¢ R,
0

£

t
55. X.dv and ej Y.dv. It follows from Proposition 2.2 that the MacLaurin series with respect to € of the family
0 0

of fields
— — : — : : <« K
In (exp X e X dveexp j eYT'dr) =j (exp j —adeVodBe X, - er) dv
0 [4) 0 [¢]
has the form
t oo t T4 Tm—1
c 5’ (XT_%_ V. +2 (—e)m j dry f dvs e g dr, (ad Yyo...cad Y{me))dr. 2.15)
4] m=1 [§] [4]

The formal series (2.15) belongs, of course, to the space BD(#)T[[e]]. We denote this series by {

¢ ¢ P
(s) Xidrx, = ijdr). Let Es‘X,--——X(e) be an arbitrary series from BD(¢)T. If in [(eX, €Y) one substitutes for
0 [} =1

t t oo
ej X:dt or sthdr the series X (s)=¢ (Z etX, ), then again we get a formal series from BD(¢)[[e]]. Thus,
[} 0

i+l
i=0
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we get a map I(-, -): BD(¢)T[[e]] X BD(@)p[le]] — BD(®)p[le]]. This map is the "asymptotic decomposition" of
the group operation (2.14).

It is clear that it gives the group structuré in BD(%)7[[¢]]. In particular,
LX), LY (), ZEN=LX (), Y (), Z ),
VX (e), Y (&), Z{()€BD (D)7 [[e]l-

We recall now that BD(®)p[[e}]] is a ch-algebra, which is the completion of some graded ch~algebra.
According to Paragraph 3 of the first section, there exists a group operation

F s 3 BD@)r [l X BD (@) [ = B (@) [[¢]],

defining the group of formal flows of the ch-algebra BD{¢)pi[e]]. Here f(X(e), Y(¢)) can be expressed in terms
of X(&) and Y(¢) only with the help of the ch-algebra operations, i.e., in our case, the operations of addition,
multiplication by a scalar, and "*."

Proposition 2.3. The mappings I(+, +) and £(-, -) coincide, i.e., VX (2), Y (¢)6BD (@) [[e]] L(X (), YV ()=

f(X (&), Y(e)). In particular, [(X(e), Y(€)) can be expressed in terms of X(e) and Y(e) with the help of only the
operations of addition, multiplication by a scalar, and "*."

Proof. We use the notation of Paragraph 3 of Sec. 1, In this notation, £X(g), Y(¢)) = e_LV(Y(5>)X(s) +
Y(e). It is required to prove that 1K(e), Y(e)) = ¢ "V (€)X (e) + Y(e). It is clear that it is sufficient to verify

¢ t i3 t
the last equation in the case when X(e):ej Xdr, YV (e)=¢ f Y.dv, where j XedT and j Y.dt are arbitrary non-
[4 0 0 0

stationary fields from BD{&) 7.

? ?
The series l(e f Xdt, & 5 der) is the MacLaurin decomposition with respect to € of the family of fields
0 0

/ T

4
| (eEZp | —ad syede) X 4 eYr> d.
0 0

Hence, everything will be proved if we establish that the MacLaurin decomposition with respect to ¢

.

trx ng i( Ytdt)
of the fann’lyj‘ (expy —ad eyedG) eX.dr coincides with the series e Y fadeﬂ
4] 0 Q

Let Z (e)¢ be an arbitrary series from BD(¢)T[[e]], so

¢ ?

I3 t
Loy | eXudv=Z @)y [exiav=:[1Z @) Xdar —¢ [ (2d Z ()0 Xdr.
[} 0 aQ

[

Consequently,
f oo 1 4 {
eLZ(S)f jsXTdrz 2 T Lz j eX dr=c¢ j 428X .
0 i=0 0 0
VAR 1
In the last equation, setting Z (g);= —V (55 YrdT), we arrive at the conclusion that it is sufficient to prove the
[}

¢
—adV (e fYTdt>

i
coincidence of the series ¢ * with the MacLaurin decomposition in & of the family (e(;p f-ad eY1d1> X,
0

Finally, by virtue of the arbitrariness of the family X, one can assume that X; is equal to the stationary

?

{independent of t) field X, We denote the MacLaurin decomposition in e of the family (e;p y_ad s}rrdr) X, by
0

& (e). It is required to establish the equation in formal series

!
—adV <£ IR 41
=g 0

& (2) )Xo-
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Everywhere below, differentiation and integration of formal series are carried out termwise.

From the corresponding equation for the family exp j—ad Y.dtX, , we get that the series &,(s) satisfies
the linear differential equation .

L8 )= —(adV)E () &) =X, 2.16)

It is easy to see that the series &;(s) is the unique formal series in ¢ satisfying this equation with initial

condifion X,. In fact, the relation
H

& @) =Xo—e{ (ad vy & (9 av,
0

equivalent with the differential equation, uniquely determines the coefficient of the power e™*! in the series

&,(e) in terms of the coefficient of ¢, Ym > 0.
€ V Y dt

t
—adV ( )
Thus, Proposition 2.3 will be proved if we establish that the series e 0 X, satisfies the linear
differential equation (2.16), The initial condition is satisfied since V(0) = 0.

t
—adV (af Yl.dr>
It remains to differentiate with respect fo t the expression ¢ o X,. We use the formula

E%_ et POX = (ad j Pt Zt( )d(l)) " HOX,, @.17)

true for any series Zi(e) ¢ BD(¢)pl[e]]. This formula, in essence, is well known. Here is its derivation:
We fix ti, t, € R and we write P, (e) =%, ™%4®)  where p ¢ R. We have

—;_ib- P,(=)= eoadth(s>Dad Z., ) — Z: (e) be Pz (e)
— P, () 0e” 6 Doad (Z1, (6) — Z1, ())oe 449 — P (e)o ((Ad P4 ) ad (Z 1, (5) —Z1,(e))
= Py (2)o(" P24 ad (Z,, () — Zy, () = Py (e)e(ad (™% (Z1, (2) — Z1 ()))-

The last equation follows from the identity
[ad Z!, ad Z%=ad |2, Z7],

if one notes that (ad(ad Z"))ad 22 [ad Z1, ad Z27].

The differential equation for Pp(s) can be rewritten in the form
p r
Pye)=1d+ | Py ()oad (**4) (Z1, () — Z1, () 4.
0
Setting p = 1 and recalling the definition of Pp(e), we get
1
eadz,‘(s) adZt‘(S)—'r‘J‘ Pp.(a)oad (epadz,«l(a) (Z“(E)__Zt1 (e))) dpeadzt‘(e)-
0

Letting t, tend to ty, we get (2.17) instantly. If in (2.17) we integrate with respect to p, we get the equation

; adZ
d e —Id d adZ ,(e)
ﬁeadz’w)“(oz(ad("m £ 2,000,
DN 1 . ) N 1 . . . .
where — e is symbolic notation for the series E W(ad Z,())™ . Using the series ¥, introduced in
m=0

Paragraph 3 of Sec. 1, this equation can be written again in the form

L 5O X = (ad (1% (ad Z, (&) o Z, () o™ 212 X,
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It still remains for us to calculate ;TV (a j' der).
0

In Sec. 1 [formula (1.5)] we got the eqguation for V,

i 4 ¢ T
v <e Oj Yrd't) —y (LV <a :{ Y‘h» é" eVt =§ % (ad v (s § Yed6>> e¥ odn.

¢ H
d
Zv (e S mz».) =y (ad v (EOS Y,dr)) S

1]

Consequently,

Finally, we get

:
gt— e_adV<SEngdf>X0= ——(ad (1/)( (ad 1% (aSYtd'c)).

\

¢ ¢
! —adV( IR2 dr> —adV(eIY dr>
'Tft_v<sgytdt>)°e T xy= —cad Ve 0 X,

Proposition 2.3 is proved.

t t ¢
Remark., The seriesV (s S det) , involved in the definition of f (e j Xdr, e f de*-) , in general, diverges,
Q g 0

even if the field Y¢ is analytic, Nevertheless, in certain cases convergence holds all the same. ZLet, for ex-

ample, B be some subalgebraof the Lie algebra D(v), where on B there is given a norm |-, ||[X, Yi{i<|| X

[V VX, Y6RB, turning B into a Banach Lie algebra, If the nonstationary field Yt is such that ¥,6% V£€R, then
?

the series V (sijft) converges absolutely in B for all sufficiently small e, In [3] the convergence of this is
0

t
proved for sj]]}’fﬂd:<0.44. Asg 8. Vakhrameev proved, this estimate can be improved. Namely, the series
0

converges for

1 4
240
ESHYer‘<Sm~

9] 0
The last estimate is, apparently, sharp.

3. Nilpotence, Integrability. In this paragraph, there are described briefly some applications of the
results obtained. The proofs are only outlined, A detailed account (together with other applications) will be
given in later publications,

I. The considerations given above allow one to answer the question: in which case of integrating the non-
autonomous differential equation on M

¢
d ~ ~ ~
S Py=PeX, Py=1d, | XdweD @) @.18)
0

can one reduce fo integrating autonomous differential equations on the same manifold M. The precise result
will be formulated somewhat later, but first we introduce the following notation.

Let D (@)Y be a vector field (stationary), [ Yllg < =, s = 0. We write

f
et = e;;p S Ydr.

1]

Thus, etY is a solution of the autonomous differential equation
J > > 0) .=
ot Q=QpY, Qp=ld.
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Analogously we define

¢
e‘ad}’ze;ps adYdr.
9]

It is easy to see that
et¥opl¥ — ot +tY | V£ £,6R.
In particular, e-Y = (eY)~!, Consequently,
i

4
expOS Ydrv=e'" =exp S Ydr.

0
Analogous identities are also valid for ef2dY,

Let Y¢ be a family of vector fields from D(®) which is differentiable with respect to t ¢ R, There holds
d ¥ { —radr
Feli=e § e t = Y.dr. (2.19)

This equation can be derived without difficulty from (2.9) for the chronological logarithm of the composi-
tion of two flows. In fact, let t ¢ R be fixed and 6¢Y = Y¢e — Y¢. We have

1 ! ! I P,
e¥ 1ol = e;zp S (Y;+3Y)dv= e?p S Y droexp S (exp S —ad Ytdeéa}’) dv =e"toexp 3 e i, V.
0 a 0 4]

9

Differentiating the last equation with respect to € for € = 0, we get (2.19).

Let us assume now that the family Y¢ is such that
a
{emmeers L yav—X, ViR, V,—O0. (2.20)
0

Then the flow eXt, t € R, satisfies the equation

d

v
temg¥ e ¥y
e e tX, e Id.

Consequently,

|4
et = e_f()p S Xdr.
0
We shall give conditions sufficient for (2.20) to have a solution Y¢ which can be expressed in terms of
Xt and quadratures, As a preliminary, we recall some algebraic concepts.

An arbitrary algebra 9 is called nilpotent if there exists an integer n > 0 such that the product of any
=n elements of the algebra ¥ (independent of the arrangement of parentheses) is equal to zero, The least in-
teger n for which the indicated property holds is called the length of nilpotency of the algebra % .

By a nonassociative polynomial in one variable with real coefficients is meant an arbitrary element of the
free algebra over R with one generator,

Let p be some nonassociative polynomial and x be an element of the given algebra %. By the value p&)
of the polynomial p at the element x is meant the image of p under the homomorphism of the free algebra into
%, carrying the generator of the free algebra into x. It is clear that if the algebra ¥ is generated by the ele-
ment x, then any element of % has the form p(x), where p is some nonassociative polynomial.

Let us assume now that the ch-subalgebra of D(¢)T generated by the nonstationary field X= S X dr is
nilpotent. We denote this algebra by %y and we shall solve (2.20) with respect to ¥,6%x. o

Equation (2.20) is equivalent in the nilpotent algebra ¥y with the equation
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—Ly it
1—e 1 . 1 . m
where " :7(Ly)_’;2‘_;0-—————(”%1)I (—Ly)™.

In this sum only a finite number of terms are different from zero, since the algebra %y is nilpotent. Our
equation can be rewritten in the form
Y=y(Ly X.

We have already met such an equation [cf. (1.5)]. If has a solution in %x. If the nilpotency length of Ux
is equal to n, then a solution is (see p. 1657).

y=Sv,X).

i=]

We summarize what has been said:

Proposition 2.4. Let us assume that the ch-subalgebra %y of D(¢)T, generated by the field XX dz, is
nilpotent with nilpotency length n, Then

. = Vi(;X d1>
exquerr=e‘=1 0 , tER.
U

The homogeneous nonassociative polynomials V; can be calculated recursively, starting from (1.5). The results
of such a calculation for degrees 1-4 are given on p.1657.

There is an effective criterion for verifying whether a given ch-algebra with one generator is nilpotent
of length n, In Paragraph 2 of Sec. 1, there is described a method of constructing a basis for a free ch-algebra
with one generator. Let p; m=1,2,...;i=1,..., bi(m)) be nonassociative polynomials defining such a
basis. From the results of Paragraph 2 of Sec, 1 one can deduce the following criferion,

For a ch-algebra with one generator x to be nilpotent with nilpotency length =n, it is necessary and suf-
ficient that one have

P (2)=0 fa n<m<max{(2n—3;n), i=1, ..., 5™,

For n =2 and n = 3, we get the corollary to Proposition 2.4:

4
) (n=2) if“ X dr, Xt]zo V#6R, then
0

5 Xqdv

eprXTdr_eO :

t It

by (o= 3) if [ f X.dr, { f der,Xt”=0 and [ { [j X od, X1] dr,X,|=0 v#€R, then
0 4] [¢] 0

[ Xedt }[fxede,xf]d:
expj‘XTdr——eo %ol .

Remark. Let us assume that M = RK, and the function XiE (x) depends linearly on x ¢ Rk, XtEx) = Agx,
where At is a family of k X k-matrices. Then the flow Pix), which is a solution of 2.18), is a family of linear
transformations of the space R, Pi(x) = Utx, where Uy is a family of nondegenerate k X k-matrices. Here (2.18)
reduces to the linear matrix equation

au 2.21)
Tt ——A u. (

In this case Proposition 2.4 gives a sufficient condition for integrability of the nonautonomous equation
2.21) by quadratures, since linear autonomous equations are integrable by quadratures,

II. One can generalize the concept of distribution of planes to manifolds, introducing nonstationary distri-
butions. A certain algebraic interpretation of the concept of complete integrability of a distribution of planes
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allows one to introduce the corresponding concept also for nonstationary distributions. The results of Para-
graph 2 of the present section lead to conditions for the complete integrability of nonstationary distributions
analogous to the Frobenius conditions in the stationary case,

Suppose given a distribution of planes &= {II (x)| x6M)} on the manifold ¥, I (x)cT .M Vx€M. We as-
sociate with the distribution & the space of nonstationary fields &r consisting of those fields fX,dreBD (®)r
such that X,E (x)ell(x) Vxe&M, v¢€R.

We recall that a distribution of planes % is called completely integrable if through each point x ¢ M there
passes a submanifold N,cM such that for any y € Ny, the plane Ily is the tangent plane fo Ny at the point y.
With the help of the space &1, this definition can be reformulated in the following way.

The distribution of planes & is called completely integrable if the set of flows

t t
[e;p J X.dv j er-re.%'r}
Q 0

is a subgroup of the group of all flows. The fact that from complete integrability in the sense of the first defini-
tion follows complete integrability in the sense of the second is obvious. To establish the reverse implication is
also easy: letx €M, £, ..., § be a basis for the vector space Il (x) and Xy, . . . , Xk be vector fields on M such
that X,E (y)ell(y) VyeM and XjE(x) = ¢, i=1,..., k. The map

(Sts o r S0) > €500 L 0 RE ()

defines local coordinates on a certain submanifold of M. If the distribution % is completely integrable in the
sense of the second definition, then, as is easy to see, the vectors (8 /0sj) eS1X1,, . o eSKXKE (x) liein II
@X1o, , 0eSKXkp ) for i =1, ..., k. Consequently, our submanifold is the one sought and the distribution
P is completely integrable in the sense of the first definition.

Definition, By a nonstationary distribution on a manifold M is meant an arbitrary vector subspace Z'c
BD(®) 7T, closed in the topology defined by the family of seminorms Il - ”ts“fé' where
b

tts t
= | | X [lsxdT, £, 6ER, $320,

5,K iy

¢
SXcdr
0

K is a compactum in M.

A nonstationary distribution & is called completely integrable if the set of flows

U\“t ¢ dre.%‘}

1 t
{e;pu\ X.d
0

forms a subgroup of the group of all flows.

Proposition 2.5. If the nonstationary distribution & is completely integrable, then the space &' is a sub-
algebra of the ch-algebra BD(4)7

I3

4
Proof, Let j X, YYthEFJJ. From the definition of complete integrability it follows that the field
a0 p J :

0

also belongs to & for any € € R. On the other hand,

fr’l(e?pjexmoe 5 dr) UXdT )ydr)—s’f(fym) <5Xd1')‘t*(1(c) (e—0).

f

t
Consequently, the field (jyrdf)*<j der) belongs to .
5] D

Remark, The proposition proved gives a necessary condition for the complete integrability of nonsta-
tionary distributions. Is this condition sufficient? Let & be some nonstationary distribution, where the space
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& is a subalgebra of the ch-algebra BD(®)7. In Paragraph 2 of the present section (cf. Proposition 2.3) it

¢ f t ¢
was proved that for Xerr, jYTdre.%‘ the field In (e;p f Xtdroe;p y Yrd:), at least asymptotically, can be ex-
0 ] O 0

pressed in terms of jX dr and j}’rd"‘ with the help of the operatlons of the ch—algebra & . Thus, if the cor-
responding asymptotic expansion converges to In (expr droexp 5 Y1d1> fX dr, erdTE‘%' then the nonsta-

tionary distribution & is completely integrable. However, this asymptotic expansion in general may diverge.
Convergence holds in the case when the manifold M is analytic, the distribution & consists of analytic vector
fields, and satisfies strong restrictions, The precise description of the corresponding spaces of analytic fields
leaves the domain of the present paper.
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