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1. INTRODUCTION 

Establishing global properties of a dynamical system is generally a nontrivial problem. The most 

successful approach to the problem is the direct Lyapunov method [l]. However, the method 

requires an auxiliary function with specific properties, a Lyapunov function, which is not easy 

to find. In this article, we introduce a family of Lyapunov functions for three-compartment 

epidemiological models, which appear to also be useful for more sophisticated models. 

We have to note that the global stability of SIR, SIRS, and SIS models which are to be 

considered in this paper has already been established by applying the classical PoincarkBendixson 

theorem, or by combination of that with the direct Lyapunov method applied on a limited area 

of the phase space [2-51. Periodic orbits are ruled out using the Dulac criteria or a condition 

of Busenberg and van den Driessche [6]. The direct Lyapunov method enables us to obtain the 

result straightforwardly. Furthermore, apart from the stability verification, the direct Lyapunov 

method provides insight into other properties of the system; for example, it allows us to find 

and compare the rates of convergence toward an equilibrium state for different models and under 

different conditions. 

0893-9659/02/t - see front matter @ 2002 Else&r Science Ltd. All rights reserved. ‘J&p-t by 4+W 

PII: SO893-9659(02)00069-l 



956 A. KOR~BEINIKOV AND G. C. WAKE 

2. SIR AND SIRS MODELS 

Following the classical assumption [5,7,8], we divide the entire population of size N into sub- 
populations of epidemiological significance: the susceptible, the infective, and the removed com- 
partments with sizes S, I, and R, respectively, that is N = S + I + R. After infection an 
individual moves from the susceptibles compartment into the infectives compartment and then 
into the removed compartment as a result of recovery, isolation, or death caused by the disease. 
We assume that recovery implies permanent or temporary acquired immunity; in the latter case, 
there is a return of the removed individuals into the susceptibles compartment. A model based 
on these assumptions is known as an SIR (acquired immunity is permanent) or an SIRS (acquired 
immunity is temporary) model [5,7,8]. The transfer diagram of the model is in Figure 1. 

Figure 1. Qansfer diagram of the SIRS model. 

We assume that the population size N is constant, that is, deaths are balanced by births. The 
births are proportional to the population size N with a birth rate 7. All disease-associated deaths 
are from the R compartment. The susceptibles and the infectives may also die from causes not 
connected with the disease with the rate o 2 0. 

An infection can be transmitted through contacts between the infectives and the susceptibles 
(horizontal transmission) and, for some diseases, from an infective parent to an unborn or newly 
born offspring (vertical transmission). The horizontal transmission is assumed to occur according 
to the mass action incidence PSI/N. Vertical transmission can be incorporated into a model by 
assuming that a fraction p of the offspring from the infectives are infected at birth, and hence, a 
part of birth flux, ml, enters the infective compartment while the remaining births, yN - m1, 
come to the susceptibles compartment [S] (see Figure 1). 

If an average life expectancy of the susceptibles, an average infective period, and an average 
period of immunity are l/a, l/6, and l/a, respectively, then the differential equations are 

S=(-,+a)N-pg -(a+m)I-(a+o)S, 

L/3$-@+a-py)I. 
(1) 

If immunity is permanent, then the average period of immunity l/o is infinite and (I! = 0, so that 
the SIRS model reduces to the SIR model. We do not need an equation for the removed class R, 

since N = S + I + R = constant. 

Many authors postulate o = 7 to ensure that deaths exactly balance births. However, for the 
majority of endemically persistent diseases, such as measles, chickenpox, and pertussis, the class 
of susceptibles is composed from mainly younger people, for whom the rate of natural mortality 
does not necessarily coincide with that of the population as whole. In developed countries, due 
to comparatively low child mortality, the natural susceptibles mortality rate o is considerably 
lower than y and can be neglected, whereas for developing countries, where child mortality is 
commonly high, a may exceed y. Therefore, there is no reason to limit ourselves by the particular 
caseo= 7. Furthermore, we may assume that the vaccination of the susceptibles is proportional 
to the susceptible population [S, p. 371. Then the rate 0 is the sum of the death rate of susceptibles 
and of the vaccination rate. In thii case, D is also not necessarily equal to y. 
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System (1) has two equilibria: an infection-free equilibrium Eo = (So, IO), with 

so=- ) ( > a+Y N 

Cr+U 
IO = 0, 

and an endemic equilibrium E* = (S’, I*), where 

The parameter 
P(o+y) 

&J = (cX+a)(6+a-py) 

is often called the basic reproduction number. The condition R+-, > 1 ensures existence of the 
positive endemic equilibrium state E*. We assume that this condition holds. 

For a,p # 0 the positive quadrant R: of the SI plane is not an invariant set of system (1). 

Indeed, at S = 0 we have S < 0 for all I > ((cr + ~)/(cY + m))N, and hence, the boundary S = 0 
is penetrable from R:. This deficiency is avoided by the substitution (S, I) + (P, 1) where 
P = S + ((a + m)/P)N. In the new variables, we have 

where ;Y = y+a+(cr+a)(cr+py)/P, 8 = cr+b+a, and 6 = cy+a. The phase space of system (2) 
is the positive quadrant R: of the PI plane. System (2) obtained by the shift of system (1) 
along the S axis inherits the global properties of system (1) and vice versa. When a,p = 0 (that 
is, for the SIR model with no vertical transmission), system (2) coincides with (1). In the new 
variables, the endemic equilibrium state E* has coordinates 

and l& = pT/&. It follows from (2) that 

P*I* 

@, 
=TN-&p* =JI*. (3) 

Global properties of system (2), and hence, system (1) are given by the following theorem. 

THEOREM 1. The endemic equilibrium state E* of system (2) (and hence, that of system (1)) is 
globally stable. 

PROOF. A Lyapunov function 

V(P,I) = P’ (g-lng)+1*(:-1”;) (4 

is defined and continuous for all P, I > 0 (see Figure 2) and satisfies 

dV P* 
@=1-F and 

dV I* 
ar=l-r. 

It is easy to see that the endemic equilibrium state E’ = (P*, I*) is the only extremum and 
the global minimum of the function V(P,I) in Rt. In the case of system (2), using (3), the 
function V( P, I) satisfies 

P(P,I)=~N-~C$-~P--~N$+++~P*+~~$ - JI - p!z$l + Jr* 

for all P, I 1 0. 
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Figure 2. Level curves of the Lyapunov function V(P, I). 

The equality $‘(I’, I) = 0 holds only on the straight line P = P’. Since the endemic equilibrium 

state E” is the only invariant set of system (2) on the straight line P = P’, by the asymptotic 

stability theorem (see [9, p. 281 or [lo, p. 58]), the equilibrium E* is globally asymptotically 

stable. The theorem is proven. 

REMARK 2. Many authors assume that a “feasible region” 

%={(S,I)ER~] S,I>O; S+I<iV} 

is the phase space of the system and consider stability in this region only; in this case, the term 

“global stability” implies “asymptotic stability in 2”. However, if u # y, the “feasible region” 

does not coincide with a stable invariant set of the system 

Furthermore, since the Lyapunov function employed here is global by its nature allowing to 

prove stability of the system in the whole positive quadrant Rt , we see no reason to limit ourselves 

by a region of that. 

REMARK 3. It follows from Theorem 1 that when the positive endemic equilibrium state E* 
exists (i.e., when l& > l), the infection-free equilibrium Eo is an unstable point. Since the S axis 
is a stable subspace of this, it is a saddle point. 

Also the case & I 1 (when there is no positive endemic equilibrium state) is not particularly 

interesting, it is easy to prove that in this case the infection-free equilibrium EO is globally stable. 

It suffices to observe that in this case the derivative of a Lyapunov function 

L(P,I)=Po(g-In;)+1 

satisfies 

L(P,I) = -+v 1 - ; 
( ) 

2 

-Ql-&)I<O, for all P,I 2 0. 
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3. SIS MODEL 

Some infections (e.g ., gonorrhea) do not give rise to acquired immunity in the host. In this case, 

an individual who hCas recovered from the infection will again be susceptible immediately after 

recovery. Hence, there is no R class and the population is composed from the susceptibles and the 

infectives only, i.e., N = S + I. The corresponding model is known as an SIS model [5,7,8] which 

can be regarded as the limiting case of the SIRS model when the average period of immunity 

l/Q + 0. 

Let us consider the SIS model with vertical transmission (see Figure 3). The differential 

equations are 

S=yN-&+hS, 

i=~~ 
(5) 

-(6+ff+e--)I, 

where 6 is the rate of recovery, 0 and E are the rates of natural and disease-associated mortality 

and other parameters are the same as for the SIRS system (1). We again assume that the 

population size N is constant. 

Figure 3. Transfer diagram of the SIS model. 

The system has two equilibria: an infection-free equilibrium state Eo = (a/yN, 0), and an 

endemic equilibrium state E* = (S*, I*), with 

s*=Q! 
PRO 

and I* = Y 
C+E 

where R. = &/a(6 + r~ + E - py). The positive endemic equilibrium exists if & > 1. It is easy 

to see that 
S’P 

B, 
= yN + (b - py)l* - as* = (6 + o + E - p-/)1*. (6) 

After a small alteration, the Lyapunov function (4) can be applied to system (5). 

THEOREM 4. The endemic equilibrium state E’ = (S*, I*) of system (5) is globally stable. 

PROOF. A Lyapunov function 

U(S,I) = s* ( g 

is a modification of function (4). The endemic equilibrium state E* = (S*, I*) is the only 

cxtremum and the global minimum of the function U(S, I) in R:. In the case of system (5), 

using (6), the derivative of the function satisfies 

+/3~1-(6-pY)~I+oS* 

at.5 
+ 

b+a+E-py ( 
PZ - p$s) - (a + E) (I - I”) 

=yN 2-;-; 
( > 

+(d-m)I 2-g-g 
( > 

=-(~N+(6--pi)l);(l-$)~. 
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That is, o(S, I) 5 0 for all S, I 2 0 ensured by S - TV 1 0. Since o(S, I) = 0 

for S = S’ and the endemic equilibrium state E* is the only invariant set of the 

t,he line S = S*, by the <asymptotic stability theorem [9,10] the equilibrium state E* 
asymptotically stable. ’ 

holds only 

system on 

is globally 

Although the cease 6 - py < 0 is hardly biologically feasible, the theorem holds in this caSe as 

well. In this cCase, an approach used in the previous sections, that is the shift of the system to 

the right, can be applied. After the substitution (S, 1) + (P, I), where P = S - YN, we have 

where 9 = y + a(m - S)//3 > 0. The endemic equilibrium state of system (7) is given by 

p* = YN, I* = Pwb+dN 
P(a+c) . 

The Lyapunov function (4) introduced in the previous section can be straightforwardly applied 

t.o system (7). The derivative of the function satisfies 

for all P,I 2 0. 

Hence, in the erase 6 - p-y < 0, the endemic equilibrium state of system (7), and consequently, 

that, of system (5) is globally asymptotically stable as well. The theorem is proven. 

In conclusion, we have to note that a Lyapunov function with a term I/I* - 111(1/I*) was 

applied to a particular cease of a SIR model with no vertical transmission by Mena-Lorca and 

Hethcote [4]. Unfortunately, they did not extend the method to the more general SIR and SIRS 

models covered in this paper. Also they did not attempt to use a Lyapunov function which is 

symmetric wit,h respect to both S and I variables, as is introduced in this paper and which is 

simpler, considerably more efficient, and appeals aesthetically. 

The Lyapunov function of type (4), applied here to the epidemiological models, is also extremely 

useful for Lotka-Volterra predator-prey systems [11,12]. 
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