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1 Introduction

Structural stability and the persistence of coherent structures under pertur-
bations of a dynamical system are fundamental issues in dynamical systems
theory with implications in many fields of application. In the context of dis-
crete, finite dimensional Hamiltonian systems, this issue is addressed by the
celebrated KAM theorem, which guarantees the persistence of most invariant
tori of the unperturbed dynamics under small Hamiltonian perturbations. For
infinite dimensional systems, defined by Hamiltonian partial di↵erential equa-
tions (PDEs), KAM type methods have recently been used to obtain results
on the persistence of periodic and quasi-periodic solutions, in the case where
solutions are defined on compact spatial domains with appropriate boundary
conditions. The compactness of the spatial domain ensures discreteness of the
spectrum associated with the unperturbed dynamics. Therefore this situation
is the generalization of the finite dimensional case to systems with an infinite
number of discrete oscillators and frequencies.
In this notes we consider these questions in the context of Hamiltonian systems
for which the unperturbed dynamics has associated with it discrete and continu-
ous spectrum. This situation arises in the study of Hamiltonian PDEs governing
functions defined on unbounded spatial domains or, more generally, extended
systems. The physical picture is that of a system which can be viewed as an
interaction between one or more discrete oscillators and a field or continuous
medium. In contrast to the KAM theory, where nonresonance implies persis-
tence, we find here that resonant nonlinear interaction between discrete (bound
state) modes and continuum (dispersive radiation) modes leads to energy trans-
fer from the discrete to continuum modes. This mechanism is responsible for the
eventual time-decay and nonpersistence of trapped states. The rate of timede-
cay, however, is very slow and hence such a trapped state can be thought of as
a metastable state.

This paper is devoted to the study of the following questions:

(1) Do small amplitude spatially localized and time-periodic solutions persist
for typical non-linear and Hamiltonian perturbations?

(2) What is the character of general small amplitude solutions to the per-
turbed dynamics?
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(3) How are the structures of the unperturbed dynamics manifested in the
perturbed dynamics?

We start by giving three examples of problems.

Particle interacting with an external field. Consider a mechanical particle which
interacts with an external dispersive field. The Hamiltonian of the system is

H(p, q, u, v) =
|p|2
2m

+V (q)+
1

2

Z

R3

(v2+ |ru|2+m2u2) dx+✏

Z

R3

V (x+q)u(x) dx

Assume that V has a minimum at 0, and that its Taylor expansion at 0 is
V (q) =

P
j !

2

j q
2

j .

Asymptotic stability of the zero solution of Klein- Gorgon equation on R3 Con-
sider a NLKG in R3

utt ��u+ V u+m2u+ �0(u) = 0 , x 2 R3

with �� + V (x) + m2 a positive short range Schrödinger operator, and �0 a
smooth function having a zero of order 3 at the origin and growing at most like
u3 at infinity.

The system is Hamiltonian in H1(R3,R)⇥L2(R3,R) endowed with the stan-
dard symplectic form

⌦ ((u
1

, v
1

); (u
2

, v
2

)) := hu
1

, v
2

iL2 � hu
2

, v
1

iL2

and Hamiltonian

H = HL +HP

HL :=

Z

R3

1

2
(v2 + |ru|2 + V u2 +m2u2) dx

HP :=

Z

R3

�(u) dx.

If V (x) is real valued and of Schwartz class, then one has that the set of
discrete eigenvalues �d(�� + V ) = {��2j}nj=1

is finite, contained in (�1, 0),
with each eigenvalue of finite multiplicity. We take a mass m2 such that
�� + V + m2 > 0 and order the eigenvalues as ��2

1

 · · ·  ��2n. Set

!j :=
q
m2 � �2j . Furthermore �� + V + m2 has continuous spectrum in

[m2,1).

Associate to any !j an L2 eigenvector  j(x), real valued and normalized.
Furthermore one has �j 2 S(R3,R). Set Pdu :=

Phu,�ji�j the projector on the
discrete spectrum, and Pc := � Pd the projector on the continuous spectrum.
Denote

u =
X

j

qj�j + Pcu , v =
X

j

pj�j + Pcv .

2



Introduce the operator

B := Pc(��+ V +m2)1/2Pc ,

and the complex variables

⇠j :=
qj
p
!j + i p

jp
!

jp
2

, f :=
B1/2Pcu+ iB�1/2Pcvp

2

The transformation is symplectic, the new phase space is Cn ⇥ PcH
1 and the

equation of motion take the form

⇠j = �i
@H

@⇠j
, ḟ = �irfH .

The form of HL and HP are respectively

HL =
nX

j=1

!j |⇠j |2 +
�
Bf, f

�
,

HP (⇠, f) =

Z

R3

�

 
X ⇠j + ⇠jp

2!j

�j(x) +B�1/2 f + fp
2

!
dx

One sees clearly that the linearized system is given by

i⇠j = !j⇠j , iḟ = Bf ,

which are discrete harmonic oscillators coupled with a continuous field which
exhibits dispersive behaviour. Thus the unperturbed system is given by quasi-
periodic motions and a field which scatters to zero, in the sense that for every
pair (r, s) which is admissable, i.e.

2

r
+

3

s
=

3

2
, 6 � s � 2, r � 2 ,

we have
kfk

Lr

t

W
1
s

� 1
r

+1
2
,s

x

 CkfkH1 .

The nonlinearity HP couples the discrete and the continuous mode.

Question: do the quasi-periodic orbit persist under perturbation?

Dynamics of soliton of NLS on R3 interacting with external potential. Consider
the defocusing NLS in R3

i ̇ = �� � �0(| |2) + ✏V  
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where V is a potential of Schwarz class, � is a smooth focusing nonlinearity.
The phase space is H1(R3) endowed with the real scalar product

h 
1

, 
2

i = 2Re

Z

R3

 
1

 
2

,

and the symplectic form is given by

!( 
1

, 
2

) = hE 
1

, 
2

i , E := i

Assume that for ✏ = 0, the NLS admits moving solitary waves solutions, namely
solutions of the form

 (x, t) = e�i(�+ p

2m ·(x�q)) ⌘m(x� q) ,

where the parameter p, q, �,m fulfill

p = p
0

, q =
p

m
t+ q

0

, � = mt+
p2

4m
t+ �

0

, m = m
0

while ⌘m is the ground state, namely it solves the variational problem

inf
k k

L

2=m

Z

R3

|r (x)|2 � �(| (x)|2) dx .

We denote by T the soliton manifold

T :=
[

p,q,m,�

e�i(�+ p

2m ·(x�q)) ⌘m(x� q)

which is invariant 8-dimensional manifold. Moreover the coordinates p, q,m, �
are symplectic on it.

Then the following theorem holds

Theorem 1.1 (Bambusi, M.). There exists a su�ciently small neighbourhood U
of the soliton manifold and canonical coordinates (p, q,�) such that the Hamil-
tonian is these coordinates is given by

H(p, q,�) = ✏1/2Hmech(p, q) +HL0(�) +HP (p, q,�) ,

where

Hmech(p, q) :=
|p|2
2m

+ V eff (q) , V eff (q) = V ⇤ ⌘2m
HL0(�) =

1

2
hEL

0

�,�i
where L

0

is the operator which, when expressed as acting on the real and imag-
inary part of � = u+ iv, has the form

L
0

✓
u
v

◆
=

✓
0 �L�
L
+

0

◆✓
u
v

◆
.

The operator L
0

has continuous spectrum �c(L0

) =
S

± ±i[E ,1) and dis-
crete spectrum �d(L0

) = {±i!j}nj=1

. Once again one can reduce to the structure
before.

4



2 The model hamiltonian

In each of the three cases above one reduce to the study of the following model
hamiltonian system

H(⇠,�) = !|⇠|2 + �L
0

�c,�c
�
+HP (⇠,�)

The phase space is C⇥H1(R3), and the hamiltonian vector field takes the form

⇠̇ = �i
@H

@⇠
, �̇c = �ir�

c

H ,

the poisson bracket are

{H,K} := i

✓
@H

@⇠

@K

@⇠
� @H

@⇠

@K

@⇠

◆
+ i(r�H,r�K)� i(r�H,r�K)

This is the hamiltonian of a discrete oscillator coupled with a continuous field.
The following are typical assumptions on the spectrum of the operator L

0

:

(H1) �c(L0

) = [E ,1)

(H2) E is neither an eigenvalue nor a resonance for L
0

, i.e. there are no nonzero
solution of L

0

 = E with | (x)| ⇠ hxi�1.

(H3) there is no n 2 Z such that !n = E .
(H4) the linear propagator e�iL0t fulfills Strichartz estimates

Clearly, Strichartz estimates change according to the operator L
0

. Here I will
assume that the following Strichartz estimates hold:

Theorem 2.1. Fix d � 1, and call a pair (r, s) admissable if 2  r, s  1 and

2

r
+

d

s
=

d

2
, (r, s, d) 6= (2,1, 2) .

Then for every admissable exponents (r, s), (er, es) we have the homogeneous
Strichartz estimate

ke�iL0t�kLr

t

W 1,s
x

 k�kH1
x

, (2.1)

the dual homogeneous Strichartz estimate

k
Z

R
e�iL0⌧F (⌧) d⌧kH1

x

 kFk
Ler0

t

W 1,es0
x

, (2.2)

and the inhomogeneous Strichartz estimate

k
Z

⌧<t

e�iL0(t�⌧)F (⌧) d⌧kLr

t

W 1,s
x

 kFk
Ler0

t

W 1,es0
x

, (2.3)

where (er0, es0) is the dual conjugate of (er, es).
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Remark 2.1. We will always use the inhomogeneous Strichartz estimate in the
localized version

k
Z t

0

e�iL0(t�⌧)F (⌧) d⌧kLr

t

[0,t]W 1,s
x

 kFk
Ler0

t

[0,t]W 1,es0
x

,

Remark 2.2. In this exposition we will use the case d = 3. Furthermore we
want to use r = 2. The reason is that the dual Strichartz esponent is r0 = 2, thus
we are able to close the estimate. More precisely, we apply the inhomogeneous
Strichartz estimate with admissable exponents (2, 6) (and the dual is (2, 6/5)):

k
Z t

0

e�iL0(t�⌧)F (⌧) d⌧kL2
t

[0,t]W 1,6
x

 kFk
L2

t

[0,t]W
1,6/5
x

Concerning the nonlinearity we assume that it is smooth as a function on
C⇥H1(R3).

We want to study the dynamics of such system. We consider first the case
HP = 0, the continuum field and the particle are decoupled and the dynamics
is given simply by

⇠(t) = e�it!⇠
0

, �(t) = e�iL0t�
0

,

where ⇠
0

2 C and �
0

2 H1 are the initial data. Here we see that the particle
oscillates with periodic motions of frequency !, while the continuum field dis-
perse to zero due to Strichartz estimates. Thus the unperturbed motion carries
periodic motions for the particles. This means that the linear problem, when
HP = 0, has periodic motions.

It is a very natural question what happens to such periodic motions when
we turn the perturbation: do such periodic motions persist?
In order to do this, one tries to decouple the oscillator and the field to higher
order. Here comes a big di↵erence with the finite volume setting. Indeed, in
this last setting (typically � 2 H1(Td)), the operator L

0

displays a pure discrete
spectrum (eventually with multiplicity) and with eigenvalues which are typically
separating more and more at infinity. Then one can impose the condition that
the spectrum of the discrete oscillator does not enter in resonance with the
spectrum of the operator L

0

. Typically one needs to impose the so called first
order Melnikov condition, which reads something as follows: there exists �, ⌧ > 0
such that

|!n± �| � �

hni⌧ , 8n 2 Z ,� 2 �(L
0

) .

The typical result is that, for not too bad operators L
0

, one can find a Cantor
set of large measure such that, if ! belongs to such set, than the condition above
is fulfilled.

We come back to the case of infinite volume setting. Now the spectrum of
L
0

is purely continuous: in this case it is impossible to impose the first Melnikov
condition, which indeed it is always violated: we will always find an integer n

0

such that !n
0

> E , i.e.
!n

0

2 �(L
0

) .
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Thus a resonance between the discrete mode and the continuous field is created.
The question now is: which is the e↵ect of such resonance? Our aim is to show
that such resonance creates a coupling between the oscillator and the contin-
uum field which produce a dissipative behaviour on the oscillator, leading to the
instability of the periodic unperturbed motion: the periodic orbit is destroyed.
The reason behind this behaviour is that a coupling between the oscillator and
the field leads to an exchange of energy between the two: when the oscillator
transfer energy to the field, the field (being dispersive) transfer energy to infin-
ity. This results in a loss of energy in the oscillator.

For the sake of clarity, we choose the simplest possible nonlinearity, which
is linear in the variable �c

HP = ⇠µ⇠
⌫
Z
�µ⌫ �c + ⇠⌫⇠

µ
Z
�µ⌫ � .

Here �µ⌫ are Schwartz functions. The total hamiltonian is thus

H(⇠,�) = !|⇠|2 + (L
0

�,�) + ⇠µ⇠
⌫
(�µ⌫ ,�) + ⇠⌫⇠

µ �
�µ⌫ ,�

�

where we defined (u, v) :=
R
uv the L2 real scalar product.

We proceed trying to decouple the discrete and the continuous spectrum
order by order. In particular we try to delete the terms which are of order µ+⌫
in ⇠ and order 1 in �. To to this, we look for a generating function of the form

�(⇠,�) = ⇠µ⇠
⌫
Z
 µ⌫ �c + ⇠⌫⇠

µ
Z
 µ⌫ � .

Then, denoting by T the time 1-flow of �, we have that

H � T = HL + {HL,�}+HP + h.o.t.

and we want to choose � is such a way that {HL,�} + HP is as simplest as
possible. One computes that

{HL, ⇠
µ⇠
⌫} = �i!(µ� ⌫)⇠µ⇠

⌫
(2.4)

{HL, ⇠
µ⇠
⌫
Z
 �} = �i⇠µ⇠

⌫
Z
� (L

0

� !(⌫ � µ)) (2.5)

{HL, ⇠
⌫⇠

µ
Z
 �} = i⇠⌫⇠

µ
Z
� (L

0

� !(⌫ � µ)) (2.6)

Thus by choosing  µ⌫ such that

�i(L
0

� !(⌫ � µ)) µ⌫ = �µ⌫

we can eliminate the monomials in HP . Clearly everything work in case !(⌫ �
µ) < E , which allows us to set

 µ⌫ = i(L
0

� !(⌫ � µ))�1�µ⌫ .
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Thus the terms which we cannot delete so easily are the ones in which the
discrete spectrum is in resonance with the continuous spectrum, namely one
has

!(⌫ � µ) > E .

It is interesting to notice that it is enough to expand HP in a Taylor series
of su�ciently high order to have monomials such that !(⌫ � µ) > E . In other
words, such resonances are unavoidable! This is a consequence of having contin-
uous spectrum. We can (and we will) elimate such terms with the help of the
regularized resolvent. Anyhow, we have to proceed at the level of vector field.

Thus it is necessary to understand the e↵ect of the resonant interaction of
the continuous spectrum and the discrete spectrum. For the sake of clarity, I
will simplify even more our model, and consider a toy model which contains just
1 monomial which is resonant.

2.1 A toy model

More precisely, we will consider the following “Toy Model”:

H(⇠,�) = !|⇠|2 + �L
0

�,�
�
+ (G,�) +

�
G,�

�
(2.7)

where
G = ⇠

⌫
� , G = ⇠⌫� ,

and such that
!⌫ > E .

These are exaclty two of the monomials which we were not able to delete before.
Since we want to study the dynamics close to 0, it is convenient to rescale the
variables and define

⇠ := "⇠0, � = "�0

and we rescale also the time by t0 = "t. The new Hamiltonian (dropping the
prime) and defining ✏ := "µ+⌫�1 reads

H(⇠,�) = !|⇠|2 + �L
0

�,�
�
+ ✏ (G,�) + ✏

�
G,�

�
(2.8)

Then the equation of motions are

i⇠̇ = !⇠ + ✏

✓
@G

@⇠
,�

◆

i�̇ = L
0

�+ ✏G

(2.9)

We will prove the following result

Theorem 2.2. Let �
0

2 H1(R3), ⇠
0

2 C. Assume that the

!⌫ > E (2.10)
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(that is, !⌫ 2 �(L
0

)). Furthermore, assume that the Nonlinear Fermi Golden
Rule (NFGR) holds: �

�, �(L
0

� !⌫)�
�
> 0 (2.11)

Consider the dynamics given by the Hamiltonian above. Then one has that

lim
t!1

|⇠(t)| = 0

and furthermore there exists e� 2 H1(R3) such that

k�(t)� e�i�te�kH1 ! 0 , t ! 1 .

One can also say that 0 is asymptotically stable.
It is interesting to contrast our results with those known for Hamiltonian

partial di↵erential equations for a function u(x, t), where x varies over a compact
spatial domain, e.g. periodic or Dirichelt boundary conditions. For nonlinear
wave equations with periodic boundary conditions in x, KAM type results have
been proved; invariant tori, associated with a nonresonance condition persist
under small perturbations. The nonresonance hypotheses of such results fail in
the current context, a consequence of the continuous spectrum associated with
unbounded spatial domains. In our situation, non-vanishing resonant coupling
(condition (2.11)) provides the mechanism for the radiative decay and therefore
nonpersistence of localized periodic solutions.

Remark 2.3. In the more general situation in which the nonlinearity is more
complicated, or there are several discrete modes, one performs Birkho↵ normal
form in order to reduce to the toy model.

3 Proof

We prove the theorem by a bootstrap assumption. More precisely, suppose that
the following estimates hold 1

k�kLr

t

[0,T ]W 1,s
x

 C
1

, for all admissible pairs (r, s) (3.1)

✏k⇠⌫kL2
t

[0,T ]

 C
2

, for all integers ⌫ such that !⌫ > E (3.2)

for fixed constant C
1

, C
2

> 0. Then we will prove that (3.1) and (3.2) imply the
same estimate but with C

1

, C
2

replaced by C
1

/2, C
2

/2. Then (3.1) and (3.2)
hold with [0, T ) replaced by [0,1).

We begin with the following remark. By conservation of energy, it follows
that

!|⇠|2 + k�k2H1  H(⇠
0

,�
0

) + ✏|⇠|⌫k�kH1

1
the scaling of the ⇠ variable is given by the fact that the original ⇠ ⇠ ", hence we expect

in the scaled variable "⌫k⇠µkLr

t

[0,T ]  C2", which givev the condition (3.2)
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which implies the L1 controll

sup
t2R

(|⇠(t)|+ k�(t)kH1)  C
3

.

We start by studying the equation for �, which is given by the first of (2.9).

Lemma 3.1. Under the assumption (3.1) and (3.2), one has that

k�kLr

t

[0,T ]W 1,s
x

 C
1

2
, for all admissible pairs (r, s)

Proof. By Duhamel one has

�(t) = e�iL0t�
0

+ ✏

Z t

0

e�iL0(t�⌧)
⇣
⇠
⌫
(⌧)�

⌘
d⌧ .

Using Strichartz, the assumptions (3.1) and (3.2), and assumption (2.10), one
gets immediately

k�kLr

t

[0,T ]W 1,s
x

k�
0

kH1 + 2✏k⇠⌫�k
L2

t

[0,T ]W
1,6/5
x

k�
0

kH1 + 2C ✏k⇠⌫kL2
t

[0,T ]

k�
0

kH1 + 2CC
2

Thus the thesis follows provided that C
1

> 2k�
0

kH1 and C
1

> 4CC
2

.

We turn to the equation for ⇠. To study such equation, we need to decouple
(2.9) by defining the new variable

g := �+ ✏Y

where
Y = ⇠⌫ ,

with a function  to be determined. The equation for ġ is given by

ġ =� iL
0

g

+ ✏i


L
0

Y � !⇠
@Y

@⇠
�G

�

� i✏2
@Y

@⇠

✓
@G

@⇠
,�

◆
.

We want to kill the term of order ✏. Thus we impose that the second line above
equal zero. Explicitly, this means that

(L
0

� !⌫)Y = G ,

and thus we need to solve the equations

(L
0

� !⌫) = � .
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By our assumption ⌫! > E , this is exacly the resonance between the discrete
and the continuous spectrum. We will analyze such resonance. In order to invert
the operator above, we have to regularize the resolvent. For any � 2 (E ,1) one
defines the regularized resolvent as

R±
L0
(�) := lim

"!0

+
(L

0

� �⌥ i")�1

The following result is well known and goes under the name of Limiting absorp-
tion principle (or Agmon theorem):

Theorem 3.1 (Limiting absorption principle). Let f be a test function on R3,
let � > E, and let � > 1/2. Then one has

kR±
L0
(�)fkL2,��

(R3
)

 C�
1

�1/2
kfkL2,�

(R3
)

where C� > 0 depends only on �, and L2,s(R3) is the weighted norm

kfkL2,s
(R3

)

:= khxisfkL2
x

(R3
)

.

For a proof of such result, see Appendix A. In the applications, one has to
prove such estimate for the operator L

0

.
In particular, the limiting absorption principle states that for � 2 (E ,1), the

operator R±
L0
(�) 2 B(L2,�, L2,��) for � > 1/2. Now we can solve the equations

above and define

 := R+

L0
(⌫!)� ,  := R+

L0
(⌫!)� = R�

L0
(⌫!)� .

By the limiting absorption principle and the fact that � 2 L2,� for � > 1/2,
one has

Lemma 3.2. We have Y 2 L2,�� for all � > 1/2.

It is clear now that also g 2 Ls,��. We want to prove that we can control
its norm.

In order to estimate g, we need the following Strichartz estimates:

Lemma 3.3. For any � in the Schwartz class, any complex valued function
h 2 L2

t , any � 2 (E ,1) one has

khxi��U(t, 0)R±
L0
(�)�kL2

x

� 1

hti3/2 khxi
��kL2

x

, (3.3)

k
Z t

0

U(t, s)h(s)R±
L0
(�)� dskL2

t

L2,��

x

� khkL2
t

k�kL2,�
x

. (3.4)

We are now ready to study the dynamics of g.

Lemma 3.4. Under the assumption (3.1) and (3.2), one has that for any a >
1/2

kgkL2
t

[0,T ]L2,�a

 C(k�
0

kL2 , |⇠
0

|) + ✏2C
2

C
3
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Proof. Once again using Duhamel one has

g(t) = e�iL0tg
0

� i✏2
Z T

0

e�iL0(t�⌧)

@Y

@⇠
(⌧)

✓
@G

@⇠
(⌧),�(⌧)

◆�
d⌧ .

Then by (3.3), using that g
0

= �
0

+ Y (0), it follows that

ke�itL0g
0

kL2
t

[0,T ]L2,�a

x

ke�itL0�
0

kL2
t

[0,T ]L2,�a

x

+ 2ke�itL0Y (0)kL2
t

[0,T ]L2,�a

x

ke�itL0�
0

kL2
t

[0,T ]L6
x

+ 2ke�itL0⇠⌫
0

R±
L0
(!⌫)�kL2

t

[0,T ]L2,�a

x

k�
0

kL2 + k�kL2,a
x

|⇠⌫
0

| � C(k�
0

kL2 , |⇠
0

|)

We consider the integral term, and more precisely we estimate

k
Z T

0

e�iL0(T�⌧)

@Y

@⇠
(⌧)

✓
@G

@⇠
(⌧),�(⌧)

◆�
d⌧kL2

t

[0,T ]L2,�a

x

(3.5)

Using estimate (3.4) we get

k(3.5)kL2
t

[0,T ]L2,�a

x

�k⇠⌫�1(⌧)

✓
@G

@⇠
(⌧),�(⌧)

◆
kL2

t

[0,T ]

k�kL2,a
x

�k|⇠|2(⌫�1) k�k
L

6/5
x

k�kL6
x

kL2
t

[0,T ]

� sup
t2[0,T ]

k⇠(t)k2(⌫�1) k�kL2
t

[0,T ]L6
x

� C
2(⌫�1)

3

C
1

2

Finally we are able to estimate ⇠. In order to do this, first we substitute
� = g � ✏Y into the first of (2.9), getting

i⇠̇ =!⇠ + ✏

✓
@G

@⇠
, g

◆
� ✏2

✓
@G

@⇠
, Y

◆

We want to show now that the last term above produces a dissipative behaviour
in the equation. To understand why, we compute the last term explicitly. One
has that ✓

@G

@⇠
, Y

◆
= ⌫

⇠⌫⇠
⌫

⇠
c

where we defined the complex coe�cient

c := (�, ) = (�, R�
L0
(!⌫)�)

Thus the equation for ⇠̇ is

i⇠̇ =!⇠ + ✏

✓
@G

@⇠
, g

◆
� ✏2⌫

⇠⌫⇠
⌫

⇠
c

12



which we rewrite as
⇠̇ = ⌅(⇠, ⇠) +R(t)

where

⌅(⇠, ⇠) = �i!⇠ + ✏2N (⇠)

N (⇠) = i⌫
⇠⌫⇠

⌫

⇠
c

R(t) = �i✏

✓
@G

@⇠
, g

◆

We are ready to analyze the dynamics of the function

Hd(⇠) := !|⇠|2

In particular we consider its time derivative which is given by

d

dt
Hd(⇠) = 2Re(!⇠⇠̇)

= 2Re(!⇠⌅) + 2Re(!⇠E) = 2Re(!⇠N ) + 2Re(!⇠R)

= �✏2!⌫|⇠|2⌫2Im(c) + 2Re(!⇠R)

Now we analyze the term Im(c), which is the source of dissipation. We have
that �

�, R�
L0
(!⌫)�

�

Lemma 3.5. We have that Im
��
�, R�

L0
(!⌫)�

�� � 0.

Proof. Let W+ := limt!1 eitHe�itH0 be the wave operator. It is well known
that W+ exists, it is invertible, and it is an isometry w.r.t. the scalar product
hu, vi := R uv. Furthermore, one has the interwiening relation

f(L
0

)W+ = W+f(��+ E)
for any analytic function f . for a proof of these properties see Appendix B. We
write

⇣
�, R+

L0
(⌫!)�

⌘
= h�, R+

L0
(⌫!)�i = lim

✏!0

+
h�, (L

0

� ⌫! � i✏)�1�i

Define F s.t. � = W+F . Then

h�, (L
0

� ⌫! � i✏)�1�i = hW+F, (L
0

� ⌫! � i✏)�1W+F i
= hW+F,W+(��+ E � ⌫! � i✏)�1F i
= hF, (��+ E � ⌫! � i✏)�1F i

It follows that

lim
✏!0

+
Imh�, (L

0

� ⌫! � i✏)�1�i = lim
✏!0

+
ImhF, (��+ E � ⌫! � i✏)�1F i

= lim
✏!0

+

Z

R3

✏

(|⇠|2 � (!⌫ � E))2 + ✏2
| bF (⇠)|2 d⇠ � 0

13



Let us elaborate more on the last condition: passing to spherical coordinates

Z 1

0

✏ ⇢2

(⇢2 � (!⌫ � E))2 + ✏2
f(⇢) d⇢ , f(⇢) =

Z
2⇡

0

Z ⇡

0

| bF (⇢, ✓,�)|2 sin ✓ d✓d�d⇢

and with the substitution ⇢2 � � = r we get

1

2

Z 1

�(!⌫�E)

✏

r2 + ✏2
ef
⇣p

r + (!⌫ � E)
⌘

dr , ef(x) = xf(x)

At this point it is clear that

1

2

Z 1

�(!⌫�E)

✏

r2 + ✏2
ef
⇣p

r + (!⌫ � E)
⌘

dr ! ⇡ ef
⇣p

!⌫ � E
⌘

, ✏! 0 .

Namely we get

h�, (L
0

� ⌫! � i✏)�1�i ! ⇡
p
!⌫ � E

Z

|⇠|2=!⌫�E
| bF (⇠)|2 d⇠

Remark 3.1. One can also invoke Plemelji formula from funcional calculus:

R�
L0
(�) = PV (L

0

� �)�1 + i⇡� (L
0

� �)

Now we are ready to ask the Nonlinear Fermi Golden Rule , which essentially
tells that this quantity is strictly positive:

� ⌘ (�, � (L
0

� �)�) > 0 . (NFGR)

aggiungere commenti su quanto questa condizione e generica

We are ready to prove the bootstrap assumption: integrating the derivative
of the energy we get

Hd(⇠(t))�Hd(⇠(0)) = �✏2!⌫�
Z t

0

|⇠|2⌫ + 2

Z t

0

Re(!⇠R)

and using that Hd(⇠(t)) is positive, � > 0, we obtain that

✏2!⌫�

Z t

0

|⇠(⌧)|2⌫ d⌧  Hd(⇠(0)) + 2✏⌫

Z t

0

|⇠(⌧)|⌫kg(⌧)kL2,��

x

d⌧

 C(|⇠
0

|) + (C(k�
0

k, |⇠
0

|) + ✏2C
2(⌫�1)

3

C
1

)✏

✓Z t

0

|⇠(⌧)|2⌫ d⌧

◆
1/2

from which one deduces the inequality

✏k⇠⌫kL2
t

[0,T ]

 (C(k�
0

k, |⇠
0

|) + ✏2C
3

C
1

)
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By choosing C
2

large enough, it follows that

✏k⇠⌫kL2
t

[0,T ]

 C
2

2
,

thus proving the bootstrap assumption.

It is also possible to estimate the time-decay of ⇠. Indeed y := |⇠|2 fulfills
the approximate equation

d

dt
y = �cynu

which decays at t ! 1 as

y(t) ⇠ 1

t
1

⌫�1

A Limiting absorption principle

We sketch the proof of the limiting absorption principle. We prove first the case
of the free resolvent:

Case L
0

= ��. Let � > 0 and f, g 2 C1
c (Rn). By Parseval formula

hR
0

(�)f, gi =
Z bf(⇠) bg(⇠)

|⇠|2 � �
d⇠

Then one verifies that

lim
�!k2R+
±Im�>0

hR
0

(�)f, gi = ± ⇡i

2
p
k

Z

|⇠|=
p
k

bf(⇠) bg(⇠) dSn�1 + p.v.

Z bf(⇠) bg(⇠)
|⇠|2 � k

d⇠ .

Now we need two bound the two integrals above. It is clear at this point that
in order to make sense of the integrals above, we need bf and bg to have some
regularity. To bound the first integral, we use the trace lemma which refers
to the statement that for every f 2 L2, 12+, there is a restriction of bf to any
(compact) hypersurface, and this restriction belongs to L2 relative to surface
measure:

Lemma A.1 (Trace Lemma). Let � be a C1 compact n� 1 dimensional man-
ifold imbedded in Rn. Let d⇣ be the measure induced on � by the Lebesgue mea-
sure dx, and denote by L2(�) the class of L2 functions on � with respect to the
measure d⇣. For any given m > 1/2 the restriction map ⇧ : Hm(Rn) ! L2(�),
u 7! u|

�

is bounded.

Such lemma implies immediately that for bf, bg in H
1
2+, then

��
Z

|⇠|=
p
k

bf(⇠) bg(⇠) dSn�1

��  k bf |Sn�1kL2
(Sn�1

)

kbg|Sn�1kL2
(Sn�1

)

� k bfk
H

1
2
+ kbgk

H
1
2
+

15



and it is enough to remark that k bfk
H

1
2
+ ⌘ kfk

L2, 1
2
+ .

Now we bound the second integral. Clearly is enough localize around the
sphere |⇠|2 = k, the rest being obvious. Thus let �(⇠) a radial cut o↵ function
which equals 1 in ||⇠|2 � k| > 1. then it is enough to bound

Z
�(⇠)

bf(⇠) bg(⇠)
|⇠|2 � k

d⇠ =

Z
�(⇠)

(|⇠|+p
k)(|⇠|�p

k)
bf(⇠) bg(⇠) d⇠ (A.1)

Using the Sobolev embedding H
1
2+ ,! L

2n
n�1+ and Hölder inequality, we get

��(A.1)
�� � 1p

k
k �(⇠)

|⇠|�p
k
kLn� k bfk

L
2n

n�1
+ kbgk

L
2n

n�1
+ � k bfk

H
1
2
+ kbgk

H
1
2
+

It follows that R
0

(� ± i0) exists as a bounded map from L2,� to L2,�� for any
� > 0 (the norm exploding when � ! 1/2.

Remark A.1. An easy modification of this argument show that R±
0

(�) is bounded
from L2,� to H2,��. More precisely, one has that k�R±

0

(�)fkL2,��  kfkL2,� .

Case L
0

= �� + V . Now consider the case with V a Schwartz potential. We
need a preliminary definition and result due to Agmon.

Definition A.1. A function u 2 H2

loc

(Rn) will be said to be k-outgoing if there
exists k > 0, v 2 L2,�, � > 1/2, such that

u = R+

��

(k2)f

Then the following theorem holds

Theorem A.1 (Agmon theorem on decay of eigenfunction). Let u 2 H2

loc

(Rn)
be k-outgoing and such that it fulfills

��u+ V u = k2u

where V is a real potential of class Schwartz. Then u 2 H2,� for every � > 0.
In particular u 2 D(��+ V ) and it is an eigenvector of ��+ V .

One transfer the free resolvent estimate to R±
L0
(�) by means of the resolvent

estimate

R±
L0
(�) = R±

��

(�)�R±
��

(�)V R±
L0
(�)

R±
L0
(�) =

�
+R±

��

(�)V
��1

R±
��

(�)

Now S = S(�) := +R��

(�)V is a perturbation of the identity by the compact
operator R��

(�)V : L2,�� ! L2,�� with � > 1/2 provided |V (x)|  1

(1+|x|)1+ .
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The compactness here follows from the fact that the resolvent gains two deriva-
tives in the weighted L2 space. Thus by Fredholm alternatives, one has that
S�1 exists i↵ Sf = 0 implies f = 0 for any f 2 L2,��. But Sf = 0 means
that f = �R+

��

(�)(V f), thus f is �-outgoing. Furthermore Sf = 0 is formally
equivalent to (�� + V )f = �f . Since � > 0, it follows by Agmon lemma A.1
that in fact f is an eigenvector of ��+ V . But positive embedded eigenvalues
do not exist by Kato’s theorem. Hence S(�)�1 : L2,�� ! L2,�� exists for all
� > 0 provided � > 1/2.

Furthermore, S(�) converges to the identity operator as �! 1 which then
implies that S(�)�1 is uniformly bounded for all � > �

0

.

B Wave operator

Consider the following linear Schrödinger equation:

i = (��+ V ) ,  
0

= PcH
1 (B.1)

where Pc is the projection on the continuous spectrum of H := ��+ V . Here
we assume that V is a potential which decays together with its derivatives:

|@↵xV (x)|  Chxi�µ�|↵| (B.2)

for |↵|  2 and µ > 1 (short range interaction).
The question that we want to answer is if  (t) scatters to a solution of the

free Schrödinger equation
i = �� 

In other words, we ask if there exists e 2 H1 such that

ke�iHtPc � e�iH0t e kL2 ! 0 , t ! 1

We can reformulate the asymptotic completeness property by defining the wave
operator

W±� := lim
t!±1

eiHt e�iH0t� . (B.3)

We will show that under the considtion µ > 1, then such limit exists always
in L2. Furthemore, the operator is an isometry, since both eiHt and e�iH0t are
isometry.

Furthermore, the most important property is the following:

HW± = W±H
0

(B.4)

Indeed, by changing variables, we can obtain the following intertwining rela-
tions

e�iHtW± = W±e�iH0t .

Di↵erentiating these relations at t = 0, we obtain (B.4).
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Let Lsc := RanW+ the set of scattering states. We have shown that Lsc ⇢
PcL

2. The property of asymptotic completeness states that

Lsc = PcL
2 or PdL

2 � Lsc = L2 ,

i.e., that the scattering states and bound states span the entire state space L2.

Theorem B.1. Let V 2 L2. Then the wave operator exists.

Proof. Denote W t := eiHt e�iH0t. since kW tk = 1, it su�ces to prove the
existence of the limit (B.3) on functions � 2 L2 \ L1 (the existence of the
limit for � 2 L2 will then follow by approximating � by elements of the dense
subspace L2 \ L1 ). For t � t0 , we write

W t��W t0� =

Z t

t0

d

d⌧
W ⌧� d⌧

Using that d
d⌧ e

iH⌧ = iHeiH⌧ (and similarly for e�iH
o

⌧ , we get

d

d⌧
W ⌧ = iHeiH⌧e�iH0⌧ + eiH⌧ (�iH

0

)e�iH0⌧ = eiH⌧ iV e�iH0⌧ .

Thus, using the Minkowski inequality k R f(⌧) d⌧k  R kf(⌧)k d⌧ and the uni-
tarity of eiH⌧ , it follows that

kW t��W t0�k 
Z t

t0
kV e�iH0⌧�k d⌧ .

But if V 2 L2, it follows that

kV e�iH0⌧�k  kV kke�iH0⌧�kL1  kV k 1

h⌧i3/2 k�kL1

where we used the time-decaying estimate for the free hamiltonian H
0

. thus we
obtain that

Z t

t0
kV e�iH0⌧�k d⌧  kV kk�kL1

Z t

t0

1

h⌧i3/2 d⌧ ! 0, t, t0 ! 1 .

In other words, for any sequence tj ! 1, {W t
j�} is a Cauchy sequence, and

so {W t�} converges as t ! 1. Convergence for t ! �1 is proved in the same
way.

We construct now the inverse of W±. Define

Z±� := lim
t!±1

eiH0t e�iHt� . (B.5)

Then, if the limit above exists, we have that

Z±W± = , W±Z± = .
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Indeed define Zt = eiH0t e�iHt. Then ZtW t = W tZt = for every time t. Thus
also limt!1 ZtW t = limt!1 W tZt = .

We prove now that such limit exists. Assume now that we know the Strichartz
estimate

kei⌧H�kL2
t

L6
x

< 1
holds.
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