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Abstract

This paper focuses on the dynamics near the collinear equilibrium points L 23
of the spatial Restricted Three Body Problem. It is well known that the linear
behaviour of these three points is of the type center x center xsaddle. To obtain an
accurate description of the dynamics in an extended neighbourhood of those points,
two different (but complementary) strategies are used.

First, the Hamiltonian of the problem is expanded in power series around the
equilibrium point. Then, a partial normal form scheme is applied in order to un-
couple (up to high order) the hyperbolic directions from the elliptic ones. Skipping
the remainder we have that the (truncated) Hamiltonian has an invariant manifold
tangent to the central directions of the linear part. The restriction of the Hamilto-
nian to this manifold is the so-called reduction to the centre manifold. The study
of the dynamics of this reduced Hamiltonian (now with only 2 degrees of freedom)
gives a qualitative description of the phase space near the equilibrium point.

Finally, a Lindstedt-Poincaré procedure is applied to explicitly compute the in-
variant tori contained in the centre manifold. These tori are obtained as the Fourier
series of the corresponding solutions, being the frequencies a power expansion of
some parameters (amplitudes). This allows for an accurate quantitative description
of these regions. In particular, the well known Halo orbits are obtained.

Keywords: center manifolds, normally hyperbolic manifolds, lower dimensional tori,
Lissajous orbits, Halo orbits, algebraic manipulators, Lindstedt-Poincaré method.
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1 Introduction

Let us start with a brief description of the so-called Restricted Three Body Problem (from
now on, RTBP). Consider the motion of a infinitessimal particle under the gravitational
attraction (Newton’s law) of two punctual masses called primaries. The attraction of the
infinitessimal particle on the primaries has been neglected (as if it had zero mass) so the
primaries are describing Keplerian orbits around their common centre of masses. Then,
the study of the motion of the infinitessimal particle is what is known as RTBP. Here
we will assume (without further mention) that the primaries are moving on a circular
orbit, although the case in which they move on a elliptic trajectory is also very relevant.
The RTBP is used as a first model to study several problems of Celestial Mechanics. For
instance, to study the motion of an asteroid under the attraction of Jupiter and Sun, or
the motion of an artificial satellite in the Earth-Moon system.

To simplify the equations of motion, let us take units of mass, length and time such
that the sum of masses of the primaries, the gravitational constant and the period of the
motion of the primaries is 1, 1 and 27 respectively. With these units the distance between
the primaries is also equal to 1. We denote by p the mass of the smallest primary (the
mass of the biggest one is then 1 — u), p € (0, %] A usual system of reference (called
synodical system) is the following: the origin is taken at the centre of masses of the two
primaries, the X axis is given by the line that goes from the smallest to the biggest
primary (and with this orientation), the Z axis has the direction given by the angular
motion of the primaries (and with the same orientation) and the Y axis is chosen to have
a positively oriented system of reference. Hence, in the synodical system the primary of
mass j is always located at (u — 1,0,0) and the primary of mass 1 — p at (i, 0,0).

Defining momenta as Py = X - Y, Py = Y +X and P, = Z, the equations of motion
can be written in Hamiltonian form. The corresponding Hamiltonian function is (see [23])

S (1)

H:l(P§+P§+P§)+YPX—XPY— - =
2 I8 T9

It is also well-known that the RTBP in synodical coordinates has five equilibrium points.

Two of them can be found as the third vertex of the two equilateral triangles that can

be formed using the two primaries as vertices (they are also called triangular points,

Lagrangian points or simply L,5). The collinear points lay on the X-axis and are also

called L, 5 3 or Eulerian points (see Figure 1).

In this paper we are going to focus on the dynamics near the collinear points. The lin-
earized vectorfield at these points exhibits a behaviour of the kind centrex centre xsaddle
(for all p), so these equilibrium points are unstable. On the other hand, there exist solu-
tions that are always close to them, such as the two families of periodic Lyapunov orbits
related to the two linear oscillators of the linearized vectorfield. As one of these families is
contained in the horizontal plane and the other one is tangent to the (Z, P;) direction at
Ly 93, we will refer to them as the planar and vertical (Lyapunov) families, respectively.
Other interesting solutions are the two dimensional invariant tori related to the Lissajous
solutions, obtained as the product of the two linear oscillations (see [2] and [16] for proofs
of the existence of such tori), and the Halo orbits, obtained as a bifurcation of the planar
family of Lyapunov orbits.
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Figure 1: The five equilibrium points of the RTBP.

In order to describe the dynamics in a relatively big neighbourhood of the collinear
points, we will perform the so-called reduction to the centre manifold. This process is
based on expanding the initial Hamiltonian around a given equilibrium point and per-
forming a partial normal form scheme, uncoupling (up to a high order) the hyperbolic
directions from the elliptic ones. The restriction to the invariant manifold tangent to
these elliptic directions is a two degrees of freedom Hamiltonian system with an elliptic
equilibrium point at the origin. The study of the dynamics of this Hamiltonian is done by
fixing an energy level (the phase space is now 3-D) and doing a suitable (2-D) Poincaré
section, that can be easily plotted. In this way, varying the value of the energy, we will
obtain a sequence of 2-D plots describing the dynamics contained in the centre directions.

Once the dynamics has been qualitatively explained, we face the problem of comput-
ing accurately some of the solutions of the centre manifold. To this end we discuss the
Lindstedt-Poincaré procedure (see [19]), that is directly applied to the initial equations
(the ones related to (1)). This process is based on finding a parametric family of trigono-
metric expansions that satisfy the equations of motion, up to a sufficiently high order.
Once these expansions have been found, it is very easy to plot periodic and quasiperiodic
solutions contained in the centre manifold.

The advantage of the Lindstedt-Poincaré method is that the expressions are written in
the initial coordinates, and that we have a compact expression for all the trajectories. On
the other hand, the reduction to the centre manifold provides an easy way of producing
qualitative plots of the dynamics close to the point.

Since 1978, when NASA launched the ISEE-3 spacecraft, Lissajous and Halo type tra-
jectories around the collinear equilibrium points have been considered in the trajectory
design of astrodynamic missions. Since the end of 1996 the SOHO spacecraft is using



1. JUL VG atild .J. [Iviasucliituliu J

a Halo orbit around L in the Earth-Sun system as a nominal station orbit. Moreover,
in a near future more complex missions to the same location are envisioned, such as the
GENESIS mission, planned to be launched by the year 2001 (see also [3], [4], [10], [11],
[12] and [22]). Semianalytical expansions up to a high order, like the ones obtained by the
Lindstedt-Poincaré procedure, can give accurate trajectories for the RTBP model, that
can be easily improved for more realistic models for the motion of the spacecraft in the
solar system ([6], [9]). The initial approximation is, in many cases, only slightly deformed
when it is recomputed for a realistic model (under some extra hipotheses, [17] contains
some theoretical results about the effect of the main perturbations of these kind of prob-
lems on previously existing periodic and quasiperiodic solutions). Hence, the knowledge
of all the librating trajectories given by the reduction to the centre manifold allows to
select a very suitable approximation for a given purpose. We note the flexibility of this
design process, simplifying the study of complex missions and giving a fast adequation to
the technical requirements.

Let us remark that all the computations mentioned here have been done using algebraic
manipulators written from scratch (in C and Fortran) by the authors, taking advantage of
the particularities of the problem. This, jointly with the use of double precision coefficents
for the involved expansions, allows to obtain the results presented here within a reasonable
amount of computer time and memory. A general purpose algebraic manipulator is not
efficient enough to produce these results using actually existing computers (see also [13]).

Finally, let us mention that the computation of the centre manifold to obtain a com-
plete description of the dynamics was first considered (as far as we know) in [6], in order to
describe a big neighbourhood of the L; point of the Earth-Sun system. Related computa-
tions can be found in [15], [20] and [1]. The Lindstedt-Poincaré method is first described
in [19], and it has been used in many contexts (see, for instance, [7] or [6]).

The paper has been organized as follows: In Section 2 we introduce the equations of
motion as well as the expansions used; Section 3 is devoted to the reduction to the centre
manifold and Section 4 contains the details of the computation of invariant tori near the
collinear equilibrium points. A discussion of the results is also contained in sections 3
and 4.

2 Expansion of the equations of motion

The equations of motion corresponding to (1) are usually written as

k 337’
. . 00

.09

z = 5,

where QO = 2(2% + y?) + (1 — p)/r1 + p/ra. Let us start by translating the origin of
coordinates to the selected point Ly 3. It is well known (][23]) that the distance from



v L4 40 CCLuLC HialtlltUlu UL vl1C CULLLIICal pPULLIULS

L; to the closest primary, v;, is given by the only positive solution of the Euler quintic
equation,

VWF By + B =27 — £ 2uy, —p=0, j=1,2
VWA @+ + L +2u)% — (L —p)yf —2(0—p)y; — (L —p) =0, j=3,

where the upper sign in the first equation is for L; and the lower one for Ly. These equa-
tions can be solved numerically by the Newton method, using as starting point (p/3)'/?
for the first equation (L cases), and 1 — -5y for the second one (L case).

In order to have good numerical properties for the coefficients of the Taylor expansion it
is very convenient to introduce some scaling (see [21]). The translation to the equilibrium
point plus the scaling is given by

X = Fyjz+p+a,

Y = Fvuy,
Z = vz,
where the upper sign corresponds to L; 9, the lower one to L3z, a = —1 4 v for Ly,

a = —1—, for Ly and a = v for L3. Note that this change redefines the unit of distance
as the distance from the equilibrium point to the closest primary. As scalings are not
canonical transformations, they have to be applied on the equations of motion (2). In
order to expand the nonlinear terms, we will use that

00 n Az + By+Cz
¢(xA)2+(le)2+(z0)2_%,;)(%) P"( +DZ+ )

where D? = A2+ B%2+C?, p? = 22 +y*+2? and P, is the polynomial of Legendre of degree
n. After some calculations, one obtains that the equations of motion can be written as

=25 — (14 2c)x = % %cn(u)p”Pn (%) :
G+2+ (e 1)y = 9 Y calp)p" Py <E> , (3)
oy =4 p
F4cpz = 9 > ()P, <£> ,
0z ">a P

where the left-hand side contains the linear terms and the right-hand side contains the
nonlinear ones. The coefficients ¢, (u) are given by

1 . o (L= )yt .
ealp) = 3 ((il) '+ (=1) W , forLj, j=1,2
J J

—_

)n n+1

( [k
Cn(/ﬁ) = /y%, l—u—i‘m s for Lf;




1. JUL VG atild .J. [Iviasucliituliu i

As usual, in the first equation, the upper sign is for L,; and the lower one for L,. Note that
these equations can be written in Hamiltonian form, by defining the momenta p, = = — v,
py =y +x and p, = z. The corresponding Hamiltonian is then given by

1 T
H=>(p2+p2+p2) +ype —7py — Y calp)p" P (;) : (4)

2 n>2

The nonlinear terms of this Hamiltonian can be expanded by means of the well-known
recurrence of the Legendre polynomials P,. For instance, if we define

Tu(r,9,2) = o' P, (;) | 5)

then, it is not difficult to check that T}, is a homogeneous polynomial of degree n that
satisfies the recurrence

_2n—1 n—

1
Tn — Tlp—1 — (:EQ + ?JQ + ZQ)TTL72J (6)

n

starting with 75 = 1 and 7T = .

2.1 Preliminaries for the centre manifold

The linearization around the equilibrium point is given by the second order terms (linear
terms must vanish) of the Hamiltonian that, after some rearranging, takes the form,

L/ 2 9 €2 9 1o 0y
HQ:E(p$+py)+ypm—mpy—02m +§y +§pz+§z. (7)

It is not difficult to derive intervals for the values of ¢, when p € [0, 5] (see Figure 2). As
co > 0 (for the three collinear points), the vertical direction is an harmonic oscillator with
frequency ws = (/c2. As the vertical direction is already uncoupled from the planar ones,

in what follows we will focus on the planar directions, i.e.,

1

C
Hy =3 (P2 +12) + yps — 79y — 22 + S (8)

where, for simplicity, we keep the name H, for the Hamiltonian.
The next step will be to compute a symplectic change of variable such that Hamiltonian
(8) takes a simpler form, suitable to start the normal form computations. To this end, let
us define the 4 x 4 matrix .J as
0 I

where 5 denote the 2 x 2 identity matrix. The equations of motion of (8) are given by
the linear system

Y| = JIVH, = JHess(Hy) | 7
Px P

py py
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Figure 2: Values of ¢(u), p € [0, 3], for the cases Ly, 3.

Let us define the matrix M as JHess(H,),

0 1 1 0
-1 0 0 1

M= 2c0 0 0 1 9)
0 —C9 -1 0

The characteristic polynomial is p(A\) = A + (2 — ) A\? + (1 + ¢» — 2¢3). Calling n = A\?,
we have that the roots of p(\) = 0 are given by

cy — 2 —1/9¢3 — 8¢y co — 2+ 4/9¢3 — 8¢y
9 ) T2 = 9 .
As g > 0, we have that ¢ > 1 that forces 7, < 0 and 7y > 0. This shows that the
equilibrium point is a centerxcenter xsaddle. Thus, let us define w; as \/—mn; and \; as
/M2 For the moment, we do not specify the sign taken for each square root (this will be
discussed later on).
Now, we want to find a symplectic linear change of variables casting (8) into its real
normal form and, hence, we will look for the eigenvectors of matrix (9). We will take
advantage of the special form of this matrix: if we denote by M, the matrix M — A4,

then
. A)\ IQ . —A 1 . 2(32 0
MA_(B AA>’ A’\_<1 A)’ B‘(o —cy )
Now, the kernel of My can be found as follows: denoting as (w, ,w, )" the elements of the
kernel, we start solving (B — A3)w; = 0 and then wy = —Ayw,. Thus, the eigenvectors

h =
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of M are given by (2A, A2 — 2¢5 — 1, A2 + 2¢5 + 1, A* + (1 — 2¢2)A) T, where A denotes one
of the eigenvalues.
Let us start considering the eigenvectors related to w;. From p(\) = 0, we obtain that
wy verifies
Wi — (2= e)wi+ (14 ¢ —2¢5) = 0.

We also apply A = /—1w; to the expression of the eigenvector and, separating real and
imaginary parts as u,, + v/ —1v,, we obtain

Uy = (0,—w12—202*1,—w]2+2(:2+1,0)T,
'le - (2(")]107 0’ 70}? + (]— - 202)0}])T

Now, let us consider the eigenvalues related to +\q,

Uyy, = (A, AT 20 — LA+ 20+ 1,00 + (1 2e9)\) 7,
(=2X1, A2 = 20 — 1, A2 4+ 2¢5 + 1, =23 — (1 — 2¢5)\)) T

V_),

We consider, initially, the change of variables C' = (uyy,, Uy, V2, Uy, ). To know whether
this matrix is symplectic or not, we check CTJC = J. It is tedious but not difficult to

see that
T 0 D [ dy O
crae=( 0 P). b (B 0.

This implies that we need to apply some scaling on the columns of C' in order to have a
symplectic change. The scaling is given by the square root of the factors

dy, = 201 ((4 +3c) A2 +4 + 5y — 6¢3),  dy, = wi((4+ 3co)w? — 4 — 5ey + 6¢3).

Thus, we define s; = \/TM and s, = \/dT,l As we want the change to be real, we have
to ask dy, > 0 and d,, > 0. It is not difficult to check that this condition is satisfied
for 0 < pu < % in all the points L, 53, provided that A; and w; have been selected with
positive sign.

To obtain the final change, we have to take into account the vertical direction (z, p,):
to put it into real normal form we use the substitution

z —r Z, Pz —> A/ WaDy.

1
VW2

This implies that the final change is given by the symplectic matrix

221 0 0 —2)\1 2w1 0
9 S1 9 9 S1 52
/\1720271 —w]—2c2—1 0 /\172(:271 0 0
S1 S92 1 S1
0 0 0 0 0
/W
C — 2 § 2 § > 2 : 3 (10)
AT+2co+1 wi+2ca+1 0 AT +2co+1 0 0
S1 S92 S1
A§+(17202)A1 7A?7(17202)A1 74/.):::’4—(172(32)&)1
a4 0 0 0
S1 S1 2
0 0 0 0 0 N
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that casts Hamiltonian (7) into its real normal form,
w w
Hg:/\1mpm+3](y2+p§)+72(22+p3)- (11)

To simplify the computations, we have used a complex normal form for H, because this al-
lows to solve very easily the homological equations that determine the generating functions
used during the computations of the centre manifold (see Section 3.1). This complexifi-
cation is given by

= g y = @+ V—1ps P g+ vV —1p;

A — ]’ —_— 7’ _= 7’
V2 V2 (12)

_ V-l +p vV —1g3 +p3

Pe = D1, Dy = 2 Pz /i

and it puts (11) into its complex normal form,

Hy = Miqip1 + vV —1wigaps + v/ — 1wogsps, (13)

being A, w; and w, real (and positive) numbers.

2.2 Preliminaries for the Lindstedt-Poincaré

For the computation of the invariant tori we use a Lindstedt-Poincaré method. As this
requires to substitute trigonometric expansions into the right-hand side of (3), we will use
a recurrent expression for these nonlinear terms. From (5) we define

18Tn+1
Rnf T, Y,2) = ——Fx -
z.9,2) = - =5

Obviously, R, _; is a polynomial of degree n — 1. Moreover we have the identities

107544 0Ty 41
Rnfl(x; y: Z) - ; aZ Y az

So, the equations of motion can be written as

T — 2y — (]. + 2(52).’1) = Z Cp+1 (n + 1)Tn,

= (n+ 1)7T,.

n>2
J+25+ (o — 1)y = yZCnanf], (14)
n>2
Z4+ ez = 2z Z Cnp1 B 1.
n>2

Note that to substitute an expansion into the right-hand side of (14), one can substitute
into the recurrence satisfied by those terms: for the 7,, one can use (6) and, for the R,
it is not difficult to see that

2n+ 3 2n + 2 n+1
R, (z,y,2) = Tlhip 1 — n 2Rn7 ;
(@.y.2) = S o5 ol = S og T S B
where Ry = —1 and Ry = —3xz. The expansions that appear in this section have already

been used in [7].
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3 Reduction to the centre manifold

The process of reduction to the centre manifold is very similar to a normal form calcu-
lation. It is based on removing some monomials in the expansion of the Hamiltonian,
in order to produce an invariant manifold tangent to the elliptic directions of Hy. Let
us recall that, if F'(q,p) and G(q,p) are two functions (where, as usual, ¢ denotes the
positions and p the momenta), their Poisson bracket is defined as

OF 0G  OF 0G

(=50 - S2E0

dq Op dp Oq
In what follows, we will use the following notation. If x = (x1,...,x,) is a vector of
complex numbers and k = (k;,...,k,) is an integer vector, we denote by z* the value

24" -+~ zf (in this context we define 0° as 1). Moreover, we define |k| as ¥, |k;].

3.1 The Lie series method

Let us start by expanding the initial Hamiltonian around the equilibrium point, in the
complex coordinates for which the second degree terms are in diagonal form (see Sec-
tion 2.1). This expansion can be obtained by substituting the linear change given in (10)
into the recurrence (6), that is then applied to compute the last sum in (4). The second
degree terms in (4) that are not in the summatory are obtained by direct substitution. In
this way, the Hamiltonian takes the form

H(q,p) = Ha(q,p) + Y_ Hulq,p), (15)

n>3

where H, is given in (13) and H,, denotes an homogeneous polynomial of degree n.
The changes of variables are implemented by means of the Lie series method: if G(q, p)
is a Hamiltonian system, then the function H defined by

f[zH+{H,G}+%{{H,G},G}+%{{{H,G},G},G}+---, (16)

is the result of applying a canonical change to H. This change is the time one flow
corresponding to the Hamiltonian GG. G is usually called the generating function of the
transformation (16). See [5] and references therein for more details.

It is easy to check that, if P and () are two homogeneous polynomials of degree r
and s respectively, then {P, @} is a homogeneous polynomial of degree r + s — 2. This
property is very useful to implement in a computer the transformation (16): for instance,
let us assume that we want to eliminate the monomials of degree 3 of (15), as it is usually
done in a normal form scheme. Let us select as a generating function a homogeneous
polynomial of degree 3, G5. Then, it is immediate to check that the terms of H satisfy

degree 2: 1':12 = H,,

degree 3: Hsy = Hs + {H,, G3},
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degree 4: f{4 = H4 + {Hg, Gq} + % {{HQ, Gq} s Gg},

Hence, to kill the monomials of degree 3 one has to look for a G3 such that {H,, G3} =
—H;. Let us denote

Hi(q,p) = > hgor,d" 0, Gsla,p)= > gror,d" 0",
|kq|+|kp|=3 |kq|+|kp|=3

and Hy(q,p) = ¥3_, 1jq;p;, where i = Ay, 1y = v/—1wy and 3 = v/—1ws. As

{Hy,G3} = > (ky — kg 1) Gy, ™0™, 0= (1, m2,m3),
|kq|+|kp|=3

it is immediate to obtain

— Py i,
Gs(q,p) = Y, mqkqpkp;
g | +[kp|=3 2 T Tl

that is well defined because the condition |k,|+|k,| = 3 implies that (k, — k,, n) is different
from zero. Note that G is so easily obtained because of the “diagonal” form of H, given
in (13).

In this paper we are not interested in a complete normal form, but only in uncoupling
the central directions from the hyperbolic one. Hence, it is not necessary to cancel all the
monomials in Hz but only some of them. There are several ways of doing this uncoupling
(see [14]). The one we have used here is based on killing the monomials ¢*sp*» such that
the first component of £, is different from the first component of k,. This implies that
the generating function Gj is

gk kg, k
Galap) = > o sdp™, (17)
(kqakp)ES;; <kp - kqa 77)

where S, n > 3, is the set of indices (k,, k,) such that |k,| + |k,) = n and the first
component of k, is different from the first component of k,. Then, the transformed
Hamiltonian H takes the form

H(q,p) = Hy(q,p) + Hs(q,p) + Ha(q,p) + -, (18)

where flg(q,p) = ﬁg(q]p],qg,pg,qg,pg) (note that H; depends on the product ¢;pi, not
on each variable separately). This process can be carried out up to a finite order N, to
obtain a Hamiltonian of the form

H(q,p) = Hy(q,p) + Rn(q.p),

where Hy(q,p) = Hx(q1p1, @2, D2, g3, p3) is a polynomial of degree N and Ry is a remain-
der of order N+1 (note that Hy depends on the product ¢;p; while the remainder depends
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on the two variables ¢; and p; separately). Now, neglecting the remainder and applying
the canonical change given by I, = ¢p;, we obtain the Hamiltonian Hy (I}, g2, p2, g3, p3)
that has I; as a first integral. Then, setting I; = 0 (this is to skip the hyperbolic
behaviour) we obtain a two degrees of freedom Hamiltonian, Hx(0,4,p), ¢ = (g2, ¢3),
p = (p2,ps3), that represents (up to some finite order V) the dynamics inside the centre
manifold. Finally, the Hamiltonian is realified by using the inverse change of (12).

It is interesting to note the absence of small divisors in all the process. The denom-
inators that appear in the generating functions (like (17)), (k, — kg, n), can be bounded
from below when (k,, k,) € Sy: using that 7, is real and that 7, 3 are purely imaginary,
we have

(ky — ko) > M|, for all (kg k) € Sy, N > 3.

For this reason, the divergence of this process is very mild (for a discussion of this phe-
nomenon, see [14]). This is clearly observed when this process is stopped at some degree
N. Then, the remainder is very small in a quite big neighbourhood of the equilibrium
point. We will deal with these points in the next section.

An explicit expression for the change of variables that goes from the coordinates of the
centre manifold to the coordinates corresponding to Hamiltonian (15) can be obtained in
the following way: once the generating function G3 has been obtained, we can compute

G = 0+ {0 Gab+ 5 e G} o} + g ({0 Ga} Ga G+, (19)
Bio= p A Gab + o s Gab . Gad 5 ({0, Gab Gl G+, (20)

that produces the transformation that sends the coordinates of (15), given by the variables
(¢, p) into the coordinates of (18), represented by the variables (¢,p). In the next step,
the generating function G4 is applied to the right-hand side of equations (19) and (20),
to obtain the change corresponding to fourth order, and so on. Then, substituting ¢; =
p1 = 0 one obtains six power expansions (corresponding to the six initial variables), each
one depending on the four variables of the centre manifold. Finally, these expansions are
realified in the same way as the Hamiltonian.

3.2 Numerical results

We have implemented the Lie series method to obtain the (approximate) centre manifold
for the equilibrium points L; o 5.

3.2.1 Software

As the commercial algebraic manipulators are not efficient enough to deal with big ex-
pansions, we have written our own software from scratch, using C language. Here we will
only give a brief explanation of the program, but full details of the software (as well as
the source code) can be found in [13].

The software consists of several layers. In the bottom layer there are the routines that
handle homogeneous polynomials. At this level, an homogeneous polynomial is an array
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of coefficients (of any kind). To know the exponent of the monomial that corresponds to
each coefficient we use the position of the coefficient inside the array. To this end we have
written a couple of functions that, given a position inside the array, return the exponent
and viceversa. It is very important to code these functions very efficiently, since they
have a big impact in the performance of the package. For this paper we have used double
precision variables (either real or complex) for the coefficients, since this is enough for our
purposes. Of course, it would be possible to use another kind of objects as coefficients,
like multiple precision numbers or intervals. For this computation we have taken into
account a symmetry of the Hamiltonian: in the power expansion (4), all the monomials
such that the sum of the exponents of z and p, is an odd number are missing. This
property is preserved along all the process, and it allows a reduction of the computer time
and memory by a factor close to 2.

In the next level we have coded the basic operations with homogeneous polynomials,
like products or Poisson brackets, as well as the input/output routines (to read and write
homogeneous polynomials). We have also defined a power expansion (of finite order) as an
array of homogeneous polynomials. All these things are very easy to implement using the
routines of the bottom layer. Finally, in the top level, we have the routines responsible for
the algorithm: they expand the Hamiltonian (as it has been explained in Section 2.1) up to
some order N and, for each degree, they compute the generating function and transform
the Hamiltonian, up to degree N. Finally, the resulting Hamiltonian is restricted to
the centre manifold (that is, we substitute ¢; = p; = 0 in the final Hamiltonian) and
realified. Note that the same scheme (with minor modifications) can be used to obtain
the corresponding changes of variables.

Finally, let us mention that this software has been run on a Linux PC (using the
GNU compiler gee/g++, version 2.7.2) with a 200 MHz. Pentium Pro CPU. Each centre
manifold computation, up to order 32, took about 15h 30’ and 38 Megs. of RAM memory.
Note that a single expansion like (4) contains 1,388,577 monomials.

3.2.2 The L, point of the Earth-Sun system

We have applied the above-explained algorithm to the collinear points of the RTBP.
As a first example we have focus on the L; point corresponding to the mass parameter
i = 3.0404233984441761 x 105, This is an approximate value for the Earth-Sun case.
All the expansions have been performed up to degree N = 32.

The first terms of the Hamiltonian restricted to the centre manifold are in Table 1.
In order to have an idea of the radius of convergence of this series, we have computed
(numerically) the values

H,
ré”z—”!{ ”|1| c oD = I i, where  [[Holi= Y I, 3<n<N, (21)
n—1][1

|k|=n

being hy the coefficient of the monomial of exponent k. These values have been plotted
in Figure 4. They seem to show a mild divergence (of logarithmic type, see [14]) of the
series, although the size of the region where the (truncated) series looks convergent is quite
big. Very realistic estimates of the radius of convergence are obtained as follows: take an
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ki | ko | ks | ka hi ki | ko | ks | ka hi
1.0432267821115535e+00 1.2424817827573600e-01
1.0432267821115544e+00 -2.0023568581469642e-01
1.0076053314983200e+00 3.4353440405951968e-01
1.0076053314983200e+00 -2.0187593581785741e-02
6.5165140304211688e-01 -1.9849089558605101e-01

-4.1659670417917148e-02
5.3911539423589860e-01
.5787309100706366e-02
4.1161447802927803e-01
-2.6563655599297287e-02
-1.4043712336878425e-01
2.7927960671292551e-01
-5.7468618566454702e-02
6.2490402334472867e-02
1.5018398762952467e-01
-2.8803507814853090e-02

1.4712780865620459e-01
-2.7451664895216100e-02
.1415906236784655e-01
2.1573064571205472e-01
-9.40568985172178297e-02
1.9372724033920288e-01
-4.4040459096995777e-02
1.9106055501181426e-01
3.8405228183256930e-02
-2.2759839111536957e-02

ON P, OO NONBPDOONOO O N
NO P, ONOPNOR WRFROON O
O O, BNNOOONOOONOO
NNFP, OOOOOOO O ON O O O
1
00
O, OO NRF P, WOONONP O
P O F, WHF ONORF WK U WKk O|:
OFRP NOOWF FFB®BNNOOON
B W NNNRER, PP OOOOO O N|E
1
-

Table 1: Coefficients, up to degree 5, of the Hamiltonian restricted to the centre manifold
corresponding to the L; point of the Earth-Sun system. The exponents (ki, ko, k3, k4)
refer to the variables (go, p2, g3, p3), in this order.

initial condition inside the centre manifold and, by means of a numerical integration of
the reduced Hamiltonian, produce a sequence of points for the corresponding trajectory.
Then, by means of the change of variables, send these points back to the initial RTBP
coordinates. Finally, by means of a numerical integration of the RTBP, we can test if
those points belong to the same orbit (note that we can not use a very long time span
for those integrations, since the hyperbolic character of the center manifold in the RTBP
amplifies the errors exponentially). This gives an idea of the global error we have in the
determination of the centre manifold. In fact, the accuracy of the plots in Figures 3 and
6 has been checked in this way.

To have a description of the dynamics inside the centre manifold we use the following
scheme: we take the 3D Poincaré section g3 = 0 (this corresponds, at first order, to use
z = 0 in the sinodical coordinates) and we fix an energy level hg to obtain a 2D section.
Hence, to obtain a picture of the phase space of this Poincaré section we select a value
ho and an initial point (g, p2). Using that g3 = 0 and that the value of the Hamiltonian
must be hg, we compute (numerically) the corresponding value ps (in fact, there are two
values that solve the equation, one positive and one negative; we use the positive one).
Then, this point is used as initial condition for a numerical integration of the Hamiltonian
restricted to the central part, plotting a point each time that the trajectory crosses the
plane g3 = 0 with p3 > 0.

The results can be seen in Figure 3. As the Hamiltonian is positive definite at the
origin (this is clearly seen looking at the sign of the coefficients of the second degree
terms in Table 1), each energy level defines a closed region in the Poincaré section. The
boundary of this region coincides with a periodic orbit of the planar Lyapunov family of
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Figure 3: Poincaré sections of the centre manifold of L;, corresponding to h = 0.2, 0.4

0.6 and 1.0.
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Ly, that is fully contained in the plane g3 = p3 = 0, and in the figure it has been plot
using a continuous line. The motion inside this region is clearly quasiperiodic (except by
some gaps that are too small to appear in these pictures), with a fixed point on the p;
axis, that corresponds to a vertical Lyapunov orbit. If the value of the energy increases,
one can see how the well known Halo orbits are born, as a bifurcation of the planar
Lyapunov family. Note that the Halo orbits are surrounded by 2D invariant tori (see also
[8] and [9]). The boundary between the tori around the Halo orbit and the tori around
the vertical Lyapunov orbit is a homoclinic trajectory of the planar Lyapunov orbit. Of
course, the homoclinic trajectory that goes out from the orbit and the one that goes in
do not generally coincide: they should intersect one each other with a very small angle.
This phenomenon is known as splitting of separatrices. Finally, by sending those orbits
to the RTBP coordinates, it is possible to see that the description provided by those plots
is valid (and very accurate) up to a distance of L; a little bit bigger than 60% of the
L-Earth distance.

3.2.3 The L, point of the Earth-Moon system

It is not difficult to repeat the computations of the last section for the Lo point of the
Earth-Moon system. The Hamiltonian restricted to the centre manifold is displayed in
Table 2, and the estimates of the region of convergence are shown in Figure 5. Figure 6
contains the plots of the Poincaré sections, where the bifurcation that gives rise to the
Halo orbits is also shown. As before, it is possible to check that this description is very
accurate up to a half distance from Ly to the Moon. As the results are very similar to
the last case, we do not add further remarks.

3.2.4 The L3 point of the Earth-Moon system

We have also performed these computations for the L3 point. The main difference between
this point and L;» can be seen in Figure 1: while L; 5 are strongly influenced by the two
bodies, L3 is influenced by the biggest primary but the effect of the smallest primary
is almost neglectable. This implies that the dynamics near Lj3 is rather close to the
dynamics of a two body problem (that is very degenerate). This is the reason for the
big coefficients shown in Table 3, that are responsible for the poor convergence radius
shown in Figure 7: Hence, one must use very small values of the energy in order to be
inside the region of convergence. This does not allow to go far enough to observe the
bifurcation corresponding to the Halo orbits and, for this reason, we have not included
the corresponding plots for this case.

So, the study of the behaviour around Lj (including the computation of Halo orbits)
is a difficult problem. Moreover, as far as we know, there are no astronautical or astro-
nomical applications that require an accurate knowledge of the phase space around this
point. We believe that, in case that this study were necessary, it would be better to look
at it as a slightly perturbed two body problem rather than using the techniques discussed
here.
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ki | ko | ks | ks hy, ki | ko | ks | kg hy

2 0 0 0 9.3132294092164980e-01 | O 0 2 2 1.6516656013507769e-01
0 2 0 0 9.3132294092164991e-01 | 4 1 0 0 3.0065634937222852e-01
0 0 2 0 8.9308808149867502e-01 | 2 3 0 0 | -5.8388370855924443e-01
0 0 0 2 8.9308808149867525e-01 | 0 5 0 0 3.1707966658149511e-02
2 1 0 0 | -8.3074621158508666e-01 | 2 1 2 0 2.4502956646982510e-01
0 3 0 0 6.5285116341699909e-02 | O 3 2 0 | -1.9424915041015245e-01
0 1 2 0 | -6.4906335171207086e-01 | O 1 4 0 8.2423593768551455e-03
4 0 0 0 | -3.0986677967027330e-02 | 3 0 1 1 1.7854668840138077e-01
2 2 0 0 5.9388694902317307e-01 | 1 2 1 1 | -4.2089157809945715e-01
0 4 0 0 | -4.1582038336828324e-02 | 1 0 3 1 1.3900075305874218e-01
2 0 2 0 | -4.7016550083469763e-02 | 2 1 0 2 | -2.8565999503473249e-01
0 2 2 0 3.5694318621877408e-01 | O 3 0 2 7.7193563104132376e-02
0 0 4 0 | -1.7818840096908990e-02 | O 1 2 2 | -2.8562245235708378e-01
1 1 1 1 1.1056617867458479e-01 | 1 0 1 3 | -7.5028466176853367e-02
2 0 0 2 2.1139923206390523e-01 | O 1 0 4 4.3954249987303046e-02
0 2 0 2 | -4.9839132339243322e-02

Table 2: Coefficients, up to degree 5, of the Hamiltonian restricted to the centre manifold
corresponding to the Ly point of the Earth-Moon system. The exponents (k, ko, k3, k4)
refer to the variables (¢o, p2, g3, p3), in this order.

L L L L L L L L L L L L
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -1 -0.5 0 0.5 1

Figure 6: Poincaré sections of the centre manifold of Ls, corresponding to h = 0.2, 0.4
0.6 and 1.0.
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kv | ko | ks | ka hi kv | ko | ks | ka hy

2 0 0 0 5.05620994612145753e-01 | O 0 2 2 7.1591406119636058e-01
0 2 0 0 5.05620994612145753e-01 | 4 1 0 0 2.1323011406157320e+03
0 0 2 0 5.0266571276387528e-01 | 2 3 0 0 | -5.6249141438829110e+02
0 0 0 2 5.0266571276387528e-01 | O 5 0 0 1.3204637130128873e+01
2 1 0 0 | -5.6115912436382951e+00 | 2 1 2 0 5.2838311677563991e+02
0 3 0 0 9.3496383336128464e-01 | O 3 2 0 | -3.0623587048451135e+01
0 1 2 0 | -1.4686056924068396e+00 | 0 1 4 0 1.5515423765627251e+01
4 0 0 0 7.6528931476095536e+00 | 3 0 1 1 1.8825389781246327e+00
2 2 0 0 1.3546730001510483e+01 | 1 2 1 1 | -3.6872790343761423e+01
0 4 0 0 3.8069286794284551e-01 | 1 0 3 1 1.7599729630272192e+00
2 0 2 0 3.3499313360906959e+00 | 2 1 0 2 5.0848622203654816e+02
0 2 2 0 7.9659730977543119e-01 | O 3 0 2 | -2.9960960321274250e+01
0 0 4 0 3.5254807289843670e-01 | O 1 2 2 2.7128291101879991e+01
1 1 1 1 4.0669264872473150e+00 | 1 0 1 3 | -5.2867739300861096e+00
2 0 0 2 2.7355314621061146e+00 | O 1 0 4 1.7913955620592070e+01
0 2 0 2 | -1.3673249909233478e+00

Table 3: Coefficients, up to degree 5, of the Hamiltonian restricted to the centre manifold
corresponding to the L3 point of the Earth-Moon system. The exponents (ky, ka, k3, ky)

refer to the variables (gs, po, g3, p3), in this order.
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4 Semianalytical computation of invariant tori.
The Lindstedt-Poincaré method

Here we focus on the computation of periodic and quasiperiodic solutions contained in
the centre manifold. As we want to avoid using changes of variables, we will work directly
on equations (14).

4.1 Lissajous Orbits

We follow the idea of the Lindstedt-Poincaré method to look for these 2-D invariant tori
as a series expansion in two frequencies, which formally satisfies the equations of motion
up to a selected order (to be defined later). The procedure, as we will see, is a recursion
that determines the coefficients of each order from the ones corresponding to lower orders
that have been computed in previous steps.

As a starting point we need the (non trivial) librating solutions of the linear part of
(14)7

T—29—(142c)x = 0,

J+2i+ (o — 1)y = 0, (22)
Z+cz = 0,
that can be written as
z(t) = acos(wet + ¢1),
y(t) = kacos(wet + ¢),

z(t) = Bcos(vot + ¢3),

2—ca++/9c2—8¢ —(w2+4142¢ .
ety e g and k = —@atiF2e) (gee Section 2.1). The free
s Y0 2

where wg = 20y

parameters a and (3, usually called in plane and out of plane amplitudes respectively, and
¢1, ¢, from now on called the phases, give all the librating solutions of the linear part of
the equations.

We note that, due to the autonomous character of the equations, only one phase is
needed. Hence, a solution is determined by three parameters, «, § and a phase. Never-
theless we will keep two phases because, as we will see, the computations in both cases
are exactly the same.

When we consider the nonlinear terms of the equations, we look for formal expansions

in powers of the amplitudes o and (3, of the type

:Ij(t) = i ( Z Tijkm COS(k01 + m02)) aiﬁj,

53=1 \|k|<id, [m|<j

o

y(t) = Z( > yijkmsin(k01+m02)> al[,

i.=1 \|k|<i,|m|<j



1. JUL VG atild .J. [Iviasucliituliu

z(t) = i ( Z Zijkm COS(k01 =+ m02)) aiﬁj,

ig=1 \|k|<i,|m|<j

where 0, = wt+¢; and 0y = vit+¢,. Due to the presence of nonlinear terms the frequencies
w and v can be kept no longer constant and they must be expanded as well in powers of
the amplitudes: w = 375_ w7 and v = 355 vy 37

The goal is to compute the coefficients Z;jxm, Yijkm, Zijkm, wij and v;; recurrently up
to a finite order 7 + j = ny with the following meaning. Identifying the first coefficients
of the general solution with the ones obtained from the solution of the linear part, we see
that the non zero values are x1919 = 1, Y1010 = K, 20101 = 1, wop = wo and vyy = 5. The
insertion of the expression of the solution of the linear part in (14) produces a remainder
which are series in «, (3, beginning with terms of order ¢ + 5 = 2. In what follows, it
is said that the solution is computed up to order ¢ + 7 = n when, after inserting the
obtained expression for the solution into the equations, the remainder consists of three
series beginning with terms of order i + 7 =n + 1.

Before going into the details of the computations we note that x(¢) and z(t) are both
written as a cosinus series and y(t) as a sinus one. This can be done due to the symmetries
of the problem and to the selected expression for the solution of the linear part. It is not
difficult to see that if j is odd the coefficients ;. and y;jkm, are zero, and if j is even the
coefficients z;;x, are zero. As it is usual in the Lindstedt-Poincaré method, we only work
with coefficients such that |k| < i and |m| < j and, moreover, k and m must have the
same parity as ¢ and j respectively. Due to the symmetries of sinus and cosinus, we can
assume that k£ > 0 and, when £ = 0, we can assume m > (. Finally, in the expansions of
the frequencies w and v only terms with both ¢ and j even appear. All these properties
have been taken into account to save computing time and storage.

At the first step of the procedure we start with the series z(t), y(¢) and z(¢) determined
up to order one and the series w and v up to order zero. At a certain step we will have
the solution up to order n — 1, this is, z(t), y(¢) and z(¢) determined up to order n — 1
and w and v up to order n — 2 if n — 1 is odd, or up to order n — 3 if n — 1 is even. In
any case, we will say that w and v are determined up to order n — 2, remembering that
for odd orders the corresponding terms are zero.

Assume that we have computed the solution up to order n — 1. When we insert this
expression in the right-hand side of the equations (14), we obtain three series determined
up to order n. Denote by p, ¢ and r these series, that are respectively of the same type as
x, y and z. We are interested in findind the terms of order n of the solution by equating
the (known) order n terms of p, ¢ and r with the corresponding (and unknown) terms
coming from the left hand side of equations (14). From now on (unless otherwise stated),
and to simplify the notation, v;ji, will refer to the terms with 7 + j = n of a series v.
When k and m are omitted it will refer to a frequency type series.

Hence, the order n of the equations must be equated from both sides of (14). In the
left-hand side there appear some derivatives which can be computed in the following way,

ox db, N oz df, B ox N ox
00, dt 00, dt o0, 06,

r =
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2& + 2u)V782gj

06? 00,00,
Similar expressions can be derived for ¢, i and Z.

Each summand of the former expressions contains products of series of different type,

for instance w2 in the first order derivatives and w?22 in the second order ones. Since

90, 967
the series x, y and 2z are known up to order n — 1 and1 w and v up to order n — 2, the
order n of these products of series contains a known part which can be added to pijgm,
Qijkms Tijkm and an unknown part that consists of products of terms which have to be
determined. Let us see this with more detail.

Let fv be one of the terms that appear in the computations of the first derivative (f
denotes the series of a frequency and v denotes the derivative of a coordinate series). The
known part of order n of fv is obtained multiplying the terms of order i; of f with the
terms of order j, of v such that iy +j, = n, being iy = 1,...,n —2. The unknown part of
order n appears when multiplying the respective parts of order 0 and n, and order n — 1
and 1 of f and v. The following table summarizes the unknown parts of order n in the
computations of the first derivatives of x and y. The symbol § stands for Kronecker’s
delta.

2
,0°x

T w v 89%

Oz Oz 9y 9y
[ w o, Y96, w50, Y %0,
0 n —wonkﬂﬁijkm —VooMTijkm, wﬂokyijkm Voo™MYijkm
n—1 1 —wi,ljélkéom 0 mwi,ljélkéom 0

If f is a frequency-type series and v a coordinate series (z, y or z), the following table
sumarizes the unknown parts of order n in the computations of the second derivatives.

v 20% o v 20%
T 07 2wV 55 56, 903
7 7.2 2
0 n —Whok Vijkm —2woo Voo kMmuijkm —V0M Vjjkm
n—1 1 *fiqﬂ)mm(slk%m 0 *fz'jfl'l)m[]](sok(slm

The known parts of order n coming from the first and second derivatives of the left-
hand side of equations (14) are added t0 pjjkm, ¢ijkm and 7ijkm,. Let us denote by pijkm,
Gijkm and T, the resulting values.

Let us give some details about the computation of the terms f;_; and f;;_; of the
former table. First, we note that both are terms of order n — 1. They consist of an
unknown part coming from the product of order zero of one serie against order n — 1 of
the another, plus a known part coming from the remaining products that produce order
n — 1. As in the previous table f;_;; represents the terms of order n — 1 of w? and f;;_;
represents the terms of order n — 1 of v?, we can write fic1j = 2woowi—1; + ;—1; and
fij—1 = 2vgoVij—1 + Nij_1, where €;_,; and NV;;_; stand for the known parts of order n — 1
we have just mentioned.

So, the linear system of equations for the unknown terms of order n can be written
as,

o (wzm +1+ 262) Tijkm — 2wkm1/zykm —2 (U)O(] + K/) u)iflj(s]k(som = 57jkm’
—2WkmTijkm + (02 —1- w;%m> Yijkm — 2 (kwoo + 1) wi-1501k00m = Gjjkm> (23)
(02 - w;%m) Zijkm — 2V00Vij—100k01m = Tijkm,
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where @y, = kwoo + mvoo0, Dijkm = Dijkm + i 101600m, Cijrm = Gijkm + K82 1501£00m and
Tijkm = Tijkm + Nij—100k01m.

When (k,m) # (1,0) and (k,m) # (0,1) we can solve (23) to find @;jkm, Yijkm and
Zijkm- Note that, if the frequencies of the linearized system are nonresonant, the deter-
minant of the matrix of this system is always different from zero, although it can be very
small due to the small divisors problem. As usual, this problem becomes more relevant
for high orders.

When (k,m) = (1,0) (this can only happen when n is odd) the determinant of the
z-y part in the first two equations of (23) is zero. So, we normalize taking z;;0 = 0 and
we can solve for y;10, wi_1;. Finally 219 is determined solving (¢y — u)go)zijm = Dij10-

When (k,m) = (0,1) we can determine z;j0; and y;;01 by solving the first two equations
of (23). As in the third equation the coefficient of z;;o; is zero, we normalize the solution
taking Z2ij01 = 0 and SOlViIlg —QVO(]I/?;J',1 = ﬁij[]l + Nijfl for Vij—1-

4.2 Halo Orbits

Halo orbits are periodic orbits which bifurcate from the planar Lyapunov periodic orbits
when the in plane (or intrinsic) and out of plane (or normal) frequencies are equal. This
is a 1:1 resonance that appear as a consequence of the nonlinear terms of the equations
and, hence, we have to look for these 1-D invariant tori as series expansion with a single
frequency.

As Halo orbits are due to the nonlinear terms of the equations, they do not appear
in the linearized equations (22). In order to apply the Lindstedt-Poincaré procedure we
modify the equations of motion (14) by adding the product of the factors A and z to the
third equation,

i—27— (14+2c)z = > cppi(n+1)T,,

n>2
J+2i+ (o= 1y = vy Z Cpnp1 B 1. (24)
n>2
Z+ CZ2 = Z Z Cn+1Rn71 + Az.
n>2

We will look for 1-D invariant tori of these equations, with the condition A = (0. In the
procedure, the factor A is expanded as a frequency-type series, thisis, A = 3%, dijal (3.
The coefficients d;; will be computed recurrently.

We start looking for the (non trivial) librating solutions with one frequency of the
linear part of (24),

T—=29—(142c0)x = 0,
J+2i+ (o — 1)y = 0,

zZ+ Coz = dgoZ.
It is not difficult to see that they can be written as

z(t) = acos(wet + @),
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y(t) = kacos(wet + @),
z(t) = [Bcos(wet + @),

2—ca+4/9¢3—8ca _ —(wg+1+2c2)

with dyg = ¢ — wg and where wy =\ ——5—"—, K = e and ¢ is an arbitrary
phase.

As in the case of Lissajous orbits, @ and 3 are called the in plane and out of plane
amplitudes respectively. Of course, Halo orbits depend only on one frequency or one
amplitude since they are 1-D invariant tori. The relationship between o and 3 is contained
in the condition A = 0 which defines implicitely a = a(3). We note that, at the current
step, Halo orbits are determined up to order 1, and A = 0 is read as dyy = 0, showing
again that there are not Halo orbits in the linear part of the equations.

When we consider the nonlinear terms of (24), we look for formal expansions in powers
of the amplitudes o and 3 of the type

J,‘(t) = i Z .Z'ijkCOS(kg)) Oéiﬁj,

ij=1 \[k|<itj

y(t) = i Z yijksin(lﬁﬁ)) o',

ij=1 \[k|<itj

= Y| ¥ zijkcos(kw) o',

53=1 \[k[<i+j

where § = wt + ¢ and, as in the case of 2-D invariant tori, the frequency w must be
expanded as w = Y205 _gw;;a’37. Moreover, now we have the expansion of the constraint
A=3% dija’ 37 = 0.

As in the computation of Lissajous orbits, the symmetries of the problem allow to
only consider terms with j even for the series (), y(¢) and with j odd for the series z(t).
Moreover, we can restrict ourselves to the case in which 0 < k < ¢+ j, having k£ and 1+ j
the same parity. Finally, the frequency series w and A only contain terms with both 4
and j even.

The final goal is to compute the coefficients w;;i, yijk, 2ijr, wij and d;; recurrently up
to a finite order ¢ + j = ny, starting with the (pseudo) solution of the linear part whose
non zero values are x191 = 1, Y101 = K, 2011 = 1, Woo = wp and dgy = 3 — wp.

As it is usual in this kind of Lindstedt-Poincaré procedure, at some step we will have
the series z(t), y(t) and z(¢) determined up to order n — 1 and the series w and A up to
order n — 2 (we recall that when n — 1 is even, the terms of order n — 2 of these series are
zero). When we insert these expansions in the right hand side of the equations (24) we
obtain the series pjjk, Gijk, 7ijx and Az (note that the term Az is not included in r;;). Of
course, Pjik, Gijk and 7, are of the same type as x, y and z respectively. Note that they
are determined up to order 7+ j = n, and that the product Az is determined up to order
n — 2 if n — 1 is odd, or up to order n — 3 if n — 1 is even.

Next, we have to compute the part of order n of the derivatives with respect to time,
z, ¥, &, § and Z. As in the previous section, these computations involve products of
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series of different type such as = = w% or ¥ = w2227§. The same statement holds for the

computation of the part of order n of Az. As in the previous section, the part of order n
of these products consists of an already known part and of an unknown one. The known
part is added to the corresponding series p;jx. gijix Or 7i;; to obtain the new series pijx, Gijk
and 75 The unknown terms are summarized in the following tables.

f v w% w% Az
0 n | —weokTijr | wookYijk dooziji
n—1 1| —wi1j01k | wi1;K01k | dij_101k
0 no | —wiokzijr | —wiok yijk | —wiok®2ijk
n—1 1 —fici0u | —fii1s0ie | —fij10u

In the second table, f denotes the series corresponding to w?. Note that its n — 1 order
terms, f;_1; and f;;_1, are made of known and unknown parts, f;_1; = 2weow;_1j + Qi_1;
and fi;_1 = 2wpow;j_1 + €1, where ;_q; and €2;;_; denotes the known ones.

Finally, we can write the linear system of equations for the unknown terms of order n,

- (ka(Z)o +1+ 202) Tijk — 2kwooYijr — 2 (woo + k) wi—1;01k = Dijk + Qi—1j01k,
—2kwooxijk + (02 —1- kQ(U(Q)o) Yijk — 2 (kwoo + 1) wi—1j01k = Gijk + £82—101k, (25)

2 2 _
(CQ — kK wpy — doo) Zijk — dij—101k = Tijk + Qij101% + 2woowij—101-

When & # 1 we can solve (25) for x;jk, yijx and z;5. When k£ = 1 the determinant of the
xy part and the coefficient of z;;; are zero. Then we can normalize by taking x;;; = 0,
zij1 = 0, and solving the first two equations of (25) to find y;;; and w,;_;. Finally the
third equation is solved to obtain d;;_;.

4.3 Numerical results

The algorithms presented for the semianalytical computation of the Lissajous and Halo
orbits have been implemented using Fortran 77 language. As in the computation of the
centre manifold, commercial algebraic manipulators are much less efficient dealing with
expansions, specially in the case where symmetries can be efficiently implemented in the
computations. The use of an ad hoc code allows us to reach very high orders (obtaining
then very accurate solutions) in a short time. Table 4 summarizes the amount of RAM
memory and CPU time used in some of these computations. In Tables 5 and 6 show the
coefficients of the Halo and Lissajous expansions around L; in the Earth-Sun system, up
to order 3. Typical plots of Halo orbits, vertical periodic (Lyapunov) orbits and Lissajous
trajectories are presented in Figures 8, 9 and 10, respectively.

The accuracy of the expansions has been tested against numerical integration. For this
pourpose, some initial conditions have been computed by tabulating the series expansions
up to different orders. Then, these initial conditions have been integrated (numerically)
during 7 units of adimensional time. The final coordinates obtained from this numerical
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N Halo Lissajous

15 113.2 Kb <1s. 350.8 Kb <1s.
17 171.7 Kb <1s. 577.9 Kb 1s.
19 250.3 Kb <1s. 909.3 Kb 3s.
21 3563.2 Kb 1s. 1377.2 Kb 6s.
23 484.8 Kb 2s. 2019.9 Kb 12s.
25 650.1 Kb 3s. 2882.1 Kb 22s.
27 854.2 Kb 6s. 4015.8 Kb 38s.
29 | 1103.0 Kb Os. 5480.2 Kb 65s.
31 | 1402.4 Kb 14s. 7342.9 Kb 107s.
33 | 1768.9 Kb 21s. 9679.8 Kb 173s.
35 | 2179.2 Kb 30s. | 12576.0 Kb 269s.
37 | 2670.6 Kb 43s. | 16126.3 Kb 420s.
39 | 3240.7 Kb 59s. | 20435.4 Kb 641s.
41 | 3897.4 Kb 82s. | 25618.8 Kb 940s.
43 | 4649.1 Kb | 111s. | 31803.1 Kb | 1389s.
45 | 5504.5 Kb | 148s. | 39126.5 Kb | 2003s.

Table 4: Computer time (in seconds, for an HP 712/100) and memory (in Kilobytes) for
several degrees (IV) of the Lindstedt-Poincaré computations.

.1904387085744166E-01

il wij dij

0|0 .2086453564223108E+01 | -.2922144594039562E+00
210 .1720616528118310E+01 .1596560311526045E+02
012 .2526665927441598E+00 .1740900798763014E+01
i gk Tijk OT Zijk Yijk

1101 .1000000000000000E+01 .3229268251936296E+01
0|11 .1000000000000000E+01

21010 .2092695724506777E+01 .4778922922033039E+01
21012 .9059648301914131E+00 .4924458783826867E+00
0|20 .2482976576916406E+00 .0000000000000000E+00
0|12|2 .1044641085314726E+00 .6074645997077919E-01
11110 .1040596322643552E+01

11142 .3468654408811841E+00

3|01 .0000000000000000E+00 .2845081624743493E+01
3103 .7938202440824402E+00 .8857008912091187E+00
1121 .0000000000000000E+00 .4316928130485082E+00
1123 .8268538161313826E-01 .2301983693229456E-01
21113 .3980954407770784E+00

0|33

Table 5: Coefficients, up to order 3, of the Lindstedt-Poincaré expansion of the Halo
orbits about L; in the Earth-Sun system (in this case, u=3.040423398444176E-06 and
7=0.1001097722778141E-01).



1. JUL VG atild .J. [Iviasucliituliu

il wij Vij

0|0 .2086453564223108E+01 .2015210662996640E+01
210 -.1720616528118309E+01 .2227430750989766E+00
0|2 .2581841437578153E-01 | -.1631915758176957E+00
i jlk|m Tijk OT Zijk Yijk

1101 0 .1000000000000000E+01 | -.3229268251936296E+01
oj1|o0 1 .1000000000000000E+01

21010 0 .2092695724506778E+01 | -.4778922922033039E+01
2102 0 | -.9059648301914133E+00 | -.4924458783826869E+00
020 0 .2482976576916407E+00 .0000000000000000E+00
0|21|0 2 .1108251822042930E+00 | -.6776373426177420E-01
111]1|-1|-.1116868267568415E+01

1]1]1 1 .3549452858304732E+00

3|01 0 .0000000000000000E+00 .2845081624743493E+01
3103 0 | —-.7938202440824405E+00 | -.8857008912091185E+00
12| 1| -2 | -.1499994891576764E+01 | -.4841968041750657E+01
1121 0 .0000000000000000E+00 .2875532315811784E+00
1121 2 .8387777659811270E-01 .2082881844639578E-01
21112 -1 .1216565813734685E+02

2112 1 .4060793036977860E+00

0|3|0 3 | —.1952722175104363E-01

Table 6: Coefficients, up to order 3, of the Lindstedt-Poincaré expansion of the Lissajous
orbits about L; in the Earth-Sun system.

Xy projection Z projection
05 Y projector 03 _yzproj ‘

04
0.2
03}
0.2
0.1
0.1

0 0
-0.1 1 B
01| 4

-0.2 +

-0.3
02|

04}

.05 L L L L L 03 L L L L L L L L
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 -05 -04 03 -02 -01 0 0.1 0.2 0.3 0.4 0.5

Xz projection

3D view

0.1

-0.1

-0.15 L L L L L
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 8: Projections on the coordinate planes and a 3D representation of a Halo orbit
about L; in the Earth-Sun System with § = 0.1
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integration have been compared with the coordinates given by the series expansion at
time 7. If the difference is lower than 10~% adimensional RTBP units we say that the
initial condition is accurate (in the sense that it “almost” correspond to a periodic or
quasiperiodic trajectory). This test has been implemented only using the three spatial
coordinates. Similar results are obtained using positions and velocities. The threshold
has been selected to be 107% because, due to the unstability of the orbits around the
collinear points, an error of this amount in position coordinates after 7 units of time,
implies an error of about 100 meters in the initial conditions for the Earth-Sun system.
This is because errors increase by a factor close to 1500 after 7 units of time. Other
thresholds could have been selected, but the qualitative results are very similar to the
ones presented.

The convergence regions for the case of Lissajous orbits are represented in Figure 11,
using as example the expansion around L; for the Earth-Sun system. Each continuous
line represents the boundary of the convergence region (according to the above mentioned
criterion) for a selected order of truncation of the expansion. Given any couple («a, [3)
inside the region of convergence, the error after the numerical integration is less than the
selected threshold for all the fases corresponding to the different initial conditions. A
similar plot is used and discussed in [6].

The same test has been done for the case of Halo orbits. In this case the expansion
only depends on one amplitude. The maximum [ amplitude reached for some orders is
given in Table 7.

0.7

‘035! —
%8
0.6
order |  ampl. 05
11 | 0.196 $ 0
15 0.336 g
21 | 0.461 g o3f
25 | 0.502 Wl
31 0.557 '
35 0.604 0.1‘2.‘7
0

e I
0 0.05 0.1 0.25 0.3

.
0.15 0.2
alpha amplitude

Table 7: Maximum [ amplitude which  Figure 11: Convergence regions of the

gives the region of convergence using the
criterion explained in the text, for the
case of Halo orbits around [L; in the

Lindstedt-Poincaré expansion of the Lis-
sajous orbits around [L; in the Earth-
Sun system according to the criterion ex-

plained in the text. The different lines
correspond to orders 5, 15 and 35.

Earth-Sun system.
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