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Abstract. Coexisting memory representations of the same information may
differ in the amount of structure they embody, i.e. in the metric of relation-
ships among individual memory items. Such an amount of structure may
be quantified by the metric content index. We extract the metric content of
the representation of spatial views in the monkey hippocampus and parahip-
pocampal cortical areas, and find indications of quantitative differences that
might be associated with the connectivity pattern in different neural sub-
strates.
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1 Quantifying the amount of structure

The structure of neural representations of the outside world has been studied
in detail in some simple situations. Typically these are situations in which
a well defined correlate of neuronal activity (i.e. a stimulus, a response, or
even a behavioural state) is characterized by one or a few parameters that are
made to vary continuously or in steps. Examples are the Hubel and Wiesel
[2] description of orientation selectivity in cat visual cortex, the O’Keefe [5]
finding of place cells in the rat hippocampus, the mitral cell coding of n-
aliphatic acid hydrocarbon length in the olfactory system [12], the coding of
the direction of movement in 3D-space in the primate motor cortex [1].

In many interesting situations, though, especially in those parts of the
brain which are more remote from the periphery, external correlates, or, as
we shall refer to them for simplicity, stimuli, do not vary (either continuously,
or in steps) along any obvious physical dimension. Often, in experiments, the
set of stimuli used is just a small ensemble of a few disparate individual items,
arbitrarily selected and difficult to classify systematically. Examples for the
ventral visual system are faces [9], simple or complex [4] abstract patterns,
or the schematic objects reached with the reduction procedure of Tanaka
et al [13]. In such situations, the resulting patterns of neuronal activity
across populations of cells can still provide useful insight on the structure



of neuronal representations of the outside world, but such insight has to be
derived independently of any explicit correlation with a natural, physical
structure of the stimulus set.

The only obvious a priori metric of the stimulus set, in the general case,
is the trivial categorical metric of each element s being equal to itself, and
different from any other element in the set. A posteriori, the neuronal firing
patterns embed the stimulus set into a potentially metric structure defined
by the similarities and differences among the patterns corresponding to the
various elements. A truly metric structure can be extracted by quantify-
ing such similarities and differences into a notion of distance (among firing
patterns) that satisfies the 3 required relations: positivity, symmetry, the
triangle inequality. At a more basic level, though, the overall amount of
structure, i.e. the overall importance of relations of similarity and difference
among firing patterns, can be quantified even independently of any notion
of distance, just from a matrix Q(s|s’) characterizing the confusability of s
with s, a matrix which need not be symmetrical. It is moreover important to
notice that such a matrix Q(s|s’) can indeed be derived, as discussed below,
from the firing patterns corresponding to each stimulus s, but it can also be
derived from other, e.g. behavioural, measures. Behavioural measures of the
confusability of s’ with s do not access the representation of the two stimuli
directly, but indirectly they reflect the multiplicity of neural representations
that are important in generating that particular behaviour. If some of these
representations are damaged or lost, as in brain-damaged patients, the result-
ing behavioural measures can be indicative of the structure of the surviving
representations [3].

The amount of structure can be quantified by comparing the mutual in-
formation in the matrix Q(s|s’),
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with its minimum and maximum values Ip,in and Ip,, [14] corresponding to
a given percent correct feor = »_, Q(s|s)P(s). The lowest information values
compatible with a given f.,, are those attained when equal probabilities (or
equal frequencies of confusion) result for all wrong stimuli. In this case one
finds

Imin =108y S + feor 1083 feor + (1 = feor) 10ga[(1 = feor) /(S — 1)]. (2)

Conversely, maximum information for a given f.,, is contained in the con-
fusion matrix when stimuli are confused only within classes of size 1/for
(for analytical simplicity we assume that each class may contain a non in-
teger number of elements), and the individual stimuli within the class are
allocated on a purely random basis. It is easy to see that then

Iae =1ogy S +10gy feor- (3)



Interpreting the probability of confusion as a monotonically decreasing func-
tion of some underlying distance (e.g. as discussed above), the first situation
can be taken to correspond to the limit in which the stimuli form an equi-
lateral simplex, or equivalently the stimulus set is drawn from a space of
extremely high dimensionality. In the Euclidean d — oo limit, points drawn
at random from a finite e.g. hyperspherical region tend to be all at the same
distance from each other, and from the point of view of the metric of the set
this is the trivial limit mentioned above. The second situation can be taken to
correspond to the ultrametric limit, instead, in which all stimuli at distance
less than a critical value from each other form clusters such that all distances
between members of different classes are above the critical value. This is
a non-Euclidean structure (although it could be embedded in a Euclidean
space of sufficiently large dimension), and it is a first example of the possible
emergence of non-Euclidean aspects from a quantitative analysis that does
not rely on a priori assumptions.

Intermediate situations between the two extremes are easy to imagine and
can be parametrized in a number of different ways. A convenient parameter
that simply quantifies the relative amount of information in excess of the
minimum, without having to assume any specific parametrization for the
confusion matrix, is
I- Imin

Imam - Imz'n

A= (4)
which ranges from 0 to 1 and can be interpreted as measuring the metric
content of the matrix. What is quantified by A can be called the metric
content not in the sense that it requires the introduction of a real metric, but
simply because it gives the degree to which relationships of being close or
different (distant), among stimuli, emerge in the Q(s|s') matrix. For A = 0
such relationships are irrelevant, to the point that if confusion occurs, it can
be with any (wrong) stimulus. For A = 1 close stimuli are so similar as to
be fully confused with the correct one, whereas other stimuli are ‘maximally
distant’ and never mistaken for it.

In summary, the metric content index A quantifies the dispersion in the
distribution of errors, from maximal, A = 0, to minimal, A = 1. The errors
may be actual behavioural errors in identifying or categorizing stimuli or
in producing appropriate responses, or errors which a neuronal population
appears to be making, as an outside observer infers by reading out the spiking
activity of the population. We now turn to what is exactly implied by the
notion of ‘reading out’.

2 Decoding the responses of spatial view cells

Decoding the spike trains emitted by a population of neurons, when a stim-
ulus s from a given set is presented, means applying an algorithm that es-
timates, given the current spike trains 7s; and those previously recorded in



response to each stimulus, the likelihoods for each (s') of the possible stimuli
to be the current one, L(s'|7s). The stimulus s’ = s, for which this likeli-
hood is maximal can be said to be the stimulus predicted on the basis of the
response. In general s, will not coincide with the true s and the accuracy in
the decoding can of course be measured by the percent correct decoding (or
the corresponding fraction f...), but also by the mutual information in the
joint probability table Q(s, sp),
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This is the quantity referred to above. It measures the information in the
predictions based on maximum likelihood, and as such it does not only re-
flect, like percent correct, the number of times the decoding is exact, but
also, beyond percent correct, the distribution of wrong decodings. A further
quantity which it is sometimes useful to consider is the mutual information

_ ' P(s,s')
I, = S’SIZES P(s,s")logy P(s)P(s) (6)

obtained from the probability P(s'|s) of confusing s with s’, which is given by
averaging L(s'|7;) over the responses to s. This second information measure
reflects, unlike the first, also the degree of certainty with which each single
trial has been decoded, and it thus sheds light on a further aspect of the
quality attained in decoding. Both information quantities suffer from limited
sampling distortions [15, 6] but the second much less than the first, in the
sense that, with the limited sampling correction procedures we have devel-
oped, I, can be estimated accurately even with few trials per stimulus, while
I requires more trials. Hovever in practice, especially when extracting these
measures from limited periods of firing of cortical cells, I is a much better es-
timate of the actual information contained in the firing (i.e., before decoding)
than I, [7], and because of this fidelity it is preferable to rely on measures
of I whenever limited sampling distortions are not the main concern. We
note that the metric content index appropriate to I, would be derived in
the same terms, by only replacing f.,. with the analogous quantity based on
probabilities, geor = Y, P(s|s)P(s).

Decoding algorithms can be optimised to extract as much information as
possible, or they can be modelled on the decoding likely to be implemented
by real neurons downstream of the recorded populations. Information and
percent correct values in the decoding of face cells responses from the primate
temporal visual cortex have been reported [10]. There we show that simple,
neuronally plausible decoding algorithms, based on dot product operations,
perform virtually like optimal decoding algorithms in terms of I, and are
only 20-30% inferior in terms of I,,. This is because the simple dot product
algorithms are poorer at quantifying likelihoods, even if they order them



correctly and identify correctly the most likely stimulus that can be predicted
for each trial.

feor, I and I, all depend on the number of cells in the population, as
recording the responses of more cells obviously allows better decoding. We
have reported the important result [10] that the information decoded from
face cells appears to grow linearly with the number of cells in the population,
until it begins to saturate at the maximum allowed, which is just the entropy
of the stimulus set, H = — 3 P(s)log, P(s). This result implies that the
different cells in the sample tend to code for different aspects of the stimulus
set, so that each contributes an additive term to the information provided
by the population. This result appears to hold for the data recorded in a
number of experiments, including both the primate inferior temporal cortex
face cells [10] mentioned above and the primate hippocampal spatial view
cells [11] considered in this report, but also primate orbitofrontal cells coding
for odours (Rolls, Treves and Critchley, in preparation), rat hippocampal cells
coding for spatial position (e.g. [16]; and also [17]), and rat somatosensory
cells coding for whisker deflection [8].

The issue we want to focus on here is not, however, how the accuracy in
the decoding depends on the number of cells in the population, but rather
how it provides insight on the structure of the stimulus set as encoded in
the firing of different populations of cells, and as quantified by the A metric
content index.

3 The metric content in neighbouring areas

The data we consider are the responses of spatial view cells in the primate
hippocampus, described by Rolls et al [11], to which we refer for all the
details of the experiment and analysis. Briefly, single cells were successively
recorded in 2 monkeys while the animals were free to locomote in the lab,
and their gaze direction was simultaneously recorded with magnetic coils. For
the purpose of the analysis, gaze directions were discretized into 16 ‘views’,
which corresponded to an equal number of portions of the lab walls. 20
of the cells used here were recorded in one anymal (monkey av) and 6 in
another (monkey az). Pseudosimultaneous response vectors were constructed
by randomly pairing equal numbers of trials in which each cell included in
the vectors was recorded in its response to any given view.

Each trial consisted of a 100ms long stretch during which the monkey’s
gaze was fixed within one of the 16 preset spatial views. At the end of
each trial, if the gaze remained fixed for another 100ms period, another trial
associated with the same spatial view was constructed, and so on. Decoding
was thus based on the number of spikes emitted by each cell considered in the
current sample, within one of the 100ms pseudosimultaneous trials. Typically
about 80 trials were available for each view.

Note the difference between our response vectors and Georgopoulos’ pop-
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Figure 1: The information decoded from different cell populations vs. the
corresponding percent correct. I,,,;, and I),,, are indicated with dash-dotted
lines, along with the curve A = 0.25. The other curve is A = 0.15. Datapoints
are for populations of CA3 (x), CA1 (triangles), parasubiculum (squares) and
parahippocampal gyrus cells (diamonds).

ulation vectors [1], which live in the physical 3D or 2D movement space rather
than in the space of dimensionality equal to the number of cells included, and
which correspond to a continuous rather than a discretized correlate. Vec-
tors were constructed including all 26 cells, only the cells recorded in each
animal, only those in a given brain region of both animals, and so on explor-
ing different combinations. Since the metric content index is expected to be
relatively constant as the number of cells randomly sampled from an homo-
geneous population varies, comparisons can be made, to some extent, even
among the metric content characterizing vectors of different dimensionality.

One can see from the figure the extent to which metric content, while not
being a strictly invariant characterization of the responses, valid for all per-
cent correct values, is still a relatively stable index. For each given cortical
area, as more cells are considered, both percent correct and decoded infor-
mation grow, and the relation between the two, expressed as metric content,
varies somewhat in a limited band of values characterizing each cortical area.
One should note that the variability as the number of cells varies is limited
only because of the extensive averaging we perform, e.g. when decoding from
3 CA1 cells, over nearly all possible triplets of cells from the 6 available from
the CA1l area. Obviously, this averaging cannot compensate from the fluc-



tuations induced by the very limited number of cells — 6 — in the total CA1l
sample. This is ultimately one of the main limits of this preliminary analysis,
which prevents us from drawing definite conclusions.

The figure shows the individual datapoints obtained for the average sam-
ple of ¢ cells from each cortical area, and also two representative lines of
constant metric content, one for A = 0.25 and one for A = 0.15. Datapoints
from hippocampal area CA1 (¢ = 6), from the parahippocampal gyrus (PHG,
¢ = 8) and from the parasubiculum (PSUB, ¢ = 6) tend to cluster around
the upper metric content curve, while datapoints for hippocampal area CA3
(¢ = 6) tend to cluster around the lower curve. As it happened, 4 out of 6
CA3 cells were recorded in monkey az, while all but 2 (1 CA1 and 1 PSUB)
of the other cells were from monkey av. Extensive testing with subsets of
cells taken from both the same area and the same monkey failed to clarify
conclusively whether the emerging metric content difference is due to the area
or to the monkey.

4 Comments and outlook

The data analysed in this paper are not fully adequate, on at least two
accounts. First, the number of cells recorded and the number of 100ms
trials available for each cell and each spatial view were not sufficiently large
to safely avoid limited sampling effects. Second, the recordings should be
simultaneous, and from the same monkey, to avoid differences due to slow
changes in the representations e.g. with learning or habituation or increasing
boredom, or due to individual differences. Both inadequacies can be removed
with parallel recording from several cells at once, so the preliminary results
of the type of analysis presented here will soon be confirmed or disproved by
analysing more adequate data.

Within these limits, one possible interpretation of the different metric
content in the CA3 area, with respect to the other 3 areas sampled, lies
in the different pattern of connectivity, whereby in CA3 recurrent collateral
connections are the numerically dominant source of inputs to pyramidal cells,
and travel relatively long distance, to form an extended network connected by
intrinsic circuitry. Considerations based on simplified network models sug-
gest that such a connectivity pattern would express memory representations
with a different metric structure from those expressed by networks of differ-
ent types. The difference could be further related to the qualitative nature
of the memory representation, which might be characterized as being more
episodic in CA3 and more structured in the other areas. The metric content
depends also on the average sparseness of these representations, though, and
further analyses are required to dissociate the effects of connectivity (and of
representational structure) from those purely due to changes in sparseness.

The present recordings were from neighbouring areas in the temporal
lobes, and it is possible that any difference among memory representations



will be more striking when more distant areas are compared. In addition,
it is possible that any difference may be more striking when the correlate
considered does not have its own intrinsic metric, as with spatial views, but
instead lives in a high dimensional space, as e.g. with faces, thereby let-
ting more room for arbitrary metric structures to be induced in the neural
representations by the learning process. For both reasons, it will be inter-
esting to extend this analysis to entirely different experiments, sharing with
the present one only the generic requirement that different populations of
cells are recorded in their response to the same set of stimuli, or in general
correlates.

Finally, possible changes in the representations that develop with time
could be examined by recording from the same populations — not the same
cells — over periods during which some behaviourally relevant phenomenon
may have occured, such as new learning, forgetting, or a modulation of the
existing representations. One specific such modulation of interest for the case
of human patients is the one resulting from localized lesions to another cor-
tical area, which may affect the structure of the representations in surviving
areas of the cortex.
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