Geometric Control and Geometry of Vector Distributions

A. Agrachev (SISSA, Trieste)
Rank k vector distribution Δ on the n-dimensional smooth manifold M is a vector subbundle of the tangent bundle TM:

$$\Delta = \{\Delta_q\}_{q \in M}, \quad \Delta_q \subset T_q M, \quad \dim \Delta_q = k.$$

Distributions Δ and Δ' are called locally equivalent at q_0 if \exists a neighborhood O_{q_0} and a local diffeomorphism $\Phi : O_{q_0} \to O_{q_0}$ such that $\Phi_*\Delta_{q} = \Delta'_{\Phi(q)}$, $\forall q \in O_{q_0}$.

Horizontal paths: $t \mapsto q(t), \dot{q}(t) \in \Delta_q(t)$.

Local bases: $f_1, \ldots, f_k \in \text{Vec}M$,

$$\Delta_q = \text{span}\{f_1(q), \ldots, f_k(q)\}, \quad q \in O_{q_0}.$$

Horizontal paths are admissible trajectories of the control system: $\dot{q} = \sum_{i=1}^{k} u_i f_i(q)$.
Let $\Delta'_q = \text{span}\{f'_1(q), \ldots, f'_k(q)\}$. We have $\Phi_*\Delta_q = \Delta'_{\Phi(q)}$ iff $\Phi_*f_i = \sum_{j=1}^k a_{ij}f'_j$, where $a_{ij} \in C^\infty(O_{q_0})$,

$$\det \begin{pmatrix} a_{11}(q) & \ldots & a_{1n}(q) \\ & \cdots & \\ a_{n1}(q) & \ldots & a_{n1}(q) \end{pmatrix} \neq 0.$$

In other words, the distributions are equivalent iff the control systems are equivalent by the feedback and state transformations.

Flag of the distribution:

$$\Delta^l_q = \text{span}\{(\text{ad} f_{i_j} \cdots \text{ad} f_{i_1} f_{i_0})(q) : 0 \leq j < l\},$$

where $\text{ad} f g \overset{\text{def}}{=} [f, g]$ is the Lie bracket.

Subspaces Δ^l_q do not depend on the basis of Δ since $\text{ad} f (ag) = a\text{ad} f g + (fa)g$ but the structure of the generated by f_1, \ldots, f_k Lie subalgebra of $\text{Vec}M$ essentially depends on the basis.
Local parameterization of the space of distributions: $M \approx \mathbb{R}^n$, $TM \approx \mathbb{R}^n \times \mathbb{R}^n$,

$$\Delta : \mathbb{R}^n \rightarrow G_k(\mathbb{R}^n),$$

where $G_k(\mathbb{R}^n)$ is the Grassmann manifold of k-dim. subspaces of \mathbb{R}^n. Recall that $G_k(\mathbb{R}^n)$ is a smooth $k(n-k)$-dim. manifold. Indeed, all k-dim. subspaces that are transversal to a fixed $(n-k)$-dim. subspace can be identified with graphs of linear maps from \mathbb{R}^k to \mathbb{R}^{n-k} (i.e. with $k \times (n-k)$ -matrices) and form a coordinate chart of $G_k(\mathbb{R}^n)$:

The space of rank k distributions is thus locally parameterized by $C^\infty(\mathbb{R}^n; \mathbb{R}^k(n-k))$.

![Diagram](image-url)
On the other hand, local diffeomorphisms of \(\mathbb{R}^n \) form an open subset of \(C^\infty(\mathbb{R}^n; \mathbb{R}^n) \). A smooth change of coordinates allows to normalize no more than \(n \) of \(k(n - k) \) functions. The space of equivalence classes should be at least as “massive” as \(C^\infty(\mathbb{R}^n; \mathbb{R}^{k(n-k)-n}) \).

1. \(k(n - k) \leq n \), i.e. \(k = 1 \) or \(k = n - 1 \) or \(n = 4, k = 2 \). Generic distributions can be completely normalized:

 \[k = 1 \] – rectification of vector fields;

 \[k = n - 1 \] – Darboux normal forms for differential 1-forms;

 \[n = 4, k = 2 \] – Engel structure.

2. \(k(n - k) > n \). Any classification of generic distributions must contain “functional parameters”.

First nontrivial case: \(n = 5, \ k = 2 \lor 3 \).

Theorem. Let \(\mathcal{D}_k(\mathbb{R}^n) \) be the space of germs of \(k \)-distributions in \(\mathbb{R}^n \). If \(k(n-k) > n \), then \(\exists \) a residual subset \(\mathcal{U} \subset \mathcal{D}_k(\mathbb{R}^n) \) s.t. no one distribution from \(\mathcal{U} \) possesses a basis generating a finite dimensional Lie algebra.

Main steps of the proof:

1. If two distributions possess bases which generate finite dimensional Lie algebras and have equal bracket relations, then the distributions are locally equivalent.

2. Take a Hall basis of Lie polynomials in \(k \) indeterminates and consider the set of all multiplication tables of Lie algebras additively generated by first \(m \) elements of this basis. The set of pairs:

\[\langle \text{multipl. table}, \ \text{codim. n Lie subalgebra} \rangle \]
forms a semi-algebraic subset of the appropriate vector space. Each pair generates a germ of a k-tuple of vector fields in \mathbb{R}^n. Moreover, $\forall N > 0$ the set of N-jets of these germs is a semi-algebraic subset of the space of N-jets and dimension of this subset does not depend on N.

3. The group of N-jets of diffeomorphisms acts on the space of jets of distributions and codimension of the orbits of this action tends to ∞ as $N \rightarrow \infty$.

Looking for invariants

The growth vector:

$$(\dim \Delta_q, \dim \Delta^2_q, \dim \Delta^3_q, \ldots).$$

We mainly study distributions with maximal growth vector (generic case). If $k = 2$, then
maximal growth is: \((2, 3, 5, 8, \ldots)\); in general:
\((k, k(k + 1)/2, k(k + 1)(2k + 1)/6, \ldots)\).

If \(k(n - k) \leq n, k > 1\), then any maximal growth vector distribution possesses a basis generating the nilpotent \(n\)-dimensional Lie algebra. This is not true, if \(k(n - k) > n\).

Natural questions:

- Equivalence problem for the maximal growth vector distributions: Given two distributions, how to check are they locally equivalent or not?

- How to characterize the distributions which possess bases generating the \(n\)-dim. nilpotent Lie algebra?
• Is there a chance to make effective the above theorem?

Cartan equivalence method, in principle, provides the answer to first two questions for the following values of \((k, n)\): (2, 5) (E. Cartan), (3, 6) (R. Bryant), and (4, 7) (R. Montgomery).

“Optimal control” approach

The space of horizontal paths:
\[
\Omega_\Delta = \{ \gamma : [0, 1] \to M : \dot{\gamma}(t) \in \Delta_{\gamma(t)}, \ 0 \leq t \leq 1 \},
\]
\[
\Omega_\Delta \subset H^1([0, 1]; M). \quad \text{Boundary mappings:}
\]
\[
\partial_t : \gamma \mapsto (\gamma(0), \gamma(t)) \in M \times M.
\]
Critical points of \(\partial_1|_{\Omega_\Delta}\) are singular curves of \(\Delta\). Any singular curve is a critical point of \(\partial_t \ \forall t \in [0, 1]\).
Moreover, any singular curve possesses a singular extremal, i.e. a curve \(\lambda : [0, 1] \to T^*M \) in the cotangent bundle to \(M \) s.t. \(\lambda(t) \in T^*_{\gamma(t)}M \),
\[
(\lambda(t), -\lambda(0))D_{\gamma} \partial_t = 0, \quad \forall t \in [0, t].
\]

We set:
\[
\Delta^\perp_q = \{ \nu \in T^*_q M : \langle \nu, \Delta_q \rangle = 0, \nu \neq 0 \},
\]
\[
\Delta^\perp = \bigcup_{q \in M} \Delta^\perp_q.
\]

Let \(\sigma \) be the canonical symplectic structure on \(T^*M \). The PMP implies: A curve \(\lambda \) in \(T^*M \) is a singular extremal iff it is a characteristics of the form \(\sigma|_{\Delta^\perp} \); in other words,
\[
\dot{\lambda}(t) \in \ker \left(\sigma|_{\Delta^\perp} \right), \quad 0 \leq t \leq 1.
\]

Characteristic variety:
\[
C_\Delta = \{ z \in \Delta^\perp : \ker \sigma_z|_{\Delta^\perp} \neq 0 \}.
\]
We have: $C_{\Delta} = \Delta^{2\perp}$ if $k = 2$; $C_{\Delta} = \Delta^{\perp}$ if k is odd; typically, C_{Δ} is a codim 1 submanifold of Δ if k is even.

Regular part of the characteristic variety:

$$C^0_{\Delta} = \left\{ z \in C_{\Delta} : \dim \ker \sigma_z \big|_{\Delta^{\perp}} \leq 2, \dim \ker \sigma_z \big|_{\Delta^{\perp} \cap T_zC_{\Delta}} = 1 \right\}.$$

If $k = 2$, then $C^0_{\Delta} = \Delta^{2\perp} \setminus \Delta^{3\perp}$.

Submanifold C^0_{Δ} is foliated by singular extremals and by the fibers $T^*_qM \cap C^0_{\Delta}$.
The movement along singular extremals is not fiber-wise!

Canonical projection:

\[F : C^0 \rightarrow C_\Delta^0 / \{ \text{sing. ext. foliation} \} \].

Let \(\lambda \) be a sing. extremal associated to a sing. curve \(\gamma \). Consider a family of subspaces

\[J^0_\lambda(t) = T_\lambda F(T^*_\gamma(t)M \cap C^0_\Delta) \]
of the space

$$T_\lambda C^0_\Delta / \{ \text{sing. ext. foliation} \} \cong T_{\lambda(0)} C^0_\Delta / T_{\lambda(0)} \Delta.$$

Then $$t \mapsto J^0_\lambda(t)$$ is a curve in the Grassmannian. Geometry of these curves reflects the dynamics of the fibers along sing. extremals and contains the fundamental information about distribution $$\Delta$$.

Let $$n = 5$$; two interesting cases $$k = 2$$ and $$k = 3$$ are essentially equivalent:

$$\dim \Delta_q = 2 \Rightarrow \dim \Delta^2_q = 3;$$

$$C^0_\Delta = C^0_{\Delta^2} = \Delta^2 \perp, \, \dim(C^0_{\Delta^2} \cap T^*_q M) = 2.$$

Reconstruction of the 2-distribution from the 3-distribution:

$$\Delta = \{ \dot{\gamma}(t) \in TM : \gamma \text{ is a sing. curve of } \Delta^2 \}.$$
Let $\pi : T_p(T^*M) \rightarrow T_qM$ be the differential of the projection $T^*M \rightarrow M$; then $\pi(J_0^0(t)) \subset p^\perp \subset T_qM$ and $t \mapsto \pi(J_0^0(t))$ is a curve in the projective plane $\mathbb{P}(p^\perp/\dot{\gamma})$.

Proposition: Distribution Δ has a basis generating the 5-dim. nilpotent Lie algebra iff this curve is a quadric $\forall p, q$.

In general, let $K_p(q) \subset p^\perp$ be the osculating quadric to this curve: $K_p(q)$ is zero locus of a signature $(2, 1)$ quadratic form on $p^\perp/\dot{\gamma}$. Finally, $\mathcal{K}(q) = \bigcup_{p \in \Delta^2_q} K_p(q)$ is zero locus of a $(3, 2)$ quadratic form on T_qM.
$K(q)$, $q \in M$ is and intrinsically “raised” from Δ conformal structure on M; $\Delta_q \subset K(q)$.

Assume that $k = 2$, $n \geq 5$. Let $p \in C^0_\Delta$, λ the sing. extremal through p and γ the corresponding singular curve. We set:

$$J_\lambda(t) = D_\lambda F \left(\pi^{-1} \Delta_{\gamma(t)} \right) \subset T_p C^0_\Delta / T_p \lambda.$$

Then $J_\lambda(t) \supset J^0_\lambda(t)$ and $J_\lambda(t)$ is a Lagrangian subspace of the symplectic space $T_p C^0_\Delta / T_p \lambda$. In other words, $J_\lambda(t)^\bot = J_\lambda(t)$, where

$$S^\bot \overset{\text{def}}{=} \{ \zeta \in T_p C^0_\Delta : \sigma(\zeta, S) = 0 \}, \ S \subset T_p.$$

Given $s \in \mathbb{R} \setminus \{0\}$, $s\lambda$ is the singular extremal through $sp \in C^0_\Delta$. Hence $T_p(\mathbb{R}p) \subset J_\lambda(t)$, $\forall t$ and $J_\lambda(t) \subset T_p(\mathbb{R}p)^\bot$.

Final reduction: $\Sigma_p = T_p(\mathbb{R}p)^\bot / T_p \mathbb{R}p$ is a symplectic space, $\dim \Sigma_p = 2(n - 3)$. Then $J_\lambda(t)$ is a Lagrangian subspace of Σ_p.
Important property: $J_\lambda(t) \cap J_\lambda(\tau) = 0$ for sufficiently small $|t - \tau| \neq 0$.

Take projectors: $\pi_{t\tau} : \Sigma_p \to \Sigma_p,$

$$\pi_{t\tau}\big|_{J_\lambda(t)} = 0, \quad \pi_{t\tau}\big|_{J_\lambda(\tau)} = 1.$$

Lemma:

$$\text{tr} \left(\frac{\partial^2 \pi_{t\tau}}{\partial t \partial \tau} \right) = \left(n - 3 \right)^2 \frac{t - \tau}{(t - \tau)^2} + g_\lambda(t, \tau),$$

where $g(t, \tau)$ is a smooth symmetric function of (t, τ).

“Ricci curvature” on λ: $\rho_\lambda(\lambda(t)) \overset{\text{def}}{=} g_\lambda(t, t)$.

Chain rule: let $\varphi : \mathbb{R} \to \mathbb{R}$ be a change of the parameter; then $\rho_{\lambda \circ \varphi}(\lambda(\varphi(t))) =$

$$\rho_\lambda((\varphi(t))) \dot{\varphi}^2(t) + (n - 3)^2 S(\varphi),$$

where $S(\varphi) = \frac{\dddot{\varphi}(t)}{e\varphi(t)} - \frac{3}{4} \left(\frac{\dot{\varphi}(t)}{\varphi(t)} \right)^2.$
“Ricci curvature” \(\rho \) can be killed by a local reparametrization. A parametrization which kills \(\rho \) is called *projective*; it is defined up to a Möbius transformation.

Let \(t \) be a projective parameter, then the quantity:

\[
A(\lambda(t)) = \left. \frac{\partial^2 g}{\partial \tau^2}(t, \tau) \right|_{\tau=t} (dt)^4
\]

is called the *fundamental form* on \(\lambda \).

For arbitrary parameter: \(A(\lambda(t)) = \\
\left(\left. \frac{\partial^2 g}{\partial \tau^2} \right|_{\tau=t} - \frac{3}{5(n-3)^2}\rho_\lambda(t)^2 - \frac{3}{2}\ddot{\rho}_\lambda(t) \right) (dt)^4. \)

Assume that \(A(\lambda(t)) \neq 0 \), then the identity \(|A(\lambda(s)) (\frac{d}{ds})| = 1 \) defines a unique (up to a translation) *normal parameter* \(s \).

Let \(z \in C^0_\Delta \) and \(\lambda_s \) is the normally parameterized singular extremal through \(z \). We set

\[
\bar{\rho}(z) = \rho_{\lambda_s}(z),
\]
the projective Ricci curvature. Then $z \mapsto \bar{\rho}(z)$ is a function on C^0_Δ which depends only on Δ.

Back to the $(2, 5)$ distributions. Such a distribution admits a basis generating the 5-dim. nilpotent Lie algebra iff $A \equiv 0$.

Example. A radius 1 ball is rolling over the radius r ball without slipping or twisting, $1 < r \leq \infty$. Admissible velocities form a $(2, 5)$ distribution. Then (I. Zelenko): $\text{sgn}(A) = \text{sgn}(r - 3)$;

$$\bar{\rho} = \frac{4\sqrt{35}(r^2 + 1)}{3\sqrt{(r^2 - 9)(9r^2 - 1)}}.$$

In particular, the distributions corresponding to different r are mutually non equivalent and the distribution corresponding to $r = 3$ admits a basis generating the 5-dim. nilpotent Lie algebra.