
Chapter III

Hyperbolic sets

The existence of a transversal homoclinic point considerably complicates the or-
bit structure of a diffeomorphism. In order to describe this complexity, which is
sometimes called deterministic chaos, we introduce the concept of a hyperbolic
set and prove the shadowing lemma by means of the contraction principle. An
application of the shadowing lemma shows that a transversal homoclinic point is
a cluster point of homoclinic points (H. Poincaré) and a cluster point of periodic
points (G. Birkhoff). In addition, the shadowing lemma allows the construction
of embedded Bernoulli systems as subsystems in a neighborhood of a homoclinic
orbit (S. Smale). In this way we establish orbits that are characterized by random
sequences. The interpretation of such stochastic orbits will be illustrated in the
simple system of the periodically perturbed mathematical pendulum.

III.1 De�nition of a hyperbolic set

Hyperbolic sets are related to the dynamically unstable behavior of dynamical sys-
tems. The tangent spaces split into two invariant subspaces along which there is
a contraction, respectively an expansion. The concept goes back to S. Smale and
D.V. Anosov in 1967. It turns out that it is hard to get rid of hyperbolic sets by a
perturbation because they are structurally stable.

De�nition. The subset ƒ � Rn is called a hyperbolic set of the diffeomorphism
' W Rn ! Rn if it has the following properties.

(i) ƒ is compact and invariant under ', i.e., ƒ D '.ƒ/.
(ii) There exists a splitting of the tangent space in every x 2 ƒ,

Rn D TxRn D EC
x ˚E�

x ; x 2 ƒ;
which is invariant under the linearization of ',

d'.x/EC
x D EC

'.x/
;

d'.x/E�
x D E�

'.x/;

and there exist constants c > 0 and 0 < # < 1 that are independent of x such
that the following estimates hold true:

jd'j .x/	j � c#j j	j; 	 2 EC
x ; j � 0;

jd'�j .x/	j � c#j j	j; 	 2 E�
x ; j � 0:
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(iii) The splitting EC
p ˚ E�

p depends continuously on p 2 ƒ. In other words,
defining the projections PC

p and P�
p D 1 �PC

p 2 L.Rn/ onto the subspaces
EC
p and E�

p by

P˙
p .vC ˚ v�/ D v˙;

the mapping
ƒ ! L.Rn/; p 7! P˙

p

is continuous.

Examples. If '.0/ D 0 is a hyperbolic fixed point of the diffeomorphism ', then
ƒ ´ f0g is a hyperbolic set. Every closed and invariant subset of a hyperbolic set
ƒ is again a hyperbolic set. In particular, the periodic orbits in ƒ are hyperbolic
sets.

We shall demonstrate next that the continuity of the splitting already follows
from the postulated estimates in the definition of a hyperbolic set, and begin by
drawing some conclusions from the estimates characterizing the subspaces Eṗ of
the tangent spaces.

Lemma III.1. Eṗ D Im.Pṗ / D fv 2 TpRn j supj�0 jd'˙j .p/vj < 1g.
Proof. The inclusion � immediately follows from the definition. On the other hand,
if v D PC

p v C P�
p v belongs to TpRn then, using

jP�
p vj D jd'�j .'j .p// B d'j .p/ B P�

p vj
� c#j jd'j .p/ B P�

p vj;
we obtain

jd'j .p/vj D jd'j .p/P�
p v C d'j .p/PC

p vj
� jd'j .p/P�

p vj � jd'j .p/PC
p vj

� c�1#�j jP�
p vj � c#j jPC

p vj:

Therefore, limj!1 jd'j .p/vj D 1, if P�
p v ¤ 0. If supj�0 jd'j .p/vj < 1, it

also follows that P�
p v D 0 and hence v 2 EC

p . The same argument proves that
PC
p v D 0, if supj�0 jd'�j .p/vj < 1, and the lemma is proved. �

Corollary III.2. If these estimates hold true, the sumsEC
p CE�

p are automatically
direct.

Lemma III.3. The projections ontoEC
p andE�

p are uniformly bounded, i.e., there
exists a constant K such that the operator norms satisfy kPṗ k � K < 1 for all
p 2 ƒ.
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Proof. We choose the integerN so large that � D c#N < 1 and look at the iterated
map  D 'N . Since ƒ is a compact set there is a constant M > 0, such that the
operator norms satisfy kd .p/k � M for all p in ƒ. Fix p in ƒ. Then, in view
of the estimates in the definition of a hyperbolic set, for every v D vC C v� in
EC
p ˚E�

p D TpRn,

M jvj � jd .p/vj
D jd .p/vC C d .p/v�j
� jd .p/v�j � jd .p/vCj
� ��1jv�j � �jvCj:

By the triangle inequality jvCj D jvC C v� � v�j D jv� v�j � jvj C jv�j and
so

M jvj � ��1jv�j � �.jvj C jv�j/;
and consequently,

.M C �/jvj � .��1 � �/jv�j:
Therefore, jP�

p vj D jv�j � Kjvj with the constantK D .M C �/=.��1 � �/, and
we obtain for the operator norm the estimate kP�

p k � K. This holds true for every
p in ƒ. A similar argument shows that also kPC

p k is uniformly bounded and the
lemma is proved. �

Lemma III.4. The map ƒ ! L.Rn/ de�ned by p ! Pṗ is continuous.

Proof. (1) We first show that the graph

� ´ f.p; PC
p / j p 2 ƒg � ƒ � L.Rn/

is a closed set. If pn is a sequence in ƒ satisfying pn ! p 2 ƒ and PC
pn

! QC
in L.Rn/, we have to prove that QC D PC

p . Since every linear map PC
pn

is a
projection, i.e., satisfies .PC

pn
/2 D PC

pn
, the linear map QC is also a projection. In

particular,
ImQC ˚ kerQC D Rn:

From Lemma III.3 we know that kPC
p k � K for all p, so that kd'j .pn/PC

pn
k �

cK#j . Hence, since d'j .p/ depends continuously on p, we obtain the estimate

kd'j .p/QCk � cK#j ; j � 0:

Using Lemma III.1 we, therefore, conclude for the image sets of the operators that
Im.QC/ � Im.PC

p /. In an analogous way, one finds Im.1 �QC/ � Im.1 �PC
p /,

so that ImQC D ImPC
p and kerQC D kerPC

p . Since QC is a projection, it
is thus uniquely determined and we have proved that QC D PC

p . Hence, � is a
closed set.
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(2) According to (1) and Lemma III.3 the set � is closed and bounded, hence
compact. The projection �1 W � ! ƒ ontoƒ defined by .p; PC

p / 7! p is bijective
and continuous. Because � is a compact set, the inverse map ��1

1 is also continuous.
Since the projection �2 W � ! L.Rn/ defined by .p; PC

p / 7! PC
p is continuous,

the composition p 7! PC
p D �2 B ��1

1 .p/ is continuous.
The same arguments show that also the map p 7! P�

p is continuous and the
lemma is proved. �

The study of the orbit structure near a homoclinic orbit will be based on the
following crucial observation.

Proposition III.5. Let 0 be a hyperbolic �xed point of the diffeomorphism ' and
let  2 Rn be a transversal homoclinic point to 0. Then, the closure of its orbit,

ƒ ´
[

j2Z

'j ./ [ f0g;

is a hyperbolic set.

Proof. The setƒ is invariant and compact. We define the splitting by means of the
tangent spaces of the stable invariant manifold WC.0/ and the unstable invariant
manifold W�.0/ which do intersect along the homoclinic orbit,

EC
x ´ TxWC.0/; E�

x ´ TxW�.0/:

Due to the transversality of the homoclinic point  the tangent spaces split,

Rn D TxRn D EC
x ˚E�

x ; x 2 ƒ:
If v 2 TpW˙.0/, there exists a curve x W I ! W˙.0/ defined on an interval and

satisfying x.0/ D p and Px.0/ D v. Since the manifolds are invariant under the
diffeomorphism ' the image curve t 7! '.x.t// 2 Rn satisfies

'.x.t// 2 W˙ and '.x.0// D '.p/:

From
d

dt
'.x.t// D d'.x.t// Px.t/

it follows for t D 0 that
d'.p/v 2 T'.p/W˙.0/:

In short, from the invariance W˙ D '.W˙/ one concludes

d'.x/E˙
x D E˙

'.x/:

The required estimates will be deduced from the estimates of the linearized map
d'.0/ at the hyperbolic fixed point, using that 'j ./ ! 0 as jj j ! 1. For this
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Figure III.1. Definition of the splittings EC
x ˚E�

x by the tangent spaces.

purpose we introduce new coordinates near 0, for whichW C
loc D EC andW �

loc D E�
holds true. Using the local representation in Theorem II.7 of the invariant manifolds
(in the neighborhood Q of the fixed point) as graphs of functions,

y D hC.x/; .x; y/ 2 W C
loc.Q/;

x D h�.y/; .x; y/ 2 W �
loc.Q/;

we define the coordinate transformation  .x; y/ D .	; �/ by

	 D x � h�.y/;
� D y � hC.x/:

Then,
 .0/ D 0; d .0/ D 1

in view of h�.0/ D 0, hC.0/ D 0, h0�.0/ D 0 and h0C.0/ D 0. Hence,  is a local
diffeomorphism near 0 by the inverse function theorem. In the new coordinates, the
mapping ' is represented by

O' D  B ' B  �1 D .	1; �1/;

	1 D f .	; �/;

�1 D g.	; �/;

and the local invariant manifolds are the sets

W C
loc.Q

0/ D f.	; 0/g D EC;
W �

loc.Q
0/ D f.0; �/g D E�:
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00

Q Q0

E� D W �
loc

EC D W C
loc

 

Figure III.2. The coordinate transformation in the proof of Proposition III.5.

From the ˙-invariance of these manifolds we deduce

f .0; �/ D 0; g.	; 0/ D 0;

for all 	 and � small enough. Therefore, near 0, using that

d'.0/ D
�
AC 0

0 A�

�
;

the diffeomorphism O' is of the form

	1 D .AC CO.	; �//	;

�1 D .A� CO.	; �//�:

In particular,

d O'.0/ D
�
AC 0

0 A�

�
;

and along the local stable manifold W C
loc.Q

0/,

d O'.	; 0/ D
�
AC CO.	/ O.	/

0 A� CO.	/

�
:

From kACk; kA�1� k � ˛ < 1 it follows for vC D .	C; 0/ 2 EC and j	j small that

jd O'.	; 0/vCj � #jvCj
with a constant ˛ < # < 1.

In the original coordinates we have ' D  �1 B O' B  and therefore 'j .p/ D
 �1 B O'j B  .p/. Let K be a constant, satisfying kd k � K and kd �1k � K.

For a point p in the (perhaps smaller) neighborhood Q of 0 we find in view of

d'j .p/vC D d �1 B d O'j B d .p/vC; vC 2 TpW C
loc.Q/ D EC

p ;
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Figure III.3. The estimate in the proof of Proposition III.5.

the estimates
jd'j .p/vCj � #jK2jvCj; j � 0:

We have verified the desired estimates for the points p 2 ƒ \Q. Recalling once
more the definition of a homoclinic point, we have 'j ./ ! 0 as jj j ! 1.
Consequently, we find two large integers N1; N2 � 0 such that 'j ./ 2 Q for all
j � N1 and '�j ./ 2 Q for all j � N2.

Hence, introducing the integer N D N1 CN2 we conclude

'N .p/ 2 Q; p 2 ƒ nQ:
From the estimates in Q, we now obtain for all points p 2 ƒ nQ the estimates

jd'NCn.p/vCj D jd'n.'N .p// B d'N .p/vCj
� #nK2jd'N .p/vCj
� max
p2ƒnQ

kd'N .p/k#nK2jvCj:

Setting c ´ maxp2ƒnQ kd'N .p/kK2#�N we therefore find

jd'j .p/vCj � c#j jvCj; j � N; p 2 ƒ nQ:
Since ƒ n Q is a finite set of points we can choose a sufficiently large constant
C � c, for which these estimates hold true also for the integers 0 � j < N , and
we have verified the desired estimates

jd'j .p/vCj � C#j jvCj; vC 2 EC
p ; j � 0



88 Chapter III. Hyperbolic sets

for all p 2 ƒ and with a constant C independent of p. The estimates for E�
p are

proved analogously and the proof of Proposition III.5 is complete. �

As in the special case of a hyperbolic fixed point, it is very convenient also for
hyperbolic sets to introduce new norms in the tangent spaces with respect to which
the constant c showing up in the definition of a hyperbolic set is equal to 1.

Proposition III.6 (Adapted norms). Assumeƒ to be a hyperbolic set of the diffeo-
morphism ' and choose a constant # < � < 1. Then, there exist equivalent norms
j � j�x in TxRn for every x 2 ƒ, which depend continuously on x and satisfy

jd'.x/vCj�'.x/ � �jvCj�x; vC 2 EC
x ;

jd'�1.x/v�j�
'�1.x/

� �jv�j�x; v� 2 E�
x :

In these norms, the linear map d'.x/ is a contraction in EC
x and an expansion

in E�
x .

Proof. We choose N so large that c.#=�/N < 1: If v D vC C v� 2 EC
x ˚E�

x D
TxRn we define the new norm by

jvCj�x ´
N�1X

jD0
��j jd'j .x/vCj:

Using ��N jd'N .x/vCj � ��N c#N jvCj � jvCj, one obtains the desired estimate

jd'.x/vCj�'.x/ D
N�1X

jD0
��j jd'j .'.x//d'.x/vCj

D �
�N�1X

jD1
��j jd'j .x/vCj C ��N jd'N .x/vCj

�

� �
�N�1X

jD0
��j jd'j .x/vCj

�

D �jvCj�x :

Since ' belongs to the class C 1, the new norms depend continuously on the point
x. Analogously, we define the new norm for v� 2 E�

x using the inverse map '�1
instead of '. We introduce on the tangent space TxRn the max-norm

jvj�x ´ maxfjvCj�x; jv�j�xg;

and the theorem is proved. �
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'
'
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Figure III.4. An "-pseudo orbit x (above) and a ı shadow orbit p for a sequence q (below).

III.2 The shadowing lemma

In the following, the shadowing lemma will be our main tool. If only an approximate
orbit on a hyperbolic set is known, the shadowing lemma guarantees a real orbit
nearby which shadows the approximate orbit. This way we shall construct orbits
which are determined by their prescribed long-time behavior and not by their initial
conditions. To formulate the shadowing lemma, we need some definitions.

De�nition. Let ' W Rn ! Rn be a diffeomorphism.

(i) The sequence .xj /j2Z in Rn is an orbit of ', if xjC1 D '.xj / for j 2 Z.
(ii) For a given real number " > 0, the sequence .xj /j2Z is called an "-pseudo

orbit of ', if jxjC1 � '.xj /j � " for all j 2 Z.
(iii) If ı > 0 and q D .qj /j2Z is a sequence in Rn, then a ı-shadowing orbit of q

is an orbit p D .pj /j2Z, satisfying jpj � qj j � ı for all j 2 Z.

The following theorem goes back to D. Anosov.

Theorem III.7 (Shadowing lemma). Let ƒ be a hyperbolic set of the diffeomor-
phism '. Then, there exists a constant ı0 > 0 such that for every 0 < ı � ı0 there
exists an " D ".ı/ > 0 having the following property.

For every "-pseudo orbit q D .qj /j2Z of ' on the set ƒ,

qj 2 ƒ; jqjC1 � '.qi /j � "; j 2 Z;

there exists a unique ı-shadowing orbit p D .pj /j2Z of the pseudo, orbit q (for ')
in a neighborhood of ƒ.

Remark. (i) The bracket (for ') can be replaced by the bracket (for  ), if  is a
diffeomorphism satisfying j' �  jC1.U / � � on an open neighborhood U of ƒ
and if � is sufficiently small.
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(ii) The "-pseudo orbit q does not have to lie on ƒ, it is enough to require that
the pseudo orbit q D .qj /j2Z belongs to a sufficiently small neighborhood V.ƒ/
of the hyperbolic set ƒ.

Proof of Theorem III.7 [Contraction principle]. We make use of the adapted norms
guaranteed by Proposition III.6.

(1) Formulation of the problem. If the "-pseudo orbit q D .qj /j2Z � ƒ is
given, we look for an orbit p D .pj /j2Z satisfying jpj � qj j � ı for all j 2 Z.
For this purpose, we look for corrections x D .xj /j2Z, so that the sequence

p D q C x

is an orbit, hence satisfies

qjC1 C xjC1 D '.qj C xj /; j 2 Z:

Rewriting this equation we look for a sequence x D .xj /j2Z solving the equa-
tion

xjC1 � d'.qj /xj D '.qj C xj / � qjC1 � d'.qj /xj μ fj .xj /:

The right-hand side is small, if " is small, and if kxk D supj2Z jxj j is small.
Indeed, due to fj .0/ D '.qj / � qjC1 we have, by assumption, jfj .0/j � ". In
addition, the derivative satisfies dfj .0/ D d'.qj / � d'.qj / D 0 and dfj .xj / D
d'.qj C xj / � d'.qj /.

We shall solve the equation xjC1 � d'.qj /xj D fj .xj / by means of the con-
traction principle.

(2) The linear problem. We abbreviate Aj ´ d'.qj / 2 L.Rn/. Given a
sequence .gj /j2Z in Rn we look for the sequence x D .xj /j2Z solving

xjC1 � Ajxj D gjC1; j 2 Z:

For this purpose, we introduce a sequence space. Setting Ej D Tqj
Rn D Rn,

we define the Banach space of bounded sequences by

E D fx D .xj /j2Z j xj 2 Ej ; kxk < 1g
equipped with the norm kxk D supj2Z jxj j. We define the linear map A 2 L.E/

by its restrictions AjEj
´ Aj W Ej ! EjC1, as

.A.x//jC1 ´ Ajxj :

We want to solve the operator equation .1 � A/x D g in the Banach space E.

Lemma III.8. If .qj /j2Z is an "-pseudo orbit on ƒ, and if " is suf�ciently small,
then the linear map 1�A 2 L.E/ is a continuous isomorphism whose inverse map
L ´ .1 � A/�1 2 L.E/ is also continuous and has the �nite norm kLk < 1.
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Proof. We introduce the notation Ej D EC
j ˚E�

j D PC
qj
Ej ˚ P�

qj
Ej . Given the

sequence g D .gj / 2 E we look for a sequence x D .xj / 2 E solving the equation
xjC1 � d'.qj /xj D gjC1 for j 2 Z, or

xjC1 D d'.qj /xj C gjC1; j 2 Z:

With respect to the above splitting we obtain the equivalent equations

.�/
´
PC
qj C1

xjC1 D PC
qj C1

d'.qj /xj C PC
qj C1

gjC1;
P�
qj C1

xjC1 D P�
qj C1

d'.qj /xj C P�
qj C1

gjC1:

The splitting EC
j ˚ E�

j is not invariant under the linearized map d'.qj /, since
q is not an orbit. However, along the orbit we know from the definition of the
hyperbolicity of the set ƒ that

P˙
'.qj /

d'.qj /xj D d'.qj /P
˙
qj
xj ; j 2 Z:

Thus, the equation .�/ is equivalent to the following two equations of .��/ and
.���/,
.��/ PC

qj C1
xjC1 D d'.qj /P

C
qj
xj C PC

qj C1
gjC1 C ŒPC

qj C1
� PC

'.qj /
�d'.qj /xj ;

.���/ P�
qj
xj D d'.qj /

�1P�
'.qj /

xjC1 � d'.qj /�1P�
qj C1

gjC1

C d'.qj /
�1ŒP�

qj C1
� P�

'.qj /
�.xjC1 � d'.qj /xj /:

We introduce the map

ˆ W E ! E; x D .xj / 7! .ˆ.x/j /; ˆ.x/j ´ PC
qj
ˆ.x/j C P�

qj
ˆ.x/j ;

wherePC
qj
ˆ.x/j is defined by the right-hand side of the equation .��/ andP�

qj
ˆ.x/j

by the right-hand side of the equation .���/. By construction the desired sequence
is a fixed point of this map,

ˆ.x/ D x () xjC1 � d'.qj /xj D gjC1:

Since ƒ is compact,

sup
q2ƒ

kd'.q/k � K; sup
q2ƒ

kd'.q/�1k � K

for a constantK and the mappings q 7! Pq̇ W ƒ ! L.Rn/ are not only continuous,
but uniformly continuous. Hence, for every given "0 > 0 there exists an " > 0 such
that

kP˙
qj C1

� P˙
'.qj /

k � "0 for all j 2 Z; if jqjC1 � '.qj /j � " for all j 2 Z;
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i.e., if the sequence q is an "-pseudo orbit. Since ƒ is hyperbolic, we have (in the
adapted norms) the estimates

jd'.qj /PC
qj
xj j � #jxj j;

jd'.qj /�1P�
qj
xjC1j � #jxjC1j;

with a constant 0 � # < 1. Using this, we shall estimate the Lipschitz constant of
the map ˆ. Recalling the definition of the norms and using the notation a _ b ´
maxfa; bg, we have

kˆ.x/ �ˆ.y/k D sup
j2Z

jˆ.x/j �ˆ.y/j j

D sup
j2Z


 jPC
qj
ˆ.x/j � PC

qj
ˆ.y/j j _ jP�

qj
ˆ.x/j � P�

qj
ˆ.y/j j �

:

The stable part is estimated as

jPC
qj
ˆ.x/j � PC

qj
ˆ.y/j j D ˇ̌

d'.qj /P
C
qj
.xj � yj /

C ŒPC
qj C1

� PC
'.qj /

�d'.qj /.xj � yj /
ˇ̌

� #jxj � yj j C "0Kjxj � yj j:
For the unstable part we get

jP�
qj
ˆ.x/j � P�

qj
ˆ.y/j j D

ˇ̌
ˇd'.qj /�1P�

'.qj /
.xjC1 � yjC1/

C d'.qj /
�1ŒP�

qj C1
� P�

'.qj /
�

� 

xjC1 � yjC1 � d'.qj /.xj � yj /

�ˇ̌
ˇ

� #jxjC1 � yjC1j C "0Kjxj � yj j C "0K2jxj � yj j:
Taking the supremum over j 2 Z,

kˆ.x/ �ˆ.y/k � .# C "0K C "0K2/kx � yk
for all x; y 2 E. If we choose "0 > 0 so small that .# C "0K C "0K2/ μ ˛� < 1,
the map ˆ W E ! E is a contraction. The unique fixed point x D .xj /j2Z 2 E

of the map satisfies, in view of the equations .��/, .���/ and of Lemma III.3, the
estimate

kxk D kˆ.x/k � kˆ.x/ �ˆ.0/k C kˆ.0/k � ˛�kxk CK 0kgk;
with a constant K 0 > 0 and therefore,

kxk � K 0

1 � ˛� kgk:



III.2. The shadowing lemma 93

In view of x D .1 � A/�1g, we have verified the estimate

k.1 � A/�1k � K 0

1 � ˛� ;

and Lemma III.8 is proved. �

(3) The nonlinear problem. Let r > 0. We denote the closed balls of radius r in
Ej and inE byBj .r/ ´ fxj 2 Ej j jxj j � rg and byB.r/ ´ fx 2 E j kxk � rg.
We want to solve the equations

xjC1 � Ajxj D fj .xj /;

for a sequence x D .xj /j2Z satisfying xj 2 Ej , while the sequence of maps
fj W Bj .r/ � Ej ! EjC1 is given. Introducing the mapping

F W B.r/ � E ! E by F.x/jC1 D fj .xj /;

our equation can be written as .1 � A/x D F.x/ or as

x D LF.x/; x 2 B.r/;

with the continuous linear map L D .1 � A/�1. In the following, we write j � j
instead of k � k for the norm on E and reserve the notation k � k for the operator
norm.

Lemma III.9. Let F W B.r/ � E ! E be a map. Assume that the real number
˛ > 0 is so small that ˛kLk � 1=2. If jF.0/j � ˛r and jF.x/�F.y/j � ˛jx�yj
for all x; y 2 B.r/, then the equation x D LF.x/ has a unique solution x 2 B.r/.
This solution satis�es the estimate

jxj � 2kLk jF.0/j:

Proof. Set G.x/ ´ LF.x/. We claim that

(i) G W B.r/ ! B.r/, and
(ii) jG.x/ �G.y/j � 1

2
jx � yj for all x; y 2 B.r/.

In order to prove the claim we takex; y 2 B.r/ and estimate, using the assumptions,

jG.x/ �G.y/j � kLk jF.x/ � F.y/j � ˛kLk jx � yj � 1

2
jx � yj:

Observing that jG.0/j D jLF.0/j � kLk jF.0/j � kLk˛r � r=2, we obtain

jG.x/j � jG.x/ �G.0/j C jG.0/j � 1

2
jxj C r

2
� r;
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and the claim is proved. Since the metric space B.r/ is complete, there exists
a unique fixed point x D G.x/ satisfying jxj � r and due to jxj D jG.x/j �
jG.x/ �G.0/j C jG.0/j � 1

2
jxj C jG.0/j, we arrive at the desired estimate

jxj � 2jG.0/j � 2kLk jF.0/j:
This concludes the proof of Lemma III.9. �

Finally, we apply the lemma to our situation and complete the proof of the
shadowing lemma. We recall that

jF.0/j D sup
j

jfj .0/j D sup
j

j'.qj / � qjC1j � ":

We choose ˛ so small that ˛kLk � 1
2

. Sinceƒ is compact and dfj .0/ D 0, we find
a radius r0 D ı0 such that kdfj .xj /k � ˛ for every xj 2 Bj .r0/ and all j 2 Z. By
the mean value theorem we conclude jF.x/�F.y/j � ˛jx � yj for x; y 2 B.r0/.
If now r � ı0 and if " � ˛r , we conclude from Lemma III.9 that the statement of
the shadowing lemma holds true with the constant ı D r . This completes the proof
of Theorem III.7. �

Proof of the remark following the shadowing lemma. Let j'� jC1.U / � � where
U is a neighborhood of ƒ. Replacing the maps fj .xj / in the above proof by the
maps

f 0
j .xj / D  .qj � xj / � qjC1 � d .qj /xj ;

we can argue as above, if � is sufficiently small. As for the second part of the
remark, we choose � > 0 such that the O"-pseudo orbit q D .qj /j2Z lies in the
�-neighborhood of ƒ. Choosing a sequence q0 on ƒ satisfying jqj � q0

j j � � for
all j 2 Z, it follows that

jq0
jC1 � '.q0

j /j � jq0
jC1 � qjC1j C jqjC1 � '.qj /j C j'.qj / � '.q0

j /j
� � C O"C � sup

x2ƒ
kd'.x/k

μ ";

so that q0 is an "-pseudo orbit on ƒ. If �; O" are sufficiently small, we can apply the
first part of the theorem to the pseudo orbit q0 � ƒ to obtain a .ı C �/-shadowing
orbit for the pseudo orbit q. �

As a first application of the shadowing lemma, we shall prove the closing lemma
of Anosov.

Theorem III.10 (Closing lemma of Anosov). We consider the hyperbolic set ƒ of
the diffeomorphism ' and let "; ı be as in the shadowing lemma. If there exist a
point x 2 ƒ and an integer N � 1 satisfying

j'N .x/ � xj � ";
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then there exists a point y in a ı neighborhood Uı.ƒ/ of ƒ satisfying

'N .y/ D y:

Moreover, the periodic orbit y; '.y/; : : : ; 'N .y/ D y lies in a ı-neighborhood of
the set fx; '.x/; : : : ; 'N .x/g.
Proof [Uniqueness of the ı-shadowing orbit]. We define the "-pseudo orbit q D
.qj /j2Z by the N -periodic continuation of the finite piece of the orbit

x '.x/ '2.x/ : : : 'N�1.x/
k k k k
q0 q1 q2 : : : qN�1 ;

so that qjCN D qj for all j 2 Z. By the shadowing lemma there exists a unique
ı-shadowing orbit p D .pj /j2Z of the pseudo orbit q and we claim that

pjCN D pj ; j 2 Z:

To prove the claim, we introduce the shifted orbit sequence Op D . Opj /j2Z by
Opj D pjCN . Then, also Op is a ı-shadowing orbit of the pseudo orbit q, since

j Opj � qj j D jpjCN � qj j D jpjCN � qjCN j � ı

holds true for all j 2 Z. From the uniqueness of the ı-shadowing orbit which
shadows the pseudo orbit q, we conclude that Op D p, so that the orbit p is indeed
the desired periodic orbit, as claimed in the theorem. �

III.3 Orbit structure near a homoclinic orbit, chaos

In the following we consider a transversal homoclinic point  at which, by definition,
the stable and unstable invariant manifolds issuing form a hyperbolic fixed point of
the diffeomorphism ' intersect transversally. Assuming as before the fixed point to
be the origin 0 we denote by

ƒ D O./ D
[

j2Z

'j ./ [ f0g D O./ [ O.0/

the closure of the homoclinic orbit which consists of two orbits. The compact set
ƒ is a hyperbolic set of the diffeomorphism ' in view of Proposition III.5 and so
we can use the shadowing lemma in order to prove first that the homoclinic point
 is a cluster point of other homoclinic points belonging to 0 and at the same time
also a cluster point of periodic points.
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V
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Figure III.5. Homoclinic orbit with neighborhood

Theorem III.11 (G. Birkhoff). We assume that  is a transversal homoclinic point
belonging to the hyperbolic �xed point 0 of the diffeomorphism '. Let V be an open
neighborhood of  and let U D U.ƒ/ be an open neighborhood of ƒ D O./.

Then, there exist in�nitely many periodic points in V whose orbits are contained
in the open setU . More precisely, there exists an integerN0 D N0.U; V / such that
for every integer N � N0 there exists a periodic point p 2 V having the minimal
period N .

Proof [Shadowing lemma]. The hyperbolic set ƒ D O./ [ O.0/ consists of two
orbits of '. If " and ı0 are as in the shadowing lemma we choose 0 < ı � ı0 so
small that the ı neighborhood of  lies in V and the ı neighborhood of ƒ in the
prescribed open setU.ƒ/. We denote byQ the " neighborhood of the fixed point 0.
According to the definition of a homoclinic point  there exists an integer j0 such
that

'j ./ 2 Q; jj j � j0:

The crucial observation is now the following. Inside of Q it is possible to jump
from the homoclinic orbit to the fixed point orbit of 0 and back to the homoclinic
orbit by committing only an error smaller than � " as illustrated in Figure III.7.

We use this to construct the "-pseudo orbits q D .qj /j2Z � ƒ on the hyperbolic
set ƒ having a prescribed minimal period, as follows.

 './ : : : 'j0./ 0 : : : 0 '�j0./ : : : '�1./
k k k k k k k
q0 q1 : : : qj0

qj0C1 : : : qj0Ck qj0CkC1 : : : q2j0Ck ;

where the hyperbolic fixed point 0 is visited k-times in succession (k � 1) and
where the scheme is repeated periodically. The integer k can be chosen arbitrarily
and determines the minimal period of the pseudo orbit q. The sequence q is a



III.3. Orbit structure near a homoclinic orbit, chaos 97

WC.0/

W�.0/0

Q

'j0./

'�j0./

Figure III.6. Jump of the "-pseudo orbit from WC.0/ onto 0 and then into W�.0/.

periodic "-pseudo orbit on ƒ, namely,

qjCN D qj ; j 2 Z;

where N D 2j0 C k C 1.
In view of the shadowing lemma the pseudo orbit q is shadowed by the unique

ı-shadowing orbit p D .pj /j2Z given by pj D 'j .p0/. By construction, p0 2 V
and O.p0/ � U.ƒ/. Since also the shifted sequence Op D . Opj /j2Z, defined by
Opj D pjCN , is a ı-shadowing orbit of the pseudo orbit q, it follows from the
uniqueness that Op D p, hence

pjCN D pj ; j 2 Z:

Therefore, the shadowing orbit p is a periodic orbit of ' having the minimal period
N . The theorem follows if we set N0 D 2j0 C 2.

�

The next result goes back to H. Poincaré. It explains why the transversal ho-
moclinic point forces the invariant manifolds WC.0/ and W�.0/ issuing from the
hyperbolic fixed point to double back and pile up on themselves as illustrated in
Figure III.7.

Theorem III.12 (H. Poincaré). We assume that  is a transversal homoclinic point
associated with the hyperbolic �xed point 0 of the diffeomorphism '. Let V be an
open neighborhood of  and letU D U.ƒ/ be an open neighborhood ofƒ D O./.
Then there exist in�nitely many homoclinic points associated with 0 in V , whose
orbits run in U , and which are distinguished by two rotation numbers r˙.

Proof [Shadowing lemma]. We again construct a suitable "-pseudo orbit onƒ us-
ing the same notation as in the previous proof and let r˙ 2 N0 be two integers.
Set

 './ : : : 'j0./ 0 '�j0./ : : : '�1./
k k k k k k
q0 q1 : : : qj0

qj0C1 qj0C2 : : : q2j0C1 :
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0



p0

V

WC.0/

W�.0/

Figure III.7. One of the infinitely many homoclinic points p0 near .

We repeat this finite sequence on the right rC-times and on the left r�-times, then we
add on the left '�j0./; : : : ; '�1./ and on the right ; './; : : : ; 'j0./. Finally,
we add on the left respectively on the right the infinite sequences : : : ; 0; 0; 0 resp.
0; 0; 0; : : : , which belong to the orbit of the fixed point 0. Hence, after choosing the
integer j0 and the open neighborhood Q as in the proof of the previous theorem,
we have constructed an "-pseudo orbit q on the hyperbolic setƒ, for which it holds
true that

qj D 0; jj j � M;

for a suitable constant M .
This pseudo orbit is shadowed by the unique ı-shadowing orbit p D .pj /j2Z

which satisfies, by construction, O.p0/ � U and p0 2 V and, in addition,

jpj j � ı; jj j � M:

Therefore, for jj j large, all the orbit points lie in the ı neighborhood Qı of
the hyperbolic fixed point 0. Hence, they lie on the local manifolds W C

loc.Qı/

respectively W �
loc.Qı/, introduced in II.2. Due to Theorem II.7, 'j .p0/ ! 0 as

jj j ! 1, if we choose ı sufficiently small. Therefore, p0 is a homoclinic point in
V , and, by construction, p0 ¤ . Shadowing orbits belonging to different rotation
numbers are different from each other. The proof of the theorem is complete. �

More generally, we can consider two hyperbolic fixed points x� ¤ y� of the dif-
feomorphism '. If the invariant manifolds intersect transversally in the heteroclinic
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x�

y�



�

WC.x�/

W�.x�/WC.y�/

W�.y�/

Figure III.8. Transversal heteroclinic points , � belonging to the hyperbolic fixed points
x�, y�.

points

 2 W�.x�/ \WC.y�/;
� 2 WC.x�/ \W�.y�/;

as illustrated in Figure III.9, then 'j ./ ! y� as j ! 1 and 'j ./ ! x� as
j ! �1; and analogously for the intersection point �. The set

ƒ ´ O./ [ O.�/ [ fx�g [ fy�g;
consisting of four orbits is a hyperbolic set. Let U.ƒ/ an open neighborhood ofƒ.
Then  is a cluster point of

• heteroclinic points belonging to x� and y�,
• homoclinic points belonging to x� and homoclinic points belonging to y�,
• periodic points,

whose orbits all run in U.ƒ/. The proof of this statement is left to the reader (one
constructs suitable "-pseudo orbits and then applies the shadowing lemma).

We are going to demonstrate that the complexity of the orbit structure near
a homoclinic orbit can be described statistically by the embedding of Bernoulli
systems. Thus, we shall obtain orbits that are determined by random sequences.
Introducing the �nite alphabet

A D f1; 2; : : : ; ag; a � 2;
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the space of the two-sided sequences of symbols from the alphabet is the metric
space

†A D fs D .sj /j2Z j sj 2 Ag
equipped with the metric

d.s; t/ D
X

j2Z

1

2jj j
jsj � tj j

1C jsj � tj j ; s; t 2 †A:

The metric has the following signi�cance. Two sequences s; t 2 †A are close, if
they agree over a long, central string: sj D tj for all jj j � N with N large. More
precisely, the following lemma applies.

Lemma III.13. If s; t 2 †A, then

(i) d.s; t/ < 1
2N C1 H) sj D tj , jj j � N ,

(ii) sj D tj ; jj j � N H) d.s; t/ � 1
2N �1 .

Proof. (i) Assume sj ¤ tj for an integer jj j � N , then jsj �tj j
1Cjsj �tj j � 1

2
and therefore

d.s; t/ � 1

2jj j
jsj � tj j

1C jsj � tj j � 1

2jj jC1 � 1

2NC1 :

(ii) If sj D tj for jj j � N then, due to jsj �tj j
1Cjsj �tj j � 1,

d.s; t/ D
X

jj j>N

1

2jj j
jsj � tj j

1C jsj � tj j � 2

1X

jDNC1

1

2j
D 1

2N�1 ;

as claimed in the lemma �

Lemma III.14 (Properties of .†A; d /). The metric space .†A; d / is compact and
perfect, i.e., every point is a cluster point.

Proof [Finiteness of the alphabet]. If .sn/n�1 is a sequence in †A, hence sn D
.snj /j2Z, we shall construct a convergent subsequence in the metric space .†A; d /.
Since the alphabet is �nite, there exists for every index j 2 Z a symbol aj 2 A

such that snj D aj for infinitely many n. We now choose a subsequence of sn whose
sequences all have the value a0 at the index 0. From this subsequence, we choose
again a subsequence whose sequences have the values a�1 and a1 at the indices �1
and 1. Iterating the procedure, we finally arrive at a subsequence which, in view
of Lemma III.13, converges to the sequence a ´ .aj /j2Z in †A. Hence, †A is
compact.

If s 2 †A we choose a symbol a 2 A such that s ¤ .: : : ; a; a; a; : : : / and define
the sequence sn by snj D sj for jj j � n and sjn D a for jj j > n. Then sn ! s and
.sn/ is not constant. Therefore, †A is perfect. �
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De�nition. If .M; d/ is a metric space, the mapping ' W M ! M is called expan-
sive, if there exists a universal constant ˛ > 0 such that for all x ¤ y in M there
exists an integer N � 0 for which d.'N .x/; 'N .y// � ˛.

In case that ' is bijective, one merely requires the existence of an integerN 2 Z
having the above property.

If the mapping is expansive, the iterates of two different points visibly separate
from each other in the course of time, regardless of how close to each other they
start. The dynamical system .M; '/ therefore shows a sensitive dependence on the
initial conditions.

Equivalently, the map is expansive if there exists a constant ˛ > 0, having the
property

d.'j .x/; 'j .y// < ˛ for all j H) x D y:

Hence, if two orbits stay close for all times, then they must be identical.

Proposition III.15. The dynamical system .ƒ; '/ on a hyperbolic set ƒ of a dif-
feomorphism ' is expansive.

Proof [Shadowing lemma]. We assume that ı0 and "0 D "0.ı0/ are as in the shad-
owing lemma and let p D .pj /j2Z and q D .qj /j2Z be two orbits onƒ satisfying

jpj � qj j D d.'j .p0/; '
j .q0// � ı0; j 2 Z:

Then q is an "-pseudo orbit (with " D 0) which is shadowed by the orbit p. Since
the shadowing orbit is unique and since q is also an orbit, we conclude that p D q.

�

De�nition. The shift map � on the space†A is the mapping � W †A ! †A, defined
by

s 7! �.s/ D .�.s/j /j2Z; �.s/j ´ sjC1:

The dynamical system .†A; �/ is called a Bernoulli system.

Lemma III.16 (Properties of .†A; �/). The Bernoulli system .†A; �/ has the fol-
lowing properties.

(i) � W †A ! †A is a homeomorphism.
(ii) There exists a countable and dense set of periodic points of � . All periods

exist.
(iii) The system is transitive.
(iv) The system is expansive.
(v) If s; t are twoperiodic points, then the set of points r 2 †A satisfying�j .r/ !

O.s/ as j ! C1 and �j .r/ ! O.t/ as j ! �1 is dense in †A. These
points are therefore heteroclinic to the orbits O.s/ and O.t/.
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Proof. (i) The bijectivity is obvious, the continuity of � (and hence of ��1) imme-
diately follows from the definition of the metric.

(ii) The periodic points are precisely the periodic sequences in †A. Obviously,
the set of such sequences is countable and dense.

(iii) We construct a dense orbit by taking a symbol sequence which sticks to-
gether all the possible symbol sequences of finite length 1; 2; 3; : : : . According to
Lemma III.13, the iterates of this sequence come arbitrarily close to every element
of †A proving that the system is transitive.

(iv) We define for b 2 A the set

†bA D fs 2 †A j s0 D bg:

Then

˛ ´ inf
b¤c

d.†bA; †
c
A/ � 1

2
:

If s ¤ t , then sj ¤ tj for a some integer j 2 Z: Due to �j .s/0 D sj , and
similarly for t , we have

�j .s/ 2 †sjA ; and �j .t/ 2 †tjA ;

so that d.�j .s/; �j .t// � d.†
sj
A ; †

tj
A / � ˛.

(v) We assume that s; t are periodic points, then the sequences .sj /, .tj / are
periodic. Let m and n be the periods of the sequences .sj / and .tj /, and set

S ´ .s0; : : : ; sm/; T ´ .t0; : : : ; tn/;

then every symbol sequence

r D .: : : ; T; T;X; S; S; : : : /

having an arbitrarily chosen finite central blockX converges under the iterates of the
shift map to O.s/ and under the iterates of the inverse shift map to O.t/. According
to Lemma III.13 these sequences are dense in †A. �

We come to the central result of this chapter.

Theorem III.17 (S. Smale). Let  be a transversal homoclinic point of the diffeo-
morphism ' belonging to the hyperbolic �xed point 0. Let U be an open neighbor-
hood of the closure of the homoclinic orbitƒ D O./ D O./[ O.0/ and let A be
a �nite alphabet. Then there exists an integer K � 1 and a homeomorphism

 W †A !  .†A/ μ M � U

having the following properties.
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Figure III.9. The geometric construction in the proof of Theorem III.17.

(i) The compact setM is invariant under 'K , so that 'K.M/ D M .
(ii) For every point m 2 M the orbit O.m/ � U under ' lies in the open set U .

(iii)  B � D 'K B  , so that the following diagram is commutative.

M
'K

�� M

†A
� ��

 

��

†A

 

��

The theorem guarantees a continuous embeddingof the Bernoulli system .†A; �/
into Rn as a subsystem of the dynamical system .Rn; 'K/.

Proof [Proposition III.5, Theorem III.7]. Since†A is compact, every injective and
continuous mapping  W †A !  .†A/ � V is a homeomorphism onto its image.

(1) Strategy of the geometric construction. If A D f1; 2; : : : ; ag is the alphabet,
we choose open neighborhoods Vj of the finitely many homoclinic points 'j ./
for 1 � j � a, satisfying

Vi \ Vj D ;; i ¤ j;

and set V D S
1�j�a Vj . We shall construct for every sequence s D .sj /j2Z 2 †A

a point p0 D  .s/ 2 V having the following property. If ˆ ´ 'K is the iterated
map for a suitable integer K � 1, then,

ˆj .p0/ 2 Vsj for all j 2 Z:

Thus for every random sequence s 2 †A there exists an orbit .ˆj .p0//j2Z of ˆ
satisfyingˆj .p0/ 2 Vsj . Hence this orbit visits all randomly chosen sets Vb where
b 2 A.
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(2) Construction of the "-pseudo orbit. We choose ı > 0 so small that the ı

neighborhood of ƒ is contained in U and the ı neighborhood of the homoclinic
point 'j ./ is contained in Vj for every j 2 A. Let " > 0 be the real number "
which corresponds to ı in the shadowing lemma. Since  is a homoclinic point,
there exists an " neighborhood Q of 0 and an integer N � 1 such that

'sj CN�1./ 2 Q and 'sj �NC1./ 2 Q for all sj 2 A:
For s 2 †A the "-pseudo orbit q.s/ D .q.s/j /j2Z � ƒ is constructed in the

following way. If s D .: : : ; s�1; s0; s1; : : : / 2 †A is given, the points q.s/j are
defined by identifying the points of the first scheme below with the corresponding
points of the second scheme

:::
:::

:::
:::

:::
:::

q�NC1 : : : q�1 q0 q1 : : : qN�1 qN
qNC1 : : : q2N�1 q2N q2NC1 : : : q3N�1 q3N
q3NC1 : : : q4N�1 q4N q4NC1 : : : q5N�1 q5N
:::

:::
:::

:::
:::

:::

and

:::
:::

:::
:::

:::
:::

's0�NC1 : : : 's0�1 's0 's0C1 : : : 's0CN�1 0

's1�NC1 : : : 's1�1 's1 's1C1 : : : 's1CN�1 0

's2�NC1 : : : 's2�1 's2 's2C1 : : : 's2CN�1 0
:::

:::
:::

:::
:::

:::

where, to save space we have abbreviated qj D q.s/j and 'j D 'j ./. According
to our construction the sequence q.s/ is indeed an "-pseudo orbit on the hyperbolic
set ƒ. Moreover, it has the following crucial properties,

q.s/jC2N D q.�.s//j ; j 2 Z;

q.s/j2N D 'sj ./ 2 Vsj ; j 2 Z:

(3) De�nition of the map  W †A ! Rn. In view of the shadowing lemma,
there exists an orbit p.s/ in the neighborhood U which is a ı shadowing orbit of
the "-pseudo orbit q.s/, so that p.s/j D 'j .p.s/0/ and jp.s/j � q.s/j j � ı for all
j 2 Z. From q.s/0 D 's0./ 2 Vs0 , we conclude that the point p.s/0 lies in Vs0 .

We now define the mapping by setting .s/ D p.s/0 for s 2 †A and introduce
the diffeomorphism ˆ ´ '2N (hence K D 2N ). We claim that

ˆj . .s// 2 Vsj ; j 2 Z:
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Indeed, due to our construction, jp.s/j2N � q.s/j2N j � ı and we conclude from
q.s/j2N D 'sj ./ 2 Vsj that the point p.s/j2N lies in Vsj , so that

p.s/j2N D 'j2N .p.s/0/ D ˆj . .s// 2 Vsj ; j 2 Z:

(4) In order to prove the equation  B � D ˆ B  we first fix s 2 †A and
abbreviate p0 ´ p.s/0 D  .s/, so that j'j .p0/ � q.s/j j � ı for all j 2 Z. In
particular, j'jC2N .p0/ � q.s/jC2N j � ı and recalling q.s/jC2N D q.�.s//j and
ˆ D '2N , we obtain the estimates

j'j .ˆ.p0// � q.�.s//j j � ı; j 2 Z:

Hence, .'j .ˆ.p0///j2Z is a ı-shadowing orbit of the "-pseudo orbit q.�.s//. Ac-
cording to the definition of the map  we have

j'j . .�.s/// � q.�.s//j j � ı; j 2 Z;

so that .'j . .�.s////j2Z is also a ı-shadowing orbit of the pseudo orbit q.�.s//.
From the uniqueness of the ı-shadowing orbit we conclude that

'j .ˆ.p0// D 'j . .�.s///; j 2 Z:

In particular, setting j D 0 and recalling p0 D  .s/ we obtain the equation

ˆ. .s// D  .�.s//:

This equation holds true for every s 2 †A, as we wanted to prove.
(5) In order to verify the injectivity of the map  , we take two elements s ¤ s 0

in †A and set p0 ´  .s/ and p0
0 ´  .s0/, so that, according to our construction,

ˆj .p0/ 2 Vsj ; ˆj .p0
0/ 2 Vs0

j
:

There exists an integer j 2 Z for which sj ¤ s0
j and hence Vsj \ Vs0

j
D ;.

Consequently,ˆj .p0/ ¤ ˆj .p0
0/ and since the mapˆ can be inverted, we conclude

p0 ¤ p0
0, and so  .s/ ¤  .s0/:

(6) In order to show that the mapping  W †A ! V is continuous we take
the convergent sequence s.n/ in †A satisfying s.n/ ! s in .†A; d / and show that
 .s.n// !  .s/ in Rn. Arguing by contradiction we find a subsequence  .s.n//
such that

j .s.n// �  .s/j � "� > 0

for all n. Since xV is bounded, there exists a convergent subsequence again denoted
by  .s.n//. Denote its limit by 	, then 	 2 xV and j	 �  .s/j � "�. We claim
that .'j .	//j2Z is a ı-shadowing orbit of the pseudo orbit q.s/. In view of the
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uniqueness of the shadowing orbit, it then follows that 	 D  .s/ which is the
desired contradiction. Fixing j we obtain by the triangle inequality

j'j .	/ � q.s/j j � j'j .	/ � 'j . .s.n///j
C j'j . .s.n/// � q.s.n//j j
C jq.s.n//j � q.s/j j:

We estimate the terms on the right-hand side. The first term converges to 0 as
n ! 1. The second term is estimated by � ı, as we have already seen in (4)
(where s.n/ D s and  .s.n// D p0). The third term vanishes for n large enough,
in view of the convergence s.n/ ! s in the special metric of the Bernoulli system.
All in all, j'j .	/ � q.s/j j � ı for every j 2 Z, as claimed.

(7) The statement (i) of the theorem follows from ˆ.m/ D  B � B  �1.m/ 2
Im if m 2 Im . Finally, the points 'j . .s// which, by construction, belong
to the ı-shadowing orbit of an "-pseudo orbit on the set ƒ, necessarily lie in a ı

neighborhood of ƒ and so the statement (ii) holds true by construction. The proof
of Theorem III.17 is complete. �

By means of the homeomorphism  W †A !  .†A/ μ M � Rn the dynami-
cal system .M;ˆ/ ´ . .†A/; '

K/ inherits the properties of the Bernoulli system
.†A; �/ listed in Lemma III.16.

Corollary III.18. The subsystem .M;ˆ/ ´ . .†A/; '
K/ introduced in Theo-

rem III.17 has the following properties.

(i) ˆ is transitive onM .
(ii) The periodic points of the map ˆ are countable and dense inM .

(iii) ˆ is an expansive map onM .
(iv) The heteroclinic points of ˆ (to periodic orbits) are dense inM .

Proof. We only have to verify the expansiveness. Introducing the positive number

˛ ´ min
b¤c2A

d.Vb; Vc/ > 0;

we shall show for x ¤ y in M that there exists an integer j 2 Z such that
jˆj .x/ � ˆj .y/j � ˛. To do so, we take s; s0 in †A satisfying x D  .s/ and
y D  .s0/. Then sj ¤ s0

j for some integer j 2 Z. According to the geometric

construction of Theorem III.17 we know that that ˆj .x/ 2 Vsj and ˆj .y/ 2 Vs0
j

and so, jˆj .x/ �ˆj .y/j � ˛ as claimed. �
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III.4 Existence of transversal homoclinic points

We illustrate the chaotic behavior caused by a homoclinic point with the example
of a periodically perturbed mathematical pendulum. Starting with the unperturbed
situation and assuming all physical constants to be normalized, the mathematical
pendulum is determined by the differential equation

x

S1

Figure III.10. The pendulum.

Rx C sin x D 0

of second order, where x (mod 2�) is the angle of the swing of the pendulum.
Written as an equivalent system of differential equations of first order, the pendulum
is described by ´

Px D y;

Py D �dV
dx
.x/; V .x/ ´ � cos x:

Due to the periodicity, the phase space is equal to S1 � R, it is, however, more
convenient to work in the covering space R2. We write the system as a vector field
in R2,

Pz D X.z/ 2 R2; z D .x; y/ 2 R2:

The flow 't .z/ of the vector fieldX is defined by the unique solutions of the Cauchy
initial value problem

´
d
dt
't .z/ D X.'t .z//; t 2 R;

'0.z/ D z:

For fixed z the curve t 7! 't .z/ 2 R2 is the solution of the initial value problem
having the initial conditions z at the time t D 0. For fixed time t the mapping
z 7! 't .z/ is a diffeomorphism of R2.

The orbits are quickly sketched, since there exists an integralH W R2 ! R given
by

H.x; y/ D 1

2
y2 C V.x/ D 1

2
y2 � cos x:
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We recall that an integral of the vector field X is a functionH W R2 ! R satisfying
dH.X/ D 0. Equivalently, the flow of X leaves the function H invariant, so that
H.'t .z// D H.z/ for all t and z. Therefore, the orbits lie on the level lines

Ec ´ f.x; y/ 2 R2 j H.x; y/ D cg;
consisting of the two branches y D ˙p

2.c C cos x/. Figure III.11 shows that the
mathematical pendulum possesses the following orbit types.

0

0

x

x

y D Px

V D � cos x

H D 1H < 1 H > 1

���

Figure III.11. Level sets of the integral H . The separatrix is marked.

Equilibrium points. The equilibrium points are, on one hand, the constant orbits in
the level set fH D �1g, these are the so-called elliptic equilibrium points located in
.x; y/ D .2�n; 0/ (on the left figure). On the other hand, the hyperbolic equilibrium
points located in .x; y/ D ..2nC 1/�; 0/ are on the level set fH D 1g.

�
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Oscillation. The oscillations around the lowest point are on the level sets f�1 <
H < 1g, in Figure III.12 described by the closed curves.

Rotations. The rotational solutions lie on the level sets fH > 1g. The angle is
either strictly increasing (left) or else strictly decreasing (right).

Heteroclinic orbits. The level set fH D 1g carries the homoclinic orbits (inS1�R)
and the heteroclinic orbits (in R2) respectively, and the hyperbolic equilibrium
points. This level set is called a separatrix because it separates the oscillations
from the rotations.

Keeping the time T > 0 fixed, the flow in time T ,

'T W R2 ! R2;

is a diffeomorphism possessing the hyperbolic fixed points Pn D ..2n C 1/�; 0/

for n 2 Z. This is easily verified using Lemma II.12. They are 2�-periodically
distributed (in the projection on S1 � R they all correspond to the same point).
Their stable and unstable invariant manifolds coincide in the sense thatWC.Pn/ D
W�.PnC1/ for all n 2 Z. We now perturb the pendulum by means of a time
T -periodic excitation and consider the equation

Rx C sin x D � sin!t; T D 2�

!
:

The energy functionH is no longer an integral of the system and the orbit structure
changes drastically. The new vector field

Pz D X.t;�; z/ 2 R2
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is now time dependent and T -periodic in time t , so thatX.tCT;�; z/ D X.t;�; z/

for all t;�; z. The flow solves the initial value problem
´
d
dt
't .z;�/ D X.t;�; 't .z;�//; t 2 R;

'0.z;�/ D z:

Due to the uniqueness of the Cauchy initial value problem, it follows from the 2�
periodicity of the vector field X in the variable x that

't .z C 2�je1;�/ D 't .z;�/C 2�je1;

for all t;� 2 R and j 2 Z, where e1 D .1; 0/. Moreover, it follows from the
T -periodicity of the vector field in time t that

'tCT .z;�/ D 't .'T .z;�//

for every t 2 R and z 2 R2 (recall that the relation 't B 's D 'tCs is only valid
for the flow of a time independent vector field). Keeping the parameter � fixed, the
mapping

 .z/ ´ 'T .z;�/ W R2 ! R2

is a diffeomorphism satisfying  j .z/ D 'jT .z;�/ for every z 2 R2.
Let us assume that there exists a solution x.t/ of the equation Rx C sin x D

� sin!t possessing in�nitely many zeros (mod 2�), at the times .tk/k2Z which are
all nondegenerate. The times are ordered according to tk < tl if k < l , so that

x.tk/ D 0 mod 2�; Px.tk/ ¤ 0; k 2 Z:

In other words, the pendulum passes the lowest point infinitely often with a non-
vanishing velocity. We associate with this solution a two-sided sequence �.x.t// D
.�k.x.t///k2Z, defined by

�k.x.t// D sign. Px.tk// D
´

C1; Px.tk/ > 0;
�1; Px.tk/ < 0:

In the unperturbed case � D 0 there exist precisely three types of such se-
quences, namely

(a) constant C1, i.e., �k.x.t// D C1 for all k 2 Z,
(b) constant �1, i.e., �k.x.t// D �1 for all k 2 Z,
(c) alternating, i.e., �.x.t// D .: : : ;C1;�1;C1;�1;C1; : : : /.

In sharp contrast to this unperturbed situation, the perturbed mathematical pen-
dulum possesses a solution for every prescribed random sequence as the following
theorem shows.
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0
x

y D Px .a/

.b/.c/

2�

Figure III.12. Types in the unperturbed case.

Theorem III.19. Let U � R2 be an open neighborhood of the separatrix (in the
case � D 0). If j�j > 0 is suf�ciently small, then there exists for every two-
sided sequence .sk/k2Z of integers sk 2 f�1; 1g a solution x.t/ of the perturbed
pendulumequation RxCsin x D � sin!t such that .x.t/; Px.t// 2 U whichpossesses
in�nitely many nondegenerate zeros (mod 2�) satisfying

�k.x.t// D sk; k 2 Z:

In addition, for every �nite sequence sk 2 f�1; 1g where �N � k � M there
exists a solution x.t/ possessing only �nitely many nondegenerate zeros (mod 2�)
and solving the equations �k.x.t// D sk for �N � k � M . The same applies to
half �nite sequences sk for �1 < k � M or for �N � k < 1.

In short, one can prescribe any sequence of directions with which the pendulum
should consecutively pass through the lowest point and there exists a solution doing
precisely that.

Proof [Transversal heteroclinic point, shadowing lemma]. Assuming � ¤ 0, we
consider the diffeomorphism  of R2, defined by the time T flow map

 .z;�/ ´  �.z/ ´ 'T .z;�/;

at the time T D 2�=! > 0. In the case � D 0, the map  has the hyperbolic fixed
point P ´ P�1 D .��; 0/. We shall show that also the diffeomorphism  � has a
unique hyperbolic �xed point P.�/ near P D P.0/, which depends differentiably
on �, if � is small enough. For this, we define the mapping F W R2 � R ! R2 by

F.z;�/ D 'T .z;�/ � z:
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If � D 0 then F.P; 0/ D �T .P; 0/ � P D 0 and the partial derivative in the
variable z is given by

D1.P; 0/ D D1'
T .P; 0/ � 1 2 L.R2/:

The linear mappingD1F.P; 0/ is an isomorphism, since the hyperbolic matrix
D1'

T .P; 0/ does not have an eigenvalue equal to 1. In a neighborhood of � D 0

there exists, by the implicit function theorem, a unique continuously differentiable
function � 7! P.�/ 2 R2, solving F.P.�/;�/ D 0 and P.0/ D P . In other
words,

P.�/ D  �.P.�//

is a fixed point of the mapping  �. The eigenvalues of the derivative d �.P.�//

depend continuously on �, hence the linear map d �.P.�// possesses for small
� an eigenvalue whose absolute value is > 1 and an eigenvalue whose absolute
value is < 1. Consequently, P.�/ is a hyperbolic fixed point of  �, if � is small.
Also the points P.�/ C 2n� are hyperbolic fixed points and P.�/ C 2n� D
P�1.�/C 2n� D Pn�1.�/.

From the proof of Theorem II.8 (construction of h) we know that the local
invariant manifolds issuing from the hyperbolic fixed point P.�/, denoted by

W ˙
loc.P.�//;

depend differentiably on � (by the implicit function theorem). For small � they
can, therefore, be represented locally as graphs over the invariant manifolds of the
unperturbed system (the branches of the separatrix). If t 7! �.t/ is a heteroclinic
solution in the unperturbed case � D 0 having the x-coordinate at time t D 0 equal
to .�.0//1 D 0, then �.t/ lies on the separatrix. In formulas,

d

dt
�.t/ D X.0; �.t//; t 2 R;

and �.t/ ! P D P�1 as t ! �1 and �.t/ ! P C 2�e1 D P0 as t ! C1.
Denoting by n.�.t// the unit normal vector of the homoclinic orbit � in the

point �.t/ as depicted in Figure III.14, we can represent the relevant pieces of the
invariant manifolds as follows:

f�.r/C u�.r;�/ � n.�.r// j �1 < r � M g � W�.P�1.�//

and
f�.r/C uC.r;�/ � n.�.r// j �M � r < 1g � WC.P0.�//;

with a sufficiently large constantM > 0 and where in the case � D 0 the functions
uC.r; 0/ D u�.r; 0/ D 0 vanish.

If for a parameter value r 2 R,

u�.r;�/ D uC.r;�/ and
@

@r
u�.r;�/ ¤ @

@r
uC.r;�/;
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0
x

y

b
a c

Legend: a: �.�M/ b: �.0/ c: �.M/ d: �.r/

P�1.0/ P0.0/

P�1.�/ P0.�/

n.�.r//

d

WC.P0.�//
W�.P�1.�//

Figure III.13. The perturbed invariant manifolds possessing a transversal intersection.

then we have found the transversal intersection point

 ´ �.r/C u�.r;�/ � n.�.r// 2 W�.P�1.�// \WC.P0.�//:

In order to study the first-order term in � of the function .u� � uC/ we introduce
the so-called Melnikov function

d.r/ ´ @

@�
.u� � uC/j�D0.r/:

If d.r0/ D 0 and d
dr
d.r0/ ¤ 0, then there exists a transversal intersection point

near �.r0/, for small � ¤ 0. This follows from

.u� � uC/.r;�/ D �
�
d.r/CO.�/

�

in view of the implicit function theorem. The first approximation d.r/ can be
explicitly calculated by means of the following Melnikov formula.

Theorem III.20 (Melnikov). Let

Pz D f .z/C �g.t; z/ 2 R2;

z 2 R2 be a smooth vector �eld satisfying div f D 0, where g is a T -periodic
vector �eld for some T > 0, so that g.t C T; z/ D g.t; z/. We assume that for
� D 0 there exists a homoclinic (resp. heteroclinic) orbit � of the vector �eld f ,
hence satisfying d

dt
�.t/ D f .�.t// for all t 2 R and

�.t/ ! P; t ! �1;

�.t/ ! Q; t ! C1
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U

Figure III.14. A neighborhood U of the separatrix.

for two hyperbolic �xed points P and Q of f . Then, setting f D .f1; f2/ and
g D .g1; g2/ the following formula holds true:

d.r/ D 1

jf .�.r//j
Z 1

�1
.f1g2 � f2g1/.s; �.r C s// ds:

For a proof we refer to C. Robinson in [91, S. 304]. In order to apply the formula
to our pendulum, we consider the upper branch of the unperturbed separatrix,

´
�� � x � �;

y D Cp
2.1C cos x/ D 2 cos.x

2
/

where y D Px. The solution of the equation Px D 2 cos.x
2
/ is given by

x.t/ D 2 arcsin.tanh.t//; t 2 R;

and differentiating we obtain

Px.t/ D y.t/ D 2

cosh.t/
:

Hence �.t/ D .x.t/; y.t// is the heteroclinic orbit. Inserting the curve � into
the Melnikov formula results in

d.r/ D 1

jX.�.r//j
2� sin.!r/

cosh.!�
2
/
:

The function d.r/ has the nondegenerate zeros r D �
!
j for all j 2 Z. Therefore,

there exists a transversal heteroclinic point . In the same way, there exists near the
lower branch of the separatrix a transversal heteroclinic point �. The closure of the
heteroclinic orbits is the hyperbolic set

ƒ D
[

j;k2Z

 j . C 2�ke1/ [ fPk.�/g [  j .� C 2�ke1/:

In order to finish the proof of Theorem III.19 we choose a neighborhood U of
the separatrix and we choose the parameters "; ı as in the shadowing lemma. For the
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given sequence s D .sk/k2Z we construct the following "-pseudo orbit q, described
by Figure III.15. If s0 D 1, we start in the heteroclinic point q0 D  and if s0 D �1
we start in the heteroclinic point q0 D �. Then we follow the heteroclinic orbit
 j ./, resp. j .�/ into the ."=2/-neighborhood of the next hyperbolic fixed point.
There one has again two possibilities. If s1 D 1we jump onto the heteroclinic orbit
of the upper branch to the right while if s1 D �1 we jump onto the heteroclinic
orbit of the lower branch to the left, and so on.

P�1.�/ P0.�/ P1.�/



�

Figure III.15. The "-pseudo orbit associated with the sequence .sk/D.: : : ; s0; s1; s2; : : : / D
.: : : ; 1; 1;�1; : : : /.

The associated ı-shadowing orbit p D .pj /j2Z guaranteed by the shadowing
lemma,

pj D  j .p0/ D 'jT .p0;�/; j 2 Z;

lies on the desired solution t 7! 't .p0;�/ of the perturbed vector field X.t;�; z/
starting at the point '0.p0;�/ D p0 at the time t D 0 and remaining in the open
neighborhood U of the separatrix. Of course, this solution loses a lot of time near
the hyperbolic equilibrium points, away from these neighborhoods it moves quite
fast. We point out that all the solutions found this way start in a small neighborhood
of the homoclinic points  resp. �!

The passages near the transversal heteroclinic points  resp. � correspond to the
passages of the pendulum through the point x D 0 mod 2� , which is the lowest
position of the pendulum. In order to obtain a solution defined by a finite sequence
.sk/, one constructs an "-pseudo orbit q as before which, however, at the ends is
equal to the orbits of hyperbolic fixed points. Then, the corresponding solution of
the pendulum equation makes finitely many swings back and forth and then remains
almost immobile near the highest position of the pendulum! This completes the
proof of Theorem III.19. �

For a detailed study of the chaotic behavior of the periodically perturbed pen-
dulum we refer to U. Kirchgraber and D. Stoffer in [59].


