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1. Introduction and summary

We review the common themes, the network models and the mathematical for-
malism underlying our recent studies about different stages in the evolution of
the human brain. The first pair of studies both deal with radical changes in neu-
ronal circuitry presumed to have occurred at the transition from early reptilians to
mammals, introduced in sect. 2: the lamination of sensory cortex (sect. 4) and the
differentiation into sub-fields of the mammalian hippocampus (sect. 5). In nei-
ther case the qualitative structural change seems to be accompanied by an equally
dramatic functional change in the operation of those circuits. The last study, in-
troduced in sect. 6, deals, instead, with the neuronal dynamics that might underlie
the faculty for language in the human frontal lobes, a qualitatively new functional
capacity that is not apparently associated with any new structural feature. These
studies therefore all discuss the evolution of cortical networks in terms of their
computations, quantified by simulating simplified formal models. All such mod-
els can be conceived as variants of a basic autoassociative neural network model,
and their storage capacity, even when not formally analyzed, plays an important
role in the results. We thus sketch, in sects. 3 and 7, the formalism that leads to
storage capacity calculations, particularly in view of the fact that all three studies
dwell on the interrelationship between qualitative and quantitative change, and
all would benefit from more detailed mathematical analysis. Moreover, all stud-
ies include, as a necessary ingredient of the relevant computational mechanism,
a simple feature of pyramidal cell biophysics: firing rate adaptation; a feature
which to be treated properly requires extending the thermodynamics formalism
into a full analysis of network dynamics. Overall, our approach is that while there
is not necessarily a coupling between structural and functional phase transitions,
understanding both at the mechanistic neural network level is a necessary step to
understand the evolution of the organ of thought.

2. The phase transition that made us mammals

Mammals originate from the therapsids, one order among the first amniotes, or
early reptiles, as they are commonly referred to. They are estimated to have ra-
diated away from other early reptilian lineages, including the anapsids (the pro-
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genitors of modern turtles) and diapsids (out of which other modern reptilians, as
well as birds, derive) some three hundred million years ago [25]. Perhaps mam-
mals emerged as a fully differentiated class out of the third-to-last of the great
extinctions, in the Triassic period. The changes in the organization of the nervous
system, that mark the transition from proto-reptilian ancestors to early mammals,
can be reconstructed only indirectly. Along with supporting arguments from the
examination of endocasts (the inside of fossil skulls; [54]) and of presumed be-
havioural patterns [103], the main line of evidence is the comparative anatomy of
present day species [32]. Among a variety of quantitative changes in the relative
development of different structures, changes that have been extended, acceler-
ated and diversified during the entire course of mammalian evolution [40], two
major qualitative changes stand out in the forebrain, two new features that, once
established, characterize the cortex of mammals as distinct from that of reptilians
and birds. Both these changes involve the introduction of a new “input” layer of
granule cells.

In the first case, it is the medial pallium (the medial part of the upper surface of
each cerebral hemisphere, as it bulges out of the forebrain) that reorganizes into
the modern-day mammalian hippocampus. The crucial step is the detachment of
the most medial portion, that loses both its continuity with the rest of the cortex
at the hippocampal sulcus, and its projections to dorso-lateral cortex [99]. The
rest of the medial cortex becomes Ammon’s horn, and retains the distinctly cor-
tical pyramidal cells, while the detached cortex becomes the dentate gyrus, with
its population of granule cells, that project now, as a sort of pre-processing stage,
to the pyramidal cells of field CA3 [8]. In the second case, it is the dorsal pal-
lium (the central part of the upper surface) that reorganizes internally, to become
the cerebral neocortex. Aside from special cases, most mammalian neocortices
display the characteristic isocortical pattern of lamination, or organization into
distinct layers of cells (traditionally classified as 6, in some cases with sublay-
ers). The crucial step, here, appears to be the emergence, particularly evident in
primary sensory cortices, of a layer of non-pyramidal cells (called spiny stellate
cells, or granules) inserted in between the pyramidal cells of the infragranular
and supragranular layers. This is layer IV, where the main ascending inputs to
cortex terminate [33].

2.1. An information-theoretical advantage in the hippocampus

What is the evolutionary advantage, for mammals, brought about by these changes?
In the case of the hippocampus, attempts to account for its remarkable internal
organization have been based, since the seminal paper by David Marr [70], on
the computational analysis of the role of the hippocampus in memory. The hip-
pocampus is important for spatial memory also in birds. A reasonable hypothesis
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is that the "invention" of the dentate gyrus enhances its capability, in mammals,
to serve as a memory store. Following the approach outlined by David Marr, it
was proposed 12 years ago [90] that the new input to CA3 pyramidal cells from
the mossy fibers (the axons of the dentate granule cells) serves to create memory
representations in CA3 richer in information content than they could have been
otherwise. The crucial prediction of this proposal was that the inactivation of the
mossy fiber synapses should impair the formation of new hippocampal depen-
dent memories, but not the retrieval of previously stored ones. This prediction
has recently been supported [61] at the behavioural level in mice, while neuro-
physiological experiments are in progress with rats. If validated, this hypothesis
suggests that indeed a quantitative, information-theoretical advantage may have
favored a qualitative change, such as the insertion of the dentate gyrus in the hip-
pocampal circuitry. This possibility raises the issue of whether also the insertion
of layer IV in the isocortex might be accounted for in quantitative, information-
theoretical terms, an issue discussed in section 4. At the same time, the DG
argument does not itself address the CA3-CA1 differentiation, which is equally
prominent in the mammalian hippocampus. Section 5 will review a computa-
tional approach to this problem, and mention fresh experimental results that are
shading an entirely new light on it.

2.2. An information-theoretical hypothesis about layers and maps

It has long been hypothesized that isocortical lamination appeared together with
fine topography in cortical sensory maps [6], pointing at a close relationship be-
tween the two phenomena. All of the cortex, which develops from the upper
half of the neural tube of the embryo, has been proposed to have been, origi-
nally, sensory, with the motor cortex differentiating from the somatosensory por-
tion [34, 65]. In early mammals, the main part of the cortex was devoted to
the olfactory system, which is not topographic, and whose piriform cortex has
never acquired isocortical lamination [45]. The rest of the cortex was largely al-
located to the somatosensory, visual and auditory system, perhaps with just one
topographic area, or map, each [32]. Each sensory map thus received its inputs
directly from a corresponding portion of the thalamus, as opposed to the network
of cortico-cortical connections which has been greatly expanded [2, 22] by the
evolution of multiple, hierarchically organized cortical areas in each sensory sys-
tem [56,59]. In the thalamus, a distinction has been drawn [55] between its matrix
and core nuclei. The matrix, the originally prevalent system, projects diffusely
to the upper cortical layers; while the core nuclei, which specialize and become
dominant in more advanced species [38], project with topographic precision to
layer IV, although their axons contact, there, also the dendrites of pyramidal cells
whose somata lie in the upper and deep layers.
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The crucial aspect of fine topography in sensory cortices is the precise corre-
spondence between the location of a cortical neuron and the location, on the array
of sensory receptors, where a stimulus can best activate that neuron. Simple vi-
sual and somatosensory cortices thus comprise 2D maps of the retina and of the
body surface, while auditory cortices map sound frequency in 1 dimension, and
what is mapped in the other dimension is not quite clear [78]. Some of the param-
eters characterizing a stimulus, those reflected in the position of the receptors it
activates, are therefore represented continuously on the cortical sheet. We define
them as providing positional information. Other parameters, which contribute to
identify the stimulus, are not explicitly mapped on the cortex. For example, the
exact nature of a tactile stimulus at a fixed spot on the skin, whether it is punctuate
or transient or vibrating, and to what extent, are reflected in the exact pattern of
activated receptors, and of activated neurons in the cortex, but not directly in the
position on the cortical sheet. We define these parameters as providing identity
information. Advanced cortices, like the primary visual cortex of primates, in-
clude complications due to the attempt to map additional parameters on the sheet,
like ocular dominance or orientation, in addition to position on the retina. This
leads to the formation of so-called columns, or wrapped dimensions, and to the
differentiation of layer IV in multiple sublayers. They should be regarded as spe-
cializations, which likely came much after the basic cortical lamination scheme
had been laid out. The sensory cortices of early mammals therefore received
from the thalamus, and had to analyse, information about sensory stimuli of two
basic kinds: positional or where information, �
	 , and identity or what informa-
tion, ��� . These two kinds differ also in the extent to which cortex can contribute
to the analysis of the stimulus. Positional information is already represented ex-
plicitly on the receptor array, and then in the thalamus, and each relay stage can
only degrade it. At best, the cortex can try to maintain the spatial resolution with
which the position of a stimulus is specified by the activation of thalamic neu-
rons: if these code it inaccurately, there is no way the cortex can reconstruct it
any better, because any other position would be just as plausible. The identity of
a stimulus, however, may be coded inaccurately by the thalamus, with consider-
able noise, occlusion and variability, and the cortex can reconstruct it from such
partial information. This is made possible by the storage of previous sensory
events in terms of distributed efficacy modifications in synaptic systems, in par-
ticular on the recurrent collaterals connecting pyramidal cells in sensory cortex.
Neural network models of autoassociative memories [53, 70] have demonstrated
how simple "Hebbian" rules modelling associative synaptic plasticity can induce
weight changes that lead to the formation of dynamical attractors [9]. Once an
attractor has been formed, a partial cue corresponding e.g. to a noisy or occluded
version of a stimulus can take the recurrent network within its basin of attraction,
and hence lead to a pattern of activation of cortical neurons, which represents the
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stored identity of the original stimulus. Thus by exploiting dishomogeneities in
the input statistics - some patterns of activity, those that have been stored, are
more "plausible" than others - the cortex can reconstruct the identity of stimuli,
over and beyond the partial information provided by the thalamus. This analysis
of current sensory experience in the light of previous experience is hypothesized
here to be the generic function of the cortex, which thus blends perception with
memory [101]. Specialized to the olfactory sense, this function does not seem
to require new cortical machinery to be carried out efficiently. A novel circuitry
may instead be advantageous, when the generic function is specialized to topo-
graphic sensory systems, which have to relay both where and what information,�	 and ��� . We take up the validation of this possibility after considering in the
next section a fully defined model, which exemplifies the mathematical structures
underlying our arguments.

3. Maps and patterns of threshold-linear units

The notion of autoassociative networks refers to a family of neuronal architec-
tures, which in the simplest way can be thought of as one of the three main
building blocks of cortical networks [82]. The two others are Pattern Associ-
ators and Competitive networks. By an autoassociative network we refer to a
recurrent neuronal network with plastic connections. As briefly mentioned pre-
viously, associatively modifiable synapses, which might be modeled by a simple
Hebbian plasticity mechanism, together with massive recurrent connections give
a network of neurons the ability to function as a content addressable memory
device.

In the past two decades, physicists have studied various models of autoasso-
ciative memory using different model neurons and different “learning rules” to
implement Hebbian learning [12, 53]. Mathematical methods have been adapted
from statistical and spin glass physics for the purpose of analyzing these neuronal
networks [7]. Although most of these investigation have been made on very ab-
stract and simplified models, they have provided us with a good understanding
of the general properties of associative memories, e.g. storage capacity and re-
trieval dynamics. Basically, the methods borrowed from physics are based on
the assumption of the existence of a Hamiltonian describing the dynamics of the
system. The condition of the existence of a Hamiltonian imposes the important
constraint of symmetric interactions on the network; this may be taken to be a
good first approximation, but obviously it is not satisfied in the cortex. Actu-
ally, cortical networks belong to a subclass of asymmetrically wired networks, in
which connections are not just asymmetric but, in addition, nearby neurons are
more likely to make synapses with each other. This kind of more realistic models
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in terms of connectivity is what we want to briefly introduce in this section. To
sketch the analytical treatment, we use an improved version of the Self-consistent
signal-to-noise analysis [85].

We thus introduce and analyze an autoassociative network which is comprised
of threshold-linear units and includes a geometrical organization of neuronal con-
nectivity, meant as a simplistic model of the type of organization of connections
observed in the cortex.

3.1. A model with geometry in its connections

Consider a network of � units. The level of activity of unit � is a variable ������� ,
which corresponds to the firing rate of the neuron. We assume that each unit
receives ����� inputs from the other units in the network. The specific co-
variance ’Hebbian’ learning rule we consider prescribes that the synaptic weight
between units � and � be given as:� �����  �"!$# 	%&('*),+ ���.-0/ &�21 !43�56/ &�71 !$8.9 (3.1)

where / &� represents the activity of unit � in pattern : , + �;� is a binary variable and
is equal to

 
if there is a connection running from neuron � to the neuron � and� otherwise. Each / &� is taken to be a quenched variable, drawn independently

from a distribution <=->/,3 , with the constraints /?�@� , A>/,BC�DA>/ # B2�E! , whereAFB stands for the average over the distribution of / . Here we concentrate on the
binary coding scheme <*-0/,3G�H!$I4->/ 1  3=JK-  1 !43LI4-0/,3 , but the calculation can
be carried out for any probability distribution. As in one of the first extensions of
the Hopfield model [98], we thus allow for the mean activity ! of the patterns to
differ from the value !M�  ONQP of the original model [87]. We further assume that
the input (local field) to unit � takes the formR �*� % �OS' � � ���T�U�VJXW YZ  � % � �[�T\]^9 (3.2)

where the first term enables the memories encoded in the weights to determine
the dynamics; the second term is unrelated to the memory patterns, but is de-
signed to regulate the activity of the network, so that at any moment in time_a` )bac � � � � )b�c � � #� �d! . The activity of each unit is determined by its
input through a threshold-linear function� � �?egf � �0h ��ij- R � 1lkjm0n[o 3�pM- R � 1qkjm0n[o 3 (3.3)
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where kjm0n[o is a threshold below which the input elicits no output, i is a gain
parameter, and pM-srtrur 3 the Heaviside step function. The exact details of the up-
dating rule are not specified further, here, because they do not affect the steady
states of the dynamics, and we take “fast noise” levels to be vanishingly small,kwv � . Discussions about the biological plausibility of this model for networks
of pyramidal cells can be found in [11, 88], and will not be repeated here.

In order to analyze this network, we first define a set of order parametersx[y &�Vz , with :{�  r|r|r0<~}s���  rTr|rs� , which we call the local overlaps, as follows:y &� �  � % � + ����-0/ &� N ! 1  3��[�Q9 (3.4)

If we rewrite the local field
R � defined above in terms of these order parameters

we have:R �*� % & -6/ &� N ! 1  3 y &��1 + �u�6��-  (N ! 1  3��U� (3.5)

in which �l��< N � is the storage load. We will use this identity for the local field
in the next section.

3.2. Retrieval states

A pattern : is said to be retrieved if c � y &� �w��-6��3 . Without loss of generality,
we suppose that the first pattern is the retrieved one and therefore

yq�� � y )�
for ����  

and any � . When one pattern is retrieved, the local field to each unit
can be decomposed into two terms. One is the signal, which is in the direction
of keeping the network in a state with large overlap with the retrieved pattern.
The second term, which we call noise, does the opposite. The idea is to calculate
these terms as a function of the local overlap with the retrieved pattern. In other
words we wish to express the r.h.s of 3.5 solely as a function of

y �G� y )� and/ )� . If we are able to do so then we can calculate the activity of each unit as a
function of

y � and by using it in the definition of local overlaps, we will be able
to find a self consistent equation for the local overlap with the first pattern.

To proceed further, we define two more order parameters � &� and � through
the equality below:%� S'=)�� & -0/ �� N ! 1  3 y �� �?� &� J�� � � � (3.6)

with this, we can write the activity of the network as:� � �?egft-0/ )� N ! 1  3 y )� JM->/ #� N ! 1  3 y &� J�� &� J�� � � � 1 + �t� ��-  ON ! 1  3�J"WU- _ 3 1�kjm0nTo h (3.7)
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from which � � can be found self consistently:�U�*�?�gft-0/ )� N ! 1  3 y )� J?->/ #� N ! 1  3 y &� J�� &� JXW(- _ 3 1lk m0nTo h (3.8)

Assuming that �*�2���$� 1 + �u�F��-  ON ! 1  3{�  (N i 1 the function �gf _ h is for a
threshold-linear unit:�gf _ h � i 1 i$� _ pM- _ 3 (3.9)

now we expand the r.h.s. of the above equation for ��� up to the linear term in
y &�

and insert the result in 3.4, to get:y &� ��� &� J % ��� &��� y &� (3.10)

where:� &� �  � % � + �;��-0/ &� N ! 1  3s�gft-0/ )� N ! 1  3 y )� J��� &� J�W(- _ 3 1lk m0n[o h (3.11)

� &��� � + ���� ->/ &� N ! 1  3 # ���Ffu->/ )� N ! 1  3 y )� J �� &� JXW(- _ 3 1lk�m0n[o h r (3.12)

For the above equation, the solution for
y &� can be approximated as:y &� �  � � &�u� ->/ &� N ! 1  3L� & f � h J  � % �OS' � � &��� ->/ &� N ! 1  3L� & f � h (3.13)

where � &��� is defined as:� &�;� � + �;��J %V¡ � &� ¡ + ¡ ��J %
¡ m � &� ¡ � &¡ m + m �¢J�r|rTr (3.14)

in which we have used the notation � & f � h �£�gfu->/ )� N ! 1  3 y )� Jg� &� JgWU- _ 3 1¤k m0n[o h .
Now that we have the local overlaps with the non-condensed patterns as a

function of
y )� , we can write the noise also as a function of it:%� S'~&�� ) -0/ &� 1  3 y �� �  � %� S'¥&�� ) � ��u� -0/ �� N ! 1  3 # � � f � h (3.15)

J  � %�OS' � � � S'¥&�� ) � ���� ->/ &� N ! 1  3�->/ &� N ! 1  3L� & f � h
1We shall see later that this is a reasonable assumption at least when one deals with diluted net-

works or very low storage loads.
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for the first sum in the r.h.s of Eq.3.15 above, using the independence of different
patterns and assuming that � &� does not depend on / &� , one can write: � %� S'¥&�� ) � ��u� ->/ �� N ! 1  3 # � � f � h � ��A � ��t� -0/ �� N ! 1  3 # � � f � h B (3.16)� ��A � ��t� -0/ �� N ! 1  3 # BL� �
and as a result of this we have:� � ����� � ��t� ->/ �� N ! 1  3 #"¦ �£� kj§ A � ��u� B�9 kj§ �  (N ! 1  (3.17)

and therefore:� � � � k #§� % � + ��� + ��� A0� � f � h B
r (3.18)

The second term is a bit tricky. For this term, by replacing the sum with the
average we get zero mean, but for its deviation we have:¨ # � �� -  ON ! 1  3 % � + �;�$A � &�;� # ->/ &� N ! 1  3 # � & f � h # B (3.19)

which is, actually, the standard deviation of the noise. Now we replace the second
term, in the noise sum corresponding to � &� , with a Gaussian random variable with
mean zero and standard deviation ¨ , and take it into account in our fixed point
equations by averaging the equations over this Gaussian measure.

Having done so, with some mathematical manipulations and considering the
assumption that � N �©�  

we derive the following fixed point equations:ª �;�«� i k §� %(¬ + � ¬ + ¬ ��A®X¯±°2��-  1 i4� ¬ 3�² ) J�r|r|r;B�~�³� � k § ª �u� (3.20)¨ #� � �¥i # k #§� % � 5 + ��� J P + �;� ª ��� J ª #�;� 8"´A  ¯�°2�±µ�- /O�! 1  3 y � J�WU- _ 3 1qkjm0n[o�1 ¨ � ��¶ # -  1 i$� � 3 ² # B
where °2�l�@·���¸¹�º�»�¼ »½ #¾ and the superscript J indicates that the integration has
to be carried out in the range where -[¿�ÀÁ 1  3 y � J�W(- _ 3 1�k ¦ ¨ � � . Using the
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definitions of
y � and _ we can get the following for their corresponding fixed

point equations:y � � i� % � + ��� ->/ � N ! 1  3�´ ¯ °2�Mµ�- /(�! 1  3 y ��JXW(- _ 3 1qk m0n[o 1 ¨ �T��¶±-  1 i4�j�T3
² ) (3.21)_ � i� % � A® ¯ °2� µ - / �! 1  3 y �¢JXW(- _ 3 1lk m0nTo 1 ¨ �T� ¶ -  1 i$�Â�T3 ² ) B
r
3.3. The network without structure

Assume that the + ��� ’s are randomly generated with probability Ã"Ä x + ���2�  z �� N � . When � N � v � the network is said to be in the highly diluted regime
and the case of � N �©�  corresponds to the fully connected network. Of course
in these cases where the connectivity is randomly drawn from a non-geometric
probability distribution, the order parameters become uniform in space and solu-
tions have no spatial dependence. It can be shown that for the network without
geometry the mean-field equations read:Å � i k § 1 i$� �£ ¯ °2� ¦ª � �� 5 Å J Å # J ÅÇÆ J£rTr|r;8� � � kj§ ª¨ # � �XÈ i kj§-  1 i4�*3OÉ # È  J P ª J � � ª # É ´ (3.22)A®�¯�°2� µ - / ! 1  3 y JXW(- _ 3 1qk m0n[o 1 ¨ � ¶ # By � i 1 i$� A X¯ °2�V-0/ N ! 1  3¢µ�- /! 1  3 y JXW(- _ 3 1qkjm0n[o�1 ¨ ��¶jB_ � i 1 i$� A X¯ °2�±µ�- /! 1  3 y JXW(- _ 3 1lkjm0n[o�1 ¨ ��¶ÂB
r
It is worthnoting that the contribution of the activity reverberating in the loops of
the network is measured by the order parameter

ª
. Also � essentially measures

the effect of the activity of each unit on itself, after it has reverberated through the
network. The fact that these order parameter disappears when � N ���?� reflects
that when one considers a highly diluted network, the number of loops becomes
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negligible, and they do not contribute to network dynamics. This also makes the
inequality �*���  (N i a valid assumption, and this effect becomes negligible when
one deals with an extremely diluted network.

We can then define the new variables Ä¤� y N ¨ and Êw�Ëf W�- _ 3 1 y 17kÂm0n[o h N ¨
and the following integrals, which are functions of Ä and Ê , as in [87]:Ì # �  Ä k § A�- / ! 1  3  ¯�°2��->Ê�J ÄO/! 1 �$3sBÌ ) � Ì # 1 A® ¯ °2�$B (3.23)Ì Æ � AFX¯�°2��->Ê�J ��/! 1 �$3 # B
r
By using this notation the mean-field equations can be reduced to:Í ) ->Ä(9�ÊÎ3�� Ì ## 1 È  J �� È - P 1 Å 3 Å-  1 Å 3L#�ÉGÉ � Ì Æ ��� (3.24)Í # ->Ä(9�ÊÎ3�� -  i k § 1 � � Å��-  1 Å 3 3 1 Ì # �£� (3.25)

which extend and interpolate the results of [88] to finite values of � N � .
The first equation above appears as a closed curve in the ->Ê�9sÄU3 , plane, which

shrinks in size when one increases � and then disappears; whereas the second
equation is an almost straight curve, which for a certain range of i intersects
twice with the closed curve above. Since for a given value of � such that the first
equation is satisfied, there always exists a value for i that satisfies the second
equation, the storage capacity is the value of � for which the closed curve shrinks
to a point. We treat i as a free parameter, because it can be easily changed in
a network by mechanisms like multiplicative inhibition, if required in order to
approach the optimal storage load.

In the limit of extreme dilution, i.e. � N � v � , Å does not contribute to the
equation for the storage capacity. The result of calculating the storage capacity as
a function of the sparseness of the coding is shown in Fig.2 (the full curve). For
other values of � N � the contribution from

Å
should be taken into account, which

for small � N �Ï��@� results in deviations from the storage capacity of a highly
diluted network. An example is illustrated in in Fig.2 for � N �©�?�,r ��Ð . It is clear
that, at least for small ! , a network with 5% connectivity can be considered as
highly diluted, in the sense that for sparse patterns of activity, the effect of loops
– what produces the difference between

Ì # and
Ì ) – becomes unimportant.

An equivalent approach to study such a network is to use the replica method,
from spin glass physics. If one considers a fully connected network with sym-
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metric connections, then the dynamics can be described by a Hamiltonian. Using
this Hamiltonian it is possible to calculate the partition function, and therefore
the mean field equations, e.g. for the fully connected version of this model. Then
one sends the order parameter corresponding to

ª
for the fully connected net-

work to zero, to obtain the extremely diluted limit. This was basically the way
the threshold linear network was first solved. One can look at [87, 89] for details
of the calculations.

3.4. Appearance of bumps of activity

If we consider a network with a low connectivity level which is spatially or-
ganized, there can exist solutions of the fixed point equations that are spatially
non-uniform. This is what one might call pattern formation. An interesting case,
in one dimension, is a network with a Gaussian connectivity probability distribu-
tion:Ã"Ä x + ��� �  z � �Ñ P(Ò¥Ó #�Ô ¹�Õ À ¹UÖF×�»»FØ » J�ÙÇÚQÛ�Ü|ÝuÞtß,ÜQr (3.26)

The baseline is considered for
Óáà � . In this network it can be shown that

there exists a critical
Ó

at which a second order phase transition occurs, to the
appearance of spatially non-uniform solutions (more precisely, the first Fourier
mode). Together with this appearance of non-uniform solutions, one can observe
a sort of decrease in the storage capacity. Decreasing

Ó
further2 results in the

appearance of bumps of activity, i.e. fixed points of the dynamics that have large
overlap with the stored pattern, and on the other hand are localized in space.
An example of such bumps is shown in Fig.3. The dependence of the critical
sigma and the properties of the bumps are beyond the scope of this paper and are
being reported elsewhere [84], but what is important for us at this stage is the
existence and stability of these spatially non-uniform retrieval states, which can
be analyzed using the above formalism.

3.5. The main points

Let us summarize the main results of the model discussed above, which are rele-
vant to the forthcoming sections. The first point is the way the critical storage ca-
pacity scales with the relevant parameters of the model. As we stated before, this
model shows that for a diluted network, which is close to a biologically plausible

2It should be noted that in the case of small â the approximations leading to disappearance of ã
and ä from our equations are not applicable, since the loops become important again. One can use
these equations in the case of small å , where æ becomes zero and so does ä , and the effects of the
loops become unimportant. We will discuss this issue in more detail elsewhere.
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structure, we obtain a relation <Âç à � N ! . This expresses the computational ad-
vantage of sparse coding for memory storage, in structures like the hippocampus
(see sect. 4). The second point is the appearance of bumps of retrieval activity,
i.e. sustained activity localized both in physical space and in the space of stored
pattern. This phenomenon, analysed in the more complicated situation of a par-
tially recurrent and partially feedforward network comprised of multiple layers,
and operating under the influence of sustained external input, is the basis of the
results of [95], reported in the next section.

4. Validation of the lamination hypothesis

Does preserving accurate coding of position, in an isocortical patch, conflict with
the analysis of stimulus identity? This is obviously a quantitative question, which
has to be addressed with a suitable neural network model. An appropriate model
can be designed with similar features as the one considered above, but with the
additional option of differentiating multiple layers. In particular, the model of
a cortical patch, receiving inputs from a thalamic array of units, can be inves-
tigated in its ability to generate localized retrieval states, that correspond to the
stored patterns modulated by bumps, studied analytically in the section above.
Unlike the analytical study, which is easier to conduct in a well defined limit
case, e.g. looking at the existence of asymptotic attractor states after an afferent
cue that has initialized activity in the network has been removed, with simula-
tions one can also study the dynamics of localization and retrieval in time, with
a cue that follows its own time course. Contrasting a model network with dif-
ferentiated layers with one that has the same number of units and connections,
but statistically equivalent layers, allows to approach the question of the role of
lamination. The presence of several layers would anyway make an analytical
treatment, while not impossible, very cumbersome, and computer simulations
appear to be the method of choice. This is the approach taken in Ref. [95], the
results of which are briefly summarized here.

A patch of cortex was modeled as a wafer of 3 arrays, each with �@´�� units.
Each unit receives ��èOè feedforward connections from a further array of �é´ê�
"thalamic" units, and � o ç recurrent connections from other units in the patch.
Both sets of connections are assigned to each receiving unit at random, with a
Gaussian probability in register with the unit itself, and of width ë=èOè and ë o ç ,
respectively3. To model, initially, a uniform, non-laminated patch, the 3 arrays
are identical in properties and connectivity, so the � o ç recurrent connections each
unit receives are drawn at random from all arrays. To model a laminated patch,

3Periodic boundary conditions are used, to limit finit size effects, so the patch is in fact a torus.
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later, different properties and connectivity are introduced among the arrays, but
keeping the same number of units and connections, to provide for a correct com-
parison of performance. The 3 arrays will then model supragranular, granular and
infragranular layers of the isocortex [95]. A local pattern of activation is applied
to the thalamic units, fed forward to the cortical patch and circulated for � � m ¸ o
time steps along the recurrent connections, and then the activity of some of the
units in the patch is read out. To separate out "what" and "where" information,
the input activation is generated as the product of one of a set of ì predeter-
mined global patterns, covering the entire �©´2� input array, by a local focus of
activation, defined as a Gaussian tuning function of width � , centered at any one
of the � # units. The network operates in successive training and testing phases.
In a training phase, each of the possible ìé´��Ë´Î� activations is applied, in ran-
dom sequence, to the input array; activity is circulated in the output arrays, and
the resulting activation values are used to modify connections weights according
to a model associative rule. In a testing phase, input activations are the product of
a focus, as for training, by a partial cue, obtained by setting a fraction of the tha-
lamic units at their activation in a pattern, and the rest at a random value, drawn
from the same general distribution used to generate the patterns. The activity of
a population of output units is then fed into a decoding algorithm - external to
the cortical network - that attempts to predict the actual focus (its center, < ) and,
independently, the pattern � used to derive the partial cue. � � is extracted from the
frequency table Ãg-0��9s�sí|3 reporting how many times the cue belonged to pattern�=�  9Tr|rTr�9ì but was decoded as pattern � í :� � � % � � �ïî Ãg->��9s�Lí[3$ÝuðQñ # Ãg->��9s�Lí[3Ãg->�L3LÃg-0� í 3 (4.1)

and a similar formula is used for � 	 . The learning rule used to modify connection
weights wasò Ê �;��ó Ä 	Tôõ m� ö ->Ä 	 o ¸� 1 ��Ä 	 o ¸ ¦ 3 (4.2)

applied, at each presentation of each training phase, to weight ÊÎ��� . Weights are
originally set at a constant value (normalized so that the total strength of afferents
equals that of recurrent collaterals), to which is added a random component of
similar but asymmetrical mean square amplitude, to generate an approximately
exponential distribution of initial weights onto each unit. Ä denotes the firing rates
of the pre- and postsynaptic units, and �wrTr|r ¦ an average over the corresponding
array.

Among the several parameters that determine the performance of the network,� ���?ë o ç was fixed, while ë~èOè was varied from ë~èOèg÷ � up to ë¥èOèg÷Ëë o ç . It
is intuitive that if the feedforward connections are focused, ë èOè ÷ � , “where”
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information can be substantially preserved, but the cortical patch is activated over
a limited, almost point-like extent, and it may fail to use efficiently its recurrent
collaterals to retrieve “what” information. If the other hand ë=èOè ÷øë o ç , the re-
current collaterals can better use their attractor dynamics, leading to higher � �
values, but the spread of activity from thalamus to cortex means degrading � 	 .
This conflict between ��	 and �|� is depicted in Fig. 4, which reports their joint
values extracted from simulations, as they vary as a function of the spread of
the afferents, at the end of the training phase (full curve). What is decoded is
the activity of all units in the upper array of the patch. Since the patch is not
differentiated, however, the other two arrays provide statistically identical infor-
mation. Further, since information of both the what and where kinds is extracted
from a number of units already well in the saturation regime [94], even decod-
ing all units in all 3 arrays at the same time, or only, say, half of the units in any
single array, does not alter the numbers significantly. �[� is monotonically increas-
ing with ë~è[è . �	 , instead, decreases with ë*èOè , and as a result one can vary ë*è[è
to select a compromise between what and where information, but not optimise
both simultaneously. This conflict between what and where persists whatever the
choice of all the other parameters of the network, although of course the exact
position of the ��	 1 ��� limiting boundary varies accordingly. Is it possible to go
beyond such boundary?

4.1. Differentiation among isocortical layers

Several modifications of the "null hypothesis" uniform model were explored, as
reported in [95]. Figure 4 illustrates, along with the results of the uniform model,
results pertaining to slightly different versions of a 3-layer laminated model. Ba-
sically, the granular layer is differentiated by (i) focusing the thalamic afferents
to the granular layer, while those to the two pyramidal layers are diffuse; (ii)
restricting the recurrent collateral system of the granular units, by focusing the
connections departing from granular units and decreasing the number of connec-
tions arriving at layer IV from the pyramidal layers; finally (iii) layer IV units
follow a non-adaptive dynamics, and they do not operate during training, but
only during testing. The non-adapting dynamics is effected, in the simulations
by making their effect on postsynaptic units, whatever their layer, scale up lin-
early with iteration cycle. Thus, compared to the model pyramidal units, whose
firing rate would adapt over the first few interspike intervals, in reality (but is
kept in constant ratio to the input activation, in the simulations), the firing rate of
granule units, to model lack of adaptation, is taken to actually increase in time
for a given input activation.

Differentiating infra- from supra-granular connections is effected by simply
replacing the connections from layer IV to the infragranular pyramidal units with
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connections to the same units from supragranular units. In the real cortex, the
supragranular layers project mainly onward, to the next stage of processing. The
infragranular layers project mainly backward [14], or subcortically. Among their
chief target structures are the very thalamic nuclei from which projections arise
to layer IV. It is clear that having different preferential targets would in princi-
ple favour different mixes of what and where information. In particular, cortical
units that project back to the thalamus would not need to repeat to the thalamus
“where” a stimulus is, since this information is already coded, and more accu-
rately, in the activity of thalamic units. They would rather report in its full glory
the genuine contribution of cortical processing, that is, the retrieval of identity in-
formation. Units that project to further stages of cortical processing, on the other
hand, should balance the "what" added value with the preservation of positional
information. With this combination of modifications, layer III becomes the main
source of recurrent collaterals [73, 104], which are spread out and synapse onto
both supra- and infra-granular units and also, to a lesser degree, layer IV units.

The effect of the overall model of the differentiation can be appreciated by
decoding the activity in the three layers, separately, as shown in Fig. 4 by the
isolated symbols. From layer IV one can extract a large ��	 but limited ��� ; from
layer III one obtains a balanced mix. From layer V, on the other hand, one can
extract predominantly "what" information, �T� , at the price of a rather reduced �
	
content. Thus, the last connectivity change, by effectively reducing the coupling
between granular and infragranular layers, has made the latter optimize “what”
information, while neglecting “where” information, of limited interest to their
target structures. Can we understand the advantage brought about by lamina-
tion? The modifications required in the connectivity of layer IV are intuitive:
they make granule units more focused in their activation, in register with the tha-
lamic focus, while allowing the pyramidal units, that receive diffuse feedforward
connections, to make full use of the recurrent collaterals. What is less intuitive is
the requirement for non-adapting dynamics in the granule layer. It turns out that
without this modification in the dynamics, the laminated network essentially av-
erages linearly between the performances of uniform networks with focused and
with diffuse connectivity, without improving at all on a case with, say, interme-
diate spread parameters for the connections. This is because the focusing of the
activation and the retrieval of the correct identity interfere with each other, if car-
ried out simultaneously, even if the main responsibility for each task is assigned
to a different layer. Modifying the dynamics of the model granules, instead, en-
ables the recurrent collaterals of the pyramidal layers to first better identify the
attractor, i.e. the stored global pattern, to which the partial cue “belongs”, and to
start the dynamical convergence towards the bottom of the corresponding basin
of attraction [7]. Only later on, once this process is – in most cases – safely un-
derway, the granules make their focusing effect felt by the pyramidal units. The
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focusing action, by being effectively delayed after the critical choice of the at-
tractor, interferes with it less – hence, the non-linear advantage of the laminated
model.

5. What do we need DG and CA1 for?

If the synapses on the recurrent collaterals among pyramidal cells of the primi-
tive cortex were endowed, as it is likely, with associative, “Hebbian”, plasticity,
such as that based on NMDA receptors [28], that cortex could have operated as
an associative memory [22] – provided it had an effective way of distinguish-
ing its operating modes. A generic problem with associative memories based on
recurrent collaterals is to distinguish a storage mode from a retrieval mode. To
be effective, recurrent collaterals should dominate the dynamics of the system
when it is operating in retrieval mode; whereas while storing new information
the dynamics should be primarily determined by afferent inputs, with limited
interference from the memories already stored in the recurrent collaterals. The
recurrent collaterals, instead, should modify their weights to store the new infor-
mation [90]. In the model considered analytically in section 3, the learning phase
is not explicitly considered. In the simulations of the laminated model, in section
4, the distinction is partially inserted by hand, by forcing the layer IV units to be
silent during training.

5.1. Distinguishing storage from retrieval

The most phylogenetically primitive solution to achieve a similar effect is to use
a modulator which acts differentially on the afferent inputs (originally, those ar-
riving at the apical dendrites) and on the recurrent connections (predominantly
lower on the dendritic tree). Acetylcholine (ACh) can achieve this effect, ex-
ploiting the orderly arrangement of pyramidal cells dendrites [47]. Acetylcholine
is one of several very ancient neuromodulating systems, well conserved across
vertebrates, and it is likely that it operated in this way already in the early rep-
tilian cortex, throughout its subdivisions. In recent years, Mike Hasselmo has
been emphasizing this role of ACh in memory, with a combination of slice work
and neural network modeling [48, 49]. This work has been focused on the hip-
pocampus – originally, the medial wall – and on piriform cortex – originally, the
lateral wall. In the hippocampus, however, it appears that mammals have de-
vised a more refined trick to separate storage from retrieval, and perform both
efficiently: operating the dentate gyrus preprocessor. It is illuminating, in fact, to
contrast the avian and mammalian hippocampi. They are structurally very differ-
ent, with birds having stayed close to their reptilian progenitors, and mammals
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having detached the dentate gyrus from Ammon’s Horn, as mentioned above.
Yet, at the behavioural level, the hippocampus of birds has been implicated in
spatial memory in a role qualitatively similar to the prevailing description for the
rodent hippocampus. Evidence comes from pigeons [18] and other species, and
there is extensive literature to document it [26, 27].

Initially, the neural network approach, aiming at explaining structure from
function, seemed to apply indiscriminately to hippocampal function in both birds
and mammals, and therefore to be unable to say anything about the structural
differences between the two. In his early paper, David Marr guessed the impor-
tance of recurrent collaterals, a prominent feature of the CA3 subfield [8], even
though his own model was not really affected by the presence of such collaterals,
as shown later [102]. Although the paper by Marr was nearly simultaneous with
two of the most exciting experimental discoveries related to the hippocampus,
that of place cells [75] and that of long term synaptic potentiation [19] for a long
time it did not seem to inspire further theoretical analyses – with the exception of
an interesting discussion of the collateral effect in a neural network model [44].
Marr himself become disillusioned with his youthful enthusiasm for unraveling
brain circuits, and in his mature years took a much more sedate – and less neural
– interest in vision. From 1987, however, McNaughton and Morris (1987) and
then an increasing number of other investigators rediscovered the young Marr,
and tried to elaborate those ideas in order to pin down the contribution of spe-
cific elements of the hippocampal circuitry. Edmund Rolls (1989) and several
others have emphasized the crucial role probably played by the CA3 recurrent
collaterals, that may form an autoassociator, a well studied network model of a
content addressable memory. An autoassociator may subserve both the storage
of episodic memories, e.g. in humans, and the storage of memory for space, e.g.
in rats [15]). The emphasis on the essential role of the CA3 recurrent collater-
als opened the way for attempting to understand the specialization of the dentate
gyrus, in mammals [90]. A quantitative analysis of different network architec-
tures (essentially, an autoassociator, CA3, operating with and without dentate
gyrus to aid it in storing new memories) indicated an information theoretic ad-
vantage of one over the other in forming new representations. The models used
were very abstract, and thus amenable to theoretical analysis [92] instead of just
simulation, yet broadly consistent with generic cortical circuitry at all levels of
details below the one being investigated. Conceptually, the function ascribed to
the dentate is equivalent to the function ascribed to acetylcholine – to enhance the
relation between hippocampal activity and afferent inputs during memory stor-
age. The quantitative argument, however, allows a functional prediction at the
neural level, which can be tested with suitable experiments. The prediction is that
if mossy fibers are inactivated, the system is not able to acquire new hippocampal
memories; or, more precisely, new memories rich in their information content. It
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should be able, nevertheless, to retrieve the memories already in store (and per-
haps to form very impoverished representations of new memories). Somewhat
surprisingly, the prediction has already been borne out of a purely behavioral ex-
periment, in which mice were tested in a Morris water maze while transmission
of dentate granule cell action potentials was reversibly blocked [61]. Another
behavioural experiment has provided converging evidence [63]. Physiological
experiments using similar techniques, in conjunction with measures of the infor-
mation content of neural patterns of activity, will allow for more stringent tests
of the argument. The mammalian ‘invention’ of the dentate gyrus, an ingenuity
which likely took a long time to evolve from the simpler early reptilian organiza-
tion, may thus represent a quantitative not qualitative improvement: qualitatively,
we had acetylcholine already; but we managed to further improve on that.

5.2. CA1 in search of a role

If DG can be understood as a CA3 preprocessor, perhaps CA1 should be un-
derstood as a CA3 postprocessor. Yet studies based solely on the notion of the
usefulness of a further associative memory and recoding stage after CA3 (Treves,
1995) failed to illustrate impressive advantages to adding such a stage. More in-
teresting hints come from neuropsychological studies in rats [58], that indicate a
more salient role for CA1 along the temporal dimension. CA3 may specialize in
associating information that was experienced strictly at the same time, whereas
CA1 may link together, more than CA3, information across adjacent times. A
way to formulate a qualitative implication of such a functional differentiation
is to state that CA1 is important for prediction, i.e. for producing an output
representation of what happened just after, at the time of storage, whatever is
represented by the pattern of activity retrieved at the CA3 stage. Note, however,
that reading the Kesner review in full indicates that the table at the end is a well-
meaning simplification. Their Fig.31.2 suggests that CA3 may be involved in
temporal pattern separation just as much as CA1. Moreover, the role of either
DG or CA3 in temporal pattern association has never really been assessed. Fur-
ther, available studies on the role of CA1 fail to make a clear distinction between
tasks in which massive hippocampal outputs to the cortex are crucial, and tasks
in which a more limited hippocampal influence on the cortex may be sufficient.
In the first case, lesioning CA1 should have an effect independently of what CA1
specifically contributes to information processing, simply because one is sever-
ing the main hippocampo-cortical output pathway. In the second, CA3 outputs
through the fimbria/fornix could enable hippocampal-mediated influences to be
felt, deprived, though, of the specific CA1 contribution.

Structurally, CA3 and CA1 are contiguous portions of the dorsomedial cor-
tex. When this reorganizes into the mammalian hippocampus, CA3 and CA1
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differentiate in two important ways. First, only CA3 receives the projections
from the dentate gyrus, the mossy fibers. Second, only CA3 is dominated by
recurrent collaterals, while most of the inputs to CA1 cells are the projections
from CA3, the Schaffer collaterals (Amaral et al, 1990). In [96] the hypothe-
sis was explored that the differentiation between CA3 and CA1 may help solve
precisely the computational conflict between pattern completion, or integrating
current sensory information on the basis of memory, and prediction, or moving
from one pattern to the next in a stored sequence. Neural network simulations,
based on the same sort of model as those analyzed in section 3 and reviewed in
section 4, were used to assess to what extent CA3 would take care of the for-
mer, while CA1 would concentrate on the latter. With the simulations, at the
price of some necessary simplification, one can compare the performance of the
differentiated circuit with a non-differentiated circuit of equal number and type
of components (one in which CA3 and CA1 have identical properties, e.g. both
receive mossy fibers and are interconnected with recurrent collaterals). Lesion
studies, instead, can only compare the normal circuit with others with missing
components, and it is thus difficult for them to say the last word on the meaning
of a differentiation. The hypothesis was not really supported by neural network
simulations. The conflict indeed exists, but the crucial parameter that regulates
it appears to be simply the degree of firing frequency adaptation in pyramidal
cells. The differentiation between the architectures of CA3 and CA1 has a minor
effect on temporal prediction, while it does significantly increase the information
content of hippocampal outputs.

After those simulations were completed, new experimental results from the
labs of Edvard Moser [66] and James Knierim [62] have shed a completely new
light on the significance of the CA3-CA1 differentiation. As explained in forth-
coming papers [64, 67], activity in CA3 and CA1 differs remarkably when rats
are asked to navigate in environments that some cues suggest are the same, and
others indicate they are different. CA3 appears to take an all-or-none decision,
usually allocating nearly orthogonal neural representations to even very similar
environments, and switching to essentially identical representations only above a
high threshold of physical similarity. Activity in CA1, instead, varies smoothly
to reflect the degree of similarity. This functional differentiation, and the find-
ing that new representations in CA3 emerge slowly, presumably through iterative
processing, are entirely consistent with the recurrent character of the CA3 net-
work, and the prevailing feedforward character of the CA1 network. Thanks to
these experimental findings, therefore, we are beginning to finally ‘understand’
CA1, and to make complete sense of the events that drastically altered the struc-
ture of our medial pallium nearly 200 million years ago.
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6. Infinite recursion and the origin of cognition

A cornerstone of the search for cortical network mechanisms of cognition is the
observation, old but often neglected, that each small patch of neocortex is in-
ternally wired up in the same basic way. This holds across areas as well as
across mammalian species, with relatively minor differentiations and specializa-
tions that do not alter the neocortical microcircuitry scheme [30, 35, 81] nor the
basic overall cortical plan [59,105]. It holds also in areas implicated in language
functions in humans. This suggests that the local network mechanisms subserv-
ing the rich variety of cognitive functions are always essentially the same, and
functional differentiation corresponds solely, to a first approximation, to differ-
ences in the long-range connections of different cortical areas. The local Ştrans-
actionŤ, or elementary cortical network operation, is likely to be roughly the
same everywhere [68], in sensory cortex as in association cortex.

Further, the long-range connections, denoted as the A system by Braiten-
berg [21] in contrast with the B system of local connections that do not leave
the gray matter, follow indeed a specific wiring plan, which - when compared
to simple mammalian species - is similar (although more complex) in elaborated
species such as ours. However these connections do not seem to differ in other
ways than in their overall wiring diagram: their layers of origin and termination,
their synaptic mechanisms, their plasticity, their modulation by different neuro-
transmitters, all follow the same set of basic rules across cortical areas and across
mammalian species.

One is led therefore to speculate that an understanding of the cortical opera-
tions underlying cognitive functions requires two main steps. First, the local net-
work transaction has to be captured by a functional description, abstract enough
to apply independently of areas and modalities yet accurate enough at the net-
work level to be useful as a building block for system-level analyses. Second,
global network operations have to be reduced to the combination of multiple in-
stances of the universal local transaction, implemented along the wiring diagram
relevant to each cognitive function.

6.1. Infinite recursion and its ambiguities

Are there clues about the nature of such global network operations that come
from purely cognitive analyses? In a recent review, Marc Hauser, Noam Chom-
sky and Tecumseh Fitch [50] re-evaluate the requirements for the faculty of lan-
guage. They state that language in the broad sense requires an adequate sensory-
motor system and an adequate conceptual-intentional system, which however
are both unlikely to be uniquely human attributes. They further propose that
what may be uniquely human is a third necessary component of the faculty of
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language, that is a computational mechanism for recursion. Such a mechanism
would provide the capacity to generate an infinite range of expressions from a fi-
nite set of elements. They also speculate that a capacity for infinite recursion may
have evolved for reasons other than language, such as number processing, navi-
gation, or social relations. In a related analysis, Daniele Amati (personal commu-
nication) wonders what could be a component that distinguishes uniquely human
cognitive abilities, which he calls H-abilities, from the 1-H abilities shared with
other species; and he identifies this component with a capacity for producing ar-
bitrarily long sequences that, at an abstract level, obey certain rules. This implies
an ability to process cognitive states remote from those directly elicited by sen-
sory inputs, and to generate such states recursively, i.e. a notion very close to the
Chomskian one of infinite recursion in language, as manifested in a generative
grammar. Thus a computational mechanism for infinite recursion may be uti-
lized in other H-abilities, for example (as proposed by Amati) in the production
of music (see [51], and other articles in the same issue).

Recursion, referred to the generation of infinite sequences of elements drawn
from a finite alphabet, is an abstract and very loose notion. Computationally,
at the most pedestrian level, it might simply mean that the transitions from one
element to the next follow certain rules instead of being effectively random. A
mathematical formulation of a grammar can be reduced in fact to the study of a
system with certain forbidden transitions among its elements (see e.g. [72] and
references therein). What are the elements, how they may be represented in the
brain, and how restrictive are the rules they have to adhere to, remains to be
clarified. Linguistically, and in other cognitive domains, recursion is often im-
plied to mean something less pedestrian, like an embedding of clauses one inside
the other in syntax, or the nesting of do-loops in Fortran codes. Recursion in
this more sophisticated sense tends to be domain-specific, however, and is hardly
ever infinite. An approach to explain infinite recursion mechanistically, in gen-
eral, while taking into account domain-specific connotations is therefore likely
to be ill-directed. More promising appears an almost opposite, nearly bottom-up
approach, that considers the generic, pedestrian meaning of recursion, assumes
the quality of its being infinite as critical, and focuses on the universal cortical
transaction at the local network level.

6.2. Memory – statics and dynamics

In one of his ambitious and difficult papers discussing the organization of the
brain, David Marr [69] proposed to regard the cerebral cortex in terms of its abil-
ity to decode the outside world using memory of previous experiences. In their
1991 book, Braitenberg and Schüz [22] summarized a series of insightful ob-
servations on the quantitative anatomy of the cortex, concluding that in general
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terms it operates as an associative memory machine. Over the last 15 years the
interpretation of local cortical networks as attractor networks performing mem-
ory computations [9], which has informed our sect. 3, has diffused across the
neuroscience community, leading to increased attention to the role of recurrent
collateral processing even in early vision [80] and in slices [29, 86]. Memory
computations take different forms [82], including self-organized recoding useful
for categorization, pattern association (or directed memory in the terminology of
Marr, [70]), and autoassociation or free memory. Common to all is the use of neu-
rons as simple devices summating multiple inputs, of representations distributed
over the activity of many neurons, and of associative plasticity mechanisms at
their synaptic connections, as used in the earlier sections of this chapter.

With such minimal and neurally plausible ingredients, memory operations at
the single neuron level can be depicted as simple analog operations on vectors
of synaptic weights and on vectors of firing rates. These analog computations,
widely accepted as the neural basis of memory in cortical networks, are seem-
ingly far removed from the symbolic computations often subsumed as the logical
basis of language and other higher cognitive faculties. Yet, apparent differences
notwithstanding, analog computations at the single neuron level can implement
symbolic computations at the local network level. The crucial element for this to
occur is the discrete nature of local network attractors. The discreteness of local
attractors can provide the error-correction capability and the robustness to noise
that are often associated with the processing of discrete symbols.

In most simple models, local attractors are viewed as final states reached by a
relaxation type of dynamics, that is, they coincide with the distribution of firing
rates across neurons, that the local network would tend to reach in the absence
of new perturbing inputs. This is however not necessarily the case. In his pro-
posal of the notion of synfire chains [1], Moshe Abeles has envisioned inherently
dynamical attractors, in which the identity of neurons firing in each attractor
changes rapidly with time, along chains of links, each comprised of simultane-
ously firing neurons. The attractive nature of a chain expresses itself both in the
convergence towards one of the sequences of links that are stored in memory,
and in the progressive synchronization of the units comprising each link [17,52].
Distinct sequences and distinct links within a sequence can share a number of par-
ticipating units, and if this number does not exceed a value that can in principle
be calculated, each chain continues to operate as a dynamical attractor. Further,
distinct sequences can share the very same link or set of links, provided the ac-
tivation of a link depends on previous links extending sufficiently into the past
as to disambiguate each sequence. Although the original synfire chain model
may be oversimplified, theoretically this notion has the merit of unleashing the
computational capabilities of attractors, with their analog-to-symbolic transfor-
mation, into the temporal dimension. If provisions are made for the composition
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of individual chains, and for ŞswitchŤ links with multiple possible outcomes,
synfire chains can implement the structure of transition probabilities of a gram-
mar. It has indeed been noted how synfire chains, or objects of a similar nature,
could be at the basis of language [77]; interestingly, the concept derives from
the experimental observation of neural activity recorded in the frontal cortex of
monkeys [3]. In contrast, the Şstatic notion of fixed-point attractors finds its most
salient experimental inspiration in data recorded in the temporal lobe [71].

In the temporal cortex, if a local static attractor may be taken to correspond to
a feature represented over a limited patch of cortex, a global attractor extending
over many patches may be taken to correspond to an item from semantic mem-
ory [31, 39]. In the past we have analyzed quantitatively simple multi-modular
associative memory networks, to check whether they could serve as models of se-
mantic memory. In line with the distinction between the A and B systems of con-
nections among pyramidal cells [21], we considered models in which each mod-
ule, including � units, is densely connected through associatively modifiable
weights (in fact each pair of units in the same module are pre- and post-synaptic
to each other, so the number of local connections per unit ��ù equals � 1  )
while different modules are sparsely connected (each unit receives �Gú connec-
tions, coming from other units widely distributed over ì modules). Anatomical
evidence suggests that �Çù and ��ú are large numbers of similar magnitude, e.g.
of order

 �Qû in primates [2]. � determines the number of local attractor states,
denoted here as ë , which analytical studies show scales up with the number of
local connections per units, i.e. is proportional to � ù .

In a first study of a multi-modular network, we concluded that the number < of
global attractor states cannot be much larger than ë for the system to retrieve each
memory item correctly. Analytical results show that if < is much larger than ë ,
random combinations of local attractors, which do not correspond to any stored
global pattern of activity, prevail as fixed points over the meaningful, stored com-
binations, which the � ú long-range connections per unit try to enforce [76]. Thus
a simple-minded multimodular network could not serve as an effective semantic
memory, since it would be limited to storing a very low number of items, of the
same order as that of local attractor states. In a subsequent study, we identi-
fied two modifications to the first model we had considered, which increase its
storage capacity beyond such a limited value [42]. The first modification is a
long-range connectivity that is not uniformly sparse across modules, but is con-
centrated between a module and a subset of other modules that strongly interact
with it. The second modification is to consider global activity patterns, or seman-
tic memory items, that are not defined across all modules, but only over a subset,
different for each pattern, which tends to include strongly interacting modules.
With these combined modifications, the storage capacity, as measured by < , can
increase well beyond the local capacity ë , although its exact value is difficult to
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calculate, and depends on the details of the model. The tentative conclusion of
the second study, therefore, was that a viable model of semantic memory based
on a collection of interacting local associative networks should include (a) non-
uniformly distributed long-range connections and (b) activity patterns distributed
over a sparse fraction of the modules [42].

6.3. Memory latching as a model of recursive dynamics

The analyses above refer to the operation of semantic memory retrieval, which
has to be initiated by an input that conveys a partial cue. In the temporal cortex,
the so-called stimulus specific delay activity, which is observed for up to a few
seconds following the offset of the stimulus, is typically weak and disrupted by
successively intervening stimuli [23]. In the frontal cortex, similar delay activity
can instead be quite strong and persist in the face of intervening stimuli [41],
reflecting the overall weaker influence that sensory inputs to the cortex have on
frontal networks, compared to that on networks of the temporal lobe (as modeled
in [79]). It becomes pertinent to ask, then, especially in the case of frontal cortex,
what type of dynamics may follow semantic memory retrieval: what happens to
a network comprised of multiple associative modules, once it has been activated
by a cue and it has retrieved a given semantic memory. In the following, it is
proposed that what can happen depends critically on the number of semantic
memories stored, that is, on the number of global attractor states. While allowing
for a special contribution of the frontal cortex to temporal integration, due to its
position in the overall cortical plan [43], and while broadly compatible with the
declarative/procedural model of Ullman [100], the proposal focuses on a network
mechanism that is not restricted to frontal cortex, but that in human frontal cortex
may have found a novel expression because of a purely quantitative feature: the
abundance of its connections.

The hypothesis requires one additional ingredient, which however in the cor-
tex comes for free, so to speak. This is a passive mechanism for moving a local
network out of an attracting state, after some time. A combination of firing rate
adaptation in pyramidal cells, short-term depression at excitatory synapses and
slow rebound inhibition would produce such an effect, and in different propor-
tions would tend exclusively to inactivate the local network or also to favour
its transition to a different attractor state, or even to enable flip-flop switching
between pairs of states, as in binocular rivalry [60]. Globally, under certain con-
ditions the collection of modules will move continuously from global attractor to
global attractor or, more precisely, it will hop from state to state, given the dis-
crete nature of the attractor states. It may rapidly pass through intermediate states,
but in a well behaving semantic system mixture states are unstable (see [83] for a
simplified model) and the trajectory, in the absence of new inputs, will essentially
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include periods close to attracting states, which would be fixed points except for
the adaptation/inhibition mechanism, and rapid transitions between them. The
system latches between attractors.

We now focus on whether such transitions will continue to occur, one after
the other in the absence of inputs, and, if they occur, on the degree to which they
follow rules, or are effectively random. When relatively few global attractors
exist, in the high-dimensional space in which they live, the attractors will tend
to be orthogonal, or approximately equally distant from each other. This is a
statistical tendency that follows simply from the high dimensionality of the space,
without special assumptions. In such a regime, transitions will be nearly random,
if they occur at all. This is because as the system moves out of the previous global
attractor none of the other attractors will be strongly engaged to take over; small
fluctuations in the instantaneous condition of the system may favour a particular
hopping among many essentially equiprobable ones, or else selective activity in
the system may simply die out. When more global patterns exist, they populate
more densely their high dimensional space, and at some point each pattern will
have a subset of other patterns that are closer to it, or more similar, than the
rest. In such a regime transitions between states will tend to be structured, and
the dynamics will appear to follow certain rules, i.e. a grammar. The critical
density of global attractor states at which structured transitions begin to prevail
depends markedly on how patterns are generated, and one has to make more
concrete assumptions in order to proceed with more quantitative arguments. It
is not fully clear at this stage whether the transition between the two regimes
takes the sudden character of a phase transition, akin perhaps to a percolation
transition [46]. In general, however, it should remain valid that such critical
density does not depend on the long-range connectivity. The storage capacity
for semantic memory, instead, does depend on the connectivity. The hypothesis,
then, is that a connectivity increase may increase the storage capacity of a frontal
semantic multi-modular network, until it can store enough patterns that, when
left without inputs, it can follow structured dynamics, which express a sort of
transition rules. This hypothesis can be formulated in more detail by considering
a concrete model, amenable to computer simulations.

Before discussing the toy model, it is tempting to freely speculate on the rela-
tion, within this framework, between the universal grammar, posited to underlie
all human languages, and the grammar constraining each particular language,
characterized by its choice of parameters (see e.g. [13]). The universal grammar
should reflect the associative nature of the semantic network, largely embodied
in a time-independent matrix of similarities between global attractors, but also
endowed with the restricted extent of time arrows characteristic of any action se-
mantics [106]. Such time arrows, or directed associations in Marr’s terms, can be
realized by simple and biologically plausible mechanisms, e.g. by spike-timing
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dependent synaptic plasticity. The same mechanisms can operate, when learning
a specific language, to resolve the residual temporal order ambiguities left by the
fact that action semantics does not specify all the temporal relations necessary to
produce (one-dimensional) speech. Thus, in this interpretation, language param-
eters are set (arbitrarily, from a formal point of view, that is according to one’s
mother tongue) when funneling the more loosely time-constrained action seman-
tics into the strict order of sequential discourse. Also parameters that seemingly
do not reflect simple temporal order, like the polysynthesis parameter, might be
indirect by-products of such a funneling effort.

7. Reducing local networks to Potts units

Consider again a network comprised of ì modules each of which functions as
an autoassociative network. Assume that each module stores ë patterns and that,
together with the intra-modular connections, there are also connections running
between units in different modules. The full analysis of such a system, when
including in addition non-uniform connectivity like the one discussed in sect. 2,
would be very hard; in order to proceed one should thus consider some sim-
plified model. The first natural choice is to consider a network with all to all
connectivity inside modules and dilute connectivity between any two of them.
This was the model investigated by O’Kane and Treves [76]. The critical factor
in the revised model considered by Fulvi Mari and Treves [42] is the existence of
what a null state as a new attractor that a module can reach in addition to all the
stored patterns in it. This null state differs form the normal attractors in the sense
that if a module goes to its null-state, it would have no effect on the other mod-
ules. Basically this null-state is something like the zero activity state for a single
neuron, generalized to the network level. The technical problem associated with
this model is that even though it appears to have a larger storage capacity com-
pared to the network without null state, a full analysis of storage capacity cannot
be done analytically. To circumvent this problem one can first make a further
drastic simplification, and consider a new reduced model based on Potts neural
networks [20,57]. Then one essentially neglects the internal structure inside each
module and represents the state of each module with by its correlation with the
‘0’ (null) state or with one of the ë attractor states. At its simplest, this can be just
one discrete variable, taking one of ëlJ  values. Such a discrete variable sim-
ply indicates the closest stored pattern to the current state of the module. Then
we model the interactions between two different modules, which in reality is the
set of all weights associated to connections between them, with a ë�-6ëlJ  3 NUP -
dimensional weight vector.
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7.1. A discrete-valued model

At any time we associate a Potts variable üO� which takes one of the values ��rTr|r�ë
to the � m0n module in the following way: ü(� takes the value ý$9�ý7��K� if and only if
pattern ý is the closest pattern to the current activity of the network; and ü � �?� if
its closest pattern is the null state. Obviously being the closest one is nothing but
having the largest overlap. Note that to facilitate comparisons with refs. [20,57],
one should convert to the notation þ (= ë�J  ), for the number of Potts states. The
interaction between modules � and � would be modeled through a set of weightsÊ ¬ ¡��� 9s��9®�ê�  r|rTr�ìá}ÿj9����ø�Gr|r|rë symmetric in both

x �>� z and
x ÿ�� z . Now sup-

pose that at time � the configuration of the system is
x ü(� z . Then at time �¥J  we

randomly choose one of the modules, say module � , and calculate a set of local
fields

x R õ� z 9üÎ����r|rTr�ë defined as:

R õ� � �%� '*)
� �OS' � �%¬ � ¡ ' § Ê
¬ ¡�;��� õ À � ¬ � õ Ö � ¡ (7.1)

where �

¬ � ¡ �^-6ë{J  3sI ¬ � ¡ 1  .
At time step ��J ò � the state variable üO� is set equal to the value ü which

maximizes
R õ� . The effect of Hebbian plasticity on the weights, which results

in the formation of network attractors coinciding with, or near to the specified
global patterns, can be described, for example, by the learning rule:

Ê ¬ ¡�;� �  -6ë J  3s#Tì 	%&('*) �	��
À � ¬ �	��
Ö � ¡ -  1 I ¬ § 3|-  1 I
¡ § 3 (7.2)

in which � &� is the local attractor in module � which participates in the global pat-
tern : . It is drawn from a uniform probability distribution, i.e. all local attractors
are assumed equally likely to participate in a global pattern. With this weight
matrix, global patterns defined by

x � &� z (or network states very close to them)
become the global attractors of the network, provided their number does not ex-
ceed a critical value (when ì is large; in a small network the critical value is not
well defined, as evident in the simulations below). Notice that we have consid-
ered the peculiar role of the null state in the dynamics of the network through the
delta functions above. Also it should be noted that we have not yet considered
whether the fraction of modules in the null state in each global memory pattern
is the same or different as the fraction of modules in any other of the ë ‘genuine’
local attractors.
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7.2. Storage Capacity

In order to find the storage capacity of this network, we start by writing the
Hamiltonian of the system. This is where we need the symmetry property of
the weight matrix. If the weights are symmetric, as in 7.2, the dynamics of the
network can be described by the following Hamiltonian:

 � 1  P ì %� � � � �OS' � %�¬ � ¡ Ê
¬ ¡�;��� õ À � ¬ � õ Ö � ¡ r (7.3)

One can then apply the classical methods of spin glasses to obtain the mean
field equations of the system. The above formulation is basically nothing but a
variation of the Potts-neural network first investigated by Kanter [57]. Kanter’s
model does not include the notion of the null state, and it treats all ëlJ  local
states in the same way. It also assumes full connectivity, so that the number of
units providing input to any given unit, � , equals ì 1  . For such a network
Kanter found that the storage capacity for small values of ë scales like ìËë�-FëCJ 3 . As noted by Kanter, this critical storage load scales up with the number ë of
Potts states squared because, effectively, a connection weight between a pair of
Potts units is comprised of ë�-6ë�J  3 NUP independently tunable synaptic variables.
When the network is loaded close to its memory capacity each such variable ends
up storing up to a fraction of a bit, as in the Hopfield model [57]. This result,
it turns out, is valid only when ë is small, and cannot be generalized to large
values of ë , which is the case of interest for us. In the large ë limit we found
that the critical load scales like ìËë�-FëlJ  3 N Ýtð�ñV-6ÿ ë.3 . The numerical factor ÿ
is in practice quite large (of order

 ��� ), and the correction term ÝuðQñ�ë becomes
important only for ë very large.

To apply a Potts model to our multimodular semantic network one needs to
consider a number of extensions of the Kanter model. The first is incomplete
connectivity between the Potts units. As for the analog extensions of the Hopfield
model [82] the formula for the storage capacity is modified in that the number �
of connections each unit receives replaces ì , the number of modules, and the
numerical prefactor becomes larger (due to less reverberation of the noise along
closed loops).

7.3. Sparse coding

In the above formulation, all local patterns have the same probability of appearing
in a given global pattern. We are particularly interested, instead, in the case where
this probability is much higher for the null state than for the others. In other
words the fraction ! of modules in genuine local attractors (those different from
the null state) should be small. This is equivalent to the notion of sparse coding
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in autoassociative memories. Adding the additional ‘0’ state is in fact analog
to considering 0-1 spin extensions of the Hopfield model with sparse coding [24,
98]. As in the associative networks with sparsely coded patterns, one expects that
using sparse coding, the modular network will have a larger storage capacity. For
sparsely coded global patterns we can rewrite the definition of the weights as:Ê ¬ ¡�;� �  -6ë J  3s#Tì 	%&('*) - � � 
À � ¬ 1�� ¬ 3�- � � 
Ö � ¡ 1��

¡ 3�-  1 I ¬ § 3�-  1 I ¡ § 3 (7.4)

where the
x
�

¬ z ’s, following [20], are defined through the equality:Ã"Ä x � &� �?ÿ z �  J � ¬ë J  r (7.5)

Bolle et al [20], while not aiming to consider a null state, studied a generic
Potts neural network with biased patterns, i.e. with non-zero

x
�

¬ z , although
without considering optimal threshold setting, a bit like in [10]. Their formalism
can be slightly modified and utilized to study a sparsely coded Potts neural net-
work, with a null state. Optimal threshold-setting amounts, as in the transition
from [10] to [98], to removing the constant coupling among non-null states, i.e.
adding a termò Ê ¬ ¡�;� � 1 <-6ë J  3L#[ì -  J � ¬ 3�-  J � ¡ 3�-  1 I ¬ § 3�-  1 I ¡ § 3 (7.6)

This is the form of the couplings used in the simulations reported below. A full
analytical treatment is still to be carried out, but based on signal to noise analyses
and computer simulations we expect a scaling behavior like <~ç¢÷?��ë # N !�ÝuðQñV-Fë N !43
for large ë and small ! . That is, the storage capacity benefits from sparser cod-
ings, unlike what happens without optimal threshold-setting.

7.4. A Potts model with graded response

In more realistic models of semantic storage, the stabilization into local attractors
cannot be assumed to be an all-or-none phenomenon, and global attractor states
cannot be assumed to be independent of one another and spatially uncorrelated.
To deal with the first aspect, in the simulations we abandon the discrete Potts units
used in the original storage capacity calculations, in favour of graded, analog
variables representing the degree of overlap of local activity with a local attractor,
and summing up to one:
�%¬ ' § ü � �

¬ �  (7.7)
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which reflect input variables
Ó � � ¬ according to a standard sigmoidal activation

transform:ü � � ¬ � Ü������ Ó � � ¬c �¡ ' § � Ó � � ¡ (7.8)

where � has the role of an inverse temperature, and the
Ó � � ¬ ’s could simply be

taken to reflect the weighted summation of inputs from other modules. To model
somewhat more accurately the dynamics of entering and leaving a local attractor,
however, it is convenient to assume the

Ó � � ¬ ’s to integrate another set of variables,
which themselves reflect summed inputs:

� )��Ó � � ¬ � 1 Ó � � ¬ J R � � ¬ 1 R��� � ¬ (7.9)

for ÿ �  , with the local fields
R � � ¬ � c � � ¡ Ê ¬ ¡�;� ü�� � ¡ . Note the difference with the

discrete-valued model in Eq. 7.1. The attractor-specific thresholds
R �� � ¬ ’s evolve

with a slower time constant to track recent correlation with the corresponding
local attractor:

� # �R �� � ¬ ��ü[� � ¬ 1 R �� � ¬ r (7.10)

For ÿ �á� , the ‘activation’ variable
Ó � � § acts as a general threshold for all local

attractors, modulated on an even slower time scale, � Æ , by the extent to which
activity in the network is correlated to local attractors, as opposed to being in the
null state:Ó � � § � Ä �§ 1 R � � §
� Æ �R � � § � �%¬ '*) ü[� � ¬ 1 R � � § r (7.11)

In the simulations below, the inverse temperature � and the fixed threshold
baseline Ä �§ were given values estimated to favour near optimal retrieval be-
haviour, while the time constants � ) 9 � # and � Æ were given values of e.g. 10, 33
and 100 basic integration time steps (a time step was indicatively taken to corre-
spond to 1 msec of real neuronal dynamics. With such differential equations the
graded variables describing local network behaviour evolve in time similarly to
the collective variables describing an autoassociator network of integrate-and-fire
units with adaptation [15].
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7.5. Correlated patterns

Correlations among patterns can drastically reduce the storage capacity of an
autoassociative network. However we hypothesize that in some models with cor-
relations, one of which is adopted in the simulations sketched below, storage
capacity is indeed reduced, but essentially by a prefactor dependent on the cor-
relations, preserving the general dependence of <¥ç on the connectivity per unit,� –Ű a linear dependence; and on the number ë of local attractors – roughly, a
quadratic dependence.

Memory retrieval was simulated in a network of Potts units, in which global
activity patterns to be stored as memory items were generated by a two-step algo-
rithm, that could be parametrically varied from producing independent to highly
correlated patterns. In the first step, a number of underlying factors were gen-
erated, defined simply as distinct random subsets of the entire set of Potts units.
In the simulations, each subset included 50 units out of the total 300 units, and a
total of 200 such factors were generated. The overlaps in the spatial distribution
of different factors therefore are purely random, and clustered around their mean
value ÐQ�����Q���¤� � r �!� .

In the second step, global patterns were generated from the factors, which
had been indexed by Ä in order of decreasing mean importance. For each global
pattern, the specific importance of each factor was given by a coefficient � &o ob-
tained by multiplying the overall factor Ü����¥-#"UÄ(3 by a random number, taken to
be 0 with probability

 1 ! , and otherwise drawn with a flat distribution between
0 and 1, specifically for pattern : . A value taken by factor Ä , ü o , was randomly
drawn among the ë ‘genuine’ attractors, and a contribution � &o was added to the
field onto each Potts unit over which factor Ä was defined, in the direction ü o . Af-
ter accumulating contributions from all factors, the direction in which each unit
received the largest field was computed, and the !4ì units receiving the largest
maximal fields were assigned the corresponding direction ü o in pattern : , while
the remaining -  1 !$3�ì units were assigned the null state in pattern : .

With this procedure, pairs of Potts units have uncorrelated activity when av-
eraged across patterns (because the different patterns that both engage the pair
will span nearly evenly the different local states). Pairs of patterns, instead, can
by highly correlated once averaged across units, particularly if they share one or
a few most important factors; and positively correlated if these factors have been
assigned the same direction in Potts space. Thus correlations among patterns
will be higher if the importance of different factors decreases rapidly (e.g., in the
simulations the value "a�©� r � P was used, equivalent to assuming of order 50
‘important’ factors); and they will tend to vanish if all factors are equally impor-
tant, in general ( " �ø� ). When correlations are very high each pattern tends to
be significantly correlated with a specific subset of the others, those sharing the
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main factor that influences them, and positively correlated with a fraction
 ON ë of

this subset. In this scheme, the number of memory items significantly overlap-
ping with one recently retrieved, and which can be the target of a non-random
transition, scales up as < N ë , and does not depend on � . By contrast, the storage
capacity for retrieval, although severely reduced by correlations, should still scale
as < ç ÷w��ë # N ! . This leads to the two diagrams in Fig. 6, which indicate that con-
joint semantic retrieval and structured transitions should be possible only above
critical values for � and ë . Translated into the language of an underlying multi-
modular network, the expectation is that there should be critical values for both
the short and the long-range connectivity, ��ú and ��ù , beyond which a model
which follows this factorial scheme would be able of both semantic retrieval and
infinite recursion.

Before discussing the simulations of the Potts model, it is useful to clarify
how its connectivity parameters could be mapped onto those of an underlying
multimodular network model. In the reduced Potts model, each unit receives �
connections from other units, for a total of ��ëG-6ë 1  3 NUP independently variable
weights per unit. A storage capacity of < ç ÷���ë # N f !�Ýtð�ñV-Fÿ,ë.3 h patterns, each
of which contains about ìH!¢ÝuðQñ # -Fë.3 bits of information, implies that the total
information that can be stored in the reduced network is of order � m ô m ÷?ìË��ë # ,
that is, of order one bit per synaptic variable. In the full multimodular net-
work, including � units per module, each unit would receive �Gú single-variable
weights from units in other modules. Note that one can further take ë , the num-
ber of local attractors to be of order the number ��ù of short-range (local) con-
nections per unit in the underlying model, that is of order � . If also the full
network, like the reduced network, can store of order one bit per synaptic vari-
able, in this case it would amount, even counting only long range connections,
to � m ô m ÷ ìH� ��úw÷ ìË��ù���ú . This implies that the bound on the number of
global patterns, or semantic items, should scale up as < ç ÷^��ú���ù N f !�Ýtð�ñ -6ÿ ë.3 h ,
that is not only it should increase with sparser modular coding (the ! factor), but
it should also scale up with the product of the number of long- and short-range
connections per unit in the underlying model, not with their sum. This is a pos-
sibility left open in the Fulvi Mari & Treves [42] calculation, which should be
verified by further analysis and simulation. From a quantitative point of view, it
would resurrect the idea [21, 22] that multimodular cortical networks can serve
as efficient semantic memory storage devices, raising their capacity from several
thousands to several millions of items.

7.6. Scheme of the simulations

Whereas simulating the full multimodular network is a long-term project, the
reduced Potts model requires only manageable CPU times and memory loads
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and can easily be simulated on a standard PC. Figure 7 shows a sample of the
types of network dynamics which emerge in the simulation of the reduced Potts
model.

When adaptation is turned off, typically the network remains in the retrieved
attractor indefinitely. When adaptation is on, it gradually decreases the overlap
between current network activity and the retrieved attractor. During this decay
phase, other attractors see their overlaps increase. If one of them becomes suf-
ficiently strong to pass an effective threshold (around 0.5 in the simulations), it
manages to attract the entire network, and rapidly it reaches values close to 1,
before decaying away in its turn. This transition can be repeated several times
(bottom panel), reminiscent of the series of transitions seen in monkey frontal
cortex [4]. The crucial ingredient for an indefinite repetition, and thus for infi-
nite recursion to occur, is that any activated global pattern must have at least one
neighbour that can reach an overlap above threshold before its predecessor has
decayed away. Although this is a dynamical phenomenon, it is closely related to
the (static) matrix of similarities among stored patterns. The more significantly
correlated global patterns exist to the one currently activated, the more likely is
latching to proceed. For it to proceed indefinitely, each of the patterns activated in
sequence must be able to activate the next, and this is more likely to occur when
the density of patterns is higher, as posited in Fig. 6. To check more quantitatively
the expectation expressed in those diagrams, we have run extensive simulations
in which I have varied systematically ��9ë and the storage load < , and kept other
parameters constant.

Fig. 8 summarizes how these 3 parameters determine the network ability to
combine the retrieval of the first, cued pattern with successive latching to different
patterns. The light areas correspond to regions where both retrieval and latching
occur frequently (averaging across thousands of independent runs). In the dark
areas either retrieval tends to fail (towards the top of both plots) or latching tends
to die out (towards the bottom of both plots). The simulations clearly demonstrate
the existence of a limit <Âç on the storage load, beyond which retrieval of the
pattern that best matches a partial cue is not possible (the striped regions of Fig. 6,
and the top portions of Fig. 8). Below this limit (e.g. at the marked points on the< 1 � and < 1 ë planes in Fig. 6) cued retrieval does occur, and latching can occur
as well if < is high enough, but still below <Âç , hence inside the right Śwedges
appearing in both plots of Fig. 6 and Fig. 8. Note that Fig. 8, represents the results
of simulations limited in the size of the system but also in the time of each run (30
time steps), and this contributes to its smoother, graded appearance than Fig. 6. It
is expected, though, that comparing over longer runs behaviour corresponding to
the marked points in Fig. 6, long series of structured transitions will prevail only
in the higher < regime (the upper marked point in each panel of Fig. 6), possibly
above a percolation critical point. This could be assessed quantitatively even
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looking only at a limited time window, by measuring the entropy of states that
follow the activation of each attractor. For structured transitions, this entropy
is smaller than for random transitions, thereby quantifying the metric content
[93] of the underlying grammar. We are currently working at the fully analytic
approach sketched above, will should allow clarification of these issues, beyond
the limits of computer simulations and their dependence on specific choices of
parameters.

7.7. Conclusions

The proposal [97] is that a generic capacity for infinite recursion (intended in
its basic meaning) may have evolved as a consequence of the refinement of the
semantic system. Such a refinement may have been triggered by the increase
in connectivity among pyramidal cells in the cortex, particularly for some mam-
malian lineages including primates, and particularly in the temporal and frontal
lobes [36,37]. Such a development may have then been accelerated in the frontal
cortex, relative to the temporal lobe and its sensory semantics, because action
semantics invoked more structure along the time dimensions. This may have
led to a capacity for syntax in communication in humans, favored by the further
connectivity increase in their frontal cortex.

This proposal is still vague in several details, and it requires an analytical ap-
proach to be validated at least at the level of the self consistency of the mathemat-
ical model, even before implications for the evolution of cognition are explored
in full. Its relation to a number of related approaches are discussed in [97], while
here we note the distinction from the concept of phase transitions explored, in
relation to language dynamics, in [74], and the potential relation to studies of the
chaotic behaviour of analog systems which are close to neural networks [5]. Fur-
ther work on Potts neural networks and their analog versions may pave the way to
a better understanding of the rich dynamics of multi-modular neuronal networks,
and indirectly contribute to illuminate the mysteries surrounding the sudden ap-
pearance, perhaps 40,000 years ago, of qualitatively new cognitive capabilities in
our species.
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Fig. 1. The structural phase transition in the hippocampus. The medial pallium of a reptile (a lizard),
top, with indicated the Large Cell (LC) and Small Cell (SC) subdivisions. Examples of the reor-
ganized medial pallium in 4 highly divergent mammalian species, bottom: A – opossum; B – rat;
C – cat; D – human. The homolog of the SC subdivision has become the detached dentate gyrus,
which sends connections to the CA3 portion of the homolog of the LC subdivision, that has remained
continuous with the rest of the cortex.
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Fig. 3. The result of simulating a network of N=8100 units on a 1D ring, with C=405, p=5 andâ =300. The big bump is the local overlap with the retrieved pattern, and the small fluctuating curve
is the overlap with one of the non retrieved patterns. Periodic boundary conditions were used.
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Fig. 5. Scheme of some of the main subfields and synaptic systems of the hippocampus proper.
Redrawn from [82]

Fig. 6. Useful ranges for the number of global attractors. In the striped area above the critical line,
which is linear in the % (left) and almost quadratic in ; (right) semantic retrieval is not possible,
because < is above the maximum storage load. Below the critical line, there is expected to be a (dark)
region of low < values where long sequences of structured transitions are not possible. This region
extends up to < values that are independent of % and proportional (in the multifactor model) to ; .
The allowed region for both semantic retrieval and infinite recursion, therefore, is close to the upper
right corner of both the <>=?% and the <>=@; plane (uniform light area). The transition from dark to
light should be sudden in a system with large ; and % (akin to a percolation phase transition).
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Fig. 7. Examples of global attractor retrieval with and without ensuing structured transitions among
attractor states. Both examples were produced by simulating a Potts model with 300 units, ;?*A48, ,
global patterns generated by a multi-factor model with BC*A,0/ ,2D , and by applying a cue to 50% of
the Potts units. Top panel, %�*51 and <E*F48, , and selective activity decays away after retrieval, as
a second attractor is almost recruited, but it does not have a sufficient overlap with the first to emerge
above an effective threshold. Bottom panel, %G*GD21 and <H*G12, , and a sequence of attractors
dynamically replace each other, with the next one being recruited by its strong association with the
previous one, thus generating structured transitions.



50 A. Treves
��� �

and Yasser Roudi
�

Fig. 8. Simulation results expressed as phase diagrams similar to Figure 6, but plotted on bi-
logarithmic scales. In both the <I=J% (top) and the <K=L; plane (bottom), what is plotted in shades of
gray is the product of a measure of retrieval ability (the degree to which activity is still best correlated
with the cued pattern after 7 time steps) with a measure of latching ability (the degree with which
after 30 time steps activity is still specifically correlated with one pattern, but not with the one cued).
Both measures run from 0 to 1, and white corresponds to their product being higher than 0.3. Each
diagram was obtained with 5x7 simulation datapoints, interpolated by Matlab. A datapoint reports
the average of thousands of simulations with identical parameters.


