
The Emergence of Grid Cells: Intelligent Design or Just Adaptation?

Emilio Kropff1,2 and Alessandro Treves1,2*

ABSTRACT: Individual medial entorhinal cortex (mEC) ‘grid’ cells
provide a representation of space that appears to be essentially invariant
across environments, modulo simple transformations, in contrast to mul-
tiple, rapidly acquired hippocampal maps; it may therefore be estab-
lished gradually during rodent development. We explore with a simpli-
fied mathematical model the possibility that the self-organization of
multiple grid fields into a triangular grid pattern may be a single-cell
process, driven by firing rate adaptation and slowly varying spatial
inputs. A simple analytical derivation indicates that triangular grids are
favored asymptotic states of the self-organizing system, and computer
simulations confirm that such states are indeed reached during a model
learning process, provided it is sufficiently slow to effectively average
out fluctuations. The interactions among local ensembles of grid units
serve solely to stabilize a common grid orientation. Spatial information,
in the real mEC network, may be provided by any combination of feed-
forward cortical afferents and feedback hippocampal projections from
place cells, since either input alone is likely sufficient to yield grid
fields. VVC 2008 Wiley-Liss, Inc.
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DO GRIDS STEM FROM ATTRACTORS
OR FROM OSCILLATIONS?

Among the complex memory processes operating within the medial
temporal lobe (see e.g., Eichenbaum and Lipton, 2008), the core contri-
bution of the hippocampus may be its capacity to retrieve multiple arbi-
trary representations, a capacity that has been associated to the ‘collateral
effect’ (Marr, 1971). McNaughton and Morris (1987) and Rolls (1989)
proposed that the collateral effect is implemented by the recurrent con-
nections of the CA3 region, which led to the insight that the CA3 net-
work may ‘compute’ just by following attractor dynamics (Amit, 1989),
as described by the simplified Hopfield (1982) model. The striking
demonstration of abrupt global remapping, indicative of attractor dy-
namics, in rat place cells (Wills et al., 2005) has reinforced the notion
that attractors are a key to understanding hippocampal memory compu-
tation. The concurrent discovery of grid cells in neighboring medial
entorhinal cortex (mEC; Fyhn et al., 2004; Hafting et al., 2005) has led
to the attractor idea reverberating into mEC networks: grid cells have

been interpreted as the stable attractor states of spin-
glass-like interactions among pyramidal cells, mediated
by recurrent connections (Fuhs and Touretzky, 2006).
Unlike the multiple representations in CA3, however,
which require global remapping transitions from one
to the other (Leutgeb et al., 2005), local ensembles of
mEC grid cells seem to demonstrate a single represen-
tation, which shifts and rotates coherently in different
environments (Fyhn et al., 2007). If so, and if attrac-
tor computation were its core design principle, what
the recurrent network in mEC would produce is
merely the recovery of this single representation, e.g.,
when disorganized, a somewhat meager yield for a
network likely employing thousands of synapses per
cell (cf. Battaglia and Treves, 1998). In contrast, those
synapses may be effectively utilized for the accurate
coding of position in an abstract, context-independent
frame of reference—reflecting a computation along
the dimensions of physical space, exactly orthogonal to
the dimensions of convergence to the single putative
attractor state. Interestingly, grid cells whose soma are
physically close in the tissue do not present similar
spatial phases, not even in mice (Fyhn et al., 2008),
and in fact accurate position coding does not require
such similarity (Fiete et al., 2008). Similar phases for
nearby cells would instead be expected if the grid-
structuring connectivity matrix, in the recurrent attrac-
tor network scenario, were a simple function of dis-
tance between cells in the adult tissue, as noted by
McNaughton et al. (2006), who proposed a revised
version of the mEC attractor idea. In the revised ver-
sion, the connectivity depends on distance in the
developing tissue, before cells acquire their final posi-
tion in the adult tissue.

The theta rhythm and its associated phase preces-
sion (O’Keefe and Recce, 1993) have been another
powerful source of inspiration for approaching hippo-
campal computation and, by extension, the emergence
of grid units. Since the distance typically covered by a
rat within a theta period is much shorter than the
minimum grid spacing observed, grids have been
hypothesized to emerge from the interference patterns
among oscillations with slightly different frequencies
close to theta (Blair et al., 2007). Although mathe-
matically attractive, the mechanism requires the some-
what implausible combination of precisely two ‘theta
grid’ units to produce an interference unit with larger
spacing, and the theta grids must already present the
2D grid pattern themselves, on a finer scale. Alterna-
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tively, one may think of a similar interference produced by the
common rhythm and by intrinsic oscillations of individual cells
(Burgess et al., 2007; Giocomo et al., 2007). In this case, the
full-fledged spatial grid arises from the purely temporal oscilla-
tions only when combining three unidimensional waves at 60
degrees to each other, which might perhaps emerge from a yet-
to-be-detailed self-organizing process. Assuming the self-organ-
izing process to adjust the three waves at 60 degrees and their
relative phases, the model successfully recreates an exact trian-
gular grid pattern, though it is not clear, to us, what it predicts
in terms of phase precession, the very phenomenon it was orig-
inally inspired by (but see Burgess, 2008; Hasselmo, 2008).
The finding of phase precession in Layers II and V but not in
Layer III grid cells (Hafting et al., 2006, 2008) has recently
added a new degree of complexity to the analysis.

All these approaches to understanding the grid cell phenom-
enon, which are elaborated further in several of the contribu-
tions to this special issue (Blair et al., 2008; Burgess, 2008;
Giocomo and Hasselmo, 2008; Jeewajee et al., 2008), rely on a
common hypothesis: the grid expresses path integration mecha-
nisms based on the rat’s own perception of speed and direction
(Barlow, 1964), while sensory information serves as an anchor
that makes the map reproducible across sessions. This somehow
secondary role assigned to sensory information has been
recently challenged by the finding that the grid can expand and
contract following gradual variations in the size of the environ-
ment (Barry et al., 2007) and is in general affected by manipu-
lating sensory information, e.g., removing the boundaries of
the recording enclosure (Savelli et al., 2008). If path integration
has to be corrected constantly by sensory information, so as to
generate a new map with different origin or even grid spacing,
more attention should perhaps be devoted to sensory informa-
tion itself as a source of grid fields.

In this line, the perspective that arises from consideration of
the slowness principle (Wiskott, 2003) is that spatially modu-
lated patterns of response may result from the extraction of the
slowly varying components of the afferent sensory inputs, with
no special role of either recurrent processing or oscillations
(Franzius et al., 2007). This perspective suggests that similar
spatial modulation (including grid cells, place cells, head-direc-
tion cells) may be expected to be observed in species with simi-
lar behavioral patterns to rodents, irrespective of whether they
present similar neural circuitry (e.g., bats, Ulanovsky and Moss,
2007) or quite different circuitry (e.g., birds, Bingman and
Sharp, 2006; see the pattern cells in Kahn et al., 2008). Such
modulation would not necessarily be expected, instead, in spe-
cies with similar circuitry but very different spatial behavior,
e.g., large primates (Rolls, 1999). Although the slowness princi-
ple by itself does not seem to yield the triangular grid patterns,
it suggests reconsidering the possibility that single-cell processes
(and afferent inputs) may play the crucial role in determining
the appearance of grid cells.

We had considered such a possibility early on, by focusing
on a simplified model where the critical single-cell process is
firing rate adaptation (Treves et al., 2005; Cerasti and Treves,
2006). Although the mathematical analysis indicated that firing

rate adaptation should lead to triangular grids, the spatial mod-
ulation emerging from simulations was often triangular locally,
but irregular at a larger spatial scale, and rather unstable
(Cerasti and Treves, 2006). We reasoned that the lack of long-
range order might result from the casual assortment of spatial
variables, which had been taken, in our simulations, to model
processed sensory and proprioceptive inputs to mEC. Recently,
one of us (EK) wondered whether more finely balanced inputs,
such as those arising from an orderly array of single place field
units would produce ‘better grids’ than our previous simula-
tions. We decided then to use, as inputs to our model mEC
array, an array of ‘place units,’ but solely to have precise control
over the regularity of their spatial code, without any conceptual
commitment to the hypothesis that actual hippocampal place
cells may participate in setting up the grid representation in
entorhinal cortex. The converse hypothesis that grid units may
participate in determining place fields (Brun et al., 2002) has
of course been considered in several modeling studies (Rolls
et al., 2006; Solstad et al., 2006; Hayman and Jeffery, 2008;
Molter and Yamaguchi, 2008). Since CA fields and mEC are
reciprocally connected by very substantial synaptic systems, it is
evident that each structure will strongly influence the determina-
tion of spatial correlates in the other. The developmental time
course of place fields and grid fields is still somewhat controver-
sial (Martin and Berthoz, 2002; Ainge et al., 2008; Langston
et al., 2008; Wills et al., 2008). To utilize the clarity that a com-
putational model can offer, however, we prefer to ‘cut’ the recip-
rocal connections, isolate the phenomenon of pattern formation
in the grid units, and simulate its emergence under the influence
of regularly arranged, place-cell-like inputs, leaving open the pos-
sibility that the latter may model actual CA place units, or else
regular spatial inputs from upstream cortical areas, or a combi-
nation of both. We report here the result of such a study, and
we discuss below the effect of relaxing the regularity require-
ment, by using less regular, nonplace-field-like spatial inputs.
Finally, we also sketch with preliminary simulations a possible
auxiliary role of the collateral connections in mEC in the organi-
zation of a common orientation across grid units.

A MODEL BURDENED WITH
NEURONAL FATIGUE

The network architecture is the simplest possible, with an
input layer with NI neurons projecting to a mEC layer com-
posed of NmEC threshold-linear neurons with saturation. At
any given time t, a neuron i in the mEC layer receives inputs
{rj

t} (denoting firing rate; but we shall use the notation wi(x)
for firing rates in the mEC layer, as a function of the animal
position x, to point at the spatial map expressed by the activity
of unit i) and computes the total synaptic activation

hti ¼
1

NI

XNI

j¼1

Jijr
t
j
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where Jij is the weight of the synapse going from neuron j in
the input layer to neuron i in the mEC layer. This activation
would ordinarily be transformed directly into the output firing
rate at time t 1 1, wi

t11, e.g., by the transfer function

wðhÞ ¼ wsat

2

p
arctan½gðh� uÞ�H½h� u�;

where the parameters u and g stand for the threshold and the
gain, assumed for simplicity to take common values for all
mEC neurons, and the Heaviside function Y(h 2 u) ensures
that w(x) is always positive, and zero when h < u. If g is small,
the transfer function operates in the linear regime, away from
its saturation value p/2 (which is then rescaled to make the sat-
uration rate equal to wsat). Since we want however to add a
mechanism for adaptation, we do not apply the transfer func-
tion directly to the activation hi

t, but rather introduce interme-
diate activation variables with fatigue dynamics

rtþ1
act ¼ rtact þ b1 ht � rtinact � rtact

� �
rtþ1
inact ¼ rtinact þ b2 ht � rtinact

� �
such that

wt
i ¼ wðrtactÞ:

The parameters b1 and b2 are associated to the speed of rise
and fall of the activity of a neuron that receives strong input.
Note that since we set b1 > b2, when the neuron starts receiv-
ing a strong excitation, the variable ract rises from 0 (its initial
resting value) toward h, but as rinact approaches h with a slower
dynamics, the ascent of ract is eventually reversed and its value
comes back to 0.

Competition in the mEC layer is implemented by fixing
the mean activity a ¼ 1

NmEC

P
wk and the sparseness

s 5 (
P

wk)
2/(NmEC

P
w2
k). To achieve this normalization, the

parameters u and g are modified at every time step after updating
all neurons. In general terms, u has a strong (inverse) influence
on the mean activity, while g can be used to control the sparse-
ness. After updating all neurons, we apply one or several times

utþ1 ¼ ut þ b3ða� a0Þ
gtþ1 ¼ gt þ b4g

tðs � s0Þ

(where a0 and s0 are the target mean activity and sparseness
and b3 and b4 are parameters controlling the speed and
smoothness of the changes) until a and s meet criteria of simi-
larity to a0 and s0.

We use a hebbian learning rule to update the weights Jij

J tþ1
ij ¼ J tij þ e wirj � wih i rj

� �� �
where e is the learning rate and hri is a temporal average of the
activity of the presynaptic unit. Similar to the BCM rule (Bien-
enstock et al., 1982), this provision has the advantage of cor-

recting for correlations in the input (Kropff and Treves, 2007).
In addition, weights are normalized in such a way that the total
input weight to any neuron is constant. The main parameters
have been given the values indicated in Table 1, unless stated
differently.

The virtual rat moves following a smooth random walk in a
square box with rigid walls. Figure 1a shows an example of
such a trajectory. The simulations shown in this paper include
trajectories at constant speed unless stated differently. Figure 1b
shows a scheme of the model including only two mEC and
four input neurons. As the rat explores the environment, differ-
ent input neurons (in the particular scheme of Fig. 1b and of
most simulations, model hippocampal place cells; otherwise, in
the control simulations of Fig. 6 more generic spatially modu-
lated units) get activated. A fully connected network of feedfor-
ward synapses transmits this information to the mEC neurons,
which compete to get activated and strengthen those input syn-
apses that have excited them enough to win the competition.
Figure 1c shows the map and autocorrelogram of a single mEC
unit during the first few steps of this learning process. Multiple
peaks appear and, as learning proceeds, they become stronger
and slightly move around, as if seeking a stable configuration.

A MATHEMATICAL ANALYSIS OF THE
ASYMPTOTIC STATES OF THE MODEL

The way units in the model develop their response profiles is
investigated through computer simulations. A mathematical
analysis of a very abstract version of the model, however, indi-
cates which are the asymptotic states that it may reach by
adjusting its connection weights. The mathematical analysis
does not even explicitly incorporate the individual parameters
of the model, but is focused on the end result of its general
learning dynamics, as expressed in the response profile of an
individual unit. Of course, for this individual ‘map’ to be use-
ful, different mEC units would have to be active when the ani-
mal is in different positions in space—to be ensured by compe-
tition, i.e., by the recurrent network—and also any environ-
ment would have to be bound to the existing universal map—
to be ensured by the network of feedforward connections. We
eschew these aspects, which we leave for the simulations to
address, and in the mathematical analysis, we consider only the
requirements on the single-cell map wi(x) that models the firing
rate of cell i at position x.

The analysis leads to two conclusions, as derived in the
Appendix.

TABLE 1.

Default Parameters Used in Simulation, Unless Otherwise Noted

NmEC NI b1 b2 (5 b1/3) wsat a0 s0 e

100 200 0.1 0.033 30 0.1 3 wsat 0.3 0.001
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Conclusion 1

The wavelength or spacing associated to any solution w(x) is
expected to vary almost linearly with the time scale sL of firing
rate decay due to adaptation, in the corresponding units. The

wavelength is observed to vary with recording location in the
entorhinal cortex (Brun et al., 2008) and the model predicts
(or rather, had earlier predicted, Treves et al., 2005) an almost
proportional variation in the average adaptation time constant
sL (Giocomo et al., 2007).

FIGURE 1. Scheme of the simulations and an example of the
learning dynamics of the system. All color plots range from blue
(minimum 5 0 for maps and 21 for autocorrelograms) to red
(maximum 5 wsat for rate maps and 1 for autocorrelograms).
Autocorrelation is computed only if the area of overlap between
the map and its displaced version has more than 20 pixels, and
drawn black otherwise. (a) An example of the trajectory of the vir-
tual rat, lasting 10,000 time steps. At each step, the rat moves for-
ward at a constant speed and chooses a new direction of move-
ment close to the previous one. The only restriction in choosing a
new direction is that the rat cannot get out of the environment. If
so, the selection of direction is repeated until an appropriate one
comes out of the draw. (b) The feedforward network, including
here only two mEC neurons (the real simulations include 100). In

this first version of the simulations, the would-be grid units receive
inputs from 200 place-cell-like units (only four illustrated in the
scheme). The place units fire whenever the rat passes through their
field. If any of them is successful in stimulating some of the mEC
neurons (which compete to get activated), the weight of the corre-
sponding feedforward synapse is increased. All input synapses to a
neuron (in this case either the red or the blue group) are normal-
ized in such a way that their sum is constant. (c) Initial evolution
of the map and autocorrelogram of a single unit, through the first
106 time steps. The weights are initially random and they evolve
through hebbian learning, generating a grid-like map. [Color fig-
ure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

FIGURE 2. The three solutions with simple periodicity that
minimize the cost function discussed in the Appendix: unidimen-
sional, rhomboid, and triangular. Note that the color scale is the

same for all graphs, but w3 has higher maxima. [Color figure
can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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Conclusion 2

There are three possible solutions w(x) with simple spatial
periodicity in two dimensions, either linear, rhomboid, or tri-
angular, as shown in Figure 2. The triangular solution

w3ðxÞ ¼ ð2=3Þ
X3

i¼1

cosðki � xÞ þ 1

with ki 5 k*{cos(2pi/3 1 f), sin(2pi/3) 1 f} (where the
phase f defines the orientation of the grid) is the one which is
favored, in terms of reaching the optimal compromise between
representing the continuity of spatial inputs and allowing for
the lull in firing imposed by adaptation. This solution also con-
tributes the most information, relative to metabolic costs, about
the position of the animal in the environment (see Appendix).

NUMERICAL SIMULATIONS OF mEC UNITS
WITH PLACE UNITS AS INPUTS

Does the analysis above point at the type of solution that
prevails in actual simulations, as indicated by the unit in Fig-
ure 1c, or is that unit an aptly chosen rare example? Figure 3
shows the firing fields of a larger, randomly selected sample of
mEC units, as they stabilize after running the virtual rat for
107 time steps, roughly corresponding to 104 lengths of the
square environment. We do not claim this to be the optimal
running speed or learning rate, and indeed understanding the
time scales necessary for learning is an interesting issue that we
leave for further study. The gridness score (Sargolini et al.,
2006) of the stabilized fields is calculated from a ring-shaped
cropping of the autocorrelogram including the six maxima that
are closer to the center. The ring is rotated 308, 608, 908,
1208, and 1508, and for every case the Pearson’s correlation
with the unrotated map is obtained. If Ca is this result for the
rotation angle a, the gridness index is 1/2(C60 1 C120) 2 1/
3(C30 1 C90 1 C150). The histogram with the distribution of
gridness scores across the mEC population (Fig. 3c) has values
in line with those corresponding to the different layers of the
real entorhinal cortex, though presenting a higher average grid-
ness. Based on the same ring extracted from the autocorrelo-
gram, the position of the three maxima above the horizontal
axis is obtained and their position with respect to the center
plotted for the whole population in Figure 3d, such that 3 3

NmEC 5 300 points are included in the plot. Note that the
environment is 20 3 20 arbitrary units in size, and therefore,
the autocorrelogram is related to displacements that span a
40 3 40 space. The figure shows that the grid fields of all dif-
ferent units spontaneously acquire triangular symmetry, extend-
ing fairly long-range, and that they present similar spacing, but
random orientation.

The gridness of the fields observed in simulations thus vali-
dates Conclusion 2 drawn from the theoretical analysis. To test
Conclusion 1, we have run several simulations with the exact

same network but varying the parameters b1 and b2, keeping
the proportion b2 5 b1/3. The inverse of these parameters
roughly controls the rise and decay time of firing rate adapta-
tion, similarly to what is modeled by the parameters sS and sL

in the Appendix. Figure 4 shows a monotonic increase of grid
spacing with the inverse of b1, in line with the increase in sS

and sL described by Eq. (A4) and following ones.
Finally, we have run simulations to test whether the triangu-

lar grid pattern depends significantly on providing a homogene-
ous distribution of input fields, or else on running trajectories
at fixed speed. We have run a first simulation (Fig. 5a–c) where
the place fields used as inputs were concentrated near the south
wall of the environment. Strikingly, we observed no difference
in the individual rate maps or in the overall distribution of
grid fields in the environment. In another simulation, the speed
of the rat was continuously changed during training, using a
random walk acceleration that produced smooth changes
(Fig. 5d,e). Since we wanted the same field to be traversed with
different speeds every time, we made the speed variation slow
enough not to be concentrated in a single pass through a field.
The typical distance of variation was rather comparable with
the size of the environment, i.e., the acceleration was of the
order of the mean square speed divided by the size of the envi-
ronment. Again, we observed no difference. To compare the
maps resulting from different conditions (Fig. 5e, Columns 1–
4), we obtained the Pearson correlation coefficient between
maps over the whole population of mEC cells. For the training
versus testing with variable speed condition, the maps were cor-
related with a coefficient of R 5 0.98, for training versus run-
ning slow R 5 0.94 and for training versus running fast R 5

0.98.

MORE GENERAL SPATIALLY MODULATED
UNITS AS INPUTS

It appears from the previous sections that grid maps may
result from a learning process with place-cell-like inputs.
Although this could be construed as a model of the formation
of grid maps in layers V and VI of mEC, which receive their
main input from CA1, we had expected our adaptation model
to lead to similar grid patterns also when fed with more general
kinds of spatial input (e.g., visual, as in Franzius et al., 2007).
Given the lack of experimental evidence for any definite form
of spatial map in the cortical inputs to mEC, we used for sim-
ulations a fairly generic construction, including units whose
‘maps’ are composed by the sum of 20 Gaussian bumps of uni-
tary standard deviation, randomly dispersed over the environ-
ment, each map normalized so as to have a maximum firing
equal to wsat. Some examples of such input units are shown in
Figure 6.

The poor results obtained in our first attempts confirmed
that place-cell-like fields are better suited as input for our net-
work. By including many more inputs to the network (NI 5

2,500), however, we were able to achieve an acceptable distri-
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bution of gridness score after learning, as shown in Figure 6.
Note that while the inputs have irregular fields, the multiple
fields that result from learning are roundish in shape, even for
those maps with a very poor gridness score.

THE ALIGNMENT OF GRID FIELDS

The simulations shown above result in grid fields with a
common spacing and random orientation. Experiments suggest,
however, that grid cells that belong to the same local network
should share spacing and orientation (Hafting et al., 2005). We
hypothesize that the latter kind of coherence is provided by
excitatory collaterals in mEC. The role of these connections
might also be crucial to yield the exact same map (modulo
translations and rotations) for every environment (Fyhn et al.,
2007), since in the absence of a common orientation whether
individual cells exhibit the same map or not remains ill-
defined.

Let us assume that a strong collateral connection exists going
from neuron A to neuron B in mEC. This connection favors
the two neurons to have close-by fields, in any environment,
but in a sequence, where firing by A will always be followed by

B. In a two-dimensional environment, however, there is an
intrinsic ambiguity (Fig. 7a): if the connectivity favors a
sequence where B follows after A, the favored position of the

FIGURE 3. Numerical simulations where mEC units receive
inputs from place units and self-organize feedforward weights
based on adaptation dynamics alone, leading to grids broadly sim-
ilar to experimentally observed ones. (a) Fields of a random set of
20 out of 100 mEC neurons; (b) the corresponding autocorrelo-
grams; (c) histogram with the distribution of the gridness score

across the entire mEC population; (d) orientation and spacing of
the maxima (the position with respect to the center of the autocor-
relogram of each of the first three maxima is plotted as an individ-
ual point), showing similar spacing, but random orientation of the
grids across the population. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

FIGURE 4. For the exact same network and inputs, we have
varied the parameter b1 keeping b2 5 b1/3. These parameters con-
trol the adaptation rate and can be roughly associated to the
inverse of sS and sL, introduced in the Appendix. In a qualitative
agreement with the analytical results, the spacing of simulated grid
units increases monotonically with the inverse of b1. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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field B, though always close to the field A, obviously depends
on the direction of the rat while passing through it. Summing
all possible contributions would result in a field for neuron B
that is a ring around the field of neuron A.

One possible way to disambiguate this situation is the fol-
lowing. If head direction modulation is introduced, either in
the firing of cells or in the efficiency of synapses, the connec-
tion from A to B is approximately associated with a specific
direction in the two-dimensional environment, as shown in

Figure 7b. Interestingly, this kind of modulation has been
reported in Layers III, V, and VI of mEC (Sargolini et al.,
2006). In addition, it has been reported that when the hippo-
campus is inactivated, grid cells in Layer III loose their charac-
teristic field and a substantial number of them gain a strong
head directional preference, while the firing of close-by head direc-
tion cells remains virtually unchanged (Bonnevie et al., 2006).

To test whether or not collateral connections in mEC may
be able to align the grid fields, we performed simulations of a

FIGURE 5. Grid units are not sensibly affected by either an
inhomogeneous spatial distribution of inputs or changes in the
speed of the simulated rat. (a) Spatial distribution of place-cell-like
inputs used for this simulation (Panels a–c). The density of input
fields close to the South wall is approximately four times higher than
that near the North wall. (b) Average profile going from South (left)
to North (right) of the figure in (a). In addition, the activity profile
averaged over all mEC cells after learning (dashed line; the result is
multiplied by a factor of 10 to make the two curves comparable).
Unlike the input distribution, that of grid fields is almost flat. (c)

Three examples of rate maps corresponding to mEC cells after learn-
ing. No sensible difference in the peaks is observed as a function of
their position with respect to the South wall. (d) In a different simula-
tion, histogram of a sample of speeds used to train the virtual rat. The
speed was modified through a smooth random walk. The acceleration
was controlled so that the change in velocity from one extreme to the
other of the distribution could not occur within a single field (see
text). (e) Rate maps of three cells during training and testing, at differ-
ent speeds. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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network with fixed, ad hoc-assigned collateral weights. One
could conceive of these weights as having been adjusted
through hebbian plasticity mechanisms during an extended
training period, in one or several environments. To model the
result of such a process, we do the following:

1. Assign to each collateral connection a common initial
weight J0.
2. Assign to each neuron in mEC an imaginary place field in a
small environment. Such a field is only used for the purpose of
assigning weights and then discarded.
3. Multiply the weight of the synapse going from neuron A to
neuron B by a factor, exponentially decaying with the distance
between the corresponding imaginary fields, for all pairs {A,B}.
4. Assign to each neuron a preferred head direction and an
angular variance, resulting in a tuning function such as the one
shown in Figure 7b. During simulations, this tuning function

will modulate the collateral input to the corresponding neuron.
5. Multiply the weight of the synapse going from neuron A to
neuron B by the overlap between the previously assigned head
direction tuning functions, in such a way that its value will be
high only if the difference between the two preferred head
directions is small.

The resulting set of fixed collateral weights has a structure
similar to the one that could be expected to result from a long
hebbian learning process. We performed simulations similar to
those described in the previous sections with the only addition
of the collateral network. Figure 7c shows a histogram of the
gridness of resulting fields in mEC. Though the average grid-
ness is much lower than that in the distribution showed in Fig-
ure 3c—indicating that recurrent connections in our network
slightly impair gridness rather than promoting it—there are still
30 out of 100 neurons with gridness score higher than 0.75,

FIGURE 6. Simulations of a network with 100 mEC neurons
and 2,500 spatially modulated input neurons. (a) The spatial mod-
ulation of the inputs is a sum of 20 Gaussians widespread across
the environment. (b) Gridness score histogram for the asymptotic
learning states. Sixteen out of 100 cells pass the criteria of a score
higher than 0.75. (c, d) Examples of maps (top) and the corre-

sponding autocorrelograms (bottom) of cells at both extremes of
the histogram in (b). (e) The spacing and orientation plot shows
a less well defined typical spacing. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.
com.]
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while the whole distribution is still comparable to experimen-
tally obtained ones. The plot of spacing and orientation for
this data is shown in Figures 7d (for the whole population of
mEC neurons) and 7e (for the 30 neurons with the highest
gridness score), showing clusters corresponding to the three
maxima in the upper half of each autocorrelogram that are
closest to the center. A second way to visualize the clustering in
the distribution of angles in Figure 7e is the histogram shown
in Figure 7f.

CONCLUDING REMARKS

Grid cells are such a beautiful and unique phenomenon in
the nervous system that it is tempting to regard them as a cru-
cial element of its design, and to try to understand the organi-
zation of at least the portion of the nervous system where they
are found, the rodent entorhino-hippocampal complex, by fo-
cusing on its capacity to express and utilize grid cells. A similar

FIGURE 7. Simulations with excitatory collateral connections.
(a, b) Head direction can disambiguate the sequence of grid fields
of units interacting through collateral connections. We assume an
established field for neuron A (in blue) and favor through head
direction modulation a preferred location for the establishment of
the closest field of a neuron B (in pink) that receives a strong
input from A. (c) The distribution of gridness score in the popula-
tion of 100 mEC neurons has a lower mean than the one shown
in Figure 3, but is still comparable to experimental ones (Sargolini
et al., 2006). (d, e) A representation of the spacing and orientation

of grid fields obtained by plotting for each neuron the position of
the three peaks close to the center of the autocorrelogram that
stand above the horizontal axis, for all neurons in (d) and for
those with high gridness score in (e). A clustering into three pre-
ferred orientations is observed, corresponding to the alignment of
the resulting grids, in agreement with experimental findings. (f )
Histogram of the angles plotted in (e). [Color figure can be viewed
in the online issue, which is available at www.interscience.
wiley.com.]
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enthusiasm arose earlier in connection with the discovery of
place cells (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976).
For place cells, it is yet unclear whether they have anything to
do with the organization of the mammalian hippocampus (see
e.g., Treves et al., 1992). The mammalian hippocampus has
preserved a strikingly clear and self-similar design, and several
mammals present hippocampal cells with strikingly clear place
fields, but the two phenomena may well be unrelated. The pos-
sibility should be entertained, therefore, that also in the case of
grid cells the way they structure their activity in space may be
unrelated to network design.

We have presented a model of grid field formation that is al-
ternative to the ones found in the literature. The main differ-
ence is that in our model the grid field emerges from the con-
trast between the continuity of space, as expressed in slowly
varying sensory inputs, and the fatigue rapidly decreasing neu-
ronal firing, rather than out of the integration of proprioceptive
or other self-motion-based measures of velocity. The gradual
formation of the grid field is governed by hebbian learning in
the feedforward connection weights in our competitive network
model.

May the brain still utilize grid cells for path integration, or
express path integration through grid cells? These, especially
the second one, remain likely possibilities, irrespective of
whether triangular grids are in any sense optimal or strictly
associated with path integration. Path integration might involve
a system of networks in which grid cells participate, just like
Olympic games are reported extensively through the media,
even though individual BBC journalists are not necessarily in
optimal athletic form themselves. Sophisticated models of path
integration had in fact been developed before the discovery of
grid cells (Samsonovich and McNaughton, 1997), while neural
fatigue and synaptic plasticity have been shown in networks
models without grid cells to produce simple but effective forms
of path integration (Mehta, 2001), which lead a virtual rat to
predict its future position, even in a 2D environment (Treves,
2004).

Nevertheless, some aspects of the network may be closely
related to some properties of grid cells. From the results pre-
sented in Figure 7, it can be concluded that it is possible to
align the grids using collateral connections. Furthermore, it
may well be that the network of collateral connections, if
extensive, may be crucial in ensuring the smooth continuity of
the putative single attractor state generated by a local network
of grid cells, rather than a multiplicity of attractor states as in
the hippocampus (Battaglia and Treves, 1998). The departure
of attractor states generated by networks of finite size from the
ideal notion of a continuous attractor has been noted early
(Tsodyks and Sejnowski, 1995), but it has only recently
emerged as a key issue in computational neuroscience (Hama-
guchi and Hatchett, 2006; Papp et al., 2007; Roudi and Treves,
2008).

We leave for future reports simulations that use learned col-
lateral weights rather than fixed ones, in line with the notion
of a slow collateral learning that is independent of the environ-
ment, as opposed to a rapid feedforward learning that relates

grid fields (the universal map) to each particular environment.
Other possible follow-ups include the analysis of global remap-
ping in our model, as investigated in the rat (Fyhn et al.,
2007); and the association of mEC cells with path integration
cues, as suggested by several authors (Burak and Fiete, 2006;
Fuhs and Touretzky, 2006; McNaughton et al., 2006; Guanella
and Verschure, 2007), in such a way that the grid can be acti-
vated in the absence of strong or familiar sensory input, as
shown in experiments with relative sensory deprivation or nov-
elty (Hafting et al., 2005).
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APPENDIX: ASYMPTOTIC STATES

To analyze the possible asymptotic states reached by the map
expressed by a single unit, we assume the following:

1. The single-unit map is indefinitely periodic in space, to be
able to represent, with the same population of units, environ-
ments of arbitrary shape and size (we expect a periodic solution
to be favored anyway by collateral connections, such as those
introduced in the last simulation of this paper).
2. While units physically located close to each other in the cor-
tex express maps wi(x) with similar characteristics, remote units
express maps with the same shape, generated by the same de-
velopmental process, but allowing for a size rescaling, reflecting
different biophysical parameters prevailing at different locations
in the tissue [e.g., the gradient in the dynamical properties of
stellate cells along the dorsoventral axis (Giocomo et al.,
2007)].
3. The shape of the single unit map wi(x) optimizes the repre-
sentation of continuous space by minimizing the square gradi-
ent, ðr!wiðxÞÞ2. The continuity in the representation stems, in
our simulations, from the smoothly varying inputs to grid
units, further smoothed by hebbian associative learning.
4. The shape of the single-unit firing map also reflects firing
rate adaptation in the sense of minimizing the integral
h$dt0w(x(t))K(t 2 t0)w(x(t0))i, where K(Dt) is a kernel, of
appropriate strength, quantifying the reluctance to fire a spike
at time t if one has been fired at time t 2 Dt, and the average
h. . .i is over all trajectories and speeds experienced during
training. Note that if adaptation is negligible, continuity would
tend to make a cell fire all along the environment. If, in con-
trast, adaptation is very strong, the emerging fields are expected
to be small, and not to stabilize easily.

We can first find maps that minimize constraints (3) and (4)
and then analyze whether there is one among them which also
optimizes the information it conveys, e.g., by maximizing its
variance, hw2(x) 2 hw(x)i2i, or its information rate hw(x)log
[w(x)/w]i, or some other quantifier of information content.

Minimization of a Cost Function

We aim to find single-unit maps w(x) that minimize the cost
function

L ¼
Z

dx½rwðxÞ�2 þ g

Z
dx

Z
dt 0wðxðtÞÞK ðt � t 0Þwðxðt 0ÞÞ

where g parameterizes the relative importance of adaptation
over representational continuity. In the second term, the aver-
age over all trajectories can be taken to transform the time-dif-
ference-dependent kernel K(Dt) into an effective position-differ-
ence-dependent one K(x 2 x0). We will consider different mod-
els for this spatial version of the kernel.

To derive the expected form of the asymptotic states of the
training process, it is useful to remind ourselves of some basic
mathematical facts. First, the integral of the function f (x) 5

sin2(x) is half the one of the constant g(x) 5 1 if integrated
over the same domain, plus some ‘border’ corrections that
depend on the particular choice of domain, and generally scale
as its perimeter. Thus, if we choose a two-dimensional domain
with a large area A � 1, we can consider

1

A

Z
A

sin2ðk � x þ /Þdx ¼ 1

2
þ o

1ffiffiffi
A

p
� �

� 1

2

and for similar reasons

1

A

Z
A

sinðk � x þ /Þdx ¼ o
1ffiffiffi
A

p
� �

� 0

neglecting all border contributions.
It is also useful to remember the orthogonal products

between basis functions that give rise to the Fourier formalism.
If we consider a set of different wave vectors {ki} and constant
phases {fi},

1

A

Z
A

sinðki � xþ/iÞ sinðkj � xþ/jÞdx¼
1

2
dij þ o

1ffiffiffi
A

p
� �

� 1

2
dij:

Let us now consider our cost function, normalized by the area
of the integration domain (which we will consider to tend to
infinity)

L ¼ 1

A

Z
A

dx½rwðxÞ�2 þ g

A

Z
A

dxwðxÞ
Z
A

dx0wðx0ÞK ðjx0 � xjÞ

ðA1Þ

and analyze a general form for the solution, decomposed into
two-dimensional Fourier modes

wðxÞ ¼ a0 þ
X
i

ai cosðki � x þ /iÞ: ðA2Þ

Inserting the decomposition into the cost function, and apply-
ing the properties described above, we obtain for the first term
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L1 � 1

2

X
i

a2
i k

2
i :

For the second term of the cost function, we use the change of
variables q 5 x0 2 x and also the trigonometric property

cosðki � q þ ki � x þ /iÞ ¼ cosðki � qÞ cosðki � x þ /iÞ
� sinðki � qÞ sinðki � x þ /iÞ:

By construction, the integration domain is symmetric around
q 5 0; so, the terms with sin(k � q) do not survive the integra-
tion over dq, since sin(k � q)K(q) is an odd function [adapta-
tion has obviously no preferred spatial direction and thus K(q)
has radial symmetry]. The second term of the cost function is
simply

L2 � g � a2
0
eK ð0Þ þ g=2ð Þ

X
i

a2
i
eK ðkiÞ

where we have introduced the two-dimensional Fourier trans-
form of K(q)

eK ðkiÞ ¼
Z
A

dqK ðqÞ cosðki � qÞ:

Taking the derivative of our cost function

L ¼ L1 þ L2 ¼ g � a2
0
eK ð0Þ þ 1

2

X
i

a2
i ½k2

i þ g � eK ðkiÞ�

with respect to the norm of each of the basis vectors, and set-
ting it equal to zero, yields the set of conditions

ki ¼ � g=2ð Þ@ki eK ðkiÞ ðA3Þ

Examples of Adaptation Kernels

The first explicit model we consider is a difference of radially
symmetric Gaussians

K ðqÞ ¼ 1

vsL

ffiffiffiffiffiffi
2p

p exp � q2

2ðvsLÞ2

" #
� q

1

vsS

ffiffiffiffiffiffi
2p

p exp � q2

2ðvsSÞ2

" #

which expresses the hypothesis that, after averaging over trajec-
tories and speeds, adaptation effects, which in real time become
significant over time-differences sS and decay away after time-
differences sL, are strongest within a ring of radius msL, with v
an average speed parameter, but are also felt, reduced by a fac-
tor q(sL/sS) (constrained to be <1), within a distance msS of
the current position, because the animal may sometimes stay
still or move only in its immediate surrounding. If a neuron
fires at a given time, the spatial region of marked adaptation is
thus a ring between radii msS and msL around the current posi-

tion, while adaptation decreases by a factor q(sL/sS) inside the
ring, and it decreases to zero toward the outside.

The Fourier transform of the Gaussian kernel is

eK ðkiÞ ¼ exp � 1

2
kivsLð Þ2

� 	
� q exp � 1

2
kivsSð Þ2

� 	

and Eq. (A3) becomes

1 ¼ gv2

2
s2

L exp �ðkivsLÞ2

2

" #
� qs2

S exp �ðkivsSÞ2

2

" #( )
ðA4Þ

Since 0 < sS < sL, we can analyze the two limit cases of sS. If
sS � sL, the solution of Eq. (A4) is approximately

k� ¼ 1

vsL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

gv2s2
L

2

� 	s

while if sS � sL

k� ¼ 1

vsL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

ð1 � qÞgv2s2
L

2

� 	s

Both situations show that the typical spacing of the solution
(the inverse of k*) is proportional to vsL with some logarithmic
correction.

One may also consider a second example of kernel with an
exponential rather than Gaussian decay:

K ðqÞ ¼ 1

vsL
exp � q

vsL

� 	
� q
vsS

exp � q

vsS

� 	

with transform

eK ðqÞ ¼ ½1 þ ðvsLÞ2��
3
2 � q½1 þ ðvsSÞ2��

3
2

The solution in this case is very similar. The two extreme

cases yield k� ¼ 1
vsL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 gðvsLÞ2
 �2

5 � 1

q
and k� ¼ 1

vsL
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
2 gð1 � qÞðmsLÞ2
 �2

5 � 1

q
, again showing a linear dependence

of the typical spacing with msL, modulated by a slower correc-
tion [tough in this case, for very high values of msL, the correc-
tion becomes significant and the scaling of the spacing is
ðmsLÞ

3
5, a flattening that is also observed in the simulations of

Fig. 4].
These equations point at the first conclusion mentioned in

the main text: the wavelength of the solution should vary
roughly linearly with the timescales for firing rate adaptation.
Simplistic as such an analysis may be, this result is qualitatively
confirmed in simulations (Fig. 4), where the parameters sL and sS

are associated to the inverse of the adaptation rates b1 and b2.
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Two-Dimensional Periodic Solutions

Taking into account that Eq. (A3) constrains all Fourier con-
tributions to have wave vectors of norm k*, if we further con-
strain the minimum of the firing rate map to be 0, and set the
average activity (to unity per unit area, for simplicity), there
are three possible solutions w(x) that show simple spatial perio-
dicity, either linear, rhomboid, or triangular. The first solution
is effectively unidimensional, while the second and third corre-
spond to rhomboid and triangular tessellation of the plane,
respectively

w1ðxÞ ¼ cosðk � xÞ þ 1

w2ðxÞ ¼ ð1=2Þ cosðk0 � xÞ þ ð1=2Þ cosðk00 � xÞ þ 1

w3ðxÞ ¼ ð2=3Þ
X3

i¼1

cosðki � xÞ þ 1

ðA5Þ

These solutions have the form of Eq. (A2), with a0 5 1 to
force unitary average activity and ai adjusted such that w(x) 5

0 at its minima. All wave vectors have norm k*, but while k,
k0, and k00 can have any orientation, the triangular symmetry
requires vectors to be ki 5 k*{cos(2pi/3 1 f), sin(2pi/3) 1

f} for some constant phase f that defines the orientation of
the triangular grid. The three types of solution are represented
in Figure 2.

The cost function associated to each solution is

w1: g eK ð0Þ þ 1

2
½ðk�Þ2 þ g eK ðk�Þ�

w2: g eK ð0Þ þ 1

4
½ðk�Þ2 þ g eK ðk�Þ�

w3: g eK ð0Þ þ 2

3
½ðk�Þ2 þ g eK ðk�Þ�:

In the region of parameters where ½ðK �Þ2 þ g eK ðk�Þ� > 0 any
of these solutions is worse than the trivial constant solution
w0 5 1, with an associated cost function g eK ð0Þ. This region
of parameters is not interesting, since it reflects no competition
between the opposing factors of spatial continuity and adapta-
tion. In the complementary and thus interesting region of
parameters, where ½ðk�Þ2 þ g eK ðk�Þ� < 0, the solution with the
lowest cost is w3.

Moreover, w3(x) is also the most informative of the solu-
tions, again because of the largest summed amplitude of the co-
sine terms, allowed by the fact that the sum reaches its mini-
mum when each of the cosines takes the value 1

2. This results in
more variance [with the help of Eqs. (A5), it is easy to see that
var(w1) 5 1/2, var(w2) 5 1/4 and var(w3) 5 2/3], more infor-
mation content as quantified by the information rate, or higher
values of any index of information that is superlinear in w(x)
(such as the bits per spike measure first developed by Skaggs
et al., 1993). Therefore, we reach the second conclusion that
the triangular grid contributes the most information, and ‘costs’
less in terms of our cost function, among the three periodic solu-
tions. Note that this conclusion does not depend on the particular
choice of adaptation kernel K(q) as long as it has an interesting
region of parameters such that continuity does not prevail over ad-
aptation, and rather the competition between these two driving
forces determines a typical spacing for w(x) given by (k*)21.
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