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How does the brain dynamically convert incoming sensory data into
a representation useful for classification? Neurons in inferior
temporal (IT) cortex are selective for complex visual stimuli, but
their response dynamics during perceptual classification is not well
understood. We studied IT dynamics in monkeys performing
a classification task. The monkeys were shown visual stimuli that
were morphed (interpolated) between pairs of familiar images.
Their ability to classify the morphed images depended systemat-
ically on the degree of morph. IT neurons were selected that
responded more strongly to one of the 2 familiar images (the
effective image). The responses tended to peak ~120 ms following
stimulus onset with an amplitude that depended almost linearly on
the degree of morph. The responses then declined, but remained
above baseline for several hundred ms. This sustained component
remained linearly dependent on morph level for stimuli more similar
to the ineffective image but progressively converged to a single
response profile, independent of morph level, for stimuli more
similar to the effective image. Thus, these neurons represented the
dynamic conversion of graded sensory information into a task-
relevant classification. Computational models suggest that these
dynamics could be produced by attractor states and firing rate
adaptation within the population of IT neurons.
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Introduction

The inferior temporal (IT) cortex is thought to play an

important role in visual categorization (Wilson and DeBauche

1981; Sigala and Logothetis 2002; Sigala 2004; Afraz et al. 2006;

Op de Beeck et al. 2008). IT neurons can be selective for

complex visual stimuli including people, places, and objects

(Desimone et al. 1984; Kobatake and Tanaka 1994; Allred et al.

2005; Hung et al. 2005; Kiani et al. 2007; Peissig et al. 2007). In

some cases this selectivity corresponds more strongly to

exemplar-specific than to category-specific information

(Vogels 1999; Rolls et al. 1977; Thomas et al. 2001; Freedman

et al. 2003). However, IT neurons can also be sensitive to the

features that distinguish categories and are influenced by

experience (Sigala and Logothetis 2002; Sigala 2004). At the

population level, neural responses may reflect performance

in behavioral classification tasks (Vogels 1999; Allred and

Jagadeesh 2007; Kiani et al. 2007; Koida and Komatsu 2007; Liu

and Jagadeesh 2008). Single IT neurons encode different kinds

of information about visual stimuli in their temporal firing

pattern, suggesting that the dynamics of visual responses may

reflect different kinds of processing of a visual image (Sugase

et al. 1999; Matsumoto, Okada, Sugase-Miyamoto, Yamane 2005;

Brincat and Connor 2006). These results suggest that IT can

represent both stimulus-specific information and categories. To

further understand this dual representation, we recorded IT

activity in monkeys performing a visual categorization task and

examined the dynamic conversion of incoming information

from complex visual stimuli into categories.

One way to extract relatively stable features from the flow of

sensory information to form associations and categorize

information is through the operation of attractor-based neural

networks (Hopfield 1982; Amit et al. 1997). An attractor

network has several preferred activity states, such that relevant

external inputs cause network activity to change dynamically

and approach one of these preferred states, usually the one

most closely correlated with some aspects of the inputs.

Attractor networks have been proposed to account for

numerous cerebral functions with discrete end values, in-

cluding spatial orientation, sensory pattern recognition, cate-

gorical perceptual judgments, and execution of movement

trajectories (Lukashin et al. 1996; Wyttenbach et al. 1996;

Bartlett and Sejnowski 1998; Fdez Galan et al. 2004; Wills et al.

2005; Wong and Wang 2006). In principle, attractor dynamics

might also be expressed in IT cortex, where associative long-

term visual memories are stored, to extract visual category

information. However, it is unclear which aspects of IT activity

might represent category boundaries and whether these

boundary representations are interpretable in terms of the

basins of an IT attractor network (Sakai and Miyashita 1991;

Amit et al. 1997). In this paper we present evidence of

converging neural activity in macaque IT cortex representing

the conversion of graded visual information into a category. We

then simulate a local neural network to assess the possible

relevance of attractor states and spike-rate adaptation to the

observed neural dynamics. These simulations support a contri-

bution by distributed local attractor networks, modulated by

firing rate adaptation, to drive neural response convergence to

reflect perceptually relevant categories.

Materials and Methods

We recorded from 154 IT neurons in 2 adult rhesus macaques (Monkey

G: 58 neurons; Monkey L: 96 neurons) using standard recording

techniques (Allred et al. 2005). Experimental design was identical to

that in Liu and Jagadeesh (2008), which contains a discussion of an

overlapping data set.

Experimental Procedure
Surgery on each animal was performed to implant a head restraint,

a cylinder to allow neural recording, and a scleral search coil to monitor

eye position(Fuchs and Robinson 1966; Judge et al. 1980). Materials for

these procedures were obtained from Crist Instruments (Hagerstown,

MD) or produced in-house at the University of Washington. Responses
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of single IT neurons were collected while monkeys performed

a delayed-match to sample task (Liu and Jagadeesh 2008). Spikes were

recorded using the Alpha--Omega spike sorter (Nazareth: Israel). Coded

spikes were stored on a PC at a rate of 1000Hz using CORTEX,

a program for neural data collection and analysis developed at the

National Institutes of Health (Bethesda, MD). Eye movements were

monitored and recorded (at 500 Hz) using an eye coil based system

from DNI (Newark, DE). All animal handling, care, and surgical

procedures were performed in accordance with guidelines established

by the National Institutes of Health and approved by the Institutional

Animal Care and Use Committee at the University of Washington.

Chamber Placement
The chambers were placed over the right hemisphere, using stereotaxic

coordinates. Neural recordings were targeted near the center of the

chamber (Monkey L: 17L, 17.5 A; G: 16 L, 17.5A); this location is in

between the perirhinal sulcus and the anterior middle temporal sulcus,

in reference to reconstructions from the structural MRI. Recording

depths ranged from 27 to 32 mm for Monkey L and 30 to 33 mm for

Monkey G. Depth measurements are from the dural surface, measured

during an early recording session. The recording locations are identical

to those in Liu and Jagadeesh (2008).

Recording Procedures
To isolate neurons, we moved the electrode while monkeys performed

the passive fixation task with a set of 24 images arranged in 12 pairs

(Supplementary Fig. 1). When the experimenter judged that a neuron

responded better to one of the 2 images in the 12 pairs of images, she

recorded from that neuron while the monkey performed the 2-

alternative-forced-choice delayed-match-to-sample (2AFC-DMS) task

with that stimulus pair.

We repeatedly sampled a single location until we could no longer

isolate cells with selectivity for one of the 12 pairs used in the

experiment. We moved the electrode location only when selectivity

was not detectable over 2--3 days of recording, and moved only slightly

across the surface (less than 1 mm). The range of sampled cites

spanned a 4 mm diameter circle centered on the stereotaxis locations

above. Using this procedure, we found potential selectivity for the 12

image pairs in 75% of the attempted sessions; thus, the cells included in

this sample were found frequently. The recorded neurons might

include samples from both TE and perirhinal cortex. No anatomical

confirmation of recording sites is available from these monkeys because

the monkeys continue to be used in other experiments.

Stimuli
Images consisted of photographs of people, animals, natural and man-

made scenes, and objects (Supplementary Fig. 1). All images were 90

3 90 pixels, and were drawn from a variety of sources, including the

World Wide Web, image databases, and personal photo libraries. Image

pairs were organized prior to recording sessions into 12 pairs of stimuli.

From these predefined lists of image pairs, selective neurons were

found (see Recording Procedures) for a total of 12 unique image pairs

used in the analysis. At the viewing distance used, stimuli were

presented on a computer monitor with 800 3 600 resolution (refresh

rate 100 Hz), and images subtended 4�. Cells selective for each of

the 12 image pairs were found, and the distribution of the cells for

each image pair is shown in Supplementary Figure 1 above each image

pair.

Effective and Ineffective Images
Based on the average response over trials during the sample pre-

sentation epoch, offset by a latency (i.e., over the 75- to 375-ms period)

we assigned the image in the pair that provided a stronger response to

be the ‘‘Eff’’ image, whereas the other was deemed the ‘‘Ineff’’ image.

Because we recorded from multiple neurons with the same stimulus

sets, either of the 2 images in a pair could serve as the Eff image during

a particular recording session. Across the sample included in the study,

each image in the pair was the Eff image in approximately half the

sessions using that pair.

Image Morphing and Ranking
Each of the 12 pairs of images was morphed using MorphX (http://

www.norrkross.com/software/morphx/MorphX.php), a freeware,

open source program for morphing between 2 photographic images.

We constructed 9 intermediate images in between the 2 original

images, as described in Liu and Jagadeesh (2008); the images and their

morph variants are presented in Figure 2 of Liu and Jagadeesh (2008).

These 9 intermediate images, along with the 2 images in the pair were

used as samples in the 2AFC-DMS task described above. The particular

pair used in a recording session depended on observing selectivity for

one of the images in the pair.

The morphing algorithm used by MorphX cannot be presumed to be

linear; nevertheless we assigned a level to each morph variant

corresponding to the ordering of each morph variant between the 2

original images from which they were morphed; There are 11 possible

sample images (the 2 original images and 9 morph variants). The

original image that produced a weaker response in the cell in

a particular session (Ineff, as defined above) was assigned morph level

0; the original image that produced a stronger response in the

experiment (Eff, as defined above) was assigned morph level 10. The 9

intermediate morph variants were assigned levels 1--9. Of these, morph

variants 1--4 were closer to the Ineff image, and therefore, images 0--4

are collectively referred to as the Ineff morphs. Morph variants 6--9

were closer to the Eff image, and therefore, images 6--10 are considered

Eff morphs. Morph variant level 5 was a priori defined as the midpoint

of the morph continuum between the 2 images. These designations

matched the behavioral reward contingencies, described below.

Behavioral Tasks

Two-Alternative-Forced-Choice Delayed-Match-to-Sample

On each day, the monkey performed the 2AFC-DMS task (Liu and

Jagadeesh 2008) with 2 sample images and 9 morph variants of those

images. In each trial, one sample image (or one of its morph variants)

was presented, followed by a delay and then followed by a pair of

choice images (‘‘choice array’’). The monkey’s task was to saccade to

the image in the choice that most resembled the sample image. An

example image pair and associated trials are illustrated in Figure 1. In

each trial a red fixation spot (0.3� x 0.3�) appeared at the center of the

monitor, and was the cue for the trial to begin. After the monkey

acquired fixation, there was a variable delay (250--500 ms) before the

onset of the sample image. The sample was presented for 320 ms. After

a delay period (700--1100 ms), the choice array (which consisted of

both sample images from which the morph variants were created, the

Eff and Ineff image) was presented. The choice images were presented

5� up (or down) and to the left of the fixation spot. Location of

individual choice images was randomized between the 2 positions (up

and down), so the monkey could not determine the location of correct

saccade before choice array onset. The different morph variants were

presented as samples in random order, until 5--17 trials were recorded

for each image.

When the original image pairs were presented as the sample, the

monkey’s task was to pick the identical sample image from the choice

array (Fig. 1a). When the morph variants were presented, the monkey’s

task was to classify the morphed sample as one image in the choice pair

by judging the similarity between the morphed image and the original

images (which were presented as choices). The monkey was rewarded

for picking image 0 (the Ineff) image when morph variants 0--4 were

presented as the sample image and the monkey was rewarded for

picking image 10 (the Eff) when morph variants 6--10 were presented.

For morph variant 5, the monkey was rewarded randomly, resulting in

50% reward for either choice.

The monkeys were trained over a period of 6 months before the

recording sessions began, with the 12 pairs of images and their

morphed exemplars, as described in Liu and Jagadeesh (2008), so that

both the morphed images and image pairs (Supplementary Fig. 1) were

not novel to the animal before the beginning of the recording session.

Analysis of Neural Data
Neurons were included in the population for analysis based on post hoc

analysis of selectivity for the image pair selected during the recording
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session (averaged responses over the sample presentation period to the

effective image, Eff, are to be at least 110% of those to Ineff), yielding

a neural population of 132 experiments. Four experimental sessions

were also discarded because of poor performance by the monkey,

resulting in a neural population of 128 experiments. Choosing different

populations of cells (all 154) or only cells which pass a selectivity

criterion (P value between the 2 original images < 0.01) does not

change the results shown in the neural data figures.

Average spike rates (Figs 2 and 3) were calculated by aligning action

potentials to the onset of the sample stimulus presentation, and

analyzing the data from 100 ms before the onset of the image to the

period 1000 ms after the onset of the image. The peristimulus time

histogram (PSTH) for each cell was calculated by averaging the rate

functions across the repeated trials of presentation of the same

stimulus. The population PSTH was calculated by averaging the PSTHs

across the set of 128 selective cells. All completed trials were included

in the analyses; trials were excluded if the monkey did not make

a choice from the 2 possible choice stimuli. Both correct and incorrect

trials were included.

All the tests of significance were performed on firing rate functions

FR(t). FR(t) was calculated for each neuron, for each sample image, by

averaging firing rate across multiple presentations of each sample in

overlapping time bins (also called epochs) of 100 ms, shifted in time

steps of 10 ms (Zoccolan et al. 2007). This procedure smoothes the

data. The average FR(t) was plotted at the middle of the 100-ms bin.

Therefore, average responses at time 0 consist of the average of

responses from -50 to 50 ms after stimulus onset. To calculate the

dependence of the neural responses on morph level, we performed

a regression analysis for each cell for each epoch. We regressed the

spike rate in an epoch against the morph level, separately for Eff and

Ineff images (Fig. 4). To compare the response to Eff with its 4 variants

and also Ineff with the other 4 ineffective variants (Fig. 5), we applied

an unbalanced 2-way ANOVA. In this ANOVA, we treated the cell as one

factor (128 level), and stimulus as the second factor (2 level: Eff vs. 9, Eff

vs. 8, Eff vs. 7, Eff vs. 6, Ineff vs. 1, Ineff vs. 2, Ineff vs. 3, Ineff vs. 4).

Morphs 2 levels apart were also compared using an unbalanced one-

way ANOVA, considering again ‘‘stimulus’’ and ‘‘cell’’ as 2 factors with 2

levels (2 vs. image Ineff, 4 vs. 2, 6 vs. 4, 8 vs. 6 and Eff vs. 8) and 128

levels, respectively (Fig. 5).

Network Simulations

General Characteristics of the Autoassociative Network

In line with previous work modeling IT networks (see e.g., Parga and

Rolls 1998; Roudi and Treves 2008), we have considered a simple

autoassociative network model comprised of 2 layers, shown schemat-

ically in Figure 6, which simulates a cortical patch as a local recurrent

network. The first layer functions as an input stage that projects

afferent inputs to the second layer; this layer is analogous to the input

from earlier visual areas to the second, recurrent layer. Units in the

second layer receive inputs both from the first layer, as well as from

units in the same layer, and provide outputs to one another (recurrent

connections). The second layer is analogous to the cortical patch

containing the neurons recorded in this study (neurons recorded from

inferotemporal cortex, IT). In our simulation, we consider the dynamics

of local interconnected networks in IT, and thus the simulation is

focused on the second, output, layer of units with recurrent

connections. The units in the network are labeled with an index i,

i = 1. . .N = 2500, but the connectivity between the units, or the

probability that 2 units are connected, does not depend on their

indexes. In a classic Hopfield model the connectivity is complete,

which means every unit in the network receives input from all other

units (Hopfield 1982). The connectivity can be sparse, but still

independent of the index, as in (Sompolinsky 1986) or in the highly

diluted limit considered by (Derrida et al. 1987). This type of model has

been thoroughly analyzed in terms of its storage capacity, yielding

a relation between the maximum number pc of patterns that can be

turned into dynamical attractors, i.e. that can be associatively retrieved,

and the number C of connections per receiving unit. Typically the

relationship includes, as the only other crucial parameter, the

sparseness of firing a, and for sparsely coded patterns (values of a close

to 0) it takes the form (Treves and Rolls 1991).

pc=k C=a logð1=aÞ ð1Þ
where k is a numerical factor of order 0.1--0.2. Representing the firing rate

of unit i by a variable ri, which can be taken as an average over a short time

Figure 1. (a) Classification task. After the monkey achieved fixation on a fixation
point, a sample, chosen at random among the 9 morphed images or the pair of
photographs from which the morphs were made, was presented for 320 ms. Then,
after a delay, the photographs appeared together as possible choices (targets). The
monkey’s task was to pick the target choice that more closely resembled the sample,
and make a saccade to it. (b) Behavioral performance. The data are plotted as the
proportion of times the monkey chose one of the images (the ‘‘effective’’ image for
the cell (see Methods), or Eff) of the 2 original photographs, as a function of the
different samples. The trend is linear in the central region between morphs 2 and 8,
but performance levels off at the extremes and their nearest neighbors, images Ineff
(0) to 2 and 8 to Eff (10). The data are fit with a sigmoid (blue line) and a line (black
line). Error bars are standard errors of the mean across different sessions. Images are
examples used in one session, where the giraffe was the Ineff image, and the horse
the Eff image.
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window, the sparseness a of the representation can be measured, by

extending the binary notion of the proportion of neurons that are firing, as

a =

�
+
N

i=1

ri=N
�2

+
N

i=1

r 2i
�
N

ð2Þ

Specific Model

In our model, units receive feedforward (FF) projections from an input

layer of another 2500 units. Each unit in the (output) patch receives

Cff= 750 FF connections from the input array, and Crc= 500 recurrent

collateral (RC) connections from other units in the patch. Both sets of

connections are assigned to each receiving unit at random. Weights are

originally set at a uniform constant value, to which is added a random

component of similar mean square amplitude, to generate an

approximately exponential distribution of initial weights onto each

unit. Once a pattern is imposed on the input layer, the activity

circulates in the network for 80 simulation time steps, each taken to

correspond to ca 12.5 ms (Treves 2004). Each updating of unit i

amounts to summing all excitatory inputs.
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j
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The first 2 terms enable the memories encoded in the weights to

determine the dynamics; the third term is unrelated to the memory

patterns, but is designed to regulate the activity of the network, so that

at any moment in time, x[
�
1
�
N
�
+

i
riand y[

�
1
�
N
�
+

i
r 2i both ap-

proach the prescribed value a (the pattern sparseness mentioned

above).

The simulation assumes a threshold-linear activation function for

each unit. This assumption enables the units to assume real

continuously variable firing rates, similar to what is found in the brain

(Treves et al. 1999).

ri=g ðhi –ThÞ if hi >Th
ri=0 otherwise

ð4Þ

where Th is a threshold below which the input elicits no output and g

is a gain parameter. In the simulations, induced activity in each unit is

followed by a competitive algorithm that normalizes the mean activity

of the (output) units, and also sets their sparseness to a constant a = 0.2

(Treves and Rolls 1991). The algorithm represents a combination of

subtractive and divisive feedback inhibition, and operates by iteratively

adjusting the gain g and threshold Th of the threshold-linear transfer

function. In Eq. 3,M can be any value between 0 and 1, and corresponds

to the proportional contribution of collaterals in driving the activity of

each unit. But, as previously shown (Treves 2004; Menghini et al. 2007)

the best performance is obtained when collaterals are suppressed

during pattern storage, in line with the Hasselmo argument about the

role of cholinergic modulation of recurrent connections (Barkai and

Hasselmo 1994). The suppression of collaterals during training provides

a mechanism for ensuring that during storage, the firing rate of output

units, ri, follows external inputs relayed by afferents to the network.

Without this suppression, afferent inputs are represented less

accurately in the pattern to be stored in the network, which ends up

largely reflecting the previously stored patterns. Therefore, in this

simulation, M = 0 during storage and M = 1 during testing,

corresponding to suppression of collaterals during ‘‘training,’’ and to

allowing their full influence during testing.

FF connections, playing the role of afferent signals to IT, are set once,

as mentioned above, and kept fixed during the simulation. Recurrent

connections, which are the storage site for the memory patterns, have

their baseline weight modified according to a model ‘‘Hebbian’’ rule.

The specific covariance ‘‘Hebbian’’ learning rule we consider prescribes

that the synaptic weight between units i and j, wij, be given as

wij=
1

Ca
+
P

l=1
cijg

l
i ðg

l
j
– �gÞ ð5Þ

where gli represents the activity of unit i in memory pattern l, and cij is

a binary variable equal to 1 if there is a connection running from

neuron j to neuron i, and 0 otherwise. �g is the mean activity of unit

j over all memory patterns.

Input Patterns

Each gl is the projection to the second layer of the input signal from

the first layer, glin, which is drawn independently from a fixed

distribution, with the constraints g > 0, <g > = <g2 > = a, where < >

stands for the average over the distribution. p uncorrelated patterns

were generated using a common truncated logarithmic distribution

(Fig. 6a, middle panel) obtained by setting for each input unit.

gin= –
1

2
logð1 –x=aÞ ð6Þ

If x < a, and g = 0 if x > a, where x is a random value with a uniform

distribution between 0 and 1.

The parameters used in the simulations are listed in Table 1.

When aout = 0.2, theoretical calculations indicate that the storage

capacity of the model is around 0.2--0.4 times the number Crc of

recurrent connections per neuron (in our simulations Crc = 500), Thus,

although finite size effects make the notion of storage capacity less well

defined for a network that is small, it is expected to be able to retrieve

on the order of 100--200 patterns. To assess the storage capacity of our

model, for each value of p we gave the trained network a full cue,

corresponding to one of the stored patterns, and after 80 synchronous

updates we measured the final overlap of the network state with the

presented pattern. If the final overlap is larger than 0.8, retrieval was

deemed successful. Repeating this process for 4 different seeds of the

random number generator and p different patterns, the maximum value

Figure 2. Single cells show a variety of neural responses to different morphed
images. (a) Response time course of 6 different cells to the 2 end point images Eff
(black) and Ineff (black dashed) and to the midlevel morph (blue dashed). (b) Firing
rates to the Eff and Ineff and 9 morph variants computed over time period 100--200
ms. The black horizontal line shows the period of sample presentation (320 ms).
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of p at which success still reaches 50% is around 250 patterns, higher

than but consistent with the theoretical expectation. We then ran

simulations in which we stored 20 or 160 patterns, which correspond

to conditions where the network is far below its storage capacity and

near its storage capacity.

Different units in the first layer receive inputs of variable duration,

drawn at random, for each unit from a logarithmic distribution. Inputs

were not removed sharply, but gradually, with a linear decay to zero.

The distribution of input offset latency is shown in Figure 6a (middle

panel). The output of units in this layer is a step-like function, active at

a certain level for a specific duration (Fig. 6a, middle), with a gradual

transition to zero. The average activity across all input units, for one

pattern, is shown in Figure 6a (right panel).

Once either p = 20 or 160 original patterns had been stored, the

network was tested with intermediate morphs. Original patterns were

then combined into pairs, and 9 ‘‘morphed’’ intermediate versions of

each pair of patterns were set by gradually changing their correlation

level with the 2 original patterns. This was achieved simply by taking

one of the original patterns and setting the firing rate of a randomly

chosen 10%, 20%, 90% of the input units to their firing rate in the

second original pattern. To simulate experimental procedures, for each

output unit we assign a pair of patterns to which the unit has a different

response during stimulus onset (a pair of ‘‘effective’’ and ‘‘ineffective’’

stimuli). In some simulations, intermediate morphs were produced not

between 2 stored patterns, but between one pattern that was stored

and one other pattern which was not stored in the network. It should

be noted that only the original patterns (either 20 or 160) were stored

in the network and not the intermediate morphs. The reason for this

choice is that in the experiment there seems to be no reason for the

monkey to deposit strong memory traces of the intermediate morphs,

which are ambiguous and nonmeaningful and, moreover, the monkey

does not have to recognize each individual morph image separately.

To test the network, we measured the time evolution of all output

units, over 80 time steps, after presenting a morphed pattern (or the

original images from which the patterns were morphed) in the input

layer.

Implementation of Firing Rate Decay

Spike-frequency adaptation, a gradual reduction of the firing frequency

in response to a constant input, is a prominent feature of several types

of neurons that generate action potentials, and it is observed in

pyramidal cells in cortical slice preparations (Mason and Larkman 1990;

Connors et al. 1982; Foehring et al. 1991; Lorenzon and Foehring 1992;

Barkai and Hasselmo 1994), or in vivo intracellular recordings (Ahmed

et al. 1998). The biophysical mechanisms of spike-frequency adaptation

have been extensively studied in vertebrate and invertebrate systems

and often involve calcium-dependent potassium conductances (Meech

1978; Sah 1996). However, little is known about its computational role

in processing behaviorally relevant natural stimuli, beyond filtering out

slow changes in stimulus intensity. Recent studies have sought to

attach computational significance to this ubiquitous phenomenon in

cortical circuits. Spike-frequency adaptation might be a determining

factor in setting the oscillation frequency of cortical circuits (Crook

et al. 1998; van Vreeswijk and Hansel 2001; Fuhrmann et al. 2002) for

the temporal decorrelation of the inputs (Goldman et al. 2002; Wang

et al. 2003), and in balancing coding and prediction (Treves 2004).

Figure 3. Time course of population responses to morphed images. (a) Time course of average differences between the responses to images Eff and Ineff (black) and to morphs
successively different from the images (Eff & Ineff) between which they were morphed, averaged across the population of cells n5128. In both panels, as in Figure 2 spike counts
are binned into 100 ms bins, which slide every 10 ms from stimulus onset, and are averaged across 15--20 trials per unit and morph step. (b) Mean response difference between
Eff and Ineff morphs in successive 100 ms epochs after sample onset. (c) Time course of firing rate to Eff and Ineff, and each morph variant, as in (a). (d) Mean response to Eff
and Ineff image and morph variants in successive 100 ms epochs as a function of morph level.
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We implemented adaptation by subtracting from the input activation

of each unit a term proportional to the recent activation of the unit.

The term is a difference of 2 exponentials with different time constants:

ri ðt Þ=gðhi ðt Þ – cðr1iðt Þ – r2i ðt ÞÞÞ

r1iðt Þ=r1i ðt – 1Þ expð –b1Þ + riðt – 1Þ

r2iðt Þ=r2i ðt – 1Þ expð – b2Þ + ri ðt – 1Þ
where ri(t) is the activity of unit i at time t, hi(t) is the summed input to

the unit at time t, and b1 = 0.1 b2 = 0.2, and c = 2 3 10-4 are time

constants. The input to each unit is then affected by its firing rate at all

previous time steps. The exponential decay makes its activity at the last

time step more influential than the others. The difference of the

2 exponentials means that the effect of adaptation appears only after

the second iteration. Note that this formulation reduces the effective-

ness of adaptation when t is small.

Results

We recorded the responses of 154 IT cells in 2 macaque

monkeys while the monkeys performed a 2AFC-DMS task. In

a previous report, we compared the discrimination capacity of

single neurons calculated in a fixed response epoch for

morphed photographic images to behavior with those same

images during the sessions in which the neurons were

recorded (Liu and Jagadeesh 2008). In this report, we

examined the changing dynamics of neural responses during

a fixed presentation of a static images morphed between

2 exemplars. The subset of cells in which one of the 2 choice

images produced a response at least 10% greater than the other

(n = 128) are presented in this analysis. Data are combined for

the 2 monkeys, and no detectable differences between the

2 monkeys were found.

The behavior in the task was linear for intermediate morphs

but essentially categorical for the morphs most similar to the

choice images. Figure 1b shows the proportion of trials in

which the monkey chose the effective image (Eff) by making

a saccade to it, across all sessions and all stimuli. The trend is

linear in the central region, morph levels 2 to 8, but levels off at

the extremes and their nearest neighbors, morph levels Ineff

and 1 and morph levels 9 and Eff. The central region can in fact

be fitted by a 1-parameter sigmoid (df = 6, v2 = 0.43) but is even

better fit by a straight line (df = 6, v2 = 0.33). Is a similar pattern

evident in the responses of individual IT units?

Most cells were also modulated by the degree of morph.

Immediately after stimulus onset (100--200 ms after stimulus

Figure 4. (a, b) Scatter plots of slope of linear regression (in Spikes/Second/Morph
Level) in late versus early epoch (100--200 ms vs. 400--500 ms after sample onset)
for each individual cell in the population. Histograms are the distributions of slopes for
individual cells in early and late epochs. n 5 128 experiments. (a) Slope of Eff image
and Eff morphs (Eff, 6--9), (b) slope of Ineff image, and Ineff morphs (Ineff, 1--4).
(c) Time course of slope (across population) as a function of time. One hundred
millisecond bins, stepped 10 ms.

Figure 5. (a) The times of convergence to the Eff (or Ineff) response for each morph
variant. This graph shows the time at which the responses to the morph variants
were first no longer significantly different form those to Eff (or Ineff) stimulus (taken
from the ANOVA, when P[ 0.01). (b) The same ANOVA-based analysis as in a, but
comparing the response to morphs 2 level apart, that is, to morph 2 versus Ineff,
4 versus 2, 6 versus 4, 8 versus 6, and Eff versus 8.
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onset) the response of 93/128 cells decreased as the response

was morphed away form the Eff image, and the response of

100/128 cells increased as the response was morphed away

from the Ineff image, as tested by the slope of the linear

regression of the responses for each cell. The pattern of

modulation differed among individual neurons, however. Six

example cells are shown in Figure 2a,b. By definition, the

average response to the Eff stimulus (solid line) was greater

than the average response to the Ineff stimulus (dashed line)

(Fig. 2a). Most cells’ responses increased systematically

between the Eff and Ineff image with the mean response to

the mid-morph stimulus lying somewhere between the 2

extremes (Fig. 2b). Eff images were defined on the basis of the

response during the stimulus epoch (75--375 ms after stimulus

onset). Immediately after stimulus onset (100--200 ms), 124/

128 cells had bigger responses to the Eff image (level 10) than

the Ineff image (level 0), replicating the response difference

based on the longer epoch in which the Eff and Ineff image

were defined. In the epoch immediately after the stimulus

onset, 99/128 cells had smaller responses to the middle morph

image (level 5) than to the Eff image (level 10); 106/124 cells

had bigger responses to the middle morph image (level 5) than

to the Ineff image (level 0) The responses of a smaller number

Figure 6. (a) Schematic view of the simulated network, including an input layer, which projects its activity to an output layer (recurrent connections) through sparse FF
connections. Different units in first layer receive input, generated using a common truncated logarithmic distribution (b, bottom middle), with durations drawn at random from
a logarithmic distribution (b, top right); one example is shown in circle at bottom. The units in this layer are active at a certain level for a specific duration, with a gradual transition
to zero (example shown in circle at top). (b) Simulated input activity pattern: the average activity across all of the input units, for one pattern, is shown in top left; distribution of
input offset times in top right, and firing rates in bottom middle. (c) Average network activity, in response to morphs obtained between 2 nonstored patterns, including a linear
decay of firing frequency. Because there are no stored patterns, no attractors appear in this simulation.

Table 1
Default values used in all simulations

Size and sparseness Others

Input array Nin 5 2500 Adaptation time constants b1 5 0.1
Output array Nout 5 2500 [(time step)�1] b2 5 0.2
FF connections Cff 5 750 c 5 2 3 10�4

Recurrent connections Crc 5 500 Initial neuronal gain g 5 1
Output sparseness aout 5 0.2 Initial neuronal threshold Th 5 0.05
Input sparseness aout 5 0.5
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(n = 35) of individual cells to the intermediate morphs, on the

other hand, did not vary linearly along the morphing dimensions

and did not increase monotonically with morph level (Fig. 2a,b,

bottom right). The range of firing rates across the morphs and

the time course of the responses was also variable, from 10--20

Hz for some cells, and up to 120 Hz for others.

Classification ability depended linearly on morph level for

intermediate morph levels but not morph levels close to either

familiar images, which were classified nearly perfectly (Fig. 1b).

A hallmark of this behavior might be reflected in the neural

responses, if neural responses were also linearly dependent on

morph level, except for those morph exemplars that were

similar to the Eff or Ineff image. Some neurons did appear to

follow this pattern, whereas others did not. One cell shown in

Figure 2b produced responses that roughly follow the pattern

seen in the behavior (Fig. 2b, top left), whereas others

produced linear responses for all morph levels (Fig. 2b, top

right, bottom left and middle).

In order to further examine the relationship between these

neural responses and the morph level of the stimulus, we

calculated population averages across the neurons (n = 128).

Because the behavioral response is symmetric around morph

level 5 (Fig. 1b), we initially took such symmetry for granted

and compared average responses to morphed images ‘‘equidis-

tant’’ to morph level 5 by calculating the difference between

them (Kreiman et al. 2000; Allred and Jagadeesh 2007; Liu and

Jagadeesh 2008). However, averaged across the population,

firing rate differences did not replicate the plateaus shown in

the behavior for morph levels close to the Eff or Ineff images

(Fig. 3a). Instead, average firing rate differences decreased

smoothly, almost linearly, with decreasing distance along the

morph continuum, throughout the response to the sample

stimulus (morph level main factor, 50--550 ms (P < 0.02),

nonparametric 2-way ANOVA (Friedman test)).

Symmetry in responses to Eff and Ineff morphs is not

preordained, however: subtracting the response to Ineff images

from the response to Eff images might obscure the time course

of the separate responses to Eff and to Ineff images. If either the

Eff or Ineff responses were strongly dependent on morph level,

the difference between the firing rates might mask the lack of

dependence on morph level of the other images. Image Eff,

moreover, had been selected from the pool of image pairs for

being visibly effective for that particular cell, across the group

of images used, all of which were generically effective for some

IT cells; although the ‘‘ineffective’’ image, Ineff, produced

a smaller response, but was not necessarily ineffective in

driving the cell. Frequently, cells responded to ‘‘ineffective’’

images producing responses substantially higher than the

baseline response. Therefore, the apparent linear trend in

Figure 3a could result from a strong quasi-linear dependence of

either the Eff or Ineff images on morph level, masking the other

half of the dependence.

The asymmetry between responses to Eff morphs and Ineff

morphs is visible when responses to each individual morph

level are plotted separately (Fig. 3c). The Ineff morph responses

were linearly dependent on the morph level throughout and

after the sample presentation nearly until the responses return

to baseline. The Eff morph responses, in contrast, are linearly

scaled as a function of morph level only for a brief time at the

first peak of the response, centered around 120-ms post-

stimulus onset. By 200 ms post-stimulus (average response in

the 150- to 250-ms epoch) the dependence of Eff morph

responses was decreasing, and in the linear regression as

a function of morph level, the slope decreases more rapidly

than the one describing the dependence of Ineff morph

responses on morph level. There is a second, lower response

peak around 270 ms, where levels Eff, 9 and 8 are together but

significantly above levels 7 and 6, and at 320 ms, at the end of

the sample presentation time, all morph levels 6 to 10 are

within the 95% confidence interval of each other. The response

to morph level 5, which was not consistently classified as either

stimulus choice and was randomly rewarded is different from

the response to both the Ineff and Eff variants until 700-ms

poststimulus, late in the delay period. There are 3 behaviorally

defined groups in the morph continuum, the Ineff group,

which must be classified as the Ineff choice, the Eff group,

which must be classified as the Eff choice, and the image

corresponding to morph level 5, which belongs to neither Eff

nor Ineff group, and can be classified as either Eff or Ineff, with

random reward for each possible choice. These 3 groups

remain distinct until at least 700 ms after stimulus onset; the Eff

group of stimuli, the morph level 5 (middle morph stimulus),

and the Ineff group of stimuli, even as the responses to the

individual images in the Eff group become indistinguishable.

The flattening of the linear relationship with respect to

stimulus morph level can be seen in Figure 3d, where the

average firing rates to the 11 morph variants are shown, over 4,

100-ms time periods. The data for Eff and Ineff morphs are fit

with separate lines. The slope of the linear fit for the Eff morphs

gradually drops off compared with the slope for Ineff images.

For the first 2 time windows (100--200 ms and 200--300 ms) the

slopes are not significantly different from each other (P = 0.85

and P = 0.20, for the 2 windows respectively), but are both

significantly different from zero (Eff: t-test, P = 0.02 and P =
0.01, Ineff 0.02 and 0.01, for the 2 time windows, respectively).

During the later epoch (400--500 ms) the slope of the linear fit

for the Eff morphs was not significantly different from zero

(ttest, P = 0.34 400--500 ms) and is significantly different from

the slopes for Ineff morphs (P = 0.01). Thus across the entire

population of neural data, unlike the behavioral data, the

response ‘‘plateau’’ appears to extend over the whole Eff range,

and does not extend over the Ineff range. Note, however, that

the notion of a response plateau is an oversimplification, which

does not really describe the response of individual cells (see

below).

Morph level is a main factor affecting the Eff responses from

70--220 ms after stimulus onset (unbalanced one-way ANOVA

shows that for Eff stimuli, the P < 0.05), whereas the Ineff

morphs responses remain significantly different from each

other for the entire sample presentation and into the delay

period (70- to 590-ms poststimulus onset, P < 0.05). Responses

to the Eff images, as a group, remain significantly above those to

Ineff images (2-way ANOVA, P < 0.05) until 900 ms, when

responses to both Eff and Ineff images are back at spontaneous

level. The similarity of the firing rates for the Eff image and its 4

nearing morphs could be a hallmark of the morphs having been

attracted to the basin of attraction of image Eff. These data

show that subtracting the response to Eff images, in Figure 3a,

had obscured the time course of the convergence among

responses to Eff images. This can be interpreted, presumably, as

an indication that there is no convergence of neural responses

to Ineff images, at least on average across the cells in our

dataset, whereas there is, on average, a convergence of neural

responses to Eff images.
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In going from single neurons to the population average, it is

important to take into account the potential differences among

responses of individual cells (Fig. 2). Is the population average

a faithful representation of most cells or does it reflect the

behavior of a few highly active cells? To address this concern,

we applied the same analysis used for the population average in

Figure 3d to each individual cell. We fit with a line the firing

rate of individual neural response as a function of morph level

for 4 different response epochs of 100--200 ms, 200--300 ms,

300--400 ms, and 400--500 ms. In each epoch the linear

regression was applied separately for Eff and Ineff images,

giving a fit slope for the 2 subgroups of stimuli. Slope is

expressed in units of spikes/second/morph level and reports

how well the response to the Eff and Ineff images was

modulated as a function of morph level. Figure 4 shows scatter

plots of the slopes in the late time window (400--500 ms) with

respect to the early one (100--200 ms), for Eff (Fig. 4a) and

Ineff (Fig. 4b) morphs, respectively, for each individual cell in

the population. Across the population of neurons, the slope is

significantly higher in the early epoch than in the late epoch

(sign test, P < 0.0001) for the Eff images (Fig. 4a). Most of the

points lie below the diagonal line indicating equal slopes. This

effect is not found for Ineff morphs, for which individual

neurons are uniformly distributed around the diagonal (Fig. 4b,

sign test, P = 0.1329). Furthermore, slopes for both the Eff and

Ineff morphs are significantly different from zero in the early

time window (sign test, P < 0.0001, population significance),

whereas in the late time window, only slopes for the Ineff

morphs are significantly greater than 0 (sign test, P < 0.0001).

Figure 4c shows time course of averaged slope (over all cells)

for Eff (red curve) and Ineff (blue curve) morph stimuli. In the

time bin 380--480 ms after stimulus onset, Eff responses no

longer depend on the morph level of the individual stimulus

(t-test, difference from 0, P > 0.05). At those same time periods,

Ineff responses still depend significantly on the morph level

(t-test, difference from 0, P < 0.0001) and Eff and Ineff response

slopes are different from each other (paired t-test, P < 0.01).

Ineff slopes remain significantly different from zero until the

700- to 800-ms time bin, when they are no longer significantly

different from 0 (t-test, difference from 0, P > 0.05). Thus, the

pattern of response dynamics seen in the population average in

Figure 3c,d is present in the individual cells (Fig. 4a-c). Both the

individual cells’ responses and the average population show

that response to the Eff morphs and the Ineff morphs depends

on morph level in the period immediately following the onset

of the stimulus. Over time, however, the responses evolve so

that neural responses to different Eff images all converge to

similar values. The responses to Ineff variants remain separated,

however, and the response remains dependent on the morph

level.

The response to the Eff and Ineff images (morph levels 0 and

10) were used to classify the 2 images, raising the possibility

that these images might skew the regression analysis. There-

fore, we performed the linear regression shown in Figure 4 for

each cell, after first eliminating the Eff and Ineff images from

the regression (i.e., morph levels 0 and 10). The analysis on this

limited data set confirms the analysis shown in Figure 4. In the

time bin 430--530 ms after stimulus onset, the responses to Eff

morphs no longer depend on the morph level of the individual

stimulus (t-test, difference from 0, P > 0.05). At those same

time periods, the responses to Ineff morphs still depend

significantly on the morph level (t-test, difference from 0, P <

0.0001). The Ineff slopes remain significantly different from

zero until the 660- to 770-ms time bin, when they are no longer

significantly different from 0 (t-test, difference from 0, P >

0.05).

The simple regressions used in this analysis do not

completely represent the patterns seen in individual cells.

Among several alternative analyses, one may fit regression lines

only to parts of the entire morph range. The behavioral data

raises the expectation that convergence might be expected

only for morph levels 8--10 (the original, and the 2 variants

close to it), suggesting the possibility that only some of the

stimuli for which a particular behavioral classification was

required consistently converge to the same node. Stimuli closer

to the response boundary may not always converge to the same

node (different stimuli may behave differently, and the same

stimuli may behavior differently in different trials or different

sessions). To address this question, linear regression can be

performed with data for morphs 0--2 and 8--10, corresponding

to the ‘‘plateaus’’ seen in the behavioral data, corresponding to

stimuli for which the behavior was roughly similarly (each was

classified consistently, respectively, as the Ineff or Eff image).

This regression analysis changes the time course of depen-

dence on morph level for the Eff and Ineff images. Eff responses

converge faster, resulting in zero slopes sooner after the onset

of the image. In addition, the Eff slopes actually turn negative,

with greater morph levels resulting in a slightly smaller

response at response onsets. Ineff slopes remain significantly

different from zero until late in the delay period, with the

difference between Eff and Ineff slopes increasing.

Part of the variability among cells may be due to the diversity

of image pairs used in the experiment, but the significant

trends shown in Figure 4 are replicated for individual images,

with the similarity to the population increasing with the

number of recorded units for each image.

Although the monkeys were trained before the beginning of

the recording session, improvements can be seen in behavioral

performance over the course of the multiple recording sessions

in the study. Behavioral performance was significantly better

during the second half of the recording sessions compared

with the first indicating that the monkeys’ performance

continued to improve over the course of the sessions

(Supplementary Fig. 2A, paired ttest, P < 0.01 for morph levels

1--4 and 6--9). Performance for the 2 original images was stable

over the course of the recording sessions (P = 0.52). An

improvement in behavioral performance might suggest that

neural representations were also changing over the course of

the study. To examine whether the dynamics of the response as

shown in Figure 4 changed over the course of the study, we

separately examined the neural response dependence on

morph level (shown for the entire data set in Fig. 4c) for the

first and second half of the sessions (Supplementary Fig. 2b,c).

The results suggest that the dynamics of the response

convergence (the pattern of results shown in Fig. 4) changed

over the course of the recording sessions. The difference in

slope for Eff stimuli at stimulus onset compared with stimulus

offset was significant only during the 2nd half of the sessions

(n = 62 first half, n = 66 second half, Eff slope at 100--200 ms

compared with slope at 400--500 ms, P = 0.0160, early sessions,

P = 0.0959). Furthermore, the difference between slopes for Eff

and Ineff images was significantly different only in the second

half of the sessions (slope at 400--500 ms, compare Eff vs. Ineff

slopes, P = 0.0105, early sessions P = 0.2374). The trends were
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compatible with storage of the patterns (as described in the

network model) improving over sessions.

Neural responses evolve, or change dynamically over the

course of the presentation of the constant, unchanging

stimulus to show convergence to different response levels.

Does the dynamics of this response evolution depend on the

morph level? To address this question, we performed an

analysis of variance to examine how separated responses to

different morphed images remained as a function of time

(Supplementary Fig. 3). The times of convergence to the Eff (or

Ineff) stimulus for each morph variant are shown in Figure 5a.

This graph shows the time at which the responses to the

morph variants were no longer significantly different form the

Eff (or Ineff) stimulus (P value of ANOVA < 0.01 Supplementary

Fig. 3a,b). The response to the Ineff variants remains different

from the Ineff until long after the stimulus presentation, until

approximately 600 ms after stimulus onset. Eff variants, on the

other hand, take progressively shorter times to converge to the

Eff response as the morph level increases (indicating higher

similarity to the Eff stimulus).

Figure 5a illustrates the timing of convergence of the

response to each morph toward that to the Eff or Ineff image.

We can also assess convergence between pairs of other morph

levels. The analysis comparing how quickly different pairs of

morph levels converge is shown in Figure 5b, using the same

analysis of variance used in Figure 5a, but comparing other

pairs of morphed stimuli (Supplementary Fig. 3c). We

compared the response to morphs 20% apart, by running an

unbalanced one-way ANOVA analysis for responses to morphs 2

versus image Ineff, 4 versus 2, 6 versus 4, 8 versus 6 and Eff

versus 8. The data in Figure 5b shows that the Ineff morphs

remained separated for durations longer than the presentation

of the sample stimulus (greater than 500 ms) (Fig. 5b, left 2

points). The pair of morphed stimuli that lie across the

behaviorally defined classification border (morphs 4 and 6,

remain separated for over 700 ms). The Eff morphs, on the

other hand, converged to one another at durations close to

sample duration, or even shorter (Fig. 5b, right 2 points).

Simulation Results

What is the neural mechanism underlying this convergence?

Can the observed convergence express the outcome of visual

signal processing within IT cortex, or must it be driven by

afferent inputs that have already converged before reaching IT,

or top-down, by signals from more advanced processing stages

(Bar et al. 2006)? If the convergence can result from local

processing within IT, what is the contribution of network

interactions, that is, of dynamical attractor states determined by

the structure of recurrent connections in IT? Or, could the

convergence reflect, in part, simple firing rate decay of

individual IT neurons, expressed as a gradual decay, rather than

network dynamics? Firing rate adaptation effects are conceptu-

ally quite different from those arising out of genuine network

interactions, but may in practice be difficult to distinguish. If

firing rate adaptation progressively suppresses the responses to

Eff and to its closest morphs 9, 8, . . . effectively squashing them

onto each other, the functional consequences may resemble the

convergence posited to result, in network models that do not

include firing rate adaptation, from synaptically mediated

attractor dynamics. We addressed these possibilities by simulat-

ing a simple local network model of cortical activity, with and

without firing rate decay, to assess the relative contribution of

attractor dynamics and of adaptation. Note that this simulation

does not rule out all forms of adaptation, and a sufficiently

complicated form might replicate response dynamics in this

individual data set, even if the simple form does not.

Our model simulates a single hypothetical local network

within the IT cortex. The network includes an input station,

simulating afferent inputs from earlier visual areas, which

projects its activity to an output layer, simulating an IT patch,

through sparse FF connections. The units in the output layer

receive both FF and recurrent connections at random, with

unstructured baseline weights (see Fig. 7a and Methods).

Simulation 1

In simulation 1 we assessed the effect of firing frequency

adaptation on responses, modeled as a decay term, a linear

decay as a function of the recent activity of the cell. Can

convergence result from such firing rate adaptation over time?

The simulated network is a simple approximation of inputs

and recurrent connections to a patch of cortex. It consists of

2500 units that receive FF projections from an input layer

containing another 2500 units (Fig. 6a). Each unit in the

(output) patch receives approximately 750 FF connections

from the input layer, and 500 recurrent connections from other

units in the output patch (Fig. 6a). The connections are

assigned at random and, because there is no storage of activity

patterns in this first version of simulation, weights are not

modified to reflect memory storage. The weights are instead set

to a random value and then normalized to generate an

approximately exponential distribution of initial weights onto

each unit (see Methods, and Fig. 6b). Once a pattern is imposed

on the input layer, the activity circulates in the network for 80

simulation time steps, corresponding to ca 12.5 ms (Fig. 6c)

(Treves 2004). The details of the network, including signals

receiving by each unit and their activity functions, together

with the default values for parameters used in the model are

reported in Methods.

The input patterns simulate the hypothetical input produced

by 20 unrelated visual images, and morph variants of them.

Inputs consisted of 20 uncorrelated input patterns combined

into pairs. Nine ‘‘morphed’’ intermediate versions of each pair of

patterns were set by gradually changing the correlation of one

original pattern with the other pattern. To simulate experimen-

tal procedures, for each output unit we assign a pair of patterns

to which the unit has a different response during stimulus onset

(a pair of ‘‘Eff’’ and ‘‘Ineff’’ stimuli). Then, the response of

individual output units to these selected patterns and to their

morphs was monitored. The duration of the inputs was variable,

to simulate the potentially variable duration of different input

streams. Input offset time for each unit is driven from a sharp

logarithmic distribution, peaked at time ca. 300 ms (Fig. 6c).

In the first simulation, we examined the effect of firing rate

decay. Firing rate decay was modeled (see Methods) by

subtracting from the sum of FF inputs and recurrent connec-

tions to each output unit a fraction of its own recent output

activity. The trace of its ‘‘recent’’ activity is calculated with

a convolution kernel, expressed as a difference of 2 exponen-

tials, with inverse time constants b1 = 2b2 = 0.2 (time steps)-1.

This form of firing rate decay applies to all output units from the

second time step, for all the succeeding 100 time steps.

The average network dynamics shows that linear decay of

responses over time produced by adaptation does not produce

a response convergence similar to that observed (Fig. 6c). In
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the early phase of the simulated neural response, during which

the network is mostly driven by afferent inputs, average

network responses to all morphing levels are well separated.

Then, as the afferents are gradually removed, the population

response to all the morph levels decrease, but there is no

tendency for the Eff responses to group or squeeze together

(Fig. 3b).

Convergence might require ‘‘memories’’ to be stored within

the network. Unlike the simple local network above, with no

stored patterns, in autoassociative networks memories can be

stored as stable network activity states, called attractors

(Hopfield 1982; Treves and Rolls 1992; Amit 1994; Brunel 1996).

A stored pattern, may be then be retrieved when a noisy or

occluded version of it (a partial cue) is provided as input. This

ability is due to the formation of dynamical attractors that

capture network activity, if an input is sufficiently close to one

of the patterns stored. The formation of the attractor landscape

is achieved by creating overlapping patterns of synaptic

modifications adhering to the Hebbian paradigm (Hebb 1949)

such that each synapse is involved in the storage of multiple

related memories. Inevitably, this common synaptic represen-

tation implies interactions between memories stored in the

same network. The putative presence of long-term memories

in IT and the observation of increasing stimulus selectivity,

through learning, in individual neurons (Sakai and Miyashita

1991) suggest that attractor dynamics may be plausibly

expressed in IT cortex, where visual object memories are

likely stored, and may drive the extraction of visual category

Figure 7. (a) Sample of single units from the model; Eff: solid, Ineff: dashed, mid-morph: dashed-dots (b) Simulation: 160 stored patterns, tested with morphs between stored
patterns, no adaptation. (c) Simulation: 160 stored patterns, tested with morphs between stored patterns, adaptation. (d) Simulation: 160 stored patterns, tested with morphs
between one stored and one unstored pattern, no adaptation. (e) Simulation: 160 stored patterns, tested with morphs between one stored and one unstored pattern, adaptation
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information. Therefore, in our next simulation, we considered

an autoassociative network, with memory patterns stored in RC

connections through a realistic synaptic modification mecha-

nism.

Simulation 2

Does the addition of stored patterns produce convergence in

the network? The properties of the network were identical to

those used in simulation 2; the only addition is that in

simulation 2 the recurrent weights are modified to store

memory patterns before testing the response of the network to

patterns and their morphs. First we produced 200 uncorrelated

patterns, using a common truncated logarithmic distribution,

from which the firing rate of each unit is driven independently

(see methods). Then we stored in the network P = 160 of these

patterns, by modifying the RC weights of the output layer with

a ‘‘Hebbian’’ learning rule (see Methods). Either 2 stored

patterns or a stored pattern and a novel one, from other 40

unused patterns, are then combined into pairs, and 9

‘‘morphed’’ intermediate versions of each pair of patterns are

presented as the input. As indicated in the Methods, this results

in a network that is below its storage capacity

In the first simulation with stored representations, we

analyzed network activity in response to stimuli obtained by

morphing between 20 sets of 2 stored patterns (40 out of 160

stored patterns). Single units show a variety of behaviors in

response to morphs (Fig. 7a), resembling the diversity

observed with real cells. Averaged population activity qualita-

tively mirrors the convergence seen in the population average

of IT neural responses, for Eff morphs (Fig. 3c). Figure 7b shows

the mean responses in the simulation, after averaging over all

units. In the first phase, whereas sufficiently many units in the

network still receive afferent inputs, all the morphs are well

separated. Rather abruptly, as the average ratio of RC to FF

activation increases beyond a critical level, network activity

was determined by the attractors embedded in the RCs. The

responses to the Eff morphs are all attracted to the full

memory pattern Eff. However, in this simulation, unlike in the

data, the responses to the Ineff morphs are also attracted to

a basin of attraction for the Ineff morphs, a feature not seen in

the data (Fig. 3c). Adding adaptation to this simulation

(as described for the first simulation), does not produce the

lack of convergence for Ineff morphs seen in the neural data

(Fig. 7c).

Testing with morphs between 2 stored patterns corresponds

to the assumption that both images used in the real experiment

had memory representations in the local network that includes

the particular unit being recorded from. The experimental

procedure for picking image pairs for each cell, on the other

hand, might introduce a bias, where the Eff image is more likely

to be represented by a ‘‘neural assembly’’ to which the unit

belongs, than the Ineff image, which might have its own

representation elsewhere over IT (Haxby et al. 2001; Kiani et al.

2007). To model this situation, we tested network activity in

response to morphs obtained between an (Eff) stored pattern

and one that had not been stored. Figure 7d shows that the

convergence of the mean responses, again averaged over all

units, is now limited to the Eff patterns. We found that the

morph level, above which responses converge, is strongly

dependent on the storage load. With low load (Supplementary

Fig. 4, 20 stored patterns), all morphs converge to the stored

pattern Eff, whereas when many patterns are stored (Fig. 7d,

160 stored patterns), the basin of attraction effectively shrinks,

and only the morphs closer to the Eff pattern showed

convergence.

Simulation 3

We then combined stored attractors with firing rate decay

over time. In this version of simulation, we used the same

network as in Simulation 2, with 160 stored patterns, and

applied firing rate adaptation, modeled as in simulation 1. We

again monitored the firing activity of output units in response

to intermediate morphs produced between one stored

pattern and one novel pattern. In this way we could assess

the effect of response decay on the simulation in Figure 7d (or

Fig. 7b). Introducing this form of firing rate adaptation did not

change the qualitative behavior of the network (Fig. 7e or Fig.

7c): in the first phase of the response, when the network is

mostly driven by afferent inputs, different morphs are linearly

separated; in the second, ‘‘memory’’ phase, when afferent

inputs have been largely removed, the network activity

converges to either one or 2 attractor states, depending on

whether both patterns are stored (Fig. 7c) or only one is

stored (Fig. 7e). Adaptation however introduces a third phase,

in that after some time it brings the network out of the

current attractor state and makes single units fire in

a somewhat erratic manner to the different morphs and

brings all responses close together. This disorderly behavior

imitates the population average of neural responses (Fig. 3c).

The simulation also shows a crossover between the responses

to Eff and to morphs 9, 8 and those to morphs 7, 6, which is an

effect of adaptation (Fig. 7e,c). This crossover is also visible in

the experimental data, in that around 450-ms poststimulus

onset the average firing rate of the response to stimulus

Eff drops below the responses to the rest of the Eff images

(Fig. 3c).

The simulations can thus replicate the linear dependence of

the response on morph level at stimulus onset (Fig. 3c,d) for

both Eff and Ineff images, and the selective convergence of the

Eff responses, whereas the Ineff morphs remain separated long

after the stimulus has been turned off. The simulation best

matches the data if we assume that 1) many patterns are stored

in the network (close to storage capacity), that 2) the sampled

cells belong to the representation of only one of the 2 images

that are morphed into one another, and if we add some degree

of response adaptation. Even with these characteristics, the

simulation cannot replicate another feature of the data: the

gradual convergence over time among Eff responses (Fig. 3c).

In addition, compared with the real data the onset transient is

less peaked in the simulation, and the delay activity returned to

a common value for both sets of morph sooner (Fig. 7e) than in

the real data (Fig. 3c).

Discussion

We recorded from individual neurons in IT cortex while

monkeys performed a classification task on morphed visual

images. We report here a population of IT neurons whose

responses evolve gradually over the course of a trial, first

representing parametrically the morphed image and later

converging to represent one of the 2 categories. Below we

discuss the results in the context of the attractor network

simulations, which highlight key features of the IT dynamics

and provide insights into local network properties that might
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underlie them. We then discuss related studies and reconsider

the role of IT in visual classification.

Attractor Network Simulation

The convergence of IT activity from a stimulus-based repre-

sentation to a category-based representation was asymmetric,

in that only responses to the morphed images that resemble

the effective stimulus for an individual cell converge, whereas

responses to morphed images that resemble the ineffective

stimulus remain segregated by morph level. An asymmetric

convergence may result from multiple mechanisms, of course.

We have tried to assess 2 possible underlying mechanisms,

a gradual decay of the response over time and attractor

dynamics in the local recurrent networks. With our first

simulation, we could rule out the possibility that the

convergence was the result of simple linear decay of neural

responses. A linear decay of responses had an equivalent effect

at each individual morph level, and did not produce a change

from the linear dependence visible at stimulus onset (simula-

tion 1, Fig. 6), whereas the operation of a simple attractor

network produced qualitatively similar convergence to that

observed in the neural data, allowing a more detailed

interpretation of the observations.

To obtain asymmetric convergence, we had to consider

morphs between a ‘‘learned’’ input pattern, used in training the

network, and a novel pattern (simulation 2, Fig. 7d). Conver-

gence to a category representation occurred only for the

learned pattern and not for the novel pattern. This simulation

suggests that the convergence asymmetry depends critically on

the memory representation of a pattern in the network.

Neurons that contribute to the memory representation of

a pattern show convergence to the associated category,

whereas neurons that do not contribute to the memory

representation do not show such convergence. Our selection

of neurons for inclusion in the population likely included a bias

in the contribution of each neuron to the memory represen-

tation of each of the 2 exemplar images used in a given

experiments. All of the images we used were likely to be

represented in the activity of subpopulations of neurons in IT

cortex. However, we chose pairs of images such that one (the

Eff image) elicited stronger responses than the other (the Ineff

image) for a given neuron. This selection implies that although

the neuron might play a primary role in representing the Eff

image, the Ineff image might often be represented elsewhere.

Accordingly, the attractor dynamics would not be expected to

manifest in the response to the Ineff images and its variants

because they are not represented in the local network that

includes the recorded cell.

Unlike the neural data, our network stimulations show an

abrupt convergence as soon as a threshold number of output

units stop receiving afferent inputs. In the model, afferent

inputs keep the output responses to different morphs separate,

and afferent inputs must subside for the responses to converge.

The convergence was abrupt even though a range of durations

for afferent input was a feature of the model. This second

feature of the model contrasts with the gradual convergence

seen in the real data. A plausible explanation is that gradual

convergence results from a distribution of local ensembles,

each of which engages in its own response dynamics.

In the model most afferent inputs must subside in order for

convergence to occur. This contrast with the real data, in

which convergence begins during the response to the sample

image, suggests that afferent inputs to those putative local

networks also follow a variety of time courses, often decaying

after a transient period of elevated strength, well before visual

stimulus offset.

When a pair including a nonstored pattern is used to test the

model, responses to morphs 2,3 also converge toward the

response to the effective pattern, indicating a very wide ‘‘basin

of attraction’’ for the latter. This is in contrast with the real data,

which suggests narrower basins of attraction. In the model, the

width of the attractor basins can be modulated by various

factors, including the storage load. It would be interesting to

design experiments that can test whether such width can be

also modulated in real neuronal circuits.

The initial simulation dismissed the alternative explanation

of the convergence in terms of linear firing rate decay.

However, although linear decay of the response cannot

produce the observed asymmetric convergence, it might

destroy attractor effects once applied to single cells. To test

this possibility, adaptation was added to the attractor simula-

tion (Fig. 7c,e). The addition of adaptation did not change the

qualitative behavior of the network, and also produced a more

realistic simulation of the real data; adaptation pulls units out of

a fixed level of delay activity, producing greater variability in

their responses at the end of the stimulus presentation and

during the delay period (compare Fig. 7e and Fig. 3c).

Not all forms of adaptation were excluded, of course, by the

simulation of linear decay as a potential mechanism for the

convergence seen in Figure 3c. Mechanisms that produce

second-order firing rate adaptation, leading to nonlinear decay

of the response, might replicate the convergence, without

requiring attractor dynamics. For example, adaptation with

a time constant of decay that depends on the size of the onset

transient, along with modulation of this relationship (between

transient and time constant) that further depends on the

transient response level might replicate some of the dynamics

seen in this individual data set. We cannot discard this

possibility. However, we note that attractor dynamics are

a plausible mechanism to hypothesize in IT cortex (Sakai and

Miyashita 1991), and thus a plausible mechanism to produce

the convergence seen in the neural data. In addition, adaptation

dynamics may be determined by characteristics other than the

firing rate of the adapting neuron (Priebe and Lisberger 2002;

Sawamura et al. 2005).

The biological plausibility of implementing attractors in

cortical networks is based on 2 reasonable assumptions: the

presence of RC connection and synaptic plasticity (Braitenburg

and Schuz 1991). Typically, the exact details of the plasticity

process, that is, the modification of connection weights that

leads to the formation of attractors, are not crucial in

mathematical models of the operation (rather than formation)

of autoassociative networks, but it is a widely held hypothesis

that in cortical or hippocampal network’s attractors could be

formed by tuning the synaptic efficacy of its RCs with synaptic

plasticity mechanisms akin to LTP and LTD (McNaughton and

Morris 1987). Associative long-term memories in IT, hypothe-

sized to acquire stimulus selectivity through learning, by

individual neurons (Sakai and Miyashita 1991) suggest that

attractor dynamics may be plausibly expressed in IT cortex,

where visual memories are stored, and drive the extraction of

visual category information.

In our model, the intermediate morph stimuli do not

contribute to synaptic modifications during learning. In other
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words, there is no attractor individually assigned to each morph

level. In this sense our model is different from those discussing

‘‘attractor collapse’’, in which each intermediate morph patterns

contribute equally to synaptic modification (Blumenfeld et al.

2006). Stimuli and task demands, in other experimental studies,

may also differ in many ways from our experimental setting. In

one particular study (Blumenfeld et al.), a fundamental

difference is that they used faces as visual stimuli, which

allows them to generate a whole morphing stream equally

meaningful for the subjects—each individual morph image

has a specific identity and is perceptually recognizable as

a face, and the subject should report whether each morph

face is a Friend or non-Friend. In our study, instead, the

intermediate morph images are rather ambiguous and non-

meaningful, and the monkey is not asked to recognize each

morph independently. It seems more justified to assume

a synaptic plasticity effect for perceptually meaningful faces

than for nonmeaningful images, which in our experiment

which must be classified in 2 groups by the monkey, based

on their similarity to either Eff or Ineff. Even if we take synaptic

plasticity into account for intermediate morphs—and one could

easily implement it in the current model, having the morphs

stored in the network by changing theweights with a b factor an
order of magnitude weaker than the original patterns—we

still believe that the storage of the 2 end point images (Eff

and Ineff) would dominate the ensuing attractor dynamics.

The simulations show that a very simple model of an IT patch,

with memory attractors stored on recurrent connections by

associative plasticity, responds with a convergent dynamics

similar to that seen in the data. Furthermore, the simulations

suggest that such local networks may be loaded with memories

close to their storage capacity, which would be consistent with

the expectation of an efficient utilization of the available

memory resources—the synaptic weights (Braitenburg and

Schuz 1991).

Although the network simulation suggests that attractor

dynamics could explain the dynamics of the responses seen in

IT, the simulation cannot address the question of whether this

attractor network plays out in IT itself, or if it is inherited from

another visual area with all of the dynamics preserved. For

example, some simulations of learned categories suggest that

an interactive feedback between IT and prefrontal cortex

might provide initial information separating the categories.

Over time, this feedback information changes synaptic weights

in IT, enhancing the representation of features that differen-

tiate between the categories (Sigala and Logothetis 2002; Sigala

2004; Szabo et al. 2006). Alternatively stimulus frequency has

been proposed as a method for adjusting synaptic weights to

produce categorical boundaries (Rosenthal et al. 2001). These

computations could play a role in the dynamics reproduced

here with attractor networks, and could precede the attractor

dynamics demonstrated here.

IT Neurons and Visual Classification

Previous studies provided mixed evidence for the role of IT in

the classification of visual stimuli. Several studies suggest that

IT neurons can encode known categories that reflect the

identities of visual images (Sugase et al. 1999; Matsumoto,

Okada, Sugase-Miyamoto, Yamane 2005; Matsumoto, Okada,

Sugase-Miyamoto, Yamane, et al. 2005; Kiani et al. 2007). In

contrast, other studies showed that IT neurons do not encode

recently learned categories of visual images, instead maintain-

ing similar selectivity to the images before and after category

training (Kubota and Niki 1971; Rolls et al. 1977; Vogels 1999;

Freedman et al. 2003; Thomas et al. 2001; Freedman and Miller

2008). Thus, these studies imply a stable visual code in IT,

highlighting the need for contributions from other brain areas

including the prefrontal cortex (PFC) and basal ganglia for

correct classification behavior (White and Wise 1999; Asaad

et al. 2000; Freedman et al. 2002, 2003; Shohamy et al. 2004;

Muhammad et al. 2006; Nomura et al. 2007).

A critical difference between our study and previous studies

relating learned classifications to IT activity is the kind of visual

images used. In our task, the morphed stimuli are basically

noisy variants of the original images. In contrast, other studies

have used images that are more complicated and rules that are

more abstract (e.g., cat vs. dog or tree in Vogels 1999;

Freedman et al. 2003). This difference suggests that IT may

not participate in classification when categories are defined by

abstract rules but might when classification reduces to visual

noise removal, or to a perceptually based classification of the

image. This idea further suggests that category learning might

co-occur with perceptual learning, which would improve the

ability to discriminate the noisy images and thus produce

classification responses that might not have been present

earlier in training (Tomita et al. 1999; Sigala and Logothetis

2002; Sigala 2004; Bar et al. 2006; Szabo et al. 2006).

A study using a task similar to ours measured functional

magnetic resonance imaging (fMRI) responses in human

subjects categorizing images of morphed faces (Rotshtein

et al. 2005). In that study, a blood oxygenation level--dependent

(BOLD) signal in the inferior occipital gyrus reflected distance

along the morphing dimension. In contrast, a BOLD signal in

the fusiform face gyrus (FFG) of IT cortex reflected face

identity, comparable to the convergent activity from our data. A

signal reflecting face identity, similar to the convergent activity

seen in the IT data, was present in the FFG. The fMRI paradigm

cannot afford the temporal resolution of single unit recordings,

and thus, the timing of the identity signal in FFG could be quite

late, perhaps appearing after the offset of the visual stimulus

during the decision making process. In the present study,

however, the time for convergence of IT responses appears to

be short, and to increase smoothly with increasing morphing

distance, with the closest morphs being indistinguishable from

the Eff image during the presentation of the visual stimulus.

These features may be more consistent with a local IT

mechanism, than with a (cascade of) top-down signals;

however they are in agreement with the idea that both

bottom-up signals from the retina and also top-down signals

from the prefrontal cortex may trigger the retrieval of

associative codes in IT, which may serve as a neural basis for

conscious recall (Miyashita and Hayashi 2000). Furthermore,

a top-down signal might be required at some point in the

production of the network, and then no longer necessary after

the network is stable (Bar 2003; Szabo et al. 2006). The stimuli

used in this study were highly familiar, and thus, classification

information might have been stored as a result of that

familiarity (Liu and Jagadeesh 2008).

In the network simulation, attractors must be stored in the

network to reproduce the dynamics seen in the neural data.

The monkeys in this study were well-trained before the

beginning of the recording session, allowing for the relevant

information to be stored in the image before the beginning of

the recording session. However, during the course of the
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recording sessions, the animals showed improvement in their

performance with the more difficult morph variants, as seen as

well in a perceptually demanding motion task (Law and Gold

2008). This improvement in behavioral performance was

paralleled by an increase in the convergence of Eff images

seen in Figure 4 for the whole data set. Convergence was more

rapid for Eff images, and the Eff and Ineff difference appeared

only in the latter half of the sessions (Supplementary Fig. 2).

This property suggests that attractor dynamics may improve as

images are stored in the network through repeated exposure

and training, a question to address in future experiments.

As well as the time course and mechanism of storage of

patterns into IT, several other predictions cannot be fully

addressed by this report. For example, all of the data presented

were collected with familiar images during the performance of

a demanding task. Both these factors may influence the

dynamics of response seen.

The data also cannot address the size and shape of attractor

basins, and assumptions have been made about their shape in

the regression analysis shown in Figure 4. In particular, the

behavioral classification rule (images 0--4, rewarded for being

classified as Ineff; 5 randomly rewarded, 6--10, rewarded for

being classifed as Eff) has been used to divide the images into

groups that were presumed to converge to different nodes. In

fact, the behavioral results suggest that this assignment is an

incomplete description of the data, because only the 3 most

similar images in each group consistently result in the same

behavioral classification. Using only these images to define the

groups belonging to different attractors enhances the conver-

gence for Eff images. However, fundamentally, we cannot be

sure which images would be predicted to belong to which

classification groups, and thus to converge to a particular

attractor basin. These groups could change based on the

stimulus, the session, and the trial, adding unpredictability to

the population convergence zones. Finally, although we used

the experimental manipulation of the classification rule to

define the groups, we cannot know that this experimental

manipulation drove the dynamics seen in these data. Further

experiments, for example, changing the classification rule, or

the size of the classification groups might address whether

response dynamics depends on those features in the data.

Our results also point at the distinction between firing rate

convergence, whether induced by attractor states or not, and

delay activity, a form of short-term memory commonly

observed in monkey prefrontal cortex (Kubota and Niki

1971; Miller et al. 1996) and in IT cortex (Miyashita and Chang

1988; Erickson and Desimone 1999). Delay activity is inter-

preted as the maintenance of behaviorally relevant information

during a delay period, to be used after the delay to execute

a task. It is also a salient property of the same recurrent

network models that naturally express attractor dynamics. The

distinction between sustained delay activity and convergent

activity, and the potential role of the latter in perceptual

classification, will likely benefit from theoretically guided

experimental investigations.

An attractor network belongs to the same general class of

classification mechanisms based simply on the distance, in

a multidimensional feature space, between the exemplar and

a prototype, which in the attractor network is the stored

pattern. Unlike FF multilayer network models like MAX or

Radial Basis Function networks (Riesenhuber and Poggio 1999)

or ALCOVE (Kruschke 1992) which have been considered to

account for responses in IT (Zoccolan et al. 2007; Op de Beeck

et al. 2008), and in which individual units respond to a stimulus

with an activation level which does not vary in time, recurrent

attractor models do show temporal dynamics similar to that

observed in the neural data, and such dynamics are the very

mechanism underlying classification in those models (Rosenthal

et al. 2001). Thus, attractor network based simulations of the

properties of IT cortex might produce additional insights into

the dynamic processing of visual information in IT.

Supplementary Material

Supplementary material can be found at: http://www.cercor.
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